]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-store-merging.c
2018-11-01 Thomas Koenig <tkoenig@gcc.gnu.org>
[thirdparty/gcc.git] / gcc / gimple-ssa-store-merging.c
CommitLineData
4aba7bd3 1/* GIMPLE store merging and byte swapping passes.
8e8f6434 2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3d3e04ac 3 Contributed by ARM Ltd.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
10f0d48d 21/* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
24
3d3e04ac 25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
27 [p ] := imm1;
28 [p + 1B] := imm2;
29 [p + 2B] := imm3;
30 [p + 3B] := imm4;
31 we can transform this into a single 4-byte store if the target supports it:
10f0d48d 32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
3d3e04ac 33
9991d1d3 34 Or:
35 [p ] := [q ];
36 [p + 1B] := [q + 1B];
37 [p + 2B] := [q + 2B];
38 [p + 3B] := [q + 3B];
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
41
42 Or:
43 [p ] := [q ] ^ imm1;
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
49
10f0d48d 50 Or:
51 [p:1 ] := imm;
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
55
3d3e04ac 56 The algorithm is applied to each basic block in three phases:
57
10f0d48d 58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
9991d1d3 62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when when the stored
65 values get used subsequently).
3d3e04ac 66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
10f0d48d 70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
9991d1d3 72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
3d3e04ac 74
10f0d48d 75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
3d3e04ac 76 store_immediate_info objects) and coalesce contiguous stores into
10f0d48d 77 merged_store_group objects. For bit-field stores, we don't need to
9991d1d3 78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
3d3e04ac 83
84 For example, given the stores:
85 [p ] := 0;
86 [p + 1B] := 1;
87 [p + 3B] := 0;
88 [p + 4B] := 1;
89 [p + 5B] := 0;
90 [p + 6B] := 0;
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
94
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
10f0d48d 101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
3d3e04ac 103
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
106 [p ] := 0x1234;
107 [p + 2B] := 0x5678;
108 [p + 4B] := 0xab;
109 [p + 5B] := 0xcd;
110
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
112 p |LE|BE|
113 ---------
114 0 |34|12|
115 1 |12|34|
116 2 |78|56|
117 3 |56|78|
118 4 |ab|ab|
119 5 |cd|cd|
120
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
125
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
129
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
136
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
140
141#include "config.h"
142#include "system.h"
143#include "coretypes.h"
144#include "backend.h"
145#include "tree.h"
146#include "gimple.h"
147#include "builtins.h"
148#include "fold-const.h"
149#include "tree-pass.h"
150#include "ssa.h"
151#include "gimple-pretty-print.h"
152#include "alias.h"
153#include "fold-const.h"
154#include "params.h"
155#include "print-tree.h"
156#include "tree-hash-traits.h"
157#include "gimple-iterator.h"
158#include "gimplify.h"
10f0d48d 159#include "gimple-fold.h"
3d3e04ac 160#include "stor-layout.h"
161#include "timevar.h"
162#include "tree-cfg.h"
163#include "tree-eh.h"
164#include "target.h"
427223f1 165#include "gimplify-me.h"
902cb3b7 166#include "rtl.h"
167#include "expr.h" /* For get_bit_range. */
4aba7bd3 168#include "optabs-tree.h"
3d9a2fb3 169#include "selftest.h"
3d3e04ac 170
171/* The maximum size (in bits) of the stores this pass should generate. */
172#define MAX_STORE_BITSIZE (BITS_PER_WORD)
173#define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
174
9991d1d3 175/* Limit to bound the number of aliasing checks for loads with the same
176 vuse as the corresponding store. */
177#define MAX_STORE_ALIAS_CHECKS 64
178
3d3e04ac 179namespace {
180
81c8113b 181struct bswap_stat
4aba7bd3 182{
183 /* Number of hand-written 16-bit nop / bswaps found. */
184 int found_16bit;
185
186 /* Number of hand-written 32-bit nop / bswaps found. */
187 int found_32bit;
188
189 /* Number of hand-written 64-bit nop / bswaps found. */
190 int found_64bit;
191} nop_stats, bswap_stats;
192
193/* A symbolic number structure is used to detect byte permutation and selection
194 patterns of a source. To achieve that, its field N contains an artificial
195 number consisting of BITS_PER_MARKER sized markers tracking where does each
196 byte come from in the source:
197
198 0 - target byte has the value 0
199 FF - target byte has an unknown value (eg. due to sign extension)
200 1..size - marker value is the byte index in the source (0 for lsb).
201
202 To detect permutations on memory sources (arrays and structures), a symbolic
203 number is also associated:
204 - a base address BASE_ADDR and an OFFSET giving the address of the source;
205 - a range which gives the difference between the highest and lowest accessed
206 memory location to make such a symbolic number;
207 - the address SRC of the source element of lowest address as a convenience
208 to easily get BASE_ADDR + offset + lowest bytepos;
209 - number of expressions N_OPS bitwise ored together to represent
210 approximate cost of the computation.
211
212 Note 1: the range is different from size as size reflects the size of the
213 type of the current expression. For instance, for an array char a[],
214 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
215 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
216 time a range of 1.
217
218 Note 2: for non-memory sources, range holds the same value as size.
219
220 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
221
222struct symbolic_number {
223 uint64_t n;
224 tree type;
225 tree base_addr;
226 tree offset;
08454aa5 227 poly_int64_pod bytepos;
4aba7bd3 228 tree src;
229 tree alias_set;
230 tree vuse;
231 unsigned HOST_WIDE_INT range;
232 int n_ops;
233};
234
235#define BITS_PER_MARKER 8
236#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
237#define MARKER_BYTE_UNKNOWN MARKER_MASK
238#define HEAD_MARKER(n, size) \
239 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
240
241/* The number which the find_bswap_or_nop_1 result should match in
242 order to have a nop. The number is masked according to the size of
243 the symbolic number before using it. */
244#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
245 (uint64_t)0x08070605 << 32 | 0x04030201)
246
247/* The number which the find_bswap_or_nop_1 result should match in
248 order to have a byte swap. The number is masked according to the
249 size of the symbolic number before using it. */
250#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
251 (uint64_t)0x01020304 << 32 | 0x05060708)
252
253/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
254 number N. Return false if the requested operation is not permitted
255 on a symbolic number. */
256
257inline bool
258do_shift_rotate (enum tree_code code,
259 struct symbolic_number *n,
260 int count)
261{
262 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
263 unsigned head_marker;
264
265 if (count % BITS_PER_UNIT != 0)
266 return false;
267 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
268
269 /* Zero out the extra bits of N in order to avoid them being shifted
270 into the significant bits. */
271 if (size < 64 / BITS_PER_MARKER)
272 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
273
274 switch (code)
275 {
276 case LSHIFT_EXPR:
277 n->n <<= count;
278 break;
279 case RSHIFT_EXPR:
280 head_marker = HEAD_MARKER (n->n, size);
281 n->n >>= count;
282 /* Arithmetic shift of signed type: result is dependent on the value. */
283 if (!TYPE_UNSIGNED (n->type) && head_marker)
284 for (i = 0; i < count / BITS_PER_MARKER; i++)
285 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
286 << ((size - 1 - i) * BITS_PER_MARKER);
287 break;
288 case LROTATE_EXPR:
289 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
290 break;
291 case RROTATE_EXPR:
292 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
293 break;
294 default:
295 return false;
296 }
297 /* Zero unused bits for size. */
298 if (size < 64 / BITS_PER_MARKER)
299 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
300 return true;
301}
302
303/* Perform sanity checking for the symbolic number N and the gimple
304 statement STMT. */
305
306inline bool
307verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
308{
309 tree lhs_type;
310
311 lhs_type = gimple_expr_type (stmt);
312
313 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
314 return false;
315
316 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
317 return false;
318
319 return true;
320}
321
322/* Initialize the symbolic number N for the bswap pass from the base element
323 SRC manipulated by the bitwise OR expression. */
324
325bool
326init_symbolic_number (struct symbolic_number *n, tree src)
327{
328 int size;
329
330 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
331 return false;
332
333 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
334 n->src = src;
335
336 /* Set up the symbolic number N by setting each byte to a value between 1 and
337 the byte size of rhs1. The highest order byte is set to n->size and the
338 lowest order byte to 1. */
339 n->type = TREE_TYPE (src);
340 size = TYPE_PRECISION (n->type);
341 if (size % BITS_PER_UNIT != 0)
342 return false;
343 size /= BITS_PER_UNIT;
344 if (size > 64 / BITS_PER_MARKER)
345 return false;
346 n->range = size;
347 n->n = CMPNOP;
348 n->n_ops = 1;
349
350 if (size < 64 / BITS_PER_MARKER)
351 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
352
353 return true;
354}
355
356/* Check if STMT might be a byte swap or a nop from a memory source and returns
357 the answer. If so, REF is that memory source and the base of the memory area
358 accessed and the offset of the access from that base are recorded in N. */
359
360bool
361find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
362{
363 /* Leaf node is an array or component ref. Memorize its base and
364 offset from base to compare to other such leaf node. */
81bc0f0f 365 poly_int64 bitsize, bitpos, bytepos;
4aba7bd3 366 machine_mode mode;
367 int unsignedp, reversep, volatilep;
368 tree offset, base_addr;
369
370 /* Not prepared to handle PDP endian. */
371 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
372 return false;
373
374 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
375 return false;
376
377 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
378 &unsignedp, &reversep, &volatilep);
379
509ab8cd 380 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
381 /* Do not rewrite TARGET_MEM_REF. */
382 return false;
383 else if (TREE_CODE (base_addr) == MEM_REF)
4aba7bd3 384 {
9c6deaf0 385 poly_offset_int bit_offset = 0;
4aba7bd3 386 tree off = TREE_OPERAND (base_addr, 1);
387
388 if (!integer_zerop (off))
389 {
9c6deaf0 390 poly_offset_int boff = mem_ref_offset (base_addr);
391 boff <<= LOG2_BITS_PER_UNIT;
4aba7bd3 392 bit_offset += boff;
393 }
394
395 base_addr = TREE_OPERAND (base_addr, 0);
396
397 /* Avoid returning a negative bitpos as this may wreak havoc later. */
9c6deaf0 398 if (maybe_lt (bit_offset, 0))
4aba7bd3 399 {
9c6deaf0 400 tree byte_offset = wide_int_to_tree
401 (sizetype, bits_to_bytes_round_down (bit_offset));
402 bit_offset = num_trailing_bits (bit_offset);
4aba7bd3 403 if (offset)
9c6deaf0 404 offset = size_binop (PLUS_EXPR, offset, byte_offset);
4aba7bd3 405 else
9c6deaf0 406 offset = byte_offset;
4aba7bd3 407 }
408
9c6deaf0 409 bitpos += bit_offset.force_shwi ();
4aba7bd3 410 }
509ab8cd 411 else
412 base_addr = build_fold_addr_expr (base_addr);
4aba7bd3 413
81bc0f0f 414 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
4aba7bd3 415 return false;
81bc0f0f 416 if (!multiple_p (bitsize, BITS_PER_UNIT))
4aba7bd3 417 return false;
418 if (reversep)
419 return false;
420
421 if (!init_symbolic_number (n, ref))
422 return false;
423 n->base_addr = base_addr;
424 n->offset = offset;
81bc0f0f 425 n->bytepos = bytepos;
4aba7bd3 426 n->alias_set = reference_alias_ptr_type (ref);
427 n->vuse = gimple_vuse (stmt);
428 return true;
429}
430
431/* Compute the symbolic number N representing the result of a bitwise OR on 2
432 symbolic number N1 and N2 whose source statements are respectively
433 SOURCE_STMT1 and SOURCE_STMT2. */
434
435gimple *
436perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
437 gimple *source_stmt2, struct symbolic_number *n2,
438 struct symbolic_number *n)
439{
440 int i, size;
441 uint64_t mask;
442 gimple *source_stmt;
443 struct symbolic_number *n_start;
444
445 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
446 if (TREE_CODE (rhs1) == BIT_FIELD_REF
447 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
448 rhs1 = TREE_OPERAND (rhs1, 0);
449 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
450 if (TREE_CODE (rhs2) == BIT_FIELD_REF
451 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
452 rhs2 = TREE_OPERAND (rhs2, 0);
453
454 /* Sources are different, cancel bswap if they are not memory location with
455 the same base (array, structure, ...). */
456 if (rhs1 != rhs2)
457 {
458 uint64_t inc;
08454aa5 459 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
4aba7bd3 460 struct symbolic_number *toinc_n_ptr, *n_end;
461 basic_block bb1, bb2;
462
463 if (!n1->base_addr || !n2->base_addr
464 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
465 return NULL;
466
467 if (!n1->offset != !n2->offset
468 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
469 return NULL;
470
08454aa5 471 start1 = 0;
472 if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
473 return NULL;
474
475 if (start1 < start2)
4aba7bd3 476 {
477 n_start = n1;
08454aa5 478 start_sub = start2 - start1;
4aba7bd3 479 }
480 else
481 {
482 n_start = n2;
08454aa5 483 start_sub = start1 - start2;
4aba7bd3 484 }
485
486 bb1 = gimple_bb (source_stmt1);
487 bb2 = gimple_bb (source_stmt2);
488 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
489 source_stmt = source_stmt1;
490 else
491 source_stmt = source_stmt2;
492
493 /* Find the highest address at which a load is performed and
494 compute related info. */
08454aa5 495 end1 = start1 + (n1->range - 1);
496 end2 = start2 + (n2->range - 1);
4aba7bd3 497 if (end1 < end2)
498 {
499 end = end2;
500 end_sub = end2 - end1;
501 }
502 else
503 {
504 end = end1;
505 end_sub = end1 - end2;
506 }
507 n_end = (end2 > end1) ? n2 : n1;
508
509 /* Find symbolic number whose lsb is the most significant. */
510 if (BYTES_BIG_ENDIAN)
511 toinc_n_ptr = (n_end == n1) ? n2 : n1;
512 else
513 toinc_n_ptr = (n_start == n1) ? n2 : n1;
514
08454aa5 515 n->range = end - MIN (start1, start2) + 1;
4aba7bd3 516
517 /* Check that the range of memory covered can be represented by
518 a symbolic number. */
519 if (n->range > 64 / BITS_PER_MARKER)
520 return NULL;
521
522 /* Reinterpret byte marks in symbolic number holding the value of
523 bigger weight according to target endianness. */
524 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
525 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
526 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
527 {
528 unsigned marker
529 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
530 if (marker && marker != MARKER_BYTE_UNKNOWN)
531 toinc_n_ptr->n += inc;
532 }
533 }
534 else
535 {
536 n->range = n1->range;
537 n_start = n1;
538 source_stmt = source_stmt1;
539 }
540
541 if (!n1->alias_set
542 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
543 n->alias_set = n1->alias_set;
544 else
545 n->alias_set = ptr_type_node;
546 n->vuse = n_start->vuse;
547 n->base_addr = n_start->base_addr;
548 n->offset = n_start->offset;
549 n->src = n_start->src;
550 n->bytepos = n_start->bytepos;
551 n->type = n_start->type;
552 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
553
554 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
555 {
556 uint64_t masked1, masked2;
557
558 masked1 = n1->n & mask;
559 masked2 = n2->n & mask;
560 if (masked1 && masked2 && masked1 != masked2)
561 return NULL;
562 }
563 n->n = n1->n | n2->n;
564 n->n_ops = n1->n_ops + n2->n_ops;
565
566 return source_stmt;
567}
568
569/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
570 the operation given by the rhs of STMT on the result. If the operation
571 could successfully be executed the function returns a gimple stmt whose
572 rhs's first tree is the expression of the source operand and NULL
573 otherwise. */
574
575gimple *
576find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
577{
578 enum tree_code code;
579 tree rhs1, rhs2 = NULL;
580 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
581 enum gimple_rhs_class rhs_class;
582
583 if (!limit || !is_gimple_assign (stmt))
584 return NULL;
585
586 rhs1 = gimple_assign_rhs1 (stmt);
587
588 if (find_bswap_or_nop_load (stmt, rhs1, n))
589 return stmt;
590
591 /* Handle BIT_FIELD_REF. */
592 if (TREE_CODE (rhs1) == BIT_FIELD_REF
593 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
594 {
595 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
596 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
597 if (bitpos % BITS_PER_UNIT == 0
598 && bitsize % BITS_PER_UNIT == 0
599 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
600 {
601 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
602 if (BYTES_BIG_ENDIAN)
603 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
604
605 /* Shift. */
606 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
607 return NULL;
608
609 /* Mask. */
610 uint64_t mask = 0;
611 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
612 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
613 i++, tmp <<= BITS_PER_UNIT)
614 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
615 n->n &= mask;
616
617 /* Convert. */
618 n->type = TREE_TYPE (rhs1);
619 if (!n->base_addr)
620 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
621
622 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
623 }
624
625 return NULL;
626 }
627
628 if (TREE_CODE (rhs1) != SSA_NAME)
629 return NULL;
630
631 code = gimple_assign_rhs_code (stmt);
632 rhs_class = gimple_assign_rhs_class (stmt);
633 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
634
635 if (rhs_class == GIMPLE_BINARY_RHS)
636 rhs2 = gimple_assign_rhs2 (stmt);
637
638 /* Handle unary rhs and binary rhs with integer constants as second
639 operand. */
640
641 if (rhs_class == GIMPLE_UNARY_RHS
642 || (rhs_class == GIMPLE_BINARY_RHS
643 && TREE_CODE (rhs2) == INTEGER_CST))
644 {
645 if (code != BIT_AND_EXPR
646 && code != LSHIFT_EXPR
647 && code != RSHIFT_EXPR
648 && code != LROTATE_EXPR
649 && code != RROTATE_EXPR
650 && !CONVERT_EXPR_CODE_P (code))
651 return NULL;
652
653 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
654
655 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
656 we have to initialize the symbolic number. */
657 if (!source_stmt1)
658 {
659 if (gimple_assign_load_p (stmt)
660 || !init_symbolic_number (n, rhs1))
661 return NULL;
662 source_stmt1 = stmt;
663 }
664
665 switch (code)
666 {
667 case BIT_AND_EXPR:
668 {
669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
670 uint64_t val = int_cst_value (rhs2), mask = 0;
671 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
672
673 /* Only constants masking full bytes are allowed. */
674 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
675 if ((val & tmp) != 0 && (val & tmp) != tmp)
676 return NULL;
677 else if (val & tmp)
678 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
679
680 n->n &= mask;
681 }
682 break;
683 case LSHIFT_EXPR:
684 case RSHIFT_EXPR:
685 case LROTATE_EXPR:
686 case RROTATE_EXPR:
687 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
688 return NULL;
689 break;
690 CASE_CONVERT:
691 {
692 int i, type_size, old_type_size;
693 tree type;
694
695 type = gimple_expr_type (stmt);
696 type_size = TYPE_PRECISION (type);
697 if (type_size % BITS_PER_UNIT != 0)
698 return NULL;
699 type_size /= BITS_PER_UNIT;
700 if (type_size > 64 / BITS_PER_MARKER)
701 return NULL;
702
703 /* Sign extension: result is dependent on the value. */
704 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
705 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
706 && HEAD_MARKER (n->n, old_type_size))
707 for (i = 0; i < type_size - old_type_size; i++)
708 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
709 << ((type_size - 1 - i) * BITS_PER_MARKER);
710
711 if (type_size < 64 / BITS_PER_MARKER)
712 {
713 /* If STMT casts to a smaller type mask out the bits not
714 belonging to the target type. */
715 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
716 }
717 n->type = type;
718 if (!n->base_addr)
719 n->range = type_size;
720 }
721 break;
722 default:
723 return NULL;
724 };
725 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
726 }
727
728 /* Handle binary rhs. */
729
730 if (rhs_class == GIMPLE_BINARY_RHS)
731 {
732 struct symbolic_number n1, n2;
733 gimple *source_stmt, *source_stmt2;
734
735 if (code != BIT_IOR_EXPR)
736 return NULL;
737
738 if (TREE_CODE (rhs2) != SSA_NAME)
739 return NULL;
740
741 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
742
743 switch (code)
744 {
745 case BIT_IOR_EXPR:
746 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
747
748 if (!source_stmt1)
749 return NULL;
750
751 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
752
753 if (!source_stmt2)
754 return NULL;
755
756 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
757 return NULL;
758
509ab8cd 759 if (n1.vuse != n2.vuse)
4aba7bd3 760 return NULL;
761
762 source_stmt
763 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
764
765 if (!source_stmt)
766 return NULL;
767
768 if (!verify_symbolic_number_p (n, stmt))
769 return NULL;
770
771 break;
772 default:
773 return NULL;
774 }
775 return source_stmt;
776 }
777 return NULL;
778}
779
509ab8cd 780/* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
781 *CMPXCHG, *CMPNOP and adjust *N. */
4aba7bd3 782
509ab8cd 783void
784find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
785 uint64_t *cmpnop)
4aba7bd3 786{
787 unsigned rsize;
788 uint64_t tmpn, mask;
4aba7bd3 789
509ab8cd 790 /* The number which the find_bswap_or_nop_1 result should match in order
791 to have a full byte swap. The number is shifted to the right
792 according to the size of the symbolic number before using it. */
793 *cmpxchg = CMPXCHG;
794 *cmpnop = CMPNOP;
4aba7bd3 795
796 /* Find real size of result (highest non-zero byte). */
797 if (n->base_addr)
798 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
799 else
800 rsize = n->range;
801
802 /* Zero out the bits corresponding to untouched bytes in original gimple
803 expression. */
804 if (n->range < (int) sizeof (int64_t))
805 {
806 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
509ab8cd 807 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
808 *cmpnop &= mask;
4aba7bd3 809 }
810
811 /* Zero out the bits corresponding to unused bytes in the result of the
812 gimple expression. */
813 if (rsize < n->range)
814 {
815 if (BYTES_BIG_ENDIAN)
816 {
817 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
509ab8cd 818 *cmpxchg &= mask;
819 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
4aba7bd3 820 }
821 else
822 {
823 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
509ab8cd 824 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
825 *cmpnop &= mask;
4aba7bd3 826 }
827 n->range = rsize;
828 }
829
509ab8cd 830 n->range *= BITS_PER_UNIT;
831}
832
833/* Check if STMT completes a bswap implementation or a read in a given
834 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
835 accordingly. It also sets N to represent the kind of operations
836 performed: size of the resulting expression and whether it works on
837 a memory source, and if so alias-set and vuse. At last, the
838 function returns a stmt whose rhs's first tree is the source
839 expression. */
840
841gimple *
842find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
843{
844 /* The last parameter determines the depth search limit. It usually
845 correlates directly to the number n of bytes to be touched. We
846 increase that number by log2(n) + 1 here in order to also
847 cover signed -> unsigned conversions of the src operand as can be seen
848 in libgcc, and for initial shift/and operation of the src operand. */
849 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
850 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
851 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
852
853 if (!ins_stmt)
854 return NULL;
855
856 uint64_t cmpxchg, cmpnop;
857 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
858
4aba7bd3 859 /* A complete byte swap should make the symbolic number to start with
860 the largest digit in the highest order byte. Unchanged symbolic
861 number indicates a read with same endianness as target architecture. */
862 if (n->n == cmpnop)
863 *bswap = false;
864 else if (n->n == cmpxchg)
865 *bswap = true;
866 else
867 return NULL;
868
869 /* Useless bit manipulation performed by code. */
870 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
871 return NULL;
872
4aba7bd3 873 return ins_stmt;
874}
875
876const pass_data pass_data_optimize_bswap =
877{
878 GIMPLE_PASS, /* type */
879 "bswap", /* name */
880 OPTGROUP_NONE, /* optinfo_flags */
881 TV_NONE, /* tv_id */
882 PROP_ssa, /* properties_required */
883 0, /* properties_provided */
884 0, /* properties_destroyed */
885 0, /* todo_flags_start */
886 0, /* todo_flags_finish */
887};
888
889class pass_optimize_bswap : public gimple_opt_pass
890{
891public:
892 pass_optimize_bswap (gcc::context *ctxt)
893 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
894 {}
895
896 /* opt_pass methods: */
897 virtual bool gate (function *)
898 {
899 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
900 }
901
902 virtual unsigned int execute (function *);
903
904}; // class pass_optimize_bswap
905
906/* Perform the bswap optimization: replace the expression computed in the rhs
509ab8cd 907 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
908 bswap, load or load + bswap expression.
