]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
pass current function to opt_pass::gate ()
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
23a5b65a 2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
39#include "tree.h"
2fb9a547
AM
40#include "pointer-set.h"
41#include "hash-table.h"
42#include "basic-block.h"
43#include "tree-ssa-alias.h"
44#include "internal-fn.h"
45#include "gimple-expr.h"
46#include "is-a.h"
18f429e2 47#include "gimple.h"
5be5c238 48#include "gimple-iterator.h"
18f429e2 49#include "gimplify-me.h"
d8a2d370
DN
50#include "stor-layout.h"
51#include "expr.h"
f9453c07 52#include "tree-pass.h"
f9453c07 53#include "cfgloop.h"
f9453c07 54#include "gimple-pretty-print.h"
442b4905
AM
55#include "gimple-ssa.h"
56#include "tree-cfg.h"
57#include "tree-phinodes.h"
58#include "ssa-iterators.h"
d8a2d370 59#include "stringpool.h"
442b4905 60#include "tree-ssanames.h"
f9453c07 61#include "domwalk.h"
6dd8f4bb 62#include "expmed.h"
ccdbfe93 63#include "params.h"
4484a35a 64#include "tree-ssa-address.h"
96d75a2c 65#include "tree-affine.h"
f9453c07
BS
66\f
67/* Information about a strength reduction candidate. Each statement
68 in the candidate table represents an expression of one of the
69 following forms (the special case of CAND_REF will be described
70 later):
71
72 (CAND_MULT) S1: X = (B + i) * S
73 (CAND_ADD) S1: X = B + (i * S)
74
75 Here X and B are SSA names, i is an integer constant, and S is
76 either an SSA name or a constant. We call B the "base," i the
77 "index", and S the "stride."
78
79 Any statement S0 that dominates S1 and is of the form:
80
81 (CAND_MULT) S0: Y = (B + i') * S
82 (CAND_ADD) S0: Y = B + (i' * S)
83
84 is called a "basis" for S1. In both cases, S1 may be replaced by
85
86 S1': X = Y + (i - i') * S,
87
88 where (i - i') * S is folded to the extent possible.
89
90 All gimple statements are visited in dominator order, and each
91 statement that may contribute to one of the forms of S1 above is
92 given at least one entry in the candidate table. Such statements
93 include addition, pointer addition, subtraction, multiplication,
94 negation, copies, and nontrivial type casts. If a statement may
95 represent more than one expression of the forms of S1 above,
96 multiple "interpretations" are stored in the table and chained
97 together. Examples:
98
99 * An add of two SSA names may treat either operand as the base.
100 * A multiply of two SSA names, likewise.
101 * A copy or cast may be thought of as either a CAND_MULT with
102 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
103
104 Candidate records are allocated from an obstack. They are addressed
105 both from a hash table keyed on S1, and from a vector of candidate
106 pointers arranged in predominator order.
107
108 Opportunity note
109 ----------------
110 Currently we don't recognize:
111
112 S0: Y = (S * i') - B
113 S1: X = (S * i) - B
114
115 as a strength reduction opportunity, even though this S1 would
116 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
117 comes up in practice.
118
119 Strength reduction in addressing
120 --------------------------------
121 There is another kind of candidate known as CAND_REF. A CAND_REF
122 describes a statement containing a memory reference having
123 complex addressing that might benefit from strength reduction.
124 Specifically, we are interested in references for which
125 get_inner_reference returns a base address, offset, and bitpos as
126 follows:
127
128 base: MEM_REF (T1, C1)
129 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
130 bitpos: C4 * BITS_PER_UNIT
131
132 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
133 arbitrary integer constants. Note that C2 may be zero, in which
134 case the offset will be MULT_EXPR (T2, C3).
135
136 When this pattern is recognized, the original memory reference
137 can be replaced with:
138
139 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
140 C1 + (C2 * C3) + C4)
141
142 which distributes the multiply to allow constant folding. When
143 two or more addressing expressions can be represented by MEM_REFs
144 of this form, differing only in the constants C1, C2, and C4,
145 making this substitution produces more efficient addressing during
146 the RTL phases. When there are not at least two expressions with
147 the same values of T1, T2, and C3, there is nothing to be gained
148 by the replacement.
149
150 Strength reduction of CAND_REFs uses the same infrastructure as
151 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
152 field, MULT_EXPR (T2, C3) in the stride (S) field, and
153 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
154 is thus another CAND_REF with the same B and S values. When at
155 least two CAND_REFs are chained together using the basis relation,
156 each of them is replaced as above, resulting in improved code
9b92d12b
BS
157 generation for addressing.
158
159 Conditional candidates
160 ======================
161
162 Conditional candidates are best illustrated with an example.
163 Consider the code sequence:
164
165 (1) x_0 = ...;
166 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
167 if (...)
168 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
169 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
170 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
171 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
172
173 Here strength reduction is complicated by the uncertain value of x_2.
174 A legitimate transformation is:
175
176 (1) x_0 = ...;
177 (2) a_0 = x_0 * 5;
178 if (...)
179 {
180 (3) [x_1 = x_0 + 1;]
181 (3a) t_1 = a_0 + 5;
182 }
183 (4) [x_2 = PHI <x_0, x_1>;]
184 (4a) t_2 = PHI <a_0, t_1>;
185 (5) [x_3 = x_2 + 1;]
186 (6r) a_1 = t_2 + 5;
187
188 where the bracketed instructions may go dead.
189
190 To recognize this opportunity, we have to observe that statement (6)
191 has a "hidden basis" (2). The hidden basis is unlike a normal basis
192 in that the statement and the hidden basis have different base SSA
193 names (x_2 and x_0, respectively). The relationship is established
194 when a statement's base name (x_2) is defined by a phi statement (4),
195 each argument of which (x_0, x_1) has an identical "derived base name."
196 If the argument is defined by a candidate (as x_1 is by (3)) that is a
197 CAND_ADD having a stride of 1, the derived base name of the argument is
198 the base name of the candidate (x_0). Otherwise, the argument itself
199 is its derived base name (as is the case with argument x_0).
200
201 The hidden basis for statement (6) is the nearest dominating candidate
202 whose base name is the derived base name (x_0) of the feeding phi (4),
203 and whose stride is identical to that of the statement. We can then
204 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
205 allowing the final replacement of (6) by the strength-reduced (6r).
206
207 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
208 A CAND_PHI is not a candidate for replacement, but is maintained in the
209 candidate table to ease discovery of hidden bases. Any phi statement
210 whose arguments share a common derived base name is entered into the
211 table with the derived base name, an (arbitrary) index of zero, and a
212 stride of 1. A statement with a hidden basis can then be detected by
213 simply looking up its feeding phi definition in the candidate table,
214 extracting the derived base name, and searching for a basis in the
215 usual manner after substituting the derived base name.
216
217 Note that the transformation is only valid when the original phi and
218 the statements that define the phi's arguments are all at the same
219 position in the loop hierarchy. */
f9453c07
BS
220
221
222/* Index into the candidate vector, offset by 1. VECs are zero-based,
223 while cand_idx's are one-based, with zero indicating null. */
224typedef unsigned cand_idx;
225
226/* The kind of candidate. */
227enum cand_kind
228{
229 CAND_MULT,
2749c8f6 230 CAND_ADD,
9b92d12b
BS
231 CAND_REF,
232 CAND_PHI
f9453c07
BS
233};
234
235struct slsr_cand_d
236{
237 /* The candidate statement S1. */
238 gimple cand_stmt;
239
3cfd4469
BS
240 /* The base expression B: often an SSA name, but not always. */
241 tree base_expr;
f9453c07
BS
242
243 /* The stride S. */
244 tree stride;
245
246 /* The index constant i. */
247 double_int index;
248
3cfd4469 249 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 250 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
251 A candidate can only be a basis for candidates of the same final type.
252 (For CAND_REFs, this is the type to be used for operand 1 of the
253 replacement MEM_REF.) */
f9453c07
BS
254 tree cand_type;
255
256 /* The kind of candidate (CAND_MULT, etc.). */
257 enum cand_kind kind;
258
259 /* Index of this candidate in the candidate vector. */
260 cand_idx cand_num;
261
262 /* Index of the next candidate record for the same statement.
