]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-store-merging.c
re PR fortran/36497 (USE association, cray pointers and error checking)
[thirdparty/gcc.git] / gcc / gimple-ssa-store-merging.c
CommitLineData
dffec8eb 1/* GIMPLE store merging and byte swapping passes.
85ec4feb 2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
f663d9ad
KT
3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
c94c3532
EB
21/* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
24
f663d9ad
KT
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
27 [p ] := imm1;
28 [p + 1B] := imm2;
29 [p + 2B] := imm3;
30 [p + 3B] := imm4;
31 we can transform this into a single 4-byte store if the target supports it:
c94c3532 32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
f663d9ad 33
245f6de1
JJ
34 Or:
35 [p ] := [q ];
36 [p + 1B] := [q + 1B];
37 [p + 2B] := [q + 2B];
38 [p + 3B] := [q + 3B];
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
41
42 Or:
43 [p ] := [q ] ^ imm1;
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
49
c94c3532
EB
50 Or:
51 [p:1 ] := imm;
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
55
f663d9ad
KT
56 The algorithm is applied to each basic block in three phases:
57
c94c3532
EB
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
245f6de1
JJ
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when when the stored
65 values get used subsequently).
f663d9ad
KT
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
c94c3532
EB
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
245f6de1
JJ
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
f663d9ad 74
c94c3532 75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
f663d9ad 76 store_immediate_info objects) and coalesce contiguous stores into
c94c3532 77 merged_store_group objects. For bit-field stores, we don't need to
245f6de1
JJ
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
f663d9ad
KT
83
84 For example, given the stores:
85 [p ] := 0;
86 [p + 1B] := 1;
87 [p + 3B] := 0;
88 [p + 4B] := 1;
89 [p + 5B] := 0;
90 [p + 6B] := 0;
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
94
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
c94c3532
EB
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
f663d9ad
KT
103
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
106 [p ] := 0x1234;
107 [p + 2B] := 0x5678;
108 [p + 4B] := 0xab;
109 [p + 5B] := 0xcd;
110
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
112 p |LE|BE|
113 ---------
114 0 |34|12|
115 1 |12|34|
116 2 |78|56|
117 3 |56|78|
118 4 |ab|ab|
119 5 |cd|cd|
120
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
125
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
129
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
136
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
140
141#include "config.h"
142#include "system.h"
143#include "coretypes.h"
144#include "backend.h"
145#include "tree.h"
146#include "gimple.h"
147#include "builtins.h"
148#include "fold-const.h"
149#include "tree-pass.h"
150#include "ssa.h"
151#include "gimple-pretty-print.h"
152#include "alias.h"
153#include "fold-const.h"
154#include "params.h"
155#include "print-tree.h"
156#include "tree-hash-traits.h"
157#include "gimple-iterator.h"
158#include "gimplify.h"
c94c3532 159#include "gimple-fold.h"
f663d9ad
KT
160#include "stor-layout.h"
161#include "timevar.h"
162#include "tree-cfg.h"
163#include "tree-eh.h"
164#include "target.h"
aa55dc0c 165#include "gimplify-me.h"
a62b3dc5
JJ
166#include "rtl.h"
167#include "expr.h" /* For get_bit_range. */
dffec8eb 168#include "optabs-tree.h"
c22d8787 169#include "selftest.h"
f663d9ad
KT
170
171/* The maximum size (in bits) of the stores this pass should generate. */
172#define MAX_STORE_BITSIZE (BITS_PER_WORD)
173#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
174
245f6de1
JJ
175/* Limit to bound the number of aliasing checks for loads with the same
176 vuse as the corresponding store. */
177#define MAX_STORE_ALIAS_CHECKS 64
178
f663d9ad
KT
179namespace {
180
bebadeca 181struct bswap_stat
dffec8eb
JJ
182{
183 /* Number of hand-written 16-bit nop / bswaps found. */
184 int found_16bit;
185
186 /* Number of hand-written 32-bit nop / bswaps found. */
187 int found_32bit;
188
189 /* Number of hand-written 64-bit nop / bswaps found. */
190 int found_64bit;
191} nop_stats, bswap_stats;
192
193/* A symbolic number structure is used to detect byte permutation and selection
194 patterns of a source. To achieve that, its field N contains an artificial
195 number consisting of BITS_PER_MARKER sized markers tracking where does each
196 byte come from in the source:
197
198 0 - target byte has the value 0
199 FF - target byte has an unknown value (eg. due to sign extension)
200 1..size - marker value is the byte index in the source (0 for lsb).
201
202 To detect permutations on memory sources (arrays and structures), a symbolic
203 number is also associated:
204 - a base address BASE_ADDR and an OFFSET giving the address of the source;
205 - a range which gives the difference between the highest and lowest accessed
206 memory location to make such a symbolic number;
207 - the address SRC of the source element of lowest address as a convenience
208 to easily get BASE_ADDR + offset + lowest bytepos;
209 - number of expressions N_OPS bitwise ored together to represent
210 approximate cost of the computation.
211
212 Note 1: the range is different from size as size reflects the size of the
213 type of the current expression. For instance, for an array char a[],
214 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
215 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
216 time a range of 1.
217
218 Note 2: for non-memory sources, range holds the same value as size.
219
220 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
221
222struct symbolic_number {
223 uint64_t n;
224 tree type;
225 tree base_addr;
226 tree offset;
4a022c70 227 poly_int64_pod bytepos;
dffec8eb
JJ
228 tree src;
229 tree alias_set;
230 tree vuse;
231 unsigned HOST_WIDE_INT range;
232 int n_ops;
233};
234
235#define BITS_PER_MARKER 8
236#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
237#define MARKER_BYTE_UNKNOWN MARKER_MASK
238#define HEAD_MARKER(n, size) \
239 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
240
241/* The number which the find_bswap_or_nop_1 result should match in
242 order to have a nop. The number is masked according to the size of
243 the symbolic number before using it. */
244#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
245 (uint64_t)0x08070605 << 32 | 0x04030201)
246
247/* The number which the find_bswap_or_nop_1 result should match in
248 order to have a byte swap. The number is masked according to the
249 size of the symbolic number before using it. */
250#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
251 (uint64_t)0x01020304 << 32 | 0x05060708)
252
253/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
254 number N. Return false if the requested operation is not permitted
255 on a symbolic number. */
256
257inline bool
258do_shift_rotate (enum tree_code code,
259 struct symbolic_number *n,
260 int count)
261{
262 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
263 unsigned head_marker;
264
265 if (count % BITS_PER_UNIT != 0)
266 return false;
267 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
268
269 /* Zero out the extra bits of N in order to avoid them being shifted
270 into the significant bits. */
271 if (size < 64 / BITS_PER_MARKER)
272 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
273
274 switch (code)
275 {
276 case LSHIFT_EXPR:
277 n->n <<= count;
278 break;
279 case RSHIFT_EXPR:
280 head_marker = HEAD_MARKER (n->n, size);
281 n->n >>= count;
282 /* Arithmetic shift of signed type: result is dependent on the value. */
283 if (!TYPE_UNSIGNED (n->type) && head_marker)
284 for (i = 0; i < count / BITS_PER_MARKER; i++)
285 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
286 << ((size - 1 - i) * BITS_PER_MARKER);
287 break;
288 case LROTATE_EXPR:
289 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
290 break;
291 case RROTATE_EXPR:
292 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
293 break;
294 default:
295 return false;
296 }
297 /* Zero unused bits for size. */
298 if (size < 64 / BITS_PER_MARKER)
299 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
300 return true;
301}
302
303/* Perform sanity checking for the symbolic number N and the gimple
304 statement STMT. */
305
306inline bool
307verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
308{
309 tree lhs_type;
310
311 lhs_type = gimple_expr_type (stmt);
312
313 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
314 return false;
315
316 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
317 return false;
318
319 return true;
320}
321
322/* Initialize the symbolic number N for the bswap pass from the base element
323 SRC manipulated by the bitwise OR expression. */
324
325bool
326init_symbolic_number (struct symbolic_number *n, tree src)
327{
328 int size;
329
330 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
331 return false;
332
333 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
334 n->src = src;
335
336 /* Set up the symbolic number N by setting each byte to a value between 1 and
337 the byte size of rhs1. The highest order byte is set to n->size and the
338 lowest order byte to 1. */
339 n->type = TREE_TYPE (src);
340 size = TYPE_PRECISION (n->type);
341 if (size % BITS_PER_UNIT != 0)
342 return false;
343 size /= BITS_PER_UNIT;
344 if (size > 64 / BITS_PER_MARKER)
345 return false;
346 n->range = size;
347 n->n = CMPNOP;
348 n->n_ops = 1;
349
350 if (size < 64 / BITS_PER_MARKER)
351 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
352
353 return true;
354}
355
356/* Check if STMT might be a byte swap or a nop from a memory source and returns
357 the answer. If so, REF is that memory source and the base of the memory area
358 accessed and the offset of the access from that base are recorded in N. */
359
360bool
361find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
362{
363 /* Leaf node is an array or component ref. Memorize its base and
364 offset from base to compare to other such leaf node. */
f37fac2b 365 poly_int64 bitsize, bitpos, bytepos;
dffec8eb
JJ
366 machine_mode mode;
367 int unsignedp, reversep, volatilep;
368 tree offset, base_addr;
369
370 /* Not prepared to handle PDP endian. */
371 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
372 return false;
373
374 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
375 return false;
376
377 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
378 &unsignedp, &reversep, &volatilep);
379
4b84d9b8
JJ
380 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
381 /* Do not rewrite TARGET_MEM_REF. */
382 return false;
383 else if (TREE_CODE (base_addr) == MEM_REF)
dffec8eb 384 {
3fed2ce9 385 poly_offset_int bit_offset = 0;
dffec8eb
JJ
386 tree off = TREE_OPERAND (base_addr, 1);
387
388 if (!integer_zerop (off))
389 {
3fed2ce9
RS
390 poly_offset_int boff = mem_ref_offset (base_addr);
391 boff <<= LOG2_BITS_PER_UNIT;
dffec8eb
JJ
392 bit_offset += boff;
393 }
394
395 base_addr = TREE_OPERAND (base_addr, 0);
396
397 /* Avoid returning a negative bitpos as this may wreak havoc later. */
3fed2ce9 398 if (maybe_lt (bit_offset, 0))
dffec8eb 399 {
3fed2ce9
RS
400 tree byte_offset = wide_int_to_tree
401 (sizetype, bits_to_bytes_round_down (bit_offset));
402 bit_offset = num_trailing_bits (bit_offset);
dffec8eb 403 if (offset)
3fed2ce9 404 offset = size_binop (PLUS_EXPR, offset, byte_offset);
dffec8eb 405 else
3fed2ce9 406 offset = byte_offset;
dffec8eb
JJ
407 }
408
3fed2ce9 409 bitpos += bit_offset.force_shwi ();
dffec8eb 410 }
4b84d9b8
JJ
411 else
412 base_addr = build_fold_addr_expr (base_addr);
dffec8eb 413
f37fac2b 414 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
dffec8eb 415 return false;
f37fac2b 416 if (!multiple_p (bitsize, BITS_PER_UNIT))
dffec8eb
JJ
417 return false;
418 if (reversep)
419 return false;
420
421 if (!init_symbolic_number (n, ref))
422 return false;
423 n->base_addr = base_addr;
424 n->offset = offset;
f37fac2b 425 n->bytepos = bytepos;
dffec8eb
JJ
426 n->alias_set = reference_alias_ptr_type (ref);
427 n->vuse = gimple_vuse (stmt);
428 return true;
429}
430
431/* Compute the symbolic number N representing the result of a bitwise OR on 2
432 symbolic number N1 and N2 whose source statements are respectively
433 SOURCE_STMT1 and SOURCE_STMT2. */
434
435gimple *
436perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
437 gimple *source_stmt2, struct symbolic_number *n2,
438 struct symbolic_number *n)
439{
440 int i, size;
441 uint64_t mask;
442 gimple *source_stmt;
443 struct symbolic_number *n_start;
444
445 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
446 if (TREE_CODE (rhs1) == BIT_FIELD_REF
447 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
448 rhs1 = TREE_OPERAND (rhs1, 0);
449 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
450 if (TREE_CODE (rhs2) == BIT_FIELD_REF
451 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
452 rhs2 = TREE_OPERAND (rhs2, 0);
453
454 /* Sources are different, cancel bswap if they are not memory location with
455 the same base (array, structure, ...). */
456 if (rhs1 != rhs2)
457 {
458 uint64_t inc;
4a022c70 459 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
dffec8eb
JJ
460 struct symbolic_number *toinc_n_ptr, *n_end;
461 basic_block bb1, bb2;
462
463 if (!n1->base_addr || !n2->base_addr
464 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
465 return NULL;
466
467 if (!n1->offset != !n2->offset
468 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
469 return NULL;
470
4a022c70
RS
471 start1 = 0;
472 if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
473 return NULL;
474
475 if (start1 < start2)
dffec8eb
JJ
476 {
477 n_start = n1;
4a022c70 478 start_sub = start2 - start1;
dffec8eb
JJ
479 }
480 else
481 {
482 n_start = n2;
4a022c70 483 start_sub = start1 - start2;
dffec8eb
JJ
484 }
485
486 bb1 = gimple_bb (source_stmt1);
487 bb2 = gimple_bb (source_stmt2);
488 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
489 source_stmt = source_stmt1;
490 else
491 source_stmt = source_stmt2;
492
493 /* Find the highest address at which a load is performed and
494 compute related info. */
4a022c70
RS
495 end1 = start1 + (n1->range - 1);
496 end2 = start2 + (n2->range - 1);
dffec8eb
JJ
497 if (end1 < end2)
498 {
499 end = end2;
500 end_sub = end2 - end1;
501 }
502 else
503 {
504 end = end1;
505 end_sub = end1 - end2;
506 }
507 n_end = (end2 > end1) ? n2 : n1;
508
509 /* Find symbolic number whose lsb is the most significant. */
510 if (BYTES_BIG_ENDIAN)
511 toinc_n_ptr = (n_end == n1) ? n2 : n1;
512 else
513 toinc_n_ptr = (n_start == n1) ? n2 : n1;
514
4a022c70 515 n->range = end - MIN (start1, start2) + 1;
dffec8eb
JJ
516
517 /* Check that the range of memory covered can be represented by
518 a symbolic number. */
519 if (n->range > 64 / BITS_PER_MARKER)
520 return NULL;
521
522 /* Reinterpret byte marks in symbolic number holding the value of
523 bigger weight according to target endianness. */
524 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
525 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
526 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
527 {
528 unsigned marker
529 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
530 if (marker && marker != MARKER_BYTE_UNKNOWN)
531 toinc_n_ptr->n += inc;
532 }
533 }
534 else
535 {
536 n->range = n1->range;
537 n_start = n1;
538 source_stmt = source_stmt1;
539 }
540
541 if (!n1->alias_set
542 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
543 n->alias_set = n1->alias_set;
544 else
545 n->alias_set = ptr_type_node;
546 n->vuse = n_start->vuse;
547 n->base_addr = n_start->base_addr;
548 n->offset = n_start->offset;
549 n->src = n_start->src;
550 n->bytepos = n_start->bytepos;
551 n->type = n_start->type;
552 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
553
554 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
555 {
556 uint64_t masked1, masked2;
557
558 masked1 = n1->n & mask;
559 masked2 = n2->n & mask;
560 if (masked1 && masked2 && masked1 != masked2)
561 return NULL;
562 }
563 n->n = n1->n | n2->n;
564 n->n_ops = n1->n_ops + n2->n_ops;
565
566 return source_stmt;
567}
568
569/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
570 the operation given by the rhs of STMT on the result. If the operation
571 could successfully be executed the function returns a gimple stmt whose
572 rhs's first tree is the expression of the source operand and NULL
573 otherwise. */
574
575gimple *
576find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
577{
578 enum tree_code code;
579 tree rhs1, rhs2 = NULL;
580 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
581 enum gimple_rhs_class rhs_class;
582
583 if (!limit || !is_gimple_assign (stmt))
584 return NULL;
585
586 rhs1 = gimple_assign_rhs1 (stmt);
587
588 if (find_bswap_or_nop_load (stmt, rhs1, n))
589 return stmt;
590
591 /* Handle BIT_FIELD_REF. */
592 if (TREE_CODE (rhs1) == BIT_FIELD_REF
593 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
594 {
595 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
596 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
597 if (bitpos % BITS_PER_UNIT == 0
598 && bitsize % BITS_PER_UNIT == 0
599 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
600 {
601 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
602 if (BYTES_BIG_ENDIAN)
603 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
604
605 /* Shift. */
606 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
607 return NULL;
608
609 /* Mask. */
610 uint64_t mask = 0;
611 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
612 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
613 i++, tmp <<= BITS_PER_UNIT)
614 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
615 n->n &= mask;
616
617 /* Convert. */
618 n->type = TREE_TYPE (rhs1);
619 if (!n->base_addr)
620 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
621
622 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
623 }
624
625 return NULL;
626 }
627
628 if (TREE_CODE (rhs1) != SSA_NAME)
629 return NULL;
630
631 code = gimple_assign_rhs_code (stmt);
632 rhs_class = gimple_assign_rhs_class (stmt);
633 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
634
635 if (rhs_class == GIMPLE_BINARY_RHS)
636 rhs2 = gimple_assign_rhs2 (stmt);
637
638 /* Handle unary rhs and binary rhs with integer constants as second
639 operand. */
640
641 if (rhs_class == GIMPLE_UNARY_RHS
642 || (rhs_class == GIMPLE_BINARY_RHS
643 && TREE_CODE (rhs2) == INTEGER_CST))
644 {
645 if (code != BIT_AND_EXPR
646 && code != LSHIFT_EXPR
647 && code != RSHIFT_EXPR
648 && code != LROTATE_EXPR
649 && code != RROTATE_EXPR
650 && !CONVERT_EXPR_CODE_P (code))
651 return NULL;
652
653 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
654
655 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
656 we have to initialize the symbolic number. */
657 if (!source_stmt1)
658 {
659 if (gimple_assign_load_p (stmt)
660 || !init_symbolic_number (n, rhs1))
661 return NULL;
662 source_stmt1 = stmt;
663 }
664
665 switch (code)
666 {
667 case BIT_AND_EXPR:
668 {
669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
670 uint64_t val = int_cst_value (rhs2), mask = 0;
671 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
672
673 /* Only constants masking full bytes are allowed. */
674 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
675 if ((val & tmp) != 0 && (val & tmp) != tmp)
676 return NULL;
677 else if (val & tmp)
678 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
679
680 n->n &= mask;
681 }
682 break;
683 case LSHIFT_EXPR:
684 case RSHIFT_EXPR:
685 case LROTATE_EXPR:
686 case RROTATE_EXPR:
687 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
688 return NULL;
689 break;
690 CASE_CONVERT:
691 {
692 int i, type_size, old_type_size;
693 tree type;
694
695 type = gimple_expr_type (stmt);
696 type_size = TYPE_PRECISION (type);
697 if (type_size % BITS_PER_UNIT != 0)
698 return NULL;
699 type_size /= BITS_PER_UNIT;
700 if (type_size > 64 / BITS_PER_MARKER)
701 return NULL;
702
703 /* Sign extension: result is dependent on the value. */
704 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
705 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
706 && HEAD_MARKER (n->n, old_type_size))
707 for (i = 0; i < type_size - old_type_size; i++)
708 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
709 << ((type_size - 1 - i) * BITS_PER_MARKER);
710
711 if (type_size < 64 / BITS_PER_MARKER)
712 {
713 /* If STMT casts to a smaller type mask out the bits not
714 belonging to the target type. */
715 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
716 }
717 n->type = type;
718 if (!n->base_addr)
719 n->range = type_size;
720 }
721 break;
722 default:
723 return NULL;
724 };
725 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
726 }
727
728 /* Handle binary rhs. */
729
730 if (rhs_class == GIMPLE_BINARY_RHS)
731 {
732 struct symbolic_number n1, n2;
733 gimple *source_stmt, *source_stmt2;
734
735 if (code != BIT_IOR_EXPR)
736 return NULL;
737
738 if (TREE_CODE (rhs2) != SSA_NAME)
739 return NULL;
740
741 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
742
743 switch (code)
744 {
745 case BIT_IOR_EXPR:
746 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
747
748 if (!source_stmt1)
749 return NULL;
750
751 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
752
753 if (!source_stmt2)
754 return NULL;
755
756 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
757 return NULL;
758
4b84d9b8 759 if (n1.vuse != n2.vuse)
dffec8eb
JJ
760 return NULL;
761
762 source_stmt
763 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
764
765 if (!source_stmt)
766 return NULL;
767
768 if (!verify_symbolic_number_p (n, stmt))
769 return NULL;
770
771 break;
772 default:
773 return NULL;
774 }
775 return source_stmt;
776 }
777 return NULL;
778}
779
4b84d9b8
JJ
780/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
781 *CMPXCHG, *CMPNOP and adjust *N. */
dffec8eb 782
4b84d9b8
JJ
783void
784find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
785 uint64_t *cmpnop)
dffec8eb
JJ
786{
787 unsigned rsize;
788 uint64_t tmpn, mask;
dffec8eb 789
4b84d9b8
JJ
790 /* The number which the find_bswap_or_nop_1 result should match in order
791 to have a full byte swap. The number is shifted to the right
792 according to the size of the symbolic number before using it. */
793 *cmpxchg = CMPXCHG;
794 *cmpnop = CMPNOP;
dffec8eb
JJ
795
796 /* Find real size of result (highest non-zero byte). */
797 if (n->base_addr)
798 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
799 else
800 rsize = n->range;
801
802 /* Zero out the bits corresponding to untouched bytes in original gimple
803 expression. */
804 if (n->range < (int) sizeof (int64_t))
805 {
806 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
807 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
808 *cmpnop &= mask;
dffec8eb
JJ
809 }
810
811 /* Zero out the bits corresponding to unused bytes in the result of the
812 gimple expression. */
813 if (rsize < n->range)
814 {
815 if (BYTES_BIG_ENDIAN)
816 {
817 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
818 *cmpxchg &= mask;
819 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
dffec8eb
JJ
820 }
821 else
822 {
823 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
824 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
825 *cmpnop &= mask;
dffec8eb
JJ
826 }
827 n->range = rsize;
828 }
829
4b84d9b8
JJ
830 n->range *= BITS_PER_UNIT;
831}
832
833/* Check if STMT completes a bswap implementation or a read in a given
834 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
835 accordingly. It also sets N to represent the kind of operations
836 performed: size of the resulting expression and whether it works on
837 a memory source, and if so alias-set and vuse. At last, the
838 function returns a stmt whose rhs's first tree is the source
839 expression. */
840
841gimple *
842find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
843{
844 /* The last parameter determines the depth search limit. It usually
845 correlates directly to the number n of bytes to be touched. We
846 increase that number by log2(n) + 1 here in order to also
847 cover signed -> unsigned conversions of the src operand as can be seen
848 in libgcc, and for initial shift/and operation of the src operand. */
849 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
850 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
851 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
852
853 if (!ins_stmt)
854 return NULL;
855
856 uint64_t cmpxchg, cmpnop;
857 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
858
dffec8eb
JJ
859 /* A complete byte swap should make the symbolic number to start with
860 the largest digit in the highest order byte. Unchanged symbolic
861 number indicates a read with same endianness as target architecture. */
862 if (n->n == cmpnop)
863 *bswap = false;
864 else if (n->n == cmpxchg)
865 *bswap = true;
866 else
867 return NULL;
868
869 /* Useless bit manipulation performed by code. */
870 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
871 return NULL;
872
dffec8eb
JJ
873 return ins_stmt;
874}
875
876const pass_data pass_data_optimize_bswap =
877{
878 GIMPLE_PASS, /* type */
879 "bswap", /* name */
880 OPTGROUP_NONE, /* optinfo_flags */
881 TV_NONE, /* tv_id */
882 PROP_ssa, /* properties_required */
883 0, /* properties_provided */
884 0, /* properties_destroyed */
885 0, /* todo_flags_start */
886 0, /* todo_flags_finish */
887};
888
889class pass_optimize_bswap : public gimple_opt_pass
890{
891public:
892 pass_optimize_bswap (gcc::context *ctxt)
893 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
894 {}
895
896 /* opt_pass methods: */
897 virtual bool gate (function *)
898 {
899 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
900 }
901
902 virtual unsigned int execute (function *);
903
904}; // class pass_optimize_bswap
905
906/* Perform the bswap optimization: replace the expression computed in the rhs
4b84d9b8
JJ
907 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
908 bswap, load or load + bswap expression.
