]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-store-merging.c
2017-10-06 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / gimple-ssa-store-merging.c
CommitLineData
3d3e04ac 1/* GIMPLE store merging pass.
aad93da1 2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3d3e04ac 3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21/* The purpose of this pass is to combine multiple memory stores of
22 constant values to consecutive memory locations into fewer wider stores.
23 For example, if we have a sequence peforming four byte stores to
24 consecutive memory locations:
25 [p ] := imm1;
26 [p + 1B] := imm2;
27 [p + 2B] := imm3;
28 [p + 3B] := imm4;
29 we can transform this into a single 4-byte store if the target supports it:
30 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
31
32 The algorithm is applied to each basic block in three phases:
33
34 1) Scan through the basic block recording constant assignments to
35 destinations that can be expressed as a store to memory of a certain size
36 at a certain bit offset. Record store chains to different bases in a
37 hash_map (m_stores) and make sure to terminate such chains when appropriate
38 (for example when when the stored values get used subsequently).
39 These stores can be a result of structure element initializers, array stores
40 etc. A store_immediate_info object is recorded for every such store.
41 Record as many such assignments to a single base as possible until a
42 statement that interferes with the store sequence is encountered.
43
44 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
45 store_immediate_info objects) and coalesce contiguous stores into
46 merged_store_group objects.
47
48 For example, given the stores:
49 [p ] := 0;
50 [p + 1B] := 1;
51 [p + 3B] := 0;
52 [p + 4B] := 1;
53 [p + 5B] := 0;
54 [p + 6B] := 0;
55 This phase would produce two merged_store_group objects, one recording the
56 two bytes stored in the memory region [p : p + 1] and another
57 recording the four bytes stored in the memory region [p + 3 : p + 6].
58
59 3) The merged_store_group objects produced in phase 2) are processed
60 to generate the sequence of wider stores that set the contiguous memory
61 regions to the sequence of bytes that correspond to it. This may emit
62 multiple stores per store group to handle contiguous stores that are not
63 of a size that is a power of 2. For example it can try to emit a 40-bit
64 store as a 32-bit store followed by an 8-bit store.
65 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
dfdced85 66 TARGET_SLOW_UNALIGNED_ACCESS rules.
3d3e04ac 67
68 Note on endianness and example:
69 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
70 [p ] := 0x1234;
71 [p + 2B] := 0x5678;
72 [p + 4B] := 0xab;
73 [p + 5B] := 0xcd;
74
75 The memory layout for little-endian (LE) and big-endian (BE) must be:
76 p |LE|BE|
77 ---------
78 0 |34|12|
79 1 |12|34|
80 2 |78|56|
81 3 |56|78|
82 4 |ab|ab|
83 5 |cd|cd|
84
85 To merge these into a single 48-bit merged value 'val' in phase 2)
86 on little-endian we insert stores to higher (consecutive) bitpositions
87 into the most significant bits of the merged value.
88 The final merged value would be: 0xcdab56781234
89
90 For big-endian we insert stores to higher bitpositions into the least
91 significant bits of the merged value.
92 The final merged value would be: 0x12345678abcd
93
94 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
95 followed by a 16-bit store. Again, we must consider endianness when
96 breaking down the 48-bit value 'val' computed above.
97 For little endian we emit:
98 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
99 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
100
101 Whereas for big-endian we emit:
102 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
103 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
104
105#include "config.h"
106#include "system.h"
107#include "coretypes.h"
108#include "backend.h"
109#include "tree.h"
110#include "gimple.h"
111#include "builtins.h"
112#include "fold-const.h"
113#include "tree-pass.h"
114#include "ssa.h"
115#include "gimple-pretty-print.h"
116#include "alias.h"
117#include "fold-const.h"
118#include "params.h"
119#include "print-tree.h"
120#include "tree-hash-traits.h"
121#include "gimple-iterator.h"
122#include "gimplify.h"
123#include "stor-layout.h"
124#include "timevar.h"
125#include "tree-cfg.h"
126#include "tree-eh.h"
127#include "target.h"
427223f1 128#include "gimplify-me.h"
3d9a2fb3 129#include "selftest.h"
3d3e04ac 130
131/* The maximum size (in bits) of the stores this pass should generate. */
132#define MAX_STORE_BITSIZE (BITS_PER_WORD)
133#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
134
135namespace {
136
137/* Struct recording the information about a single store of an immediate
138 to memory. These are created in the first phase and coalesced into
139 merged_store_group objects in the second phase. */
140
141struct store_immediate_info
142{
143 unsigned HOST_WIDE_INT bitsize;
144 unsigned HOST_WIDE_INT bitpos;
3d3e04ac 145 gimple *stmt;
146 unsigned int order;
f85e7cb7 147 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
148 gimple *, unsigned int);
3d3e04ac 149};
150
151store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
f85e7cb7 152 unsigned HOST_WIDE_INT bp,
153 gimple *st,
3d3e04ac 154 unsigned int ord)
f85e7cb7 155 : bitsize (bs), bitpos (bp), stmt (st), order (ord)
3d3e04ac 156{
157}
158
159/* Struct representing a group of stores to contiguous memory locations.
160 These are produced by the second phase (coalescing) and consumed in the
161 third phase that outputs the widened stores. */
162
163struct merged_store_group
164{
165 unsigned HOST_WIDE_INT start;
166 unsigned HOST_WIDE_INT width;
167 /* The size of the allocated memory for val. */
168 unsigned HOST_WIDE_INT buf_size;
169
170 unsigned int align;
171 unsigned int first_order;
172 unsigned int last_order;
173
174 auto_vec<struct store_immediate_info *> stores;
175 /* We record the first and last original statements in the sequence because
176 we'll need their vuse/vdef and replacement position. It's easier to keep
177 track of them separately as 'stores' is reordered by apply_stores. */
178 gimple *last_stmt;
179 gimple *first_stmt;
180 unsigned char *val;
181
182 merged_store_group (store_immediate_info *);
183 ~merged_store_group ();
184 void merge_into (store_immediate_info *);
185 void merge_overlapping (store_immediate_info *);
186 bool apply_stores ();
187};
188
189/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
190
191static void
192dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
193{
194 if (!fd)
195 return;
196
197 for (unsigned int i = 0; i < len; i++)
198 fprintf (fd, "%x ", ptr[i]);
199 fprintf (fd, "\n");
200}
201
3d3e04ac 202/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
203 bits between adjacent elements. AMNT should be within
204 [0, BITS_PER_UNIT).
205 Example, AMNT = 2:
206 00011111|11100000 << 2 = 01111111|10000000
207 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
208
209static void
210shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
211{
212 if (amnt == 0)
213 return;
214
215 unsigned char carry_over = 0U;
b1c71535 216 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
3d3e04ac 217 unsigned char clear_mask = (~0U) << amnt;
218
219 for (unsigned int i = 0; i < sz; i++)
220 {
221 unsigned prev_carry_over = carry_over;
b1c71535 222 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
3d3e04ac 223
224 ptr[i] <<= amnt;
225 if (i != 0)
226 {
227 ptr[i] &= clear_mask;
228 ptr[i] |= prev_carry_over;
229 }
230 }
231}
232
233/* Like shift_bytes_in_array but for big-endian.