263 A statement may be useful in more than one way (e.g., due to
264 commutativity). So we can have multiple "interpretations"
265 of a statement. */
266 cand_idx next_interp;
267
268 /* Index of the basis statement S0, if any, in the candidate vector. */
269 cand_idx basis;
270
271 /* First candidate for which this candidate is a basis, if one exists. */
272 cand_idx dependent;
273
274 /* Next candidate having the same basis as this one. */
275 cand_idx sibling;
276
9b92d12b
BS
277 /* If this is a conditional candidate, the CAND_PHI candidate
278 that defines the base SSA name B. */
279 cand_idx def_phi;
f9453c07
BS
280
281 /* Savings that can be expected from eliminating dead code if this
282 candidate is replaced. */
283 int dead_savings;
284};
285
286typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
287typedef const struct slsr_cand_d *const_slsr_cand_t;
288
289/* Pointers to candidates are chained together as part of a mapping
3cfd4469 290 from base expressions to the candidates that use them. */
f9453c07
BS
291
292struct cand_chain_d
293{
3cfd4469
BS
294 /* Base expression for the chain of candidates: often, but not
295 always, an SSA name. */
296 tree base_expr;
f9453c07
BS
297
298 /* Pointer to a candidate. */
299 slsr_cand_t cand;
300
301 /* Chain pointer. */
302 struct cand_chain_d *next;
303
304};
305
306typedef struct cand_chain_d cand_chain, *cand_chain_t;
307typedef const struct cand_chain_d *const_cand_chain_t;
308
88ca9ea1
BS
309/* Information about a unique "increment" associated with candidates
310 having an SSA name for a stride. An increment is the difference
311 between the index of the candidate and the index of its basis,
312 i.e., (i - i') as discussed in the module commentary.
313
314 When we are not going to generate address arithmetic we treat
315 increments that differ only in sign as the same, allowing sharing
316 of the cost of initializers. The absolute value of the increment
317 is stored in the incr_info. */
318
319struct incr_info_d
320{
321 /* The increment that relates a candidate to its basis. */
322 double_int incr;
323
324 /* How many times the increment occurs in the candidate tree. */
325 unsigned count;
326
327 /* Cost of replacing candidates using this increment. Negative and
328 zero costs indicate replacement should be performed. */
329 int cost;
330
331 /* If this increment is profitable but is not -1, 0, or 1, it requires
332 an initializer T_0 = stride * incr to be found or introduced in the
333 nearest common dominator of all candidates. This field holds T_0
334 for subsequent use. */
335 tree initializer;
336
337 /* If the initializer was found to already exist, this is the block
338 where it was found. */
339 basic_block init_bb;
340};
341
342typedef struct incr_info_d incr_info, *incr_info_t;
343
f9453c07
BS
344/* Candidates are maintained in a vector. If candidate X dominates
345 candidate Y, then X appears before Y in the vector; but the
346 converse does not necessarily hold. */
9771b263 347static vec<slsr_cand_t> cand_vec;
f9453c07
BS
348
349enum cost_consts
350{
351 COST_NEUTRAL = 0,
352 COST_INFINITE = 1000
353};
354
9b92d12b
BS
355enum stride_status
356{
357 UNKNOWN_STRIDE = 0,
358 KNOWN_STRIDE = 1
359};
360
361enum phi_adjust_status
362{
363 NOT_PHI_ADJUST = 0,
364 PHI_ADJUST = 1
365};
366
367enum count_phis_status
368{
369 DONT_COUNT_PHIS = 0,
370 COUNT_PHIS = 1
371};
372
f9453c07
BS
373/* Pointer map embodying a mapping from statements to candidates. */
374static struct pointer_map_t *stmt_cand_map;
375
376/* Obstack for candidates. */
377static struct obstack cand_obstack;
378
f9453c07
BS
379/* Obstack for candidate chains. */
380static struct obstack chain_obstack;
88ca9ea1
BS
381
382/* An array INCR_VEC of incr_infos is used during analysis of related
383 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
384 its current length. MAX_INCR_VEC_LEN is used to avoid costly
385 pathological cases. */
88ca9ea1
BS
386static incr_info_t incr_vec;
387static unsigned incr_vec_len;
7bf55a70 388const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
389
390/* For a chain of candidates with unknown stride, indicates whether or not
391 we must generate pointer arithmetic when replacing statements. */
392static bool address_arithmetic_p;
9b92d12b
BS
393
394/* Forward function declarations. */
395static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 396static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 397static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
398\f
399/* Produce a pointer to the IDX'th candidate in the candidate vector. */
400
401static slsr_cand_t
402lookup_cand (cand_idx idx)
403{
9771b263 404 return cand_vec[idx - 1];
f9453c07
BS
405}
406
4a8fb1a1 407/* Helper for hashing a candidate chain header. */
2749c8f6 408
4a8fb1a1 409struct cand_chain_hasher : typed_noop_remove <cand_chain>
2749c8f6 410{
4a8fb1a1
LC
411 typedef cand_chain value_type;
412 typedef cand_chain compare_type;
413 static inline hashval_t hash (const value_type *);
414 static inline bool equal (const value_type *, const compare_type *);
415};
2749c8f6 416
4a8fb1a1
LC
417inline hashval_t
418cand_chain_hasher::hash (const value_type *p)
2749c8f6 419{
4a8fb1a1
LC
420 tree base_expr = p->base_expr;
421 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
422}
423
4a8fb1a1
LC
424inline bool
425cand_chain_hasher::equal (const value_type *chain1, const compare_type *chain2)
2749c8f6 426{
3cfd4469 427 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 428}
4a8fb1a1
LC
429
430/* Hash table embodying a mapping from base exprs to chains of candidates. */
431static hash_table <cand_chain_hasher> base_cand_map;
2749c8f6 432\f
96d75a2c
YZ
433/* Pointer map used by tree_to_aff_combination_expand. */
434static struct pointer_map_t *name_expansions;
435/* Pointer map embodying a mapping from bases to alternative bases. */
436static struct pointer_map_t *alt_base_map;
437
438/* Given BASE, use the tree affine combiniation facilities to
439 find the underlying tree expression for BASE, with any
8fde427f
YZ
440 immediate offset excluded.
441
442 N.B. we should eliminate this backtracking with better forward
443 analysis in a future release. */
96d75a2c
YZ
444
445static tree
446get_alternative_base (tree base)
447{
448 tree *result = (tree *) pointer_map_contains (alt_base_map, base);
449
450 if (result == NULL)
451 {
452 tree expr;
453 aff_tree aff;
454
455 tree_to_aff_combination_expand (base, TREE_TYPE (base),
456 &aff, &name_expansions);
457 aff.offset = tree_to_double_int (integer_zero_node);
458 expr = aff_combination_to_tree (&aff);
459
460 result = (tree *) pointer_map_insert (alt_base_map, base);
461 gcc_assert (!*result);
462
463 if (expr == base)
464 *result = NULL;
465 else
466 *result = expr;
467 }
468
469 return *result;
470}
471
9b92d12b 472/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 473 return it if found; otherwise return NULL. */
f9453c07 474
9b92d12b 475static cand_idx
8b28cf47 476find_phi_def (tree base)
9b92d12b
BS
477{
478 slsr_cand_t c;
479
480 if (TREE_CODE (base) != SSA_NAME)
481 return 0;
29105868 482
9b92d12b
BS
483 c = base_cand_from_table (base);
484
485 if (!c || c->kind != CAND_PHI)
486 return 0;
487
488 return c->cand_num;
489}
490
491/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
492 once for the candidate's base expr, and optionally again either for
493 the candidate's phi definition or for a CAND_REF's alternative base
494 expression. */
9b92d12b
BS
495
496static slsr_cand_t
497find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 498{
2749c8f6 499 cand_chain mapping_key;
f9453c07
BS
500 cand_chain_t chain;
501 slsr_cand_t basis = NULL;
502
ccdbfe93
BS
503 // Limit potential of N^2 behavior for long candidate chains.