dffec8eb
JJ
909 Which of these alternatives replace the rhs is given by N->base_addr (non
910 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
911 load to perform are also given in N while the builtin bswap invoke is given
4b84d9b8
JJ
912 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
913 load statements involved to construct the rhs in gsi_stmt (GSI) and
914 N->range gives the size of the rhs expression for maintaining some
915 statistics.
dffec8eb 916
4b84d9b8
JJ
917 Note that if the replacement involve a load and if gsi_stmt (GSI) is
918 non-NULL, that stmt is moved just after INS_STMT to do the load with the
919 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
dffec8eb 920
4b84d9b8
JJ
921tree
922bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
dffec8eb
JJ
923 tree bswap_type, tree load_type, struct symbolic_number *n,
924 bool bswap)
925{
4b84d9b8 926 tree src, tmp, tgt = NULL_TREE;
dffec8eb
JJ
927 gimple *bswap_stmt;
928
4b84d9b8 929 gimple *cur_stmt = gsi_stmt (gsi);
dffec8eb 930 src = n->src;
4b84d9b8
JJ
931 if (cur_stmt)
932 tgt = gimple_assign_lhs (cur_stmt);
dffec8eb
JJ
933
934 /* Need to load the value from memory first. */
935 if (n->base_addr)
936 {
4b84d9b8
JJ
937 gimple_stmt_iterator gsi_ins = gsi;
938 if (ins_stmt)
939 gsi_ins = gsi_for_stmt (ins_stmt);
dffec8eb
JJ
940 tree addr_expr, addr_tmp, val_expr, val_tmp;
941 tree load_offset_ptr, aligned_load_type;
4b84d9b8
JJ
942 gimple *load_stmt;
943 unsigned align = get_object_alignment (src);
4a022c70 944 poly_int64 load_offset = 0;
dffec8eb 945
4b84d9b8
JJ
946 if (cur_stmt)
947 {
948 basic_block ins_bb = gimple_bb (ins_stmt);
949 basic_block cur_bb = gimple_bb (cur_stmt);
950 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
951 return NULL_TREE;
952
953 /* Move cur_stmt just before one of the load of the original
954 to ensure it has the same VUSE. See PR61517 for what could
955 go wrong. */
956 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
957 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
958 gsi_move_before (&gsi, &gsi_ins);
959 gsi = gsi_for_stmt (cur_stmt);
960 }
961 else
962 gsi = gsi_ins;
dffec8eb
JJ
963
964 /* Compute address to load from and cast according to the size
965 of the load. */
4b84d9b8 966 addr_expr = build_fold_addr_expr (src);
dffec8eb 967 if (is_gimple_mem_ref_addr (addr_expr))
4b84d9b8 968 addr_tmp = unshare_expr (addr_expr);
dffec8eb
JJ
969 else
970 {
4b84d9b8
JJ
971 addr_tmp = unshare_expr (n->base_addr);
972 if (!is_gimple_mem_ref_addr (addr_tmp))
973 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
974 is_gimple_mem_ref_addr,
975 NULL_TREE, true,
976 GSI_SAME_STMT);
977 load_offset = n->bytepos;
978 if (n->offset)
979 {
980 tree off
981 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
982 true, NULL_TREE, true,
983 GSI_SAME_STMT);
984 gimple *stmt
985 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
986 POINTER_PLUS_EXPR, addr_tmp, off);
987 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
988 addr_tmp = gimple_assign_lhs (stmt);
989 }
dffec8eb
JJ
990 }
991
992 /* Perform the load. */
993 aligned_load_type = load_type;
994 if (align < TYPE_ALIGN (load_type))
995 aligned_load_type = build_aligned_type (load_type, align);
996 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
997 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
998 load_offset_ptr);
999
1000 if (!bswap)
1001 {
1002 if (n->range == 16)
1003 nop_stats.found_16bit++;
1004 else if (n->range == 32)
1005 nop_stats.found_32bit++;
1006 else
1007 {
1008 gcc_assert (n->range == 64);
1009 nop_stats.found_64bit++;
1010 }
1011
1012 /* Convert the result of load if necessary. */
4b84d9b8 1013 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
dffec8eb
JJ
1014 {
1015 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1016 "load_dst");
1017 load_stmt = gimple_build_assign (val_tmp, val_expr);
1018 gimple_set_vuse (load_stmt, n->vuse);
1019 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1020 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
4b84d9b8 1021 update_stmt (cur_stmt);
dffec8eb 1022 }
4b84d9b8 1023 else if (cur_stmt)
dffec8eb
JJ
1024 {
1025 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1026 gimple_set_vuse (cur_stmt, n->vuse);
4b84d9b8
JJ
1027 update_stmt (cur_stmt);
1028 }
1029 else
1030 {
1031 tgt = make_ssa_name (load_type);
1032 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1033 gimple_set_vuse (cur_stmt, n->vuse);
1034 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
dffec8eb 1035 }
dffec8eb
JJ
1036
1037 if (dump_file)
1038 {
1039 fprintf (dump_file,
1040 "%d bit load in target endianness found at: ",
1041 (int) n->range);
1042 print_gimple_stmt (dump_file, cur_stmt, 0);
1043 }
4b84d9b8 1044 return tgt;
dffec8eb
JJ
1045 }
1046 else
1047 {
1048 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1049 load_stmt = gimple_build_assign (val_tmp, val_expr);
1050 gimple_set_vuse (load_stmt, n->vuse);
1051 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1052 }
1053 src = val_tmp;
1054 }
1055 else if (!bswap)
1056 {
4b84d9b8
JJ
1057 gimple *g = NULL;
1058 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
dffec8eb
JJ
1059 {
1060 if (!is_gimple_val (src))
4b84d9b8 1061 return NULL_TREE;
dffec8eb
JJ
1062 g = gimple_build_assign (tgt, NOP_EXPR, src);
1063 }
4b84d9b8 1064 else if (cur_stmt)
dffec8eb 1065 g = gimple_build_assign (tgt, src);
4b84d9b8
JJ
1066 else
1067 tgt = src;
dffec8eb
JJ
1068 if (n->range == 16)
1069 nop_stats.found_16bit++;
1070 else if (n->range == 32)
1071 nop_stats.found_32bit++;
1072 else
1073 {
1074 gcc_assert (n->range == 64);
1075 nop_stats.found_64bit++;
1076 }
1077 if (dump_file)
1078 {
1079 fprintf (dump_file,
1080 "%d bit reshuffle in target endianness found at: ",
1081 (int) n->range);
4b84d9b8
JJ
1082 if (cur_stmt)
1083 print_gimple_stmt (dump_file, cur_stmt, 0);
1084 else
1085 {
1086 print_generic_expr (dump_file, tgt, 0);
1087 fprintf (dump_file, "\n");
1088 }
dffec8eb 1089 }
4b84d9b8
JJ
1090 if (cur_stmt)
1091 gsi_replace (&gsi, g, true);
1092 return tgt;
dffec8eb
JJ
1093 }
1094 else if (TREE_CODE (src) == BIT_FIELD_REF)
1095 src = TREE_OPERAND (src, 0);
1096
1097 if (n->range == 16)
1098 bswap_stats.found_16bit++;
1099 else if (n->range == 32)
1100 bswap_stats.found_32bit++;
1101 else
1102 {
1103 gcc_assert (n->range == 64);
1104 bswap_stats.found_64bit++;
1105 }
1106
1107 tmp = src;
1108
1109 /* Convert the src expression if necessary. */
1110 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1111 {
1112 gimple *convert_stmt;
1113
1114 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1115 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1116 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1117 }
1118
1119 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1120 are considered as rotation of 2N bit values by N bits is generally not
1121 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1122 gives 0x03040102 while a bswap for that value is 0x04030201. */
1123 if (bswap && n->range == 16)
1124 {
1125 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1126 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1127 bswap_stmt = gimple_build_assign (NULL, src);
1128 }
1129 else
1130 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1131
4b84d9b8
JJ
1132 if (tgt == NULL_TREE)
1133 tgt = make_ssa_name (bswap_type);
dffec8eb
JJ
1134 tmp = tgt;
1135
1136 /* Convert the result if necessary. */
1137 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1138 {
1139 gimple *convert_stmt;
1140
1141 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1142 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1143 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1144 }
1145
1146 gimple_set_lhs (bswap_stmt, tmp);
1147
1148 if (dump_file)
1149 {
1150 fprintf (dump_file, "%d bit bswap implementation found at: ",
1151 (int) n->range);
4b84d9b8
JJ
1152 if (cur_stmt)
1153 print_gimple_stmt (dump_file, cur_stmt, 0);
1154 else
1155 {
1156 print_generic_expr (dump_file, tgt, 0);
1157 fprintf (dump_file, "\n");
1158 }
dffec8eb
JJ
1159 }
1160
4b84d9b8
JJ
1161 if (cur_stmt)
1162 {
1163 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1164 gsi_remove (&gsi, true);
1165 }
1166 else
1167 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1168 return tgt;
dffec8eb
JJ
1169}
1170
1171/* Find manual byte swap implementations as well as load in a given
1172 endianness. Byte swaps are turned into a bswap builtin invokation
1173 while endian loads are converted to bswap builtin invokation or
1174 simple load according to the target endianness. */
1175
1176unsigned int
1177pass_optimize_bswap::execute (function *fun)
1178{
1179 basic_block bb;
1180 bool bswap32_p, bswap64_p;
1181 bool changed = false;
1182 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1183
1184 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1185 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1186 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1187 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1188 || (bswap32_p && word_mode == SImode)));
1189
1190 /* Determine the argument type of the builtins. The code later on
1191 assumes that the return and argument type are the same. */
1192 if (bswap32_p)
1193 {
1194 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1195 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1196 }
1197
1198 if (bswap64_p)
1199 {
1200 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1201 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1202 }
1203
1204 memset (&nop_stats, 0, sizeof (nop_stats));
1205 memset (&bswap_stats, 0, sizeof (bswap_stats));
1206 calculate_dominance_info (CDI_DOMINATORS);
1207
1208 FOR_EACH_BB_FN (bb, fun)
1209 {
1210 gimple_stmt_iterator gsi;
1211
1212 /* We do a reverse scan for bswap patterns to make sure we get the
1213 widest match. As bswap pattern matching doesn't handle previously
1214 inserted smaller bswap replacements as sub-patterns, the wider
1215 variant wouldn't be detected. */
1216 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1217 {
1218 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1219 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1220 enum tree_code code;
1221 struct symbolic_number n;
1222 bool bswap;
1223
1224 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1225 might be moved to a different basic block by bswap_replace and gsi
1226 must not points to it if that's the case. Moving the gsi_prev
1227 there make sure that gsi points to the statement previous to
1228 cur_stmt while still making sure that all statements are
1229 considered in this basic block. */
1230 gsi_prev (&gsi);
1231
1232 if (!is_gimple_assign (cur_stmt))
1233 continue;
1234
1235 code = gimple_assign_rhs_code (cur_stmt);
1236 switch (code)
1237 {
1238 case LROTATE_EXPR:
1239 case RROTATE_EXPR:
1240 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1241 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1242 % BITS_PER_UNIT)
1243 continue;
1244 /* Fall through. */
1245 case BIT_IOR_EXPR:
1246 break;
1247 default:
1248 continue;
1249 }
1250
1251 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1252
1253 if (!ins_stmt)
1254 continue;
1255
1256 switch (n.range)
1257 {
1258 case 16:
1259 /* Already in canonical form, nothing to do. */
1260 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1261 continue;
1262 load_type = bswap_type = uint16_type_node;
1263 break;
1264 case 32:
1265 load_type = uint32_type_node;
1266 if (bswap32_p)
1267 {
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1269 bswap_type = bswap32_type;
1270 }
1271 break;
1272 case 64:
1273 load_type = uint64_type_node;
1274 if (bswap64_p)
1275 {
1276 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1277 bswap_type = bswap64_type;
1278 }
1279 break;
1280 default:
1281 continue;
1282 }
1283
1284 if (bswap && !fndecl && n.range != 16)
1285 continue;
1286
4b84d9b8
JJ
1287 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1288 bswap_type, load_type, &n, bswap))
dffec8eb
JJ
1289 changed = true;
1290 }
1291 }
1292
1293 statistics_counter_event (fun, "16-bit nop implementations found",
1294 nop_stats.found_16bit);
1295 statistics_counter_event (fun, "32-bit nop implementations found",
1296 nop_stats.found_32bit);
1297 statistics_counter_event (fun, "64-bit nop implementations found",
1298 nop_stats.found_64bit);
1299 statistics_counter_event (fun, "16-bit bswap implementations found",
1300 bswap_stats.found_16bit);
1301 statistics_counter_event (fun, "32-bit bswap implementations found",
1302 bswap_stats.found_32bit);
1303 statistics_counter_event (fun, "64-bit bswap implementations found",
1304 bswap_stats.found_64bit);
1305
1306 return (changed ? TODO_update_ssa : 0);
1307}
1308
1309} // anon namespace
1310
1311gimple_opt_pass *
1312make_pass_optimize_bswap (gcc::context *ctxt)
1313{
1314 return new pass_optimize_bswap (ctxt);
1315}
1316
1317namespace {
1318
245f6de1 1319/* Struct recording one operand for the store, which is either a constant,
c94c3532
EB
1320 then VAL represents the constant and all the other fields are zero, or
1321 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1322 and the other fields also reflect the memory load, or an SSA name, then
1323 VAL represents the SSA name and all the other fields are zero, */
245f6de1
JJ
1324
1325struct store_operand_info
1326{
1327 tree val;
1328 tree base_addr;
8a91d545
RS
1329 poly_uint64 bitsize;
1330 poly_uint64 bitpos;
1331 poly_uint64 bitregion_start;
1332 poly_uint64 bitregion_end;
245f6de1 1333 gimple *stmt;
383ac8dc 1334 bool bit_not_p;
245f6de1
JJ
1335 store_operand_info ();
1336};
1337
1338store_operand_info::store_operand_info ()
1339 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
383ac8dc 1340 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
245f6de1
JJ
1341{
1342}
1343
f663d9ad
KT
1344/* Struct recording the information about a single store of an immediate
1345 to memory. These are created in the first phase and coalesced into
1346 merged_store_group objects in the second phase. */
1347
1348struct store_immediate_info
1349{
1350 unsigned HOST_WIDE_INT bitsize;
1351 unsigned HOST_WIDE_INT bitpos;
a62b3dc5
JJ
1352 unsigned HOST_WIDE_INT bitregion_start;
1353 /* This is one past the last bit of the bit region. */
1354 unsigned HOST_WIDE_INT bitregion_end;
f663d9ad
KT
1355 gimple *stmt;
1356 unsigned int order;
c94c3532
EB
1357 /* INTEGER_CST for constant stores, MEM_REF for memory copy,
1358 BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
1359 for bit insertion.