4aba7bd3 909 Which of these alternatives replace the rhs is given by N->base_addr (non
910 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
911 load to perform are also given in N while the builtin bswap invoke is given
509ab8cd 912 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
913 load statements involved to construct the rhs in gsi_stmt (GSI) and
914 N->range gives the size of the rhs expression for maintaining some
915 statistics.
4aba7bd3 916
509ab8cd 917 Note that if the replacement involve a load and if gsi_stmt (GSI) is
918 non-NULL, that stmt is moved just after INS_STMT to do the load with the
919 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
4aba7bd3 920
509ab8cd 921tree
922bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
4aba7bd3 923 tree bswap_type, tree load_type, struct symbolic_number *n,
924 bool bswap)
925{
509ab8cd 926 tree src, tmp, tgt = NULL_TREE;
4aba7bd3 927 gimple *bswap_stmt;
928
509ab8cd 929 gimple *cur_stmt = gsi_stmt (gsi);
4aba7bd3 930 src = n->src;
509ab8cd 931 if (cur_stmt)
932 tgt = gimple_assign_lhs (cur_stmt);
4aba7bd3 933
934 /* Need to load the value from memory first. */
935 if (n->base_addr)
936 {
509ab8cd 937 gimple_stmt_iterator gsi_ins = gsi;
938 if (ins_stmt)
939 gsi_ins = gsi_for_stmt (ins_stmt);
4aba7bd3 940 tree addr_expr, addr_tmp, val_expr, val_tmp;
941 tree load_offset_ptr, aligned_load_type;
509ab8cd 942 gimple *load_stmt;
943 unsigned align = get_object_alignment (src);
08454aa5 944 poly_int64 load_offset = 0;
4aba7bd3 945
509ab8cd 946 if (cur_stmt)
947 {
948 basic_block ins_bb = gimple_bb (ins_stmt);
949 basic_block cur_bb = gimple_bb (cur_stmt);
950 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
951 return NULL_TREE;
952
953 /* Move cur_stmt just before one of the load of the original
954 to ensure it has the same VUSE. See PR61517 for what could
955 go wrong. */
956 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
957 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
958 gsi_move_before (&gsi, &gsi_ins);
959 gsi = gsi_for_stmt (cur_stmt);
960 }
961 else
962 gsi = gsi_ins;
4aba7bd3 963
964 /* Compute address to load from and cast according to the size
965 of the load. */
509ab8cd 966 addr_expr = build_fold_addr_expr (src);
4aba7bd3 967 if (is_gimple_mem_ref_addr (addr_expr))
509ab8cd 968 addr_tmp = unshare_expr (addr_expr);
4aba7bd3 969 else
970 {
509ab8cd 971 addr_tmp = unshare_expr (n->base_addr);
972 if (!is_gimple_mem_ref_addr (addr_tmp))
973 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
974 is_gimple_mem_ref_addr,
975 NULL_TREE, true,
976 GSI_SAME_STMT);
977 load_offset = n->bytepos;
978 if (n->offset)
979 {
980 tree off
981 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
982 true, NULL_TREE, true,
983 GSI_SAME_STMT);
984 gimple *stmt
985 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
986 POINTER_PLUS_EXPR, addr_tmp, off);
987 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
988 addr_tmp = gimple_assign_lhs (stmt);
989 }
4aba7bd3 990 }
991
992 /* Perform the load. */
993 aligned_load_type = load_type;
994 if (align < TYPE_ALIGN (load_type))
995 aligned_load_type = build_aligned_type (load_type, align);
996 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
997 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
998 load_offset_ptr);
999
1000 if (!bswap)
1001 {
1002 if (n->range == 16)
1003 nop_stats.found_16bit++;
1004 else if (n->range == 32)
1005 nop_stats.found_32bit++;
1006 else
1007 {
1008 gcc_assert (n->range == 64);
1009 nop_stats.found_64bit++;
1010 }
1011
1012 /* Convert the result of load if necessary. */
509ab8cd 1013 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
4aba7bd3 1014 {
1015 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1016 "load_dst");
1017 load_stmt = gimple_build_assign (val_tmp, val_expr);
1018 gimple_set_vuse (load_stmt, n->vuse);
1019 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1020 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
509ab8cd 1021 update_stmt (cur_stmt);
4aba7bd3 1022 }
509ab8cd 1023 else if (cur_stmt)
4aba7bd3 1024 {
1025 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1026 gimple_set_vuse (cur_stmt, n->vuse);
509ab8cd 1027 update_stmt (cur_stmt);
1028 }
1029 else
1030 {
1031 tgt = make_ssa_name (load_type);
1032 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1033 gimple_set_vuse (cur_stmt, n->vuse);
1034 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
4aba7bd3 1035 }
4aba7bd3 1036
1037 if (dump_file)
1038 {
1039 fprintf (dump_file,
1040 "%d bit load in target endianness found at: ",
1041 (int) n->range);
1042 print_gimple_stmt (dump_file, cur_stmt, 0);
1043 }
509ab8cd 1044 return tgt;
4aba7bd3 1045 }
1046 else
1047 {
1048 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1049 load_stmt = gimple_build_assign (val_tmp, val_expr);
1050 gimple_set_vuse (load_stmt, n->vuse);
1051 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1052 }
1053 src = val_tmp;
1054 }
1055 else if (!bswap)
1056 {
509ab8cd 1057 gimple *g = NULL;
1058 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
4aba7bd3 1059 {
1060 if (!is_gimple_val (src))
509ab8cd 1061 return NULL_TREE;
4aba7bd3 1062 g = gimple_build_assign (tgt, NOP_EXPR, src);
1063 }
509ab8cd 1064 else if (cur_stmt)
4aba7bd3 1065 g = gimple_build_assign (tgt, src);
509ab8cd 1066 else
1067 tgt = src;
4aba7bd3 1068 if (n->range == 16)
1069 nop_stats.found_16bit++;
1070 else if (n->range == 32)
1071 nop_stats.found_32bit++;
1072 else
1073 {
1074 gcc_assert (n->range == 64);
1075 nop_stats.found_64bit++;
1076 }
1077 if (dump_file)
1078 {
1079 fprintf (dump_file,
1080 "%d bit reshuffle in target endianness found at: ",
1081 (int) n->range);
509ab8cd 1082 if (cur_stmt)
1083 print_gimple_stmt (dump_file, cur_stmt, 0);
1084 else
1085 {
54e7de93 1086 print_generic_expr (dump_file, tgt, TDF_NONE);
509ab8cd 1087 fprintf (dump_file, "\n");
1088 }
4aba7bd3 1089 }
509ab8cd 1090 if (cur_stmt)
1091 gsi_replace (&gsi, g, true);
1092 return tgt;
4aba7bd3 1093 }
1094 else if (TREE_CODE (src) == BIT_FIELD_REF)
1095 src = TREE_OPERAND (src, 0);
1096
1097 if (n->range == 16)
1098 bswap_stats.found_16bit++;
1099 else if (n->range == 32)
1100 bswap_stats.found_32bit++;
1101 else
1102 {
1103 gcc_assert (n->range == 64);
1104 bswap_stats.found_64bit++;
1105 }
1106
1107 tmp = src;
1108
1109 /* Convert the src expression if necessary. */
1110 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1111 {
1112 gimple *convert_stmt;
1113
1114 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1115 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1116 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1117 }
1118
1119 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1120 are considered as rotation of 2N bit values by N bits is generally not
1121 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1122 gives 0x03040102 while a bswap for that value is 0x04030201. */
1123 if (bswap && n->range == 16)
1124 {
1125 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1126 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1127 bswap_stmt = gimple_build_assign (NULL, src);
1128 }
1129 else
1130 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1131
509ab8cd 1132 if (tgt == NULL_TREE)
1133 tgt = make_ssa_name (bswap_type);
4aba7bd3 1134 tmp = tgt;
1135
1136 /* Convert the result if necessary. */
1137 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1138 {
1139 gimple *convert_stmt;
1140
1141 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1142 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1143 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1144 }
1145
1146 gimple_set_lhs (bswap_stmt, tmp);
1147
1148 if (dump_file)
1149 {
1150 fprintf (dump_file, "%d bit bswap implementation found at: ",
1151 (int) n->range);
509ab8cd 1152 if (cur_stmt)
1153 print_gimple_stmt (dump_file, cur_stmt, 0);
1154 else
1155 {
54e7de93 1156 print_generic_expr (dump_file, tgt, TDF_NONE);
509ab8cd 1157 fprintf (dump_file, "\n");
1158 }
4aba7bd3 1159 }
1160
509ab8cd 1161 if (cur_stmt)
1162 {
1163 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1164 gsi_remove (&gsi, true);
1165 }
1166 else
1167 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1168 return tgt;
4aba7bd3 1169}
1170
1171/* Find manual byte swap implementations as well as load in a given
1172 endianness. Byte swaps are turned into a bswap builtin invokation
1173 while endian loads are converted to bswap builtin invokation or
1174 simple load according to the target endianness. */
1175
1176unsigned int
1177pass_optimize_bswap::execute (function *fun)
1178{
1179 basic_block bb;
1180 bool bswap32_p, bswap64_p;
1181 bool changed = false;
1182 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1183
1184 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1185 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1186 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1187 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1188 || (bswap32_p && word_mode == SImode)));
1189
1190 /* Determine the argument type of the builtins. The code later on
1191 assumes that the return and argument type are the same. */
1192 if (bswap32_p)
1193 {
1194 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1195 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1196 }
1197
1198 if (bswap64_p)
1199 {
1200 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1201 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1202 }
1203
1204 memset (&nop_stats, 0, sizeof (nop_stats));
1205 memset (&bswap_stats, 0, sizeof (bswap_stats));
1206 calculate_dominance_info (CDI_DOMINATORS);
1207
1208 FOR_EACH_BB_FN (bb, fun)
1209 {
1210 gimple_stmt_iterator gsi;
1211
1212 /* We do a reverse scan for bswap patterns to make sure we get the
1213 widest match. As bswap pattern matching doesn't handle previously
1214 inserted smaller bswap replacements as sub-patterns, the wider
1215 variant wouldn't be detected. */
1216 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1217 {
1218 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1219 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1220 enum tree_code code;
1221 struct symbolic_number n;
1222 bool bswap;
1223
1224 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1225 might be moved to a different basic block by bswap_replace and gsi
1226 must not points to it if that's the case. Moving the gsi_prev
1227 there make sure that gsi points to the statement previous to
1228 cur_stmt while still making sure that all statements are
1229 considered in this basic block. */
1230 gsi_prev (&gsi);
1231
1232 if (!is_gimple_assign (cur_stmt))
1233 continue;
1234
1235 code = gimple_assign_rhs_code (cur_stmt);
1236 switch (code)
1237 {
1238 case LROTATE_EXPR:
1239 case RROTATE_EXPR:
1240 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1241 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1242 % BITS_PER_UNIT)
1243 continue;
1244 /* Fall through. */
1245 case BIT_IOR_EXPR:
1246 break;
1247 default:
1248 continue;
1249 }
1250
1251 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1252
1253 if (!ins_stmt)
1254 continue;
1255
1256 switch (n.range)
1257 {
1258 case 16:
1259 /* Already in canonical form, nothing to do. */
1260 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1261 continue;
1262 load_type = bswap_type = uint16_type_node;
1263 break;
1264 case 32:
1265 load_type = uint32_type_node;
1266 if (bswap32_p)
1267 {
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1269 bswap_type = bswap32_type;
1270 }
1271 break;
1272 case 64:
1273 load_type = uint64_type_node;
1274 if (bswap64_p)
1275 {
1276 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1277 bswap_type = bswap64_type;
1278 }
1279 break;
1280 default:
1281 continue;
1282 }
1283
1284 if (bswap && !fndecl && n.range != 16)
1285 continue;
1286
509ab8cd 1287 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1288 bswap_type, load_type, &n, bswap))
4aba7bd3 1289 changed = true;
1290 }
1291 }
1292
1293 statistics_counter_event (fun, "16-bit nop implementations found",
1294 nop_stats.found_16bit);
1295 statistics_counter_event (fun, "32-bit nop implementations found",
1296 nop_stats.found_32bit);
1297 statistics_counter_event (fun, "64-bit nop implementations found",
1298 nop_stats.found_64bit);
1299 statistics_counter_event (fun, "16-bit bswap implementations found",
1300 bswap_stats.found_16bit);
1301 statistics_counter_event (fun, "32-bit bswap implementations found",
1302 bswap_stats.found_32bit);
1303 statistics_counter_event (fun, "64-bit bswap implementations found",
1304 bswap_stats.found_64bit);
1305
1306 return (changed ? TODO_update_ssa : 0);
1307}
1308
1309} // anon namespace
1310
1311gimple_opt_pass *
1312make_pass_optimize_bswap (gcc::context *ctxt)
1313{
1314 return new pass_optimize_bswap (ctxt);
1315}
1316
1317namespace {
1318
9991d1d3 1319/* Struct recording one operand for the store, which is either a constant,
10f0d48d 1320 then VAL represents the constant and all the other fields are zero, or
1321 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1322 and the other fields also reflect the memory load, or an SSA name, then
1323 VAL represents the SSA name and all the other fields are zero, */
9991d1d3 1324
1325struct store_operand_info
1326{
1327 tree val;
1328 tree base_addr;
e61263f2 1329 poly_uint64 bitsize;
1330 poly_uint64 bitpos;
1331 poly_uint64 bitregion_start;
1332 poly_uint64 bitregion_end;
9991d1d3 1333 gimple *stmt;
c35548ce 1334 bool bit_not_p;
9991d1d3 1335 store_operand_info ();
1336};
1337
1338store_operand_info::store_operand_info ()
1339 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
c35548ce 1340 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
9991d1d3 1341{
1342}
1343
3d3e04ac 1344/* Struct recording the information about a single store of an immediate
1345 to memory. These are created in the first phase and coalesced into
1346 merged_store_group objects in the second phase. */
1347
1348struct store_immediate_info
1349{
1350 unsigned HOST_WIDE_INT bitsize;
1351 unsigned HOST_WIDE_INT bitpos;
902cb3b7 1352 unsigned HOST_WIDE_INT bitregion_start;
1353 /* This is one past the last bit of the bit region. */
1354 unsigned HOST_WIDE_INT bitregion_end;
3d3e04ac 1355 gimple *stmt;
1356 unsigned int order;
10f0d48d 1357 /* INTEGER_CST for constant stores, MEM_REF for memory copy,
1358 BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
1359 for bit insertion.
509ab8cd 1360 LROTATE_EXPR if it can be only bswap optimized and
1361 ops are not really meaningful.