234 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
235 bits between adjacent elements. AMNT should be within
236 [0, BITS_PER_UNIT).
237 Example, AMNT = 2:
238 00011111|11100000 >> 2 = 00000111|11111000
239 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
240
241static void
242shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
243 unsigned int amnt)
244{
245 if (amnt == 0)
246 return;
247
248 unsigned char carry_over = 0U;
249 unsigned char carry_mask = ~(~0U << amnt);
250
251 for (unsigned int i = 0; i < sz; i++)
252 {
253 unsigned prev_carry_over = carry_over;
b1c71535 254 carry_over = ptr[i] & carry_mask;
3d3e04ac 255
a425d9af 256 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
257 ptr[i] >>= amnt;
258 ptr[i] |= prev_carry_over;
3d3e04ac 259 }
260}
261
262/* Clear out LEN bits starting from bit START in the byte array
263 PTR. This clears the bits to the *right* from START.
264 START must be within [0, BITS_PER_UNIT) and counts starting from
265 the least significant bit. */
266
267static void
268clear_bit_region_be (unsigned char *ptr, unsigned int start,
269 unsigned int len)
270{
271 if (len == 0)
272 return;
273 /* Clear len bits to the right of start. */
274 else if (len <= start + 1)
275 {
276 unsigned char mask = (~(~0U << len));
277 mask = mask << (start + 1U - len);
278 ptr[0] &= ~mask;
279 }
280 else if (start != BITS_PER_UNIT - 1)
281 {
282 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
283 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
284 len - (start % BITS_PER_UNIT) - 1);
285 }
286 else if (start == BITS_PER_UNIT - 1
287 && len > BITS_PER_UNIT)
288 {
289 unsigned int nbytes = len / BITS_PER_UNIT;
290 for (unsigned int i = 0; i < nbytes; i++)
291 ptr[i] = 0U;
292 if (len % BITS_PER_UNIT != 0)
293 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
294 len % BITS_PER_UNIT);
295 }
296 else
297 gcc_unreachable ();
298}
299
300/* In the byte array PTR clear the bit region starting at bit
301 START and is LEN bits wide.
302 For regions spanning multiple bytes do this recursively until we reach
303 zero LEN or a region contained within a single byte. */
304
305static void
306clear_bit_region (unsigned char *ptr, unsigned int start,
307 unsigned int len)
308{
309 /* Degenerate base case. */
310 if (len == 0)
311 return;
312 else if (start >= BITS_PER_UNIT)
313 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
314 /* Second base case. */
315 else if ((start + len) <= BITS_PER_UNIT)
316 {
b1c71535 317 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
3d3e04ac 318 mask >>= BITS_PER_UNIT - (start + len);
319
320 ptr[0] &= ~mask;
321
322 return;
323 }
324 /* Clear most significant bits in a byte and proceed with the next byte. */
325 else if (start != 0)
326 {
327 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
3d6071e9 328 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
3d3e04ac 329 }
330 /* Whole bytes need to be cleared. */
331 else if (start == 0 && len > BITS_PER_UNIT)
332 {
333 unsigned int nbytes = len / BITS_PER_UNIT;
7839cdcc 334 /* We could recurse on each byte but we clear whole bytes, so a simple
335 memset will do. */
b1c71535 336 memset (ptr, '\0', nbytes);
3d3e04ac 337 /* Clear the remaining sub-byte region if there is one. */
338 if (len % BITS_PER_UNIT != 0)
339 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
340 }
341 else
342 gcc_unreachable ();
343}
344
345/* Write BITLEN bits of EXPR to the byte array PTR at
346 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
347 Return true if the operation succeeded. */
348
349static bool
350encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
b1c71535 351 unsigned int total_bytes)
3d3e04ac 352{
353 unsigned int first_byte = bitpos / BITS_PER_UNIT;
354 tree tmp_int = expr;
a425d9af 355 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
356 || (bitpos % BITS_PER_UNIT)
517be012 357 || !int_mode_for_size (bitlen, 0).exists ());
3d3e04ac 358
359 if (!sub_byte_op_p)
b1c71535 360 return (native_encode_expr (tmp_int, ptr + first_byte, total_bytes, 0)
361 != 0);
3d3e04ac 362
363 /* LITTLE-ENDIAN
364 We are writing a non byte-sized quantity or at a position that is not
365 at a byte boundary.
366 |--------|--------|--------| ptr + first_byte
367 ^ ^
368 xxx xxxxxxxx xxx< bp>
369 |______EXPR____|
370
b1c71535 371 First native_encode_expr EXPR into a temporary buffer and shift each
3d3e04ac 372 byte in the buffer by 'bp' (carrying the bits over as necessary).
373 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
374 <------bitlen---->< bp>
375 Then we clear the destination bits:
376 |---00000|00000000|000-----| ptr + first_byte
377 <-------bitlen--->< bp>
378
379 Finally we ORR the bytes of the shifted EXPR into the cleared region:
380 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
381
382 BIG-ENDIAN
383 We are writing a non byte-sized quantity or at a position that is not
384 at a byte boundary.
385 ptr + first_byte |--------|--------|--------|
386 ^ ^
387 <bp >xxx xxxxxxxx xxx
388 |_____EXPR_____|
389
b1c71535 390 First native_encode_expr EXPR into a temporary buffer and shift each
3d3e04ac 391 byte in the buffer to the right by (carrying the bits over as necessary).
392 We shift by as much as needed to align the most significant bit of EXPR
393 with bitpos:
394 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
395 <---bitlen----> <bp ><-----bitlen----->
396 Then we clear the destination bits:
397 ptr + first_byte |-----000||00000000||00000---|
398 <bp ><-------bitlen----->
399
400 Finally we ORR the bytes of the shifted EXPR into the cleared region:
401 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
402 The awkwardness comes from the fact that bitpos is counted from the
403 most significant bit of a byte. */
404
405 /* Allocate an extra byte so that we have space to shift into. */
406 unsigned int byte_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) + 1;
407 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
b1c71535 408 memset (tmpbuf, '\0', byte_size);
3d3e04ac 409 /* The store detection code should only have allowed constants that are
410 accepted by native_encode_expr. */
a425d9af 411 if (native_encode_expr (expr, tmpbuf, byte_size - 1, 0) == 0)
3d3e04ac 412 gcc_unreachable ();
413
414 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
415 bytes to write. This means it can write more than
416 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
417 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
418 bitlen and zero out the bits that are not relevant as well (that may
419 contain a sign bit due to sign-extension). */
420 unsigned int padding
421 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
a425d9af 422 /* On big-endian the padding is at the 'front' so just skip the initial
423 bytes. */
424 if (BYTES_BIG_ENDIAN)
425 tmpbuf += padding;
426
427 byte_size -= padding;
428
429 if (bitlen % BITS_PER_UNIT != 0)
3d3e04ac 430 {
5e922e43 431 if (BYTES_BIG_ENDIAN)
a425d9af 432 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
433 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
434 else
435 clear_bit_region (tmpbuf, bitlen,
436 byte_size * BITS_PER_UNIT - bitlen);
3d3e04ac 437 }
a425d9af 438 /* Left shifting relies on the last byte being clear if bitlen is
439 a multiple of BITS_PER_UNIT, which might not be clear if
440 there are padding bytes. */
441 else if (!BYTES_BIG_ENDIAN)
442 tmpbuf[byte_size - 1] = '\0';
3d3e04ac 443
444 /* Clear the bit region in PTR where the bits from TMPBUF will be
b1c71535 445 inserted into. */
3d3e04ac 446 if (BYTES_BIG_ENDIAN)
447 clear_bit_region_be (ptr + first_byte,
448 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
449 else
450 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
451
452 int shift_amnt;
453 int bitlen_mod = bitlen % BITS_PER_UNIT;
454 int bitpos_mod = bitpos % BITS_PER_UNIT;
455
456 bool skip_byte = false;
457 if (BYTES_BIG_ENDIAN)
458 {
459 /* BITPOS and BITLEN are exactly aligned and no shifting
460 is necessary. */
461 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
462 || (bitpos_mod == 0 && bitlen_mod == 0))
463 shift_amnt = 0;
464 /* |. . . . . . . .|
465 <bp > <blen >.
