]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-store-merging.c
tree-chkp.c (chkp_compute_bounds_for_assignment): Handle POINTER_DIFF_EXPR.
[thirdparty/gcc.git] / gcc / gimple-ssa-store-merging.c
CommitLineData
dffec8eb
JJ
1/* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
f663d9ad
KT
3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
dffec8eb
JJ
21/* The purpose of the store merging pass is to combine multiple memory
22 stores of constant values, values loaded from memory or bitwise operations
245f6de1 23 on those to consecutive memory locations into fewer wider stores.
f663d9ad
KT
24 For example, if we have a sequence peforming four byte stores to
25 consecutive memory locations:
26 [p ] := imm1;
27 [p + 1B] := imm2;
28 [p + 2B] := imm3;
29 [p + 3B] := imm4;
30 we can transform this into a single 4-byte store if the target supports it:
31 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
32
245f6de1
JJ
33 Or:
34 [p ] := [q ];
35 [p + 1B] := [q + 1B];
36 [p + 2B] := [q + 2B];
37 [p + 3B] := [q + 3B];
38 if there is no overlap can be transformed into a single 4-byte
39 load followed by single 4-byte store.
40
41 Or:
42 [p ] := [q ] ^ imm1;
43 [p + 1B] := [q + 1B] ^ imm2;
44 [p + 2B] := [q + 2B] ^ imm3;
45 [p + 3B] := [q + 3B] ^ imm4;
46 if there is no overlap can be transformed into a single 4-byte
47 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
48
f663d9ad
KT
49 The algorithm is applied to each basic block in three phases:
50
245f6de1 51 1) Scan through the basic block recording assignments to
f663d9ad 52 destinations that can be expressed as a store to memory of a certain size
245f6de1
JJ
53 at a certain bit offset from expressions we can handle. For bit-fields
54 we also note the surrounding bit region, bits that could be stored in
55 a read-modify-write operation when storing the bit-field. Record store
56 chains to different bases in a hash_map (m_stores) and make sure to
57 terminate such chains when appropriate (for example when when the stored
58 values get used subsequently).
f663d9ad
KT
59 These stores can be a result of structure element initializers, array stores
60 etc. A store_immediate_info object is recorded for every such store.
61 Record as many such assignments to a single base as possible until a
62 statement that interferes with the store sequence is encountered.
245f6de1
JJ
63 Each store has up to 2 operands, which can be an immediate constant
64 or a memory load, from which the value to be stored can be computed.
65 At most one of the operands can be a constant. The operands are recorded
66 in store_operand_info struct.
f663d9ad
KT
67
68 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
69 store_immediate_info objects) and coalesce contiguous stores into
245f6de1
JJ
70 merged_store_group objects. For bit-fields stores, we don't need to
71 require the stores to be contiguous, just their surrounding bit regions
72 have to be contiguous. If the expression being stored is different
73 between adjacent stores, such as one store storing a constant and
74 following storing a value loaded from memory, or if the loaded memory
75 objects are not adjacent, a new merged_store_group is created as well.
f663d9ad
KT
76
77 For example, given the stores:
78 [p ] := 0;
79 [p + 1B] := 1;
80 [p + 3B] := 0;
81 [p + 4B] := 1;
82 [p + 5B] := 0;
83 [p + 6B] := 0;
84 This phase would produce two merged_store_group objects, one recording the
85 two bytes stored in the memory region [p : p + 1] and another
86 recording the four bytes stored in the memory region [p + 3 : p + 6].
87
88 3) The merged_store_group objects produced in phase 2) are processed
89 to generate the sequence of wider stores that set the contiguous memory
90 regions to the sequence of bytes that correspond to it. This may emit
91 multiple stores per store group to handle contiguous stores that are not
92 of a size that is a power of 2. For example it can try to emit a 40-bit
93 store as a 32-bit store followed by an 8-bit store.
94 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
e0bd6c9f 95 TARGET_SLOW_UNALIGNED_ACCESS rules.
f663d9ad
KT
96
97 Note on endianness and example:
98 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
99 [p ] := 0x1234;
100 [p + 2B] := 0x5678;
101 [p + 4B] := 0xab;
102 [p + 5B] := 0xcd;
103
104 The memory layout for little-endian (LE) and big-endian (BE) must be:
105 p |LE|BE|
106 ---------
107 0 |34|12|
108 1 |12|34|
109 2 |78|56|
110 3 |56|78|
111 4 |ab|ab|
112 5 |cd|cd|
113
114 To merge these into a single 48-bit merged value 'val' in phase 2)
115 on little-endian we insert stores to higher (consecutive) bitpositions
116 into the most significant bits of the merged value.
117 The final merged value would be: 0xcdab56781234
118
119 For big-endian we insert stores to higher bitpositions into the least
120 significant bits of the merged value.
121 The final merged value would be: 0x12345678abcd
122
123 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
124 followed by a 16-bit store. Again, we must consider endianness when
125 breaking down the 48-bit value 'val' computed above.
126 For little endian we emit:
127 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
128 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
129
130 Whereas for big-endian we emit:
131 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
132 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
133
134#include "config.h"
135#include "system.h"
136#include "coretypes.h"
137#include "backend.h"
138#include "tree.h"
139#include "gimple.h"
140#include "builtins.h"
141#include "fold-const.h"
142#include "tree-pass.h"
143#include "ssa.h"
144#include "gimple-pretty-print.h"
145#include "alias.h"
146#include "fold-const.h"
147#include "params.h"
148#include "print-tree.h"
149#include "tree-hash-traits.h"
150#include "gimple-iterator.h"
151#include "gimplify.h"
152#include "stor-layout.h"
153#include "timevar.h"
154#include "tree-cfg.h"
155#include "tree-eh.h"
156#include "target.h"
aa55dc0c 157#include "gimplify-me.h"
a62b3dc5
JJ
158#include "rtl.h"
159#include "expr.h" /* For get_bit_range. */
dffec8eb 160#include "optabs-tree.h"
c22d8787 161#include "selftest.h"
f663d9ad
KT
162
163/* The maximum size (in bits) of the stores this pass should generate. */
164#define MAX_STORE_BITSIZE (BITS_PER_WORD)
165#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
166
245f6de1
JJ
167/* Limit to bound the number of aliasing checks for loads with the same
168 vuse as the corresponding store. */
169#define MAX_STORE_ALIAS_CHECKS 64
170
f663d9ad
KT
171namespace {
172
bebadeca 173struct bswap_stat
dffec8eb
JJ
174{
175 /* Number of hand-written 16-bit nop / bswaps found. */
176 int found_16bit;
177
178 /* Number of hand-written 32-bit nop / bswaps found. */
179 int found_32bit;
180
181 /* Number of hand-written 64-bit nop / bswaps found. */
182 int found_64bit;
183} nop_stats, bswap_stats;
184
185/* A symbolic number structure is used to detect byte permutation and selection
186 patterns of a source. To achieve that, its field N contains an artificial
187 number consisting of BITS_PER_MARKER sized markers tracking where does each
188 byte come from in the source:
189
190 0 - target byte has the value 0
191 FF - target byte has an unknown value (eg. due to sign extension)
192 1..size - marker value is the byte index in the source (0 for lsb).
193
194 To detect permutations on memory sources (arrays and structures), a symbolic
195 number is also associated:
196 - a base address BASE_ADDR and an OFFSET giving the address of the source;
197 - a range which gives the difference between the highest and lowest accessed
198 memory location to make such a symbolic number;
199 - the address SRC of the source element of lowest address as a convenience
200 to easily get BASE_ADDR + offset + lowest bytepos;
201 - number of expressions N_OPS bitwise ored together to represent
202 approximate cost of the computation.
203
204 Note 1: the range is different from size as size reflects the size of the
205 type of the current expression. For instance, for an array char a[],
206 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
207 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
208 time a range of 1.
209
210 Note 2: for non-memory sources, range holds the same value as size.
211
212 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
213
214struct symbolic_number {
215 uint64_t n;
216 tree type;
217 tree base_addr;
218 tree offset;
219 HOST_WIDE_INT bytepos;
220 tree src;
221 tree alias_set;
222 tree vuse;
223 unsigned HOST_WIDE_INT range;
224 int n_ops;
225};
226
227#define BITS_PER_MARKER 8
228#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
229#define MARKER_BYTE_UNKNOWN MARKER_MASK
230#define HEAD_MARKER(n, size) \
231 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
232
233/* The number which the find_bswap_or_nop_1 result should match in
234 order to have a nop. The number is masked according to the size of
235 the symbolic number before using it. */
236#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
237 (uint64_t)0x08070605 << 32 | 0x04030201)
238
239/* The number which the find_bswap_or_nop_1 result should match in
240 order to have a byte swap. The number is masked according to the
241 size of the symbolic number before using it. */
242#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
243 (uint64_t)0x01020304 << 32 | 0x05060708)
244
245/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
246 number N. Return false if the requested operation is not permitted
247 on a symbolic number. */
248
249inline bool
250do_shift_rotate (enum tree_code code,
251 struct symbolic_number *n,
252 int count)
253{
254 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
255 unsigned head_marker;
256
257 if (count % BITS_PER_UNIT != 0)
258 return false;
259 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
260
261 /* Zero out the extra bits of N in order to avoid them being shifted
262 into the significant bits. */
263 if (size < 64 / BITS_PER_MARKER)
264 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
265
266 switch (code)
267 {
268 case LSHIFT_EXPR:
269 n->n <<= count;
270 break;
271 case RSHIFT_EXPR:
272 head_marker = HEAD_MARKER (n->n, size);
273 n->n >>= count;
274 /* Arithmetic shift of signed type: result is dependent on the value. */
275 if (!TYPE_UNSIGNED (n->type) && head_marker)
276 for (i = 0; i < count / BITS_PER_MARKER; i++)
277 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
278 << ((size - 1 - i) * BITS_PER_MARKER);
279 break;
280 case LROTATE_EXPR:
281 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
282 break;
283 case RROTATE_EXPR:
284 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
285 break;
286 default:
287 return false;
288 }
289 /* Zero unused bits for size. */
290 if (size < 64 / BITS_PER_MARKER)
291 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
292 return true;
293}
294
295/* Perform sanity checking for the symbolic number N and the gimple
296 statement STMT. */
297
298inline bool
299verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
300{
301 tree lhs_type;
302
303 lhs_type = gimple_expr_type (stmt);
304
305 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
306 return false;
307
308 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
309 return false;
310
311 return true;
312}
313
314/* Initialize the symbolic number N for the bswap pass from the base element
315 SRC manipulated by the bitwise OR expression. */
316
317bool
318init_symbolic_number (struct symbolic_number *n, tree src)
319{
320 int size;
321
322 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
323 return false;
324
325 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
326 n->src = src;
327
328 /* Set up the symbolic number N by setting each byte to a value between 1 and
329 the byte size of rhs1. The highest order byte is set to n->size and the
330 lowest order byte to 1. */
331 n->type = TREE_TYPE (src);
332 size = TYPE_PRECISION (n->type);
333 if (size % BITS_PER_UNIT != 0)
334 return false;
335 size /= BITS_PER_UNIT;
336 if (size > 64 / BITS_PER_MARKER)
337 return false;
338 n->range = size;
339 n->n = CMPNOP;
340 n->n_ops = 1;
341
342 if (size < 64 / BITS_PER_MARKER)
343 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
344
345 return true;
346}
347
348/* Check if STMT might be a byte swap or a nop from a memory source and returns
349 the answer. If so, REF is that memory source and the base of the memory area
350 accessed and the offset of the access from that base are recorded in N. */
351
352bool
353find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
354{
355 /* Leaf node is an array or component ref. Memorize its base and
356 offset from base to compare to other such leaf node. */
357 HOST_WIDE_INT bitsize, bitpos;
358 machine_mode mode;
359 int unsignedp, reversep, volatilep;
360 tree offset, base_addr;
361
362 /* Not prepared to handle PDP endian. */
363 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
364 return false;
365
366 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
367 return false;
368
369 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
370 &unsignedp, &reversep, &volatilep);
371
4b84d9b8
JJ
372 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
373 /* Do not rewrite TARGET_MEM_REF. */
374 return false;
375 else if (TREE_CODE (base_addr) == MEM_REF)
dffec8eb
JJ
376 {
377 offset_int bit_offset = 0;
378 tree off = TREE_OPERAND (base_addr, 1);
379
380 if (!integer_zerop (off))
381 {
382 offset_int boff, coff = mem_ref_offset (base_addr);
383 boff = coff << LOG2_BITS_PER_UNIT;
384 bit_offset += boff;
385 }
386
387 base_addr = TREE_OPERAND (base_addr, 0);
388
389 /* Avoid returning a negative bitpos as this may wreak havoc later. */
390 if (wi::neg_p (bit_offset))
391 {
392 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
393 offset_int tem = wi::bit_and_not (bit_offset, mask);
394 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
395 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
396 bit_offset -= tem;
397 tem >>= LOG2_BITS_PER_UNIT;
398 if (offset)
399 offset = size_binop (PLUS_EXPR, offset,
400 wide_int_to_tree (sizetype, tem));
401 else
402 offset = wide_int_to_tree (sizetype, tem);
403 }
404
405 bitpos += bit_offset.to_shwi ();
406 }
4b84d9b8
JJ
407 else
408 base_addr = build_fold_addr_expr (base_addr);
dffec8eb
JJ
409
410 if (bitpos % BITS_PER_UNIT)
411 return false;
412 if (bitsize % BITS_PER_UNIT)
413 return false;
414 if (reversep)
415 return false;
416
417 if (!init_symbolic_number (n, ref))
418 return false;
419 n->base_addr = base_addr;
420 n->offset = offset;
421 n->bytepos = bitpos / BITS_PER_UNIT;
422 n->alias_set = reference_alias_ptr_type (ref);
423 n->vuse = gimple_vuse (stmt);
424 return true;
425}
426
427/* Compute the symbolic number N representing the result of a bitwise OR on 2
428 symbolic number N1 and N2 whose source statements are respectively
429 SOURCE_STMT1 and SOURCE_STMT2. */
430
431gimple *
432perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
433 gimple *source_stmt2, struct symbolic_number *n2,
434 struct symbolic_number *n)
435{
436 int i, size;
437 uint64_t mask;
438 gimple *source_stmt;
439 struct symbolic_number *n_start;
440
441 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
442 if (TREE_CODE (rhs1) == BIT_FIELD_REF
443 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
444 rhs1 = TREE_OPERAND (rhs1, 0);
445 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
446 if (TREE_CODE (rhs2) == BIT_FIELD_REF
447 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
448 rhs2 = TREE_OPERAND (rhs2, 0);
449
450 /* Sources are different, cancel bswap if they are not memory location with
451 the same base (array, structure, ...). */
452 if (rhs1 != rhs2)
453 {
454 uint64_t inc;
455 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
456 struct symbolic_number *toinc_n_ptr, *n_end;
457 basic_block bb1, bb2;
458
459 if (!n1->base_addr || !n2->base_addr
460 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
461 return NULL;
462
463 if (!n1->offset != !n2->offset
464 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
465 return NULL;
466
467 if (n1->bytepos < n2->bytepos)
468 {
469 n_start = n1;
470 start_sub = n2->bytepos - n1->bytepos;
471 }
472 else
473 {
474 n_start = n2;
475 start_sub = n1->bytepos - n2->bytepos;
476 }
477
478 bb1 = gimple_bb (source_stmt1);
479 bb2 = gimple_bb (source_stmt2);
480 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
481 source_stmt = source_stmt1;
482 else
483 source_stmt = source_stmt2;
484
485 /* Find the highest address at which a load is performed and
486 compute related info. */
487 end1 = n1->bytepos + (n1->range - 1);
488 end2 = n2->bytepos + (n2->range - 1);
489 if (end1 < end2)
490 {
491 end = end2;
492 end_sub = end2 - end1;
493 }
494 else
495 {
496 end = end1;
497 end_sub = end1 - end2;
498 }
499 n_end = (end2 > end1) ? n2 : n1;
500
501 /* Find symbolic number whose lsb is the most significant. */
502 if (BYTES_BIG_ENDIAN)
503 toinc_n_ptr = (n_end == n1) ? n2 : n1;
504 else
505 toinc_n_ptr = (n_start == n1) ? n2 : n1;
506
507 n->range = end - n_start->bytepos + 1;
508
509 /* Check that the range of memory covered can be represented by
510 a symbolic number. */
511 if (n->range > 64 / BITS_PER_MARKER)
512 return NULL;
513
514 /* Reinterpret byte marks in symbolic number holding the value of
515 bigger weight according to target endianness. */
516 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
517 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
518 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
519 {
520 unsigned marker
521 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
522 if (marker && marker != MARKER_BYTE_UNKNOWN)
523 toinc_n_ptr->n += inc;
524 }
525 }
526 else
527 {
528 n->range = n1->range;
529 n_start = n1;
530 source_stmt = source_stmt1;
531 }
532
533 if (!n1->alias_set
534 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
535 n->alias_set = n1->alias_set;
536 else
537 n->alias_set = ptr_type_node;
538 n->vuse = n_start->vuse;
539 n->base_addr = n_start->base_addr;
540 n->offset = n_start->offset;
541 n->src = n_start->src;
542 n->bytepos = n_start->bytepos;
543 n->type = n_start->type;
544 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
545
546 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
547 {
548 uint64_t masked1, masked2;
549
550 masked1 = n1->n & mask;
551 masked2 = n2->n & mask;
552 if (masked1 && masked2 && masked1 != masked2)
553 return NULL;
554 }
555 n->n = n1->n | n2->n;
556 n->n_ops = n1->n_ops + n2->n_ops;
557
558 return source_stmt;
559}
560
561/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
562 the operation given by the rhs of STMT on the result. If the operation
563 could successfully be executed the function returns a gimple stmt whose
564 rhs's first tree is the expression of the source operand and NULL
565 otherwise. */
566
567gimple *
568find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
569{
570 enum tree_code code;
571 tree rhs1, rhs2 = NULL;
572 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
573 enum gimple_rhs_class rhs_class;
574
575 if (!limit || !is_gimple_assign (stmt))
576 return NULL;
577
578 rhs1 = gimple_assign_rhs1 (stmt);
579
580 if (find_bswap_or_nop_load (stmt, rhs1, n))
581 return stmt;
582
583 /* Handle BIT_FIELD_REF. */
584 if (TREE_CODE (rhs1) == BIT_FIELD_REF
585 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
586 {
587 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
588 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
589 if (bitpos % BITS_PER_UNIT == 0
590 && bitsize % BITS_PER_UNIT == 0
591 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
592 {
593 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
594 if (BYTES_BIG_ENDIAN)
595 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
596
597 /* Shift. */
598 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
599 return NULL;
600
601 /* Mask. */
602 uint64_t mask = 0;
603 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
604 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
605 i++, tmp <<= BITS_PER_UNIT)
606 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
607 n->n &= mask;
608
609 /* Convert. */
610 n->type = TREE_TYPE (rhs1);
611 if (!n->base_addr)
612 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
613
614 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
615 }
616
617 return NULL;
618 }
619
620 if (TREE_CODE (rhs1) != SSA_NAME)
621 return NULL;
622
623 code = gimple_assign_rhs_code (stmt);
624 rhs_class = gimple_assign_rhs_class (stmt);
625 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
626
627 if (rhs_class == GIMPLE_BINARY_RHS)
628 rhs2 = gimple_assign_rhs2 (stmt);
629
630 /* Handle unary rhs and binary rhs with integer constants as second
631 operand. */
632
633 if (rhs_class == GIMPLE_UNARY_RHS
634 || (rhs_class == GIMPLE_BINARY_RHS
635 && TREE_CODE (rhs2) == INTEGER_CST))
636 {
637 if (code != BIT_AND_EXPR
638 && code != LSHIFT_EXPR
639 && code != RSHIFT_EXPR
640 && code != LROTATE_EXPR
641 && code != RROTATE_EXPR
642 && !CONVERT_EXPR_CODE_P (code))
643 return NULL;
644
645 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
646
647 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
648 we have to initialize the symbolic number. */
649 if (!source_stmt1)
650 {
651 if (gimple_assign_load_p (stmt)
652 || !init_symbolic_number (n, rhs1))