4b84d9b8
JJ
1360 LROTATE_EXPR if it can be only bswap optimized and
1361 ops are not really meaningful.
1362 NOP_EXPR if bswap optimization detected identity, ops
1363 are not meaningful. */
245f6de1 1364 enum tree_code rhs_code;
4b84d9b8
JJ
1365 /* Two fields for bswap optimization purposes. */
1366 struct symbolic_number n;
1367 gimple *ins_stmt;
127ef369 1368 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
d60edaba 1369 bool bit_not_p;
127ef369
JJ
1370 /* True if ops have been swapped and thus ops[1] represents
1371 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1372 bool ops_swapped_p;
245f6de1
JJ
1373 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1374 just the first one. */
1375 store_operand_info ops[2];
b5926e23 1376 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
a62b3dc5 1377 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
4b84d9b8
JJ
1378 gimple *, unsigned int, enum tree_code,
1379 struct symbolic_number &, gimple *, bool,
245f6de1
JJ
1380 const store_operand_info &,
1381 const store_operand_info &);
f663d9ad
KT
1382};
1383
1384store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
b5926e23 1385 unsigned HOST_WIDE_INT bp,
a62b3dc5
JJ
1386 unsigned HOST_WIDE_INT brs,
1387 unsigned HOST_WIDE_INT bre,
b5926e23 1388 gimple *st,
245f6de1
JJ
1389 unsigned int ord,
1390 enum tree_code rhscode,
4b84d9b8
JJ
1391 struct symbolic_number &nr,
1392 gimple *ins_stmtp,
d60edaba 1393 bool bitnotp,
245f6de1
JJ
1394 const store_operand_info &op0r,
1395 const store_operand_info &op1r)
a62b3dc5 1396 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
4b84d9b8
JJ
1397 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1398 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
245f6de1
JJ
1399#if __cplusplus >= 201103L
1400 , ops { op0r, op1r }
1401{
1402}
1403#else
f663d9ad 1404{
245f6de1
JJ
1405 ops[0] = op0r;
1406 ops[1] = op1r;
f663d9ad 1407}
245f6de1 1408#endif
f663d9ad
KT
1409
1410/* Struct representing a group of stores to contiguous memory locations.
1411 These are produced by the second phase (coalescing) and consumed in the
1412 third phase that outputs the widened stores. */
1413
1414struct merged_store_group
1415{
1416 unsigned HOST_WIDE_INT start;
1417 unsigned HOST_WIDE_INT width;
a62b3dc5
JJ
1418 unsigned HOST_WIDE_INT bitregion_start;
1419 unsigned HOST_WIDE_INT bitregion_end;
1420 /* The size of the allocated memory for val and mask. */
f663d9ad 1421 unsigned HOST_WIDE_INT buf_size;
a62b3dc5 1422 unsigned HOST_WIDE_INT align_base;
8a91d545 1423 poly_uint64 load_align_base[2];
f663d9ad
KT
1424
1425 unsigned int align;
245f6de1 1426 unsigned int load_align[2];
f663d9ad
KT
1427 unsigned int first_order;
1428 unsigned int last_order;
1429
a62b3dc5 1430 auto_vec<store_immediate_info *> stores;
f663d9ad
KT
1431 /* We record the first and last original statements in the sequence because
1432 we'll need their vuse/vdef and replacement position. It's easier to keep
1433 track of them separately as 'stores' is reordered by apply_stores. */
1434 gimple *last_stmt;
1435 gimple *first_stmt;
1436 unsigned char *val;
a62b3dc5 1437 unsigned char *mask;
c94c3532 1438 bool bit_insertion;
f663d9ad
KT
1439
1440 merged_store_group (store_immediate_info *);
1441 ~merged_store_group ();
1442 void merge_into (store_immediate_info *);
1443 void merge_overlapping (store_immediate_info *);
1444 bool apply_stores ();
a62b3dc5
JJ
1445private:
1446 void do_merge (store_immediate_info *);
f663d9ad
KT
1447};
1448
1449/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1450
1451static void
1452dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1453{
1454 if (!fd)
1455 return;
1456
1457 for (unsigned int i = 0; i < len; i++)
c94c3532 1458 fprintf (fd, "%02x ", ptr[i]);
f663d9ad
KT
1459 fprintf (fd, "\n");
1460}
1461
f663d9ad
KT
1462/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1463 bits between adjacent elements. AMNT should be within
1464 [0, BITS_PER_UNIT).
1465 Example, AMNT = 2:
1466 00011111|11100000 << 2 = 01111111|10000000
1467 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1468
1469static void
1470shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1471{
1472 if (amnt == 0)
1473 return;
1474
1475 unsigned char carry_over = 0U;
46a61395 1476 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
f663d9ad
KT
1477 unsigned char clear_mask = (~0U) << amnt;
1478
1479 for (unsigned int i = 0; i < sz; i++)
1480 {
1481 unsigned prev_carry_over = carry_over;
46a61395 1482 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
f663d9ad
KT
1483
1484 ptr[i] <<= amnt;
1485 if (i != 0)
1486 {
1487 ptr[i] &= clear_mask;
1488 ptr[i] |= prev_carry_over;
1489 }
1490 }
1491}
1492
1493/* Like shift_bytes_in_array but for big-endian.
1494 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1495 bits between adjacent elements. AMNT should be within
1496 [0, BITS_PER_UNIT).
1497 Example, AMNT = 2:
1498 00011111|11100000 >> 2 = 00000111|11111000
1499 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1500
1501static void
1502shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1503 unsigned int amnt)
1504{
1505 if (amnt == 0)
1506 return;
1507
1508 unsigned char carry_over = 0U;
1509 unsigned char carry_mask = ~(~0U << amnt);
1510
1511 for (unsigned int i = 0; i < sz; i++)
1512 {
1513 unsigned prev_carry_over = carry_over;
46a61395 1514 carry_over = ptr[i] & carry_mask;
f663d9ad 1515
ad1de652
JJ
1516 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1517 ptr[i] >>= amnt;
1518 ptr[i] |= prev_carry_over;
f663d9ad
KT
1519 }
1520}
1521
1522/* Clear out LEN bits starting from bit START in the byte array
1523 PTR. This clears the bits to the *right* from START.
1524 START must be within [0, BITS_PER_UNIT) and counts starting from
1525 the least significant bit. */
1526
1527static void
1528clear_bit_region_be (unsigned char *ptr, unsigned int start,
1529 unsigned int len)
1530{
1531 if (len == 0)
1532 return;
1533 /* Clear len bits to the right of start. */
1534 else if (len <= start + 1)
1535 {
1536 unsigned char mask = (~(~0U << len));
1537 mask = mask << (start + 1U - len);
1538 ptr[0] &= ~mask;
1539 }
1540 else if (start != BITS_PER_UNIT - 1)
1541 {
1542 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1543 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1544 len - (start % BITS_PER_UNIT) - 1);
1545 }
1546 else if (start == BITS_PER_UNIT - 1
1547 && len > BITS_PER_UNIT)
1548 {
1549 unsigned int nbytes = len / BITS_PER_UNIT;
a62b3dc5 1550 memset (ptr, 0, nbytes);
f663d9ad
KT
1551 if (len % BITS_PER_UNIT != 0)
1552 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1553 len % BITS_PER_UNIT);
1554 }
1555 else
1556 gcc_unreachable ();
1557}
1558
1559/* In the byte array PTR clear the bit region starting at bit
1560 START and is LEN bits wide.
1561 For regions spanning multiple bytes do this recursively until we reach
1562 zero LEN or a region contained within a single byte. */
1563
1564static void
1565clear_bit_region (unsigned char *ptr, unsigned int start,
1566 unsigned int len)
1567{
1568 /* Degenerate base case. */
1569 if (len == 0)
1570 return;
1571 else if (start >= BITS_PER_UNIT)
1572 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1573 /* Second base case. */
1574 else if ((start + len) <= BITS_PER_UNIT)
1575 {
46a61395 1576 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
f663d9ad
KT
1577 mask >>= BITS_PER_UNIT - (start + len);
1578
1579 ptr[0] &= ~mask;
1580
1581 return;
1582 }
1583 /* Clear most significant bits in a byte and proceed with the next byte. */
1584 else if (start != 0)
1585 {
1586 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1f069ef5 1587 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
f663d9ad
KT
1588 }
1589 /* Whole bytes need to be cleared. */
1590 else if (start == 0 && len > BITS_PER_UNIT)
1591 {
1592 unsigned int nbytes = len / BITS_PER_UNIT;
a848c710
KT
1593 /* We could recurse on each byte but we clear whole bytes, so a simple
1594 memset will do. */
46a61395 1595 memset (ptr, '\0', nbytes);
f663d9ad
KT
1596 /* Clear the remaining sub-byte region if there is one. */
1597 if (len % BITS_PER_UNIT != 0)
1598 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1599 }
1600 else
1601 gcc_unreachable ();
1602}
1603
1604/* Write BITLEN bits of EXPR to the byte array PTR at
1605 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1606 Return true if the operation succeeded. */
1607
1608static bool
1609encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
46a61395 1610 unsigned int total_bytes)
f663d9ad
KT
1611{
1612 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1613 tree tmp_int = expr;
ad1de652
JJ
1614 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1615 || (bitpos % BITS_PER_UNIT)
f4b31647 1616 || !int_mode_for_size (bitlen, 0).exists ());
f663d9ad
KT
1617
1618 if (!sub_byte_op_p)
2f391428 1619 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
f663d9ad
KT
1620
1621 /* LITTLE-ENDIAN
1622 We are writing a non byte-sized quantity or at a position that is not
1623 at a byte boundary.
1624 |--------|--------|--------| ptr + first_byte
1625 ^ ^
1626 xxx xxxxxxxx xxx< bp>
1627 |______EXPR____|
1628
46a61395 1629 First native_encode_expr EXPR into a temporary buffer and shift each
f663d9ad
KT
1630 byte in the buffer by 'bp' (carrying the bits over as necessary).
1631 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1632 <------bitlen---->< bp>
1633 Then we clear the destination bits:
1634 |---00000|00000000|000-----| ptr + first_byte
1635 <-------bitlen--->< bp>
1636
1637 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1638 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1639
1640 BIG-ENDIAN
1641 We are writing a non byte-sized quantity or at a position that is not
1642 at a byte boundary.
1643 ptr + first_byte |--------|--------|--------|
1644 ^ ^
1645 <bp >xxx xxxxxxxx xxx
1646 |_____EXPR_____|
1647
46a61395 1648 First native_encode_expr EXPR into a temporary buffer and shift each
f663d9ad
KT
1649 byte in the buffer to the right by (carrying the bits over as necessary).
1650 We shift by as much as needed to align the most significant bit of EXPR
1651 with bitpos:
1652 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1653 <---bitlen----> <bp ><-----bitlen----->
1654 Then we clear the destination bits:
1655 ptr + first_byte |-----000||00000000||00000---|
1656 <bp ><-------bitlen----->
1657
1658 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1659 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1660 The awkwardness comes from the fact that bitpos is counted from the
1661 most significant bit of a byte. */
1662
ef1d3b57
RS
1663 /* We must be dealing with fixed-size data at this point, since the
1664 total size is also fixed. */
1665 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
f663d9ad 1666 /* Allocate an extra byte so that we have space to shift into. */
ef1d3b57 1667 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
f663d9ad 1668 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
46a61395 1669 memset (tmpbuf, '\0', byte_size);
f663d9ad
KT
1670 /* The store detection code should only have allowed constants that are
1671 accepted by native_encode_expr. */
2f391428 1672 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
f663d9ad
KT
1673 gcc_unreachable ();
1674
1675 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1676 bytes to write. This means it can write more than
1677 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1678 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1679 bitlen and zero out the bits that are not relevant as well (that may
1680 contain a sign bit due to sign-extension). */
1681 unsigned int padding
1682 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
ad1de652
JJ
1683 /* On big-endian the padding is at the 'front' so just skip the initial
1684 bytes. */
1685 if (BYTES_BIG_ENDIAN)
1686 tmpbuf += padding;
1687
1688 byte_size -= padding;
1689
1690 if (bitlen % BITS_PER_UNIT != 0)
f663d9ad 1691 {
4b2c06f4 1692 if (BYTES_BIG_ENDIAN)
ad1de652
JJ
1693 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1694 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1695 else
1696 clear_bit_region (tmpbuf, bitlen,
1697 byte_size * BITS_PER_UNIT - bitlen);
f663d9ad 1698 }
ad1de652
JJ
1699 /* Left shifting relies on the last byte being clear if bitlen is
1700 a multiple of BITS_PER_UNIT, which might not be clear if
1701 there are padding bytes. */
1702 else if (!BYTES_BIG_ENDIAN)
1703 tmpbuf[byte_size - 1] = '\0';
f663d9ad
KT
1704
1705 /* Clear the bit region in PTR where the bits from TMPBUF will be
46a61395 1706 inserted into. */
f663d9ad
KT
1707 if (BYTES_BIG_ENDIAN)
1708 clear_bit_region_be (ptr + first_byte,
1709 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1710 else
1711 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1712
1713 int shift_amnt;
1714 int bitlen_mod = bitlen % BITS_PER_UNIT;
1715 int bitpos_mod = bitpos % BITS_PER_UNIT;
1716
1717 bool skip_byte = false;
1718 if (BYTES_BIG_ENDIAN)
1719 {
1720 /* BITPOS and BITLEN are exactly aligned and no shifting
1721 is necessary. */
1722 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1723 || (bitpos_mod == 0 && bitlen_mod == 0))
1724 shift_amnt = 0;
1725 /* |. . . . . . . .|
1726 <bp > <blen >.
1727 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1728 of the value until it aligns with 'bp' in the next byte over. */
1729 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1730 {
1731 shift_amnt = bitlen_mod + bitpos_mod;
1732 skip_byte = bitlen_mod != 0;
1733 }
1734 /* |. . . . . . . .|
1735 <----bp--->
1736 <---blen---->.
1737 Shift the value right within the same byte so it aligns with 'bp'. */
1738 else
1739 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1740 }
1741 else
1742 shift_amnt = bitpos % BITS_PER_UNIT;
1743
1744 /* Create the shifted version of EXPR. */
1745 if (!BYTES_BIG_ENDIAN)
46a61395
JJ
1746 {
1747 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1748 if (shift_amnt == 0)
1749 byte_size--;
1750 }
f663d9ad
KT
1751 else
1752 {
1753 gcc_assert (BYTES_BIG_ENDIAN);
1754 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1755 /* If shifting right forced us to move into the next byte skip the now
1756 empty byte. */
1757 if (skip_byte)
1758 {
1759 tmpbuf++;
1760 byte_size--;
1761 }
1762 }
1763
1764 /* Insert the bits from TMPBUF. */
1765 for (unsigned int i = 0; i < byte_size; i++)
1766 ptr[first_byte + i] |= tmpbuf[i];
1767
1768 return true;
1769}
1770
1771/* Sorting function for store_immediate_info objects.
1772 Sorts them by bitposition. */
1773
1774static int
1775sort_by_bitpos (const void *x, const void *y)
1776{
1777 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1778 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1779
109cca3b 1780 if ((*tmp)->bitpos < (*tmp2)->bitpos)
f663d9ad
KT
1781 return -1;
1782 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1783 return 1;
109cca3b 1784 else
0f0027d1
KT
1785 /* If they are the same let's use the order which is guaranteed to
1786 be different. */
1787 return (*tmp)->order - (*tmp2)->order;
f663d9ad
KT
1788}
1789
1790/* Sorting function for store_immediate_info objects.
1791 Sorts them by the order field. */
1792
1793static int
1794sort_by_order (const void *x, const void *y)
1795{
1796 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1797 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1798
1799 if ((*tmp)->order < (*tmp2)->order)
1800 return -1;
1801 else if ((*tmp)->order > (*tmp2)->order)
1802 return 1;
1803
1804 gcc_unreachable ();
1805}
1806
1807/* Initialize a merged_store_group object from a store_immediate_info
1808 object. */
1809
1810merged_store_group::merged_store_group (store_immediate_info *info)
1811{
1812 start = info->bitpos;
1813 width = info->bitsize;
a62b3dc5
JJ
1814 bitregion_start = info->bitregion_start;
1815 bitregion_end = info->bitregion_end;
f663d9ad
KT
1816 /* VAL has memory allocated for it in apply_stores once the group
1817 width has been finalized. */
1818 val = NULL;
a62b3dc5 1819 mask = NULL;
c94c3532 1820 bit_insertion = false;
a62b3dc5
JJ
1821 unsigned HOST_WIDE_INT align_bitpos = 0;
1822 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1823 &align, &align_bitpos);
1824 align_base = start - align_bitpos;
245f6de1
JJ
1825 for (int i = 0; i < 2; ++i)
1826 {
1827 store_operand_info &op = info->ops[i];
1828 if (op.base_addr == NULL_TREE)
1829 {
1830 load_align[i] = 0;
1831 load_align_base[i] = 0;
1832 }
1833 else
1834 {
1835 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1836 load_align_base[i] = op.bitpos - align_bitpos;
1837 }
1838 }
f663d9ad
KT
1839 stores.create (1);
1840 stores.safe_push (info);
1841 last_stmt = info->stmt;
1842 last_order = info->order;
1843 first_stmt = last_stmt;
1844 first_order = last_order;
1845 buf_size = 0;
1846}
1847
1848merged_store_group::~merged_store_group ()
1849{
1850 if (val)
1851 XDELETEVEC (val);
1852}
1853
a62b3dc5
JJ
1854/* Helper method for merge_into and merge_overlapping to do
1855 the common part. */
f663d9ad 1856void
a62b3dc5 1857merged_store_group::do_merge (store_immediate_info *info)
f663d9ad 1858{
a62b3dc5
JJ
1859 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1860 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1861
1862 unsigned int this_align;
1863 unsigned HOST_WIDE_INT align_bitpos = 0;
1864 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1865 &this_align, &align_bitpos);
1866 if (this_align > align)
1867 {
1868 align = this_align;
1869 align_base = info->bitpos - align_bitpos;
1870 }
245f6de1
JJ
1871 for (int i = 0; i < 2; ++i)
1872 {
1873 store_operand_info &op = info->ops[i];
1874 if (!op.base_addr)
1875 continue;
1876
1877 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1878 if (this_align > load_align[i])
1879 {
1880 load_align[i] = this_align;
1881 load_align_base[i] = op.bitpos - align_bitpos;
1882 }
1883 }
f663d9ad 1884
f663d9ad
KT
1885 gimple *stmt = info->stmt;
1886 stores.safe_push (info);
1887 if (info->order > last_order)
1888 {
1889 last_order = info->order;
1890 last_stmt = stmt;
1891 }
1892 else if (info->order < first_order)
1893 {
1894 first_order = info->order;
1895 first_stmt = stmt;
1896 }
1897}
1898
a62b3dc5
JJ
1899/* Merge a store recorded by INFO into this merged store.