1362 NOP_EXPR if bswap optimization detected identity, ops
1363 are not meaningful. */
9991d1d3 1364 enum tree_code rhs_code;
509ab8cd 1365 /* Two fields for bswap optimization purposes. */
1366 struct symbolic_number n;
1367 gimple *ins_stmt;
aa0a1d29 1368 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
832a73b9 1369 bool bit_not_p;
aa0a1d29 1370 /* True if ops have been swapped and thus ops[1] represents
1371 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1372 bool ops_swapped_p;
9991d1d3 1373 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1374 just the first one. */
1375 store_operand_info ops[2];
f85e7cb7 1376 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
902cb3b7 1377 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
509ab8cd 1378 gimple *, unsigned int, enum tree_code,
1379 struct symbolic_number &, gimple *, bool,
9991d1d3 1380 const store_operand_info &,
1381 const store_operand_info &);
3d3e04ac 1382};
1383
1384store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
f85e7cb7 1385 unsigned HOST_WIDE_INT bp,
902cb3b7 1386 unsigned HOST_WIDE_INT brs,
1387 unsigned HOST_WIDE_INT bre,
f85e7cb7 1388 gimple *st,
9991d1d3 1389 unsigned int ord,
1390 enum tree_code rhscode,
509ab8cd 1391 struct symbolic_number &nr,
1392 gimple *ins_stmtp,
832a73b9 1393 bool bitnotp,
9991d1d3 1394 const store_operand_info &op0r,
1395 const store_operand_info &op1r)
902cb3b7 1396 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
509ab8cd 1397 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1398 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
9991d1d3 1399#if __cplusplus >= 201103L
1400 , ops { op0r, op1r }
1401{
1402}
1403#else
3d3e04ac 1404{
9991d1d3 1405 ops[0] = op0r;
1406 ops[1] = op1r;
3d3e04ac 1407}
9991d1d3 1408#endif
3d3e04ac 1409
1410/* Struct representing a group of stores to contiguous memory locations.
1411 These are produced by the second phase (coalescing) and consumed in the
1412 third phase that outputs the widened stores. */
1413
1414struct merged_store_group
1415{
1416 unsigned HOST_WIDE_INT start;
1417 unsigned HOST_WIDE_INT width;
902cb3b7 1418 unsigned HOST_WIDE_INT bitregion_start;
1419 unsigned HOST_WIDE_INT bitregion_end;
1420 /* The size of the allocated memory for val and mask. */
3d3e04ac 1421 unsigned HOST_WIDE_INT buf_size;
902cb3b7 1422 unsigned HOST_WIDE_INT align_base;
e61263f2 1423 poly_uint64 load_align_base[2];
3d3e04ac 1424
1425 unsigned int align;
9991d1d3 1426 unsigned int load_align[2];
3d3e04ac 1427 unsigned int first_order;
1428 unsigned int last_order;
f9ceb302 1429 bool bit_insertion;
3d3e04ac 1430
902cb3b7 1431 auto_vec<store_immediate_info *> stores;
3d3e04ac 1432 /* We record the first and last original statements in the sequence because
1433 we'll need their vuse/vdef and replacement position. It's easier to keep
1434 track of them separately as 'stores' is reordered by apply_stores. */
1435 gimple *last_stmt;
1436 gimple *first_stmt;
1437 unsigned char *val;
902cb3b7 1438 unsigned char *mask;
3d3e04ac 1439
1440 merged_store_group (store_immediate_info *);
1441 ~merged_store_group ();
f9ceb302 1442 bool can_be_merged_into (store_immediate_info *);
3d3e04ac 1443 void merge_into (store_immediate_info *);
1444 void merge_overlapping (store_immediate_info *);
1445 bool apply_stores ();
902cb3b7 1446private:
1447 void do_merge (store_immediate_info *);
3d3e04ac 1448};
1449
1450/* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1451
1452static void
1453dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1454{
1455 if (!fd)
1456 return;
1457
1458 for (unsigned int i = 0; i < len; i++)
10f0d48d 1459 fprintf (fd, "%02x ", ptr[i]);
3d3e04ac 1460 fprintf (fd, "\n");
1461}
1462
3d3e04ac 1463/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1464 bits between adjacent elements. AMNT should be within
1465 [0, BITS_PER_UNIT).
1466 Example, AMNT = 2:
1467 00011111|11100000 << 2 = 01111111|10000000
1468 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1469
1470static void
1471shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1472{
1473 if (amnt == 0)
1474 return;
1475
1476 unsigned char carry_over = 0U;
b1c71535 1477 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
3d3e04ac 1478 unsigned char clear_mask = (~0U) << amnt;
1479
1480 for (unsigned int i = 0; i < sz; i++)
1481 {
1482 unsigned prev_carry_over = carry_over;
b1c71535 1483 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
3d3e04ac 1484
1485 ptr[i] <<= amnt;
1486 if (i != 0)
1487 {
1488 ptr[i] &= clear_mask;
1489 ptr[i] |= prev_carry_over;
1490 }
1491 }
1492}
1493
1494/* Like shift_bytes_in_array but for big-endian.
1495 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1496 bits between adjacent elements. AMNT should be within
1497 [0, BITS_PER_UNIT).
1498 Example, AMNT = 2:
1499 00011111|11100000 >> 2 = 00000111|11111000
1500 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1501
1502static void
1503shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1504 unsigned int amnt)
1505{
1506 if (amnt == 0)
1507 return;
1508
1509 unsigned char carry_over = 0U;
1510 unsigned char carry_mask = ~(~0U << amnt);
1511
1512 for (unsigned int i = 0; i < sz; i++)
1513 {
1514 unsigned prev_carry_over = carry_over;
b1c71535 1515 carry_over = ptr[i] & carry_mask;
3d3e04ac 1516
a425d9af 1517 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1518 ptr[i] >>= amnt;
1519 ptr[i] |= prev_carry_over;
3d3e04ac 1520 }
1521}
1522
1523/* Clear out LEN bits starting from bit START in the byte array
1524 PTR. This clears the bits to the *right* from START.
1525 START must be within [0, BITS_PER_UNIT) and counts starting from
1526 the least significant bit. */
1527
1528static void
1529clear_bit_region_be (unsigned char *ptr, unsigned int start,
1530 unsigned int len)
1531{
1532 if (len == 0)
1533 return;
1534 /* Clear len bits to the right of start. */
1535 else if (len <= start + 1)
1536 {
1537 unsigned char mask = (~(~0U << len));
1538 mask = mask << (start + 1U - len);
1539 ptr[0] &= ~mask;
1540 }
1541 else if (start != BITS_PER_UNIT - 1)
1542 {
1543 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1544 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1545 len - (start % BITS_PER_UNIT) - 1);
1546 }
1547 else if (start == BITS_PER_UNIT - 1
1548 && len > BITS_PER_UNIT)
1549 {
1550 unsigned int nbytes = len / BITS_PER_UNIT;
902cb3b7 1551 memset (ptr, 0, nbytes);
3d3e04ac 1552 if (len % BITS_PER_UNIT != 0)
1553 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1554 len % BITS_PER_UNIT);
1555 }
1556 else
1557 gcc_unreachable ();
1558}
1559
1560/* In the byte array PTR clear the bit region starting at bit
1561 START and is LEN bits wide.
1562 For regions spanning multiple bytes do this recursively until we reach
1563 zero LEN or a region contained within a single byte. */
1564
1565static void
1566clear_bit_region (unsigned char *ptr, unsigned int start,
1567 unsigned int len)
1568{
1569 /* Degenerate base case. */
1570 if (len == 0)
1571 return;
1572 else if (start >= BITS_PER_UNIT)
1573 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1574 /* Second base case. */
1575 else if ((start + len) <= BITS_PER_UNIT)
1576 {
b1c71535 1577 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
3d3e04ac 1578 mask >>= BITS_PER_UNIT - (start + len);
1579
1580 ptr[0] &= ~mask;
1581
1582 return;
1583 }
1584 /* Clear most significant bits in a byte and proceed with the next byte. */
1585 else if (start != 0)
1586 {
1587 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
3d6071e9 1588 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
3d3e04ac 1589 }
1590 /* Whole bytes need to be cleared. */
1591 else if (start == 0 && len > BITS_PER_UNIT)
1592 {
1593 unsigned int nbytes = len / BITS_PER_UNIT;
7839cdcc 1594 /* We could recurse on each byte but we clear whole bytes, so a simple
1595 memset will do. */
b1c71535 1596 memset (ptr, '\0', nbytes);
3d3e04ac 1597 /* Clear the remaining sub-byte region if there is one. */
1598 if (len % BITS_PER_UNIT != 0)
1599 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1600 }
1601 else
1602 gcc_unreachable ();
1603}
1604
1605/* Write BITLEN bits of EXPR to the byte array PTR at
1606 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1607 Return true if the operation succeeded. */
1608
1609static bool
1610encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
b1c71535 1611 unsigned int total_bytes)
3d3e04ac 1612{
1613 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1614 tree tmp_int = expr;
a425d9af 1615 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1616 || (bitpos % BITS_PER_UNIT)
517be012 1617 || !int_mode_for_size (bitlen, 0).exists ());
3d3e04ac 1618
1619 if (!sub_byte_op_p)
63eabc9b 1620 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
3d3e04ac 1621
1622 /* LITTLE-ENDIAN
1623 We are writing a non byte-sized quantity or at a position that is not
1624 at a byte boundary.
1625 |--------|--------|--------| ptr + first_byte
1626 ^ ^
1627 xxx xxxxxxxx xxx< bp>
1628 |______EXPR____|
1629
b1c71535 1630 First native_encode_expr EXPR into a temporary buffer and shift each
3d3e04ac 1631 byte in the buffer by 'bp' (carrying the bits over as necessary).
1632 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1633 <------bitlen---->< bp>
1634 Then we clear the destination bits:
1635 |---00000|00000000|000-----| ptr + first_byte
1636 <-------bitlen--->< bp>
1637
1638 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1639 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1640
1641 BIG-ENDIAN
1642 We are writing a non byte-sized quantity or at a position that is not
1643 at a byte boundary.
1644 ptr + first_byte |--------|--------|--------|
1645 ^ ^
1646 <bp >xxx xxxxxxxx xxx
1647 |_____EXPR_____|
1648
b1c71535 1649 First native_encode_expr EXPR into a temporary buffer and shift each
3d3e04ac 1650 byte in the buffer to the right by (carrying the bits over as necessary).
1651 We shift by as much as needed to align the most significant bit of EXPR
1652 with bitpos:
1653 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1654 <---bitlen----> <bp ><-----bitlen----->
1655 Then we clear the destination bits:
1656 ptr + first_byte |-----000||00000000||00000---|
1657 <bp ><-------bitlen----->
1658
1659 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1660 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1661 The awkwardness comes from the fact that bitpos is counted from the
1662 most significant bit of a byte. */
1663
d2401312 1664 /* We must be dealing with fixed-size data at this point, since the
1665 total size is also fixed. */
1666 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
3d3e04ac 1667 /* Allocate an extra byte so that we have space to shift into. */
d2401312 1668 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
3d3e04ac 1669 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
b1c71535 1670 memset (tmpbuf, '\0', byte_size);
3d3e04ac 1671 /* The store detection code should only have allowed constants that are
1672 accepted by native_encode_expr. */
63eabc9b 1673 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
3d3e04ac 1674 gcc_unreachable ();
1675
1676 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1677 bytes to write. This means it can write more than
1678 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1679 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1680 bitlen and zero out the bits that are not relevant as well (that may
1681 contain a sign bit due to sign-extension). */
1682 unsigned int padding
1683 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
a425d9af 1684 /* On big-endian the padding is at the 'front' so just skip the initial
1685 bytes. */
1686 if (BYTES_BIG_ENDIAN)
1687 tmpbuf += padding;
1688
1689 byte_size -= padding;
1690
1691 if (bitlen % BITS_PER_UNIT != 0)
3d3e04ac 1692 {
5e922e43 1693 if (BYTES_BIG_ENDIAN)
a425d9af 1694 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1695 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1696 else
1697 clear_bit_region (tmpbuf, bitlen,
1698 byte_size * BITS_PER_UNIT - bitlen);
3d3e04ac 1699 }
a425d9af 1700 /* Left shifting relies on the last byte being clear if bitlen is
1701 a multiple of BITS_PER_UNIT, which might not be clear if
1702 there are padding bytes. */
1703 else if (!BYTES_BIG_ENDIAN)
1704 tmpbuf[byte_size - 1] = '\0';
3d3e04ac 1705
1706 /* Clear the bit region in PTR where the bits from TMPBUF will be
b1c71535 1707 inserted into. */
3d3e04ac 1708 if (BYTES_BIG_ENDIAN)
1709 clear_bit_region_be (ptr + first_byte,
1710 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1711 else
1712 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1713
1714 int shift_amnt;
1715 int bitlen_mod = bitlen % BITS_PER_UNIT;
1716 int bitpos_mod = bitpos % BITS_PER_UNIT;
1717
1718 bool skip_byte = false;
1719 if (BYTES_BIG_ENDIAN)
1720 {
1721 /* BITPOS and BITLEN are exactly aligned and no shifting
1722 is necessary. */
1723 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1724 || (bitpos_mod == 0 && bitlen_mod == 0))
1725 shift_amnt = 0;
1726 /* |. . . . . . . .|
1727 <bp > <blen >.
1728 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1729 of the value until it aligns with 'bp' in the next byte over. */
1730 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1731 {
1732 shift_amnt = bitlen_mod + bitpos_mod;
1733 skip_byte = bitlen_mod != 0;
1734 }
1735 /* |. . . . . . . .|
1736 <----bp--->
1737 <---blen---->.
1738 Shift the value right within the same byte so it aligns with 'bp'. */
1739 else
1740 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1741 }
1742 else
1743 shift_amnt = bitpos % BITS_PER_UNIT;
1744
1745 /* Create the shifted version of EXPR. */
1746 if (!BYTES_BIG_ENDIAN)
b1c71535 1747 {
1748 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1749 if (shift_amnt == 0)
1750 byte_size--;
1751 }
3d3e04ac 1752 else
1753 {
1754 gcc_assert (BYTES_BIG_ENDIAN);
1755 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1756 /* If shifting right forced us to move into the next byte skip the now
1757 empty byte. */
1758 if (skip_byte)
1759 {
1760 tmpbuf++;
1761 byte_size--;
1762 }
1763 }
1764
1765 /* Insert the bits from TMPBUF. */
1766 for (unsigned int i = 0; i < byte_size; i++)
1767 ptr[first_byte + i] |= tmpbuf[i];
1768
1769 return true;
1770}
1771
1772/* Sorting function for store_immediate_info objects.
1773 Sorts them by bitposition. */
1774
1775static int
1776sort_by_bitpos (const void *x, const void *y)
1777{
1778 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1779 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1780
61d052e5 1781 if ((*tmp)->bitpos < (*tmp2)->bitpos)
3d3e04ac 1782 return -1;
1783 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1784 return 1;
61d052e5 1785 else
ca4982c2 1786 /* If they are the same let's use the order which is guaranteed to
1787 be different. */
1788 return (*tmp)->order - (*tmp2)->order;
3d3e04ac 1789}
1790
1791/* Sorting function for store_immediate_info objects.
1792 Sorts them by the order field. */
1793
1794static int
1795sort_by_order (const void *x, const void *y)
1796{
1797 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1798 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1799
1800 if ((*tmp)->order < (*tmp2)->order)
1801 return -1;
1802 else if ((*tmp)->order > (*tmp2)->order)
1803 return 1;
1804
1805 gcc_unreachable ();
1806}
1807
1808/* Initialize a merged_store_group object from a store_immediate_info
1809 object. */
1810
1811merged_store_group::merged_store_group (store_immediate_info *info)
1812{
1813 start = info->bitpos;
1814 width = info->bitsize;
902cb3b7 1815 bitregion_start = info->bitregion_start;
1816 bitregion_end = info->bitregion_end;
3d3e04ac 1817 /* VAL has memory allocated for it in apply_stores once the group
1818 width has been finalized. */
1819 val = NULL;
902cb3b7 1820 mask = NULL;
10f0d48d 1821 bit_insertion = false;
902cb3b7 1822 unsigned HOST_WIDE_INT align_bitpos = 0;
1823 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1824 &align, &align_bitpos);
1825 align_base = start - align_bitpos;
9991d1d3 1826 for (int i = 0; i < 2; ++i)
1827 {
1828 store_operand_info &op = info->ops[i];
1829 if (op.base_addr == NULL_TREE)
1830 {
1831 load_align[i] = 0;
1832 load_align_base[i] = 0;
1833 }
1834 else
1835 {
1836 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1837 load_align_base[i] = op.bitpos - align_bitpos;
1838 }
1839 }
3d3e04ac 1840 stores.create (1);
1841 stores.safe_push (info);
1842 last_stmt = info->stmt;
1843 last_order = info->order;
1844 first_stmt = last_stmt;
1845 first_order = last_order;
1846 buf_size = 0;
1847}
1848
1849merged_store_group::~merged_store_group ()
1850{
1851 if (val)
1852 XDELETEVEC (val);
1853}
1854
f9ceb302 1855/* Return true if the store described by INFO can be merged into the group. */
1856
1857bool
1858merged_store_group::can_be_merged_into (store_immediate_info *info)
1859{
1860 /* Do not merge bswap patterns. */
1861 if (info->rhs_code == LROTATE_EXPR)
1862 return false;
1863
1864 /* The canonical case. */
1865 if (info->rhs_code == stores[0]->rhs_code)
1866 return true;
1867
1868 /* BIT_INSERT_EXPR is compatible with INTEGER_CST. */
1869 if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
1870 return true;
1871
1872 if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
1873 return true;
1874
1875 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
1876 if (info->rhs_code == MEM_REF
1877 && (stores[0]->rhs_code == INTEGER_CST
1878 || stores[0]->rhs_code == BIT_INSERT_EXPR)
1879 && info->bitregion_start == stores[0]->bitregion_start
1880 && info->bitregion_end == stores[0]->bitregion_end)
1881 return true;
1882
1883 if (stores[0]->rhs_code == MEM_REF
1884 && (info->rhs_code == INTEGER_CST
1885 || info->rhs_code == BIT_INSERT_EXPR)
1886 && info->bitregion_start == stores[0]->bitregion_start
1887 && info->bitregion_end == stores[0]->bitregion_end)
1888 return true;
1889
1890 return false;
1891}
1892
902cb3b7 1893/* Helper method for merge_into and merge_overlapping to do
1894 the common part. */
f9ceb302 1895
3d3e04ac 1896void
902cb3b7 1897merged_store_group::do_merge (store_immediate_info *info)
3d3e04ac 1898{
902cb3b7 1899 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1900 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1901
1902 unsigned int this_align;
1903 unsigned HOST_WIDE_INT align_bitpos = 0;
1904 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1905 &this_align, &align_bitpos);
1906 if (this_align > align)
1907 {
1908 align = this_align;
1909 align_base = info->bitpos - align_bitpos;
1910 }
9991d1d3 1911 for (int i = 0; i < 2; ++i)
1912 {
1913 store_operand_info &op = info->ops[i];
1914 if (!op.base_addr)
1915 continue;
1916
1917 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1918 if (this_align > load_align[i])
1919 {
1920 load_align[i] = this_align;
1921 load_align_base[i] = op.bitpos - align_bitpos;
1922 }
1923 }
3d3e04ac 1924
3d3e04ac 1925 gimple *stmt = info->stmt;
1926 stores.safe_push (info);
1927 if (info->order > last_order)
1928 {
1929 last_order = info->order;
1930 last_stmt = stmt;
1931 }
1932 else if (info->order < first_order)
1933 {
1934 first_order = info->order;
1935 first_stmt = stmt;
1936 }
1937}
1938
902cb3b7 1939/* Merge a store recorded by INFO into this merged store.
1940 The store is not overlapping with the existing recorded
1941 stores. */
1942
1943void
1944merged_store_group::merge_into (store_immediate_info *info)
1945{
902cb3b7 1946 /* Make sure we're inserting in the position we think we're inserting. */
1947 gcc_assert (info->bitpos >= start + width
1948 && info->bitregion_start <= bitregion_end);
1949
cf5e422b 1950 width = info->bitpos + info->bitsize - start;
902cb3b7 1951 do_merge (info);
1952}
1953
3d3e04ac 1954/* Merge a store described by INFO into this merged store.