653 return NULL;
654 source_stmt1 = stmt;
655 }
656
657 switch (code)
658 {
659 case BIT_AND_EXPR:
660 {
661 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
662 uint64_t val = int_cst_value (rhs2), mask = 0;
663 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
664
665 /* Only constants masking full bytes are allowed. */
666 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
667 if ((val & tmp) != 0 && (val & tmp) != tmp)
668 return NULL;
669 else if (val & tmp)
670 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
671
672 n->n &= mask;
673 }
674 break;
675 case LSHIFT_EXPR:
676 case RSHIFT_EXPR:
677 case LROTATE_EXPR:
678 case RROTATE_EXPR:
679 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
680 return NULL;
681 break;
682 CASE_CONVERT:
683 {
684 int i, type_size, old_type_size;
685 tree type;
686
687 type = gimple_expr_type (stmt);
688 type_size = TYPE_PRECISION (type);
689 if (type_size % BITS_PER_UNIT != 0)
690 return NULL;
691 type_size /= BITS_PER_UNIT;
692 if (type_size > 64 / BITS_PER_MARKER)
693 return NULL;
694
695 /* Sign extension: result is dependent on the value. */
696 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
697 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
698 && HEAD_MARKER (n->n, old_type_size))
699 for (i = 0; i < type_size - old_type_size; i++)
700 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
701 << ((type_size - 1 - i) * BITS_PER_MARKER);
702
703 if (type_size < 64 / BITS_PER_MARKER)
704 {
705 /* If STMT casts to a smaller type mask out the bits not
706 belonging to the target type. */
707 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
708 }
709 n->type = type;
710 if (!n->base_addr)
711 n->range = type_size;
712 }
713 break;
714 default:
715 return NULL;
716 };
717 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
718 }
719
720 /* Handle binary rhs. */
721
722 if (rhs_class == GIMPLE_BINARY_RHS)
723 {
724 struct symbolic_number n1, n2;
725 gimple *source_stmt, *source_stmt2;
726
727 if (code != BIT_IOR_EXPR)
728 return NULL;
729
730 if (TREE_CODE (rhs2) != SSA_NAME)
731 return NULL;
732
733 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
734
735 switch (code)
736 {
737 case BIT_IOR_EXPR:
738 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
739
740 if (!source_stmt1)
741 return NULL;
742
743 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
744
745 if (!source_stmt2)
746 return NULL;
747
748 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
749 return NULL;
750
4b84d9b8 751 if (n1.vuse != n2.vuse)
dffec8eb
JJ
752 return NULL;
753
754 source_stmt
755 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
756
757 if (!source_stmt)
758 return NULL;
759
760 if (!verify_symbolic_number_p (n, stmt))
761 return NULL;
762
763 break;
764 default:
765 return NULL;
766 }
767 return source_stmt;
768 }
769 return NULL;
770}
771
4b84d9b8
JJ
772/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
773 *CMPXCHG, *CMPNOP and adjust *N. */
dffec8eb 774
4b84d9b8
JJ
775void
776find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
777 uint64_t *cmpnop)
dffec8eb
JJ
778{
779 unsigned rsize;
780 uint64_t tmpn, mask;
dffec8eb 781
4b84d9b8
JJ
782 /* The number which the find_bswap_or_nop_1 result should match in order
783 to have a full byte swap. The number is shifted to the right
784 according to the size of the symbolic number before using it. */
785 *cmpxchg = CMPXCHG;
786 *cmpnop = CMPNOP;
dffec8eb
JJ
787
788 /* Find real size of result (highest non-zero byte). */
789 if (n->base_addr)
790 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
791 else
792 rsize = n->range;
793
794 /* Zero out the bits corresponding to untouched bytes in original gimple
795 expression. */
796 if (n->range < (int) sizeof (int64_t))
797 {
798 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
799 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
800 *cmpnop &= mask;
dffec8eb
JJ
801 }
802
803 /* Zero out the bits corresponding to unused bytes in the result of the
804 gimple expression. */
805 if (rsize < n->range)
806 {
807 if (BYTES_BIG_ENDIAN)
808 {
809 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
810 *cmpxchg &= mask;
811 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
dffec8eb
JJ
812 }
813 else
814 {
815 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
4b84d9b8
JJ
816 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
817 *cmpnop &= mask;
dffec8eb
JJ
818 }
819 n->range = rsize;
820 }
821
4b84d9b8
JJ
822 n->range *= BITS_PER_UNIT;
823}
824
825/* Check if STMT completes a bswap implementation or a read in a given
826 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
827 accordingly. It also sets N to represent the kind of operations
828 performed: size of the resulting expression and whether it works on
829 a memory source, and if so alias-set and vuse. At last, the
830 function returns a stmt whose rhs's first tree is the source
831 expression. */
832
833gimple *
834find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
835{
836 /* The last parameter determines the depth search limit. It usually
837 correlates directly to the number n of bytes to be touched. We
838 increase that number by log2(n) + 1 here in order to also
839 cover signed -> unsigned conversions of the src operand as can be seen
840 in libgcc, and for initial shift/and operation of the src operand. */
841 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
842 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
843 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
844
845 if (!ins_stmt)
846 return NULL;
847
848 uint64_t cmpxchg, cmpnop;
849 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
850
dffec8eb
JJ
851 /* A complete byte swap should make the symbolic number to start with
852 the largest digit in the highest order byte. Unchanged symbolic
853 number indicates a read with same endianness as target architecture. */
854 if (n->n == cmpnop)
855 *bswap = false;
856 else if (n->n == cmpxchg)
857 *bswap = true;
858 else
859 return NULL;
860
861 /* Useless bit manipulation performed by code. */
862 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
863 return NULL;
864
dffec8eb
JJ
865 return ins_stmt;
866}
867
868const pass_data pass_data_optimize_bswap =
869{
870 GIMPLE_PASS, /* type */
871 "bswap", /* name */
872 OPTGROUP_NONE, /* optinfo_flags */
873 TV_NONE, /* tv_id */
874 PROP_ssa, /* properties_required */
875 0, /* properties_provided */
876 0, /* properties_destroyed */
877 0, /* todo_flags_start */
878 0, /* todo_flags_finish */
879};
880
881class pass_optimize_bswap : public gimple_opt_pass
882{
883public:
884 pass_optimize_bswap (gcc::context *ctxt)
885 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
886 {}
887
888 /* opt_pass methods: */
889 virtual bool gate (function *)
890 {
891 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
892 }
893
894 virtual unsigned int execute (function *);
895
896}; // class pass_optimize_bswap
897
898/* Perform the bswap optimization: replace the expression computed in the rhs
4b84d9b8
JJ
899 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
900 bswap, load or load + bswap expression.
dffec8eb
JJ
901 Which of these alternatives replace the rhs is given by N->base_addr (non
902 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
903 load to perform are also given in N while the builtin bswap invoke is given
4b84d9b8
JJ
904 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
905 load statements involved to construct the rhs in gsi_stmt (GSI) and
906 N->range gives the size of the rhs expression for maintaining some
907 statistics.
dffec8eb 908
4b84d9b8
JJ
909 Note that if the replacement involve a load and if gsi_stmt (GSI) is
910 non-NULL, that stmt is moved just after INS_STMT to do the load with the
911 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
dffec8eb 912
4b84d9b8
JJ
913tree
914bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
dffec8eb
JJ
915 tree bswap_type, tree load_type, struct symbolic_number *n,
916 bool bswap)
917{
4b84d9b8 918 tree src, tmp, tgt = NULL_TREE;
dffec8eb
JJ
919 gimple *bswap_stmt;
920
4b84d9b8 921 gimple *cur_stmt = gsi_stmt (gsi);
dffec8eb 922 src = n->src;
4b84d9b8
JJ
923 if (cur_stmt)
924 tgt = gimple_assign_lhs (cur_stmt);
dffec8eb
JJ
925
926 /* Need to load the value from memory first. */
927 if (n->base_addr)
928 {
4b84d9b8
JJ
929 gimple_stmt_iterator gsi_ins = gsi;
930 if (ins_stmt)
931 gsi_ins = gsi_for_stmt (ins_stmt);
dffec8eb
JJ
932 tree addr_expr, addr_tmp, val_expr, val_tmp;
933 tree load_offset_ptr, aligned_load_type;
4b84d9b8
JJ
934 gimple *load_stmt;
935 unsigned align = get_object_alignment (src);
dffec8eb 936 HOST_WIDE_INT load_offset = 0;
dffec8eb 937
4b84d9b8
JJ
938 if (cur_stmt)
939 {
940 basic_block ins_bb = gimple_bb (ins_stmt);
941 basic_block cur_bb = gimple_bb (cur_stmt);
942 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
943 return NULL_TREE;
944
945 /* Move cur_stmt just before one of the load of the original
946 to ensure it has the same VUSE. See PR61517 for what could
947 go wrong. */
948 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
949 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
950 gsi_move_before (&gsi, &gsi_ins);
951 gsi = gsi_for_stmt (cur_stmt);
952 }
953 else
954 gsi = gsi_ins;
dffec8eb
JJ
955
956 /* Compute address to load from and cast according to the size
957 of the load. */
4b84d9b8 958 addr_expr = build_fold_addr_expr (src);
dffec8eb 959 if (is_gimple_mem_ref_addr (addr_expr))
4b84d9b8 960 addr_tmp = unshare_expr (addr_expr);
dffec8eb
JJ
961 else
962 {
4b84d9b8
JJ
963 addr_tmp = unshare_expr (n->base_addr);
964 if (!is_gimple_mem_ref_addr (addr_tmp))
965 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
966 is_gimple_mem_ref_addr,
967 NULL_TREE, true,
968 GSI_SAME_STMT);
969 load_offset = n->bytepos;
970 if (n->offset)
971 {
972 tree off
973 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
974 true, NULL_TREE, true,
975 GSI_SAME_STMT);
976 gimple *stmt
977 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
978 POINTER_PLUS_EXPR, addr_tmp, off);
979 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
980 addr_tmp = gimple_assign_lhs (stmt);
981 }
dffec8eb
JJ
982 }
983
984 /* Perform the load. */
985 aligned_load_type = load_type;
986 if (align < TYPE_ALIGN (load_type))
987 aligned_load_type = build_aligned_type (load_type, align);
988 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
989 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
990 load_offset_ptr);
991
992 if (!bswap)
993 {
994 if (n->range == 16)
995 nop_stats.found_16bit++;
996 else if (n->range == 32)
997 nop_stats.found_32bit++;
998 else
999 {
1000 gcc_assert (n->range == 64);
1001 nop_stats.found_64bit++;
1002 }
1003
1004 /* Convert the result of load if necessary. */
4b84d9b8 1005 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
dffec8eb
JJ
1006 {
1007 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1008 "load_dst");
1009 load_stmt = gimple_build_assign (val_tmp, val_expr);
1010 gimple_set_vuse (load_stmt, n->vuse);
1011 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1012 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
4b84d9b8 1013 update_stmt (cur_stmt);
dffec8eb 1014 }
4b84d9b8 1015 else if (cur_stmt)
dffec8eb
JJ
1016 {
1017 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1018 gimple_set_vuse (cur_stmt, n->vuse);
4b84d9b8
JJ
1019 update_stmt (cur_stmt);
1020 }
1021 else
1022 {
1023 tgt = make_ssa_name (load_type);
1024 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1025 gimple_set_vuse (cur_stmt, n->vuse);
1026 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
dffec8eb 1027 }
dffec8eb
JJ
1028
1029 if (dump_file)
1030 {
1031 fprintf (dump_file,
1032 "%d bit load in target endianness found at: ",
1033 (int) n->range);
1034 print_gimple_stmt (dump_file, cur_stmt, 0);
1035 }
4b84d9b8 1036 return tgt;
dffec8eb
JJ
1037 }
1038 else
1039 {
1040 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1041 load_stmt = gimple_build_assign (val_tmp, val_expr);
1042 gimple_set_vuse (load_stmt, n->vuse);
1043 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1044 }
1045 src = val_tmp;
1046 }
1047 else if (!bswap)
1048 {
4b84d9b8
JJ
1049 gimple *g = NULL;
1050 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
dffec8eb
JJ
1051 {
1052 if (!is_gimple_val (src))
4b84d9b8 1053 return NULL_TREE;
dffec8eb
JJ
1054 g = gimple_build_assign (tgt, NOP_EXPR, src);
1055 }
4b84d9b8 1056 else if (cur_stmt)
dffec8eb 1057 g = gimple_build_assign (tgt, src);
4b84d9b8
JJ
1058 else
1059 tgt = src;
dffec8eb
JJ
1060 if (n->range == 16)
1061 nop_stats.found_16bit++;
1062 else if (n->range == 32)
1063 nop_stats.found_32bit++;
1064 else
1065 {
1066 gcc_assert (n->range == 64);
1067 nop_stats.found_64bit++;
1068 }
1069 if (dump_file)
1070 {
1071 fprintf (dump_file,
1072 "%d bit reshuffle in target endianness found at: ",
1073 (int) n->range);
4b84d9b8
JJ
1074 if (cur_stmt)
1075 print_gimple_stmt (dump_file, cur_stmt, 0);
1076 else
1077 {
1078 print_generic_expr (dump_file, tgt, 0);
1079 fprintf (dump_file, "\n");
1080 }
dffec8eb 1081 }
4b84d9b8
JJ
1082 if (cur_stmt)
1083 gsi_replace (&gsi, g, true);
1084 return tgt;
dffec8eb
JJ
1085 }
1086 else if (TREE_CODE (src) == BIT_FIELD_REF)
1087 src = TREE_OPERAND (src, 0);
1088
1089 if (n->range == 16)
1090 bswap_stats.found_16bit++;
1091 else if (n->range == 32)
1092 bswap_stats.found_32bit++;
1093 else
1094 {
1095 gcc_assert (n->range == 64);
1096 bswap_stats.found_64bit++;
1097 }
1098
1099 tmp = src;
1100
1101 /* Convert the src expression if necessary. */
1102 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1103 {
1104 gimple *convert_stmt;
1105
1106 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1107 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1108 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1109 }
1110
1111 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1112 are considered as rotation of 2N bit values by N bits is generally not
1113 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1114 gives 0x03040102 while a bswap for that value is 0x04030201. */
1115 if (bswap && n->range == 16)
1116 {
1117 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1118 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1119 bswap_stmt = gimple_build_assign (NULL, src);
1120 }
1121 else
1122 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1123
4b84d9b8
JJ
1124 if (tgt == NULL_TREE)
1125 tgt = make_ssa_name (bswap_type);
dffec8eb
JJ
1126 tmp = tgt;
1127
1128 /* Convert the result if necessary. */
1129 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1130 {
1131 gimple *convert_stmt;
1132
1133 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1134 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1135 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1136 }
1137
1138 gimple_set_lhs (bswap_stmt, tmp);
1139
1140 if (dump_file)
1141 {
1142 fprintf (dump_file, "%d bit bswap implementation found at: ",
1143 (int) n->range);
4b84d9b8
JJ
1144 if (cur_stmt)
1145 print_gimple_stmt (dump_file, cur_stmt, 0);
1146 else
1147 {
1148 print_generic_expr (dump_file, tgt, 0);
1149 fprintf (dump_file, "\n");
1150 }
dffec8eb
JJ
1151 }
1152
4b84d9b8
JJ
1153 if (cur_stmt)
1154 {
1155 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1156 gsi_remove (&gsi, true);
1157 }
1158 else
1159 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1160 return tgt;
dffec8eb
JJ
1161}
1162
1163/* Find manual byte swap implementations as well as load in a given
1164 endianness. Byte swaps are turned into a bswap builtin invokation
1165 while endian loads are converted to bswap builtin invokation or
1166 simple load according to the target endianness. */
1167
1168unsigned int
1169pass_optimize_bswap::execute (function *fun)
1170{
1171 basic_block bb;
1172 bool bswap32_p, bswap64_p;
1173 bool changed = false;
1174 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1175
1176 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1177 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1178 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1179 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1180 || (bswap32_p && word_mode == SImode)));
1181
1182 /* Determine the argument type of the builtins. The code later on
1183 assumes that the return and argument type are the same. */
1184 if (bswap32_p)
1185 {
1186 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1187 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1188 }
1189
1190 if (bswap64_p)
1191 {
1192 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1193 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1194 }
1195
1196 memset (&nop_stats, 0, sizeof (nop_stats));
1197 memset (&bswap_stats, 0, sizeof (bswap_stats));
1198 calculate_dominance_info (CDI_DOMINATORS);
1199
1200 FOR_EACH_BB_FN (bb, fun)
1201 {
1202 gimple_stmt_iterator gsi;
1203
1204 /* We do a reverse scan for bswap patterns to make sure we get the
1205 widest match. As bswap pattern matching doesn't handle previously
1206 inserted smaller bswap replacements as sub-patterns, the wider
1207 variant wouldn't be detected. */
1208 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1209 {
1210 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1211 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1212 enum tree_code code;
1213 struct symbolic_number n;
1214 bool bswap;
1215
1216 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1217 might be moved to a different basic block by bswap_replace and gsi
1218 must not points to it if that's the case. Moving the gsi_prev
1219 there make sure that gsi points to the statement previous to
1220 cur_stmt while still making sure that all statements are
1221 considered in this basic block. */
1222 gsi_prev (&gsi);
1223
1224 if (!is_gimple_assign (cur_stmt))
1225 continue;
1226
1227 code = gimple_assign_rhs_code (cur_stmt);
1228 switch (code)
1229 {
1230 case LROTATE_EXPR:
1231 case RROTATE_EXPR:
1232 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1233 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1234 % BITS_PER_UNIT)
1235 continue;
1236 /* Fall through. */
1237 case BIT_IOR_EXPR:
1238 break;
1239 default:
1240 continue;
1241 }
1242
1243 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1244
1245 if (!ins_stmt)
1246 continue;
1247
1248 switch (n.range)
1249 {
1250 case 16:
1251 /* Already in canonical form, nothing to do. */
1252 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1253 continue;
1254 load_type = bswap_type = uint16_type_node;
1255 break;
1256 case 32:
1257 load_type = uint32_type_node;
1258 if (bswap32_p)
1259 {
1260 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1261 bswap_type = bswap32_type;
1262 }
1263 break;
1264 case 64:
1265 load_type = uint64_type_node;
1266 if (bswap64_p)
1267 {
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1269 bswap_type = bswap64_type;
1270 }
1271 break;
1272 default:
1273 continue;
1274 }
1275
1276 if (bswap && !fndecl && n.range != 16)
1277 continue;
1278
4b84d9b8
JJ
1279 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1280 bswap_type, load_type, &n, bswap))
dffec8eb
JJ
1281 changed = true;
1282 }
1283 }
1284
1285 statistics_counter_event (fun, "16-bit nop implementations found",
1286 nop_stats.found_16bit);
1287 statistics_counter_event (fun, "32-bit nop implementations found",
1288 nop_stats.found_32bit);
1289 statistics_counter_event (fun, "64-bit nop implementations found",
1290 nop_stats.found_64bit);
1291 statistics_counter_event (fun, "16-bit bswap implementations found",
1292 bswap_stats.found_16bit);
1293 statistics_counter_event (fun, "32-bit bswap implementations found",
1294 bswap_stats.found_32bit);
1295 statistics_counter_event (fun, "64-bit bswap implementations found",
1296 bswap_stats.found_64bit);
1297
1298 return (changed ? TODO_update_ssa : 0);
1299}
1300
1301} // anon namespace
1302
1303gimple_opt_pass *
1304make_pass_optimize_bswap (gcc::context *ctxt)
1305{
1306 return new pass_optimize_bswap (ctxt);
1307}
1308
1309namespace {
1310
245f6de1
JJ
1311/* Struct recording one operand for the store, which is either a constant,
1312 then VAL represents the constant and all the other fields are zero,
1313 or a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1314 and the other fields also reflect the memory load. */
1315
1316struct store_operand_info
1317{
1318 tree val;
1319 tree base_addr;
1320 unsigned HOST_WIDE_INT bitsize;
1321 unsigned HOST_WIDE_INT bitpos;
1322 unsigned HOST_WIDE_INT bitregion_start;
1323 unsigned HOST_WIDE_INT bitregion_end;
1324 gimple *stmt;
383ac8dc 1325 bool bit_not_p;
245f6de1
JJ
1326 store_operand_info ();
1327};
1328
1329store_operand_info::store_operand_info ()
1330 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
383ac8dc 1331 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
245f6de1
JJ
1332{
1333}
1334
f663d9ad
KT
1335/* Struct recording the information about a single store of an immediate
1336 to memory. These are created in the first phase and coalesced into
1337 merged_store_group objects in the second phase. */
1338
1339struct store_immediate_info
1340{
1341 unsigned HOST_WIDE_INT bitsize;
1342 unsigned HOST_WIDE_INT bitpos;
a62b3dc5
JJ
1343 unsigned HOST_WIDE_INT bitregion_start;
1344 /* This is one past the last bit of the bit region. */
1345 unsigned HOST_WIDE_INT bitregion_end;
f663d9ad
KT
1346 gimple *stmt;
1347 unsigned int order;