504 int iters = 0;
505 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
506
9b92d12b 507 mapping_key.base_expr = base_expr;
4a8fb1a1 508 chain = base_cand_map.find (&mapping_key);
f9453c07 509
ccdbfe93 510 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
511 {
512 slsr_cand_t one_basis = chain->cand;
513
514 if (one_basis->kind != c->kind
69e1a1a3 515 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
516 || !operand_equal_p (one_basis->stride, c->stride, 0)
517 || !types_compatible_p (one_basis->cand_type, c->cand_type)
518 || !dominated_by_p (CDI_DOMINATORS,
519 gimple_bb (c->cand_stmt),
520 gimple_bb (one_basis->cand_stmt)))
521 continue;
522
523 if (!basis || basis->cand_num < one_basis->cand_num)
524 basis = one_basis;
525 }
526
9b92d12b
BS
527 return basis;
528}
529
530/* Use the base expr from candidate C to look for possible candidates
531 that can serve as a basis for C. Each potential basis must also
532 appear in a block that dominates the candidate statement and have
533 the same stride and type. If more than one possible basis exists,
534 the one with highest index in the vector is chosen; this will be
535 the most immediately dominating basis. */
536
537static int
538find_basis_for_candidate (slsr_cand_t c)
539{
540 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
541
542 /* If a candidate doesn't have a basis using its base expression,
543 it may have a basis hidden by one or more intervening phis. */
544 if (!basis && c->def_phi)
545 {
546 basic_block basis_bb, phi_bb;
547 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
548 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
549
550 if (basis)
551 {
552 /* A hidden basis must dominate the phi-definition of the
553 candidate's base name. */
554 phi_bb = gimple_bb (phi_cand->cand_stmt);
555 basis_bb = gimple_bb (basis->cand_stmt);
556
557 if (phi_bb == basis_bb
558 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
559 {
560 basis = NULL;
561 c->basis = 0;
562 }
563
564 /* If we found a hidden basis, estimate additional dead-code
565 savings if the phi and its feeding statements can be removed. */
566 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
567 c->dead_savings += phi_cand->dead_savings;
568 }
569 }
570
8fde427f 571 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
572 {
573 tree alt_base_expr = get_alternative_base (c->base_expr);
574 if (alt_base_expr)
575 basis = find_basis_for_base_expr (c, alt_base_expr);
576 }
577
f9453c07
BS
578 if (basis)
579 {
580 c->sibling = basis->dependent;
581 basis->dependent = c->cand_num;
582 return basis->cand_num;
583 }
584
585 return 0;
586}
587
96d75a2c
YZ
588/* Record a mapping from BASE to C, indicating that C may potentially serve
589 as a basis using that base expression. BASE may be the same as
590 C->BASE_EXPR; alternatively BASE can be a different tree that share the
591 underlining expression of C->BASE_EXPR. */
f9453c07
BS
592
593static void
96d75a2c 594record_potential_basis (slsr_cand_t c, tree base)
f9453c07 595{
2749c8f6 596 cand_chain_t node;
4a8fb1a1 597 cand_chain **slot;
f9453c07 598
96d75a2c
YZ
599 gcc_assert (base);
600
f9453c07 601 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 602 node->base_expr = base;
f9453c07
BS
603 node->cand = c;
604 node->next = NULL;
4a8fb1a1 605 slot = base_cand_map.find_slot (node, INSERT);
f9453c07 606
2749c8f6 607 if (*slot)
f9453c07 608 {
2749c8f6 609 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
610 node->next = head->next;
611 head->next = node;
612 }
613 else
2749c8f6 614 *slot = node;
f9453c07
BS
615}
616
617/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
618 Attempt to find a basis for the candidate.
619
620 For CAND_REF, an alternative base may also be recorded and used
621 to find a basis. This helps cases where the expression hidden
622 behind BASE (which is usually an SSA_NAME) has immediate offset,
623 e.g.
624
625 a2[i][j] = 1;
626 a2[i + 20][j] = 2; */
f9453c07
BS
627
628static slsr_cand_t
96d75a2c 629alloc_cand_and_find_basis (enum cand_kind kind, gimple gs, tree base,
f9453c07
BS
630 double_int index, tree stride, tree ctype,
631 unsigned savings)
632{
633 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
634 sizeof (slsr_cand));
635 c->cand_stmt = gs;
3cfd4469 636 c->base_expr = base;
f9453c07
BS
637 c->stride = stride;
638 c->index = index;
639 c->cand_type = ctype;
640 c->kind = kind;
9771b263 641 c->cand_num = cand_vec.length () + 1;
f9453c07
BS
642 c->next_interp = 0;
643 c->dependent = 0;
644 c->sibling = 0;
8b28cf47 645 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07
BS
646 c->dead_savings = savings;
647
9771b263 648 cand_vec.safe_push (c);
9b92d12b
BS
649
650 if (kind == CAND_PHI)
651 c->basis = 0;
652 else
653 c->basis = find_basis_for_candidate (c);
654
96d75a2c 655 record_potential_basis (c, base);
8fde427f 656 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
657 {
658 tree alt_base = get_alternative_base (base);
659 if (alt_base)
660 record_potential_basis (c, alt_base);
661 }
f9453c07
BS
662
663 return c;
664}
665
666/* Determine the target cost of statement GS when compiling according
667 to SPEED. */
668
669static int
670stmt_cost (gimple gs, bool speed)
671{
672 tree lhs, rhs1, rhs2;
673 enum machine_mode lhs_mode;
674
675 gcc_assert (is_gimple_assign (gs));
676 lhs = gimple_assign_lhs (gs);
677 rhs1 = gimple_assign_rhs1 (gs);
678 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
679
680 switch (gimple_assign_rhs_code (gs))
681 {
682 case MULT_EXPR:
683 rhs2 = gimple_assign_rhs2 (gs);
684
9541ffee 685 if (tree_fits_shwi_p (rhs2))
eb1ce453 686 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
687
688 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 689 return mul_cost (speed, lhs_mode);
f9453c07
BS
690
691 case PLUS_EXPR:
692 case POINTER_PLUS_EXPR:
693 case MINUS_EXPR:
5322d07e 694 return add_cost (speed, lhs_mode);
f9453c07
BS
695
696 case NEGATE_EXPR:
5322d07e 697 return neg_cost (speed, lhs_mode);
f9453c07
BS
698
699 case NOP_EXPR:
6dd8f4bb 700 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
701
702 /* Note that we don't assign costs to copies that in most cases
703 will go away. */
704 default:
705 ;
706 }
707
708 gcc_unreachable ();
709 return 0;
710}
711
712/* Look up the defining statement for BASE_IN and return a pointer
713 to its candidate in the candidate table, if any; otherwise NULL.