1900 The store is not overlapping with the existing recorded
1901 stores. */
1902
1903void
1904merged_store_group::merge_into (store_immediate_info *info)
1905{
a62b3dc5
JJ
1906 /* Make sure we're inserting in the position we think we're inserting. */
1907 gcc_assert (info->bitpos >= start + width
1908 && info->bitregion_start <= bitregion_end);
1909
c5679c37 1910 width = info->bitpos + info->bitsize - start;
a62b3dc5
JJ
1911 do_merge (info);
1912}
1913
f663d9ad
KT
1914/* Merge a store described by INFO into this merged store.
1915 INFO overlaps in some way with the current store (i.e. it's not contiguous
1916 which is handled by merged_store_group::merge_into). */
1917
1918void
1919merged_store_group::merge_overlapping (store_immediate_info *info)
1920{
f663d9ad 1921 /* If the store extends the size of the group, extend the width. */
a62b3dc5 1922 if (info->bitpos + info->bitsize > start + width)
c5679c37 1923 width = info->bitpos + info->bitsize - start;
f663d9ad 1924
a62b3dc5 1925 do_merge (info);
f663d9ad
KT
1926}
1927
1928/* Go through all the recorded stores in this group in program order and
1929 apply their values to the VAL byte array to create the final merged
1930 value. Return true if the operation succeeded. */
1931
1932bool
1933merged_store_group::apply_stores ()
1934{
a62b3dc5
JJ
1935 /* Make sure we have more than one store in the group, otherwise we cannot
1936 merge anything. */
1937 if (bitregion_start % BITS_PER_UNIT != 0
1938 || bitregion_end % BITS_PER_UNIT != 0
f663d9ad
KT
1939 || stores.length () == 1)
1940 return false;
1941
1942 stores.qsort (sort_by_order);
a62b3dc5 1943 store_immediate_info *info;
f663d9ad 1944 unsigned int i;
c94c3532
EB
1945 /* Create a power-of-2-sized buffer for native_encode_expr. */
1946 buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
a62b3dc5
JJ
1947 val = XNEWVEC (unsigned char, 2 * buf_size);
1948 mask = val + buf_size;
1949 memset (val, 0, buf_size);
1950 memset (mask, ~0U, buf_size);
f663d9ad
KT
1951
1952 FOR_EACH_VEC_ELT (stores, i, info)
1953 {
a62b3dc5 1954 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
c94c3532 1955 tree cst;
245f6de1
JJ
1956 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1957 cst = info->ops[0].val;
1958 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1959 cst = info->ops[1].val;
c94c3532
EB
1960 else
1961 cst = NULL_TREE;
245f6de1
JJ
1962 bool ret = true;
1963 if (cst)
c94c3532
EB
1964 {
1965 if (info->rhs_code == BIT_INSERT_EXPR)
1966 bit_insertion = true;
1967 else
1968 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
1969 pos_in_buffer, buf_size);
1970 }
1971 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
1972 if (BYTES_BIG_ENDIAN)
1973 clear_bit_region_be (m, (BITS_PER_UNIT - 1
1974 - (pos_in_buffer % BITS_PER_UNIT)),
1975 info->bitsize);
1976 else
1977 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
245f6de1 1978 if (cst && dump_file && (dump_flags & TDF_DETAILS))
f663d9ad
KT
1979 {
1980 if (ret)
1981 {
c94c3532 1982 fputs ("After writing ", dump_file);
245f6de1 1983 print_generic_expr (dump_file, cst, 0);
f663d9ad 1984 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
c94c3532
EB
1985 " at position %d\n", info->bitsize, pos_in_buffer);
1986 fputs (" the merged value contains ", dump_file);
f663d9ad 1987 dump_char_array (dump_file, val, buf_size);
c94c3532
EB
1988 fputs (" the merged mask contains ", dump_file);
1989 dump_char_array (dump_file, mask, buf_size);
1990 if (bit_insertion)
1991 fputs (" bit insertion is required\n", dump_file);
f663d9ad
KT
1992 }
1993 else
1994 fprintf (dump_file, "Failed to merge stores\n");
4b84d9b8 1995 }
f663d9ad
KT
1996 if (!ret)
1997 return false;
1998 }
4b84d9b8 1999 stores.qsort (sort_by_bitpos);
f663d9ad
KT
2000 return true;
2001}
2002
2003/* Structure describing the store chain. */
2004
2005struct imm_store_chain_info
2006{
50b6d676
AO
2007 /* Doubly-linked list that imposes an order on chain processing.
2008 PNXP (prev's next pointer) points to the head of a list, or to
2009 the next field in the previous chain in the list.
2010 See pass_store_merging::m_stores_head for more rationale. */
2011 imm_store_chain_info *next, **pnxp;
b5926e23 2012 tree base_addr;
a62b3dc5 2013 auto_vec<store_immediate_info *> m_store_info;
f663d9ad
KT
2014 auto_vec<merged_store_group *> m_merged_store_groups;
2015
50b6d676
AO
2016 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
2017 : next (inspt), pnxp (&inspt), base_addr (b_a)
2018 {
2019 inspt = this;
2020 if (next)
2021 {
2022 gcc_checking_assert (pnxp == next->pnxp);
2023 next->pnxp = &next;
2024 }
2025 }
2026 ~imm_store_chain_info ()
2027 {
2028 *pnxp = next;
2029 if (next)
2030 {
2031 gcc_checking_assert (&next == next->pnxp);
2032 next->pnxp = pnxp;
2033 }
2034 }
b5926e23 2035 bool terminate_and_process_chain ();
4b84d9b8 2036 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
f663d9ad 2037 bool coalesce_immediate_stores ();
b5926e23
RB
2038 bool output_merged_store (merged_store_group *);
2039 bool output_merged_stores ();
f663d9ad
KT
2040};
2041
2042const pass_data pass_data_tree_store_merging = {
2043 GIMPLE_PASS, /* type */
2044 "store-merging", /* name */
2045 OPTGROUP_NONE, /* optinfo_flags */
2046 TV_GIMPLE_STORE_MERGING, /* tv_id */
2047 PROP_ssa, /* properties_required */
2048 0, /* properties_provided */
2049 0, /* properties_destroyed */
2050 0, /* todo_flags_start */
2051 TODO_update_ssa, /* todo_flags_finish */
2052};
2053
2054class pass_store_merging : public gimple_opt_pass
2055{
2056public:
2057 pass_store_merging (gcc::context *ctxt)
faec5f24 2058 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
f663d9ad
KT
2059 {
2060 }
2061
c94c3532
EB
2062 /* Pass not supported for PDP-endian, nor for insane hosts or
2063 target character sizes where native_{encode,interpret}_expr
a62b3dc5 2064 doesn't work properly. */
f663d9ad
KT
2065 virtual bool
2066 gate (function *)
2067 {
a62b3dc5 2068 return flag_store_merging
c94c3532 2069 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
a62b3dc5
JJ
2070 && CHAR_BIT == 8
2071 && BITS_PER_UNIT == 8;
f663d9ad
KT
2072 }
2073
2074 virtual unsigned int execute (function *);
2075
2076private:
2077 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2078
50b6d676
AO
2079 /* Form a doubly-linked stack of the elements of m_stores, so that
2080 we can iterate over them in a predictable way. Using this order
2081 avoids extraneous differences in the compiler output just because
2082 of tree pointer variations (e.g. different chains end up in
2083 different positions of m_stores, so they are handled in different
2084 orders, so they allocate or release SSA names in different
2085 orders, and when they get reused, subsequent passes end up
2086 getting different SSA names, which may ultimately change
2087 decisions when going out of SSA). */
2088 imm_store_chain_info *m_stores_head;
2089
245f6de1 2090 void process_store (gimple *);
f663d9ad 2091 bool terminate_and_process_all_chains ();
383ac8dc 2092 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
b5926e23 2093 bool terminate_and_release_chain (imm_store_chain_info *);
f663d9ad
KT
2094}; // class pass_store_merging
2095
2096/* Terminate and process all recorded chains. Return true if any changes
2097 were made. */
2098
2099bool
2100pass_store_merging::terminate_and_process_all_chains ()
2101{
f663d9ad 2102 bool ret = false;
50b6d676
AO
2103 while (m_stores_head)
2104 ret |= terminate_and_release_chain (m_stores_head);
2105 gcc_assert (m_stores.elements () == 0);
2106 gcc_assert (m_stores_head == NULL);
f663d9ad
KT
2107
2108 return ret;
2109}
2110
383ac8dc
JJ
2111/* Terminate all chains that are affected by the statement STMT.
2112 CHAIN_INFO is the chain we should ignore from the checks if
2113 non-NULL. */
f663d9ad
KT
2114
2115bool
20770eb8 2116pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
b5926e23 2117 **chain_info,
f663d9ad
KT
2118 gimple *stmt)
2119{
2120 bool ret = false;
2121
2122 /* If the statement doesn't touch memory it can't alias. */
2123 if (!gimple_vuse (stmt))
2124 return false;
2125
9e875fd8 2126 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
383ac8dc 2127 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
f663d9ad 2128 {
383ac8dc
JJ
2129 next = cur->next;
2130
2131 /* We already checked all the stores in chain_info and terminated the
2132 chain if necessary. Skip it here. */
2133 if (chain_info && *chain_info == cur)
2134 continue;
2135
245f6de1
JJ
2136 store_immediate_info *info;
2137 unsigned int i;
383ac8dc 2138 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
f663d9ad 2139 {
9e875fd8
JJ
2140 tree lhs = gimple_assign_lhs (info->stmt);
2141 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2142 || stmt_may_clobber_ref_p (stmt, lhs)
2143 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
f663d9ad 2144 {
245f6de1 2145 if (dump_file && (dump_flags & TDF_DETAILS))
f663d9ad 2146 {
245f6de1
JJ
2147 fprintf (dump_file, "stmt causes chain termination:\n");
2148 print_gimple_stmt (dump_file, stmt, 0);
f663d9ad 2149 }
383ac8dc 2150 terminate_and_release_chain (cur);
245f6de1
JJ
2151 ret = true;
2152 break;
f663d9ad
KT
2153 }
2154 }
2155 }
2156
f663d9ad
KT
2157 return ret;
2158}
2159
2160/* Helper function. Terminate the recorded chain storing to base object
2161 BASE. Return true if the merging and output was successful. The m_stores
2162 entry is removed after the processing in any case. */
2163
2164bool
b5926e23 2165pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
f663d9ad 2166{
b5926e23
RB
2167 bool ret = chain_info->terminate_and_process_chain ();
2168 m_stores.remove (chain_info->base_addr);
2169 delete chain_info;
f663d9ad
KT
2170 return ret;
2171}
2172
245f6de1
JJ
2173/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2174 may clobber REF. FIRST and LAST must be in the same basic block and
4b84d9b8
JJ
2175 have non-NULL vdef. We want to be able to sink load of REF across
2176 stores between FIRST and LAST, up to right before LAST. */
245f6de1
JJ
2177
2178bool
2179stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2180{
2181 ao_ref r;
2182 ao_ref_init (&r, ref);
2183 unsigned int count = 0;
2184 tree vop = gimple_vdef (last);
2185 gimple *stmt;
2186
2187 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2188 do
2189 {
2190 stmt = SSA_NAME_DEF_STMT (vop);
2191 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2192 return true;
4b84d9b8
JJ
2193 if (gimple_store_p (stmt)
2194 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2195 return true;
245f6de1
JJ
2196 /* Avoid quadratic compile time by bounding the number of checks
2197 we perform. */
2198 if (++count > MAX_STORE_ALIAS_CHECKS)
2199 return true;
2200 vop = gimple_vuse (stmt);
2201 }
2202 while (stmt != first);
2203 return false;
2204}
2205
2206/* Return true if INFO->ops[IDX] is mergeable with the
2207 corresponding loads already in MERGED_STORE group.
2208 BASE_ADDR is the base address of the whole store group. */
2209
2210bool
2211compatible_load_p (merged_store_group *merged_store,
2212 store_immediate_info *info,
2213 tree base_addr, int idx)
2214{
2215 store_immediate_info *infof = merged_store->stores[0];
2216 if (!info->ops[idx].base_addr
8a91d545
RS
2217 || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
2218 info->bitpos - infof->bitpos)
245f6de1
JJ
2219 || !operand_equal_p (info->ops[idx].base_addr,
2220 infof->ops[idx].base_addr, 0))
2221 return false;
2222
2223 store_immediate_info *infol = merged_store->stores.last ();
2224 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2225 /* In this case all vuses should be the same, e.g.
2226 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2227 or
2228 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2229 and we can emit the coalesced load next to any of those loads. */
2230 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2231 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2232 return true;
2233
2234 /* Otherwise, at least for now require that the load has the same
2235 vuse as the store. See following examples. */
2236 if (gimple_vuse (info->stmt) != load_vuse)
2237 return false;
2238
2239 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2240 || (infof != infol
2241 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2242 return false;
2243
2244 /* If the load is from the same location as the store, already
2245 the construction of the immediate chain info guarantees no intervening
2246 stores, so no further checks are needed. Example:
2247 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
8a91d545 2248 if (known_eq (info->ops[idx].bitpos, info->bitpos)
245f6de1
JJ
2249 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2250 return true;
2251
2252 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2253 of the stores in the group, or any other stores in between those.
2254 Previous calls to compatible_load_p ensured that for all the
2255 merged_store->stores IDX loads, no stmts starting with
2256 merged_store->first_stmt and ending right before merged_store->last_stmt
2257 clobbers those loads. */
2258 gimple *first = merged_store->first_stmt;
2259 gimple *last = merged_store->last_stmt;
2260 unsigned int i;
2261 store_immediate_info *infoc;
2262 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2263 comes before the so far first load, we'll be changing
2264 merged_store->first_stmt. In that case we need to give up if
2265 any of the earlier processed loads clobber with the stmts in the new
2266 range. */
2267 if (info->order < merged_store->first_order)
2268 {
2269 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2270 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2271 return false;
2272 first = info->stmt;
2273 }
2274 /* Similarly, we could change merged_store->last_stmt, so ensure
2275 in that case no stmts in the new range clobber any of the earlier
2276 processed loads. */
2277 else if (info->order > merged_store->last_order)
2278 {
2279 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2280 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2281 return false;
2282 last = info->stmt;
2283 }
2284 /* And finally, we'd be adding a new load to the set, ensure it isn't
2285 clobbered in the new range. */
2286 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2287 return false;
2288
2289 /* Otherwise, we are looking for:
2290 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2291 or
2292 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2293 return true;
2294}
2295
4b84d9b8
JJ
2296/* Add all refs loaded to compute VAL to REFS vector. */
2297
2298void
2299gather_bswap_load_refs (vec<tree> *refs, tree val)
2300{
2301 if (TREE_CODE (val) != SSA_NAME)
2302 return;
2303
2304 gimple *stmt = SSA_NAME_DEF_STMT (val);
2305 if (!is_gimple_assign (stmt))
2306 return;
2307
2308 if (gimple_assign_load_p (stmt))
2309 {
2310 refs->safe_push (gimple_assign_rhs1 (stmt));
2311 return;
2312 }
2313
2314 switch (gimple_assign_rhs_class (stmt))
2315 {
2316 case GIMPLE_BINARY_RHS:
2317 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2318 /* FALLTHRU */
2319 case GIMPLE_UNARY_RHS:
2320 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2321 break;
2322 default:
2323 gcc_unreachable ();
2324 }
2325}
2326
c5679c37
JJ
2327/* Check if there are any stores in M_STORE_INFO after index I
2328 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2329 a potential group ending with END that have their order
2330 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2331 group. Return true if there are no such stores.
2332 Consider:
2333 MEM[(long long int *)p_28] = 0;
2334 MEM[(long long int *)p_28 + 8B] = 0;
2335 MEM[(long long int *)p_28 + 16B] = 0;
2336 MEM[(long long int *)p_28 + 24B] = 0;
2337 _129 = (int) _130;
2338 MEM[(int *)p_28 + 8B] = _129;
2339 MEM[(int *)p_28].a = -1;
2340 We already have
2341 MEM[(long long int *)p_28] = 0;
2342 MEM[(int *)p_28].a = -1;
2343 stmts in the current group and need to consider if it is safe to
2344 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2345 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2346 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2347 into the group and merging of those 3 stores is successful, merged
2348 stmts will be emitted at the latest store from that group, i.e.
2349 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2350 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2351 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2352 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2353 into the group. That way it will be its own store group and will
2354 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2355 INTEGER_CST stores, those are mergeable using merge_overlapping,
2356 so don't return false for those. */
2357
2358static bool
2359check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
2360 enum tree_code rhs_code, unsigned int last_order,
2361 unsigned HOST_WIDE_INT end)
2362{
2363 unsigned int len = m_store_info.length ();
2364 for (++i; i < len; ++i)
2365 {
2366 store_immediate_info *info = m_store_info[i];
2367 if (info->bitpos >= end)
2368 break;
2369 if (info->order < last_order
2370 && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
2371 return false;
2372 }
2373 return true;
2374}
2375
4b84d9b8
JJ
2376/* Return true if m_store_info[first] and at least one following store
2377 form a group which store try_size bitsize value which is byte swapped
2378 from a memory load or some value, or identity from some value.