245f6de1 1348 /* INTEGER_CST for constant stores, MEM_REF for memory copy or
4b84d9b8
JJ
1349 BIT_*_EXPR for logical bitwise operation.
1350 LROTATE_EXPR if it can be only bswap optimized and
1351 ops are not really meaningful.
1352 NOP_EXPR if bswap optimization detected identity, ops
1353 are not meaningful. */
245f6de1 1354 enum tree_code rhs_code;
4b84d9b8
JJ
1355 /* Two fields for bswap optimization purposes. */
1356 struct symbolic_number n;
1357 gimple *ins_stmt;
127ef369 1358 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
d60edaba 1359 bool bit_not_p;
127ef369
JJ
1360 /* True if ops have been swapped and thus ops[1] represents
1361 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1362 bool ops_swapped_p;
245f6de1
JJ
1363 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1364 just the first one. */
1365 store_operand_info ops[2];
b5926e23 1366 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
a62b3dc5 1367 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
4b84d9b8
JJ
1368 gimple *, unsigned int, enum tree_code,
1369 struct symbolic_number &, gimple *, bool,
245f6de1
JJ
1370 const store_operand_info &,
1371 const store_operand_info &);
f663d9ad
KT
1372};
1373
1374store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
b5926e23 1375 unsigned HOST_WIDE_INT bp,
a62b3dc5
JJ
1376 unsigned HOST_WIDE_INT brs,
1377 unsigned HOST_WIDE_INT bre,
b5926e23 1378 gimple *st,
245f6de1
JJ
1379 unsigned int ord,
1380 enum tree_code rhscode,
4b84d9b8
JJ
1381 struct symbolic_number &nr,
1382 gimple *ins_stmtp,
d60edaba 1383 bool bitnotp,
245f6de1
JJ
1384 const store_operand_info &op0r,
1385 const store_operand_info &op1r)
a62b3dc5 1386 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
4b84d9b8
JJ
1387 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1388 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
245f6de1
JJ
1389#if __cplusplus >= 201103L
1390 , ops { op0r, op1r }
1391{
1392}
1393#else
f663d9ad 1394{
245f6de1
JJ
1395 ops[0] = op0r;
1396 ops[1] = op1r;
f663d9ad 1397}
245f6de1 1398#endif
f663d9ad
KT
1399
1400/* Struct representing a group of stores to contiguous memory locations.
1401 These are produced by the second phase (coalescing) and consumed in the
1402 third phase that outputs the widened stores. */
1403
1404struct merged_store_group
1405{
1406 unsigned HOST_WIDE_INT start;
1407 unsigned HOST_WIDE_INT width;
a62b3dc5
JJ
1408 unsigned HOST_WIDE_INT bitregion_start;
1409 unsigned HOST_WIDE_INT bitregion_end;
1410 /* The size of the allocated memory for val and mask. */
f663d9ad 1411 unsigned HOST_WIDE_INT buf_size;
a62b3dc5 1412 unsigned HOST_WIDE_INT align_base;
245f6de1 1413 unsigned HOST_WIDE_INT load_align_base[2];
f663d9ad
KT
1414
1415 unsigned int align;
245f6de1 1416 unsigned int load_align[2];
f663d9ad
KT
1417 unsigned int first_order;
1418 unsigned int last_order;
1419
a62b3dc5 1420 auto_vec<store_immediate_info *> stores;
f663d9ad
KT
1421 /* We record the first and last original statements in the sequence because
1422 we'll need their vuse/vdef and replacement position. It's easier to keep
1423 track of them separately as 'stores' is reordered by apply_stores. */
1424 gimple *last_stmt;
1425 gimple *first_stmt;
1426 unsigned char *val;
a62b3dc5 1427 unsigned char *mask;
f663d9ad
KT
1428
1429 merged_store_group (store_immediate_info *);
1430 ~merged_store_group ();
1431 void merge_into (store_immediate_info *);
1432 void merge_overlapping (store_immediate_info *);
1433 bool apply_stores ();
a62b3dc5
JJ
1434private:
1435 void do_merge (store_immediate_info *);
f663d9ad
KT
1436};
1437
1438/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1439
1440static void
1441dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1442{
1443 if (!fd)
1444 return;
1445
1446 for (unsigned int i = 0; i < len; i++)
1447 fprintf (fd, "%x ", ptr[i]);
1448 fprintf (fd, "\n");
1449}
1450
f663d9ad
KT
1451/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1452 bits between adjacent elements. AMNT should be within
1453 [0, BITS_PER_UNIT).
1454 Example, AMNT = 2:
1455 00011111|11100000 << 2 = 01111111|10000000
1456 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1457
1458static void
1459shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1460{
1461 if (amnt == 0)
1462 return;
1463
1464 unsigned char carry_over = 0U;
46a61395 1465 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
f663d9ad
KT
1466 unsigned char clear_mask = (~0U) << amnt;
1467
1468 for (unsigned int i = 0; i < sz; i++)
1469 {
1470 unsigned prev_carry_over = carry_over;
46a61395 1471 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
f663d9ad
KT
1472
1473 ptr[i] <<= amnt;
1474 if (i != 0)
1475 {
1476 ptr[i] &= clear_mask;
1477 ptr[i] |= prev_carry_over;
1478 }
1479 }
1480}
1481
1482/* Like shift_bytes_in_array but for big-endian.
1483 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1484 bits between adjacent elements. AMNT should be within
1485 [0, BITS_PER_UNIT).
1486 Example, AMNT = 2:
1487 00011111|11100000 >> 2 = 00000111|11111000
1488 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1489
1490static void
1491shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1492 unsigned int amnt)
1493{
1494 if (amnt == 0)
1495 return;
1496
1497 unsigned char carry_over = 0U;
1498 unsigned char carry_mask = ~(~0U << amnt);
1499
1500 for (unsigned int i = 0; i < sz; i++)
1501 {
1502 unsigned prev_carry_over = carry_over;
46a61395 1503 carry_over = ptr[i] & carry_mask;
f663d9ad 1504
ad1de652
JJ
1505 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1506 ptr[i] >>= amnt;
1507 ptr[i] |= prev_carry_over;
f663d9ad
KT
1508 }
1509}
1510
1511/* Clear out LEN bits starting from bit START in the byte array
1512 PTR. This clears the bits to the *right* from START.
1513 START must be within [0, BITS_PER_UNIT) and counts starting from
1514 the least significant bit. */
1515
1516static void
1517clear_bit_region_be (unsigned char *ptr, unsigned int start,
1518 unsigned int len)
1519{
1520 if (len == 0)
1521 return;
1522 /* Clear len bits to the right of start. */
1523 else if (len <= start + 1)
1524 {
1525 unsigned char mask = (~(~0U << len));
1526 mask = mask << (start + 1U - len);
1527 ptr[0] &= ~mask;
1528 }
1529 else if (start != BITS_PER_UNIT - 1)
1530 {
1531 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1532 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1533 len - (start % BITS_PER_UNIT) - 1);
1534 }
1535 else if (start == BITS_PER_UNIT - 1
1536 && len > BITS_PER_UNIT)
1537 {
1538 unsigned int nbytes = len / BITS_PER_UNIT;
a62b3dc5 1539 memset (ptr, 0, nbytes);
f663d9ad
KT
1540 if (len % BITS_PER_UNIT != 0)
1541 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1542 len % BITS_PER_UNIT);
1543 }
1544 else
1545 gcc_unreachable ();
1546}
1547
1548/* In the byte array PTR clear the bit region starting at bit
1549 START and is LEN bits wide.
1550 For regions spanning multiple bytes do this recursively until we reach
1551 zero LEN or a region contained within a single byte. */
1552
1553static void
1554clear_bit_region (unsigned char *ptr, unsigned int start,
1555 unsigned int len)
1556{
1557 /* Degenerate base case. */
1558 if (len == 0)
1559 return;
1560 else if (start >= BITS_PER_UNIT)
1561 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1562 /* Second base case. */
1563 else if ((start + len) <= BITS_PER_UNIT)
1564 {
46a61395 1565 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
f663d9ad
KT
1566 mask >>= BITS_PER_UNIT - (start + len);
1567
1568 ptr[0] &= ~mask;
1569
1570 return;
1571 }
1572 /* Clear most significant bits in a byte and proceed with the next byte. */
1573 else if (start != 0)
1574 {
1575 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1f069ef5 1576 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
f663d9ad
KT
1577 }
1578 /* Whole bytes need to be cleared. */
1579 else if (start == 0 && len > BITS_PER_UNIT)
1580 {
1581 unsigned int nbytes = len / BITS_PER_UNIT;
a848c710
KT
1582 /* We could recurse on each byte but we clear whole bytes, so a simple
1583 memset will do. */
46a61395 1584 memset (ptr, '\0', nbytes);
f663d9ad
KT
1585 /* Clear the remaining sub-byte region if there is one. */
1586 if (len % BITS_PER_UNIT != 0)
1587 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1588 }
1589 else
1590 gcc_unreachable ();
1591}
1592
1593/* Write BITLEN bits of EXPR to the byte array PTR at
1594 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1595 Return true if the operation succeeded. */
1596
1597static bool
1598encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
46a61395 1599 unsigned int total_bytes)
f663d9ad
KT
1600{
1601 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1602 tree tmp_int = expr;
ad1de652
JJ
1603 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1604 || (bitpos % BITS_PER_UNIT)
f4b31647 1605 || !int_mode_for_size (bitlen, 0).exists ());
f663d9ad
KT
1606
1607 if (!sub_byte_op_p)
2f391428 1608 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
f663d9ad
KT
1609
1610 /* LITTLE-ENDIAN
1611 We are writing a non byte-sized quantity or at a position that is not
1612 at a byte boundary.
1613 |--------|--------|--------| ptr + first_byte
1614 ^ ^
1615 xxx xxxxxxxx xxx< bp>
1616 |______EXPR____|
1617
46a61395 1618 First native_encode_expr EXPR into a temporary buffer and shift each
f663d9ad
KT
1619 byte in the buffer by 'bp' (carrying the bits over as necessary).
1620 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1621 <------bitlen---->< bp>
1622 Then we clear the destination bits:
1623 |---00000|00000000|000-----| ptr + first_byte
1624 <-------bitlen--->< bp>
1625
1626 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1627 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1628
1629 BIG-ENDIAN
1630 We are writing a non byte-sized quantity or at a position that is not
1631 at a byte boundary.
1632 ptr + first_byte |--------|--------|--------|
1633 ^ ^
1634 <bp >xxx xxxxxxxx xxx
1635 |_____EXPR_____|
1636
46a61395 1637 First native_encode_expr EXPR into a temporary buffer and shift each
f663d9ad
KT
1638 byte in the buffer to the right by (carrying the bits over as necessary).
1639 We shift by as much as needed to align the most significant bit of EXPR
1640 with bitpos:
1641 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1642 <---bitlen----> <bp ><-----bitlen----->
1643 Then we clear the destination bits:
1644 ptr + first_byte |-----000||00000000||00000---|
1645 <bp ><-------bitlen----->
1646
1647 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1648 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1649 The awkwardness comes from the fact that bitpos is counted from the
1650 most significant bit of a byte. */
1651
ef1d3b57
RS
1652 /* We must be dealing with fixed-size data at this point, since the
1653 total size is also fixed. */
1654 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
f663d9ad 1655 /* Allocate an extra byte so that we have space to shift into. */
ef1d3b57 1656 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
f663d9ad 1657 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
46a61395 1658 memset (tmpbuf, '\0', byte_size);
f663d9ad
KT
1659 /* The store detection code should only have allowed constants that are
1660 accepted by native_encode_expr. */
2f391428 1661 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
f663d9ad
KT
1662 gcc_unreachable ();
1663
1664 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1665 bytes to write. This means it can write more than
1666 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1667 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1668 bitlen and zero out the bits that are not relevant as well (that may
1669 contain a sign bit due to sign-extension). */
1670 unsigned int padding
1671 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
ad1de652
JJ
1672 /* On big-endian the padding is at the 'front' so just skip the initial
1673 bytes. */
1674 if (BYTES_BIG_ENDIAN)
1675 tmpbuf += padding;
1676
1677 byte_size -= padding;
1678
1679 if (bitlen % BITS_PER_UNIT != 0)
f663d9ad 1680 {
4b2c06f4 1681 if (BYTES_BIG_ENDIAN)
ad1de652
JJ
1682 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1683 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1684 else
1685 clear_bit_region (tmpbuf, bitlen,
1686 byte_size * BITS_PER_UNIT - bitlen);
f663d9ad 1687 }
ad1de652
JJ
1688 /* Left shifting relies on the last byte being clear if bitlen is
1689 a multiple of BITS_PER_UNIT, which might not be clear if
1690 there are padding bytes. */
1691 else if (!BYTES_BIG_ENDIAN)
1692 tmpbuf[byte_size - 1] = '\0';
f663d9ad
KT
1693
1694 /* Clear the bit region in PTR where the bits from TMPBUF will be
46a61395 1695 inserted into. */
f663d9ad
KT
1696 if (BYTES_BIG_ENDIAN)
1697 clear_bit_region_be (ptr + first_byte,
1698 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1699 else
1700 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1701
1702 int shift_amnt;
1703 int bitlen_mod = bitlen % BITS_PER_UNIT;
1704 int bitpos_mod = bitpos % BITS_PER_UNIT;
1705
1706 bool skip_byte = false;
1707 if (BYTES_BIG_ENDIAN)
1708 {
1709 /* BITPOS and BITLEN are exactly aligned and no shifting
1710 is necessary. */
1711 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1712 || (bitpos_mod == 0 && bitlen_mod == 0))
1713 shift_amnt = 0;
1714 /* |. . . . . . . .|
1715 <bp > <blen >.
1716 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1717 of the value until it aligns with 'bp' in the next byte over. */
1718 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1719 {
1720 shift_amnt = bitlen_mod + bitpos_mod;
1721 skip_byte = bitlen_mod != 0;
1722 }
1723 /* |. . . . . . . .|
1724 <----bp--->
1725 <---blen---->.