714 Only CAND_ADD and CAND_MULT candidates are returned. */
715
716static slsr_cand_t
717base_cand_from_table (tree base_in)
718{
719 slsr_cand_t *result;
720
721 gimple def = SSA_NAME_DEF_STMT (base_in);
722 if (!def)
723 return (slsr_cand_t) NULL;
724
725 result = (slsr_cand_t *) pointer_map_contains (stmt_cand_map, def);
2749c8f6
BS
726
727 if (result && (*result)->kind != CAND_REF)
728 return *result;
f9453c07 729
2749c8f6 730 return (slsr_cand_t) NULL;
f9453c07
BS
731}
732
733/* Add an entry to the statement-to-candidate mapping. */
734
735static void
736add_cand_for_stmt (gimple gs, slsr_cand_t c)
737{
738 void **slot = pointer_map_insert (stmt_cand_map, gs);
739 gcc_assert (!*slot);
740 *slot = c;
741}
742\f
9b92d12b
BS
743/* Given PHI which contains a phi statement, determine whether it
744 satisfies all the requirements of a phi candidate. If so, create
745 a candidate. Note that a CAND_PHI never has a basis itself, but
746 is used to help find a basis for subsequent candidates. */
747
748static void
749slsr_process_phi (gimple phi, bool speed)
750{
751 unsigned i;
752 tree arg0_base = NULL_TREE, base_type;
753 slsr_cand_t c;
754 struct loop *cand_loop = gimple_bb (phi)->loop_father;
755 unsigned savings = 0;
756
757 /* A CAND_PHI requires each of its arguments to have the same
758 derived base name. (See the module header commentary for a
759 definition of derived base names.) Furthermore, all feeding
760 definitions must be in the same position in the loop hierarchy
761 as PHI. */
762
763 for (i = 0; i < gimple_phi_num_args (phi); i++)
764 {
765 slsr_cand_t arg_cand;
766 tree arg = gimple_phi_arg_def (phi, i);
767 tree derived_base_name = NULL_TREE;
768 gimple arg_stmt = NULL;
769 basic_block arg_bb = NULL;
770
771 if (TREE_CODE (arg) != SSA_NAME)
772 return;
773
774 arg_cand = base_cand_from_table (arg);
775
776 if (arg_cand)
777 {
778 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
779 {
780 if (!arg_cand->next_interp)
781 return;
782
783 arg_cand = lookup_cand (arg_cand->next_interp);
784 }
785
786 if (!integer_onep (arg_cand->stride))
787 return;
788
789 derived_base_name = arg_cand->base_expr;
790 arg_stmt = arg_cand->cand_stmt;
791 arg_bb = gimple_bb (arg_stmt);
792
793 /* Gather potential dead code savings if the phi statement
794 can be removed later on. */
795 if (has_single_use (arg))
796 {
797 if (gimple_code (arg_stmt) == GIMPLE_PHI)
798 savings += arg_cand->dead_savings;
799 else
800 savings += stmt_cost (arg_stmt, speed);
801 }
802 }
803 else
804 {
805 derived_base_name = arg;
806
807 if (SSA_NAME_IS_DEFAULT_DEF (arg))
fefa31b5 808 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
809 else
810 gimple_bb (SSA_NAME_DEF_STMT (arg));
811 }
812
813 if (!arg_bb || arg_bb->loop_father != cand_loop)
814 return;
815
816 if (i == 0)
817 arg0_base = derived_base_name;
818 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
819 return;
820 }
821
822 /* Create the candidate. "alloc_cand_and_find_basis" is named
823 misleadingly for this case, as no basis will be sought for a
824 CAND_PHI. */
825 base_type = TREE_TYPE (arg0_base);
826
827 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base, double_int_zero,
828 integer_one_node, base_type, savings);
829
830 /* Add the candidate to the statement-candidate mapping. */
831 add_cand_for_stmt (phi, c);
832}
833
c068654b
BC
834/* Given PBASE which is a pointer to tree, look up the defining
835 statement for it and check whether the candidate is in the
836 form of:
837
838 X = B + (1 * S), S is integer constant
839 X = B + (i * S), S is integer one
840
841 If so, set PBASE to the candidate's base_expr and return double
842 int (i * S).
843 Otherwise, just return double int zero. */
844
845static double_int
846backtrace_base_for_ref (tree *pbase)
847{
848 tree base_in = *pbase;
849 slsr_cand_t base_cand;
850
851 STRIP_NOPS (base_in);
0916f876
YZ
852
853 /* Strip off widening conversion(s) to handle cases where
854 e.g. 'B' is widened from an 'int' in order to calculate
855 a 64-bit address. */
856 if (CONVERT_EXPR_P (base_in)
857 && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
858 base_in = get_unwidened (base_in, NULL_TREE);
859
c068654b
BC
860 if (TREE_CODE (base_in) != SSA_NAME)
861 return tree_to_double_int (integer_zero_node);
862
863 base_cand = base_cand_from_table (base_in);
864
865 while (base_cand && base_cand->kind != CAND_PHI)
866 {
867 if (base_cand->kind == CAND_ADD
868 && base_cand->index.is_one ()
869 && TREE_CODE (base_cand->stride) == INTEGER_CST)
870 {
871 /* X = B + (1 * S), S is integer constant. */
872 *pbase = base_cand->base_expr;
873 return tree_to_double_int (base_cand->stride);
874 }
875 else if (base_cand->kind == CAND_ADD
876 && TREE_CODE (base_cand->stride) == INTEGER_CST
877 && integer_onep (base_cand->stride))
1d2151c6 878 {
c068654b
BC
879 /* X = B + (i * S), S is integer one. */
880 *pbase = base_cand->base_expr;
881 return base_cand->index;
882 }
883
884 if (base_cand->next_interp)
885 base_cand = lookup_cand (base_cand->next_interp);
886 else
887 base_cand = NULL;
888 }
889
890 return tree_to_double_int (integer_zero_node);
891}
892
2749c8f6
BS
893/* Look for the following pattern:
894
895 *PBASE: MEM_REF (T1, C1)
896
897 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
898 or
899 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
900 or
901 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
902
903 *PINDEX: C4 * BITS_PER_UNIT
904
905 If not present, leave the input values unchanged and return FALSE.
906 Otherwise, modify the input values as follows and return TRUE:
907
908 *PBASE: T1
909 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
910 *PINDEX: C1 + (C2 * C3) + C4
911
912 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
913 will be further restructured to:
914
915 *PBASE: T1
916 *POFFSET: MULT_EXPR (T2', C3)
917 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
918
919static bool
920restructure_reference (tree *pbase, tree *poffset, double_int *pindex,
921 tree *ptype)
922{
923 tree base = *pbase, offset = *poffset;
924 double_int index = *pindex;
27bcd47c 925 double_int bpu = double_int::from_uhwi (BITS_PER_UNIT);
2749c8f6 926 tree mult_op0, mult_op1, t1, t2, type;
c068654b 927 double_int c1, c2, c3, c4, c5;
2749c8f6
BS
928
929 if (!base
930 || !offset
931 || TREE_CODE (base) != MEM_REF
932 || TREE_CODE (offset) != MULT_EXPR
933 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
27bcd47c 934 || !index.umod (bpu, FLOOR_MOD_EXPR).is_zero ())
2749c8f6
BS
935 return false;
936
937 t1 = TREE_OPERAND (base, 0);
938 c1 = mem_ref_offset (base);
939 type = TREE_TYPE (TREE_OPERAND (base, 1));
940
941 mult_op0 = TREE_OPERAND (offset, 0);
942 mult_op1 = TREE_OPERAND (offset, 1);
943
944 c3 = tree_to_double_int (mult_op1);
945
946 if (TREE_CODE (mult_op0) == PLUS_EXPR)
947
948 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
949 {
950 t2 = TREE_OPERAND (mult_op0, 0);
951 c2 = tree_to_double_int (TREE_OPERAND (mult_op0, 1));
952 }
953 else
954 return false;
955
956 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
957
958 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
959 {
960 t2 = TREE_OPERAND (mult_op0, 0);
27bcd47c 961 c2 = -tree_to_double_int (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
962 }
963 else
964 return false;
965
966 else
967 {
968 t2 = mult_op0;
969 c2 = double_int_zero;
970 }
971
27bcd47c 972 c4 = index.udiv (bpu, FLOOR_DIV_EXPR);
c068654b 973 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
974
975 *pbase = t1;
c068654b 976 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
2749c8f6 977 double_int_to_tree (sizetype, c3));
c068654b 978 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
979 *ptype = type;
980
981 return true;
982}
983
984/* Given GS which contains a data reference, create a CAND_REF entry in
985 the candidate table and attempt to find a basis. */
986
987static void
988slsr_process_ref (gimple gs)
989{