1955 INFO overlaps in some way with the current store (i.e. it's not contiguous
1956 which is handled by merged_store_group::merge_into). */
1957
1958void
1959merged_store_group::merge_overlapping (store_immediate_info *info)
1960{
3d3e04ac 1961 /* If the store extends the size of the group, extend the width. */
902cb3b7 1962 if (info->bitpos + info->bitsize > start + width)
cf5e422b 1963 width = info->bitpos + info->bitsize - start;
3d3e04ac 1964
902cb3b7 1965 do_merge (info);
3d3e04ac 1966}
1967
1968/* Go through all the recorded stores in this group in program order and
1969 apply their values to the VAL byte array to create the final merged
1970 value. Return true if the operation succeeded. */
1971
1972bool
1973merged_store_group::apply_stores ()
1974{
902cb3b7 1975 /* Make sure we have more than one store in the group, otherwise we cannot
1976 merge anything. */
1977 if (bitregion_start % BITS_PER_UNIT != 0
1978 || bitregion_end % BITS_PER_UNIT != 0
3d3e04ac 1979 || stores.length () == 1)
1980 return false;
1981
1982 stores.qsort (sort_by_order);
902cb3b7 1983 store_immediate_info *info;
3d3e04ac 1984 unsigned int i;
10f0d48d 1985 /* Create a power-of-2-sized buffer for native_encode_expr. */
1986 buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
902cb3b7 1987 val = XNEWVEC (unsigned char, 2 * buf_size);
1988 mask = val + buf_size;
1989 memset (val, 0, buf_size);
1990 memset (mask, ~0U, buf_size);
3d3e04ac 1991
1992 FOR_EACH_VEC_ELT (stores, i, info)
1993 {
902cb3b7 1994 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
10f0d48d 1995 tree cst;
9991d1d3 1996 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1997 cst = info->ops[0].val;
1998 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1999 cst = info->ops[1].val;
10f0d48d 2000 else
2001 cst = NULL_TREE;
9991d1d3 2002 bool ret = true;
2003 if (cst)
10f0d48d 2004 {
2005 if (info->rhs_code == BIT_INSERT_EXPR)
2006 bit_insertion = true;
2007 else
2008 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
2009 pos_in_buffer, buf_size);
2010 }
2011 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
2012 if (BYTES_BIG_ENDIAN)
2013 clear_bit_region_be (m, (BITS_PER_UNIT - 1
2014 - (pos_in_buffer % BITS_PER_UNIT)),
2015 info->bitsize);
2016 else
2017 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
9991d1d3 2018 if (cst && dump_file && (dump_flags & TDF_DETAILS))
3d3e04ac 2019 {
2020 if (ret)
2021 {
10f0d48d 2022 fputs ("After writing ", dump_file);
54e7de93 2023 print_generic_expr (dump_file, cst, TDF_NONE);
3d3e04ac 2024 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
10f0d48d 2025 " at position %d\n", info->bitsize, pos_in_buffer);
2026 fputs (" the merged value contains ", dump_file);
3d3e04ac 2027 dump_char_array (dump_file, val, buf_size);
10f0d48d 2028 fputs (" the merged mask contains ", dump_file);
2029 dump_char_array (dump_file, mask, buf_size);
2030 if (bit_insertion)
2031 fputs (" bit insertion is required\n", dump_file);
3d3e04ac 2032 }
2033 else
2034 fprintf (dump_file, "Failed to merge stores\n");
509ab8cd 2035 }
3d3e04ac 2036 if (!ret)
2037 return false;
2038 }
509ab8cd 2039 stores.qsort (sort_by_bitpos);
3d3e04ac 2040 return true;
2041}
2042
2043/* Structure describing the store chain. */
2044
2045struct imm_store_chain_info
2046{
3a3ba7de 2047 /* Doubly-linked list that imposes an order on chain processing.
2048 PNXP (prev's next pointer) points to the head of a list, or to
2049 the next field in the previous chain in the list.
2050 See pass_store_merging::m_stores_head for more rationale. */
2051 imm_store_chain_info *next, **pnxp;
f85e7cb7 2052 tree base_addr;
902cb3b7 2053 auto_vec<store_immediate_info *> m_store_info;
3d3e04ac 2054 auto_vec<merged_store_group *> m_merged_store_groups;
2055
3a3ba7de 2056 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
2057 : next (inspt), pnxp (&inspt), base_addr (b_a)
2058 {
2059 inspt = this;
2060 if (next)
2061 {
2062 gcc_checking_assert (pnxp == next->pnxp);
2063 next->pnxp = &next;
2064 }
2065 }
2066 ~imm_store_chain_info ()
2067 {
2068 *pnxp = next;
2069 if (next)
2070 {
2071 gcc_checking_assert (&next == next->pnxp);
2072 next->pnxp = pnxp;
2073 }
2074 }
f85e7cb7 2075 bool terminate_and_process_chain ();
509ab8cd 2076 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
3d3e04ac 2077 bool coalesce_immediate_stores ();
f85e7cb7 2078 bool output_merged_store (merged_store_group *);
2079 bool output_merged_stores ();
3d3e04ac 2080};
2081
2082const pass_data pass_data_tree_store_merging = {
2083 GIMPLE_PASS, /* type */
2084 "store-merging", /* name */
2085 OPTGROUP_NONE, /* optinfo_flags */
2086 TV_GIMPLE_STORE_MERGING, /* tv_id */
2087 PROP_ssa, /* properties_required */
2088 0, /* properties_provided */
2089 0, /* properties_destroyed */
2090 0, /* todo_flags_start */
2091 TODO_update_ssa, /* todo_flags_finish */
2092};
2093
2094class pass_store_merging : public gimple_opt_pass
2095{
2096public:
2097 pass_store_merging (gcc::context *ctxt)
2d27e5c1 2098 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
3d3e04ac 2099 {
2100 }
2101
10f0d48d 2102 /* Pass not supported for PDP-endian, nor for insane hosts or
2103 target character sizes where native_{encode,interpret}_expr
902cb3b7 2104 doesn't work properly. */
3d3e04ac 2105 virtual bool
2106 gate (function *)
2107 {
902cb3b7 2108 return flag_store_merging
10f0d48d 2109 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
902cb3b7 2110 && CHAR_BIT == 8
2111 && BITS_PER_UNIT == 8;
3d3e04ac 2112 }
2113
2114 virtual unsigned int execute (function *);
2115
2116private:
2117 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2118
3a3ba7de 2119 /* Form a doubly-linked stack of the elements of m_stores, so that
2120 we can iterate over them in a predictable way. Using this order
2121 avoids extraneous differences in the compiler output just because
2122 of tree pointer variations (e.g. different chains end up in
2123 different positions of m_stores, so they are handled in different
2124 orders, so they allocate or release SSA names in different
2125 orders, and when they get reused, subsequent passes end up
2126 getting different SSA names, which may ultimately change
2127 decisions when going out of SSA). */
2128 imm_store_chain_info *m_stores_head;
2129
9991d1d3 2130 void process_store (gimple *);
3d3e04ac 2131 bool terminate_and_process_all_chains ();
c35548ce 2132 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
f85e7cb7 2133 bool terminate_and_release_chain (imm_store_chain_info *);
3d3e04ac 2134}; // class pass_store_merging
2135
2136/* Terminate and process all recorded chains. Return true if any changes
2137 were made. */
2138
2139bool
2140pass_store_merging::terminate_and_process_all_chains ()
2141{
3d3e04ac 2142 bool ret = false;
3a3ba7de 2143 while (m_stores_head)
2144 ret |= terminate_and_release_chain (m_stores_head);
2145 gcc_assert (m_stores.elements () == 0);
2146 gcc_assert (m_stores_head == NULL);
3d3e04ac 2147
2148 return ret;
2149}
2150
c35548ce 2151/* Terminate all chains that are affected by the statement STMT.
2152 CHAIN_INFO is the chain we should ignore from the checks if
2153 non-NULL. */
3d3e04ac 2154
2155bool
4de7f8df 2156pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
f85e7cb7 2157 **chain_info,
3d3e04ac 2158 gimple *stmt)
2159{
2160 bool ret = false;
2161
2162 /* If the statement doesn't touch memory it can't alias. */
2163 if (!gimple_vuse (stmt))
2164 return false;
2165
9fead2ab 2166 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
c35548ce 2167 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
3d3e04ac 2168 {
c35548ce 2169 next = cur->next;
2170
2171 /* We already checked all the stores in chain_info and terminated the
2172 chain if necessary. Skip it here. */
2173 if (chain_info && *chain_info == cur)
2174 continue;
2175
9991d1d3 2176 store_immediate_info *info;
2177 unsigned int i;
c35548ce 2178 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
3d3e04ac 2179 {
9fead2ab 2180 tree lhs = gimple_assign_lhs (info->stmt);
2181 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2182 || stmt_may_clobber_ref_p (stmt, lhs)
2183 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
3d3e04ac 2184 {
9991d1d3 2185 if (dump_file && (dump_flags & TDF_DETAILS))
3d3e04ac 2186 {
9991d1d3 2187 fprintf (dump_file, "stmt causes chain termination:\n");
2188 print_gimple_stmt (dump_file, stmt, 0);
3d3e04ac 2189 }
c35548ce 2190 terminate_and_release_chain (cur);
9991d1d3 2191 ret = true;
2192 break;
3d3e04ac 2193 }
2194 }
2195 }
2196
3d3e04ac 2197 return ret;
2198}
2199
2200/* Helper function. Terminate the recorded chain storing to base object
2201 BASE. Return true if the merging and output was successful. The m_stores
2202 entry is removed after the processing in any case. */
2203
2204bool
f85e7cb7 2205pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
3d3e04ac 2206{
f85e7cb7 2207 bool ret = chain_info->terminate_and_process_chain ();
2208 m_stores.remove (chain_info->base_addr);
2209 delete chain_info;
3d3e04ac 2210 return ret;
2211}
2212
9991d1d3 2213/* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2214 may clobber REF. FIRST and LAST must be in the same basic block and
509ab8cd 2215 have non-NULL vdef. We want to be able to sink load of REF across
2216 stores between FIRST and LAST, up to right before LAST. */
9991d1d3 2217
2218bool
2219stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2220{
2221 ao_ref r;
2222 ao_ref_init (&r, ref);
2223 unsigned int count = 0;
2224 tree vop = gimple_vdef (last);
2225 gimple *stmt;
2226
2227 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2228 do
2229 {
2230 stmt = SSA_NAME_DEF_STMT (vop);
2231 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2232 return true;
509ab8cd 2233 if (gimple_store_p (stmt)
2234 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2235 return true;
9991d1d3 2236 /* Avoid quadratic compile time by bounding the number of checks
2237 we perform. */
2238 if (++count > MAX_STORE_ALIAS_CHECKS)
2239 return true;
2240 vop = gimple_vuse (stmt);
2241 }
2242 while (stmt != first);
2243 return false;
2244}
2245
2246/* Return true if INFO->ops[IDX] is mergeable with the
2247 corresponding loads already in MERGED_STORE group.
2248 BASE_ADDR is the base address of the whole store group. */
2249
2250bool
2251compatible_load_p (merged_store_group *merged_store,
2252 store_immediate_info *info,
2253 tree base_addr, int idx)
2254{
2255 store_immediate_info *infof = merged_store->stores[0];
2256 if (!info->ops[idx].base_addr
e61263f2 2257 || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
2258 info->bitpos - infof->bitpos)
9991d1d3 2259 || !operand_equal_p (info->ops[idx].base_addr,
2260 infof->ops[idx].base_addr, 0))
2261 return false;
2262
2263 store_immediate_info *infol = merged_store->stores.last ();
2264 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2265 /* In this case all vuses should be the same, e.g.
2266 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2267 or
2268 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2269 and we can emit the coalesced load next to any of those loads. */
2270 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2271 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2272 return true;
2273
2274 /* Otherwise, at least for now require that the load has the same
2275 vuse as the store. See following examples. */
2276 if (gimple_vuse (info->stmt) != load_vuse)
2277 return false;
2278
2279 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2280 || (infof != infol
2281 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2282 return false;
2283
2284 /* If the load is from the same location as the store, already
2285 the construction of the immediate chain info guarantees no intervening
2286 stores, so no further checks are needed. Example:
2287 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
e61263f2 2288 if (known_eq (info->ops[idx].bitpos, info->bitpos)
9991d1d3 2289 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2290 return true;
2291
2292 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2293 of the stores in the group, or any other stores in between those.
2294 Previous calls to compatible_load_p ensured that for all the
2295 merged_store->stores IDX loads, no stmts starting with
2296 merged_store->first_stmt and ending right before merged_store->last_stmt
2297 clobbers those loads. */
2298 gimple *first = merged_store->first_stmt;
2299 gimple *last = merged_store->last_stmt;
2300 unsigned int i;
2301 store_immediate_info *infoc;
2302 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2303 comes before the so far first load, we'll be changing
2304 merged_store->first_stmt. In that case we need to give up if
2305 any of the earlier processed loads clobber with the stmts in the new
2306 range. */
2307 if (info->order < merged_store->first_order)
2308 {
2309 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2310 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2311 return false;
2312 first = info->stmt;
2313 }
2314 /* Similarly, we could change merged_store->last_stmt, so ensure
2315 in that case no stmts in the new range clobber any of the earlier
2316 processed loads. */
2317 else if (info->order > merged_store->last_order)
2318 {
2319 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2320 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2321 return false;
2322 last = info->stmt;
2323 }
2324 /* And finally, we'd be adding a new load to the set, ensure it isn't
2325 clobbered in the new range. */
2326 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2327 return false;
2328
2329 /* Otherwise, we are looking for:
2330 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2331 or
2332 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2333 return true;
2334}
2335
509ab8cd 2336/* Add all refs loaded to compute VAL to REFS vector. */
2337
2338void
2339gather_bswap_load_refs (vec<tree> *refs, tree val)
2340{
2341 if (TREE_CODE (val) != SSA_NAME)
2342 return;
2343
2344 gimple *stmt = SSA_NAME_DEF_STMT (val);
2345 if (!is_gimple_assign (stmt))
2346 return;
2347
2348 if (gimple_assign_load_p (stmt))
2349 {
2350 refs->safe_push (gimple_assign_rhs1 (stmt));
2351 return;
2352 }
2353
2354 switch (gimple_assign_rhs_class (stmt))
2355 {
2356 case GIMPLE_BINARY_RHS:
2357 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2358 /* FALLTHRU */
2359 case GIMPLE_UNARY_RHS:
2360 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2361 break;
2362 default:
2363 gcc_unreachable ();
2364 }
2365}
2366
cf5e422b 2367/* Check if there are any stores in M_STORE_INFO after index I
2368 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2369 a potential group ending with END that have their order
2370 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2371 group. Return true if there are no such stores.
2372 Consider:
2373 MEM[(long long int *)p_28] = 0;
2374 MEM[(long long int *)p_28 + 8B] = 0;
2375 MEM[(long long int *)p_28 + 16B] = 0;
2376 MEM[(long long int *)p_28 + 24B] = 0;
2377 _129 = (int) _130;
2378 MEM[(int *)p_28 + 8B] = _129;
2379 MEM[(int *)p_28].a = -1;
2380 We already have
2381 MEM[(long long int *)p_28] = 0;
2382 MEM[(int *)p_28].a = -1;
2383 stmts in the current group and need to consider if it is safe to
2384 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2385 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2386 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2387 into the group and merging of those 3 stores is successful, merged
2388 stmts will be emitted at the latest store from that group, i.e.
2389 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2390 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2391 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2392 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2393 into the group. That way it will be its own store group and will
2394 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2395 INTEGER_CST stores, those are mergeable using merge_overlapping,
2396 so don't return false for those. */
2397
2398static bool
2399check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
2400 enum tree_code rhs_code, unsigned int last_order,
2401 unsigned HOST_WIDE_INT end)
2402{
2403 unsigned int len = m_store_info.length ();
2404 for (++i; i < len; ++i)
2405 {
2406 store_immediate_info *info = m_store_info[i];
2407 if (info->bitpos >= end)
2408 break;
2409 if (info->order < last_order
2410 && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
2411 return false;
2412 }
2413 return true;
2414}
2415
509ab8cd 2416/* Return true if m_store_info[first] and at least one following store
2417 form a group which store try_size bitsize value which is byte swapped
2418 from a memory load or some value, or identity from some value.