1726 Shift the value right within the same byte so it aligns with 'bp'. */
1727 else
1728 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1729 }
1730 else
1731 shift_amnt = bitpos % BITS_PER_UNIT;
1732
1733 /* Create the shifted version of EXPR. */
1734 if (!BYTES_BIG_ENDIAN)
46a61395
JJ
1735 {
1736 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1737 if (shift_amnt == 0)
1738 byte_size--;
1739 }
f663d9ad
KT
1740 else
1741 {
1742 gcc_assert (BYTES_BIG_ENDIAN);
1743 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1744 /* If shifting right forced us to move into the next byte skip the now
1745 empty byte. */
1746 if (skip_byte)
1747 {
1748 tmpbuf++;
1749 byte_size--;
1750 }
1751 }
1752
1753 /* Insert the bits from TMPBUF. */
1754 for (unsigned int i = 0; i < byte_size; i++)
1755 ptr[first_byte + i] |= tmpbuf[i];
1756
1757 return true;
1758}
1759
1760/* Sorting function for store_immediate_info objects.
1761 Sorts them by bitposition. */
1762
1763static int
1764sort_by_bitpos (const void *x, const void *y)
1765{
1766 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1767 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1768
109cca3b 1769 if ((*tmp)->bitpos < (*tmp2)->bitpos)
f663d9ad
KT
1770 return -1;
1771 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1772 return 1;
109cca3b 1773 else
0f0027d1
KT
1774 /* If they are the same let's use the order which is guaranteed to
1775 be different. */
1776 return (*tmp)->order - (*tmp2)->order;
f663d9ad
KT
1777}
1778
1779/* Sorting function for store_immediate_info objects.
1780 Sorts them by the order field. */
1781
1782static int
1783sort_by_order (const void *x, const void *y)
1784{
1785 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1786 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1787
1788 if ((*tmp)->order < (*tmp2)->order)
1789 return -1;
1790 else if ((*tmp)->order > (*tmp2)->order)
1791 return 1;
1792
1793 gcc_unreachable ();
1794}
1795
1796/* Initialize a merged_store_group object from a store_immediate_info
1797 object. */
1798
1799merged_store_group::merged_store_group (store_immediate_info *info)
1800{
1801 start = info->bitpos;
1802 width = info->bitsize;
a62b3dc5
JJ
1803 bitregion_start = info->bitregion_start;
1804 bitregion_end = info->bitregion_end;
f663d9ad
KT
1805 /* VAL has memory allocated for it in apply_stores once the group
1806 width has been finalized. */
1807 val = NULL;
a62b3dc5
JJ
1808 mask = NULL;
1809 unsigned HOST_WIDE_INT align_bitpos = 0;
1810 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1811 &align, &align_bitpos);
1812 align_base = start - align_bitpos;
245f6de1
JJ
1813 for (int i = 0; i < 2; ++i)
1814 {
1815 store_operand_info &op = info->ops[i];
1816 if (op.base_addr == NULL_TREE)
1817 {
1818 load_align[i] = 0;
1819 load_align_base[i] = 0;
1820 }
1821 else
1822 {
1823 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1824 load_align_base[i] = op.bitpos - align_bitpos;
1825 }
1826 }
f663d9ad
KT
1827 stores.create (1);
1828 stores.safe_push (info);
1829 last_stmt = info->stmt;
1830 last_order = info->order;
1831 first_stmt = last_stmt;
1832 first_order = last_order;
1833 buf_size = 0;
1834}
1835
1836merged_store_group::~merged_store_group ()
1837{
1838 if (val)
1839 XDELETEVEC (val);
1840}
1841
a62b3dc5
JJ
1842/* Helper method for merge_into and merge_overlapping to do
1843 the common part. */
f663d9ad 1844void
a62b3dc5 1845merged_store_group::do_merge (store_immediate_info *info)
f663d9ad 1846{
a62b3dc5
JJ
1847 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1848 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1849
1850 unsigned int this_align;
1851 unsigned HOST_WIDE_INT align_bitpos = 0;
1852 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1853 &this_align, &align_bitpos);
1854 if (this_align > align)
1855 {
1856 align = this_align;
1857 align_base = info->bitpos - align_bitpos;
1858 }
245f6de1
JJ
1859 for (int i = 0; i < 2; ++i)
1860 {
1861 store_operand_info &op = info->ops[i];
1862 if (!op.base_addr)
1863 continue;
1864
1865 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1866 if (this_align > load_align[i])
1867 {
1868 load_align[i] = this_align;
1869 load_align_base[i] = op.bitpos - align_bitpos;
1870 }
1871 }
f663d9ad 1872
f663d9ad
KT
1873 gimple *stmt = info->stmt;
1874 stores.safe_push (info);
1875 if (info->order > last_order)
1876 {
1877 last_order = info->order;
1878 last_stmt = stmt;
1879 }
1880 else if (info->order < first_order)
1881 {
1882 first_order = info->order;
1883 first_stmt = stmt;
1884 }
1885}
1886
a62b3dc5
JJ
1887/* Merge a store recorded by INFO into this merged store.
1888 The store is not overlapping with the existing recorded
1889 stores. */
1890
1891void
1892merged_store_group::merge_into (store_immediate_info *info)
1893{
1894 unsigned HOST_WIDE_INT wid = info->bitsize;
1895 /* Make sure we're inserting in the position we think we're inserting. */
1896 gcc_assert (info->bitpos >= start + width
1897 && info->bitregion_start <= bitregion_end);
1898
1899 width += wid;
1900 do_merge (info);
1901}
1902
f663d9ad
KT
1903/* Merge a store described by INFO into this merged store.
1904 INFO overlaps in some way with the current store (i.e. it's not contiguous
1905 which is handled by merged_store_group::merge_into). */
1906
1907void
1908merged_store_group::merge_overlapping (store_immediate_info *info)
1909{
f663d9ad 1910 /* If the store extends the size of the group, extend the width. */
a62b3dc5 1911 if (info->bitpos + info->bitsize > start + width)
f663d9ad
KT
1912 width += info->bitpos + info->bitsize - (start + width);
1913
a62b3dc5 1914 do_merge (info);
f663d9ad
KT
1915}
1916
1917/* Go through all the recorded stores in this group in program order and
1918 apply their values to the VAL byte array to create the final merged
1919 value. Return true if the operation succeeded. */
1920
1921bool
1922merged_store_group::apply_stores ()
1923{
a62b3dc5
JJ
1924 /* Make sure we have more than one store in the group, otherwise we cannot
1925 merge anything. */
1926 if (bitregion_start % BITS_PER_UNIT != 0
1927 || bitregion_end % BITS_PER_UNIT != 0
f663d9ad
KT
1928 || stores.length () == 1)
1929 return false;
1930
1931 stores.qsort (sort_by_order);
a62b3dc5 1932 store_immediate_info *info;
f663d9ad
KT
1933 unsigned int i;
1934 /* Create a buffer of a size that is 2 times the number of bytes we're
1935 storing. That way native_encode_expr can write power-of-2-sized
1936 chunks without overrunning. */
a62b3dc5
JJ
1937 buf_size = 2 * ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
1938 val = XNEWVEC (unsigned char, 2 * buf_size);
1939 mask = val + buf_size;
1940 memset (val, 0, buf_size);
1941 memset (mask, ~0U, buf_size);
f663d9ad
KT
1942
1943 FOR_EACH_VEC_ELT (stores, i, info)
1944 {
a62b3dc5 1945 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
245f6de1
JJ
1946 tree cst = NULL_TREE;
1947 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1948 cst = info->ops[0].val;
1949 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1950 cst = info->ops[1].val;
1951 bool ret = true;
1952 if (cst)
1953 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
1954 pos_in_buffer, buf_size);
1955 if (cst && dump_file && (dump_flags & TDF_DETAILS))
f663d9ad
KT
1956 {
1957 if (ret)
1958 {
1959 fprintf (dump_file, "After writing ");
245f6de1 1960 print_generic_expr (dump_file, cst, 0);
f663d9ad 1961 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
4b84d9b8
JJ
1962 " at position %d the merged region contains:\n",
1963 info->bitsize, pos_in_buffer);
f663d9ad
KT
1964 dump_char_array (dump_file, val, buf_size);
1965 }
1966 else
1967 fprintf (dump_file, "Failed to merge stores\n");
4b84d9b8 1968 }
f663d9ad
KT
1969 if (!ret)
1970 return false;
a62b3dc5
JJ
1971 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
1972 if (BYTES_BIG_ENDIAN)
4403d99a
JJ
1973 clear_bit_region_be (m, (BITS_PER_UNIT - 1
1974 - (pos_in_buffer % BITS_PER_UNIT)),
1975 info->bitsize);
a62b3dc5
JJ
1976 else
1977 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
f663d9ad 1978 }
4b84d9b8 1979 stores.qsort (sort_by_bitpos);
f663d9ad
KT
1980 return true;
1981}
1982
1983/* Structure describing the store chain. */
1984
1985struct imm_store_chain_info
1986{
50b6d676
AO
1987 /* Doubly-linked list that imposes an order on chain processing.
1988 PNXP (prev's next pointer) points to the head of a list, or to
1989 the next field in the previous chain in the list.
1990 See pass_store_merging::m_stores_head for more rationale. */
1991 imm_store_chain_info *next, **pnxp;
b5926e23 1992 tree base_addr;
a62b3dc5 1993 auto_vec<store_immediate_info *> m_store_info;
f663d9ad
KT
1994 auto_vec<merged_store_group *> m_merged_store_groups;
1995
50b6d676
AO
1996 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
1997 : next (inspt), pnxp (&inspt), base_addr (b_a)
1998 {
1999 inspt = this;
2000 if (next)
2001 {
2002 gcc_checking_assert (pnxp == next->pnxp);
2003 next->pnxp = &next;
2004 }
2005 }
2006 ~imm_store_chain_info ()
2007 {
2008 *pnxp = next;
2009 if (next)
2010 {
2011 gcc_checking_assert (&next == next->pnxp);
2012 next->pnxp = pnxp;
2013 }
2014 }
b5926e23 2015 bool terminate_and_process_chain ();
4b84d9b8 2016 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
f663d9ad 2017 bool coalesce_immediate_stores ();
b5926e23
RB
2018 bool output_merged_store (merged_store_group *);
2019 bool output_merged_stores ();
f663d9ad
KT
2020};
2021
2022const pass_data pass_data_tree_store_merging = {
2023 GIMPLE_PASS, /* type */
2024 "store-merging", /* name */
2025 OPTGROUP_NONE, /* optinfo_flags */
2026 TV_GIMPLE_STORE_MERGING, /* tv_id */
2027 PROP_ssa, /* properties_required */
2028 0, /* properties_provided */
2029 0, /* properties_destroyed */
2030 0, /* todo_flags_start */
2031 TODO_update_ssa, /* todo_flags_finish */
2032};
2033
2034class pass_store_merging : public gimple_opt_pass
2035{
2036public:
2037 pass_store_merging (gcc::context *ctxt)
faec5f24 2038 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
f663d9ad
KT
2039 {
2040 }
2041
a62b3dc5
JJ
2042 /* Pass not supported for PDP-endianness, nor for insane hosts
2043 or target character sizes where native_{encode,interpret}_expr
2044 doesn't work properly. */
f663d9ad
KT
2045 virtual bool
2046 gate (function *)
2047 {
a62b3dc5
JJ
2048 return flag_store_merging
2049 && WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN
2050 && CHAR_BIT == 8
2051 && BITS_PER_UNIT == 8;
f663d9ad
KT
2052 }
2053
2054 virtual unsigned int execute (function *);
2055
2056private:
2057 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2058
50b6d676
AO
2059 /* Form a doubly-linked stack of the elements of m_stores, so that
2060 we can iterate over them in a predictable way. Using this order
2061 avoids extraneous differences in the compiler output just because
2062 of tree pointer variations (e.g. different chains end up in
2063 different positions of m_stores, so they are handled in different
2064 orders, so they allocate or release SSA names in different
2065 orders, and when they get reused, subsequent passes end up
2066 getting different SSA names, which may ultimately change
2067 decisions when going out of SSA). */
2068 imm_store_chain_info *m_stores_head;
2069
245f6de1 2070 void process_store (gimple *);
f663d9ad 2071 bool terminate_and_process_all_chains ();
383ac8dc 2072 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
b5926e23 2073 bool terminate_and_release_chain (imm_store_chain_info *);
f663d9ad
KT
2074}; // class pass_store_merging
2075
2076/* Terminate and process all recorded chains. Return true if any changes
2077 were made. */
2078
2079bool
2080pass_store_merging::terminate_and_process_all_chains ()
2081{
f663d9ad 2082 bool ret = false;
50b6d676
AO
2083 while (m_stores_head)
2084 ret |= terminate_and_release_chain (m_stores_head);
2085 gcc_assert (m_stores.elements () == 0);
2086 gcc_assert (m_stores_head == NULL);
f663d9ad
KT
2087
2088 return ret;
2089}
2090
383ac8dc
JJ
2091/* Terminate all chains that are affected by the statement STMT.
2092 CHAIN_INFO is the chain we should ignore from the checks if
2093 non-NULL. */
f663d9ad
KT
2094
2095bool
20770eb8 2096pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
b5926e23 2097 **chain_info,
f663d9ad
KT
2098 gimple *stmt)
2099{
2100 bool ret = false;
2101
2102 /* If the statement doesn't touch memory it can't alias. */
2103 if (!gimple_vuse (stmt))
2104 return false;
2105
9e875fd8 2106 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
383ac8dc 2107 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
f663d9ad 2108 {
383ac8dc
JJ
2109 next = cur->next;
2110
2111 /* We already checked all the stores in chain_info and terminated the
2112 chain if necessary. Skip it here. */
2113 if (chain_info && *chain_info == cur)
2114 continue;
2115
245f6de1
JJ
2116 store_immediate_info *info;
2117 unsigned int i;
383ac8dc 2118 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
f663d9ad 2119 {
9e875fd8
JJ
2120 tree lhs = gimple_assign_lhs (info->stmt);
2121 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2122 || stmt_may_clobber_ref_p (stmt, lhs)
2123 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
f663d9ad 2124 {
245f6de1 2125 if (dump_file && (dump_flags & TDF_DETAILS))
f663d9ad 2126 {
245f6de1
JJ
2127 fprintf (dump_file, "stmt causes chain termination:\n");
2128 print_gimple_stmt (dump_file, stmt, 0);
f663d9ad 2129 }
383ac8dc 2130 terminate_and_release_chain (cur);
245f6de1
JJ
2131 ret = true;
2132 break;
f663d9ad
KT
2133 }
2134 }
2135 }
2136
f663d9ad
KT
2137 return ret;
2138}
2139
2140/* Helper function. Terminate the recorded chain storing to base object
2141 BASE. Return true if the merging and output was successful. The m_stores
2142 entry is removed after the processing in any case. */
2143
2144bool
b5926e23 2145pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
f663d9ad 2146{
b5926e23
RB
2147 bool ret = chain_info->terminate_and_process_chain ();
2148 m_stores.remove (chain_info->base_addr);
2149 delete chain_info;
f663d9ad
KT
2150 return ret;
2151}
2152
245f6de1
JJ
2153/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2154 may clobber REF. FIRST and LAST must be in the same basic block and
4b84d9b8
JJ
2155 have non-NULL vdef. We want to be able to sink load of REF across
2156 stores between FIRST and LAST, up to right before LAST. */
245f6de1
JJ
2157
2158bool
2159stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2160{
2161 ao_ref r;
2162 ao_ref_init (&r, ref);
2163 unsigned int count = 0;
2164 tree vop = gimple_vdef (last);
2165 gimple *stmt;
2166
2167 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2168 do
2169 {
2170 stmt = SSA_NAME_DEF_STMT (vop);
2171 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2172 return true;
4b84d9b8
JJ
2173 if (gimple_store_p (stmt)
2174 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2175 return true;
245f6de1
JJ
2176 /* Avoid quadratic compile time by bounding the number of checks
2177 we perform. */
2178 if (++count > MAX_STORE_ALIAS_CHECKS)
2179 return true;
2180 vop = gimple_vuse (stmt);
2181 }
2182 while (stmt != first);
2183 return false;
2184}
2185
2186/* Return true if INFO->ops[IDX] is mergeable with the
2187 corresponding loads already in MERGED_STORE group.
2188 BASE_ADDR is the base address of the whole store group. */
2189
2190bool
2191compatible_load_p (merged_store_group *merged_store,
2192 store_immediate_info *info,
2193 tree base_addr, int idx)
2194{
2195 store_immediate_info *infof = merged_store->stores[0];
2196 if (!info->ops[idx].base_addr
2197 || (info->ops[idx].bitpos - infof->ops[idx].bitpos
2198 != info->bitpos - infof->bitpos)
2199 || !operand_equal_p (info->ops[idx].base_addr,
2200 infof->ops[idx].base_addr, 0))
2201 return false;
2202
2203 store_immediate_info *infol = merged_store->stores.last ();
2204 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2205 /* In this case all vuses should be the same, e.g.
2206 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2207 or
2208 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2209 and we can emit the coalesced load next to any of those loads. */
2210 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2211 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2212 return true;
2213
2214 /* Otherwise, at least for now require that the load has the same
2215 vuse as the store. See following examples. */
2216 if (gimple_vuse (info->stmt) != load_vuse)
2217 return false;
2218
2219 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2220 || (infof != infol
2221 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2222 return false;
2223
2224 /* If the load is from the same location as the store, already
2225 the construction of the immediate chain info guarantees no intervening
2226 stores, so no further checks are needed. Example:
2227 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2228 if (info->ops[idx].bitpos == info->bitpos
2229 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2230 return true;
2231
2232 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2233 of the stores in the group, or any other stores in between those.
2234 Previous calls to compatible_load_p ensured that for all the
2235 merged_store->stores IDX loads, no stmts starting with
2236 merged_store->first_stmt and ending right before merged_store->last_stmt
2237 clobbers those loads. */
2238 gimple *first = merged_store->first_stmt;
2239 gimple *last = merged_store->last_stmt;
2240 unsigned int i;
2241 store_immediate_info *infoc;
2242 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2243 comes before the so far first load, we'll be changing
2244 merged_store->first_stmt. In that case we need to give up if
2245 any of the earlier processed loads clobber with the stmts in the new
2246 range. */
2247 if (info->order < merged_store->first_order)
2248 {
2249 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2250 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2251 return false;
2252 first = info->stmt;
2253 }
2254 /* Similarly, we could change merged_store->last_stmt, so ensure
2255 in that case no stmts in the new range clobber any of the earlier
2256 processed loads. */
2257 else if (info->order > merged_store->last_order)
2258 {
2259 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2260 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2261 return false;
2262 last = info->stmt;
2263 }
2264 /* And finally, we'd be adding a new load to the set, ensure it isn't
2265 clobbered in the new range. */
2266 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2267 return false;
2268
2269 /* Otherwise, we are looking for:
2270 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2271 or
2272 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2273 return true;
2274}
2275
4b84d9b8
JJ
2276/* Add all refs loaded to compute VAL to REFS vector. */
2277
2278void
2279gather_bswap_load_refs (vec<tree> *refs, tree val)
2280{
2281 if (TREE_CODE (val) != SSA_NAME)
2282 return;
2283
2284 gimple *stmt = SSA_NAME_DEF_STMT (val);
2285 if (!is_gimple_assign (stmt))
2286 return;
2287
2288 if (gimple_assign_load_p (stmt))
2289 {
2290 refs->safe_push (gimple_assign_rhs1 (stmt));
2291 return;
2292 }
2293
2294 switch (gimple_assign_rhs_class (stmt))
2295 {
2296 case GIMPLE_BINARY_RHS:
2297 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2298 /* FALLTHRU */
2299 case GIMPLE_UNARY_RHS:
2300 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2301 break;
2302 default:
2303 gcc_unreachable ();
2304 }
2305}
2306
2307/* Return true if m_store_info[first] and at least one following store
2308 form a group which store try_size bitsize value which is byte swapped
2309 from a memory load or some value, or identity from some value.