990 tree ref_expr, base, offset, type;
991 HOST_WIDE_INT bitsize, bitpos;
992 enum machine_mode mode;
993 int unsignedp, volatilep;
994 double_int index;
995 slsr_cand_t c;
996
997 if (gimple_vdef (gs))
998 ref_expr = gimple_assign_lhs (gs);
999 else
1000 ref_expr = gimple_assign_rhs1 (gs);
1001
1002 if (!handled_component_p (ref_expr)
1003 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1004 || (TREE_CODE (ref_expr) == COMPONENT_REF
1005 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1006 return;
1007
1008 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
b3ecff82 1009 &unsignedp, &volatilep, false);
27bcd47c 1010 index = double_int::from_uhwi (bitpos);
2749c8f6
BS
1011
1012 if (!restructure_reference (&base, &offset, &index, &type))
1013 return;
1014
1015 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1016 type, 0);
1017
1018 /* Add the candidate to the statement-candidate mapping. */
1019 add_cand_for_stmt (gs, c);
1020}
1021
f9453c07
BS
1022/* Create a candidate entry for a statement GS, where GS multiplies
1023 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1024 about the two SSA names into the new candidate. Return the new
1025 candidate. */
1026
1027static slsr_cand_t
1028create_mul_ssa_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1029{
1030 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1031 double_int index;
1032 unsigned savings = 0;
1033 slsr_cand_t c;
1034 slsr_cand_t base_cand = base_cand_from_table (base_in);
1035
1036 /* Look at all interpretations of the base candidate, if necessary,
1037 to find information to propagate into this candidate. */
9b92d12b 1038 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1039 {
1040
9b92d12b 1041 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1042 {
1043 /* Y = (B + i') * 1
1044 X = Y * Z
1045 ================
1046 X = (B + i') * Z */
3cfd4469 1047 base = base_cand->base_expr;
f9453c07
BS
1048 index = base_cand->index;
1049 stride = stride_in;
1050 ctype = base_cand->cand_type;
1051 if (has_single_use (base_in))
1052 savings = (base_cand->dead_savings
1053 + stmt_cost (base_cand->cand_stmt, speed));
1054 }
1055 else if (base_cand->kind == CAND_ADD
1056 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1057 {
1058 /* Y = B + (i' * S), S constant
1059 X = Y * Z
1060 ============================
1061 X = B + ((i' * S) * Z) */
3cfd4469 1062 base = base_cand->base_expr;
27bcd47c 1063 index = base_cand->index * tree_to_double_int (base_cand->stride);
f9453c07
BS
1064 stride = stride_in;
1065 ctype = base_cand->cand_type;
1066 if (has_single_use (base_in))
1067 savings = (base_cand->dead_savings
1068 + stmt_cost (base_cand->cand_stmt, speed));
1069 }
1070
1071 if (base_cand->next_interp)
1072 base_cand = lookup_cand (base_cand->next_interp);
1073 else
1074 base_cand = NULL;
1075 }
1076
1077 if (!base)
1078 {
1079 /* No interpretations had anything useful to propagate, so
1080 produce X = (Y + 0) * Z. */
1081 base = base_in;
1082 index = double_int_zero;
1083 stride = stride_in;
b2ec94d4 1084 ctype = TREE_TYPE (base_in);
f9453c07
BS
1085 }
1086
1087 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1088 ctype, savings);
1089 return c;
1090}
1091
1092/* Create a candidate entry for a statement GS, where GS multiplies
1093 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1094 information about BASE_IN into the new candidate. Return the new
1095 candidate. */
1096
1097static slsr_cand_t
1098create_mul_imm_cand (gimple gs, tree base_in, tree stride_in, bool speed)
1099{
1100 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1101 double_int index, temp;
1102 unsigned savings = 0;
1103 slsr_cand_t c;
1104 slsr_cand_t base_cand = base_cand_from_table (base_in);
1105
1106 /* Look at all interpretations of the base candidate, if necessary,
1107 to find information to propagate into this candidate. */
9b92d12b 1108 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1109 {
1110 if (base_cand->kind == CAND_MULT
1111 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1112 {
1113 /* Y = (B + i') * S, S constant
1114 X = Y * c
1115 ============================
1116 X = (B + i') * (S * c) */
3cfd4469 1117 base = base_cand->base_expr;
f9453c07 1118 index = base_cand->index;
27bcd47c
LC
1119 temp = tree_to_double_int (base_cand->stride)
1120 * tree_to_double_int (stride_in);
f9453c07
BS
1121 stride = double_int_to_tree (TREE_TYPE (stride_in), temp);
1122 ctype = base_cand->cand_type;
1123 if (has_single_use (base_in))
1124 savings = (base_cand->dead_savings
1125 + stmt_cost (base_cand->cand_stmt, speed));
1126 }
9b92d12b 1127 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1128 {
1129 /* Y = B + (i' * 1)
1130 X = Y * c
1131 ===========================
1132 X = (B + i') * c */
3cfd4469 1133 base = base_cand->base_expr;
f9453c07
BS
1134 index = base_cand->index;
1135 stride = stride_in;
1136 ctype = base_cand->cand_type;
1137 if (has_single_use (base_in))
1138 savings = (base_cand->dead_savings
1139 + stmt_cost (base_cand->cand_stmt, speed));
1140 }
1141 else if (base_cand->kind == CAND_ADD
27bcd47c 1142 && base_cand->index.is_one ()
f9453c07
BS
1143 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1144 {
1145 /* Y = B + (1 * S), S constant
1146 X = Y * c
1147 ===========================
1148 X = (B + S) * c */
3cfd4469 1149 base = base_cand->base_expr;
f9453c07
BS
1150 index = tree_to_double_int (base_cand->stride);
1151 stride = stride_in;
1152 ctype = base_cand->cand_type;
1153 if (has_single_use (base_in))
1154 savings = (base_cand->dead_savings
1155 + stmt_cost (base_cand->cand_stmt, speed));
1156 }
1157
1158 if (base_cand->next_interp)
1159 base_cand = lookup_cand (base_cand->next_interp);
1160 else
1161 base_cand = NULL;
1162 }
1163
1164 if (!base)
1165 {
1166 /* No interpretations had anything useful to propagate, so
1167 produce X = (Y + 0) * c. */
1168 base = base_in;
1169 index = double_int_zero;
1170 stride = stride_in;
b2ec94d4 1171 ctype = TREE_TYPE (base_in);
f9453c07
BS
1172 }
1173
1174 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1175 ctype, savings);
1176 return c;
1177}
1178
1179/* Given GS which is a multiply of scalar integers, make an appropriate
1180 entry in the candidate table. If this is a multiply of two SSA names,
1181 create two CAND_MULT interpretations and attempt to find a basis for
1182 each of them. Otherwise, create a single CAND_MULT and attempt to
1183 find a basis. */
1184
1185static void
1186slsr_process_mul (gimple gs, tree rhs1, tree rhs2, bool speed)
1187{
1188 slsr_cand_t c, c2;
1189
1190 /* If this is a multiply of an SSA name with itself, it is highly
1191 unlikely that we will get a strength reduction opportunity, so
1192 don't record it as a candidate. This simplifies the logic for
1193 finding a basis, so if this is removed that must be considered. */
1194 if (rhs1 == rhs2)
1195 return;
1196
1197 if (TREE_CODE (rhs2) == SSA_NAME)
1198 {
1199 /* Record an interpretation of this statement in the candidate table
3cfd4469 1200 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1201 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1202
1203 /* Add the first interpretation to the statement-candidate mapping. */
1204 add_cand_for_stmt (gs, c);
1205
1206 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1207 is the stride and RHS2 is the base expression. */
f9453c07
BS
1208 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1209 c->next_interp = c2->cand_num;
1210 }
1211 else
1212 {
1213 /* Record an interpretation for the multiply-immediate. */
1214 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1215
1216 /* Add the interpretation to the statement-candidate mapping. */
1217 add_cand_for_stmt (gs, c);
1218 }
1219}
1220
1221/* Create a candidate entry for a statement GS, where GS adds two
1222 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1223 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1224 information about the two SSA names into the new candidate.