466 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
467 of the value until it aligns with 'bp' in the next byte over. */
468 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
469 {
470 shift_amnt = bitlen_mod + bitpos_mod;
471 skip_byte = bitlen_mod != 0;
472 }
473 /* |. . . . . . . .|
474 <----bp--->
475 <---blen---->.
476 Shift the value right within the same byte so it aligns with 'bp'. */
477 else
478 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
479 }
480 else
481 shift_amnt = bitpos % BITS_PER_UNIT;
482
483 /* Create the shifted version of EXPR. */
484 if (!BYTES_BIG_ENDIAN)
b1c71535 485 {
486 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
487 if (shift_amnt == 0)
488 byte_size--;
489 }
3d3e04ac 490 else
491 {
492 gcc_assert (BYTES_BIG_ENDIAN);
493 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
494 /* If shifting right forced us to move into the next byte skip the now
495 empty byte. */
496 if (skip_byte)
497 {
498 tmpbuf++;
499 byte_size--;
500 }
501 }
502
503 /* Insert the bits from TMPBUF. */
504 for (unsigned int i = 0; i < byte_size; i++)
505 ptr[first_byte + i] |= tmpbuf[i];
506
507 return true;
508}
509
510/* Sorting function for store_immediate_info objects.
511 Sorts them by bitposition. */
512
513static int
514sort_by_bitpos (const void *x, const void *y)
515{
516 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
517 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
518
61d052e5 519 if ((*tmp)->bitpos < (*tmp2)->bitpos)
3d3e04ac 520 return -1;
521 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
522 return 1;
61d052e5 523 else
ca4982c2 524 /* If they are the same let's use the order which is guaranteed to
525 be different. */
526 return (*tmp)->order - (*tmp2)->order;
3d3e04ac 527}
528
529/* Sorting function for store_immediate_info objects.
530 Sorts them by the order field. */
531
532static int
533sort_by_order (const void *x, const void *y)
534{
535 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
536 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
537
538 if ((*tmp)->order < (*tmp2)->order)
539 return -1;
540 else if ((*tmp)->order > (*tmp2)->order)
541 return 1;
542
543 gcc_unreachable ();
544}
545
546/* Initialize a merged_store_group object from a store_immediate_info
547 object. */
548
549merged_store_group::merged_store_group (store_immediate_info *info)
550{
551 start = info->bitpos;
552 width = info->bitsize;
553 /* VAL has memory allocated for it in apply_stores once the group
554 width has been finalized. */
555 val = NULL;
f85e7cb7 556 align = get_object_alignment (gimple_assign_lhs (info->stmt));
3d3e04ac 557 stores.create (1);
558 stores.safe_push (info);
559 last_stmt = info->stmt;
560 last_order = info->order;
561 first_stmt = last_stmt;
562 first_order = last_order;
563 buf_size = 0;
564}
565
566merged_store_group::~merged_store_group ()
567{
568 if (val)
569 XDELETEVEC (val);
570}
571
572/* Merge a store recorded by INFO into this merged store.
573 The store is not overlapping with the existing recorded
574 stores. */
575
576void
577merged_store_group::merge_into (store_immediate_info *info)
578{
579 unsigned HOST_WIDE_INT wid = info->bitsize;
580 /* Make sure we're inserting in the position we think we're inserting. */
581 gcc_assert (info->bitpos == start + width);
582
583 width += wid;
584 gimple *stmt = info->stmt;
585 stores.safe_push (info);
586 if (info->order > last_order)
587 {
588 last_order = info->order;
589 last_stmt = stmt;
590 }
591 else if (info->order < first_order)
592 {
593 first_order = info->order;
594 first_stmt = stmt;
595 }
596}
597
598/* Merge a store described by INFO into this merged store.
599 INFO overlaps in some way with the current store (i.e. it's not contiguous
600 which is handled by merged_store_group::merge_into). */
601
602void
603merged_store_group::merge_overlapping (store_immediate_info *info)
604{
605 gimple *stmt = info->stmt;
606 stores.safe_push (info);
607
608 /* If the store extends the size of the group, extend the width. */
609 if ((info->bitpos + info->bitsize) > (start + width))
610 width += info->bitpos + info->bitsize - (start + width);
611
612 if (info->order > last_order)
613 {
614 last_order = info->order;
615 last_stmt = stmt;
616 }
617 else if (info->order < first_order)
618 {
619 first_order = info->order;
620 first_stmt = stmt;
621 }
622}
623
624/* Go through all the recorded stores in this group in program order and
625 apply their values to the VAL byte array to create the final merged
626 value. Return true if the operation succeeded. */
627
628bool
629merged_store_group::apply_stores ()
630{
631 /* The total width of the stores must add up to a whole number of bytes
632 and start at a byte boundary. We don't support emitting bitfield
633 references for now. Also, make sure we have more than one store
634 in the group, otherwise we cannot merge anything. */
635 if (width % BITS_PER_UNIT != 0
636 || start % BITS_PER_UNIT != 0
637 || stores.length () == 1)
638 return false;
639
640 stores.qsort (sort_by_order);
641 struct store_immediate_info *info;
642 unsigned int i;
643 /* Create a buffer of a size that is 2 times the number of bytes we're
644 storing. That way native_encode_expr can write power-of-2-sized
645 chunks without overrunning. */
b1c71535 646 buf_size = 2 * (ROUND_UP (width, BITS_PER_UNIT) / BITS_PER_UNIT);
3d3e04ac 647 val = XCNEWVEC (unsigned char, buf_size);
648
649 FOR_EACH_VEC_ELT (stores, i, info)
650 {
651 unsigned int pos_in_buffer = info->bitpos - start;
f85e7cb7 652 bool ret = encode_tree_to_bitpos (gimple_assign_rhs1 (info->stmt),
653 val, info->bitsize,
654 pos_in_buffer, buf_size);
3d3e04ac 655 if (dump_file && (dump_flags & TDF_DETAILS))
656 {
657 if (ret)
658 {
659 fprintf (dump_file, "After writing ");
f85e7cb7 660 print_generic_expr (dump_file,
661 gimple_assign_rhs1 (info->stmt), 0);
3d3e04ac 662 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
663 " at position %d the merged region contains:\n",
664 info->bitsize, pos_in_buffer);
665 dump_char_array (dump_file, val, buf_size);
666 }
667 else
668 fprintf (dump_file, "Failed to merge stores\n");
669 }
670 if (!ret)
671 return false;
672 }
673 return true;
674}
675
676/* Structure describing the store chain. */
677
678struct imm_store_chain_info
679{
3a3ba7de 680 /* Doubly-linked list that imposes an order on chain processing.