2419 This uses the bswap pass APIs. */
2420
2421bool
2422imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2423 unsigned int first,
2424 unsigned int try_size)
2425{
2426 unsigned int len = m_store_info.length (), last = first;
2427 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2428 if (width >= try_size)
2429 return false;
2430 for (unsigned int i = first + 1; i < len; ++i)
2431 {
2432 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2433 || m_store_info[i]->ins_stmt == NULL)
2434 return false;
2435 width += m_store_info[i]->bitsize;
2436 if (width >= try_size)
2437 {
2438 last = i;
2439 break;
2440 }
2441 }
2442 if (width != try_size)
2443 return false;
2444
2445 bool allow_unaligned
2446 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2447 /* Punt if the combined store would not be aligned and we need alignment. */
2448 if (!allow_unaligned)
2449 {
2450 unsigned int align = merged_store->align;
2451 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2452 for (unsigned int i = first + 1; i <= last; ++i)
2453 {
2454 unsigned int this_align;
2455 unsigned HOST_WIDE_INT align_bitpos = 0;
2456 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2457 &this_align, &align_bitpos);
2458 if (this_align > align)
2459 {
2460 align = this_align;
2461 align_base = m_store_info[i]->bitpos - align_bitpos;
2462 }
2463 }
2464 unsigned HOST_WIDE_INT align_bitpos
2465 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2466 if (align_bitpos)
2467 align = least_bit_hwi (align_bitpos);
2468 if (align < try_size)
2469 return false;
2470 }
2471
2472 tree type;
2473 switch (try_size)
2474 {
2475 case 16: type = uint16_type_node; break;
2476 case 32: type = uint32_type_node; break;
2477 case 64: type = uint64_type_node; break;
2478 default: gcc_unreachable ();
2479 }
2480 struct symbolic_number n;
2481 gimple *ins_stmt = NULL;
2482 int vuse_store = -1;
2483 unsigned int first_order = merged_store->first_order;
2484 unsigned int last_order = merged_store->last_order;
2485 gimple *first_stmt = merged_store->first_stmt;
2486 gimple *last_stmt = merged_store->last_stmt;
cf5e422b 2487 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
509ab8cd 2488 store_immediate_info *infof = m_store_info[first];
2489
2490 for (unsigned int i = first; i <= last; ++i)
2491 {
2492 store_immediate_info *info = m_store_info[i];
2493 struct symbolic_number this_n = info->n;
2494 this_n.type = type;
2495 if (!this_n.base_addr)
2496 this_n.range = try_size / BITS_PER_UNIT;
58cff6a2 2497 else
2498 /* Update vuse in case it has changed by output_merged_stores. */
2499 this_n.vuse = gimple_vuse (info->ins_stmt);
509ab8cd 2500 unsigned int bitpos = info->bitpos - infof->bitpos;
2501 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2502 BYTES_BIG_ENDIAN
2503 ? try_size - info->bitsize - bitpos
2504 : bitpos))
2505 return false;
1636105f 2506 if (this_n.base_addr && vuse_store)
509ab8cd 2507 {
2508 unsigned int j;
2509 for (j = first; j <= last; ++j)
2510 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2511 break;
2512 if (j > last)
2513 {
2514 if (vuse_store == 1)
2515 return false;
2516 vuse_store = 0;
2517 }
2518 }
2519 if (i == first)
2520 {
2521 n = this_n;
2522 ins_stmt = info->ins_stmt;
2523 }
2524 else
2525 {
cf5e422b 2526 if (n.base_addr && n.vuse != this_n.vuse)
509ab8cd 2527 {
cf5e422b 2528 if (vuse_store == 0)
2529 return false;
2530 vuse_store = 1;
509ab8cd 2531 }
cf5e422b 2532 if (info->order > last_order)
2533 {
2534 last_order = info->order;
2535 last_stmt = info->stmt;
2536 }
2537 else if (info->order < first_order)
2538 {
2539 first_order = info->order;
2540 first_stmt = info->stmt;
2541 }
2542 end = MAX (end, info->bitpos + info->bitsize);
509ab8cd 2543
2544 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2545 &this_n, &n);
2546 if (ins_stmt == NULL)
2547 return false;
2548 }
2549 }
2550
2551 uint64_t cmpxchg, cmpnop;
2552 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2553
2554 /* A complete byte swap should make the symbolic number to start with
2555 the largest digit in the highest order byte. Unchanged symbolic
2556 number indicates a read with same endianness as target architecture. */
2557 if (n.n != cmpnop && n.n != cmpxchg)
2558 return false;
2559
2560 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2561 return false;
2562
cf5e422b 2563 if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
2564 return false;
2565
509ab8cd 2566 /* Don't handle memory copy this way if normal non-bswap processing
2567 would handle it too. */
2568 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2569 {
2570 unsigned int i;
2571 for (i = first; i <= last; ++i)
2572 if (m_store_info[i]->rhs_code != MEM_REF)
2573 break;
2574 if (i == last + 1)
2575 return false;
2576 }
2577
2578 if (n.n == cmpxchg)
2579 switch (try_size)
2580 {
2581 case 16:
2582 /* Will emit LROTATE_EXPR. */
2583 break;
2584 case 32:
2585 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2586 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2587 break;
2588 return false;
2589 case 64:
2590 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2591 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2592 break;
2593 return false;
2594 default:
2595 gcc_unreachable ();
2596 }
2597
2598 if (!allow_unaligned && n.base_addr)
2599 {
2600 unsigned int align = get_object_alignment (n.src);
2601 if (align < try_size)
2602 return false;
2603 }
2604
2605 /* If each load has vuse of the corresponding store, need to verify
2606 the loads can be sunk right before the last store. */
2607 if (vuse_store == 1)
2608 {
2609 auto_vec<tree, 64> refs;
2610 for (unsigned int i = first; i <= last; ++i)
2611 gather_bswap_load_refs (&refs,
2612 gimple_assign_rhs1 (m_store_info[i]->stmt));
2613
2614 unsigned int i;
2615 tree ref;
2616 FOR_EACH_VEC_ELT (refs, i, ref)
2617 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2618 return false;
2619 n.vuse = NULL_TREE;
2620 }
2621
2622 infof->n = n;
2623 infof->ins_stmt = ins_stmt;
2624 for (unsigned int i = first; i <= last; ++i)
2625 {
2626 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2627 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2628 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2629 if (i != first)
2630 merged_store->merge_into (m_store_info[i]);
2631 }
2632
2633 return true;
2634}
2635
3d3e04ac 2636/* Go through the candidate stores recorded in m_store_info and merge them
2637 into merged_store_group objects recorded into m_merged_store_groups
2638 representing the widened stores. Return true if coalescing was successful
2639 and the number of widened stores is fewer than the original number
2640 of stores. */
2641
2642bool
2643imm_store_chain_info::coalesce_immediate_stores ()
2644{
2645 /* Anything less can't be processed. */
2646 if (m_store_info.length () < 2)
2647 return false;
2648
2649 if (dump_file && (dump_flags & TDF_DETAILS))
10f0d48d 2650 fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
3d3e04ac 2651 m_store_info.length ());
2652
2653 store_immediate_info *info;
509ab8cd 2654 unsigned int i, ignore = 0;
3d3e04ac 2655
2656 /* Order the stores by the bitposition they write to. */
2657 m_store_info.qsort (sort_by_bitpos);
2658
2659 info = m_store_info[0];
2660 merged_store_group *merged_store = new merged_store_group (info);
10f0d48d 2661 if (dump_file && (dump_flags & TDF_DETAILS))
2662 fputs ("New store group\n", dump_file);
3d3e04ac 2663
2664 FOR_EACH_VEC_ELT (m_store_info, i, info)
2665 {
509ab8cd 2666 if (i <= ignore)
10f0d48d 2667 goto done;
3d3e04ac 2668
509ab8cd 2669 /* First try to handle group of stores like:
2670 p[0] = data >> 24;
2671 p[1] = data >> 16;
2672 p[2] = data >> 8;
2673 p[3] = data;
2674 using the bswap framework. */
2675 if (info->bitpos == merged_store->start + merged_store->width
2676 && merged_store->stores.length () == 1
2677 && merged_store->stores[0]->ins_stmt != NULL
2678 && info->ins_stmt != NULL)
2679 {
2680 unsigned int try_size;
2681 for (try_size = 64; try_size >= 16; try_size >>= 1)
2682 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2683 break;
2684
2685 if (try_size >= 16)
2686 {
2687 ignore = i + merged_store->stores.length () - 1;
2688 m_merged_store_groups.safe_push (merged_store);
2689 if (ignore < m_store_info.length ())
2690 merged_store = new merged_store_group (m_store_info[ignore]);
2691 else
2692 merged_store = NULL;
10f0d48d 2693 goto done;
509ab8cd 2694 }
2695 }
2696
3d3e04ac 2697 /* |---store 1---|
2698 |---store 2---|
509ab8cd 2699 Overlapping stores. */
2700 if (IN_RANGE (info->bitpos, merged_store->start,
3d3e04ac 2701 merged_store->start + merged_store->width - 1))
2702 {
9991d1d3 2703 /* Only allow overlapping stores of constants. */
2d81e760 2704 if (info->rhs_code == INTEGER_CST)
9991d1d3 2705 {
2d81e760 2706 bool only_constants = true;
2707 store_immediate_info *infoj;
2708 unsigned int j;
2709 FOR_EACH_VEC_ELT (merged_store->stores, j, infoj)
2710 if (infoj->rhs_code != INTEGER_CST)
2711 {
2712 only_constants = false;
2713 break;
2714 }
a1cf1dfe 2715 unsigned int last_order
2716 = MAX (merged_store->last_order, info->order);
2717 unsigned HOST_WIDE_INT end
2718 = MAX (merged_store->start + merged_store->width,
2719 info->bitpos + info->bitsize);
2d81e760 2720 if (only_constants
2721 && check_no_overlap (m_store_info, i, INTEGER_CST,
2722 last_order, end))
a1cf1dfe 2723 {
2724 /* check_no_overlap call above made sure there are no
2725 overlapping stores with non-INTEGER_CST rhs_code
2726 in between the first and last of the stores we've
2727 just merged. If there are any INTEGER_CST rhs_code
2728 stores in between, we need to merge_overlapping them
2729 even if in the sort_by_bitpos order there are other
2730 overlapping stores in between. Keep those stores as is.
2731 Example:
2732 MEM[(int *)p_28] = 0;
2733 MEM[(char *)p_28 + 3B] = 1;
2734 MEM[(char *)p_28 + 1B] = 2;
2735 MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B];
2736 We can't merge the zero store with the store of two and
2737 not merge anything else, because the store of one is
2738 in the original order in between those two, but in
2739 store_by_bitpos order it comes after the last store that
2740 we can't merge with them. We can merge the first 3 stores
2741 and keep the last store as is though. */
2742 unsigned int len = m_store_info.length (), k = i;
2743 for (unsigned int j = i + 1; j < len; ++j)
2744 {
2745 store_immediate_info *info2 = m_store_info[j];
2746 if (info2->bitpos >= end)
2747 break;
2748 if (info2->order < last_order)
2749 {
2750 if (info2->rhs_code != INTEGER_CST)
2751 {
2752 /* Normally check_no_overlap makes sure this
2753 doesn't happen, but if end grows below, then
2754 we need to process more stores than
2755 check_no_overlap verified. Example:
2756 MEM[(int *)p_5] = 0;
2757 MEM[(short *)p_5 + 3B] = 1;
2758 MEM[(char *)p_5 + 4B] = _9;
2759 MEM[(char *)p_5 + 2B] = 2; */
2760 k = 0;
2761 break;
2762 }
2763 k = j;
2764 end = MAX (end, info2->bitpos + info2->bitsize);
2765 }
2766 }
2767
2768 if (k != 0)
2769 {
2770 merged_store->merge_overlapping (info);
2771
2772 for (unsigned int j = i + 1; j <= k; j++)
2773 {
2774 store_immediate_info *info2 = m_store_info[j];
2775 gcc_assert (info2->bitpos < end);
2776 if (info2->order < last_order)
2777 {
2778 gcc_assert (info2->rhs_code == INTEGER_CST);
2779 merged_store->merge_overlapping (info2);
2780 }
2781 /* Other stores are kept and not merged in any
2782 way. */
2783 }
2784 ignore = k;
2785 goto done;
2786 }
2787 }
9991d1d3 2788 }
3d3e04ac 2789 }
9991d1d3 2790 /* |---store 1---||---store 2---|
2791 This store is consecutive to the previous one.
2792 Merge it into the current store group. There can be gaps in between
2793 the stores, but there can't be gaps in between bitregions. */
10f0d48d 2794 else if (info->bitregion_start <= merged_store->bitregion_end
f9ceb302 2795 && merged_store->can_be_merged_into (info))
3d3e04ac 2796 {
9991d1d3 2797 store_immediate_info *infof = merged_store->stores[0];
2798
2799 /* All the rhs_code ops that take 2 operands are commutative,
2800 swap the operands if it could make the operands compatible. */
2801 if (infof->ops[0].base_addr
2802 && infof->ops[1].base_addr
2803 && info->ops[0].base_addr
2804 && info->ops[1].base_addr
e61263f2 2805 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
2806 info->bitpos - infof->bitpos)
9991d1d3 2807 && operand_equal_p (info->ops[1].base_addr,
2808 infof->ops[0].base_addr, 0))
aa0a1d29 2809 {
2810 std::swap (info->ops[0], info->ops[1]);
2811 info->ops_swapped_p = true;
2812 }
f9ceb302 2813 if (check_no_overlap (m_store_info, i, info->rhs_code,
c7b16284 2814 MAX (merged_store->last_order, info->order),
2815 MAX (merged_store->start + merged_store->width,
f9ceb302 2816 info->bitpos + info->bitsize)))
9991d1d3 2817 {
f9ceb302 2818 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
2819 if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF)
2820 {
2821 info->rhs_code = BIT_INSERT_EXPR;
2822 info->ops[0].val = gimple_assign_rhs1 (info->stmt);
2823 info->ops[0].base_addr = NULL_TREE;
2824 }
2825 else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF)
2826 {
2827 store_immediate_info *infoj;
2828 unsigned int j;
2829 FOR_EACH_VEC_ELT (merged_store->stores, j, infoj)
2830 {
2831 infoj->rhs_code = BIT_INSERT_EXPR;
2832 infoj->ops[0].val = gimple_assign_rhs1 (infoj->stmt);
2833 infoj->ops[0].base_addr = NULL_TREE;
2834 }
2835 }
2836 if ((infof->ops[0].base_addr
2837 ? compatible_load_p (merged_store, info, base_addr, 0)
2838 : !info->ops[0].base_addr)
2839 && (infof->ops[1].base_addr
2840 ? compatible_load_p (merged_store, info, base_addr, 1)
2841 : !info->ops[1].base_addr))
2842 {
2843 merged_store->merge_into (info);
2844 goto done;
2845 }
9991d1d3 2846 }
2847 }
3d3e04ac 2848
9991d1d3 2849 /* |---store 1---| <gap> |---store 2---|.
2850 Gap between stores or the rhs not compatible. Start a new group. */
3d3e04ac 2851
9991d1d3 2852 /* Try to apply all the stores recorded for the group to determine
2853 the bitpattern they write and discard it if that fails.
2854 This will also reject single-store groups. */
10f0d48d 2855 if (merged_store->apply_stores ())
9991d1d3 2856 m_merged_store_groups.safe_push (merged_store);
10f0d48d 2857 else
2858 delete merged_store;
3d3e04ac 2859
9991d1d3 2860 merged_store = new merged_store_group (info);
10f0d48d 2861 if (dump_file && (dump_flags & TDF_DETAILS))
2862 fputs ("New store group\n", dump_file);
2863
2864 done:
2865 if (dump_file && (dump_flags & TDF_DETAILS))
2866 {
2867 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2868 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
2869 i, info->bitsize, info->bitpos);
2870 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
2871 fputc ('\n', dump_file);
2872 }
3d3e04ac 2873 }
2874
902cb3b7 2875 /* Record or discard the last store group. */
509ab8cd 2876 if (merged_store)
2877 {
10f0d48d 2878 if (merged_store->apply_stores ())
509ab8cd 2879 m_merged_store_groups.safe_push (merged_store);
10f0d48d 2880 else
2881 delete merged_store;
509ab8cd 2882 }
3d3e04ac 2883
2884 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
10f0d48d 2885
3d3e04ac 2886 bool success
2887 = !m_merged_store_groups.is_empty ()
2888 && m_merged_store_groups.length () < m_store_info.length ();
2889
2890 if (success && dump_file)
10f0d48d 2891 fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n",
902cb3b7 2892 m_merged_store_groups.length ());
3d3e04ac 2893
2894 return success;
2895}
2896
9991d1d3 2897/* Return the type to use for the merged stores or loads described by STMTS.
2898 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2899 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2900 of the MEM_REFs if any. */
3d3e04ac 2901
2902static tree
9991d1d3 2903get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2904 unsigned short *cliquep, unsigned short *basep)
3d3e04ac 2905{
2906 gimple *stmt;
2907 unsigned int i;
9991d1d3 2908 tree type = NULL_TREE;
2909 tree ret = NULL_TREE;
2910 *cliquep = 0;
2911 *basep = 0;
3d3e04ac 2912
2913 FOR_EACH_VEC_ELT (stmts, i, stmt)
2914 {
9991d1d3 2915 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2916 : gimple_assign_lhs (stmt);
2917 tree type1 = reference_alias_ptr_type (ref);
2918 tree base = get_base_address (ref);
3d3e04ac 2919
9991d1d3 2920 if (i == 0)
2921 {
2922 if (TREE_CODE (base) == MEM_REF)
2923 {
2924 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2925 *basep = MR_DEPENDENCE_BASE (base);
2926 }
2927 ret = type = type1;
2928 continue;
2929 }
3d3e04ac 2930 if (!alias_ptr_types_compatible_p (type, type1))
9991d1d3 2931 ret = ptr_type_node;
2932 if (TREE_CODE (base) != MEM_REF
2933 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2934 || *basep != MR_DEPENDENCE_BASE (base))
2935 {
2936 *cliquep = 0;
2937 *basep = 0;
2938 }
3d3e04ac 2939 }
9991d1d3 2940 return ret;
3d3e04ac 2941}
2942
2943/* Return the location_t information we can find among the statements
2944 in STMTS. */
2945
2946static location_t
9991d1d3 2947get_location_for_stmts (vec<gimple *> &stmts)
3d3e04ac 2948{
2949 gimple *stmt;
2950 unsigned int i;
2951
2952 FOR_EACH_VEC_ELT (stmts, i, stmt)
2953 if (gimple_has_location (stmt))
2954 return gimple_location (stmt);
2955
2956 return UNKNOWN_LOCATION;
2957}
2958
2959/* Used to decribe a store resulting from splitting a wide store in smaller
2960 regularly-sized stores in split_group. */
2961
2962struct split_store
2963{
2964 unsigned HOST_WIDE_INT bytepos;
2965 unsigned HOST_WIDE_INT size;
2966 unsigned HOST_WIDE_INT align;
9991d1d3 2967 auto_vec<store_immediate_info *> orig_stores;
902cb3b7 2968 /* True if there is a single orig stmt covering the whole split store. */
2969 bool orig;
3d3e04ac 2970 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2971 unsigned HOST_WIDE_INT);
2972};
2973
2974/* Simple constructor. */
2975
2976split_store::split_store (unsigned HOST_WIDE_INT bp,
2977 unsigned HOST_WIDE_INT sz,
2978 unsigned HOST_WIDE_INT al)
902cb3b7 2979 : bytepos (bp), size (sz), align (al), orig (false)
3d3e04ac 2980{
9991d1d3 2981 orig_stores.create (0);
3d3e04ac 2982}
2983
9991d1d3 2984/* Record all stores in GROUP that write to the region starting at BITPOS and
2985 is of size BITSIZE. Record infos for such statements in STORES if
2986 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2987 if there is exactly one original store in the range. */
3d3e04ac 2988
902cb3b7 2989static store_immediate_info *
9991d1d3 2990find_constituent_stores (struct merged_store_group *group,
2991 vec<store_immediate_info *> *stores,
2992 unsigned int *first,
2993 unsigned HOST_WIDE_INT bitpos,
2994 unsigned HOST_WIDE_INT bitsize)
3d3e04ac 2995{
902cb3b7 2996 store_immediate_info *info, *ret = NULL;
3d3e04ac 2997 unsigned int i;
902cb3b7 2998 bool second = false;
2999 bool update_first = true;
3d3e04ac 3000 unsigned HOST_WIDE_INT end = bitpos + bitsize;
902cb3b7 3001 for (i = *first; group->stores.iterate (i, &info); ++i)
3d3e04ac 3002 {
3003 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
3004 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
902cb3b7 3005 if (stmt_end <= bitpos)
3006 {
3007 /* BITPOS passed to this function never decreases from within the
3008 same split_group call, so optimize and don't scan info records
3009 which are known to end before or at BITPOS next time.
3010 Only do it if all stores before this one also pass this. */
3011 if (update_first)
3012 *first = i + 1;
3013 continue;
3014 }
3015 else
3016 update_first = false;
3017
3d3e04ac 3018 /* The stores in GROUP are ordered by bitposition so if we're past
902cb3b7 3019 the region for this group return early. */
3020 if (stmt_start >= end)
3021 return ret;
3022
9991d1d3 3023 if (stores)
902cb3b7 3024 {
9991d1d3 3025 stores->safe_push (info);
902cb3b7 3026 if (ret)
3027 {
3028 ret = NULL;
3029 second = true;
3030 }
3031 }
3032 else if (ret)
3033 return NULL;
3034 if (!second)
3035 ret = info;
3d3e04ac 3036 }
902cb3b7 3037 return ret;
3d3e04ac 3038}
3039
871a91ec 3040/* Return how many SSA_NAMEs used to compute value to store in the INFO
3041 store have multiple uses. If any SSA_NAME has multiple uses, also
3042 count statements needed to compute it. */
3043
3044static unsigned
3045count_multiple_uses (store_immediate_info *info)
3046{
3047 gimple *stmt = info->stmt;
3048 unsigned ret = 0;
3049 switch (info->rhs_code)
3050 {
3051 case INTEGER_CST:
3052 return 0;
3053 case BIT_AND_EXPR:
3054 case BIT_IOR_EXPR:
3055 case BIT_XOR_EXPR:
832a73b9 3056 if (info->bit_not_p)
3057 {
3058 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3059 ret = 1; /* Fall through below to return
3060 the BIT_NOT_EXPR stmt and then
3061 BIT_{AND,IOR,XOR}_EXPR and anything it
3062 uses. */
3063 else
3064 /* stmt is after this the BIT_NOT_EXPR. */
3065 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3066 }
871a91ec 3067 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3068 {
3069 ret += 1 + info->ops[0].bit_not_p;
3070 if (info->ops[1].base_addr)
3071 ret += 1 + info->ops[1].bit_not_p;
3072 return ret + 1;
3073 }
3074 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3075 /* stmt is now the BIT_*_EXPR. */
3076 if (!has_single_use (gimple_assign_rhs1 (stmt)))
aa0a1d29 3077 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
3078 else if (info->ops[info->ops_swapped_p].bit_not_p)
871a91ec 3079 {
3080 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3081 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3082 ++ret;
3083 }
3084 if (info->ops[1].base_addr == NULL_TREE)
aa0a1d29 3085 {
3086 gcc_checking_assert (!info->ops_swapped_p);
3087 return ret;
3088 }
871a91ec 3089 if (!has_single_use (gimple_assign_rhs2 (stmt)))
aa0a1d29 3090 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
3091 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
871a91ec 3092 {
3093 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3094 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3095 ++ret;
3096 }
3097 return ret;
3098 case MEM_REF:
3099 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3100 return 1 + info->ops[0].bit_not_p;
3101 else if (info->ops[0].bit_not_p)
3102 {
3103 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3104 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3105 return 1;
3106 }
3107 return 0;
10f0d48d 3108 case BIT_INSERT_EXPR:
3109 return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1;
871a91ec 3110 default:
3111 gcc_unreachable ();
3112 }
3113}
3114
3d3e04ac 3115/* Split a merged store described by GROUP by populating the SPLIT_STORES
902cb3b7 3116 vector (if non-NULL) with split_store structs describing the byte offset
3117 (from the base), the bit size and alignment of each store as well as the
3118 original statements involved in each such split group.