1225 Return the new candidate. */
1226
1227static slsr_cand_t
1228create_add_ssa_cand (gimple gs, tree base_in, tree addend_in,
1229 bool subtract_p, bool speed)
1230{
1231 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
1232 double_int index;
1233 unsigned savings = 0;
1234 slsr_cand_t c;
1235 slsr_cand_t base_cand = base_cand_from_table (base_in);
1236 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1237
1238 /* The most useful transformation is a multiply-immediate feeding
1239 an add or subtract. Look for that first. */
9b92d12b 1240 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1241 {
1242 if (addend_cand->kind == CAND_MULT
27bcd47c 1243 && addend_cand->index.is_zero ()
f9453c07
BS
1244 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1245 {
1246 /* Z = (B + 0) * S, S constant
1247 X = Y +/- Z
1248 ===========================
1249 X = Y + ((+/-1 * S) * B) */
1250 base = base_in;
1251 index = tree_to_double_int (addend_cand->stride);
1252 if (subtract_p)
27bcd47c 1253 index = -index;
3cfd4469 1254 stride = addend_cand->base_expr;
b2ec94d4 1255 ctype = TREE_TYPE (base_in);
f9453c07
BS
1256 if (has_single_use (addend_in))
1257 savings = (addend_cand->dead_savings
1258 + stmt_cost (addend_cand->cand_stmt, speed));
1259 }
1260
1261 if (addend_cand->next_interp)
1262 addend_cand = lookup_cand (addend_cand->next_interp);
1263 else
1264 addend_cand = NULL;
1265 }
1266
9b92d12b 1267 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1268 {
1269 if (base_cand->kind == CAND_ADD
27bcd47c 1270 && (base_cand->index.is_zero ()
f9453c07
BS
1271 || operand_equal_p (base_cand->stride,
1272 integer_zero_node, 0)))
1273 {
1274 /* Y = B + (i' * S), i' * S = 0
1275 X = Y +/- Z
1276 ============================
1277 X = B + (+/-1 * Z) */
3cfd4469 1278 base = base_cand->base_expr;
f9453c07
BS
1279 index = subtract_p ? double_int_minus_one : double_int_one;
1280 stride = addend_in;
1281 ctype = base_cand->cand_type;
1282 if (has_single_use (base_in))
1283 savings = (base_cand->dead_savings
1284 + stmt_cost (base_cand->cand_stmt, speed));
1285 }
1286 else if (subtract_p)
1287 {
1288 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1289
9b92d12b 1290 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1291 {
1292 if (subtrahend_cand->kind == CAND_MULT
27bcd47c 1293 && subtrahend_cand->index.is_zero ()
f9453c07
BS
1294 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1295 {
1296 /* Z = (B + 0) * S, S constant
1297 X = Y - Z
1298 ===========================
1299 Value: X = Y + ((-1 * S) * B) */
1300 base = base_in;
1301 index = tree_to_double_int (subtrahend_cand->stride);
27bcd47c 1302 index = -index;
3cfd4469 1303 stride = subtrahend_cand->base_expr;
b2ec94d4 1304 ctype = TREE_TYPE (base_in);
f9453c07
BS
1305 if (has_single_use (addend_in))
1306 savings = (subtrahend_cand->dead_savings
1307 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1308 }
1309
1310 if (subtrahend_cand->next_interp)
1311 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1312 else
1313 subtrahend_cand = NULL;
1314 }
1315 }
1316
1317 if (base_cand->next_interp)
1318 base_cand = lookup_cand (base_cand->next_interp);
1319 else
1320 base_cand = NULL;
1321 }
1322
1323 if (!base)
1324 {
1325 /* No interpretations had anything useful to propagate, so
1326 produce X = Y + (1 * Z). */
1327 base = base_in;
1328 index = subtract_p ? double_int_minus_one : double_int_one;
1329 stride = addend_in;
b2ec94d4 1330 ctype = TREE_TYPE (base_in);
f9453c07
BS
1331 }
1332
1333 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1334 ctype, savings);
1335 return c;
1336}
1337
1338/* Create a candidate entry for a statement GS, where GS adds SSA
1339 name BASE_IN to constant INDEX_IN. Propagate any known information
1340 about BASE_IN into the new candidate. Return the new candidate. */
1341
1342static slsr_cand_t
1343create_add_imm_cand (gimple gs, tree base_in, double_int index_in, bool speed)
1344{
1345 enum cand_kind kind = CAND_ADD;
1346 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1347 double_int index, multiple;
1348 unsigned savings = 0;
1349 slsr_cand_t c;
1350 slsr_cand_t base_cand = base_cand_from_table (base_in);
1351
9b92d12b 1352 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1353 {
1354 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (base_cand->stride));
1355
1356 if (TREE_CODE (base_cand->stride) == INTEGER_CST
27bcd47c
LC
1357 && index_in.multiple_of (tree_to_double_int (base_cand->stride),
1358 unsigned_p, &multiple))
f9453c07
BS
1359 {
1360 /* Y = (B + i') * S, S constant, c = kS for some integer k
1361 X = Y + c
1362 ============================
1363 X = (B + (i'+ k)) * S
1364 OR
1365 Y = B + (i' * S), S constant, c = kS for some integer k
1366 X = Y + c
1367 ============================
1368 X = (B + (i'+ k)) * S */
1369 kind = base_cand->kind;
3cfd4469 1370 base = base_cand->base_expr;
27bcd47c 1371 index = base_cand->index + multiple;
f9453c07
BS
1372 stride = base_cand->stride;
1373 ctype = base_cand->cand_type;
1374 if (has_single_use (base_in))
1375 savings = (base_cand->dead_savings
1376 + stmt_cost (base_cand->cand_stmt, speed));
1377 }
1378
1379 if (base_cand->next_interp)
1380 base_cand = lookup_cand (base_cand->next_interp);
1381 else
1382 base_cand = NULL;
1383 }
1384
1385 if (!base)
1386 {
1387 /* No interpretations had anything useful to propagate, so
1388 produce X = Y + (c * 1). */
1389 kind = CAND_ADD;
1390 base = base_in;
1391 index = index_in;
1392 stride = integer_one_node;
b2ec94d4 1393 ctype = TREE_TYPE (base_in);
f9453c07
BS
1394 }
1395
1396 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1397 ctype, savings);
1398 return c;
1399}
1400
1401/* Given GS which is an add or subtract of scalar integers or pointers,
1402 make at least one appropriate entry in the candidate table. */
1403
1404static void
1405slsr_process_add (gimple gs, tree rhs1, tree rhs2, bool speed)
1406{
1407 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1408 slsr_cand_t c = NULL, c2;
1409
1410 if (TREE_CODE (rhs2) == SSA_NAME)
1411 {
3cfd4469 1412 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1413 and RHS2 is the stride. But it doesn't make sense for the
1414 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1415 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1416 {
1417 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1418
1419 /* Add the first interpretation to the statement-candidate
1420 mapping. */
1421 add_cand_for_stmt (gs, c);
1422 }
1423
1424 /* If the two RHS operands are identical, or this is a subtract,
1425 we're done. */
1426 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1427 return;
1428
1429 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1430 base expression and RHS1 is the stride, again provided that the
f9453c07 1431 stride is not a pointer. */
b2ec94d4 1432 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1433 {
1434 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1435 if (c)
1436 c->next_interp = c2->cand_num;
1437 else
1438 add_cand_for_stmt (gs, c2);
1439 }
1440 }
1441 else
1442 {
1443 double_int index;
1444
1445 /* Record an interpretation for the add-immediate. */
1446 index = tree_to_double_int (rhs2);
1447 if (subtract_p)