2310 This uses the bswap pass APIs. */
2311
2312bool
2313imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2314 unsigned int first,
2315 unsigned int try_size)
2316{
2317 unsigned int len = m_store_info.length (), last = first;
2318 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2319 if (width >= try_size)
2320 return false;
2321 for (unsigned int i = first + 1; i < len; ++i)
2322 {
2323 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2324 || m_store_info[i]->ins_stmt == NULL)
2325 return false;
2326 width += m_store_info[i]->bitsize;
2327 if (width >= try_size)
2328 {
2329 last = i;
2330 break;
2331 }
2332 }
2333 if (width != try_size)
2334 return false;
2335
2336 bool allow_unaligned
2337 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2338 /* Punt if the combined store would not be aligned and we need alignment. */
2339 if (!allow_unaligned)
2340 {
2341 unsigned int align = merged_store->align;
2342 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2343 for (unsigned int i = first + 1; i <= last; ++i)
2344 {
2345 unsigned int this_align;
2346 unsigned HOST_WIDE_INT align_bitpos = 0;
2347 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2348 &this_align, &align_bitpos);
2349 if (this_align > align)
2350 {
2351 align = this_align;
2352 align_base = m_store_info[i]->bitpos - align_bitpos;
2353 }
2354 }
2355 unsigned HOST_WIDE_INT align_bitpos
2356 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2357 if (align_bitpos)
2358 align = least_bit_hwi (align_bitpos);
2359 if (align < try_size)
2360 return false;
2361 }
2362
2363 tree type;
2364 switch (try_size)
2365 {
2366 case 16: type = uint16_type_node; break;
2367 case 32: type = uint32_type_node; break;
2368 case 64: type = uint64_type_node; break;
2369 default: gcc_unreachable ();
2370 }
2371 struct symbolic_number n;
2372 gimple *ins_stmt = NULL;
2373 int vuse_store = -1;
2374 unsigned int first_order = merged_store->first_order;
2375 unsigned int last_order = merged_store->last_order;
2376 gimple *first_stmt = merged_store->first_stmt;
2377 gimple *last_stmt = merged_store->last_stmt;
2378 store_immediate_info *infof = m_store_info[first];
2379
2380 for (unsigned int i = first; i <= last; ++i)
2381 {
2382 store_immediate_info *info = m_store_info[i];
2383 struct symbolic_number this_n = info->n;
2384 this_n.type = type;
2385 if (!this_n.base_addr)
2386 this_n.range = try_size / BITS_PER_UNIT;
2387 unsigned int bitpos = info->bitpos - infof->bitpos;
2388 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2389 BYTES_BIG_ENDIAN
2390 ? try_size - info->bitsize - bitpos
2391 : bitpos))
2392 return false;
aa11164a 2393 if (this_n.base_addr && vuse_store)
4b84d9b8
JJ
2394 {
2395 unsigned int j;
2396 for (j = first; j <= last; ++j)
2397 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2398 break;
2399 if (j > last)
2400 {
2401 if (vuse_store == 1)
2402 return false;
2403 vuse_store = 0;
2404 }
2405 }
2406 if (i == first)
2407 {
2408 n = this_n;
2409 ins_stmt = info->ins_stmt;
2410 }
2411 else
2412 {
2413 if (n.base_addr)
2414 {
2415 if (n.vuse != this_n.vuse)
2416 {
2417 if (vuse_store == 0)
2418 return false;
2419 vuse_store = 1;
2420 }
2421 if (info->order > last_order)
2422 {
2423 last_order = info->order;
2424 last_stmt = info->stmt;
2425 }
2426 else if (info->order < first_order)
2427 {
2428 first_order = info->order;
2429 first_stmt = info->stmt;
2430 }
2431 }
2432
2433 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2434 &this_n, &n);
2435 if (ins_stmt == NULL)
2436 return false;
2437 }
2438 }
2439
2440 uint64_t cmpxchg, cmpnop;
2441 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2442
2443 /* A complete byte swap should make the symbolic number to start with
2444 the largest digit in the highest order byte. Unchanged symbolic
2445 number indicates a read with same endianness as target architecture. */
2446 if (n.n != cmpnop && n.n != cmpxchg)
2447 return false;
2448
2449 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2450 return false;
2451
2452 /* Don't handle memory copy this way if normal non-bswap processing
2453 would handle it too. */
2454 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2455 {
2456 unsigned int i;
2457 for (i = first; i <= last; ++i)
2458 if (m_store_info[i]->rhs_code != MEM_REF)
2459 break;
2460 if (i == last + 1)
2461 return false;
2462 }
2463
2464 if (n.n == cmpxchg)
2465 switch (try_size)
2466 {
2467 case 16:
2468 /* Will emit LROTATE_EXPR. */
2469 break;
2470 case 32:
2471 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2472 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2473 break;
2474 return false;
2475 case 64:
2476 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2477 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2478 break;
2479 return false;
2480 default:
2481 gcc_unreachable ();
2482 }
2483
2484 if (!allow_unaligned && n.base_addr)
2485 {
2486 unsigned int align = get_object_alignment (n.src);
2487 if (align < try_size)
2488 return false;
2489 }
2490
2491 /* If each load has vuse of the corresponding store, need to verify
2492 the loads can be sunk right before the last store. */
2493 if (vuse_store == 1)
2494 {
2495 auto_vec<tree, 64> refs;
2496 for (unsigned int i = first; i <= last; ++i)
2497 gather_bswap_load_refs (&refs,
2498 gimple_assign_rhs1 (m_store_info[i]->stmt));
2499
2500 unsigned int i;
2501 tree ref;
2502 FOR_EACH_VEC_ELT (refs, i, ref)
2503 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2504 return false;
2505 n.vuse = NULL_TREE;
2506 }
2507
2508 infof->n = n;
2509 infof->ins_stmt = ins_stmt;
2510 for (unsigned int i = first; i <= last; ++i)
2511 {
2512 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2513 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2514 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2515 if (i != first)
2516 merged_store->merge_into (m_store_info[i]);
2517 }
2518
2519 return true;
2520}
2521
f663d9ad
KT
2522/* Go through the candidate stores recorded in m_store_info and merge them
2523 into merged_store_group objects recorded into m_merged_store_groups
2524 representing the widened stores. Return true if coalescing was successful
2525 and the number of widened stores is fewer than the original number
2526 of stores. */
2527
2528bool
2529imm_store_chain_info::coalesce_immediate_stores ()
2530{
2531 /* Anything less can't be processed. */
2532 if (m_store_info.length () < 2)
2533 return false;
2534
2535 if (dump_file && (dump_flags & TDF_DETAILS))
2536 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
2537 m_store_info.length ());
2538
2539 store_immediate_info *info;
4b84d9b8 2540 unsigned int i, ignore = 0;
f663d9ad
KT
2541
2542 /* Order the stores by the bitposition they write to. */
2543 m_store_info.qsort (sort_by_bitpos);
2544
2545 info = m_store_info[0];
2546 merged_store_group *merged_store = new merged_store_group (info);
2547
2548 FOR_EACH_VEC_ELT (m_store_info, i, info)
2549 {
2550 if (dump_file && (dump_flags & TDF_DETAILS))
2551 {
2552 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2553 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
2554 i, info->bitsize, info->bitpos);
ef6cb4c7 2555 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
f663d9ad
KT
2556 fprintf (dump_file, "\n------------\n");
2557 }
2558
4b84d9b8 2559 if (i <= ignore)
f663d9ad
KT
2560 continue;
2561
4b84d9b8
JJ
2562 /* First try to handle group of stores like:
2563 p[0] = data >> 24;
2564 p[1] = data >> 16;
2565 p[2] = data >> 8;
2566 p[3] = data;
2567 using the bswap framework. */
2568 if (info->bitpos == merged_store->start + merged_store->width
2569 && merged_store->stores.length () == 1
2570 && merged_store->stores[0]->ins_stmt != NULL
2571 && info->ins_stmt != NULL)
2572 {
2573 unsigned int try_size;
2574 for (try_size = 64; try_size >= 16; try_size >>= 1)
2575 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2576 break;
2577
2578 if (try_size >= 16)
2579 {
2580 ignore = i + merged_store->stores.length () - 1;
2581 m_merged_store_groups.safe_push (merged_store);
2582 if (ignore < m_store_info.length ())
2583 merged_store = new merged_store_group (m_store_info[ignore]);
2584 else
2585 merged_store = NULL;
2586 continue;
2587 }
2588 }
2589
f663d9ad
KT
2590 /* |---store 1---|
2591 |---store 2---|
4b84d9b8
JJ
2592 Overlapping stores. */
2593 if (IN_RANGE (info->bitpos, merged_store->start,
f663d9ad
KT
2594 merged_store->start + merged_store->width - 1))
2595 {
245f6de1
JJ
2596 /* Only allow overlapping stores of constants. */
2597 if (info->rhs_code == INTEGER_CST
2598 && merged_store->stores[0]->rhs_code == INTEGER_CST)
2599 {
2600 merged_store->merge_overlapping (info);
2601 continue;
2602 }
f663d9ad 2603 }
245f6de1
JJ
2604 /* |---store 1---||---store 2---|
2605 This store is consecutive to the previous one.
2606 Merge it into the current store group. There can be gaps in between
2607 the stores, but there can't be gaps in between bitregions. */
4b84d9b8
JJ
2608 else if (info->rhs_code != LROTATE_EXPR
2609 && info->bitregion_start <= merged_store->bitregion_end
a6fbd154 2610 && info->rhs_code == merged_store->stores[0]->rhs_code)
f663d9ad 2611 {
245f6de1
JJ
2612 store_immediate_info *infof = merged_store->stores[0];
2613
2614 /* All the rhs_code ops that take 2 operands are commutative,
2615 swap the operands if it could make the operands compatible. */
2616 if (infof->ops[0].base_addr
2617 && infof->ops[1].base_addr
2618 && info->ops[0].base_addr
2619 && info->ops[1].base_addr
2620 && (info->ops[1].bitpos - infof->ops[0].bitpos
2621 == info->bitpos - infof->bitpos)
2622 && operand_equal_p (info->ops[1].base_addr,
2623 infof->ops[0].base_addr, 0))
127ef369
JJ
2624 {
2625 std::swap (info->ops[0], info->ops[1]);
2626 info->ops_swapped_p = true;
2627 }
5bfd2f9b
JJ
2628 if ((infof->ops[0].base_addr
2629 ? compatible_load_p (merged_store, info, base_addr, 0)
2630 : !info->ops[0].base_addr)
2631 && (infof->ops[1].base_addr
2632 ? compatible_load_p (merged_store, info, base_addr, 1)
2633 : !info->ops[1].base_addr))
245f6de1
JJ
2634 {
2635 merged_store->merge_into (info);
2636 continue;
2637 }
2638 }
f663d9ad 2639
245f6de1
JJ
2640 /* |---store 1---| <gap> |---store 2---|.
2641 Gap between stores or the rhs not compatible. Start a new group. */
f663d9ad 2642
245f6de1
JJ
2643 /* Try to apply all the stores recorded for the group to determine
2644 the bitpattern they write and discard it if that fails.
2645 This will also reject single-store groups. */
2646 if (!merged_store->apply_stores ())
2647 delete merged_store;
2648 else
2649 m_merged_store_groups.safe_push (merged_store);
f663d9ad 2650
245f6de1 2651 merged_store = new merged_store_group (info);
f663d9ad
KT
2652 }
2653
a62b3dc5 2654 /* Record or discard the last store group. */
4b84d9b8
JJ
2655 if (merged_store)
2656 {
2657 if (!merged_store->apply_stores ())
2658 delete merged_store;
2659 else
2660 m_merged_store_groups.safe_push (merged_store);
2661 }
f663d9ad
KT
2662
2663 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
2664 bool success
2665 = !m_merged_store_groups.is_empty ()
2666 && m_merged_store_groups.length () < m_store_info.length ();
2667
2668 if (success && dump_file)
2669 fprintf (dump_file, "Coalescing successful!\n"
a62b3dc5
JJ
2670 "Merged into %u stores\n",
2671 m_merged_store_groups.length ());
f663d9ad
KT
2672
2673 return success;
2674}
2675
245f6de1
JJ
2676/* Return the type to use for the merged stores or loads described by STMTS.
2677 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2678 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2679 of the MEM_REFs if any. */
f663d9ad
KT
2680
2681static tree
245f6de1
JJ
2682get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2683 unsigned short *cliquep, unsigned short *basep)
f663d9ad
KT
2684{
2685 gimple *stmt;
2686 unsigned int i;
245f6de1
JJ
2687 tree type = NULL_TREE;
2688 tree ret = NULL_TREE;
2689 *cliquep = 0;
2690 *basep = 0;
f663d9ad
KT
2691
2692 FOR_EACH_VEC_ELT (stmts, i, stmt)
2693 {
245f6de1
JJ
2694 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2695 : gimple_assign_lhs (stmt);
2696 tree type1 = reference_alias_ptr_type (ref);
2697 tree base = get_base_address (ref);
f663d9ad 2698
245f6de1
JJ
2699 if (i == 0)
2700 {
2701 if (TREE_CODE (base) == MEM_REF)
2702 {
2703 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2704 *basep = MR_DEPENDENCE_BASE (base);
2705 }
2706 ret = type = type1;
2707 continue;
2708 }
f663d9ad 2709 if (!alias_ptr_types_compatible_p (type, type1))
245f6de1
JJ
2710 ret = ptr_type_node;
2711 if (TREE_CODE (base) != MEM_REF
2712 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2713 || *basep != MR_DEPENDENCE_BASE (base))
2714 {
2715 *cliquep = 0;
2716 *basep = 0;
2717 }
f663d9ad 2718 }
245f6de1 2719 return ret;
f663d9ad
KT
2720}
2721
2722/* Return the location_t information we can find among the statements
2723 in STMTS. */
2724
2725static location_t
245f6de1 2726get_location_for_stmts (vec<gimple *> &stmts)
f663d9ad
KT
2727{
2728 gimple *stmt;
2729 unsigned int i;
2730
2731 FOR_EACH_VEC_ELT (stmts, i, stmt)
2732 if (gimple_has_location (stmt))
2733 return gimple_location (stmt);
2734
2735 return UNKNOWN_LOCATION;
2736}
2737
2738/* Used to decribe a store resulting from splitting a wide store in smaller
2739 regularly-sized stores in split_group. */
2740
2741struct split_store
2742{
2743 unsigned HOST_WIDE_INT bytepos;
2744 unsigned HOST_WIDE_INT size;
2745 unsigned HOST_WIDE_INT align;
245f6de1 2746 auto_vec<store_immediate_info *> orig_stores;
a62b3dc5
JJ
2747 /* True if there is a single orig stmt covering the whole split store. */
2748 bool orig;
f663d9ad
KT
2749 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2750 unsigned HOST_WIDE_INT);
2751};
2752
2753/* Simple constructor. */
2754
2755split_store::split_store (unsigned HOST_WIDE_INT bp,
2756 unsigned HOST_WIDE_INT sz,
2757 unsigned HOST_WIDE_INT al)
a62b3dc5 2758 : bytepos (bp), size (sz), align (al), orig (false)
f663d9ad 2759{
245f6de1 2760 orig_stores.create (0);
f663d9ad
KT
2761}
2762
245f6de1
JJ
2763/* Record all stores in GROUP that write to the region starting at BITPOS and
2764 is of size BITSIZE. Record infos for such statements in STORES if
2765 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2766 if there is exactly one original store in the range. */
f663d9ad 2767
a62b3dc5 2768static store_immediate_info *
245f6de1
JJ
2769find_constituent_stores (struct merged_store_group *group,
2770 vec<store_immediate_info *> *stores,
2771 unsigned int *first,
2772 unsigned HOST_WIDE_INT bitpos,
2773 unsigned HOST_WIDE_INT bitsize)
f663d9ad 2774{
a62b3dc5 2775 store_immediate_info *info, *ret = NULL;
f663d9ad 2776 unsigned int i;
a62b3dc5
JJ
2777 bool second = false;
2778 bool update_first = true;
f663d9ad 2779 unsigned HOST_WIDE_INT end = bitpos + bitsize;
a62b3dc5 2780 for (i = *first; group->stores.iterate (i, &info); ++i)
f663d9ad
KT
2781 {
2782 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
2783 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
a62b3dc5
JJ
2784 if (stmt_end <= bitpos)
2785 {
2786 /* BITPOS passed to this function never decreases from within the
2787 same split_group call, so optimize and don't scan info records
2788 which are known to end before or at BITPOS next time.