2379 This uses the bswap pass APIs. */
2380
2381bool
2382imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2383 unsigned int first,
2384 unsigned int try_size)
2385{
2386 unsigned int len = m_store_info.length (), last = first;
2387 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2388 if (width >= try_size)
2389 return false;
2390 for (unsigned int i = first + 1; i < len; ++i)
2391 {
2392 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2393 || m_store_info[i]->ins_stmt == NULL)
2394 return false;
2395 width += m_store_info[i]->bitsize;
2396 if (width >= try_size)
2397 {
2398 last = i;
2399 break;
2400 }
2401 }
2402 if (width != try_size)
2403 return false;
2404
2405 bool allow_unaligned
2406 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2407 /* Punt if the combined store would not be aligned and we need alignment. */
2408 if (!allow_unaligned)
2409 {
2410 unsigned int align = merged_store->align;
2411 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2412 for (unsigned int i = first + 1; i <= last; ++i)
2413 {
2414 unsigned int this_align;
2415 unsigned HOST_WIDE_INT align_bitpos = 0;
2416 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2417 &this_align, &align_bitpos);
2418 if (this_align > align)
2419 {
2420 align = this_align;
2421 align_base = m_store_info[i]->bitpos - align_bitpos;
2422 }
2423 }
2424 unsigned HOST_WIDE_INT align_bitpos
2425 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2426 if (align_bitpos)
2427 align = least_bit_hwi (align_bitpos);
2428 if (align < try_size)
2429 return false;
2430 }
2431
2432 tree type;
2433 switch (try_size)
2434 {
2435 case 16: type = uint16_type_node; break;
2436 case 32: type = uint32_type_node; break;
2437 case 64: type = uint64_type_node; break;
2438 default: gcc_unreachable ();
2439 }
2440 struct symbolic_number n;
2441 gimple *ins_stmt = NULL;
2442 int vuse_store = -1;
2443 unsigned int first_order = merged_store->first_order;
2444 unsigned int last_order = merged_store->last_order;
2445 gimple *first_stmt = merged_store->first_stmt;
2446 gimple *last_stmt = merged_store->last_stmt;
c5679c37 2447 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
4b84d9b8
JJ
2448 store_immediate_info *infof = m_store_info[first];
2449
2450 for (unsigned int i = first; i <= last; ++i)
2451 {
2452 store_immediate_info *info = m_store_info[i];
2453 struct symbolic_number this_n = info->n;
2454 this_n.type = type;
2455 if (!this_n.base_addr)
2456 this_n.range = try_size / BITS_PER_UNIT;
30fa8e9c
JJ
2457 else
2458 /* Update vuse in case it has changed by output_merged_stores. */
2459 this_n.vuse = gimple_vuse (info->ins_stmt);
4b84d9b8
JJ
2460 unsigned int bitpos = info->bitpos - infof->bitpos;
2461 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2462 BYTES_BIG_ENDIAN
2463 ? try_size - info->bitsize - bitpos
2464 : bitpos))
2465 return false;
aa11164a 2466 if (this_n.base_addr && vuse_store)
4b84d9b8
JJ
2467 {
2468 unsigned int j;
2469 for (j = first; j <= last; ++j)
2470 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2471 break;
2472 if (j > last)
2473 {
2474 if (vuse_store == 1)
2475 return false;
2476 vuse_store = 0;
2477 }
2478 }
2479 if (i == first)
2480 {
2481 n = this_n;
2482 ins_stmt = info->ins_stmt;
2483 }
2484 else
2485 {
c5679c37 2486 if (n.base_addr && n.vuse != this_n.vuse)
4b84d9b8 2487 {
c5679c37
JJ
2488 if (vuse_store == 0)
2489 return false;
2490 vuse_store = 1;
4b84d9b8 2491 }
c5679c37
JJ
2492 if (info->order > last_order)
2493 {
2494 last_order = info->order;
2495 last_stmt = info->stmt;
2496 }
2497 else if (info->order < first_order)
2498 {
2499 first_order = info->order;
2500 first_stmt = info->stmt;
2501 }
2502 end = MAX (end, info->bitpos + info->bitsize);
4b84d9b8
JJ
2503
2504 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2505 &this_n, &n);
2506 if (ins_stmt == NULL)
2507 return false;
2508 }
2509 }
2510
2511 uint64_t cmpxchg, cmpnop;
2512 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2513
2514 /* A complete byte swap should make the symbolic number to start with
2515 the largest digit in the highest order byte. Unchanged symbolic
2516 number indicates a read with same endianness as target architecture. */
2517 if (n.n != cmpnop && n.n != cmpxchg)
2518 return false;
2519
2520 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2521 return false;
2522
c5679c37
JJ
2523 if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
2524 return false;
2525
4b84d9b8
JJ
2526 /* Don't handle memory copy this way if normal non-bswap processing
2527 would handle it too. */
2528 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2529 {
2530 unsigned int i;
2531 for (i = first; i <= last; ++i)
2532 if (m_store_info[i]->rhs_code != MEM_REF)
2533 break;
2534 if (i == last + 1)
2535 return false;
2536 }
2537
2538 if (n.n == cmpxchg)
2539 switch (try_size)
2540 {
2541 case 16:
2542 /* Will emit LROTATE_EXPR. */
2543 break;
2544 case 32:
2545 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2546 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2547 break;
2548 return false;
2549 case 64:
2550 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2551 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2552 break;
2553 return false;
2554 default:
2555 gcc_unreachable ();
2556 }
2557
2558 if (!allow_unaligned && n.base_addr)
2559 {
2560 unsigned int align = get_object_alignment (n.src);
2561 if (align < try_size)
2562 return false;
2563 }
2564
2565 /* If each load has vuse of the corresponding store, need to verify
2566 the loads can be sunk right before the last store. */
2567 if (vuse_store == 1)
2568 {
2569 auto_vec<tree, 64> refs;
2570 for (unsigned int i = first; i <= last; ++i)
2571 gather_bswap_load_refs (&refs,
2572 gimple_assign_rhs1 (m_store_info[i]->stmt));
2573
2574 unsigned int i;
2575 tree ref;
2576 FOR_EACH_VEC_ELT (refs, i, ref)
2577 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2578 return false;
2579 n.vuse = NULL_TREE;
2580 }
2581
2582 infof->n = n;
2583 infof->ins_stmt = ins_stmt;
2584 for (unsigned int i = first; i <= last; ++i)
2585 {
2586 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2587 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2588 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2589 if (i != first)
2590 merged_store->merge_into (m_store_info[i]);
2591 }
2592
2593 return true;
2594}
2595
f663d9ad
KT
2596/* Go through the candidate stores recorded in m_store_info and merge them
2597 into merged_store_group objects recorded into m_merged_store_groups
2598 representing the widened stores. Return true if coalescing was successful
2599 and the number of widened stores is fewer than the original number
2600 of stores. */
2601
2602bool
2603imm_store_chain_info::coalesce_immediate_stores ()
2604{
2605 /* Anything less can't be processed. */
2606 if (m_store_info.length () < 2)
2607 return false;
2608
2609 if (dump_file && (dump_flags & TDF_DETAILS))
c94c3532 2610 fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
f663d9ad
KT
2611 m_store_info.length ());
2612
2613 store_immediate_info *info;
4b84d9b8 2614 unsigned int i, ignore = 0;
f663d9ad
KT
2615
2616 /* Order the stores by the bitposition they write to. */
2617 m_store_info.qsort (sort_by_bitpos);
2618
2619 info = m_store_info[0];
2620 merged_store_group *merged_store = new merged_store_group (info);
c94c3532
EB
2621 if (dump_file && (dump_flags & TDF_DETAILS))
2622 fputs ("New store group\n", dump_file);
f663d9ad
KT
2623
2624 FOR_EACH_VEC_ELT (m_store_info, i, info)
2625 {
4b84d9b8 2626 if (i <= ignore)
c94c3532 2627 goto done;
f663d9ad 2628
4b84d9b8
JJ
2629 /* First try to handle group of stores like:
2630 p[0] = data >> 24;
2631 p[1] = data >> 16;
2632 p[2] = data >> 8;
2633 p[3] = data;
2634 using the bswap framework. */
2635 if (info->bitpos == merged_store->start + merged_store->width
2636 && merged_store->stores.length () == 1
2637 && merged_store->stores[0]->ins_stmt != NULL
2638 && info->ins_stmt != NULL)
2639 {
2640 unsigned int try_size;
2641 for (try_size = 64; try_size >= 16; try_size >>= 1)
2642 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2643 break;
2644
2645 if (try_size >= 16)
2646 {
2647 ignore = i + merged_store->stores.length () - 1;
2648 m_merged_store_groups.safe_push (merged_store);
2649 if (ignore < m_store_info.length ())
2650 merged_store = new merged_store_group (m_store_info[ignore]);
2651 else
2652 merged_store = NULL;
c94c3532 2653 goto done;
4b84d9b8
JJ
2654 }
2655 }
2656
f663d9ad
KT
2657 /* |---store 1---|
2658 |---store 2---|
4b84d9b8
JJ
2659 Overlapping stores. */
2660 if (IN_RANGE (info->bitpos, merged_store->start,
f663d9ad
KT
2661 merged_store->start + merged_store->width - 1))
2662 {
245f6de1
JJ
2663 /* Only allow overlapping stores of constants. */
2664 if (info->rhs_code == INTEGER_CST
2665 && merged_store->stores[0]->rhs_code == INTEGER_CST)
2666 {
2667 merged_store->merge_overlapping (info);
c94c3532 2668 goto done;
245f6de1 2669 }
f663d9ad 2670 }
245f6de1
JJ
2671 /* |---store 1---||---store 2---|
2672 This store is consecutive to the previous one.
2673 Merge it into the current store group. There can be gaps in between
2674 the stores, but there can't be gaps in between bitregions. */
c94c3532
EB
2675 else if (info->bitregion_start <= merged_store->bitregion_end
2676 && info->rhs_code != LROTATE_EXPR
2677 && (info->rhs_code == merged_store->stores[0]->rhs_code
2678 || (info->rhs_code == INTEGER_CST
2679 && merged_store->stores[0]->rhs_code == BIT_INSERT_EXPR)
2680 || (info->rhs_code == BIT_INSERT_EXPR
2681 && merged_store->stores[0]->rhs_code == INTEGER_CST)))
f663d9ad 2682 {
245f6de1
JJ
2683 store_immediate_info *infof = merged_store->stores[0];
2684
2685 /* All the rhs_code ops that take 2 operands are commutative,
2686 swap the operands if it could make the operands compatible. */
2687 if (infof->ops[0].base_addr
2688 && infof->ops[1].base_addr
2689 && info->ops[0].base_addr
2690 && info->ops[1].base_addr
8a91d545
RS
2691 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
2692 info->bitpos - infof->bitpos)
245f6de1
JJ
2693 && operand_equal_p (info->ops[1].base_addr,
2694 infof->ops[0].base_addr, 0))
127ef369
JJ
2695 {
2696 std::swap (info->ops[0], info->ops[1]);
2697 info->ops_swapped_p = true;
2698 }
5bfd2f9b
JJ
2699 if ((infof->ops[0].base_addr
2700 ? compatible_load_p (merged_store, info, base_addr, 0)
2701 : !info->ops[0].base_addr)
2702 && (infof->ops[1].base_addr
2703 ? compatible_load_p (merged_store, info, base_addr, 1)
c5679c37
JJ
2704 : !info->ops[1].base_addr)
2705 && check_no_overlap (m_store_info, i, info->rhs_code,
2706 MAX (merged_store->last_order,
2707 info->order),
2708 MAX (merged_store->start
2709 + merged_store->width,
2710 info->bitpos + info->bitsize)))
245f6de1
JJ
2711 {
2712 merged_store->merge_into (info);
c94c3532 2713 goto done;
245f6de1
JJ
2714 }
2715 }
f663d9ad 2716
245f6de1
JJ
2717 /* |---store 1---| <gap> |---store 2---|.
2718 Gap between stores or the rhs not compatible. Start a new group. */
f663d9ad 2719
245f6de1
JJ
2720 /* Try to apply all the stores recorded for the group to determine
2721 the bitpattern they write and discard it if that fails.
2722 This will also reject single-store groups. */
c94c3532 2723 if (merged_store->apply_stores ())
245f6de1 2724 m_merged_store_groups.safe_push (merged_store);
c94c3532
EB
2725 else
2726 delete merged_store;
f663d9ad 2727
245f6de1 2728 merged_store = new merged_store_group (info);
c94c3532
EB
2729 if (dump_file && (dump_flags & TDF_DETAILS))
2730 fputs ("New store group\n", dump_file);
2731
2732 done:
2733 if (dump_file && (dump_flags & TDF_DETAILS))
2734 {
2735 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2736 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
2737 i, info->bitsize, info->bitpos);
2738 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
2739 fputc ('\n', dump_file);
2740 }
f663d9ad
KT
2741 }
2742
a62b3dc5 2743 /* Record or discard the last store group. */
4b84d9b8
JJ
2744 if (merged_store)
2745 {
c94c3532 2746 if (merged_store->apply_stores ())
4b84d9b8 2747 m_merged_store_groups.safe_push (merged_store);
c94c3532
EB
2748 else
2749 delete merged_store;
4b84d9b8 2750 }
f663d9ad
KT
2751
2752 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
c94c3532 2753
f663d9ad
KT
2754 bool success
2755 = !m_merged_store_groups.is_empty ()
2756 && m_merged_store_groups.length () < m_store_info.length ();
2757
2758 if (success && dump_file)
c94c3532 2759 fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n",
a62b3dc5 2760 m_merged_store_groups.length ());
f663d9ad
KT
2761
2762 return success;
2763}
2764
245f6de1
JJ
2765/* Return the type to use for the merged stores or loads described by STMTS.
2766 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2767 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2768 of the MEM_REFs if any. */
f663d9ad
KT
2769
2770static tree
245f6de1
JJ
2771get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2772 unsigned short *cliquep, unsigned short *basep)
f663d9ad
KT
2773{
2774 gimple *stmt;
2775 unsigned int i;
245f6de1
JJ
2776 tree type = NULL_TREE;
2777 tree ret = NULL_TREE;
2778 *cliquep = 0;
2779 *basep = 0;
f663d9ad
KT
2780
2781 FOR_EACH_VEC_ELT (stmts, i, stmt)
2782 {
245f6de1
JJ
2783 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2784 : gimple_assign_lhs (stmt);
2785 tree type1 = reference_alias_ptr_type (ref);
2786 tree base = get_base_address (ref);
f663d9ad 2787
245f6de1
JJ
2788 if (i == 0)
2789 {
2790 if (TREE_CODE (base) == MEM_REF)
2791 {
2792 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2793 *basep = MR_DEPENDENCE_BASE (base);
2794 }
2795 ret = type = type1;
2796 continue;
2797 }
f663d9ad 2798 if (!alias_ptr_types_compatible_p (type, type1))
245f6de1
JJ
2799 ret = ptr_type_node;
2800 if (TREE_CODE (base) != MEM_REF
2801 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2802 || *basep != MR_DEPENDENCE_BASE (base))
2803 {
2804 *cliquep = 0;
2805 *basep = 0;
2806 }
f663d9ad 2807 }
245f6de1 2808 return ret;
f663d9ad
KT
2809}
2810
2811/* Return the location_t information we can find among the statements
2812 in STMTS. */
2813
2814static location_t
245f6de1 2815get_location_for_stmts (vec<gimple *> &stmts)
f663d9ad
KT
2816{
2817 gimple *stmt;
2818 unsigned int i;
2819
2820 FOR_EACH_VEC_ELT (stmts, i, stmt)
2821 if (gimple_has_location (stmt))
2822 return gimple_location (stmt);
2823
2824 return UNKNOWN_LOCATION;
2825}
2826
2827/* Used to decribe a store resulting from splitting a wide store in smaller
2828 regularly-sized stores in split_group. */
2829
2830struct split_store
2831{
2832 unsigned HOST_WIDE_INT bytepos;
2833 unsigned HOST_WIDE_INT size;
2834 unsigned HOST_WIDE_INT align;
245f6de1 2835 auto_vec<store_immediate_info *> orig_stores;
a62b3dc5
JJ
2836 /* True if there is a single orig stmt covering the whole split store. */
2837 bool orig;
f663d9ad
KT
2838 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2839 unsigned HOST_WIDE_INT);
2840};
2841
2842/* Simple constructor. */
2843
2844split_store::split_store (unsigned HOST_WIDE_INT bp,
2845 unsigned HOST_WIDE_INT sz,
2846 unsigned HOST_WIDE_INT al)
a62b3dc5 2847 : bytepos (bp), size (sz), align (al), orig (false)
f663d9ad 2848{
245f6de1 2849 orig_stores.create (0);
f663d9ad
KT
2850}
2851
245f6de1
JJ
2852/* Record all stores in GROUP that write to the region starting at BITPOS and
2853 is of size BITSIZE. Record infos for such statements in STORES if
2854 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2855 if there is exactly one original store in the range. */
f663d9ad 2856
a62b3dc5 2857static store_immediate_info *
245f6de1
JJ
2858find_constituent_stores (struct merged_store_group *group,
2859 vec<store_immediate_info *> *stores,
2860 unsigned int *first,
2861 unsigned HOST_WIDE_INT bitpos,
2862 unsigned HOST_WIDE_INT bitsize)
f663d9ad 2863{
a62b3dc5 2864 store_immediate_info *info, *ret = NULL;
f663d9ad 2865 unsigned int i;
a62b3dc5
JJ
2866 bool second = false;
2867 bool update_first = true;
f663d9ad 2868 unsigned HOST_WIDE_INT end = bitpos + bitsize;
a62b3dc5 2869 for (i = *first; group->stores.iterate (i, &info); ++i)
f663d9ad
KT
2870 {
2871 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
2872 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
a62b3dc5
JJ
2873 if (stmt_end <= bitpos)
2874 {
2875 /* BITPOS passed to this function never decreases from within the
2876 same split_group call, so optimize and don't scan info records
2877 which are known to end before or at BITPOS next time.
2878 Only do it if all stores before this one also pass this. */
2879 if (update_first)
2880 *first = i + 1;
2881 continue;
2882 }
2883 else
2884 update_first = false;
2885
f663d9ad 2886 /* The stores in GROUP are ordered by bitposition so if we're past
a62b3dc5
JJ
2887 the region for this group return early. */
2888 if (stmt_start >= end)
2889 return ret;
2890
245f6de1 2891 if (stores)
a62b3dc5 2892 {
245f6de1 2893 stores->safe_push (info);
a62b3dc5
JJ
2894 if (ret)
2895 {
2896 ret = NULL;
2897 second = true;
2898 }
2899 }
2900 else if (ret)
2901 return NULL;
2902 if (!second)
2903 ret = info;
f663d9ad 2904 }
a62b3dc5 2905 return ret;
f663d9ad
KT
2906}
2907
d7a9512e
JJ
2908/* Return how many SSA_NAMEs used to compute value to store in the INFO
2909 store have multiple uses. If any SSA_NAME has multiple uses, also
2910 count statements needed to compute it. */
2911
2912static unsigned
2913count_multiple_uses (store_immediate_info *info)
2914{
2915 gimple *stmt = info->stmt;
2916 unsigned ret = 0;
2917 switch (info->rhs_code)
2918 {
2919 case INTEGER_CST:
2920 return 0;
2921 case BIT_AND_EXPR:
2922 case BIT_IOR_EXPR:
2923 case BIT_XOR_EXPR:
d60edaba
JJ
2924 if (info->bit_not_p)
2925 {
2926 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2927 ret = 1; /* Fall through below to return
2928 the BIT_NOT_EXPR stmt and then
2929 BIT_{AND,IOR,XOR}_EXPR and anything it
2930 uses. */
2931 else
2932 /* stmt is after this the BIT_NOT_EXPR. */
2933 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2934 }
d7a9512e
JJ
2935 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2936 {
2937 ret += 1 + info->ops[0].bit_not_p;
2938 if (info->ops[1].base_addr)
2939 ret += 1 + info->ops[1].bit_not_p;
2940 return ret + 1;
2941 }
2942 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2943 /* stmt is now the BIT_*_EXPR. */
2944 if (!has_single_use (gimple_assign_rhs1 (stmt)))
127ef369
JJ
2945 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
2946 else if (info->ops[info->ops_swapped_p].bit_not_p)
d7a9512e
JJ
2947 {
2948 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2949 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2950 ++ret;
2951 }
2952 if (info->ops[1].base_addr == NULL_TREE)
127ef369
JJ
2953 {
2954 gcc_checking_assert (!info->ops_swapped_p);
2955 return ret;
2956 }
d7a9512e 2957 if (!has_single_use (gimple_assign_rhs2 (stmt)))
127ef369
JJ
2958 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
2959 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
d7a9512e
JJ
2960 {
2961 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
2962 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2963 ++ret;
2964 }
2965 return ret;
2966 case MEM_REF:
2967 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2968 return 1 + info->ops[0].bit_not_p;
2969 else if (info->ops[0].bit_not_p)
2970 {
2971 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2972 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2973 return 1;
2974 }
2975 return 0;
c94c3532
EB
2976 case BIT_INSERT_EXPR:
2977 return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1;
d7a9512e
JJ
2978 default:
2979 gcc_unreachable ();
2980 }
2981}
2982
f663d9ad 2983/* Split a merged store described by GROUP by populating the SPLIT_STORES
a62b3dc5
JJ
2984 vector (if non-NULL) with split_store structs describing the byte offset
2985 (from the base), the bit size and alignment of each store as well as the
2986 original statements involved in each such split group.
f663d9ad
KT
2987 This is to separate the splitting strategy from the statement
2988 building/emission/linking done in output_merged_store.
a62b3dc5 2989 Return number of new stores.