681 PNXP (prev's next pointer) points to the head of a list, or to
682 the next field in the previous chain in the list.
683 See pass_store_merging::m_stores_head for more rationale. */
684 imm_store_chain_info *next, **pnxp;
f85e7cb7 685 tree base_addr;
3d3e04ac 686 auto_vec<struct store_immediate_info *> m_store_info;
687 auto_vec<merged_store_group *> m_merged_store_groups;
688
3a3ba7de 689 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
690 : next (inspt), pnxp (&inspt), base_addr (b_a)
691 {
692 inspt = this;
693 if (next)
694 {
695 gcc_checking_assert (pnxp == next->pnxp);
696 next->pnxp = &next;
697 }
698 }
699 ~imm_store_chain_info ()
700 {
701 *pnxp = next;
702 if (next)
703 {
704 gcc_checking_assert (&next == next->pnxp);
705 next->pnxp = pnxp;
706 }
707 }
f85e7cb7 708 bool terminate_and_process_chain ();
3d3e04ac 709 bool coalesce_immediate_stores ();
f85e7cb7 710 bool output_merged_store (merged_store_group *);
711 bool output_merged_stores ();
3d3e04ac 712};
713
714const pass_data pass_data_tree_store_merging = {
715 GIMPLE_PASS, /* type */
716 "store-merging", /* name */
717 OPTGROUP_NONE, /* optinfo_flags */
718 TV_GIMPLE_STORE_MERGING, /* tv_id */
719 PROP_ssa, /* properties_required */
720 0, /* properties_provided */
721 0, /* properties_destroyed */
722 0, /* todo_flags_start */
723 TODO_update_ssa, /* todo_flags_finish */
724};
725
726class pass_store_merging : public gimple_opt_pass
727{
728public:
729 pass_store_merging (gcc::context *ctxt)
2d27e5c1 730 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
3d3e04ac 731 {
732 }
733
734 /* Pass not supported for PDP-endianness. */
735 virtual bool
736 gate (function *)
737 {
738 return flag_store_merging && (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
739 }
740
741 virtual unsigned int execute (function *);
742
743private:
744 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
745
3a3ba7de 746 /* Form a doubly-linked stack of the elements of m_stores, so that
747 we can iterate over them in a predictable way. Using this order
748 avoids extraneous differences in the compiler output just because
749 of tree pointer variations (e.g. different chains end up in
750 different positions of m_stores, so they are handled in different
751 orders, so they allocate or release SSA names in different
752 orders, and when they get reused, subsequent passes end up
753 getting different SSA names, which may ultimately change
754 decisions when going out of SSA). */
755 imm_store_chain_info *m_stores_head;
756
3d3e04ac 757 bool terminate_and_process_all_chains ();
4de7f8df 758 bool terminate_all_aliasing_chains (imm_store_chain_info **,
f85e7cb7 759 bool, gimple *);
760 bool terminate_and_release_chain (imm_store_chain_info *);
3d3e04ac 761}; // class pass_store_merging
762
763/* Terminate and process all recorded chains. Return true if any changes
764 were made. */
765
766bool
767pass_store_merging::terminate_and_process_all_chains ()
768{
3d3e04ac 769 bool ret = false;
3a3ba7de 770 while (m_stores_head)
771 ret |= terminate_and_release_chain (m_stores_head);
772 gcc_assert (m_stores.elements () == 0);
773 gcc_assert (m_stores_head == NULL);
3d3e04ac 774
775 return ret;
776}
777
778/* Terminate all chains that are affected by the assignment to DEST, appearing
779 in statement STMT and ultimately points to the object BASE. Return true if
780 at least one aliasing chain was terminated. BASE and DEST are allowed to
781 be NULL_TREE. In that case the aliasing checks are performed on the whole
782 statement rather than a particular operand in it. VAR_OFFSET_P signifies
783 whether STMT represents a store to BASE offset by a variable amount.
784 If that is the case we have to terminate any chain anchored at BASE. */
785
786bool
4de7f8df 787pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
f85e7cb7 788 **chain_info,
3d3e04ac 789 bool var_offset_p,
790 gimple *stmt)
791{
792 bool ret = false;
793
794 /* If the statement doesn't touch memory it can't alias. */
795 if (!gimple_vuse (stmt))
796 return false;
797
3d3e04ac 798 /* Check if the assignment destination (BASE) is part of a store chain.
799 This is to catch non-constant stores to destinations that may be part
800 of a chain. */
f85e7cb7 801 if (chain_info)
3d3e04ac 802 {
f85e7cb7 803 /* We have a chain at BASE and we're writing to [BASE + <variable>].
804 This can interfere with any of the stores so terminate
805 the chain. */
806 if (var_offset_p)
3d3e04ac 807 {
f85e7cb7 808 terminate_and_release_chain (*chain_info);
809 ret = true;
810 }
811 /* Otherwise go through every store in the chain to see if it
812 aliases with any of them. */
813 else
814 {
815 struct store_immediate_info *info;
816 unsigned int i;
817 FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info)
3d3e04ac 818 {
4de7f8df 819 if (ref_maybe_used_by_stmt_p (stmt,
820 gimple_assign_lhs (info->stmt))
821 || stmt_may_clobber_ref_p (stmt,
822 gimple_assign_lhs (info->stmt)))
3d3e04ac 823 {
f85e7cb7 824 if (dump_file && (dump_flags & TDF_DETAILS))
3d3e04ac 825 {
f85e7cb7 826 fprintf (dump_file,
827 "stmt causes chain termination:\n");
1ffa4346 828 print_gimple_stmt (dump_file, stmt, 0);
3d3e04ac 829 }
f85e7cb7 830 terminate_and_release_chain (*chain_info);
831 ret = true;
832 break;
3d3e04ac 833 }
834 }
835 }
836 }
837
3d3e04ac 838 /* Check for aliasing with all other store chains. */
3a3ba7de 839 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
3d3e04ac 840 {
3a3ba7de 841 next = cur->next;
842
3d3e04ac 843 /* We already checked all the stores in chain_info and terminated the
844 chain if necessary. Skip it here. */
3a3ba7de 845 if (chain_info && (*chain_info) == cur)
3d3e04ac 846 continue;
847
f85e7cb7 848 /* We can't use the base object here as that does not reliably exist.