27bcd47c 1448 index = -index;
f9453c07
BS
1449
1450 c = create_add_imm_cand (gs, rhs1, index, speed);
1451
1452 /* Add the interpretation to the statement-candidate mapping. */
1453 add_cand_for_stmt (gs, c);
1454 }
1455}
1456
1457/* Given GS which is a negate of a scalar integer, make an appropriate
1458 entry in the candidate table. A negate is equivalent to a multiply
1459 by -1. */
1460
1461static void
1462slsr_process_neg (gimple gs, tree rhs1, bool speed)
1463{
1464 /* Record a CAND_MULT interpretation for the multiply by -1. */
1465 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1466
1467 /* Add the interpretation to the statement-candidate mapping. */
1468 add_cand_for_stmt (gs, c);
1469}
1470
6b5eea61
BS
1471/* Help function for legal_cast_p, operating on two trees. Checks
1472 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1473 for more details. */
1474
1475static bool
1476legal_cast_p_1 (tree lhs, tree rhs)
1477{
1478 tree lhs_type, rhs_type;
1479 unsigned lhs_size, rhs_size;
1480 bool lhs_wraps, rhs_wraps;
1481
1482 lhs_type = TREE_TYPE (lhs);
1483 rhs_type = TREE_TYPE (rhs);
1484 lhs_size = TYPE_PRECISION (lhs_type);
1485 rhs_size = TYPE_PRECISION (rhs_type);
1486 lhs_wraps = TYPE_OVERFLOW_WRAPS (lhs_type);
1487 rhs_wraps = TYPE_OVERFLOW_WRAPS (rhs_type);
1488
1489 if (lhs_size < rhs_size
1490 || (rhs_wraps && !lhs_wraps)
1491 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1492 return false;
1493
1494 return true;
1495}
1496
f9453c07
BS
1497/* Return TRUE if GS is a statement that defines an SSA name from
1498 a conversion and is legal for us to combine with an add and multiply
1499 in the candidate table. For example, suppose we have:
1500
1501 A = B + i;
1502 C = (type) A;
1503 D = C * S;
1504
1505 Without the type-cast, we would create a CAND_MULT for D with base B,
1506 index i, and stride S. We want to record this candidate only if it
1507 is equivalent to apply the type cast following the multiply:
1508
1509 A = B + i;
1510 E = A * S;
1511 D = (type) E;
1512
1513 We will record the type with the candidate for D. This allows us
1514 to use a similar previous candidate as a basis. If we have earlier seen
1515
1516 A' = B + i';
1517 C' = (type) A';
1518 D' = C' * S;
1519
1520 we can replace D with
1521
1522 D = D' + (i - i') * S;
1523
1524 But if moving the type-cast would change semantics, we mustn't do this.
1525
1526 This is legitimate for casts from a non-wrapping integral type to
1527 any integral type of the same or larger size. It is not legitimate
1528 to convert a wrapping type to a non-wrapping type, or to a wrapping
1529 type of a different size. I.e., with a wrapping type, we must
1530 assume that the addition B + i could wrap, in which case performing
1531 the multiply before or after one of the "illegal" type casts will
1532 have different semantics. */
1533
1534static bool
1535legal_cast_p (gimple gs, tree rhs)
1536{
f9453c07
BS
1537 if (!is_gimple_assign (gs)
1538 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1539 return false;
1540
6b5eea61 1541 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
f9453c07
BS
1542}
1543
1544/* Given GS which is a cast to a scalar integer type, determine whether
1545 the cast is legal for strength reduction. If so, make at least one
1546 appropriate entry in the candidate table. */
1547
1548static void
1549slsr_process_cast (gimple gs, tree rhs1, bool speed)
1550{
1551 tree lhs, ctype;
1552 slsr_cand_t base_cand, c, c2;
1553 unsigned savings = 0;
1554
1555 if (!legal_cast_p (gs, rhs1))
1556 return;
1557
1558 lhs = gimple_assign_lhs (gs);
1559 base_cand = base_cand_from_table (rhs1);
1560 ctype = TREE_TYPE (lhs);
1561
9b92d12b 1562 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1563 {
1564 while (base_cand)
1565 {
1566 /* Propagate all data from the base candidate except the type,
1567 which comes from the cast, and the base candidate's cast,
1568 which is no longer applicable. */
1569 if (has_single_use (rhs1))
1570 savings = (base_cand->dead_savings
1571 + stmt_cost (base_cand->cand_stmt, speed));
1572
1573 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1574 base_cand->base_expr,
f9453c07
BS
1575 base_cand->index, base_cand->stride,
1576 ctype, savings);
1577 if (base_cand->next_interp)
1578 base_cand = lookup_cand (base_cand->next_interp);
1579 else
1580 base_cand = NULL;
1581 }
1582 }
1583 else
1584 {
1585 /* If nothing is known about the RHS, create fresh CAND_ADD and
1586 CAND_MULT interpretations:
1587
1588 X = Y + (0 * 1)
1589 X = (Y + 0) * 1
1590
1591 The first of these is somewhat arbitrary, but the choice of
1592 1 for the stride simplifies the logic for propagating casts
1593 into their uses. */
1594 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
1595 integer_one_node, ctype, 0);
1596 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
1597 integer_one_node, ctype, 0);
1598 c->next_interp = c2->cand_num;
1599 }
1600
1601 /* Add the first (or only) interpretation to the statement-candidate
1602 mapping. */
1603 add_cand_for_stmt (gs, c);
1604}
1605
1606/* Given GS which is a copy of a scalar integer type, make at least one
1607 appropriate entry in the candidate table.
1608
1609 This interface is included for completeness, but is unnecessary
1610 if this pass immediately follows a pass that performs copy
1611 propagation, such as DOM. */
1612
1613static void
1614slsr_process_copy (gimple gs, tree rhs1, bool speed)
1615{
1616 slsr_cand_t base_cand, c, c2;
1617 unsigned savings = 0;
1618
1619 base_cand = base_cand_from_table (rhs1);
1620
9b92d12b 1621 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1622 {
1623 while (base_cand)
1624 {
1625 /* Propagate all data from the base candidate. */
1626 if (has_single_use (rhs1))
1627 savings = (base_cand->dead_savings
1628 + stmt_cost (base_cand->cand_stmt, speed));
1629
1630 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1631 base_cand->base_expr,
f9453c07
BS
1632 base_cand->index, base_cand->stride,
1633 base_cand->cand_type, savings);
1634 if (base_cand->next_interp)
1635 base_cand = lookup_cand (base_cand->next_interp);
1636 else
1637 base_cand = NULL;
1638 }
1639 }
1640 else
1641 {
1642 /* If nothing is known about the RHS, create fresh CAND_ADD and
1643 CAND_MULT interpretations:
1644
1645 X = Y + (0 * 1)
1646 X = (Y + 0) * 1
1647
1648 The first of these is somewhat arbitrary, but the choice of
1649 1 for the stride simplifies the logic for propagating casts
1650 into their uses. */
1651 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, double_int_zero,
1652 integer_one_node, TREE_TYPE (rhs1), 0);
1653 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, double_int_zero,
1654 integer_one_node, TREE_TYPE (rhs1), 0);
1655 c->next_interp = c2->cand_num;
1656 }
1657
1658 /* Add the first (or only) interpretation to the statement-candidate
1659 mapping. */
1660 add_cand_for_stmt (gs, c);
1661}
1662\f
4d9192b5
TS
1663class find_candidates_dom_walker : public dom_walker
1664{
1665public:
1666 find_candidates_dom_walker (cdi_direction direction)
1667 : dom_walker (direction) {}
1668 virtual void before_dom_children (basic_block);
1669};
1670
f9453c07
BS
1671/* Find strength-reduction candidates in block BB. */
1672
4d9192b5
TS
1673void