245f6de1
JJ
2990 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
2991 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
a62b3dc5
JJ
2992 If SPLIT_STORES is NULL, it is just a dry run to count number of
2993 new stores. */
f663d9ad 2994
a62b3dc5 2995static unsigned int
245f6de1
JJ
2996split_group (merged_store_group *group, bool allow_unaligned_store,
2997 bool allow_unaligned_load,
d7a9512e
JJ
2998 vec<struct split_store *> *split_stores,
2999 unsigned *total_orig,
3000 unsigned *total_new)
f663d9ad 3001{
a62b3dc5
JJ
3002 unsigned HOST_WIDE_INT pos = group->bitregion_start;
3003 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
f663d9ad 3004 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
a62b3dc5
JJ
3005 unsigned HOST_WIDE_INT group_align = group->align;
3006 unsigned HOST_WIDE_INT align_base = group->align_base;
245f6de1 3007 unsigned HOST_WIDE_INT group_load_align = group_align;
d7a9512e 3008 bool any_orig = false;
f663d9ad 3009
f663d9ad
KT
3010 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
3011
4b84d9b8
JJ
3012 if (group->stores[0]->rhs_code == LROTATE_EXPR
3013 || group->stores[0]->rhs_code == NOP_EXPR)
3014 {
3015 /* For bswap framework using sets of stores, all the checking
3016 has been done earlier in try_coalesce_bswap and needs to be
3017 emitted as a single store. */
3018 if (total_orig)
3019 {
3020 /* Avoid the old/new stmt count heuristics. It should be
3021 always beneficial. */
3022 total_new[0] = 1;
3023 total_orig[0] = 2;
3024 }
3025
3026 if (split_stores)
3027 {
3028 unsigned HOST_WIDE_INT align_bitpos
3029 = (group->start - align_base) & (group_align - 1);
3030 unsigned HOST_WIDE_INT align = group_align;
3031 if (align_bitpos)
3032 align = least_bit_hwi (align_bitpos);
3033 bytepos = group->start / BITS_PER_UNIT;
3034 struct split_store *store
3035 = new split_store (bytepos, group->width, align);
3036 unsigned int first = 0;
3037 find_constituent_stores (group, &store->orig_stores,
3038 &first, group->start, group->width);
3039 split_stores->safe_push (store);
3040 }
3041
3042 return 1;
3043 }
3044
a62b3dc5 3045 unsigned int ret = 0, first = 0;
f663d9ad 3046 unsigned HOST_WIDE_INT try_pos = bytepos;
f663d9ad 3047
d7a9512e
JJ
3048 if (total_orig)
3049 {
3050 unsigned int i;
3051 store_immediate_info *info = group->stores[0];
3052
3053 total_new[0] = 0;
3054 total_orig[0] = 1; /* The orig store. */
3055 info = group->stores[0];
3056 if (info->ops[0].base_addr)
a6fbd154 3057 total_orig[0]++;
d7a9512e 3058 if (info->ops[1].base_addr)
a6fbd154 3059 total_orig[0]++;
d7a9512e
JJ
3060 switch (info->rhs_code)
3061 {
3062 case BIT_AND_EXPR:
3063 case BIT_IOR_EXPR:
3064 case BIT_XOR_EXPR:
3065 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3066 break;
3067 default:
3068 break;
3069 }
3070 total_orig[0] *= group->stores.length ();
3071
3072 FOR_EACH_VEC_ELT (group->stores, i, info)
a6fbd154
JJ
3073 {
3074 total_new[0] += count_multiple_uses (info);
3075 total_orig[0] += (info->bit_not_p
3076 + info->ops[0].bit_not_p
3077 + info->ops[1].bit_not_p);
3078 }
d7a9512e
JJ
3079 }
3080
245f6de1
JJ
3081 if (!allow_unaligned_load)
3082 for (int i = 0; i < 2; ++i)
3083 if (group->load_align[i])
3084 group_load_align = MIN (group_load_align, group->load_align[i]);
3085
f663d9ad
KT
3086 while (size > 0)
3087 {
245f6de1 3088 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
a62b3dc5
JJ
3089 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
3090 {
3091 /* Skip padding bytes. */
3092 ++try_pos;
3093 size -= BITS_PER_UNIT;
3094 continue;
3095 }
3096
f663d9ad 3097 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
a62b3dc5
JJ
3098 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3099 unsigned HOST_WIDE_INT align_bitpos
3100 = (try_bitpos - align_base) & (group_align - 1);
3101 unsigned HOST_WIDE_INT align = group_align;
3102 if (align_bitpos)
3103 align = least_bit_hwi (align_bitpos);
245f6de1 3104 if (!allow_unaligned_store)
a62b3dc5 3105 try_size = MIN (try_size, align);
245f6de1
JJ
3106 if (!allow_unaligned_load)
3107 {
3108 /* If we can't do or don't want to do unaligned stores
3109 as well as loads, we need to take the loads into account
3110 as well. */
3111 unsigned HOST_WIDE_INT load_align = group_load_align;
3112 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3113 if (align_bitpos)
3114 load_align = least_bit_hwi (align_bitpos);
3115 for (int i = 0; i < 2; ++i)
3116 if (group->load_align[i])
3117 {
8a91d545
RS
3118 align_bitpos
3119 = known_alignment (try_bitpos
3120 - group->stores[0]->bitpos
3121 + group->stores[0]->ops[i].bitpos
3122 - group->load_align_base[i]);
3123 if (align_bitpos & (group_load_align - 1))
245f6de1
JJ
3124 {
3125 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3126 load_align = MIN (load_align, a);
3127 }
3128 }
3129 try_size = MIN (try_size, load_align);
3130 }
a62b3dc5 3131 store_immediate_info *info
245f6de1 3132 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
a62b3dc5
JJ
3133 if (info)
3134 {
3135 /* If there is just one original statement for the range, see if
3136 we can just reuse the original store which could be even larger
3137 than try_size. */
3138 unsigned HOST_WIDE_INT stmt_end
3139 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
245f6de1
JJ
3140 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3141 stmt_end - try_bitpos);
a62b3dc5
JJ
3142 if (info && info->bitpos >= try_bitpos)
3143 {
3144 try_size = stmt_end - try_bitpos;
3145 goto found;
3146 }
3147 }
f663d9ad 3148
a62b3dc5
JJ
3149 /* Approximate store bitsize for the case when there are no padding
3150 bits. */
3151 while (try_size > size)
3152 try_size /= 2;
3153 /* Now look for whole padding bytes at the end of that bitsize. */
3154 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3155 if (group->mask[try_pos - bytepos + nonmasked - 1]
3156 != (unsigned char) ~0U)
3157 break;
3158 if (nonmasked == 0)
3159 {
3160 /* If entire try_size range is padding, skip it. */
3161 try_pos += try_size / BITS_PER_UNIT;
3162 size -= try_size;
3163 continue;
3164 }
3165 /* Otherwise try to decrease try_size if second half, last 3 quarters
3166 etc. are padding. */
3167 nonmasked *= BITS_PER_UNIT;
3168 while (nonmasked <= try_size / 2)
3169 try_size /= 2;
245f6de1 3170 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
a62b3dc5
JJ
3171 {
3172 /* Now look for whole padding bytes at the start of that bitsize. */
3173 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3174 for (masked = 0; masked < try_bytesize; ++masked)
3175 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3176 break;
3177 masked *= BITS_PER_UNIT;
3178 gcc_assert (masked < try_size);
3179 if (masked >= try_size / 2)
3180 {
3181 while (masked >= try_size / 2)
3182 {
3183 try_size /= 2;
3184 try_pos += try_size / BITS_PER_UNIT;
3185 size -= try_size;
3186 masked -= try_size;
3187 }
3188 /* Need to recompute the alignment, so just retry at the new
3189 position. */
3190 continue;
3191 }
3192 }
3193
3194 found:
3195 ++ret;
f663d9ad 3196
a62b3dc5
JJ
3197 if (split_stores)
3198 {
3199 struct split_store *store
3200 = new split_store (try_pos, try_size, align);
245f6de1
JJ
3201 info = find_constituent_stores (group, &store->orig_stores,
3202 &first, try_bitpos, try_size);
a62b3dc5
JJ
3203 if (info
3204 && info->bitpos >= try_bitpos
3205 && info->bitpos + info->bitsize <= try_bitpos + try_size)
d7a9512e
JJ
3206 {
3207 store->orig = true;
3208 any_orig = true;
3209 }
a62b3dc5
JJ
3210 split_stores->safe_push (store);
3211 }
3212
3213 try_pos += try_size / BITS_PER_UNIT;
f663d9ad 3214 size -= try_size;
f663d9ad 3215 }
a62b3dc5 3216
d7a9512e
JJ
3217 if (total_orig)
3218 {
a6fbd154
JJ
3219 unsigned int i;
3220 struct split_store *store;
d7a9512e
JJ
3221 /* If we are reusing some original stores and any of the
3222 original SSA_NAMEs had multiple uses, we need to subtract
3223 those now before we add the new ones. */
3224 if (total_new[0] && any_orig)
3225 {
d7a9512e
JJ
3226 FOR_EACH_VEC_ELT (*split_stores, i, store)
3227 if (store->orig)
3228 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3229 }
3230 total_new[0] += ret; /* The new store. */
3231 store_immediate_info *info = group->stores[0];
3232 if (info->ops[0].base_addr)
a6fbd154 3233 total_new[0] += ret;
d7a9512e 3234 if (info->ops[1].base_addr)
a6fbd154 3235 total_new[0] += ret;
d7a9512e
JJ
3236 switch (info->rhs_code)
3237 {
3238 case BIT_AND_EXPR:
3239 case BIT_IOR_EXPR:
3240 case BIT_XOR_EXPR:
3241 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3242 break;
3243 default:
3244 break;
3245 }
a6fbd154
JJ
3246 FOR_EACH_VEC_ELT (*split_stores, i, store)
3247 {
3248 unsigned int j;
3249 bool bit_not_p[3] = { false, false, false };
3250 /* If all orig_stores have certain bit_not_p set, then
3251 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3252 If some orig_stores have certain bit_not_p set, then
3253 we'd use a BIT_XOR_EXPR with a mask and need to account for
3254 it. */
3255 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3256 {
3257 if (info->ops[0].bit_not_p)
3258 bit_not_p[0] = true;
3259 if (info->ops[1].bit_not_p)
3260 bit_not_p[1] = true;
3261 if (info->bit_not_p)
3262 bit_not_p[2] = true;
3263 }
3264 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3265 }
3266
d7a9512e
JJ
3267 }
3268
a62b3dc5 3269 return ret;
f663d9ad
KT
3270}
3271
a6fbd154
JJ
3272/* Return the operation through which the operand IDX (if < 2) or
3273 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3274 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3275 the bits should be xored with mask. */
3276
3277static enum tree_code
3278invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3279{
3280 unsigned int i;
3281 store_immediate_info *info;
3282 unsigned int cnt = 0;
e215422f 3283 bool any_paddings = false;
a6fbd154
JJ
3284 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3285 {
3286 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3287 if (bit_not_p)
e215422f
JJ
3288 {
3289 ++cnt;
3290 tree lhs = gimple_assign_lhs (info->stmt);
3291 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3292 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
3293 any_paddings = true;
3294 }
a6fbd154
JJ
3295 }
3296 mask = NULL_TREE;
3297 if (cnt == 0)
3298 return NOP_EXPR;
e215422f 3299 if (cnt == split_store->orig_stores.length () && !any_paddings)
a6fbd154
JJ
3300 return BIT_NOT_EXPR;
3301
3302 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3303 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3304 unsigned char *buf
3305 = XALLOCAVEC (unsigned char, buf_size);
3306 memset (buf, ~0U, buf_size);
3307 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3308 {
3309 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3310 if (!bit_not_p)
3311 continue;
3312 /* Clear regions with bit_not_p and invert afterwards, rather than
3313 clear regions with !bit_not_p, so that gaps in between stores aren't
3314 set in the mask. */
3315 unsigned HOST_WIDE_INT bitsize = info->bitsize;
e215422f 3316 unsigned HOST_WIDE_INT prec = bitsize;
a6fbd154 3317 unsigned int pos_in_buffer = 0;
e215422f
JJ
3318 if (any_paddings)
3319 {
3320 tree lhs = gimple_assign_lhs (info->stmt);
3321 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3322 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
3323 prec = TYPE_PRECISION (TREE_TYPE (lhs));
3324 }
a6fbd154
JJ
3325 if (info->bitpos < try_bitpos)
3326 {
3327 gcc_assert (info->bitpos + bitsize > try_bitpos);
e215422f
JJ
3328 if (!BYTES_BIG_ENDIAN)
3329 {
3330 if (prec <= try_bitpos - info->bitpos)
3331 continue;
3332 prec -= try_bitpos - info->bitpos;
3333 }
3334 bitsize -= try_bitpos - info->bitpos;
3335 if (BYTES_BIG_ENDIAN && prec > bitsize)
3336 prec = bitsize;
a6fbd154
JJ
3337 }
3338 else
3339 pos_in_buffer = info->bitpos - try_bitpos;
e215422f
JJ
3340 if (prec < bitsize)
3341 {
3342 /* If this is a bool inversion, invert just the least significant
3343 prec bits rather than all bits of it. */
3344 if (BYTES_BIG_ENDIAN)
3345 {
3346 pos_in_buffer += bitsize - prec;
3347 if (pos_in_buffer >= split_store->size)
3348 continue;
3349 }
3350 bitsize = prec;
3351 }
a6fbd154
JJ
3352 if (pos_in_buffer + bitsize > split_store->size)
3353 bitsize = split_store->size - pos_in_buffer;
3354 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3355 if (BYTES_BIG_ENDIAN)
3356 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3357 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3358 else
3359 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3360 }
3361 for (unsigned int i = 0; i < buf_size; ++i)
3362 buf[i] = ~buf[i];
3363 mask = native_interpret_expr (int_type, buf, buf_size);
3364 return BIT_XOR_EXPR;
3365}
3366
f663d9ad
KT
3367/* Given a merged store group GROUP output the widened version of it.
3368 The store chain is against the base object BASE.
3369 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3370 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3371 Make sure that the number of statements output is less than the number of
3372 original statements. If a better sequence is possible emit it and
3373 return true. */
3374
3375bool
b5926e23 3376imm_store_chain_info::output_merged_store (merged_store_group *group)
f663d9ad 3377{
dd172744
RB
3378 split_store *split_store;
3379 unsigned int i;
a62b3dc5
JJ
3380 unsigned HOST_WIDE_INT start_byte_pos
3381 = group->bitregion_start / BITS_PER_UNIT;
f663d9ad
KT
3382
3383 unsigned int orig_num_stmts = group->stores.length ();
3384 if (orig_num_stmts < 2)
3385 return false;
3386
a62b3dc5 3387 auto_vec<struct split_store *, 32> split_stores;
245f6de1 3388 bool allow_unaligned_store
a62b3dc5 3389 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
245f6de1
JJ
3390 bool allow_unaligned_load = allow_unaligned_store;
3391 if (allow_unaligned_store)
a62b3dc5
JJ
3392 {
3393 /* If unaligned stores are allowed, see how many stores we'd emit
3394 for unaligned and how many stores we'd emit for aligned stores.