849 Build a ao_ref from the base object address (if we know the
850 minimum and maximum offset and the maximum size we could improve
851 things here). */
852 ao_ref chain_ref;
3a3ba7de 853 ao_ref_init_from_ptr_and_size (&chain_ref, cur->base_addr, NULL_TREE);
f85e7cb7 854 if (ref_maybe_used_by_stmt_p (stmt, &chain_ref)
855 || stmt_may_clobber_ref_p_1 (stmt, &chain_ref))
3d3e04ac 856 {
3a3ba7de 857 terminate_and_release_chain (cur);
3d3e04ac 858 ret = true;
859 }
860 }
861
862 return ret;
863}
864
865/* Helper function. Terminate the recorded chain storing to base object
866 BASE. Return true if the merging and output was successful. The m_stores
867 entry is removed after the processing in any case. */
868
869bool
f85e7cb7 870pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
3d3e04ac 871{
f85e7cb7 872 bool ret = chain_info->terminate_and_process_chain ();
873 m_stores.remove (chain_info->base_addr);
874 delete chain_info;
3d3e04ac 875 return ret;
876}
877
878/* Go through the candidate stores recorded in m_store_info and merge them
879 into merged_store_group objects recorded into m_merged_store_groups
880 representing the widened stores. Return true if coalescing was successful
881 and the number of widened stores is fewer than the original number
882 of stores. */
883
884bool
885imm_store_chain_info::coalesce_immediate_stores ()
886{
887 /* Anything less can't be processed. */
888 if (m_store_info.length () < 2)
889 return false;
890
891 if (dump_file && (dump_flags & TDF_DETAILS))
892 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
893 m_store_info.length ());
894
895 store_immediate_info *info;
896 unsigned int i;
897
898 /* Order the stores by the bitposition they write to. */
899 m_store_info.qsort (sort_by_bitpos);
900
901 info = m_store_info[0];
902 merged_store_group *merged_store = new merged_store_group (info);
903
904 FOR_EACH_VEC_ELT (m_store_info, i, info)
905 {
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 {
908 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
909 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
910 i, info->bitsize, info->bitpos);
1ffa4346 911 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
3d3e04ac 912 fprintf (dump_file, "\n------------\n");
913 }
914
915 if (i == 0)
916 continue;
917
918 /* |---store 1---|
919 |---store 2---|
920 Overlapping stores. */
921 unsigned HOST_WIDE_INT start = info->bitpos;
922 if (IN_RANGE (start, merged_store->start,
923 merged_store->start + merged_store->width - 1))
924 {
925 merged_store->merge_overlapping (info);
926 continue;
927 }
928
929 /* |---store 1---| <gap> |---store 2---|.
930 Gap between stores. Start a new group. */
931 if (start != merged_store->start + merged_store->width)
932 {
933 /* Try to apply all the stores recorded for the group to determine
934 the bitpattern they write and discard it if that fails.
935 This will also reject single-store groups. */
936 if (!merged_store->apply_stores ())
937 delete merged_store;
938 else
939 m_merged_store_groups.safe_push (merged_store);
940
941 merged_store = new merged_store_group (info);
942
943 continue;
944 }
945
946 /* |---store 1---||---store 2---|
947 This store is consecutive to the previous one.
948 Merge it into the current store group. */
949 merged_store->merge_into (info);
950 }
951
952 /* Record or discard the last store group. */
953 if (!merged_store->apply_stores ())
954 delete merged_store;
955 else
956 m_merged_store_groups.safe_push (merged_store);
957
958 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
959 bool success
960 = !m_merged_store_groups.is_empty ()
961 && m_merged_store_groups.length () < m_store_info.length ();
962
963 if (success && dump_file)
964 fprintf (dump_file, "Coalescing successful!\n"
965 "Merged into %u stores\n",
966 m_merged_store_groups.length ());
967
968 return success;
969}
970
971/* Return the type to use for the merged stores described by STMTS.
972 This is needed to get the alias sets right. */
973
974static tree
975get_alias_type_for_stmts (auto_vec<gimple *> &stmts)
976{
977 gimple *stmt;
978 unsigned int i;
979 tree lhs = gimple_assign_lhs (stmts[0]);
980 tree type = reference_alias_ptr_type (lhs);
981
982 FOR_EACH_VEC_ELT (stmts, i, stmt)
983 {
984 if (i == 0)
985 continue;
986
987 lhs = gimple_assign_lhs (stmt);
988 tree type1 = reference_alias_ptr_type (lhs);
989 if (!alias_ptr_types_compatible_p (type, type1))
990 return ptr_type_node;
991 }
992 return type;
993}
994
995/* Return the location_t information we can find among the statements
996 in STMTS. */
997
998static location_t
999get_location_for_stmts (auto_vec<gimple *> &stmts)
1000{
1001 gimple *stmt;
1002 unsigned int i;
1003
1004 FOR_EACH_VEC_ELT (stmts, i, stmt)
1005 if (gimple_has_location (stmt))
1006 return gimple_location (stmt);
1007
1008 return UNKNOWN_LOCATION;
1009}
1010
1011/* Used to decribe a store resulting from splitting a wide store in smaller
1012 regularly-sized stores in split_group. */
1013
1014struct split_store
1015{
1016 unsigned HOST_WIDE_INT bytepos;
1017 unsigned HOST_WIDE_INT size;
1018 unsigned HOST_WIDE_INT align;
1019 auto_vec<gimple *> orig_stmts;
1020 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1021 unsigned HOST_WIDE_INT);
1022};
1023
1024/* Simple constructor. */
1025
1026split_store::split_store (unsigned HOST_WIDE_INT bp,
1027 unsigned HOST_WIDE_INT sz,
1028 unsigned HOST_WIDE_INT al)
1029 : bytepos (bp), size (sz), align (al)
1030{
1031 orig_stmts.create (0);
1032}
1033
1034/* Record all statements corresponding to stores in GROUP that write to
1035 the region starting at BITPOS and is of size BITSIZE. Record such
1036 statements in STMTS. The stores in GROUP must be sorted by
1037 bitposition. */
1038
1039static void
1040find_constituent_stmts (struct merged_store_group *group,
1041 auto_vec<gimple *> &stmts,
1042 unsigned HOST_WIDE_INT bitpos,
1043 unsigned HOST_WIDE_INT bitsize)
1044{
1045 struct store_immediate_info *info;
1046 unsigned int i;
1047 unsigned HOST_WIDE_INT end = bitpos + bitsize;
1048 FOR_EACH_VEC_ELT (group->stores, i, info)
1049 {
1050 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
1051 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
1052 if (stmt_end < bitpos)
1053 continue;
1054 /* The stores in GROUP are ordered by bitposition so if we're past
1055 the region for this group return early. */
1056 if (stmt_start > end)
1057 return;
1058
1059 if (IN_RANGE (stmt_start, bitpos, bitpos + bitsize)
1060 || IN_RANGE (stmt_end, bitpos, end)
1061 /* The statement writes a region that completely encloses the region
1062 that this group writes. Unlikely to occur but let's
1063 handle it. */
1064 || IN_RANGE (bitpos, stmt_start, stmt_end))
1065 stmts.safe_push (info->stmt);
1066 }
1067}
1068
1069/* Split a merged store described by GROUP by populating the SPLIT_STORES
1070 vector with split_store structs describing the byte offset (from the base),
1071 the bit size and alignment of each store as well as the original statements
1072 involved in each such split group.