3d3e04ac 3119 This is to separate the splitting strategy from the statement
3120 building/emission/linking done in output_merged_store.
902cb3b7 3121 Return number of new stores.
9991d1d3 3122 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3123 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
902cb3b7 3124 If SPLIT_STORES is NULL, it is just a dry run to count number of
3125 new stores. */
3d3e04ac 3126
902cb3b7 3127static unsigned int
9991d1d3 3128split_group (merged_store_group *group, bool allow_unaligned_store,
3129 bool allow_unaligned_load,
871a91ec 3130 vec<struct split_store *> *split_stores,
3131 unsigned *total_orig,
3132 unsigned *total_new)
3d3e04ac 3133{
902cb3b7 3134 unsigned HOST_WIDE_INT pos = group->bitregion_start;
3135 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
3d3e04ac 3136 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
902cb3b7 3137 unsigned HOST_WIDE_INT group_align = group->align;
3138 unsigned HOST_WIDE_INT align_base = group->align_base;
9991d1d3 3139 unsigned HOST_WIDE_INT group_load_align = group_align;
871a91ec 3140 bool any_orig = false;
3d3e04ac 3141
3d3e04ac 3142 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
3143
509ab8cd 3144 if (group->stores[0]->rhs_code == LROTATE_EXPR
3145 || group->stores[0]->rhs_code == NOP_EXPR)
3146 {
3147 /* For bswap framework using sets of stores, all the checking
3148 has been done earlier in try_coalesce_bswap and needs to be
3149 emitted as a single store. */
3150 if (total_orig)
3151 {
3152 /* Avoid the old/new stmt count heuristics. It should be
3153 always beneficial. */
3154 total_new[0] = 1;
3155 total_orig[0] = 2;
3156 }
3157
3158 if (split_stores)
3159 {
3160 unsigned HOST_WIDE_INT align_bitpos
3161 = (group->start - align_base) & (group_align - 1);
3162 unsigned HOST_WIDE_INT align = group_align;
3163 if (align_bitpos)
3164 align = least_bit_hwi (align_bitpos);
3165 bytepos = group->start / BITS_PER_UNIT;
3166 struct split_store *store
3167 = new split_store (bytepos, group->width, align);
3168 unsigned int first = 0;
3169 find_constituent_stores (group, &store->orig_stores,
3170 &first, group->start, group->width);
3171 split_stores->safe_push (store);
3172 }
3173
3174 return 1;
3175 }
3176
902cb3b7 3177 unsigned int ret = 0, first = 0;
3d3e04ac 3178 unsigned HOST_WIDE_INT try_pos = bytepos;
3d3e04ac 3179
871a91ec 3180 if (total_orig)
3181 {
3182 unsigned int i;
3183 store_immediate_info *info = group->stores[0];
3184
3185 total_new[0] = 0;
3186 total_orig[0] = 1; /* The orig store. */
3187 info = group->stores[0];
3188 if (info->ops[0].base_addr)
9deedf62 3189 total_orig[0]++;
871a91ec 3190 if (info->ops[1].base_addr)
9deedf62 3191 total_orig[0]++;
871a91ec 3192 switch (info->rhs_code)
3193 {
3194 case BIT_AND_EXPR:
3195 case BIT_IOR_EXPR:
3196 case BIT_XOR_EXPR:
3197 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3198 break;
3199 default:
3200 break;
3201 }
3202 total_orig[0] *= group->stores.length ();
3203
3204 FOR_EACH_VEC_ELT (group->stores, i, info)
9deedf62 3205 {
3206 total_new[0] += count_multiple_uses (info);
3207 total_orig[0] += (info->bit_not_p
3208 + info->ops[0].bit_not_p
3209 + info->ops[1].bit_not_p);
3210 }
871a91ec 3211 }
3212
9991d1d3 3213 if (!allow_unaligned_load)
3214 for (int i = 0; i < 2; ++i)
3215 if (group->load_align[i])
3216 group_load_align = MIN (group_load_align, group->load_align[i]);
3217
3d3e04ac 3218 while (size > 0)
3219 {
9991d1d3 3220 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
902cb3b7 3221 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
3222 {
3223 /* Skip padding bytes. */
3224 ++try_pos;
3225 size -= BITS_PER_UNIT;
3226 continue;
3227 }
3228
3d3e04ac 3229 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
902cb3b7 3230 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3231 unsigned HOST_WIDE_INT align_bitpos
3232 = (try_bitpos - align_base) & (group_align - 1);
3233 unsigned HOST_WIDE_INT align = group_align;
3234 if (align_bitpos)
3235 align = least_bit_hwi (align_bitpos);
9991d1d3 3236 if (!allow_unaligned_store)
902cb3b7 3237 try_size = MIN (try_size, align);
9991d1d3 3238 if (!allow_unaligned_load)
3239 {
3240 /* If we can't do or don't want to do unaligned stores
3241 as well as loads, we need to take the loads into account
3242 as well. */
3243 unsigned HOST_WIDE_INT load_align = group_load_align;
3244 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3245 if (align_bitpos)
3246 load_align = least_bit_hwi (align_bitpos);
3247 for (int i = 0; i < 2; ++i)
3248 if (group->load_align[i])
3249 {
e61263f2 3250 align_bitpos
3251 = known_alignment (try_bitpos
3252 - group->stores[0]->bitpos
3253 + group->stores[0]->ops[i].bitpos
3254 - group->load_align_base[i]);
3255 if (align_bitpos & (group_load_align - 1))
9991d1d3 3256 {
3257 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3258 load_align = MIN (load_align, a);
3259 }
3260 }
3261 try_size = MIN (try_size, load_align);
3262 }
902cb3b7 3263 store_immediate_info *info
9991d1d3 3264 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
902cb3b7 3265 if (info)
3266 {
3267 /* If there is just one original statement for the range, see if
3268 we can just reuse the original store which could be even larger
3269 than try_size. */
3270 unsigned HOST_WIDE_INT stmt_end
3271 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
9991d1d3 3272 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3273 stmt_end - try_bitpos);
902cb3b7 3274 if (info && info->bitpos >= try_bitpos)
3275 {
3276 try_size = stmt_end - try_bitpos;
3277 goto found;
3278 }
3279 }
3d3e04ac 3280
902cb3b7 3281 /* Approximate store bitsize for the case when there are no padding
3282 bits. */
3283 while (try_size > size)
3284 try_size /= 2;
3285 /* Now look for whole padding bytes at the end of that bitsize. */
3286 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3287 if (group->mask[try_pos - bytepos + nonmasked - 1]
3288 != (unsigned char) ~0U)
3289 break;
3290 if (nonmasked == 0)
3291 {
3292 /* If entire try_size range is padding, skip it. */
3293 try_pos += try_size / BITS_PER_UNIT;
3294 size -= try_size;
3295 continue;
3296 }
3297 /* Otherwise try to decrease try_size if second half, last 3 quarters
3298 etc. are padding. */
3299 nonmasked *= BITS_PER_UNIT;
3300 while (nonmasked <= try_size / 2)
3301 try_size /= 2;
9991d1d3 3302 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
902cb3b7 3303 {
3304 /* Now look for whole padding bytes at the start of that bitsize. */
3305 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3306 for (masked = 0; masked < try_bytesize; ++masked)
3307 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3308 break;
3309 masked *= BITS_PER_UNIT;
3310 gcc_assert (masked < try_size);
3311 if (masked >= try_size / 2)
3312 {
3313 while (masked >= try_size / 2)
3314 {
3315 try_size /= 2;
3316 try_pos += try_size / BITS_PER_UNIT;
3317 size -= try_size;
3318 masked -= try_size;
3319 }
3320 /* Need to recompute the alignment, so just retry at the new
3321 position. */
3322 continue;
3323 }
3324 }
3325
3326 found:
3327 ++ret;
3d3e04ac 3328
902cb3b7 3329 if (split_stores)
3330 {
3331 struct split_store *store
3332 = new split_store (try_pos, try_size, align);
9991d1d3 3333 info = find_constituent_stores (group, &store->orig_stores,
3334 &first, try_bitpos, try_size);
902cb3b7 3335 if (info
3336 && info->bitpos >= try_bitpos
3337 && info->bitpos + info->bitsize <= try_bitpos + try_size)
871a91ec 3338 {
3339 store->orig = true;
3340 any_orig = true;
3341 }
902cb3b7 3342 split_stores->safe_push (store);
3343 }
3344
3345 try_pos += try_size / BITS_PER_UNIT;
3d3e04ac 3346 size -= try_size;
3d3e04ac 3347 }
902cb3b7 3348
871a91ec 3349 if (total_orig)
3350 {
9deedf62 3351 unsigned int i;
3352 struct split_store *store;
871a91ec 3353 /* If we are reusing some original stores and any of the
3354 original SSA_NAMEs had multiple uses, we need to subtract
3355 those now before we add the new ones. */
3356 if (total_new[0] && any_orig)
3357 {
871a91ec 3358 FOR_EACH_VEC_ELT (*split_stores, i, store)
3359 if (store->orig)
3360 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3361 }
3362 total_new[0] += ret; /* The new store. */
3363 store_immediate_info *info = group->stores[0];
3364 if (info->ops[0].base_addr)
9deedf62 3365 total_new[0] += ret;
871a91ec 3366 if (info->ops[1].base_addr)
9deedf62 3367 total_new[0] += ret;
871a91ec 3368 switch (info->rhs_code)
3369 {
3370 case BIT_AND_EXPR:
3371 case BIT_IOR_EXPR:
3372 case BIT_XOR_EXPR:
3373 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3374 break;
3375 default:
3376 break;
3377 }
9deedf62 3378 FOR_EACH_VEC_ELT (*split_stores, i, store)
3379 {
3380 unsigned int j;
3381 bool bit_not_p[3] = { false, false, false };
3382 /* If all orig_stores have certain bit_not_p set, then
3383 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3384 If some orig_stores have certain bit_not_p set, then
3385 we'd use a BIT_XOR_EXPR with a mask and need to account for
3386 it. */
3387 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3388 {
3389 if (info->ops[0].bit_not_p)
3390 bit_not_p[0] = true;
3391 if (info->ops[1].bit_not_p)
3392 bit_not_p[1] = true;
3393 if (info->bit_not_p)
3394 bit_not_p[2] = true;
3395 }
3396 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3397 }
3398
871a91ec 3399 }
3400
902cb3b7 3401 return ret;
3d3e04ac 3402}
3403
9deedf62 3404/* Return the operation through which the operand IDX (if < 2) or
3405 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3406 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3407 the bits should be xored with mask. */
3408
3409static enum tree_code
3410invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3411{
3412 unsigned int i;
3413 store_immediate_info *info;
3414 unsigned int cnt = 0;
6187b750 3415 bool any_paddings = false;
9deedf62 3416 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3417 {
3418 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3419 if (bit_not_p)
6187b750 3420 {
3421 ++cnt;
3422 tree lhs = gimple_assign_lhs (info->stmt);
3423 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3424 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
3425 any_paddings = true;
3426 }
9deedf62 3427 }
3428 mask = NULL_TREE;
3429 if (cnt == 0)
3430 return NOP_EXPR;
6187b750 3431 if (cnt == split_store->orig_stores.length () && !any_paddings)
9deedf62 3432 return BIT_NOT_EXPR;
3433
3434 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3435 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3436 unsigned char *buf
3437 = XALLOCAVEC (unsigned char, buf_size);
3438 memset (buf, ~0U, buf_size);
3439 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3440 {
3441 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3442 if (!bit_not_p)
3443 continue;
3444 /* Clear regions with bit_not_p and invert afterwards, rather than
3445 clear regions with !bit_not_p, so that gaps in between stores aren't
3446 set in the mask. */
3447 unsigned HOST_WIDE_INT bitsize = info->bitsize;
6187b750 3448 unsigned HOST_WIDE_INT prec = bitsize;
9deedf62 3449 unsigned int pos_in_buffer = 0;
6187b750 3450 if (any_paddings)
3451 {
3452 tree lhs = gimple_assign_lhs (info->stmt);
3453 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3454 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
3455 prec = TYPE_PRECISION (TREE_TYPE (lhs));
3456 }
9deedf62 3457 if (info->bitpos < try_bitpos)
3458 {
3459 gcc_assert (info->bitpos + bitsize > try_bitpos);
6187b750 3460 if (!BYTES_BIG_ENDIAN)
3461 {
3462 if (prec <= try_bitpos - info->bitpos)
3463 continue;
3464 prec -= try_bitpos - info->bitpos;
3465 }
3466 bitsize -= try_bitpos - info->bitpos;
3467 if (BYTES_BIG_ENDIAN && prec > bitsize)
3468 prec = bitsize;
9deedf62 3469 }
3470 else
3471 pos_in_buffer = info->bitpos - try_bitpos;
6187b750 3472 if (prec < bitsize)
3473 {
3474 /* If this is a bool inversion, invert just the least significant
3475 prec bits rather than all bits of it. */
3476 if (BYTES_BIG_ENDIAN)
3477 {
3478 pos_in_buffer += bitsize - prec;
3479 if (pos_in_buffer >= split_store->size)
3480 continue;
3481 }
3482 bitsize = prec;
3483 }
9deedf62 3484 if (pos_in_buffer + bitsize > split_store->size)
3485 bitsize = split_store->size - pos_in_buffer;
3486 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3487 if (BYTES_BIG_ENDIAN)
3488 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3489 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3490 else
3491 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3492 }
3493 for (unsigned int i = 0; i < buf_size; ++i)
3494 buf[i] = ~buf[i];
3495 mask = native_interpret_expr (int_type, buf, buf_size);
3496 return BIT_XOR_EXPR;
3497}
3498
3d3e04ac 3499/* Given a merged store group GROUP output the widened version of it.
3500 The store chain is against the base object BASE.
3501 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3502 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3503 Make sure that the number of statements output is less than the number of
3504 original statements. If a better sequence is possible emit it and
3505 return true. */
3506
3507bool
f85e7cb7 3508imm_store_chain_info::output_merged_store (merged_store_group *group)
3d3e04ac 3509{
79b9cc46 3510 split_store *split_store;
3511 unsigned int i;
902cb3b7 3512 unsigned HOST_WIDE_INT start_byte_pos
3513 = group->bitregion_start / BITS_PER_UNIT;
3d3e04ac 3514
3515 unsigned int orig_num_stmts = group->stores.length ();
3516 if (orig_num_stmts < 2)
3517 return false;
3518
902cb3b7 3519 auto_vec<struct split_store *, 32> split_stores;
9991d1d3 3520 bool allow_unaligned_store
902cb3b7 3521 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
9991d1d3 3522 bool allow_unaligned_load = allow_unaligned_store;
3523 if (allow_unaligned_store)
902cb3b7 3524 {
3525 /* If unaligned stores are allowed, see how many stores we'd emit
3526 for unaligned and how many stores we'd emit for aligned stores.