2789 Only do it if all stores before this one also pass this. */
2790 if (update_first)
2791 *first = i + 1;
2792 continue;
2793 }
2794 else
2795 update_first = false;
2796
f663d9ad 2797 /* The stores in GROUP are ordered by bitposition so if we're past
a62b3dc5
JJ
2798 the region for this group return early. */
2799 if (stmt_start >= end)
2800 return ret;
2801
245f6de1 2802 if (stores)
a62b3dc5 2803 {
245f6de1 2804 stores->safe_push (info);
a62b3dc5
JJ
2805 if (ret)
2806 {
2807 ret = NULL;
2808 second = true;
2809 }
2810 }
2811 else if (ret)
2812 return NULL;
2813 if (!second)
2814 ret = info;
f663d9ad 2815 }
a62b3dc5 2816 return ret;
f663d9ad
KT
2817}
2818
d7a9512e
JJ
2819/* Return how many SSA_NAMEs used to compute value to store in the INFO
2820 store have multiple uses. If any SSA_NAME has multiple uses, also
2821 count statements needed to compute it. */
2822
2823static unsigned
2824count_multiple_uses (store_immediate_info *info)
2825{
2826 gimple *stmt = info->stmt;
2827 unsigned ret = 0;
2828 switch (info->rhs_code)
2829 {
2830 case INTEGER_CST:
2831 return 0;
2832 case BIT_AND_EXPR:
2833 case BIT_IOR_EXPR:
2834 case BIT_XOR_EXPR:
d60edaba
JJ
2835 if (info->bit_not_p)
2836 {
2837 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2838 ret = 1; /* Fall through below to return
2839 the BIT_NOT_EXPR stmt and then
2840 BIT_{AND,IOR,XOR}_EXPR and anything it
2841 uses. */
2842 else
2843 /* stmt is after this the BIT_NOT_EXPR. */
2844 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2845 }
d7a9512e
JJ
2846 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2847 {
2848 ret += 1 + info->ops[0].bit_not_p;
2849 if (info->ops[1].base_addr)
2850 ret += 1 + info->ops[1].bit_not_p;
2851 return ret + 1;
2852 }
2853 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2854 /* stmt is now the BIT_*_EXPR. */
2855 if (!has_single_use (gimple_assign_rhs1 (stmt)))
127ef369
JJ
2856 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
2857 else if (info->ops[info->ops_swapped_p].bit_not_p)
d7a9512e
JJ
2858 {
2859 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2860 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2861 ++ret;
2862 }
2863 if (info->ops[1].base_addr == NULL_TREE)
127ef369
JJ
2864 {
2865 gcc_checking_assert (!info->ops_swapped_p);
2866 return ret;
2867 }
d7a9512e 2868 if (!has_single_use (gimple_assign_rhs2 (stmt)))
127ef369
JJ
2869 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
2870 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
d7a9512e
JJ
2871 {
2872 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
2873 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
2874 ++ret;
2875 }
2876 return ret;
2877 case MEM_REF:
2878 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2879 return 1 + info->ops[0].bit_not_p;
2880 else if (info->ops[0].bit_not_p)
2881 {
2882 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2883 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2884 return 1;
2885 }
2886 return 0;
2887 default:
2888 gcc_unreachable ();
2889 }
2890}
2891
f663d9ad 2892/* Split a merged store described by GROUP by populating the SPLIT_STORES
a62b3dc5
JJ
2893 vector (if non-NULL) with split_store structs describing the byte offset
2894 (from the base), the bit size and alignment of each store as well as the
2895 original statements involved in each such split group.
f663d9ad
KT
2896 This is to separate the splitting strategy from the statement
2897 building/emission/linking done in output_merged_store.
a62b3dc5 2898 Return number of new stores.
245f6de1
JJ
2899 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
2900 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
a62b3dc5
JJ
2901 If SPLIT_STORES is NULL, it is just a dry run to count number of
2902 new stores. */
f663d9ad 2903
a62b3dc5 2904static unsigned int
245f6de1
JJ
2905split_group (merged_store_group *group, bool allow_unaligned_store,
2906 bool allow_unaligned_load,
d7a9512e
JJ
2907 vec<struct split_store *> *split_stores,
2908 unsigned *total_orig,
2909 unsigned *total_new)
f663d9ad 2910{
a62b3dc5
JJ
2911 unsigned HOST_WIDE_INT pos = group->bitregion_start;
2912 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
f663d9ad 2913 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
a62b3dc5
JJ
2914 unsigned HOST_WIDE_INT group_align = group->align;
2915 unsigned HOST_WIDE_INT align_base = group->align_base;
245f6de1 2916 unsigned HOST_WIDE_INT group_load_align = group_align;
d7a9512e 2917 bool any_orig = false;
f663d9ad 2918
f663d9ad
KT
2919 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
2920
4b84d9b8
JJ
2921 if (group->stores[0]->rhs_code == LROTATE_EXPR
2922 || group->stores[0]->rhs_code == NOP_EXPR)
2923 {
2924 /* For bswap framework using sets of stores, all the checking
2925 has been done earlier in try_coalesce_bswap and needs to be
2926 emitted as a single store. */
2927 if (total_orig)
2928 {
2929 /* Avoid the old/new stmt count heuristics. It should be
2930 always beneficial. */
2931 total_new[0] = 1;
2932 total_orig[0] = 2;
2933 }
2934
2935 if (split_stores)
2936 {
2937 unsigned HOST_WIDE_INT align_bitpos
2938 = (group->start - align_base) & (group_align - 1);
2939 unsigned HOST_WIDE_INT align = group_align;
2940 if (align_bitpos)
2941 align = least_bit_hwi (align_bitpos);
2942 bytepos = group->start / BITS_PER_UNIT;
2943 struct split_store *store
2944 = new split_store (bytepos, group->width, align);
2945 unsigned int first = 0;
2946 find_constituent_stores (group, &store->orig_stores,
2947 &first, group->start, group->width);
2948 split_stores->safe_push (store);
2949 }
2950
2951 return 1;
2952 }
2953
a62b3dc5 2954 unsigned int ret = 0, first = 0;
f663d9ad 2955 unsigned HOST_WIDE_INT try_pos = bytepos;
f663d9ad 2956
d7a9512e
JJ
2957 if (total_orig)
2958 {
2959 unsigned int i;
2960 store_immediate_info *info = group->stores[0];
2961
2962 total_new[0] = 0;
2963 total_orig[0] = 1; /* The orig store. */
2964 info = group->stores[0];
2965 if (info->ops[0].base_addr)
a6fbd154 2966 total_orig[0]++;
d7a9512e 2967 if (info->ops[1].base_addr)
a6fbd154 2968 total_orig[0]++;
d7a9512e
JJ
2969 switch (info->rhs_code)
2970 {
2971 case BIT_AND_EXPR:
2972 case BIT_IOR_EXPR:
2973 case BIT_XOR_EXPR:
2974 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
2975 break;
2976 default:
2977 break;
2978 }
2979 total_orig[0] *= group->stores.length ();
2980
2981 FOR_EACH_VEC_ELT (group->stores, i, info)
a6fbd154
JJ
2982 {
2983 total_new[0] += count_multiple_uses (info);
2984 total_orig[0] += (info->bit_not_p
2985 + info->ops[0].bit_not_p
2986 + info->ops[1].bit_not_p);
2987 }
d7a9512e
JJ
2988 }
2989
245f6de1
JJ
2990 if (!allow_unaligned_load)
2991 for (int i = 0; i < 2; ++i)
2992 if (group->load_align[i])
2993 group_load_align = MIN (group_load_align, group->load_align[i]);
2994
f663d9ad
KT
2995 while (size > 0)
2996 {
245f6de1 2997 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
a62b3dc5
JJ
2998 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
2999 {
3000 /* Skip padding bytes. */
3001 ++try_pos;
3002 size -= BITS_PER_UNIT;
3003 continue;
3004 }
3005
f663d9ad 3006 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
a62b3dc5
JJ
3007 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3008 unsigned HOST_WIDE_INT align_bitpos
3009 = (try_bitpos - align_base) & (group_align - 1);
3010 unsigned HOST_WIDE_INT align = group_align;
3011 if (align_bitpos)
3012 align = least_bit_hwi (align_bitpos);
245f6de1 3013 if (!allow_unaligned_store)
a62b3dc5 3014 try_size = MIN (try_size, align);
245f6de1
JJ
3015 if (!allow_unaligned_load)
3016 {
3017 /* If we can't do or don't want to do unaligned stores
3018 as well as loads, we need to take the loads into account
3019 as well. */
3020 unsigned HOST_WIDE_INT load_align = group_load_align;
3021 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3022 if (align_bitpos)
3023 load_align = least_bit_hwi (align_bitpos);
3024 for (int i = 0; i < 2; ++i)
3025 if (group->load_align[i])
3026 {
3027 align_bitpos = try_bitpos - group->stores[0]->bitpos;
3028 align_bitpos += group->stores[0]->ops[i].bitpos;
3029 align_bitpos -= group->load_align_base[i];
3030 align_bitpos &= (group_load_align - 1);
3031 if (align_bitpos)
3032 {
3033 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3034 load_align = MIN (load_align, a);
3035 }
3036 }
3037 try_size = MIN (try_size, load_align);
3038 }
a62b3dc5 3039 store_immediate_info *info
245f6de1 3040 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
a62b3dc5
JJ
3041 if (info)
3042 {
3043 /* If there is just one original statement for the range, see if
3044 we can just reuse the original store which could be even larger
3045 than try_size. */
3046 unsigned HOST_WIDE_INT stmt_end
3047 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
245f6de1
JJ
3048 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3049 stmt_end - try_bitpos);
a62b3dc5
JJ
3050 if (info && info->bitpos >= try_bitpos)
3051 {
3052 try_size = stmt_end - try_bitpos;
3053 goto found;
3054 }
3055 }
f663d9ad 3056
a62b3dc5
JJ
3057 /* Approximate store bitsize for the case when there are no padding
3058 bits. */
3059 while (try_size > size)
3060 try_size /= 2;
3061 /* Now look for whole padding bytes at the end of that bitsize. */
3062 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3063 if (group->mask[try_pos - bytepos + nonmasked - 1]
3064 != (unsigned char) ~0U)
3065 break;
3066 if (nonmasked == 0)
3067 {
3068 /* If entire try_size range is padding, skip it. */
3069 try_pos += try_size / BITS_PER_UNIT;
3070 size -= try_size;
3071 continue;
3072 }
3073 /* Otherwise try to decrease try_size if second half, last 3 quarters
3074 etc. are padding. */
3075 nonmasked *= BITS_PER_UNIT;
3076 while (nonmasked <= try_size / 2)
3077 try_size /= 2;
245f6de1 3078 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
a62b3dc5
JJ
3079 {
3080 /* Now look for whole padding bytes at the start of that bitsize. */
3081 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3082 for (masked = 0; masked < try_bytesize; ++masked)
3083 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3084 break;
3085 masked *= BITS_PER_UNIT;
3086 gcc_assert (masked < try_size);
3087 if (masked >= try_size / 2)
3088 {
3089 while (masked >= try_size / 2)
3090 {
3091 try_size /= 2;
3092 try_pos += try_size / BITS_PER_UNIT;
3093 size -= try_size;
3094 masked -= try_size;
3095 }
3096 /* Need to recompute the alignment, so just retry at the new
3097 position. */
3098 continue;
3099 }
3100 }
3101
3102 found:
3103 ++ret;
f663d9ad 3104
a62b3dc5
JJ
3105 if (split_stores)
3106 {
3107 struct split_store *store
3108 = new split_store (try_pos, try_size, align);
245f6de1
JJ
3109 info = find_constituent_stores (group, &store->orig_stores,
3110 &first, try_bitpos, try_size);
a62b3dc5
JJ
3111 if (info
3112 && info->bitpos >= try_bitpos
3113 && info->bitpos + info->bitsize <= try_bitpos + try_size)
d7a9512e
JJ
3114 {
3115 store->orig = true;
3116 any_orig = true;
3117 }
a62b3dc5
JJ
3118 split_stores->safe_push (store);
3119 }
3120
3121 try_pos += try_size / BITS_PER_UNIT;
f663d9ad 3122 size -= try_size;
f663d9ad 3123 }
a62b3dc5 3124
d7a9512e
JJ
3125 if (total_orig)
3126 {
a6fbd154
JJ
3127 unsigned int i;
3128 struct split_store *store;
d7a9512e
JJ
3129 /* If we are reusing some original stores and any of the
3130 original SSA_NAMEs had multiple uses, we need to subtract
3131 those now before we add the new ones. */
3132 if (total_new[0] && any_orig)
3133 {
d7a9512e
JJ
3134 FOR_EACH_VEC_ELT (*split_stores, i, store)
3135 if (store->orig)
3136 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3137 }
3138 total_new[0] += ret; /* The new store. */
3139 store_immediate_info *info = group->stores[0];
3140 if (info->ops[0].base_addr)
a6fbd154 3141 total_new[0] += ret;
d7a9512e 3142 if (info->ops[1].base_addr)
a6fbd154 3143 total_new[0] += ret;
d7a9512e
JJ
3144 switch (info->rhs_code)
3145 {
3146 case BIT_AND_EXPR:
3147 case BIT_IOR_EXPR:
3148 case BIT_XOR_EXPR:
3149 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3150 break;
3151 default:
3152 break;
3153 }
a6fbd154
JJ
3154 FOR_EACH_VEC_ELT (*split_stores, i, store)
3155 {
3156 unsigned int j;
3157 bool bit_not_p[3] = { false, false, false };
3158 /* If all orig_stores have certain bit_not_p set, then
3159 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3160 If some orig_stores have certain bit_not_p set, then
3161 we'd use a BIT_XOR_EXPR with a mask and need to account for
3162 it. */
3163 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3164 {
3165 if (info->ops[0].bit_not_p)
3166 bit_not_p[0] = true;
3167 if (info->ops[1].bit_not_p)
3168 bit_not_p[1] = true;
3169 if (info->bit_not_p)
3170 bit_not_p[2] = true;
3171 }
3172 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3173 }
3174
d7a9512e
JJ
3175 }
3176
a62b3dc5 3177 return ret;
f663d9ad
KT
3178}
3179
a6fbd154
JJ
3180/* Return the operation through which the operand IDX (if < 2) or
3181 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3182 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3183 the bits should be xored with mask. */
3184
3185static enum tree_code
3186invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3187{
3188 unsigned int i;
3189 store_immediate_info *info;
3190 unsigned int cnt = 0;
3191 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3192 {
3193 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3194 if (bit_not_p)
3195 ++cnt;
3196 }
3197 mask = NULL_TREE;
3198 if (cnt == 0)
3199 return NOP_EXPR;
3200 if (cnt == split_store->orig_stores.length ())
3201 return BIT_NOT_EXPR;
3202
3203 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3204 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3205 unsigned char *buf
3206 = XALLOCAVEC (unsigned char, buf_size);
3207 memset (buf, ~0U, buf_size);
3208 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3209 {
3210 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3211 if (!bit_not_p)
3212 continue;
3213 /* Clear regions with bit_not_p and invert afterwards, rather than
3214 clear regions with !bit_not_p, so that gaps in between stores aren't
3215 set in the mask. */
3216 unsigned HOST_WIDE_INT bitsize = info->bitsize;
3217 unsigned int pos_in_buffer = 0;
3218 if (info->bitpos < try_bitpos)
3219 {
3220 gcc_assert (info->bitpos + bitsize > try_bitpos);
3221 bitsize -= (try_bitpos - info->bitpos);
3222 }
3223 else
3224 pos_in_buffer = info->bitpos - try_bitpos;
3225 if (pos_in_buffer + bitsize > split_store->size)
3226 bitsize = split_store->size - pos_in_buffer;
3227 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3228 if (BYTES_BIG_ENDIAN)
3229 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3230 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3231 else
3232 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3233 }
3234 for (unsigned int i = 0; i < buf_size; ++i)
3235 buf[i] = ~buf[i];
3236 mask = native_interpret_expr (int_type, buf, buf_size);
3237 return BIT_XOR_EXPR;
3238}
3239
f663d9ad
KT
3240/* Given a merged store group GROUP output the widened version of it.
3241 The store chain is against the base object BASE.
3242 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3243 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3244 Make sure that the number of statements output is less than the number of
3245 original statements. If a better sequence is possible emit it and
3246 return true. */
3247
3248bool
b5926e23 3249imm_store_chain_info::output_merged_store (merged_store_group *group)
f663d9ad 3250{
a62b3dc5
JJ
3251 unsigned HOST_WIDE_INT start_byte_pos
3252 = group->bitregion_start / BITS_PER_UNIT;
f663d9ad
KT
3253
3254 unsigned int orig_num_stmts = group->stores.length ();
3255 if (orig_num_stmts < 2)
3256 return false;
3257
a62b3dc5 3258 auto_vec<struct split_store *, 32> split_stores;
f663d9ad 3259 split_stores.create (0);
245f6de1 3260 bool allow_unaligned_store
a62b3dc5 3261 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
245f6de1
JJ
3262 bool allow_unaligned_load = allow_unaligned_store;
3263 if (allow_unaligned_store)
a62b3dc5
JJ
3264 {
3265 /* If unaligned stores are allowed, see how many stores we'd emit
3266 for unaligned and how many stores we'd emit for aligned stores.