1073 This is to separate the splitting strategy from the statement
1074 building/emission/linking done in output_merged_store.
1075 At the moment just start with the widest possible size and keep emitting
1076 the widest we can until we have emitted all the bytes, halving the size
1077 when appropriate. */
1078
1079static bool
1080split_group (merged_store_group *group,
1081 auto_vec<struct split_store *> &split_stores)
1082{
1083 unsigned HOST_WIDE_INT pos = group->start;
1084 unsigned HOST_WIDE_INT size = group->width;
1085 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
1086 unsigned HOST_WIDE_INT align = group->align;
1087
1088 /* We don't handle partial bitfields for now. We shouldn't have
1089 reached this far. */
1090 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
1091
1092 bool allow_unaligned
1093 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
1094
1095 unsigned int try_size = MAX_STORE_BITSIZE;
1096 while (try_size > size
1097 || (!allow_unaligned
1098 && try_size > align))
1099 {
1100 try_size /= 2;
1101 if (try_size < BITS_PER_UNIT)
1102 return false;
1103 }
1104
1105 unsigned HOST_WIDE_INT try_pos = bytepos;
1106 group->stores.qsort (sort_by_bitpos);
1107
1108 while (size > 0)
1109 {
1110 struct split_store *store = new split_store (try_pos, try_size, align);
1111 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
1112 find_constituent_stmts (group, store->orig_stmts, try_bitpos, try_size);
1113 split_stores.safe_push (store);
1114
1115 try_pos += try_size / BITS_PER_UNIT;
1116
1117 size -= try_size;
1118 align = try_size;
1119 while (size < try_size)
1120 try_size /= 2;
1121 }
1122 return true;
1123}
1124
1125/* Given a merged store group GROUP output the widened version of it.
1126 The store chain is against the base object BASE.
1127 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
1128 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
1129 Make sure that the number of statements output is less than the number of
1130 original statements. If a better sequence is possible emit it and
1131 return true. */
1132
1133bool
f85e7cb7 1134imm_store_chain_info::output_merged_store (merged_store_group *group)
3d3e04ac 1135{
1136 unsigned HOST_WIDE_INT start_byte_pos = group->start / BITS_PER_UNIT;
1137
1138 unsigned int orig_num_stmts = group->stores.length ();
1139 if (orig_num_stmts < 2)
1140 return false;
1141
1142 auto_vec<struct split_store *> split_stores;
1143 split_stores.create (0);
1144 if (!split_group (group, split_stores))
1145 return false;
1146
1147 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
1148 gimple_seq seq = NULL;
1149 unsigned int num_stmts = 0;
1150 tree last_vdef, new_vuse;
1151 last_vdef = gimple_vdef (group->last_stmt);
1152 new_vuse = gimple_vuse (group->last_stmt);
1153
1154 gimple *stmt = NULL;
1155 /* The new SSA names created. Keep track of them so that we can free them
1156 if we decide to not use the new sequence. */
1157 auto_vec<tree> new_ssa_names;
1158 split_store *split_store;
1159 unsigned int i;
1160 bool fail = false;
1161
427223f1 1162 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq,
1163 is_gimple_mem_ref_addr, NULL_TREE);
3d3e04ac 1164 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1165 {
1166 unsigned HOST_WIDE_INT try_size = split_store->size;
1167 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
1168 unsigned HOST_WIDE_INT align = split_store->align;
1169 tree offset_type = get_alias_type_for_stmts (split_store->orig_stmts);
1170 location_t loc = get_location_for_stmts (split_store->orig_stmts);
1171
1172 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
f6443ac9 1173 int_type = build_aligned_type (int_type, align);
427223f1 1174 tree dest = fold_build2 (MEM_REF, int_type, addr,
3d3e04ac 1175 build_int_cst (offset_type, try_pos));
1176
1177 tree src = native_interpret_expr (int_type,
1178 group->val + try_pos - start_byte_pos,
1179 group->buf_size);
1180
1181 stmt = gimple_build_assign (dest, src);
1182 gimple_set_location (stmt, loc);
1183 gimple_set_vuse (stmt, new_vuse);
1184 gimple_seq_add_stmt_without_update (&seq, stmt);
1185
1186 /* We didn't manage to reduce the number of statements. Bail out. */
1187 if (++num_stmts == orig_num_stmts)
1188 {
1189 if (dump_file && (dump_flags & TDF_DETAILS))
1190 {
1191 fprintf (dump_file, "Exceeded original number of stmts (%u)."
1192 " Not profitable to emit new sequence.\n",
1193 orig_num_stmts);
1194 }
1195 unsigned int ssa_count;
1196 tree ssa_name;
1197 /* Don't forget to cleanup the temporary SSA names. */
1198 FOR_EACH_VEC_ELT (new_ssa_names, ssa_count, ssa_name)
1199 release_ssa_name (ssa_name);
1200
1201 fail = true;
1202 break;
1203 }
1204
1205 tree new_vdef;
1206 if (i < split_stores.length () - 1)
1207 {
1208 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
1209 new_ssa_names.safe_push (new_vdef);
1210 }
1211 else
1212 new_vdef = last_vdef;
1213
1214 gimple_set_vdef (stmt, new_vdef);
1215 SSA_NAME_DEF_STMT (new_vdef) = stmt;
1216 new_vuse = new_vdef;
1217 }
1218
1219 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1220 delete split_store;
1221
1222 if (fail)
1223 return false;
1224
1225 gcc_assert (seq);
1226 if (dump_file)
1227 {
1228 fprintf (dump_file,
1229 "New sequence of %u stmts to replace old one of %u stmts\n",
1230 num_stmts, orig_num_stmts);
1231 if (dump_flags & TDF_DETAILS)
1232 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
1233 }
1234 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
1235
1236 return true;
1237}
1238
1239/* Process the merged_store_group objects created in the coalescing phase.