3527 Only use unaligned stores if it allows fewer stores than aligned. */
9991d1d3 3528 unsigned aligned_cnt
871a91ec 3529 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
9991d1d3 3530 unsigned unaligned_cnt
871a91ec 3531 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
902cb3b7 3532 if (aligned_cnt <= unaligned_cnt)
9991d1d3 3533 allow_unaligned_store = false;
902cb3b7 3534 }
871a91ec 3535 unsigned total_orig, total_new;
9991d1d3 3536 split_group (group, allow_unaligned_store, allow_unaligned_load,
871a91ec 3537 &split_stores, &total_orig, &total_new);
902cb3b7 3538
3539 if (split_stores.length () >= orig_num_stmts)
3540 {
3541 /* We didn't manage to reduce the number of statements. Bail out. */
3542 if (dump_file && (dump_flags & TDF_DETAILS))
871a91ec 3543 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3544 " Not profitable to emit new sequence.\n",
3545 orig_num_stmts);
79b9cc46 3546 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3547 delete split_store;
902cb3b7 3548 return false;
3549 }
871a91ec 3550 if (total_orig <= total_new)
3551 {
3552 /* If number of estimated new statements is above estimated original
3553 statements, bail out too. */
3554 if (dump_file && (dump_flags & TDF_DETAILS))
3555 fprintf (dump_file, "Estimated number of original stmts (%u)"
3556 " not larger than estimated number of new"
3557 " stmts (%u).\n",
3558 total_orig, total_new);
79b9cc46 3559 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3560 delete split_store;
509ab8cd 3561 return false;
871a91ec 3562 }
3d3e04ac 3563
3564 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3565 gimple_seq seq = NULL;
3d3e04ac 3566 tree last_vdef, new_vuse;
3567 last_vdef = gimple_vdef (group->last_stmt);
3568 new_vuse = gimple_vuse (group->last_stmt);
509ab8cd 3569 tree bswap_res = NULL_TREE;
3570
3571 if (group->stores[0]->rhs_code == LROTATE_EXPR
3572 || group->stores[0]->rhs_code == NOP_EXPR)
3573 {
3574 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3575 gimple *ins_stmt = group->stores[0]->ins_stmt;
3576 struct symbolic_number *n = &group->stores[0]->n;
3577 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3578
3579 switch (n->range)
3580 {
3581 case 16:
3582 load_type = bswap_type = uint16_type_node;
3583 break;
3584 case 32:
3585 load_type = uint32_type_node;
3586 if (bswap)
3587 {
3588 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3589 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3590 }
3591 break;
3592 case 64:
3593 load_type = uint64_type_node;
3594 if (bswap)
3595 {
3596 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3597 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3598 }
3599 break;
3600 default:
3601 gcc_unreachable ();
3602 }
3603
3604 /* If the loads have each vuse of the corresponding store,
3605 we've checked the aliasing already in try_coalesce_bswap and
3606 we want to sink the need load into seq. So need to use new_vuse
3607 on the load. */
58cff6a2 3608 if (n->base_addr)
509ab8cd 3609 {
58cff6a2 3610 if (n->vuse == NULL)
3611 {
3612 n->vuse = new_vuse;
3613 ins_stmt = NULL;
3614 }
3615 else
3616 /* Update vuse in case it has changed by output_merged_stores. */
3617 n->vuse = gimple_vuse (ins_stmt);
509ab8cd 3618 }
3619 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3620 bswap_type, load_type, n, bswap);
3621 gcc_assert (bswap_res);
3622 }
3d3e04ac 3623
3624 gimple *stmt = NULL;
9991d1d3 3625 auto_vec<gimple *, 32> orig_stmts;
509ab8cd 3626 gimple_seq this_seq;
3627 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
427223f1 3628 is_gimple_mem_ref_addr, NULL_TREE);
509ab8cd 3629 gimple_seq_add_seq_without_update (&seq, this_seq);
9991d1d3 3630
3631 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3632 gimple_seq load_seq[2] = { NULL, NULL };
3633 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3634 for (int j = 0; j < 2; ++j)
3635 {
3636 store_operand_info &op = group->stores[0]->ops[j];
3637 if (op.base_addr == NULL_TREE)
3638 continue;
3639
3640 store_immediate_info *infol = group->stores.last ();
3641 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3642 {
e0099abc 3643 /* We can't pick the location randomly; while we've verified
3644 all the loads have the same vuse, they can be still in different
3645 basic blocks and we need to pick the one from the last bb:
3646 int x = q[0];
3647 if (x == N) return;
3648 int y = q[1];
3649 p[0] = x;
3650 p[1] = y;
3651 otherwise if we put the wider load at the q[0] load, we might
3652 segfault if q[1] is not mapped. */
3653 basic_block bb = gimple_bb (op.stmt);
3654 gimple *ostmt = op.stmt;
3655 store_immediate_info *info;
3656 FOR_EACH_VEC_ELT (group->stores, i, info)
3657 {
3658 gimple *tstmt = info->ops[j].stmt;
3659 basic_block tbb = gimple_bb (tstmt);
3660 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3661 {
3662 ostmt = tstmt;
3663 bb = tbb;
3664 }
3665 }
3666 load_gsi[j] = gsi_for_stmt (ostmt);
9991d1d3 3667 load_addr[j]
3668 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3669 &load_seq[j], is_gimple_mem_ref_addr,
3670 NULL_TREE);
3671 }
3672 else if (operand_equal_p (base_addr, op.base_addr, 0))
3673 load_addr[j] = addr;
3674 else
ad3e5b2f 3675 {
ad3e5b2f 3676 load_addr[j]
3677 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3678 &this_seq, is_gimple_mem_ref_addr,
3679 NULL_TREE);
3680 gimple_seq_add_seq_without_update (&seq, this_seq);
3681 }
9991d1d3 3682 }
3683
3d3e04ac 3684 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3685 {
3686 unsigned HOST_WIDE_INT try_size = split_store->size;
3687 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
10f0d48d 3688 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3d3e04ac 3689 unsigned HOST_WIDE_INT align = split_store->align;
902cb3b7 3690 tree dest, src;
3691 location_t loc;
3692 if (split_store->orig)
3693 {
3694 /* If there is just a single constituent store which covers
3695 the whole area, just reuse the lhs and rhs. */
9991d1d3 3696 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3697 dest = gimple_assign_lhs (orig_stmt);
3698 src = gimple_assign_rhs1 (orig_stmt);
3699 loc = gimple_location (orig_stmt);
902cb3b7 3700 }
3701 else
3702 {
9991d1d3 3703 store_immediate_info *info;
3704 unsigned short clique, base;
3705 unsigned int k;
3706 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3707 orig_stmts.safe_push (info->stmt);
902cb3b7 3708 tree offset_type
9991d1d3 3709 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3710 loc = get_location_for_stmts (orig_stmts);
3711 orig_stmts.truncate (0);
902cb3b7 3712
3713 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3714 int_type = build_aligned_type (int_type, align);
3715 dest = fold_build2 (MEM_REF, int_type, addr,
3716 build_int_cst (offset_type, try_pos));
9991d1d3 3717 if (TREE_CODE (dest) == MEM_REF)
3718 {
3719 MR_DEPENDENCE_CLIQUE (dest) = clique;
3720 MR_DEPENDENCE_BASE (dest) = base;
3721 }
3722
10f0d48d 3723 tree mask;
3724 if (bswap_res)
3725 mask = integer_zero_node;
3726 else
509ab8cd 3727 mask = native_interpret_expr (int_type,
3728 group->mask + try_pos
3729 - start_byte_pos,
3730 group->buf_size);
9991d1d3 3731
3732 tree ops[2];
3733 for (int j = 0;
3734 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3735 ++j)
3736 {
3737 store_operand_info &op = split_store->orig_stores[0]->ops[j];
509ab8cd 3738 if (bswap_res)
3739 ops[j] = bswap_res;
3740 else if (op.base_addr)
9991d1d3 3741 {
3742 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3743 orig_stmts.safe_push (info->ops[j].stmt);
3744
3745 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3746 &clique, &base);
3747 location_t load_loc = get_location_for_stmts (orig_stmts);
3748 orig_stmts.truncate (0);
3749
3750 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3751 unsigned HOST_WIDE_INT align_bitpos
10f0d48d 3752 = known_alignment (try_bitpos
e61263f2 3753 - split_store->orig_stores[0]->bitpos
3754 + op.bitpos);
3755 if (align_bitpos & (load_align - 1))
9991d1d3 3756 load_align = least_bit_hwi (align_bitpos);
3757
3758 tree load_int_type
3759 = build_nonstandard_integer_type (try_size, UNSIGNED);
3760 load_int_type
3761 = build_aligned_type (load_int_type, load_align);
3762
e61263f2 3763 poly_uint64 load_pos
10f0d48d 3764 = exact_div (try_bitpos
e61263f2 3765 - split_store->orig_stores[0]->bitpos
3766 + op.bitpos,
3767 BITS_PER_UNIT);
9991d1d3 3768 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3769 build_int_cst (offset_type, load_pos));
3770 if (TREE_CODE (ops[j]) == MEM_REF)
3771 {
3772 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3773 MR_DEPENDENCE_BASE (ops[j]) = base;
3774 }
3775 if (!integer_zerop (mask))
3776 /* The load might load some bits (that will be masked off
3777 later on) uninitialized, avoid -W*uninitialized
3778 warnings in that case. */
3779 TREE_NO_WARNING (ops[j]) = 1;
3780
3781 stmt = gimple_build_assign (make_ssa_name (int_type),
3782 ops[j]);
3783 gimple_set_location (stmt, load_loc);
3784 if (gsi_bb (load_gsi[j]))
3785 {
3786 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3787 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3788 }
3789 else
3790 {
3791 gimple_set_vuse (stmt, new_vuse);
3792 gimple_seq_add_stmt_without_update (&seq, stmt);
3793 }
3794 ops[j] = gimple_assign_lhs (stmt);
9deedf62 3795 tree xor_mask;
3796 enum tree_code inv_op
3797 = invert_op (split_store, j, int_type, xor_mask);
3798 if (inv_op != NOP_EXPR)
c35548ce 3799 {
3800 stmt = gimple_build_assign (make_ssa_name (int_type),
9deedf62 3801 inv_op, ops[j], xor_mask);
c35548ce 3802 gimple_set_location (stmt, load_loc);
3803 ops[j] = gimple_assign_lhs (stmt);
3804
3805 if (gsi_bb (load_gsi[j]))
3806 gimple_seq_add_stmt_without_update (&load_seq[j],
3807 stmt);
3808 else
3809 gimple_seq_add_stmt_without_update (&seq, stmt);
3810 }
9991d1d3 3811 }
3812 else
3813 ops[j] = native_interpret_expr (int_type,
3814 group->val + try_pos
3815 - start_byte_pos,
3816 group->buf_size);
3817 }
3818
3819 switch (split_store->orig_stores[0]->rhs_code)
3820 {
3821 case BIT_AND_EXPR:
3822 case BIT_IOR_EXPR:
3823 case BIT_XOR_EXPR:
3824 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3825 {
3826 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3827 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3828 }
3829 location_t bit_loc;
3830 bit_loc = get_location_for_stmts (orig_stmts);
3831 orig_stmts.truncate (0);
3832
3833 stmt
3834 = gimple_build_assign (make_ssa_name (int_type),
3835 split_store->orig_stores[0]->rhs_code,
3836 ops[0], ops[1]);
3837 gimple_set_location (stmt, bit_loc);
3838 /* If there is just one load and there is a separate
3839 load_seq[0], emit the bitwise op right after it. */
3840 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3841 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3842 /* Otherwise, if at least one load is in seq, we need to
3843 emit the bitwise op right before the store. If there
3844 are two loads and are emitted somewhere else, it would
3845 be better to emit the bitwise op as early as possible;
3846 we don't track where that would be possible right now
3847 though. */
3848 else
3849 gimple_seq_add_stmt_without_update (&seq, stmt);
3850 src = gimple_assign_lhs (stmt);
9deedf62 3851 tree xor_mask;
3852 enum tree_code inv_op;
3853 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3854 if (inv_op != NOP_EXPR)
832a73b9 3855 {
3856 stmt = gimple_build_assign (make_ssa_name (int_type),
9deedf62 3857 inv_op, src, xor_mask);
832a73b9 3858 gimple_set_location (stmt, bit_loc);
3859 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3860 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3861 else
3862 gimple_seq_add_stmt_without_update (&seq, stmt);
3863 src = gimple_assign_lhs (stmt);
3864 }
9991d1d3 3865 break;
509ab8cd 3866 case LROTATE_EXPR:
3867 case NOP_EXPR:
3868 src = ops[0];
3869 if (!is_gimple_val (src))
3870 {
3871 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3872 src);
3873 gimple_seq_add_stmt_without_update (&seq, stmt);
3874 src = gimple_assign_lhs (stmt);
3875 }
3876 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3877 {
3878 stmt = gimple_build_assign (make_ssa_name (int_type),
3879 NOP_EXPR, src);
3880 gimple_seq_add_stmt_without_update (&seq, stmt);
3881 src = gimple_assign_lhs (stmt);
3882 }
665dafda 3883 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3884 if (inv_op != NOP_EXPR)
3885 {
3886 stmt = gimple_build_assign (make_ssa_name (int_type),
3887 inv_op, src, xor_mask);
3888 gimple_set_location (stmt, loc);
3889 gimple_seq_add_stmt_without_update (&seq, stmt);
3890 src = gimple_assign_lhs (stmt);
3891 }
509ab8cd 3892 break;
9991d1d3 3893 default:
3894 src = ops[0];
3895 break;
3896 }
3897
10f0d48d 3898 /* If bit insertion is required, we use the source as an accumulator
3899 into which the successive bit-field values are manually inserted.
3900 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
3901 if (group->bit_insertion)
3902 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3903 if (info->rhs_code == BIT_INSERT_EXPR
3904 && info->bitpos < try_bitpos + try_size
3905 && info->bitpos + info->bitsize > try_bitpos)
3906 {
3907 /* Mask, truncate, convert to final type, shift and ior into
3908 the accumulator. Note that every step can be a no-op. */
3909 const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
3910 const HOST_WIDE_INT end_gap
3911 = (try_bitpos + try_size) - (info->bitpos + info->bitsize);
3912 tree tem = info->ops[0].val;
1bcb04d5 3913 if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize)
3914 {
3915 tree bitfield_type
3916 = build_nonstandard_integer_type (info->bitsize,
3917 UNSIGNED);
3918 tem = gimple_convert (&seq, loc, bitfield_type, tem);
3919 }
3920 else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
10f0d48d 3921 {
3922 const unsigned HOST_WIDE_INT imask
3923 = (HOST_WIDE_INT_1U << info->bitsize) - 1;
3924 tem = gimple_build (&seq, loc,
3925 BIT_AND_EXPR, TREE_TYPE (tem), tem,
3926 build_int_cst (TREE_TYPE (tem),
3927 imask));
3928 }
3929 const HOST_WIDE_INT shift
3930 = (BYTES_BIG_ENDIAN ? end_gap : start_gap);
3931 if (shift < 0)
3932 tem = gimple_build (&seq, loc,
3933 RSHIFT_EXPR, TREE_TYPE (tem), tem,
3934 build_int_cst (NULL_TREE, -shift));
3935 tem = gimple_convert (&seq, loc, int_type, tem);
3936 if (shift > 0)
3937 tem = gimple_build (&seq, loc,
3938 LSHIFT_EXPR, int_type, tem,
3939 build_int_cst (NULL_TREE, shift));
3940 src = gimple_build (&seq, loc,
3941 BIT_IOR_EXPR, int_type, tem, src);
3942 }
3943
902cb3b7 3944 if (!integer_zerop (mask))
3945 {
3946 tree tem = make_ssa_name (int_type);
3947 tree load_src = unshare_expr (dest);
3948 /* The load might load some or all bits uninitialized,
3949 avoid -W*uninitialized warnings in that case.
3950 As optimization, it would be nice if all the bits are
3951 provably uninitialized (no stores at all yet or previous
3952 store a CLOBBER) we'd optimize away the load and replace
3953 it e.g. with 0. */
3954 TREE_NO_WARNING (load_src) = 1;
3955 stmt = gimple_build_assign (tem, load_src);
3956 gimple_set_location (stmt, loc);
3957 gimple_set_vuse (stmt, new_vuse);
3958 gimple_seq_add_stmt_without_update (&seq, stmt);
3959
3960 /* FIXME: If there is a single chunk of zero bits in mask,
3961 perhaps use BIT_INSERT_EXPR instead? */
3962 stmt = gimple_build_assign (make_ssa_name (int_type),
3963 BIT_AND_EXPR, tem, mask);
3964 gimple_set_location (stmt, loc);
3965 gimple_seq_add_stmt_without_update (&seq, stmt);
3966 tem = gimple_assign_lhs (stmt);
3967
9991d1d3 3968 if (TREE_CODE (src) == INTEGER_CST)
3969 src = wide_int_to_tree (int_type,
3970 wi::bit_and_not (wi::to_wide (src),
3971 wi::to_wide (mask)));
3972 else
3973 {
3974 tree nmask
3975 = wide_int_to_tree (int_type,
3976 wi::bit_not (wi::to_wide (mask)));
3977 stmt = gimple_build_assign (make_ssa_name (int_type),
3978 BIT_AND_EXPR, src, nmask);
3979 gimple_set_location (stmt, loc);
3980 gimple_seq_add_stmt_without_update (&seq, stmt);
3981 src = gimple_assign_lhs (stmt);
3982 }
902cb3b7 3983 stmt = gimple_build_assign (make_ssa_name (int_type),
3984 BIT_IOR_EXPR, tem, src);
3985 gimple_set_location (stmt, loc);
3986 gimple_seq_add_stmt_without_update (&seq, stmt);
3987 src = gimple_assign_lhs (stmt);
3988 }
3989 }
3d3e04ac 3990
3991 stmt = gimple_build_assign (dest, src);
3992 gimple_set_location (stmt, loc);
3993 gimple_set_vuse (stmt, new_vuse);
3994 gimple_seq_add_stmt_without_update (&seq, stmt);
3995
3d3e04ac 3996 tree new_vdef;
3997 if (i < split_stores.length () - 1)
902cb3b7 3998 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
3d3e04ac 3999 else
4000 new_vdef = last_vdef;
4001
4002 gimple_set_vdef (stmt, new_vdef);
4003 SSA_NAME_DEF_STMT (new_vdef) = stmt;
4004 new_vuse = new_vdef;
4005 }
4006
4007 FOR_EACH_VEC_ELT (split_stores, i, split_store)
4008 delete split_store;
4009
3d3e04ac 4010 gcc_assert (seq);
4011 if (dump_file)
4012 {
4013 fprintf (dump_file,
10f0d48d 4014 "New sequence of %u stores to replace old one of %u stores\n",
902cb3b7 4015 split_stores.length (), orig_num_stmts);
3d3e04ac 4016 if (dump_flags & TDF_DETAILS)
4017 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
4018 }
4019 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
9991d1d3 4020 for (int j = 0; j < 2; ++j)
4021 if (load_seq[j])
4022 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
3d3e04ac 4023
4024 return true;
4025}
4026
4027/* Process the merged_store_group objects created in the coalescing phase.
4028 The stores are all against the base object BASE.
4029 Try to output the widened stores and delete the original statements if
4030 successful. Return true iff any changes were made. */
4031
4032bool
f85e7cb7 4033imm_store_chain_info::output_merged_stores ()
3d3e04ac 4034{
4035 unsigned int i;
4036 merged_store_group *merged_store;
4037 bool ret = false;
4038 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
4039 {
f85e7cb7 4040 if (output_merged_store (merged_store))
3d3e04ac 4041 {
4042 unsigned int j;
4043 store_immediate_info *store;
4044 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
4045 {
4046 gimple *stmt = store->stmt;
4047 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
4048 gsi_remove (&gsi, true);
4049 if (stmt != merged_store->last_stmt)
4050 {
4051 unlink_stmt_vdef (stmt);
4052 release_defs (stmt);
4053 }
4054 }
4055 ret = true;
4056 }
4057 }
4058 if (ret && dump_file)
4059 fprintf (dump_file, "Merging successful!\n");
4060
4061 return ret;
4062}
4063
4064/* Coalesce the store_immediate_info objects recorded against the base object
4065 BASE in the first phase and output them.
4066 Delete the allocated structures.
4067 Return true if any changes were made. */
4068
4069bool
f85e7cb7 4070imm_store_chain_info::terminate_and_process_chain ()
3d3e04ac 4071{
4072 /* Process store chain. */
4073 bool ret = false;
4074 if (m_store_info.length () > 1)
4075 {
4076 ret = coalesce_immediate_stores ();
4077 if (ret)
f85e7cb7 4078 ret = output_merged_stores ();
3d3e04ac 4079 }
4080
4081 /* Delete all the entries we allocated ourselves. */
4082 store_immediate_info *info;
4083 unsigned int i;
4084 FOR_EACH_VEC_ELT (m_store_info, i, info)
4085 delete info;
4086
4087 merged_store_group *merged_info;
4088 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
4089 delete merged_info;
4090
4091 return ret;
4092}
4093
4094/* Return true iff LHS is a destination potentially interesting for
4095 store merging. In practice these are the codes that get_inner_reference
4096 can process. */
4097
4098static bool
4099lhs_valid_for_store_merging_p (tree lhs)
4100{
4101 tree_code code = TREE_CODE (lhs);
4102
4103 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
4104 || code == COMPONENT_REF || code == BIT_FIELD_REF)
4105 return true;
4106
4107 return false;
4108}
4109
4110/* Return true if the tree RHS is a constant we want to consider
4111 during store merging. In practice accept all codes that
4112 native_encode_expr accepts. */
4113
4114static bool
4115rhs_valid_for_store_merging_p (tree rhs)
4116{
52acb7ae 4117 unsigned HOST_WIDE_INT size;
4118 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
4119 && native_encode_expr (rhs, NULL, size) != 0);
3d3e04ac 4120}
4121
9991d1d3 4122/* If MEM is a memory reference usable for store merging (either as
4123 store destination or for loads), return the non-NULL base_addr
4124 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
4125 Otherwise return NULL, *PBITPOS should be still valid even for that
4126 case. */
4127
4128static tree
e61263f2 4129mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
4130 poly_uint64 *pbitpos,
4131 poly_uint64 *pbitregion_start,
4132 poly_uint64 *pbitregion_end)
9991d1d3 4133{
e61263f2 4134 poly_int64 bitsize, bitpos;
4135 poly_uint64 bitregion_start = 0, bitregion_end = 0;
9991d1d3 4136 machine_mode mode;
4137 int unsignedp = 0, reversep = 0, volatilep = 0;
4138 tree offset;
4139 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
4140 &unsignedp, &reversep, &volatilep);
4141 *pbitsize = bitsize;
e61263f2 4142 if (known_eq (bitsize, 0))
9991d1d3 4143 return NULL_TREE;
4144
4145 if (TREE_CODE (mem) == COMPONENT_REF
4146 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
4147 {
4148 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
e61263f2 4149 if (maybe_ne (bitregion_end, 0U))
4150 bitregion_end += 1;
9991d1d3 4151 }
4152
4153 if (reversep)
4154 return NULL_TREE;
4155
4156 /* We do not want to rewrite TARGET_MEM_REFs. */
4157 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
4158 return NULL_TREE;
4159 /* In some cases get_inner_reference may return a
4160 MEM_REF [ptr + byteoffset]. For the purposes of this pass
4161 canonicalize the base_addr to MEM_REF [ptr] and take
4162 byteoffset into account in the bitpos. This occurs in
4163 PR 23684 and this way we can catch more chains. */
4164 else if (TREE_CODE (base_addr) == MEM_REF)
4165 {
e61263f2 4166 poly_offset_int byte_off = mem_ref_offset (base_addr);
4167 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
9991d1d3 4168 bit_off += bitpos;
e61263f2 4169 if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
9991d1d3 4170 {
e61263f2 4171 if (maybe_ne (bitregion_end, 0U))
9991d1d3 4172 {
4173 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4174 bit_off += bitregion_start;
e61263f2 4175 if (bit_off.to_uhwi (&bitregion_start))
9991d1d3 4176 {
9991d1d3 4177 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4178 bit_off += bitregion_end;
e61263f2 4179 if (!bit_off.to_uhwi (&bitregion_end))
9991d1d3 4180 bitregion_end = 0;
4181 }
4182 else
4183 bitregion_end = 0;
4184 }
4185 }
4186 else
4187 return NULL_TREE;
4188 base_addr = TREE_OPERAND (base_addr, 0);
4189 }
4190 /* get_inner_reference returns the base object, get at its
4191 address now. */
4192 else
4193 {
e61263f2 4194 if (maybe_lt (bitpos, 0))
9991d1d3 4195 return NULL_TREE;
4196 base_addr = build_fold_addr_expr (base_addr);
4197 }
4198
e61263f2 4199 if (known_eq (bitregion_end, 0U))
9991d1d3 4200 {
e61263f2 4201 bitregion_start = round_down_to_byte_boundary (bitpos);
b870fc0c 4202 bitregion_end = bitpos;
4203 bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
9991d1d3 4204 }
4205
4206 if (offset != NULL_TREE)
4207 {
4208 /* If the access is variable offset then a base decl has to be
4209 address-taken to be able to emit pointer-based stores to it.