3395 Only use unaligned stores if it allows fewer stores than aligned. */
245f6de1 3396 unsigned aligned_cnt
d7a9512e 3397 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
245f6de1 3398 unsigned unaligned_cnt
d7a9512e 3399 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
a62b3dc5 3400 if (aligned_cnt <= unaligned_cnt)
245f6de1 3401 allow_unaligned_store = false;
a62b3dc5 3402 }
d7a9512e 3403 unsigned total_orig, total_new;
245f6de1 3404 split_group (group, allow_unaligned_store, allow_unaligned_load,
d7a9512e 3405 &split_stores, &total_orig, &total_new);
a62b3dc5
JJ
3406
3407 if (split_stores.length () >= orig_num_stmts)
3408 {
3409 /* We didn't manage to reduce the number of statements. Bail out. */
3410 if (dump_file && (dump_flags & TDF_DETAILS))
d7a9512e
JJ
3411 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3412 " Not profitable to emit new sequence.\n",
3413 orig_num_stmts);
dd172744
RB
3414 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3415 delete split_store;
a62b3dc5
JJ
3416 return false;
3417 }
d7a9512e
JJ
3418 if (total_orig <= total_new)
3419 {
3420 /* If number of estimated new statements is above estimated original
3421 statements, bail out too. */
3422 if (dump_file && (dump_flags & TDF_DETAILS))
3423 fprintf (dump_file, "Estimated number of original stmts (%u)"
3424 " not larger than estimated number of new"
3425 " stmts (%u).\n",
3426 total_orig, total_new);
dd172744
RB
3427 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3428 delete split_store;
4b84d9b8 3429 return false;
d7a9512e 3430 }
f663d9ad
KT
3431
3432 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3433 gimple_seq seq = NULL;
f663d9ad
KT
3434 tree last_vdef, new_vuse;
3435 last_vdef = gimple_vdef (group->last_stmt);
3436 new_vuse = gimple_vuse (group->last_stmt);
4b84d9b8
JJ
3437 tree bswap_res = NULL_TREE;
3438
3439 if (group->stores[0]->rhs_code == LROTATE_EXPR
3440 || group->stores[0]->rhs_code == NOP_EXPR)
3441 {
3442 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3443 gimple *ins_stmt = group->stores[0]->ins_stmt;
3444 struct symbolic_number *n = &group->stores[0]->n;
3445 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3446
3447 switch (n->range)
3448 {
3449 case 16:
3450 load_type = bswap_type = uint16_type_node;
3451 break;
3452 case 32:
3453 load_type = uint32_type_node;
3454 if (bswap)
3455 {
3456 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3457 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3458 }
3459 break;
3460 case 64:
3461 load_type = uint64_type_node;
3462 if (bswap)
3463 {
3464 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3465 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3466 }
3467 break;
3468 default:
3469 gcc_unreachable ();
3470 }
3471
3472 /* If the loads have each vuse of the corresponding store,
3473 we've checked the aliasing already in try_coalesce_bswap and
3474 we want to sink the need load into seq. So need to use new_vuse
3475 on the load. */
30fa8e9c 3476 if (n->base_addr)
4b84d9b8 3477 {
30fa8e9c
JJ
3478 if (n->vuse == NULL)
3479 {
3480 n->vuse = new_vuse;
3481 ins_stmt = NULL;
3482 }
3483 else
3484 /* Update vuse in case it has changed by output_merged_stores. */
3485 n->vuse = gimple_vuse (ins_stmt);
4b84d9b8
JJ
3486 }
3487 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3488 bswap_type, load_type, n, bswap);
3489 gcc_assert (bswap_res);
3490 }
f663d9ad
KT
3491
3492 gimple *stmt = NULL;
245f6de1 3493 auto_vec<gimple *, 32> orig_stmts;
4b84d9b8
JJ
3494 gimple_seq this_seq;
3495 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
aa55dc0c 3496 is_gimple_mem_ref_addr, NULL_TREE);
4b84d9b8 3497 gimple_seq_add_seq_without_update (&seq, this_seq);
245f6de1
JJ
3498
3499 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3500 gimple_seq load_seq[2] = { NULL, NULL };
3501 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3502 for (int j = 0; j < 2; ++j)
3503 {
3504 store_operand_info &op = group->stores[0]->ops[j];
3505 if (op.base_addr == NULL_TREE)
3506 continue;
3507
3508 store_immediate_info *infol = group->stores.last ();
3509 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3510 {
97031af7
JJ
3511 /* We can't pick the location randomly; while we've verified
3512 all the loads have the same vuse, they can be still in different
3513 basic blocks and we need to pick the one from the last bb:
3514 int x = q[0];
3515 if (x == N) return;
3516 int y = q[1];
3517 p[0] = x;
3518 p[1] = y;
3519 otherwise if we put the wider load at the q[0] load, we might
3520 segfault if q[1] is not mapped. */
3521 basic_block bb = gimple_bb (op.stmt);
3522 gimple *ostmt = op.stmt;
3523 store_immediate_info *info;
3524 FOR_EACH_VEC_ELT (group->stores, i, info)
3525 {
3526 gimple *tstmt = info->ops[j].stmt;
3527 basic_block tbb = gimple_bb (tstmt);
3528 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3529 {
3530 ostmt = tstmt;
3531 bb = tbb;
3532 }
3533 }
3534 load_gsi[j] = gsi_for_stmt (ostmt);
245f6de1
JJ
3535 load_addr[j]
3536 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3537 &load_seq[j], is_gimple_mem_ref_addr,
3538 NULL_TREE);
3539 }
3540 else if (operand_equal_p (base_addr, op.base_addr, 0))
3541 load_addr[j] = addr;
3542 else
3e2927a1 3543 {
3e2927a1
JJ
3544 load_addr[j]
3545 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3546 &this_seq, is_gimple_mem_ref_addr,
3547 NULL_TREE);
3548 gimple_seq_add_seq_without_update (&seq, this_seq);
3549 }
245f6de1
JJ
3550 }
3551
f663d9ad
KT
3552 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3553 {
3554 unsigned HOST_WIDE_INT try_size = split_store->size;
3555 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
c94c3532 3556 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
f663d9ad 3557 unsigned HOST_WIDE_INT align = split_store->align;
a62b3dc5
JJ
3558 tree dest, src;
3559 location_t loc;
3560 if (split_store->orig)
3561 {
3562 /* If there is just a single constituent store which covers
3563 the whole area, just reuse the lhs and rhs. */
245f6de1
JJ
3564 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3565 dest = gimple_assign_lhs (orig_stmt);
3566 src = gimple_assign_rhs1 (orig_stmt);
3567 loc = gimple_location (orig_stmt);
a62b3dc5
JJ
3568 }
3569 else
3570 {
245f6de1
JJ
3571 store_immediate_info *info;
3572 unsigned short clique, base;
3573 unsigned int k;
3574 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3575 orig_stmts.safe_push (info->stmt);
a62b3dc5 3576 tree offset_type
245f6de1
JJ
3577 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3578 loc = get_location_for_stmts (orig_stmts);
3579 orig_stmts.truncate (0);
a62b3dc5
JJ
3580
3581 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3582 int_type = build_aligned_type (int_type, align);
3583 dest = fold_build2 (MEM_REF, int_type, addr,
3584 build_int_cst (offset_type, try_pos));
245f6de1
JJ
3585 if (TREE_CODE (dest) == MEM_REF)
3586 {
3587 MR_DEPENDENCE_CLIQUE (dest) = clique;
3588 MR_DEPENDENCE_BASE (dest) = base;
3589 }
3590
c94c3532
EB
3591 tree mask;
3592 if (bswap_res)
3593 mask = integer_zero_node;
3594 else
4b84d9b8
JJ
3595 mask = native_interpret_expr (int_type,
3596 group->mask + try_pos
3597 - start_byte_pos,
3598 group->buf_size);
245f6de1
JJ
3599
3600 tree ops[2];
3601 for (int j = 0;
3602 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3603 ++j)
3604 {
3605 store_operand_info &op = split_store->orig_stores[0]->ops[j];
4b84d9b8
JJ
3606 if (bswap_res)
3607 ops[j] = bswap_res;
3608 else if (op.base_addr)
245f6de1
JJ
3609 {
3610 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3611 orig_stmts.safe_push (info->ops[j].stmt);
3612
3613 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3614 &clique, &base);
3615 location_t load_loc = get_location_for_stmts (orig_stmts);
3616 orig_stmts.truncate (0);
3617
3618 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3619 unsigned HOST_WIDE_INT align_bitpos
c94c3532 3620 = known_alignment (try_bitpos
8a91d545
RS
3621 - split_store->orig_stores[0]->bitpos
3622 + op.bitpos);
3623 if (align_bitpos & (load_align - 1))
245f6de1
JJ
3624 load_align = least_bit_hwi (align_bitpos);
3625
3626 tree load_int_type
3627 = build_nonstandard_integer_type (try_size, UNSIGNED);
3628 load_int_type
3629 = build_aligned_type (load_int_type, load_align);
3630
8a91d545 3631 poly_uint64 load_pos
c94c3532 3632 = exact_div (try_bitpos
8a91d545
RS
3633 - split_store->orig_stores[0]->bitpos
3634 + op.bitpos,
3635 BITS_PER_UNIT);
245f6de1
JJ
3636 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3637 build_int_cst (offset_type, load_pos));
3638 if (TREE_CODE (ops[j]) == MEM_REF)
3639 {
3640 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3641 MR_DEPENDENCE_BASE (ops[j]) = base;
3642 }
3643 if (!integer_zerop (mask))
3644 /* The load might load some bits (that will be masked off
3645 later on) uninitialized, avoid -W*uninitialized
3646 warnings in that case. */
3647 TREE_NO_WARNING (ops[j]) = 1;
3648
3649 stmt = gimple_build_assign (make_ssa_name (int_type),
3650 ops[j]);
3651 gimple_set_location (stmt, load_loc);
3652 if (gsi_bb (load_gsi[j]))
3653 {
3654 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3655 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3656 }
3657 else
3658 {
3659 gimple_set_vuse (stmt, new_vuse);
3660 gimple_seq_add_stmt_without_update (&seq, stmt);
3661 }
3662 ops[j] = gimple_assign_lhs (stmt);
a6fbd154
JJ
3663 tree xor_mask;
3664 enum tree_code inv_op
3665 = invert_op (split_store, j, int_type, xor_mask);
3666 if (inv_op != NOP_EXPR)
383ac8dc
JJ
3667 {
3668 stmt = gimple_build_assign (make_ssa_name (int_type),
a6fbd154 3669 inv_op, ops[j], xor_mask);
383ac8dc
JJ
3670 gimple_set_location (stmt, load_loc);
3671 ops[j] = gimple_assign_lhs (stmt);
3672
3673 if (gsi_bb (load_gsi[j]))
3674 gimple_seq_add_stmt_without_update (&load_seq[j],
3675 stmt);
3676 else
3677 gimple_seq_add_stmt_without_update (&seq, stmt);
3678 }
245f6de1
JJ
3679 }
3680 else
3681 ops[j] = native_interpret_expr (int_type,
3682 group->val + try_pos
3683 - start_byte_pos,
3684 group->buf_size);
3685 }
3686
3687 switch (split_store->orig_stores[0]->rhs_code)
3688 {
3689 case BIT_AND_EXPR:
3690 case BIT_IOR_EXPR:
3691 case BIT_XOR_EXPR:
3692 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3693 {
3694 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3695 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3696 }
3697 location_t bit_loc;
3698 bit_loc = get_location_for_stmts (orig_stmts);
3699 orig_stmts.truncate (0);
3700
3701 stmt
3702 = gimple_build_assign (make_ssa_name (int_type),
3703 split_store->orig_stores[0]->rhs_code,
3704 ops[0], ops[1]);
3705 gimple_set_location (stmt, bit_loc);
3706 /* If there is just one load and there is a separate
3707 load_seq[0], emit the bitwise op right after it. */
3708 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3709 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3710 /* Otherwise, if at least one load is in seq, we need to
3711 emit the bitwise op right before the store. If there
3712 are two loads and are emitted somewhere else, it would
3713 be better to emit the bitwise op as early as possible;
3714 we don't track where that would be possible right now
3715 though. */
3716 else
3717 gimple_seq_add_stmt_without_update (&seq, stmt);
3718 src = gimple_assign_lhs (stmt);
a6fbd154
JJ
3719 tree xor_mask;
3720 enum tree_code inv_op;
3721 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3722 if (inv_op != NOP_EXPR)
d60edaba
JJ
3723 {
3724 stmt = gimple_build_assign (make_ssa_name (int_type),
a6fbd154 3725 inv_op, src, xor_mask);
d60edaba
JJ
3726 gimple_set_location (stmt, bit_loc);
3727 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3728 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3729 else
3730 gimple_seq_add_stmt_without_update (&seq, stmt);
3731 src = gimple_assign_lhs (stmt);
3732 }
245f6de1 3733 break;
4b84d9b8
JJ
3734 case LROTATE_EXPR:
3735 case NOP_EXPR:
3736 src = ops[0];
3737 if (!is_gimple_val (src))
3738 {
3739 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3740 src);
3741 gimple_seq_add_stmt_without_update (&seq, stmt);
3742 src = gimple_assign_lhs (stmt);
3743 }
3744 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3745 {
3746 stmt = gimple_build_assign (make_ssa_name (int_type),
3747 NOP_EXPR, src);
3748 gimple_seq_add_stmt_without_update (&seq, stmt);
3749 src = gimple_assign_lhs (stmt);
3750 }
be52ac73
JJ
3751 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3752 if (inv_op != NOP_EXPR)
3753 {
3754 stmt = gimple_build_assign (make_ssa_name (int_type),
3755 inv_op, src, xor_mask);
3756 gimple_set_location (stmt, loc);
3757 gimple_seq_add_stmt_without_update (&seq, stmt);
3758 src = gimple_assign_lhs (stmt);
3759 }
4b84d9b8 3760 break;
245f6de1
JJ
3761 default:
3762 src = ops[0];
3763 break;
3764 }
3765
c94c3532
EB
3766 /* If bit insertion is required, we use the source as an accumulator
3767 into which the successive bit-field values are manually inserted.
3768 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
3769 if (group->bit_insertion)
3770 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3771 if (info->rhs_code == BIT_INSERT_EXPR
3772 && info->bitpos < try_bitpos + try_size
3773 && info->bitpos + info->bitsize > try_bitpos)
3774 {
3775 /* Mask, truncate, convert to final type, shift and ior into
3776 the accumulator. Note that every step can be a no-op. */
3777 const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
3778 const HOST_WIDE_INT end_gap
3779 = (try_bitpos + try_size) - (info->bitpos + info->bitsize);
3780 tree tem = info->ops[0].val;
3781 if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
3782 {
3783 const unsigned HOST_WIDE_INT imask
3784 = (HOST_WIDE_INT_1U << info->bitsize) - 1;
3785 tem = gimple_build (&seq, loc,
3786 BIT_AND_EXPR, TREE_TYPE (tem), tem,
3787 build_int_cst (TREE_TYPE (tem),
3788 imask));
3789 }
3790 const HOST_WIDE_INT shift
3791 = (BYTES_BIG_ENDIAN ? end_gap : start_gap);
3792 if (shift < 0)
3793 tem = gimple_build (&seq, loc,
3794 RSHIFT_EXPR, TREE_TYPE (tem), tem,
3795 build_int_cst (NULL_TREE, -shift));
3796 tem = gimple_convert (&seq, loc, int_type, tem);
3797 if (shift > 0)
3798 tem = gimple_build (&seq, loc,
3799 LSHIFT_EXPR, int_type, tem,
3800 build_int_cst (NULL_TREE, shift));
3801 src = gimple_build (&seq, loc,
3802 BIT_IOR_EXPR, int_type, tem, src);
3803 }
3804
a62b3dc5
JJ
3805 if (!integer_zerop (mask))
3806 {
3807 tree tem = make_ssa_name (int_type);
3808 tree load_src = unshare_expr (dest);
3809 /* The load might load some or all bits uninitialized,
3810 avoid -W*uninitialized warnings in that case.
3811 As optimization, it would be nice if all the bits are
3812 provably uninitialized (no stores at all yet or previous
3813 store a CLOBBER) we'd optimize away the load and replace
3814 it e.g. with 0. */
3815 TREE_NO_WARNING (load_src) = 1;
3816 stmt = gimple_build_assign (tem, load_src);
3817 gimple_set_location (stmt, loc);
3818 gimple_set_vuse (stmt, new_vuse);
3819 gimple_seq_add_stmt_without_update (&seq, stmt);
3820
3821 /* FIXME: If there is a single chunk of zero bits in mask,
3822 perhaps use BIT_INSERT_EXPR instead? */
3823 stmt = gimple_build_assign (make_ssa_name (int_type),
3824 BIT_AND_EXPR, tem, mask);
3825 gimple_set_location (stmt, loc);
3826 gimple_seq_add_stmt_without_update (&seq, stmt);
3827 tem = gimple_assign_lhs (stmt);
3828
245f6de1
JJ
3829 if (TREE_CODE (src) == INTEGER_CST)
3830 src = wide_int_to_tree (int_type,
3831 wi::bit_and_not (wi::to_wide (src),
3832 wi::to_wide (mask)));
3833 else
3834 {
3835 tree nmask
3836 = wide_int_to_tree (int_type,
3837 wi::bit_not (wi::to_wide (mask)));
3838 stmt = gimple_build_assign (make_ssa_name (int_type),
3839 BIT_AND_EXPR, src, nmask);
3840 gimple_set_location (stmt, loc);
3841 gimple_seq_add_stmt_without_update (&seq, stmt);
3842 src = gimple_assign_lhs (stmt);
3843 }
a62b3dc5
JJ
3844 stmt = gimple_build_assign (make_ssa_name (int_type),
3845 BIT_IOR_EXPR, tem, src);
3846 gimple_set_location (stmt, loc);
3847 gimple_seq_add_stmt_without_update (&seq, stmt);
3848 src = gimple_assign_lhs (stmt);
3849 }
3850 }
f663d9ad
KT
3851
3852 stmt = gimple_build_assign (dest, src);
3853 gimple_set_location (stmt, loc);
3854 gimple_set_vuse (stmt, new_vuse);
3855 gimple_seq_add_stmt_without_update (&seq, stmt);
3856
f663d9ad
KT
3857 tree new_vdef;
3858 if (i < split_stores.length () - 1)
a62b3dc5 3859 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
f663d9ad
KT
3860 else
3861 new_vdef = last_vdef;
3862
3863 gimple_set_vdef (stmt, new_vdef);
3864 SSA_NAME_DEF_STMT (new_vdef) = stmt;
3865 new_vuse = new_vdef;
3866 }
3867
3868 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3869 delete split_store;
3870
f663d9ad
KT
3871 gcc_assert (seq);
3872 if (dump_file)
3873 {
3874 fprintf (dump_file,
c94c3532 3875 "New sequence of %u stores to replace old one of %u stores\n",
a62b3dc5 3876 split_stores.length (), orig_num_stmts);
f663d9ad
KT
3877 if (dump_flags & TDF_DETAILS)
3878 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
3879 }
3880 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
245f6de1
JJ
3881 for (int j = 0; j < 2; ++j)
3882 if (load_seq[j])
3883 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
f663d9ad
KT
3884
3885 return true;
3886}
3887
3888/* Process the merged_store_group objects created in the coalescing phase.
3889 The stores are all against the base object BASE.
3890 Try to output the widened stores and delete the original statements if
3891 successful. Return true iff any changes were made. */
3892
3893bool
b5926e23 3894imm_store_chain_info::output_merged_stores ()
f663d9ad
KT
3895{
3896 unsigned int i;
3897 merged_store_group *merged_store;
3898 bool ret = false;
3899 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
3900 {
b5926e23 3901 if (output_merged_store (merged_store))
f663d9ad
KT
3902 {
3903 unsigned int j;
3904 store_immediate_info *store;
3905 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
3906 {
3907 gimple *stmt = store->stmt;
3908 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3909 gsi_remove (&gsi, true);
3910 if (stmt != merged_store->last_stmt)
3911 {
3912 unlink_stmt_vdef (stmt);
3913 release_defs (stmt);
3914 }
3915 }
3916 ret = true;
3917 }
3918 }
3919 if (ret && dump_file)
3920 fprintf (dump_file, "Merging successful!\n");
3921
3922 return ret;
3923}
3924
3925/* Coalesce the store_immediate_info objects recorded against the base object
3926 BASE in the first phase and output them.
3927 Delete the allocated structures.
3928 Return true if any changes were made. */
3929
3930bool
b5926e23 3931imm_store_chain_info::terminate_and_process_chain ()
f663d9ad
KT
3932{
3933 /* Process store chain. */
3934 bool ret = false;
3935 if (m_store_info.length () > 1)
3936 {
3937 ret = coalesce_immediate_stores ();
3938 if (ret)
b5926e23 3939 ret = output_merged_stores ();
f663d9ad
KT
3940 }
3941
3942 /* Delete all the entries we allocated ourselves. */
3943 store_immediate_info *info;
3944 unsigned int i;
3945 FOR_EACH_VEC_ELT (m_store_info, i, info)
3946 delete info;
3947
3948 merged_store_group *merged_info;
3949 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
3950 delete merged_info;
3951
3952 return ret;
3953}
3954
3955/* Return true iff LHS is a destination potentially interesting for
3956 store merging. In practice these are the codes that get_inner_reference
3957 can process. */
3958
3959static bool
3960lhs_valid_for_store_merging_p (tree lhs)
3961{
3962 tree_code code = TREE_CODE (lhs);
3963
3964 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
3965 || code == COMPONENT_REF || code == BIT_FIELD_REF)
3966 return true;
3967
3968 return false;
3969}
3970
3971/* Return true if the tree RHS is a constant we want to consider
3972 during store merging. In practice accept all codes that
3973 native_encode_expr accepts. */
3974
3975static bool
3976rhs_valid_for_store_merging_p (tree rhs)
3977{
cf098191
RS
3978 unsigned HOST_WIDE_INT size;
3979 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
3980 && native_encode_expr (rhs, NULL, size) != 0);
f663d9ad
KT
3981}
3982
245f6de1
JJ
3983/* If MEM is a memory reference usable for store merging (either as
3984 store destination or for loads), return the non-NULL base_addr
3985 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
3986 Otherwise return NULL, *PBITPOS should be still valid even for that
3987 case. */
3988
3989static tree
8a91d545
RS
3990mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
3991 poly_uint64 *pbitpos,
3992 poly_uint64 *pbitregion_start,
3993 poly_uint64 *pbitregion_end)
245f6de1 3994{
8a91d545
RS
3995 poly_int64 bitsize, bitpos;
3996 poly_uint64 bitregion_start = 0, bitregion_end = 0;
245f6de1
JJ
3997 machine_mode mode;
3998 int unsignedp = 0, reversep = 0, volatilep = 0;
3999 tree offset;
4000 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
4001 &unsignedp, &reversep, &volatilep);
4002 *pbitsize = bitsize;
8a91d545 4003 if (known_eq (bitsize, 0))
245f6de1
JJ
4004 return NULL_TREE;
4005
4006 if (TREE_CODE (mem) == COMPONENT_REF
4007 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
4008 {
4009 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
8a91d545
RS
4010 if (maybe_ne (bitregion_end, 0U))
4011 bitregion_end += 1;
245f6de1
JJ
4012 }
4013
4014 if (reversep)
4015 return NULL_TREE;
4016
4017 /* We do not want to rewrite TARGET_MEM_REFs. */
4018 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
4019 return NULL_TREE;
4020 /* In some cases get_inner_reference may return a
4021 MEM_REF [ptr + byteoffset]. For the purposes of this pass
4022 canonicalize the base_addr to MEM_REF [ptr] and take
4023 byteoffset into account in the bitpos. This occurs in
4024 PR 23684 and this way we can catch more chains. */
4025 else if (TREE_CODE (base_addr) == MEM_REF)
4026 {
8a91d545
RS
4027 poly_offset_int byte_off = mem_ref_offset (base_addr);
4028 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
245f6de1 4029 bit_off += bitpos;
8a91d545 4030 if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
245f6de1 4031 {
8a91d545 4032 if (maybe_ne (bitregion_end, 0U))
245f6de1
JJ
4033 {
4034 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4035 bit_off += bitregion_start;
8a91d545 4036 if (bit_off.to_uhwi (&bitregion_start))
245f6de1 4037 {
245f6de1
JJ
4038 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4039 bit_off += bitregion_end;
8a91d545 4040 if (!bit_off.to_uhwi (&bitregion_end))
245f6de1
JJ
4041 bitregion_end = 0;
4042 }
4043 else
4044 bitregion_end = 0;
4045 }
4046 }
4047 else
4048 return NULL_TREE;
4049 base_addr = TREE_OPERAND (base_addr, 0);
4050 }
4051 /* get_inner_reference returns the base object, get at its
4052 address now. */
4053 else
4054 {
8a91d545 4055 if (maybe_lt (bitpos, 0))
245f6de1
JJ
4056 return NULL_TREE;
4057 base_addr = build_fold_addr_expr (base_addr);
4058 }
4059
8a91d545 4060 if (known_eq (bitregion_end, 0U))
245f6de1 4061 {
8a91d545 4062 bitregion_start = round_down_to_byte_boundary (bitpos);
f87b4b2f
JJ
4063 bitregion_end = bitpos;
4064 bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
245f6de1
JJ
4065 }
4066
4067 if (offset != NULL_TREE)
4068 {
4069 /* If the access is variable offset then a base decl has to be
4070 address-taken to be able to emit pointer-based stores to it.