1240 The stores are all against the base object BASE.
1241 Try to output the widened stores and delete the original statements if
1242 successful. Return true iff any changes were made. */
1243
1244bool
f85e7cb7 1245imm_store_chain_info::output_merged_stores ()
3d3e04ac 1246{
1247 unsigned int i;
1248 merged_store_group *merged_store;
1249 bool ret = false;
1250 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
1251 {
f85e7cb7 1252 if (output_merged_store (merged_store))
3d3e04ac 1253 {
1254 unsigned int j;
1255 store_immediate_info *store;
1256 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
1257 {
1258 gimple *stmt = store->stmt;
1259 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1260 gsi_remove (&gsi, true);
1261 if (stmt != merged_store->last_stmt)
1262 {
1263 unlink_stmt_vdef (stmt);
1264 release_defs (stmt);
1265 }
1266 }
1267 ret = true;
1268 }
1269 }
1270 if (ret && dump_file)
1271 fprintf (dump_file, "Merging successful!\n");
1272
1273 return ret;
1274}
1275
1276/* Coalesce the store_immediate_info objects recorded against the base object
1277 BASE in the first phase and output them.
1278 Delete the allocated structures.
1279 Return true if any changes were made. */
1280
1281bool
f85e7cb7 1282imm_store_chain_info::terminate_and_process_chain ()
3d3e04ac 1283{
1284 /* Process store chain. */
1285 bool ret = false;
1286 if (m_store_info.length () > 1)
1287 {
1288 ret = coalesce_immediate_stores ();
1289 if (ret)
f85e7cb7 1290 ret = output_merged_stores ();
3d3e04ac 1291 }
1292
1293 /* Delete all the entries we allocated ourselves. */
1294 store_immediate_info *info;
1295 unsigned int i;
1296 FOR_EACH_VEC_ELT (m_store_info, i, info)
1297 delete info;
1298
1299 merged_store_group *merged_info;
1300 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
1301 delete merged_info;
1302
1303 return ret;
1304}
1305
1306/* Return true iff LHS is a destination potentially interesting for
1307 store merging. In practice these are the codes that get_inner_reference
1308 can process. */
1309
1310static bool
1311lhs_valid_for_store_merging_p (tree lhs)
1312{
1313 tree_code code = TREE_CODE (lhs);
1314
1315 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
1316 || code == COMPONENT_REF || code == BIT_FIELD_REF)
1317 return true;
1318
1319 return false;
1320}
1321
1322/* Return true if the tree RHS is a constant we want to consider
1323 during store merging. In practice accept all codes that
1324 native_encode_expr accepts. */
1325
1326static bool
1327rhs_valid_for_store_merging_p (tree rhs)
1328{
1329 tree type = TREE_TYPE (rhs);
1330 if (TREE_CODE_CLASS (TREE_CODE (rhs)) != tcc_constant
1331 || !can_native_encode_type_p (type))
1332 return false;
1333
1334 return true;
1335}
1336
1337/* Entry point for the pass. Go over each basic block recording chains of
1338 immediate stores. Upon encountering a terminating statement (as defined
1339 by stmt_terminates_chain_p) process the recorded stores and emit the widened
1340 variants. */
1341
1342unsigned int
1343pass_store_merging::execute (function *fun)
1344{
1345 basic_block bb;
1346 hash_set<gimple *> orig_stmts;
1347
1348 FOR_EACH_BB_FN (bb, fun)
1349 {
1350 gimple_stmt_iterator gsi;
1351 unsigned HOST_WIDE_INT num_statements = 0;
1352 /* Record the original statements so that we can keep track of
1353 statements emitted in this pass and not re-process new
1354 statements. */
1355 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1356 {
1357 if (is_gimple_debug (gsi_stmt (gsi)))
1358 continue;
1359
1360 if (++num_statements > 2)
1361 break;
1362 }
1363
1364 if (num_statements < 2)
1365 continue;
1366
1367 if (dump_file && (dump_flags & TDF_DETAILS))
1368 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
1369
1370 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1371 {
1372 gimple *stmt = gsi_stmt (gsi);
1373
3a3ba7de 1374 if (is_gimple_debug (stmt))
1375 continue;
1376
3d3e04ac 1377 if (gimple_has_volatile_ops (stmt))
1378 {
1379 /* Terminate all chains. */
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 fprintf (dump_file, "Volatile access terminates "
1382 "all chains\n");
1383 terminate_and_process_all_chains ();
1384 continue;
1385 }
1386
3d3e04ac 1387 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
1388 && !stmt_can_throw_internal (stmt)
1389 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
1390 {
1391 tree lhs = gimple_assign_lhs (stmt);
1392 tree rhs = gimple_assign_rhs1 (stmt);
1393
1394 HOST_WIDE_INT bitsize, bitpos;
1395 machine_mode mode;
1396 int unsignedp = 0, reversep = 0, volatilep = 0;
1397 tree offset, base_addr;
1398 base_addr
1399 = get_inner_reference (lhs, &bitsize, &bitpos, &offset, &mode,
1400 &unsignedp, &reversep, &volatilep);
1401 /* As a future enhancement we could handle stores with the same
1402 base and offset. */
427223f1 1403 bool invalid = reversep
3d3e04ac 1404 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
1405 && (TREE_CODE (rhs) != INTEGER_CST))
427223f1 1406 || !rhs_valid_for_store_merging_p (rhs);
3d3e04ac 1407
f85e7cb7 1408 /* We do not want to rewrite TARGET_MEM_REFs. */
1409 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
1410 invalid = true;
3d3e04ac 1411 /* In some cases get_inner_reference may return a
1412 MEM_REF [ptr + byteoffset]. For the purposes of this pass
1413 canonicalize the base_addr to MEM_REF [ptr] and take
1414 byteoffset into account in the bitpos. This occurs in
1415 PR 23684 and this way we can catch more chains. */
f85e7cb7 1416 else if (TREE_CODE (base_addr) == MEM_REF)
3d3e04ac 1417 {
1418 offset_int bit_off, byte_off = mem_ref_offset (base_addr);
1419 bit_off = byte_off << LOG2_BITS_PER_UNIT;
1420 bit_off += bitpos;
1421 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
f85e7cb7 1422 bitpos = bit_off.to_shwi ();
3d3e04ac 1423 else
1424 invalid = true;
f85e7cb7 1425 base_addr = TREE_OPERAND (base_addr, 0);
3d3e04ac 1426 }
f85e7cb7 1427 /* get_inner_reference returns the base object, get at its
1428 address now. */
1429 else
427223f1 1430 {
1431 if (bitpos < 0)
1432 invalid = true;
1433 base_addr = build_fold_addr_expr (base_addr);
1434 }
1435
1436 if (! invalid
1437 && offset != NULL_TREE)
1438 {
1439 /* If the access is variable offset then a base
1440 decl has to be address-taken to be able to
1441 emit pointer-based stores to it.