4210 ??? We might be able to get away with re-using the original
4211 base up to the first variable part and then wrapping that inside
4212 a BIT_FIELD_REF. */
4213 tree base = get_base_address (base_addr);
4214 if (! base
4215 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
4216 return NULL_TREE;
4217
4218 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
4219 base_addr, offset);
4220 }
4221
4222 *pbitsize = bitsize;
4223 *pbitpos = bitpos;
4224 *pbitregion_start = bitregion_start;
4225 *pbitregion_end = bitregion_end;
4226 return base_addr;
4227}
4228
4229/* Return true if STMT is a load that can be used for store merging.
4230 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4231 BITREGION_END are properties of the corresponding store. */
4232
4233static bool
4234handled_load (gimple *stmt, store_operand_info *op,
e61263f2 4235 poly_uint64 bitsize, poly_uint64 bitpos,
4236 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
9991d1d3 4237{
c35548ce 4238 if (!is_gimple_assign (stmt))
9991d1d3 4239 return false;
c35548ce 4240 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
4241 {
4242 tree rhs1 = gimple_assign_rhs1 (stmt);
4243 if (TREE_CODE (rhs1) == SSA_NAME
c35548ce 4244 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
4245 bitregion_start, bitregion_end))
4246 {
832a73b9 4247 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4248 been optimized earlier, but if allowed here, would confuse the
4249 multiple uses counting. */
4250 if (op->bit_not_p)
4251 return false;
c35548ce 4252 op->bit_not_p = !op->bit_not_p;
4253 return true;
4254 }
4255 return false;
4256 }
4257 if (gimple_vuse (stmt)
4258 && gimple_assign_load_p (stmt)
aac19106 4259 && !stmt_can_throw_internal (cfun, stmt)
9991d1d3 4260 && !gimple_has_volatile_ops (stmt))
4261 {
4262 tree mem = gimple_assign_rhs1 (stmt);
4263 op->base_addr
4264 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
4265 &op->bitregion_start,
4266 &op->bitregion_end);
4267 if (op->base_addr != NULL_TREE
e61263f2 4268 && known_eq (op->bitsize, bitsize)
4269 && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
4270 && known_ge (op->bitpos - op->bitregion_start,
4271 bitpos - bitregion_start)
4272 && known_ge (op->bitregion_end - op->bitpos,
4273 bitregion_end - bitpos))
9991d1d3 4274 {
4275 op->stmt = stmt;
4276 op->val = mem;
c35548ce 4277 op->bit_not_p = false;
9991d1d3 4278 return true;
4279 }
4280 }
4281 return false;
4282}
4283
4284/* Record the store STMT for store merging optimization if it can be
4285 optimized. */
4286
4287void
4288pass_store_merging::process_store (gimple *stmt)
4289{
4290 tree lhs = gimple_assign_lhs (stmt);
4291 tree rhs = gimple_assign_rhs1 (stmt);
e61263f2 4292 poly_uint64 bitsize, bitpos;
4293 poly_uint64 bitregion_start, bitregion_end;
9991d1d3 4294 tree base_addr
4295 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
4296 &bitregion_start, &bitregion_end);
e61263f2 4297 if (known_eq (bitsize, 0U))
9991d1d3 4298 return;
4299
4300 bool invalid = (base_addr == NULL_TREE
e61263f2 4301 || (maybe_gt (bitsize,
4302 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
4303 && (TREE_CODE (rhs) != INTEGER_CST)));
9991d1d3 4304 enum tree_code rhs_code = ERROR_MARK;
832a73b9 4305 bool bit_not_p = false;
509ab8cd 4306 struct symbolic_number n;
4307 gimple *ins_stmt = NULL;
9991d1d3 4308 store_operand_info ops[2];
4309 if (invalid)
4310 ;
4311 else if (rhs_valid_for_store_merging_p (rhs))
4312 {
4313 rhs_code = INTEGER_CST;
4314 ops[0].val = rhs;
4315 }
871a91ec 4316 else if (TREE_CODE (rhs) != SSA_NAME)
9991d1d3 4317 invalid = true;
4318 else
4319 {
4320 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
4321 if (!is_gimple_assign (def_stmt))
4322 invalid = true;
4323 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4324 bitregion_start, bitregion_end))
4325 rhs_code = MEM_REF;
832a73b9 4326 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4327 {
4328 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4329 if (TREE_CODE (rhs1) == SSA_NAME
4330 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4331 {
4332 bit_not_p = true;
4333 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4334 }
4335 }
10f0d48d 4336
832a73b9 4337 if (rhs_code == ERROR_MARK && !invalid)
9991d1d3 4338 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4339 {
4340 case BIT_AND_EXPR:
4341 case BIT_IOR_EXPR:
4342 case BIT_XOR_EXPR:
4343 tree rhs1, rhs2;
4344 rhs1 = gimple_assign_rhs1 (def_stmt);
4345 rhs2 = gimple_assign_rhs2 (def_stmt);
4346 invalid = true;
871a91ec 4347 if (TREE_CODE (rhs1) != SSA_NAME)
9991d1d3 4348 break;
4349 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4350 if (!is_gimple_assign (def_stmt1)
4351 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4352 bitregion_start, bitregion_end))
4353 break;
4354 if (rhs_valid_for_store_merging_p (rhs2))
4355 ops[1].val = rhs2;
871a91ec 4356 else if (TREE_CODE (rhs2) != SSA_NAME)
9991d1d3 4357 break;
4358 else
4359 {
4360 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4361 if (!is_gimple_assign (def_stmt2))
4362 break;
4363 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4364 bitregion_start, bitregion_end))
4365 break;
4366 }
4367 invalid = false;
4368 break;
4369 default:
4370 invalid = true;
4371 break;
4372 }
10f0d48d 4373
e61263f2 4374 unsigned HOST_WIDE_INT const_bitsize;
4375 if (bitsize.is_constant (&const_bitsize)
10f0d48d 4376 && (const_bitsize % BITS_PER_UNIT) == 0
e61263f2 4377 && const_bitsize <= 64
10f0d48d 4378 && multiple_p (bitpos, BITS_PER_UNIT))
509ab8cd 4379 {
4380 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4381 if (ins_stmt)
4382 {
4383 uint64_t nn = n.n;
4384 for (unsigned HOST_WIDE_INT i = 0;
e61263f2 4385 i < const_bitsize;
4386 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
509ab8cd 4387 if ((nn & MARKER_MASK) == 0
4388 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4389 {
4390 ins_stmt = NULL;
4391 break;
4392 }
4393 if (ins_stmt)
4394 {
4395 if (invalid)
4396 {
4397 rhs_code = LROTATE_EXPR;
4398 ops[0].base_addr = NULL_TREE;
4399 ops[1].base_addr = NULL_TREE;
4400 }
4401 invalid = false;
4402 }
4403 }
4404 }
10f0d48d 4405
4406 if (invalid
4407 && bitsize.is_constant (&const_bitsize)
4408 && ((const_bitsize % BITS_PER_UNIT) != 0
4409 || !multiple_p (bitpos, BITS_PER_UNIT))
4410 && const_bitsize <= 64)
4411 {
1bcb04d5 4412 /* Bypass a conversion to the bit-field type. */
4d885f78 4413 if (!bit_not_p
4414 && is_gimple_assign (def_stmt)
4415 && CONVERT_EXPR_CODE_P (rhs_code))
10f0d48d 4416 {
4417 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4418 if (TREE_CODE (rhs1) == SSA_NAME
1bcb04d5 4419 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10f0d48d 4420 rhs = rhs1;
4421 }
4422 rhs_code = BIT_INSERT_EXPR;
4d885f78 4423 bit_not_p = false;
10f0d48d 4424 ops[0].val = rhs;
4425 ops[0].base_addr = NULL_TREE;
4426 ops[1].base_addr = NULL_TREE;
4427 invalid = false;
4428 }
9991d1d3 4429 }
4430
e61263f2 4431 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
4432 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
4433 if (invalid
4434 || !bitsize.is_constant (&const_bitsize)
4435 || !bitpos.is_constant (&const_bitpos)
4436 || !bitregion_start.is_constant (&const_bitregion_start)
4437 || !bitregion_end.is_constant (&const_bitregion_end))
9991d1d3 4438 {
c35548ce 4439 terminate_all_aliasing_chains (NULL, stmt);
9991d1d3 4440 return;
4441 }
4442
509ab8cd 4443 if (!ins_stmt)
4444 memset (&n, 0, sizeof (n));
4445
c35548ce 4446 struct imm_store_chain_info **chain_info = NULL;
4447 if (base_addr)
4448 chain_info = m_stores.get (base_addr);
4449
9991d1d3 4450 store_immediate_info *info;
4451 if (chain_info)
4452 {
4453 unsigned int ord = (*chain_info)->m_store_info.length ();
e61263f2 4454 info = new store_immediate_info (const_bitsize, const_bitpos,
4455 const_bitregion_start,
4456 const_bitregion_end,
4457 stmt, ord, rhs_code, n, ins_stmt,
832a73b9 4458 bit_not_p, ops[0], ops[1]);
9991d1d3 4459 if (dump_file && (dump_flags & TDF_DETAILS))
4460 {
4461 fprintf (dump_file, "Recording immediate store from stmt:\n");
4462 print_gimple_stmt (dump_file, stmt, 0);
4463 }
4464 (*chain_info)->m_store_info.safe_push (info);
c35548ce 4465 terminate_all_aliasing_chains (chain_info, stmt);
9991d1d3 4466 /* If we reach the limit of stores to merge in a chain terminate and
4467 process the chain now. */
4468 if ((*chain_info)->m_store_info.length ()
4469 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4470 {
4471 if (dump_file && (dump_flags & TDF_DETAILS))
4472 fprintf (dump_file,
4473 "Reached maximum number of statements to merge:\n");
4474 terminate_and_release_chain (*chain_info);
4475 }
4476 return;
4477 }
4478
4479 /* Store aliases any existing chain? */
c35548ce 4480 terminate_all_aliasing_chains (NULL, stmt);
9991d1d3 4481 /* Start a new chain. */
4482 struct imm_store_chain_info *new_chain
4483 = new imm_store_chain_info (m_stores_head, base_addr);
e61263f2 4484 info = new store_immediate_info (const_bitsize, const_bitpos,
4485 const_bitregion_start,
4486 const_bitregion_end,
4487 stmt, 0, rhs_code, n, ins_stmt,
832a73b9 4488 bit_not_p, ops[0], ops[1]);
9991d1d3 4489 new_chain->m_store_info.safe_push (info);
4490 m_stores.put (base_addr, new_chain);
4491 if (dump_file && (dump_flags & TDF_DETAILS))
4492 {
4493 fprintf (dump_file, "Starting new chain with statement:\n");
4494 print_gimple_stmt (dump_file, stmt, 0);
4495 fprintf (dump_file, "The base object is:\n");
4496 print_generic_expr (dump_file, base_addr);
4497 fprintf (dump_file, "\n");
4498 }
4499}
4500
3d3e04ac 4501/* Entry point for the pass. Go over each basic block recording chains of
9991d1d3 4502 immediate stores. Upon encountering a terminating statement (as defined
4503 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4504 variants. */
3d3e04ac 4505
4506unsigned int
4507pass_store_merging::execute (function *fun)
4508{
4509 basic_block bb;
4510 hash_set<gimple *> orig_stmts;
4511
509ab8cd 4512 calculate_dominance_info (CDI_DOMINATORS);
4513
3d3e04ac 4514 FOR_EACH_BB_FN (bb, fun)
4515 {
4516 gimple_stmt_iterator gsi;
4517 unsigned HOST_WIDE_INT num_statements = 0;
4518 /* Record the original statements so that we can keep track of
4519 statements emitted in this pass and not re-process new
4520 statements. */
4521 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4522 {
4523 if (is_gimple_debug (gsi_stmt (gsi)))
4524 continue;
4525
63eabc9b 4526 if (++num_statements >= 2)
3d3e04ac 4527 break;
4528 }
4529
4530 if (num_statements < 2)
4531 continue;
4532
4533 if (dump_file && (dump_flags & TDF_DETAILS))
4534 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4535
4536 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4537 {
4538 gimple *stmt = gsi_stmt (gsi);
4539
3a3ba7de 4540 if (is_gimple_debug (stmt))
4541 continue;
4542
3d3e04ac 4543 if (gimple_has_volatile_ops (stmt))
4544 {
4545 /* Terminate all chains. */
4546 if (dump_file && (dump_flags & TDF_DETAILS))
4547 fprintf (dump_file, "Volatile access terminates "
4548 "all chains\n");
4549 terminate_and_process_all_chains ();
4550 continue;
4551 }
4552
3d3e04ac 4553 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
aac19106 4554 && !stmt_can_throw_internal (cfun, stmt)
3d3e04ac 4555 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
9991d1d3 4556 process_store (stmt);
4557 else
4558 terminate_all_aliasing_chains (NULL, stmt);
3d3e04ac 4559 }
4560 terminate_and_process_all_chains ();
4561 }
4562 return 0;
4563}
4564
4565} // anon namespace
4566
4567/* Construct and return a store merging pass object. */
4568
4569gimple_opt_pass *
4570make_pass_store_merging (gcc::context *ctxt)
4571{
4572 return new pass_store_merging (ctxt);
4573}
3d9a2fb3 4574
4575#if CHECKING_P
4576
4577namespace selftest {
4578
4579/* Selftests for store merging helpers. */
4580
4581/* Assert that all elements of the byte arrays X and Y, both of length N
4582 are equal. */
4583
4584static void
4585verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4586{
4587 for (unsigned int i = 0; i < n; i++)
4588 {
4589 if (x[i] != y[i])
4590 {
4591 fprintf (stderr, "Arrays do not match. X:\n");
4592 dump_char_array (stderr, x, n);
4593 fprintf (stderr, "Y:\n");
4594 dump_char_array (stderr, y, n);
4595 }
4596 ASSERT_EQ (x[i], y[i]);
4597 }
4598}
4599
4600/* Test shift_bytes_in_array and that it carries bits across between
4601 bytes correctly. */
4602
4603static void
4604verify_shift_bytes_in_array (void)
4605{
4606 /* byte 1 | byte 0
4607 00011111 | 11100000. */
4608 unsigned char orig[2] = { 0xe0, 0x1f };
4609 unsigned char in[2];
4610 memcpy (in, orig, sizeof orig);
4611
4612 unsigned char expected[2] = { 0x80, 0x7f };
4613 shift_bytes_in_array (in, sizeof (in), 2);
4614 verify_array_eq (in, expected, sizeof (in));
4615
4616 memcpy (in, orig, sizeof orig);
4617 memcpy (expected, orig, sizeof orig);
4618 /* Check that shifting by zero doesn't change anything. */
4619 shift_bytes_in_array (in, sizeof (in), 0);
4620 verify_array_eq (in, expected, sizeof (in));
4621
4622}
4623
4624/* Test shift_bytes_in_array_right and that it carries bits across between
4625 bytes correctly. */
4626
4627static void
4628verify_shift_bytes_in_array_right (void)
4629{
4630 /* byte 1 | byte 0
4631 00011111 | 11100000. */
4632 unsigned char orig[2] = { 0x1f, 0xe0};
4633 unsigned char in[2];
4634 memcpy (in, orig, sizeof orig);
4635 unsigned char expected[2] = { 0x07, 0xf8};
4636 shift_bytes_in_array_right (in, sizeof (in), 2);
4637 verify_array_eq (in, expected, sizeof (in));
4638
4639 memcpy (in, orig, sizeof orig);
4640 memcpy (expected, orig, sizeof orig);
4641 /* Check that shifting by zero doesn't change anything. */
4642 shift_bytes_in_array_right (in, sizeof (in), 0);
4643 verify_array_eq (in, expected, sizeof (in));
4644}
4645
4646/* Test clear_bit_region that it clears exactly the bits asked and
4647 nothing more. */
4648
4649static void
4650verify_clear_bit_region (void)
4651{
4652 /* Start with all bits set and test clearing various patterns in them. */
4653 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4654 unsigned char in[3];
4655 unsigned char expected[3];
4656 memcpy (in, orig, sizeof in);
4657
4658 /* Check zeroing out all the bits. */
4659 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4660 expected[0] = expected[1] = expected[2] = 0;
4661 verify_array_eq (in, expected, sizeof in);
4662
4663 memcpy (in, orig, sizeof in);
4664 /* Leave the first and last bits intact. */
4665 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4666 expected[0] = 0x1;
4667 expected[1] = 0;
4668 expected[2] = 0x80;
4669 verify_array_eq (in, expected, sizeof in);
4670}
4671
4672/* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4673 nothing more. */
4674
4675static void
4676verify_clear_bit_region_be (void)
4677{
4678 /* Start with all bits set and test clearing various patterns in them. */
4679 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4680 unsigned char in[3];
4681 unsigned char expected[3];
4682 memcpy (in, orig, sizeof in);
4683
4684 /* Check zeroing out all the bits. */
4685 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4686 expected[0] = expected[1] = expected[2] = 0;
4687 verify_array_eq (in, expected, sizeof in);
4688
4689 memcpy (in, orig, sizeof in);
4690 /* Leave the first and last bits intact. */
4691 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4692 expected[0] = 0x80;
4693 expected[1] = 0;
4694 expected[2] = 0x1;
4695 verify_array_eq (in, expected, sizeof in);
4696}
4697
4698
4699/* Run all of the selftests within this file. */
4700
4701void
4702store_merging_c_tests (void)
4703{
4704 verify_shift_bytes_in_array ();
4705 verify_shift_bytes_in_array_right ();
4706 verify_clear_bit_region ();
4707 verify_clear_bit_region_be ();
4708}
4709
4710} // namespace selftest
4711#endif /* CHECKING_P. */