4071 ??? We might be able to get away with re-using the original
4072 base up to the first variable part and then wrapping that inside
4073 a BIT_FIELD_REF. */
4074 tree base = get_base_address (base_addr);
4075 if (! base
4076 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
4077 return NULL_TREE;
4078
4079 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
4080 base_addr, offset);
4081 }
4082
4083 *pbitsize = bitsize;
4084 *pbitpos = bitpos;
4085 *pbitregion_start = bitregion_start;
4086 *pbitregion_end = bitregion_end;
4087 return base_addr;
4088}
4089
4090/* Return true if STMT is a load that can be used for store merging.
4091 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4092 BITREGION_END are properties of the corresponding store. */
4093
4094static bool
4095handled_load (gimple *stmt, store_operand_info *op,
8a91d545
RS
4096 poly_uint64 bitsize, poly_uint64 bitpos,
4097 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
245f6de1 4098{
383ac8dc 4099 if (!is_gimple_assign (stmt))
245f6de1 4100 return false;
383ac8dc
JJ
4101 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
4102 {
4103 tree rhs1 = gimple_assign_rhs1 (stmt);
4104 if (TREE_CODE (rhs1) == SSA_NAME
383ac8dc
JJ
4105 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
4106 bitregion_start, bitregion_end))
4107 {
d60edaba
JJ
4108 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4109 been optimized earlier, but if allowed here, would confuse the
4110 multiple uses counting. */
4111 if (op->bit_not_p)
4112 return false;
383ac8dc
JJ
4113 op->bit_not_p = !op->bit_not_p;
4114 return true;
4115 }
4116 return false;
4117 }
4118 if (gimple_vuse (stmt)
4119 && gimple_assign_load_p (stmt)
245f6de1
JJ
4120 && !stmt_can_throw_internal (stmt)
4121 && !gimple_has_volatile_ops (stmt))
4122 {
4123 tree mem = gimple_assign_rhs1 (stmt);
4124 op->base_addr
4125 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
4126 &op->bitregion_start,
4127 &op->bitregion_end);
4128 if (op->base_addr != NULL_TREE
8a91d545
RS
4129 && known_eq (op->bitsize, bitsize)
4130 && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
4131 && known_ge (op->bitpos - op->bitregion_start,
4132 bitpos - bitregion_start)
4133 && known_ge (op->bitregion_end - op->bitpos,
4134 bitregion_end - bitpos))
245f6de1
JJ
4135 {
4136 op->stmt = stmt;
4137 op->val = mem;
383ac8dc 4138 op->bit_not_p = false;
245f6de1
JJ
4139 return true;
4140 }
4141 }
4142 return false;
4143}
4144
4145/* Record the store STMT for store merging optimization if it can be
4146 optimized. */
4147
4148void
4149pass_store_merging::process_store (gimple *stmt)
4150{
4151 tree lhs = gimple_assign_lhs (stmt);
4152 tree rhs = gimple_assign_rhs1 (stmt);
8a91d545
RS
4153 poly_uint64 bitsize, bitpos;
4154 poly_uint64 bitregion_start, bitregion_end;
245f6de1
JJ
4155 tree base_addr
4156 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
4157 &bitregion_start, &bitregion_end);
8a91d545 4158 if (known_eq (bitsize, 0U))
245f6de1
JJ
4159 return;
4160
4161 bool invalid = (base_addr == NULL_TREE
8a91d545
RS
4162 || (maybe_gt (bitsize,
4163 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
4164 && (TREE_CODE (rhs) != INTEGER_CST)));
245f6de1 4165 enum tree_code rhs_code = ERROR_MARK;
d60edaba 4166 bool bit_not_p = false;
4b84d9b8
JJ
4167 struct symbolic_number n;
4168 gimple *ins_stmt = NULL;
245f6de1
JJ
4169 store_operand_info ops[2];
4170 if (invalid)
4171 ;
4172 else if (rhs_valid_for_store_merging_p (rhs))
4173 {
4174 rhs_code = INTEGER_CST;
4175 ops[0].val = rhs;
4176 }
d7a9512e 4177 else if (TREE_CODE (rhs) != SSA_NAME)
245f6de1
JJ
4178 invalid = true;
4179 else
4180 {
4181 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
4182 if (!is_gimple_assign (def_stmt))
4183 invalid = true;
4184 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4185 bitregion_start, bitregion_end))
4186 rhs_code = MEM_REF;
d60edaba
JJ
4187 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4188 {
4189 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4190 if (TREE_CODE (rhs1) == SSA_NAME
4191 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4192 {
4193 bit_not_p = true;
4194 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4195 }
4196 }
c94c3532 4197
d60edaba 4198 if (rhs_code == ERROR_MARK && !invalid)
245f6de1
JJ
4199 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4200 {
4201 case BIT_AND_EXPR:
4202 case BIT_IOR_EXPR:
4203 case BIT_XOR_EXPR:
4204 tree rhs1, rhs2;
4205 rhs1 = gimple_assign_rhs1 (def_stmt);
4206 rhs2 = gimple_assign_rhs2 (def_stmt);
4207 invalid = true;
d7a9512e 4208 if (TREE_CODE (rhs1) != SSA_NAME)
245f6de1
JJ
4209 break;
4210 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4211 if (!is_gimple_assign (def_stmt1)
4212 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4213 bitregion_start, bitregion_end))
4214 break;
4215 if (rhs_valid_for_store_merging_p (rhs2))
4216 ops[1].val = rhs2;
d7a9512e 4217 else if (TREE_CODE (rhs2) != SSA_NAME)
245f6de1
JJ
4218 break;
4219 else
4220 {
4221 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4222 if (!is_gimple_assign (def_stmt2))
4223 break;
4224 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4225 bitregion_start, bitregion_end))
4226 break;
4227 }
4228 invalid = false;
4229 break;
4230 default:
4231 invalid = true;
4232 break;
4233 }
c94c3532 4234
8a91d545
RS
4235 unsigned HOST_WIDE_INT const_bitsize;
4236 if (bitsize.is_constant (&const_bitsize)
c94c3532 4237 && (const_bitsize % BITS_PER_UNIT) == 0
8a91d545 4238 && const_bitsize <= 64
c94c3532 4239 && multiple_p (bitpos, BITS_PER_UNIT))
4b84d9b8
JJ
4240 {
4241 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4242 if (ins_stmt)
4243 {
4244 uint64_t nn = n.n;
4245 for (unsigned HOST_WIDE_INT i = 0;
8a91d545
RS
4246 i < const_bitsize;
4247 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
4b84d9b8
JJ
4248 if ((nn & MARKER_MASK) == 0
4249 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4250 {
4251 ins_stmt = NULL;
4252 break;
4253 }
4254 if (ins_stmt)
4255 {
4256 if (invalid)
4257 {
4258 rhs_code = LROTATE_EXPR;
4259 ops[0].base_addr = NULL_TREE;
4260 ops[1].base_addr = NULL_TREE;
4261 }
4262 invalid = false;
4263 }
4264 }
4265 }
c94c3532
EB
4266
4267 if (invalid
4268 && bitsize.is_constant (&const_bitsize)
4269 && ((const_bitsize % BITS_PER_UNIT) != 0
4270 || !multiple_p (bitpos, BITS_PER_UNIT))
4271 && const_bitsize <= 64)
4272 {
4273 /* Bypass a truncating conversion to the bit-field type. */
4274 if (is_gimple_assign (def_stmt) && CONVERT_EXPR_CODE_P (rhs_code))
4275 {
4276 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4277 if (TREE_CODE (rhs1) == SSA_NAME
4278 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
4279 && const_bitsize <= TYPE_PRECISION (TREE_TYPE (rhs1)))
4280 rhs = rhs1;
4281 }
4282 rhs_code = BIT_INSERT_EXPR;
4283 ops[0].val = rhs;
4284 ops[0].base_addr = NULL_TREE;
4285 ops[1].base_addr = NULL_TREE;
4286 invalid = false;
4287 }
245f6de1
JJ
4288 }
4289
8a91d545
RS
4290 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
4291 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
4292 if (invalid
4293 || !bitsize.is_constant (&const_bitsize)
4294 || !bitpos.is_constant (&const_bitpos)
4295 || !bitregion_start.is_constant (&const_bitregion_start)
4296 || !bitregion_end.is_constant (&const_bitregion_end))
245f6de1 4297 {
383ac8dc 4298 terminate_all_aliasing_chains (NULL, stmt);
245f6de1
JJ
4299 return;
4300 }
4301
4b84d9b8
JJ
4302 if (!ins_stmt)
4303 memset (&n, 0, sizeof (n));
4304
383ac8dc
JJ
4305 struct imm_store_chain_info **chain_info = NULL;
4306 if (base_addr)
4307 chain_info = m_stores.get (base_addr);
4308
245f6de1
JJ
4309 store_immediate_info *info;
4310 if (chain_info)
4311 {
4312 unsigned int ord = (*chain_info)->m_store_info.length ();
8a91d545
RS
4313 info = new store_immediate_info (const_bitsize, const_bitpos,
4314 const_bitregion_start,
4315 const_bitregion_end,
4316 stmt, ord, rhs_code, n, ins_stmt,
d60edaba 4317 bit_not_p, ops[0], ops[1]);
245f6de1
JJ
4318 if (dump_file && (dump_flags & TDF_DETAILS))
4319 {
4320 fprintf (dump_file, "Recording immediate store from stmt:\n");
4321 print_gimple_stmt (dump_file, stmt, 0);
4322 }
4323 (*chain_info)->m_store_info.safe_push (info);
383ac8dc 4324 terminate_all_aliasing_chains (chain_info, stmt);
245f6de1
JJ
4325 /* If we reach the limit of stores to merge in a chain terminate and
4326 process the chain now. */
4327 if ((*chain_info)->m_store_info.length ()
4328 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4329 {
4330 if (dump_file && (dump_flags & TDF_DETAILS))
4331 fprintf (dump_file,
4332 "Reached maximum number of statements to merge:\n");
4333 terminate_and_release_chain (*chain_info);
4334 }
4335 return;
4336 }
4337
4338 /* Store aliases any existing chain? */
383ac8dc 4339 terminate_all_aliasing_chains (NULL, stmt);
245f6de1
JJ
4340 /* Start a new chain. */
4341 struct imm_store_chain_info *new_chain
4342 = new imm_store_chain_info (m_stores_head, base_addr);
8a91d545
RS
4343 info = new store_immediate_info (const_bitsize, const_bitpos,
4344 const_bitregion_start,
4345 const_bitregion_end,
4346 stmt, 0, rhs_code, n, ins_stmt,
d60edaba 4347 bit_not_p, ops[0], ops[1]);
245f6de1
JJ
4348 new_chain->m_store_info.safe_push (info);
4349 m_stores.put (base_addr, new_chain);
4350 if (dump_file && (dump_flags & TDF_DETAILS))
4351 {
4352 fprintf (dump_file, "Starting new chain with statement:\n");
4353 print_gimple_stmt (dump_file, stmt, 0);
4354 fprintf (dump_file, "The base object is:\n");
4355 print_generic_expr (dump_file, base_addr);
4356 fprintf (dump_file, "\n");
4357 }
4358}
4359
f663d9ad 4360/* Entry point for the pass. Go over each basic block recording chains of
245f6de1
JJ
4361 immediate stores. Upon encountering a terminating statement (as defined
4362 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4363 variants. */
f663d9ad
KT
4364
4365unsigned int
4366pass_store_merging::execute (function *fun)
4367{
4368 basic_block bb;
4369 hash_set<gimple *> orig_stmts;
4370
4b84d9b8
JJ
4371 calculate_dominance_info (CDI_DOMINATORS);
4372
f663d9ad
KT
4373 FOR_EACH_BB_FN (bb, fun)
4374 {
4375 gimple_stmt_iterator gsi;
4376 unsigned HOST_WIDE_INT num_statements = 0;
4377 /* Record the original statements so that we can keep track of
4378 statements emitted in this pass and not re-process new
4379 statements. */
4380 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4381 {
4382 if (is_gimple_debug (gsi_stmt (gsi)))
4383 continue;
4384
2f391428 4385 if (++num_statements >= 2)
f663d9ad
KT
4386 break;
4387 }
4388
4389 if (num_statements < 2)
4390 continue;
4391
4392 if (dump_file && (dump_flags & TDF_DETAILS))
4393 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4394
4395 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4396 {
4397 gimple *stmt = gsi_stmt (gsi);
4398
50b6d676
AO
4399 if (is_gimple_debug (stmt))
4400 continue;
4401
f663d9ad
KT
4402 if (gimple_has_volatile_ops (stmt))
4403 {
4404 /* Terminate all chains. */
4405 if (dump_file && (dump_flags & TDF_DETAILS))
4406 fprintf (dump_file, "Volatile access terminates "
4407 "all chains\n");
4408 terminate_and_process_all_chains ();
4409 continue;
4410 }
4411
f663d9ad
KT
4412 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
4413 && !stmt_can_throw_internal (stmt)
4414 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
245f6de1
JJ
4415 process_store (stmt);
4416 else
4417 terminate_all_aliasing_chains (NULL, stmt);
f663d9ad
KT
4418 }
4419 terminate_and_process_all_chains ();
4420 }
4421 return 0;
4422}
4423
4424} // anon namespace
4425
4426/* Construct and return a store merging pass object. */
4427
4428gimple_opt_pass *
4429make_pass_store_merging (gcc::context *ctxt)
4430{
4431 return new pass_store_merging (ctxt);
4432}
c22d8787
KT
4433
4434#if CHECKING_P
4435
4436namespace selftest {
4437
4438/* Selftests for store merging helpers. */
4439
4440/* Assert that all elements of the byte arrays X and Y, both of length N
4441 are equal. */
4442
4443static void
4444verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4445{
4446 for (unsigned int i = 0; i < n; i++)
4447 {
4448 if (x[i] != y[i])
4449 {
4450 fprintf (stderr, "Arrays do not match. X:\n");
4451 dump_char_array (stderr, x, n);
4452 fprintf (stderr, "Y:\n");
4453 dump_char_array (stderr, y, n);
4454 }
4455 ASSERT_EQ (x[i], y[i]);
4456 }
4457}
4458
4459/* Test shift_bytes_in_array and that it carries bits across between
4460 bytes correctly. */
4461
4462static void
4463verify_shift_bytes_in_array (void)
4464{
4465 /* byte 1 | byte 0
4466 00011111 | 11100000. */
4467 unsigned char orig[2] = { 0xe0, 0x1f };
4468 unsigned char in[2];
4469 memcpy (in, orig, sizeof orig);
4470
4471 unsigned char expected[2] = { 0x80, 0x7f };
4472 shift_bytes_in_array (in, sizeof (in), 2);
4473 verify_array_eq (in, expected, sizeof (in));
4474
4475 memcpy (in, orig, sizeof orig);
4476 memcpy (expected, orig, sizeof orig);
4477 /* Check that shifting by zero doesn't change anything. */
4478 shift_bytes_in_array (in, sizeof (in), 0);
4479 verify_array_eq (in, expected, sizeof (in));
4480
4481}
4482
4483/* Test shift_bytes_in_array_right and that it carries bits across between
4484 bytes correctly. */
4485
4486static void
4487verify_shift_bytes_in_array_right (void)
4488{
4489 /* byte 1 | byte 0
4490 00011111 | 11100000. */
4491 unsigned char orig[2] = { 0x1f, 0xe0};
4492 unsigned char in[2];
4493 memcpy (in, orig, sizeof orig);
4494 unsigned char expected[2] = { 0x07, 0xf8};
4495 shift_bytes_in_array_right (in, sizeof (in), 2);
4496 verify_array_eq (in, expected, sizeof (in));
4497
4498 memcpy (in, orig, sizeof orig);
4499 memcpy (expected, orig, sizeof orig);
4500 /* Check that shifting by zero doesn't change anything. */
4501 shift_bytes_in_array_right (in, sizeof (in), 0);
4502 verify_array_eq (in, expected, sizeof (in));
4503}
4504
4505/* Test clear_bit_region that it clears exactly the bits asked and
4506 nothing more. */
4507
4508static void
4509verify_clear_bit_region (void)
4510{
4511 /* Start with all bits set and test clearing various patterns in them. */
4512 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4513 unsigned char in[3];
4514 unsigned char expected[3];
4515 memcpy (in, orig, sizeof in);
4516
4517 /* Check zeroing out all the bits. */
4518 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4519 expected[0] = expected[1] = expected[2] = 0;
4520 verify_array_eq (in, expected, sizeof in);
4521
4522 memcpy (in, orig, sizeof in);
4523 /* Leave the first and last bits intact. */
4524 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4525 expected[0] = 0x1;
4526 expected[1] = 0;
4527 expected[2] = 0x80;
4528 verify_array_eq (in, expected, sizeof in);
4529}
4530
4531/* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4532 nothing more. */
4533
4534static void
4535verify_clear_bit_region_be (void)
4536{
4537 /* Start with all bits set and test clearing various patterns in them. */
4538 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4539 unsigned char in[3];
4540 unsigned char expected[3];
4541 memcpy (in, orig, sizeof in);
4542
4543 /* Check zeroing out all the bits. */
4544 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4545 expected[0] = expected[1] = expected[2] = 0;
4546 verify_array_eq (in, expected, sizeof in);
4547
4548 memcpy (in, orig, sizeof in);
4549 /* Leave the first and last bits intact. */
4550 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4551 expected[0] = 0x80;
4552 expected[1] = 0;
4553 expected[2] = 0x1;
4554 verify_array_eq (in, expected, sizeof in);
4555}
4556
4557
4558/* Run all of the selftests within this file. */
4559
4560void
4561store_merging_c_tests (void)
4562{
4563 verify_shift_bytes_in_array ();
4564 verify_shift_bytes_in_array_right ();
4565 verify_clear_bit_region ();
4566 verify_clear_bit_region_be ();
4567}
4568
4569} // namespace selftest
4570#endif /* CHECKING_P. */