1442 ??? We might be able to get away with
1443 re-using the original base up to the first
1444 variable part and then wrapping that inside
1445 a BIT_FIELD_REF. */
1446 tree base = get_base_address (base_addr);
1447 if (! base
1448 || (DECL_P (base)
1449 && ! TREE_ADDRESSABLE (base)))
1450 invalid = true;
1451 else
1452 base_addr = build2 (POINTER_PLUS_EXPR,
1453 TREE_TYPE (base_addr),
1454 base_addr, offset);
1455 }
3d3e04ac 1456
1457 struct imm_store_chain_info **chain_info
1458 = m_stores.get (base_addr);
1459
1460 if (!invalid)
1461 {
1462 store_immediate_info *info;
1463 if (chain_info)
1464 {
1465 info = new store_immediate_info (
f85e7cb7 1466 bitsize, bitpos, stmt,
3d3e04ac 1467 (*chain_info)->m_store_info.length ());
1468 if (dump_file && (dump_flags & TDF_DETAILS))
1469 {
1470 fprintf (dump_file,
1471 "Recording immediate store from stmt:\n");
1ffa4346 1472 print_gimple_stmt (dump_file, stmt, 0);
3d3e04ac 1473 }
1474 (*chain_info)->m_store_info.safe_push (info);
1475 /* If we reach the limit of stores to merge in a chain
1476 terminate and process the chain now. */
1477 if ((*chain_info)->m_store_info.length ()
1478 == (unsigned int)
1479 PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
1480 {
1481 if (dump_file && (dump_flags & TDF_DETAILS))
1482 fprintf (dump_file,
1483 "Reached maximum number of statements"
1484 " to merge:\n");
f85e7cb7 1485 terminate_and_release_chain (*chain_info);
3d3e04ac 1486 }
1487 continue;
1488 }
1489
1490 /* Store aliases any existing chain? */
4de7f8df 1491 terminate_all_aliasing_chains (chain_info, false, stmt);
3d3e04ac 1492 /* Start a new chain. */
1493 struct imm_store_chain_info *new_chain
3a3ba7de 1494 = new imm_store_chain_info (m_stores_head, base_addr);
f85e7cb7 1495 info = new store_immediate_info (bitsize, bitpos,
3d3e04ac 1496 stmt, 0);
1497 new_chain->m_store_info.safe_push (info);
1498 m_stores.put (base_addr, new_chain);
1499 if (dump_file && (dump_flags & TDF_DETAILS))
1500 {
1501 fprintf (dump_file,
1502 "Starting new chain with statement:\n");
1ffa4346 1503 print_gimple_stmt (dump_file, stmt, 0);
3d3e04ac 1504 fprintf (dump_file, "The base object is:\n");
1ffa4346 1505 print_generic_expr (dump_file, base_addr);
3d3e04ac 1506 fprintf (dump_file, "\n");
1507 }
1508 }
1509 else
4de7f8df 1510 terminate_all_aliasing_chains (chain_info,
3d3e04ac 1511 offset != NULL_TREE, stmt);
1512
1513 continue;
1514 }
1515
4de7f8df 1516 terminate_all_aliasing_chains (NULL, false, stmt);
3d3e04ac 1517 }
1518 terminate_and_process_all_chains ();
1519 }
1520 return 0;
1521}
1522
1523} // anon namespace
1524
1525/* Construct and return a store merging pass object. */
1526
1527gimple_opt_pass *
1528make_pass_store_merging (gcc::context *ctxt)
1529{
1530 return new pass_store_merging (ctxt);
1531}
3d9a2fb3 1532
1533#if CHECKING_P
1534
1535namespace selftest {
1536
1537/* Selftests for store merging helpers. */
1538
1539/* Assert that all elements of the byte arrays X and Y, both of length N
1540 are equal. */
1541
1542static void
1543verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
1544{
1545 for (unsigned int i = 0; i < n; i++)
1546 {
1547 if (x[i] != y[i])
1548 {
1549 fprintf (stderr, "Arrays do not match. X:\n");
1550 dump_char_array (stderr, x, n);
1551 fprintf (stderr, "Y:\n");
1552 dump_char_array (stderr, y, n);
1553 }
1554 ASSERT_EQ (x[i], y[i]);
1555 }
1556}
1557
1558/* Test shift_bytes_in_array and that it carries bits across between
1559 bytes correctly. */
1560
1561static void
1562verify_shift_bytes_in_array (void)
1563{
1564 /* byte 1 | byte 0
1565 00011111 | 11100000. */
1566 unsigned char orig[2] = { 0xe0, 0x1f };
1567 unsigned char in[2];
1568 memcpy (in, orig, sizeof orig);
1569
1570 unsigned char expected[2] = { 0x80, 0x7f };
1571 shift_bytes_in_array (in, sizeof (in), 2);
1572 verify_array_eq (in, expected, sizeof (in));
1573
1574 memcpy (in, orig, sizeof orig);
1575 memcpy (expected, orig, sizeof orig);
1576 /* Check that shifting by zero doesn't change anything. */
1577 shift_bytes_in_array (in, sizeof (in), 0);
1578 verify_array_eq (in, expected, sizeof (in));
1579
1580}
1581
1582/* Test shift_bytes_in_array_right and that it carries bits across between
1583 bytes correctly. */
1584
1585static void
1586verify_shift_bytes_in_array_right (void)
1587{
1588 /* byte 1 | byte 0
1589 00011111 | 11100000. */
1590 unsigned char orig[2] = { 0x1f, 0xe0};
1591 unsigned char in[2];
1592 memcpy (in, orig, sizeof orig);
1593 unsigned char expected[2] = { 0x07, 0xf8};
1594 shift_bytes_in_array_right (in, sizeof (in), 2);
1595 verify_array_eq (in, expected, sizeof (in));
1596
1597 memcpy (in, orig, sizeof orig);
1598 memcpy (expected, orig, sizeof orig);
1599 /* Check that shifting by zero doesn't change anything. */
1600 shift_bytes_in_array_right (in, sizeof (in), 0);
1601 verify_array_eq (in, expected, sizeof (in));
1602}
1603
1604/* Test clear_bit_region that it clears exactly the bits asked and
1605 nothing more. */
1606
1607static void
1608verify_clear_bit_region (void)
1609{
1610 /* Start with all bits set and test clearing various patterns in them. */
1611 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1612 unsigned char in[3];
1613 unsigned char expected[3];
1614 memcpy (in, orig, sizeof in);
1615
1616 /* Check zeroing out all the bits. */
1617 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
1618 expected[0] = expected[1] = expected[2] = 0;
1619 verify_array_eq (in, expected, sizeof in);
1620
1621 memcpy (in, orig, sizeof in);
1622 /* Leave the first and last bits intact. */
1623 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
1624 expected[0] = 0x1;
1625 expected[1] = 0;
1626 expected[2] = 0x80;
1627 verify_array_eq (in, expected, sizeof in);
1628}
1629
1630/* Test verify_clear_bit_region_be that it clears exactly the bits asked and
1631 nothing more. */
1632
1633static void
1634verify_clear_bit_region_be (void)
1635{
1636 /* Start with all bits set and test clearing various patterns in them. */
1637 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1638 unsigned char in[3];
1639 unsigned char expected[3];
1640 memcpy (in, orig, sizeof in);
1641
1642 /* Check zeroing out all the bits. */
1643 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
1644 expected[0] = expected[1] = expected[2] = 0;
1645 verify_array_eq (in, expected, sizeof in);
1646
1647 memcpy (in, orig, sizeof in);
1648 /* Leave the first and last bits intact. */
1649 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
1650 expected[0] = 0x80;
1651 expected[1] = 0;
1652 expected[2] = 0x1;
1653 verify_array_eq (in, expected, sizeof in);
1654}
1655
1656
1657/* Run all of the selftests within this file. */
1658
1659void
1660store_merging_c_tests (void)
1661{
1662 verify_shift_bytes_in_array ();
1663 verify_shift_bytes_in_array_right ();
1664 verify_clear_bit_region ();
1665 verify_clear_bit_region_be ();
1666}
1667
1668} // namespace selftest
1669#endif /* CHECKING_P. */