3267 Only use unaligned stores if it allows fewer stores than aligned. */
245f6de1 3268 unsigned aligned_cnt
d7a9512e 3269 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
245f6de1 3270 unsigned unaligned_cnt
d7a9512e 3271 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
a62b3dc5 3272 if (aligned_cnt <= unaligned_cnt)
245f6de1 3273 allow_unaligned_store = false;
a62b3dc5 3274 }
d7a9512e 3275 unsigned total_orig, total_new;
245f6de1 3276 split_group (group, allow_unaligned_store, allow_unaligned_load,
d7a9512e 3277 &split_stores, &total_orig, &total_new);
a62b3dc5
JJ
3278
3279 if (split_stores.length () >= orig_num_stmts)
3280 {
3281 /* We didn't manage to reduce the number of statements. Bail out. */
3282 if (dump_file && (dump_flags & TDF_DETAILS))
d7a9512e
JJ
3283 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3284 " Not profitable to emit new sequence.\n",
3285 orig_num_stmts);
a62b3dc5
JJ
3286 return false;
3287 }
d7a9512e
JJ
3288 if (total_orig <= total_new)
3289 {
3290 /* If number of estimated new statements is above estimated original
3291 statements, bail out too. */
3292 if (dump_file && (dump_flags & TDF_DETAILS))
3293 fprintf (dump_file, "Estimated number of original stmts (%u)"
3294 " not larger than estimated number of new"
3295 " stmts (%u).\n",
3296 total_orig, total_new);
4b84d9b8 3297 return false;
d7a9512e 3298 }
f663d9ad
KT
3299
3300 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3301 gimple_seq seq = NULL;
f663d9ad
KT
3302 tree last_vdef, new_vuse;
3303 last_vdef = gimple_vdef (group->last_stmt);
3304 new_vuse = gimple_vuse (group->last_stmt);
4b84d9b8
JJ
3305 tree bswap_res = NULL_TREE;
3306
3307 if (group->stores[0]->rhs_code == LROTATE_EXPR
3308 || group->stores[0]->rhs_code == NOP_EXPR)
3309 {
3310 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3311 gimple *ins_stmt = group->stores[0]->ins_stmt;
3312 struct symbolic_number *n = &group->stores[0]->n;
3313 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3314
3315 switch (n->range)
3316 {
3317 case 16:
3318 load_type = bswap_type = uint16_type_node;
3319 break;
3320 case 32:
3321 load_type = uint32_type_node;
3322 if (bswap)
3323 {
3324 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3325 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3326 }
3327 break;
3328 case 64:
3329 load_type = uint64_type_node;
3330 if (bswap)
3331 {
3332 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3333 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3334 }
3335 break;
3336 default:
3337 gcc_unreachable ();
3338 }
3339
3340 /* If the loads have each vuse of the corresponding store,
3341 we've checked the aliasing already in try_coalesce_bswap and
3342 we want to sink the need load into seq. So need to use new_vuse
3343 on the load. */
3344 if (n->base_addr && n->vuse == NULL)
3345 {
3346 n->vuse = new_vuse;
3347 ins_stmt = NULL;
3348 }
3349 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3350 bswap_type, load_type, n, bswap);
3351 gcc_assert (bswap_res);
3352 }
f663d9ad
KT
3353
3354 gimple *stmt = NULL;
f663d9ad
KT
3355 split_store *split_store;
3356 unsigned int i;
245f6de1 3357 auto_vec<gimple *, 32> orig_stmts;
4b84d9b8
JJ
3358 gimple_seq this_seq;
3359 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
aa55dc0c 3360 is_gimple_mem_ref_addr, NULL_TREE);
4b84d9b8 3361 gimple_seq_add_seq_without_update (&seq, this_seq);
245f6de1
JJ
3362
3363 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3364 gimple_seq load_seq[2] = { NULL, NULL };
3365 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3366 for (int j = 0; j < 2; ++j)
3367 {
3368 store_operand_info &op = group->stores[0]->ops[j];
3369 if (op.base_addr == NULL_TREE)
3370 continue;
3371
3372 store_immediate_info *infol = group->stores.last ();
3373 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3374 {
97031af7
JJ
3375 /* We can't pick the location randomly; while we've verified
3376 all the loads have the same vuse, they can be still in different
3377 basic blocks and we need to pick the one from the last bb:
3378 int x = q[0];
3379 if (x == N) return;
3380 int y = q[1];
3381 p[0] = x;
3382 p[1] = y;
3383 otherwise if we put the wider load at the q[0] load, we might
3384 segfault if q[1] is not mapped. */
3385 basic_block bb = gimple_bb (op.stmt);
3386 gimple *ostmt = op.stmt;
3387 store_immediate_info *info;
3388 FOR_EACH_VEC_ELT (group->stores, i, info)
3389 {
3390 gimple *tstmt = info->ops[j].stmt;
3391 basic_block tbb = gimple_bb (tstmt);
3392 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3393 {
3394 ostmt = tstmt;
3395 bb = tbb;
3396 }
3397 }
3398 load_gsi[j] = gsi_for_stmt (ostmt);
245f6de1
JJ
3399 load_addr[j]
3400 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3401 &load_seq[j], is_gimple_mem_ref_addr,
3402 NULL_TREE);
3403 }
3404 else if (operand_equal_p (base_addr, op.base_addr, 0))
3405 load_addr[j] = addr;
3406 else
3e2927a1 3407 {
3e2927a1
JJ
3408 load_addr[j]
3409 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3410 &this_seq, is_gimple_mem_ref_addr,
3411 NULL_TREE);
3412 gimple_seq_add_seq_without_update (&seq, this_seq);
3413 }
245f6de1
JJ
3414 }
3415
f663d9ad
KT
3416 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3417 {
3418 unsigned HOST_WIDE_INT try_size = split_store->size;
3419 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
3420 unsigned HOST_WIDE_INT align = split_store->align;
a62b3dc5
JJ
3421 tree dest, src;
3422 location_t loc;
3423 if (split_store->orig)
3424 {
3425 /* If there is just a single constituent store which covers
3426 the whole area, just reuse the lhs and rhs. */
245f6de1
JJ
3427 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3428 dest = gimple_assign_lhs (orig_stmt);
3429 src = gimple_assign_rhs1 (orig_stmt);
3430 loc = gimple_location (orig_stmt);
a62b3dc5
JJ
3431 }
3432 else
3433 {
245f6de1
JJ
3434 store_immediate_info *info;
3435 unsigned short clique, base;
3436 unsigned int k;
3437 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3438 orig_stmts.safe_push (info->stmt);
a62b3dc5 3439 tree offset_type
245f6de1
JJ
3440 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3441 loc = get_location_for_stmts (orig_stmts);
3442 orig_stmts.truncate (0);
a62b3dc5
JJ
3443
3444 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3445 int_type = build_aligned_type (int_type, align);
3446 dest = fold_build2 (MEM_REF, int_type, addr,
3447 build_int_cst (offset_type, try_pos));
245f6de1
JJ
3448 if (TREE_CODE (dest) == MEM_REF)
3449 {
3450 MR_DEPENDENCE_CLIQUE (dest) = clique;
3451 MR_DEPENDENCE_BASE (dest) = base;
3452 }
3453
4b84d9b8
JJ
3454 tree mask = integer_zero_node;
3455 if (!bswap_res)
3456 mask = native_interpret_expr (int_type,
3457 group->mask + try_pos
3458 - start_byte_pos,
3459 group->buf_size);
245f6de1
JJ
3460
3461 tree ops[2];
3462 for (int j = 0;
3463 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3464 ++j)
3465 {
3466 store_operand_info &op = split_store->orig_stores[0]->ops[j];
4b84d9b8
JJ
3467 if (bswap_res)
3468 ops[j] = bswap_res;
3469 else if (op.base_addr)
245f6de1
JJ
3470 {
3471 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3472 orig_stmts.safe_push (info->ops[j].stmt);
3473
3474 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3475 &clique, &base);
3476 location_t load_loc = get_location_for_stmts (orig_stmts);
3477 orig_stmts.truncate (0);
3478
3479 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3480 unsigned HOST_WIDE_INT align_bitpos
3481 = (try_pos * BITS_PER_UNIT
3482 - split_store->orig_stores[0]->bitpos
3483 + op.bitpos) & (load_align - 1);
3484 if (align_bitpos)
3485 load_align = least_bit_hwi (align_bitpos);
3486
3487 tree load_int_type
3488 = build_nonstandard_integer_type (try_size, UNSIGNED);
3489 load_int_type
3490 = build_aligned_type (load_int_type, load_align);
3491
3492 unsigned HOST_WIDE_INT load_pos
3493 = (try_pos * BITS_PER_UNIT
3494 - split_store->orig_stores[0]->bitpos
3495 + op.bitpos) / BITS_PER_UNIT;
3496 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3497 build_int_cst (offset_type, load_pos));
3498 if (TREE_CODE (ops[j]) == MEM_REF)
3499 {
3500 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3501 MR_DEPENDENCE_BASE (ops[j]) = base;
3502 }
3503 if (!integer_zerop (mask))
3504 /* The load might load some bits (that will be masked off
3505 later on) uninitialized, avoid -W*uninitialized
3506 warnings in that case. */
3507 TREE_NO_WARNING (ops[j]) = 1;
3508
3509 stmt = gimple_build_assign (make_ssa_name (int_type),
3510 ops[j]);
3511 gimple_set_location (stmt, load_loc);
3512 if (gsi_bb (load_gsi[j]))
3513 {
3514 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3515 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3516 }
3517 else
3518 {
3519 gimple_set_vuse (stmt, new_vuse);
3520 gimple_seq_add_stmt_without_update (&seq, stmt);
3521 }
3522 ops[j] = gimple_assign_lhs (stmt);
a6fbd154
JJ
3523 tree xor_mask;
3524 enum tree_code inv_op
3525 = invert_op (split_store, j, int_type, xor_mask);
3526 if (inv_op != NOP_EXPR)
383ac8dc
JJ
3527 {
3528 stmt = gimple_build_assign (make_ssa_name (int_type),
a6fbd154 3529 inv_op, ops[j], xor_mask);
383ac8dc
JJ
3530 gimple_set_location (stmt, load_loc);
3531 ops[j] = gimple_assign_lhs (stmt);
3532
3533 if (gsi_bb (load_gsi[j]))
3534 gimple_seq_add_stmt_without_update (&load_seq[j],
3535 stmt);
3536 else
3537 gimple_seq_add_stmt_without_update (&seq, stmt);
3538 }
245f6de1
JJ
3539 }
3540 else
3541 ops[j] = native_interpret_expr (int_type,
3542 group->val + try_pos
3543 - start_byte_pos,
3544 group->buf_size);
3545 }
3546
3547 switch (split_store->orig_stores[0]->rhs_code)
3548 {
3549 case BIT_AND_EXPR:
3550 case BIT_IOR_EXPR:
3551 case BIT_XOR_EXPR:
3552 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3553 {
3554 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3555 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3556 }
3557 location_t bit_loc;
3558 bit_loc = get_location_for_stmts (orig_stmts);
3559 orig_stmts.truncate (0);
3560
3561 stmt
3562 = gimple_build_assign (make_ssa_name (int_type),
3563 split_store->orig_stores[0]->rhs_code,
3564 ops[0], ops[1]);
3565 gimple_set_location (stmt, bit_loc);
3566 /* If there is just one load and there is a separate
3567 load_seq[0], emit the bitwise op right after it. */
3568 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3569 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3570 /* Otherwise, if at least one load is in seq, we need to
3571 emit the bitwise op right before the store. If there
3572 are two loads and are emitted somewhere else, it would
3573 be better to emit the bitwise op as early as possible;
3574 we don't track where that would be possible right now
3575 though. */
3576 else
3577 gimple_seq_add_stmt_without_update (&seq, stmt);
3578 src = gimple_assign_lhs (stmt);
a6fbd154
JJ
3579 tree xor_mask;
3580 enum tree_code inv_op;
3581 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3582 if (inv_op != NOP_EXPR)
d60edaba
JJ
3583 {
3584 stmt = gimple_build_assign (make_ssa_name (int_type),
a6fbd154 3585 inv_op, src, xor_mask);
d60edaba
JJ
3586 gimple_set_location (stmt, bit_loc);
3587 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3588 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3589 else
3590 gimple_seq_add_stmt_without_update (&seq, stmt);
3591 src = gimple_assign_lhs (stmt);
3592 }
245f6de1 3593 break;
4b84d9b8
JJ
3594 case LROTATE_EXPR:
3595 case NOP_EXPR:
3596 src = ops[0];
3597 if (!is_gimple_val (src))
3598 {
3599 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3600 src);
3601 gimple_seq_add_stmt_without_update (&seq, stmt);
3602 src = gimple_assign_lhs (stmt);
3603 }
3604 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3605 {
3606 stmt = gimple_build_assign (make_ssa_name (int_type),
3607 NOP_EXPR, src);
3608 gimple_seq_add_stmt_without_update (&seq, stmt);
3609 src = gimple_assign_lhs (stmt);
3610 }
3611 break;
245f6de1
JJ
3612 default:
3613 src = ops[0];
3614 break;
3615 }
3616
a62b3dc5
JJ
3617 if (!integer_zerop (mask))
3618 {
3619 tree tem = make_ssa_name (int_type);
3620 tree load_src = unshare_expr (dest);
3621 /* The load might load some or all bits uninitialized,
3622 avoid -W*uninitialized warnings in that case.
3623 As optimization, it would be nice if all the bits are
3624 provably uninitialized (no stores at all yet or previous
3625 store a CLOBBER) we'd optimize away the load and replace
3626 it e.g. with 0. */
3627 TREE_NO_WARNING (load_src) = 1;
3628 stmt = gimple_build_assign (tem, load_src);
3629 gimple_set_location (stmt, loc);
3630 gimple_set_vuse (stmt, new_vuse);
3631 gimple_seq_add_stmt_without_update (&seq, stmt);
3632
3633 /* FIXME: If there is a single chunk of zero bits in mask,
3634 perhaps use BIT_INSERT_EXPR instead? */
3635 stmt = gimple_build_assign (make_ssa_name (int_type),
3636 BIT_AND_EXPR, tem, mask);
3637 gimple_set_location (stmt, loc);
3638 gimple_seq_add_stmt_without_update (&seq, stmt);
3639 tem = gimple_assign_lhs (stmt);
3640
245f6de1
JJ
3641 if (TREE_CODE (src) == INTEGER_CST)
3642 src = wide_int_to_tree (int_type,
3643 wi::bit_and_not (wi::to_wide (src),
3644 wi::to_wide (mask)));
3645 else
3646 {
3647 tree nmask
3648 = wide_int_to_tree (int_type,
3649 wi::bit_not (wi::to_wide (mask)));
3650 stmt = gimple_build_assign (make_ssa_name (int_type),
3651 BIT_AND_EXPR, src, nmask);
3652 gimple_set_location (stmt, loc);
3653 gimple_seq_add_stmt_without_update (&seq, stmt);
3654 src = gimple_assign_lhs (stmt);
3655 }
a62b3dc5
JJ
3656 stmt = gimple_build_assign (make_ssa_name (int_type),
3657 BIT_IOR_EXPR, tem, src);
3658 gimple_set_location (stmt, loc);
3659 gimple_seq_add_stmt_without_update (&seq, stmt);
3660 src = gimple_assign_lhs (stmt);
3661 }
3662 }
f663d9ad
KT
3663
3664 stmt = gimple_build_assign (dest, src);
3665 gimple_set_location (stmt, loc);
3666 gimple_set_vuse (stmt, new_vuse);
3667 gimple_seq_add_stmt_without_update (&seq, stmt);
3668
f663d9ad
KT
3669 tree new_vdef;
3670 if (i < split_stores.length () - 1)
a62b3dc5 3671 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
f663d9ad
KT
3672 else
3673 new_vdef = last_vdef;
3674
3675 gimple_set_vdef (stmt, new_vdef);
3676 SSA_NAME_DEF_STMT (new_vdef) = stmt;
3677 new_vuse = new_vdef;
3678 }
3679
3680 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3681 delete split_store;
3682
f663d9ad
KT
3683 gcc_assert (seq);
3684 if (dump_file)
3685 {
3686 fprintf (dump_file,
3687 "New sequence of %u stmts to replace old one of %u stmts\n",
a62b3dc5 3688 split_stores.length (), orig_num_stmts);
f663d9ad
KT
3689 if (dump_flags & TDF_DETAILS)
3690 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
3691 }
3692 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
245f6de1
JJ
3693 for (int j = 0; j < 2; ++j)
3694 if (load_seq[j])
3695 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
f663d9ad
KT
3696
3697 return true;
3698}
3699
3700/* Process the merged_store_group objects created in the coalescing phase.
3701 The stores are all against the base object BASE.
3702 Try to output the widened stores and delete the original statements if
3703 successful. Return true iff any changes were made. */
3704
3705bool
b5926e23 3706imm_store_chain_info::output_merged_stores ()
f663d9ad
KT
3707{
3708 unsigned int i;
3709 merged_store_group *merged_store;
3710 bool ret = false;
3711 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
3712 {
b5926e23 3713 if (output_merged_store (merged_store))
f663d9ad
KT
3714 {
3715 unsigned int j;
3716 store_immediate_info *store;
3717 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
3718 {
3719 gimple *stmt = store->stmt;
3720 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3721 gsi_remove (&gsi, true);
3722 if (stmt != merged_store->last_stmt)
3723 {
3724 unlink_stmt_vdef (stmt);
3725 release_defs (stmt);
3726 }
3727 }
3728 ret = true;
3729 }
3730 }
3731 if (ret && dump_file)
3732 fprintf (dump_file, "Merging successful!\n");
3733
3734 return ret;
3735}
3736
3737/* Coalesce the store_immediate_info objects recorded against the base object
3738 BASE in the first phase and output them.
3739 Delete the allocated structures.
3740 Return true if any changes were made. */
3741
3742bool
b5926e23 3743imm_store_chain_info::terminate_and_process_chain ()
f663d9ad
KT
3744{
3745 /* Process store chain. */
3746 bool ret = false;
3747 if (m_store_info.length () > 1)
3748 {
3749 ret = coalesce_immediate_stores ();
3750 if (ret)
b5926e23 3751 ret = output_merged_stores ();
f663d9ad
KT
3752 }
3753
3754 /* Delete all the entries we allocated ourselves. */
3755 store_immediate_info *info;
3756 unsigned int i;
3757 FOR_EACH_VEC_ELT (m_store_info, i, info)
3758 delete info;
3759
3760 merged_store_group *merged_info;
3761 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
3762 delete merged_info;
3763
3764 return ret;
3765}
3766
3767/* Return true iff LHS is a destination potentially interesting for
3768 store merging. In practice these are the codes that get_inner_reference
3769 can process. */
3770
3771static bool
3772lhs_valid_for_store_merging_p (tree lhs)
3773{
3774 tree_code code = TREE_CODE (lhs);
3775
3776 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
3777 || code == COMPONENT_REF || code == BIT_FIELD_REF)
3778 return true;
3779
3780 return false;
3781}
3782
3783/* Return true if the tree RHS is a constant we want to consider
3784 during store merging. In practice accept all codes that
3785 native_encode_expr accepts. */
3786
3787static bool
3788rhs_valid_for_store_merging_p (tree rhs)
3789{
2f391428
JJ
3790 return native_encode_expr (rhs, NULL,
3791 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs)))) != 0;
f663d9ad
KT
3792}
3793
245f6de1
JJ
3794/* If MEM is a memory reference usable for store merging (either as
3795 store destination or for loads), return the non-NULL base_addr
3796 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
3797 Otherwise return NULL, *PBITPOS should be still valid even for that
3798 case. */
3799
3800static tree
3801mem_valid_for_store_merging (tree mem, unsigned HOST_WIDE_INT *pbitsize,
3802 unsigned HOST_WIDE_INT *pbitpos,
3803 unsigned HOST_WIDE_INT *pbitregion_start,
3804 unsigned HOST_WIDE_INT *pbitregion_end)
3805{
3806 HOST_WIDE_INT bitsize;
3807 HOST_WIDE_INT bitpos;
3808 unsigned HOST_WIDE_INT bitregion_start = 0;
3809 unsigned HOST_WIDE_INT bitregion_end = 0;
3810 machine_mode mode;
3811 int unsignedp = 0, reversep = 0, volatilep = 0;
3812 tree offset;
3813 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
3814 &unsignedp, &reversep, &volatilep);
3815 *pbitsize = bitsize;
3816 if (bitsize == 0)
3817 return NULL_TREE;
3818
3819 if (TREE_CODE (mem) == COMPONENT_REF
3820 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
3821 {
3822 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
3823 if (bitregion_end)
3824 ++bitregion_end;
3825 }
3826
3827 if (reversep)
3828 return NULL_TREE;
3829
3830 /* We do not want to rewrite TARGET_MEM_REFs. */
3831 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
3832 return NULL_TREE;
3833 /* In some cases get_inner_reference may return a
3834 MEM_REF [ptr + byteoffset]. For the purposes of this pass
3835 canonicalize the base_addr to MEM_REF [ptr] and take
3836 byteoffset into account in the bitpos. This occurs in
3837 PR 23684 and this way we can catch more chains. */
3838 else if (TREE_CODE (base_addr) == MEM_REF)
3839 {
3840 offset_int bit_off, byte_off = mem_ref_offset (base_addr);
3841 bit_off = byte_off << LOG2_BITS_PER_UNIT;
3842 bit_off += bitpos;
3843 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
3844 {
3845 bitpos = bit_off.to_shwi ();
3846 if (bitregion_end)
3847 {
3848 bit_off = byte_off << LOG2_BITS_PER_UNIT;
3849 bit_off += bitregion_start;
3850 if (wi::fits_uhwi_p (bit_off))
3851 {
3852 bitregion_start = bit_off.to_uhwi ();
3853 bit_off = byte_off << LOG2_BITS_PER_UNIT;
3854 bit_off += bitregion_end;
3855 if (wi::fits_uhwi_p (bit_off))
3856 bitregion_end = bit_off.to_uhwi ();
3857 else
3858 bitregion_end = 0;
3859 }
3860 else
3861 bitregion_end = 0;
3862 }
3863 }
3864 else
3865 return NULL_TREE;
3866 base_addr = TREE_OPERAND (base_addr, 0);
3867 }
3868 /* get_inner_reference returns the base object, get at its
3869 address now. */
3870 else
3871 {
3872 if (bitpos < 0)
3873 return NULL_TREE;
3874 base_addr = build_fold_addr_expr (base_addr);
3875 }
3876
3877 if (!bitregion_end)
3878 {
3879 bitregion_start = ROUND_DOWN (bitpos, BITS_PER_UNIT);
3880 bitregion_end = ROUND_UP (bitpos + bitsize, BITS_PER_UNIT);
3881 }
3882
3883 if (offset != NULL_TREE)
3884 {
3885 /* If the access is variable offset then a base decl has to be
3886 address-taken to be able to emit pointer-based stores to it.
3887 ??? We might be able to get away with re-using the original
3888 base up to the first variable part and then wrapping that inside
3889 a BIT_FIELD_REF. */
3890 tree base = get_base_address (base_addr);
3891 if (! base
3892 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
3893 return NULL_TREE;
3894
3895 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
3896 base_addr, offset);
3897 }
3898
3899 *pbitsize = bitsize;
3900 *pbitpos = bitpos;
3901 *pbitregion_start = bitregion_start;
3902 *pbitregion_end = bitregion_end;
3903 return base_addr;
3904}
3905
3906/* Return true if STMT is a load that can be used for store merging.
3907 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
3908 BITREGION_END are properties of the corresponding store. */
3909
3910static bool
3911handled_load (gimple *stmt, store_operand_info *op,
3912 unsigned HOST_WIDE_INT bitsize, unsigned HOST_WIDE_INT bitpos,
3913 unsigned HOST_WIDE_INT bitregion_start,
3914 unsigned HOST_WIDE_INT bitregion_end)
3915{
383ac8dc 3916 if (!is_gimple_assign (stmt))
245f6de1 3917 return false;
383ac8dc
JJ
3918 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
3919 {
3920 tree rhs1 = gimple_assign_rhs1 (stmt);
3921 if (TREE_CODE (rhs1) == SSA_NAME
383ac8dc
JJ
3922 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
3923 bitregion_start, bitregion_end))
3924 {
d60edaba
JJ
3925 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
3926 been optimized earlier, but if allowed here, would confuse the
3927 multiple uses counting. */
3928 if (op->bit_not_p)
3929 return false;
383ac8dc
JJ
3930 op->bit_not_p = !op->bit_not_p;
3931 return true;
3932 }
3933 return false;
3934 }
3935 if (gimple_vuse (stmt)
3936 && gimple_assign_load_p (stmt)
245f6de1
JJ
3937 && !stmt_can_throw_internal (stmt)
3938 && !gimple_has_volatile_ops (stmt))
3939 {
3940 tree mem = gimple_assign_rhs1 (stmt);
3941 op->base_addr
3942 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
3943 &op->bitregion_start,
3944 &op->bitregion_end);
3945 if (op->base_addr != NULL_TREE
3946 && op->bitsize == bitsize
3947 && ((op->bitpos - bitpos) % BITS_PER_UNIT) == 0
3948 && op->bitpos - op->bitregion_start >= bitpos - bitregion_start
3949 && op->bitregion_end - op->bitpos >= bitregion_end - bitpos)
3950 {
3951 op->stmt = stmt;
3952 op->val = mem;
383ac8dc 3953 op->bit_not_p = false;
245f6de1
JJ
3954 return true;
3955 }
3956 }
3957 return false;
3958}
3959
3960/* Record the store STMT for store merging optimization if it can be
3961 optimized. */
3962
3963void
3964pass_store_merging::process_store (gimple *stmt)
3965{
3966 tree lhs = gimple_assign_lhs (stmt);
3967 tree rhs = gimple_assign_rhs1 (stmt);
3968 unsigned HOST_WIDE_INT bitsize, bitpos;
3969 unsigned HOST_WIDE_INT bitregion_start;
3970 unsigned HOST_WIDE_INT bitregion_end;
3971 tree base_addr
3972 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
3973 &bitregion_start, &bitregion_end);
3974 if (bitsize == 0)
3975 return;
3976
3977 bool invalid = (base_addr == NULL_TREE
3978 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
3979 && (TREE_CODE (rhs) != INTEGER_CST)));
3980 enum tree_code rhs_code = ERROR_MARK;
d60edaba 3981 bool bit_not_p = false;
4b84d9b8
JJ
3982 struct symbolic_number n;
3983 gimple *ins_stmt = NULL;
245f6de1
JJ
3984 store_operand_info ops[2];
3985 if (invalid)
3986 ;
3987 else if (rhs_valid_for_store_merging_p (rhs))
3988 {
3989 rhs_code = INTEGER_CST;
3990 ops[0].val = rhs;
3991 }
d7a9512e 3992 else if (TREE_CODE (rhs) != SSA_NAME)
245f6de1
JJ
3993 invalid = true;
3994 else
3995 {
3996 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
3997 if (!is_gimple_assign (def_stmt))
3998 invalid = true;
3999 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4000 bitregion_start, bitregion_end))
4001 rhs_code = MEM_REF;
d60edaba
JJ
4002 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4003 {
4004 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4005 if (TREE_CODE (rhs1) == SSA_NAME
4006 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4007 {
4008 bit_not_p = true;
4009 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4010 }
4011 }
4012 if (rhs_code == ERROR_MARK && !invalid)
245f6de1
JJ
4013 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4014 {
4015 case BIT_AND_EXPR:
4016 case BIT_IOR_EXPR:
4017 case BIT_XOR_EXPR:
4018 tree rhs1, rhs2;
4019 rhs1 = gimple_assign_rhs1 (def_stmt);
4020 rhs2 = gimple_assign_rhs2 (def_stmt);
4021 invalid = true;
d7a9512e 4022 if (TREE_CODE (rhs1) != SSA_NAME)
245f6de1
JJ
4023 break;
4024 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4025 if (!is_gimple_assign (def_stmt1)
4026 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4027 bitregion_start, bitregion_end))
4028 break;
4029 if (rhs_valid_for_store_merging_p (rhs2))
4030 ops[1].val = rhs2;
d7a9512e 4031 else if (TREE_CODE (rhs2) != SSA_NAME)
245f6de1
JJ
4032 break;
4033 else
4034 {
4035 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4036 if (!is_gimple_assign (def_stmt2))
4037 break;
4038 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4039 bitregion_start, bitregion_end))
4040 break;
4041 }
4042 invalid = false;
4043 break;
4044 default:
4045 invalid = true;
4046 break;
4047 }
4b84d9b8
JJ
4048 if ((bitsize % BITS_PER_UNIT) == 0
4049 && (bitpos % BITS_PER_UNIT) == 0
4050 && bitsize <= 64
4051 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN)
4052 {
4053 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4054 if (ins_stmt)
4055 {
4056 uint64_t nn = n.n;
4057 for (unsigned HOST_WIDE_INT i = 0;
4058 i < bitsize; i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
4059 if ((nn & MARKER_MASK) == 0
4060 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4061 {
4062 ins_stmt = NULL;
4063 break;
4064 }
4065 if (ins_stmt)
4066 {
4067 if (invalid)
4068 {
4069 rhs_code = LROTATE_EXPR;
4070 ops[0].base_addr = NULL_TREE;
4071 ops[1].base_addr = NULL_TREE;
4072 }
4073 invalid = false;
4074 }
4075 }
4076 }
245f6de1
JJ
4077 }
4078
245f6de1
JJ
4079 if (invalid)
4080 {
383ac8dc 4081 terminate_all_aliasing_chains (NULL, stmt);
245f6de1
JJ
4082 return;
4083 }
4084
4b84d9b8
JJ
4085 if (!ins_stmt)
4086 memset (&n, 0, sizeof (n));
4087
383ac8dc
JJ
4088 struct imm_store_chain_info **chain_info = NULL;
4089 if (base_addr)
4090 chain_info = m_stores.get (base_addr);
4091
245f6de1
JJ
4092 store_immediate_info *info;
4093 if (chain_info)
4094 {
4095 unsigned int ord = (*chain_info)->m_store_info.length ();
4096 info = new store_immediate_info (bitsize, bitpos, bitregion_start,
4097 bitregion_end, stmt, ord, rhs_code,
4b84d9b8 4098 n, ins_stmt,
d60edaba 4099 bit_not_p, ops[0], ops[1]);
245f6de1
JJ
4100 if (dump_file && (dump_flags & TDF_DETAILS))
4101 {
4102 fprintf (dump_file, "Recording immediate store from stmt:\n");
4103 print_gimple_stmt (dump_file, stmt, 0);
4104 }
4105 (*chain_info)->m_store_info.safe_push (info);
383ac8dc 4106 terminate_all_aliasing_chains (chain_info, stmt);
245f6de1
JJ
4107 /* If we reach the limit of stores to merge in a chain terminate and
4108 process the chain now. */
4109 if ((*chain_info)->m_store_info.length ()
4110 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4111 {
4112 if (dump_file && (dump_flags & TDF_DETAILS))
4113 fprintf (dump_file,
4114 "Reached maximum number of statements to merge:\n");
4115 terminate_and_release_chain (*chain_info);
4116 }
4117 return;
4118 }
4119
4120 /* Store aliases any existing chain? */
383ac8dc 4121 terminate_all_aliasing_chains (NULL, stmt);
245f6de1
JJ
4122 /* Start a new chain. */
4123 struct imm_store_chain_info *new_chain
4124 = new imm_store_chain_info (m_stores_head, base_addr);
4125 info = new store_immediate_info (bitsize, bitpos, bitregion_start,
4126 bitregion_end, stmt, 0, rhs_code,
4b84d9b8 4127 n, ins_stmt,
d60edaba 4128 bit_not_p, ops[0], ops[1]);
245f6de1
JJ
4129 new_chain->m_store_info.safe_push (info);
4130 m_stores.put (base_addr, new_chain);
4131 if (dump_file && (dump_flags & TDF_DETAILS))
4132 {
4133 fprintf (dump_file, "Starting new chain with statement:\n");
4134 print_gimple_stmt (dump_file, stmt, 0);
4135 fprintf (dump_file, "The base object is:\n");
4136 print_generic_expr (dump_file, base_addr);
4137 fprintf (dump_file, "\n");
4138 }
4139}
4140
f663d9ad 4141/* Entry point for the pass. Go over each basic block recording chains of
245f6de1
JJ
4142 immediate stores. Upon encountering a terminating statement (as defined
4143 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4144 variants. */
f663d9ad
KT
4145
4146unsigned int
4147pass_store_merging::execute (function *fun)
4148{
4149 basic_block bb;
4150 hash_set<gimple *> orig_stmts;
4151
4b84d9b8
JJ
4152 calculate_dominance_info (CDI_DOMINATORS);
4153
f663d9ad
KT
4154 FOR_EACH_BB_FN (bb, fun)
4155 {
4156 gimple_stmt_iterator gsi;
4157 unsigned HOST_WIDE_INT num_statements = 0;
4158 /* Record the original statements so that we can keep track of
4159 statements emitted in this pass and not re-process new
4160 statements. */
4161 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4162 {
4163 if (is_gimple_debug (gsi_stmt (gsi)))
4164 continue;
4165
2f391428 4166 if (++num_statements >= 2)
f663d9ad
KT
4167 break;
4168 }
4169
4170 if (num_statements < 2)
4171 continue;
4172
4173 if (dump_file && (dump_flags & TDF_DETAILS))
4174 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4175
4176 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4177 {
4178 gimple *stmt = gsi_stmt (gsi);
4179
50b6d676
AO
4180 if (is_gimple_debug (stmt))
4181 continue;
4182
f663d9ad
KT
4183 if (gimple_has_volatile_ops (stmt))
4184 {
4185 /* Terminate all chains. */
4186 if (dump_file && (dump_flags & TDF_DETAILS))
4187 fprintf (dump_file, "Volatile access terminates "
4188 "all chains\n");
4189 terminate_and_process_all_chains ();
4190 continue;
4191 }
4192
f663d9ad
KT
4193 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
4194 && !stmt_can_throw_internal (stmt)
4195 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
245f6de1
JJ
4196 process_store (stmt);
4197 else
4198 terminate_all_aliasing_chains (NULL, stmt);
f663d9ad
KT
4199 }
4200 terminate_and_process_all_chains ();
4201 }
4202 return 0;
4203}
4204
4205} // anon namespace
4206
4207/* Construct and return a store merging pass object. */
4208
4209gimple_opt_pass *
4210make_pass_store_merging (gcc::context *ctxt)
4211{
4212 return new pass_store_merging (ctxt);
4213}
c22d8787
KT
4214
4215#if CHECKING_P
4216
4217namespace selftest {
4218
4219/* Selftests for store merging helpers. */
4220
4221/* Assert that all elements of the byte arrays X and Y, both of length N
4222 are equal. */
4223
4224static void
4225verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4226{
4227 for (unsigned int i = 0; i < n; i++)
4228 {
4229 if (x[i] != y[i])
4230 {
4231 fprintf (stderr, "Arrays do not match. X:\n");
4232 dump_char_array (stderr, x, n);
4233 fprintf (stderr, "Y:\n");
4234 dump_char_array (stderr, y, n);
4235 }
4236 ASSERT_EQ (x[i], y[i]);
4237 }
4238}
4239
4240/* Test shift_bytes_in_array and that it carries bits across between
4241 bytes correctly. */
4242
4243static void
4244verify_shift_bytes_in_array (void)
4245{
4246 /* byte 1 | byte 0
4247 00011111 | 11100000. */
4248 unsigned char orig[2] = { 0xe0, 0x1f };
4249 unsigned char in[2];
4250 memcpy (in, orig, sizeof orig);
4251
4252 unsigned char expected[2] = { 0x80, 0x7f };
4253 shift_bytes_in_array (in, sizeof (in), 2);
4254 verify_array_eq (in, expected, sizeof (in));
4255
4256 memcpy (in, orig, sizeof orig);
4257 memcpy (expected, orig, sizeof orig);
4258 /* Check that shifting by zero doesn't change anything. */
4259 shift_bytes_in_array (in, sizeof (in), 0);
4260 verify_array_eq (in, expected, sizeof (in));
4261
4262}
4263
4264/* Test shift_bytes_in_array_right and that it carries bits across between
4265 bytes correctly. */
4266
4267static void
4268verify_shift_bytes_in_array_right (void)
4269{
4270 /* byte 1 | byte 0
4271 00011111 | 11100000. */
4272 unsigned char orig[2] = { 0x1f, 0xe0};
4273 unsigned char in[2];
4274 memcpy (in, orig, sizeof orig);
4275 unsigned char expected[2] = { 0x07, 0xf8};
4276 shift_bytes_in_array_right (in, sizeof (in), 2);
4277 verify_array_eq (in, expected, sizeof (in));
4278
4279 memcpy (in, orig, sizeof orig);
4280 memcpy (expected, orig, sizeof orig);
4281 /* Check that shifting by zero doesn't change anything. */
4282 shift_bytes_in_array_right (in, sizeof (in), 0);
4283 verify_array_eq (in, expected, sizeof (in));
4284}
4285
4286/* Test clear_bit_region that it clears exactly the bits asked and
4287 nothing more. */
4288
4289static void
4290verify_clear_bit_region (void)
4291{
4292 /* Start with all bits set and test clearing various patterns in them. */
4293 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4294 unsigned char in[3];
4295 unsigned char expected[3];
4296 memcpy (in, orig, sizeof in);
4297
4298 /* Check zeroing out all the bits. */
4299 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4300 expected[0] = expected[1] = expected[2] = 0;
4301 verify_array_eq (in, expected, sizeof in);
4302
4303 memcpy (in, orig, sizeof in);
4304 /* Leave the first and last bits intact. */
4305 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4306 expected[0] = 0x1;
4307 expected[1] = 0;
4308 expected[2] = 0x80;
4309 verify_array_eq (in, expected, sizeof in);
4310}
4311
4312/* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4313 nothing more. */
4314
4315static void
4316verify_clear_bit_region_be (void)
4317{
4318 /* Start with all bits set and test clearing various patterns in them. */
4319 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4320 unsigned char in[3];
4321 unsigned char expected[3];
4322 memcpy (in, orig, sizeof in);
4323
4324 /* Check zeroing out all the bits. */
4325 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4326 expected[0] = expected[1] = expected[2] = 0;
4327 verify_array_eq (in, expected, sizeof in);
4328
4329 memcpy (in, orig, sizeof in);
4330 /* Leave the first and last bits intact. */
4331 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4332 expected[0] = 0x80;
4333 expected[1] = 0;
4334 expected[2] = 0x1;
4335 verify_array_eq (in, expected, sizeof in);
4336}
4337
4338
4339/* Run all of the selftests within this file. */
4340
4341void
4342store_merging_c_tests (void)
4343{
4344 verify_shift_bytes_in_array ();
4345 verify_shift_bytes_in_array_right ();
4346 verify_clear_bit_region ();
4347 verify_clear_bit_region_be ();
4348}
4349
4350} // namespace selftest
4351#endif /* CHECKING_P. */