1674find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1675{
1676 bool speed = optimize_bb_for_speed_p (bb);
1677 gimple_stmt_iterator gsi;
1678
9b92d12b
BS
1679 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1680 slsr_process_phi (gsi_stmt (gsi), speed);
1681
f9453c07
BS
1682 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1683 {
1684 gimple gs = gsi_stmt (gsi);
1685
2749c8f6
BS
1686 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1687 slsr_process_ref (gs);
1688
1689 else if (is_gimple_assign (gs)
1690 && SCALAR_INT_MODE_P
1691 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1692 {
1693 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1694
1695 switch (gimple_assign_rhs_code (gs))
1696 {
1697 case MULT_EXPR:
1698 case PLUS_EXPR:
1699 rhs1 = gimple_assign_rhs1 (gs);
1700 rhs2 = gimple_assign_rhs2 (gs);
1701 /* Should never happen, but currently some buggy situations
1702 in earlier phases put constants in rhs1. */
1703 if (TREE_CODE (rhs1) != SSA_NAME)
1704 continue;
1705 break;
1706
1707 /* Possible future opportunity: rhs1 of a ptr+ can be
1708 an ADDR_EXPR. */
1709 case POINTER_PLUS_EXPR:
1710 case MINUS_EXPR:
1711 rhs2 = gimple_assign_rhs2 (gs);
1712 /* Fall-through. */
1713
1714 case NOP_EXPR:
1715 case MODIFY_EXPR:
1716 case NEGATE_EXPR:
1717 rhs1 = gimple_assign_rhs1 (gs);
1718 if (TREE_CODE (rhs1) != SSA_NAME)
1719 continue;
1720 break;
1721
1722 default:
1723 ;
1724 }
1725
1726 switch (gimple_assign_rhs_code (gs))
1727 {
1728 case MULT_EXPR:
1729 slsr_process_mul (gs, rhs1, rhs2, speed);
1730 break;
1731
1732 case PLUS_EXPR:
1733 case POINTER_PLUS_EXPR:
1734 case MINUS_EXPR:
1735 slsr_process_add (gs, rhs1, rhs2, speed);
1736 break;
1737
1738 case NEGATE_EXPR:
1739 slsr_process_neg (gs, rhs1, speed);
1740 break;
1741
1742 case NOP_EXPR:
1743 slsr_process_cast (gs, rhs1, speed);
1744 break;
1745
1746 case MODIFY_EXPR:
1747 slsr_process_copy (gs, rhs1, speed);
1748 break;
1749
1750 default:
1751 ;
1752 }
1753 }
1754 }
1755}
1756\f
1757/* Dump a candidate for debug. */
1758
1759static void
1760dump_candidate (slsr_cand_t c)
1761{
1762 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1763 gimple_bb (c->cand_stmt)->index);
1764 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1765 switch (c->kind)
1766 {
1767 case CAND_MULT:
1768 fputs (" MULT : (", dump_file);
3cfd4469 1769 print_generic_expr (dump_file, c->base_expr, 0);
f9453c07
BS
1770 fputs (" + ", dump_file);
1771 dump_double_int (dump_file, c->index, false);
1772 fputs (") * ", dump_file);
1773 print_generic_expr (dump_file, c->stride, 0);
1774 fputs (" : ", dump_file);
1775 break;
1776 case CAND_ADD:
1777 fputs (" ADD : ", dump_file);
3cfd4469 1778 print_generic_expr (dump_file, c->base_expr, 0);
f9453c07
BS
1779 fputs (" + (", dump_file);
1780 dump_double_int (dump_file, c->index, false);
1781 fputs (" * ", dump_file);
1782 print_generic_expr (dump_file, c->stride, 0);
1783 fputs (") : ", dump_file);
1784 break;
2749c8f6
BS
1785 case CAND_REF:
1786 fputs (" REF : ", dump_file);
3cfd4469 1787 print_generic_expr (dump_file, c->base_expr, 0);
2749c8f6
BS
1788 fputs (" + (", dump_file);
1789 print_generic_expr (dump_file, c->stride, 0);
1790 fputs (") + ", dump_file);
1791 dump_double_int (dump_file, c->index, false);
1792 fputs (" : ", dump_file);
1793 break;
9b92d12b
BS
1794 case CAND_PHI:
1795 fputs (" PHI : ", dump_file);
1796 print_generic_expr (dump_file, c->base_expr, 0);
1797 fputs (" + (unknown * ", dump_file);
1798 print_generic_expr (dump_file, c->stride, 0);
1799 fputs (") : ", dump_file);
1800 break;
f9453c07
BS
1801 default:
1802 gcc_unreachable ();
1803 }
1804 print_generic_expr (dump_file, c->cand_type, 0);
1805 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1806 c->basis, c->dependent, c->sibling);
1807 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1808 c->next_interp, c->dead_savings);
1809 if (c->def_phi)
9b92d12b 1810 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1811 fputs ("\n", dump_file);
1812}
1813
1814/* Dump the candidate vector for debug. */
1815
1816static void
1817dump_cand_vec (void)
1818{
1819 unsigned i;
1820 slsr_cand_t c;
1821
1822 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1823
9771b263 1824 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
1825 dump_candidate (c);
1826}
1827
2749c8f6 1828/* Callback used to dump the candidate chains hash table. */
f9453c07 1829
4a8fb1a1
LC
1830int
1831ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1832{
4a8fb1a1 1833 const_cand_chain_t chain = *slot;
2749c8f6 1834 cand_chain_t p;
f9453c07 1835
3cfd4469 1836 print_generic_expr (dump_file, chain->base_expr, 0);
2749c8f6 1837 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1838
2749c8f6
BS
1839 for (p = chain->next; p; p = p->next)
1840 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1841
2749c8f6
BS
1842 fputs ("\n", dump_file);
1843 return 1;
1844}
f9453c07 1845
2749c8f6 1846/* Dump the candidate chains. */
f9453c07 1847
2749c8f6
BS
1848static void
1849dump_cand_chains (void)
1850{
1851 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
4a8fb1a1 1852 base_cand_map.traverse_noresize <void *, ssa_base_cand_dump_callback> (NULL);
f9453c07
BS
1853 fputs ("\n", dump_file);
1854}
88ca9ea1
BS
1855
1856/* Dump the increment vector for debug. */
1857
1858static void
1859dump_incr_vec (void)
1860{
1861 if (dump_file && (dump_flags & TDF_DETAILS))
1862 {
1863 unsigned i;
1864
1865 fprintf (dump_file, "\nIncrement vector:\n\n");
1866
1867 for (i = 0; i < incr_vec_len; i++)
1868 {
1869 fprintf (dump_file, "%3d increment: ", i);
1870 dump_double_int (dump_file, incr_vec[i].incr, false);
1871 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1872 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1873 fputs ("\n initializer: ", dump_file);
1874 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1875 fputs ("\n\n", dump_file);
1876 }
1877 }
1878}
f9453c07 1879\f
2749c8f6
BS
1880/* Replace *EXPR in candidate C with an equivalent strength-reduced
1881 data reference. */
1882
1883static void
1884replace_ref (tree *expr, slsr_cand_t c)
1885{
78f6dd68
MJ
1886 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1887 unsigned HOST_WIDE_INT misalign;
1888 unsigned align;
1889
1890 /* Ensure the memory reference carries the minimum alignment
1891 requirement for the data type. See PR58041. */
1892 get_object_alignment_1 (*expr, &align, &misalign);
1893 if (misalign != 0)
1894 align = (misalign & -misalign);
1895 if (align < TYPE_ALIGN (acc_type))
1896 acc_type = build_aligned_type (acc_type, align);
1897
1898 add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1899 c->base_expr, c->stride);
1900 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1901 double_int_to_tree (c->cand_type, c->index));
1902
2749c8f6
BS
1903 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1904 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1905 TREE_OPERAND (mem_ref, 0)
1906 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1907 /*simple_p=*/true, NULL,
1908 /*before=*/true, GSI_SAME_STMT);
1909 copy_ref_info (mem_ref, *expr);
1910 *expr = mem_ref;
1911 update_stmt (c->cand_stmt);
1912}
1913
1914/* Replace CAND_REF candidate C, each sibling of candidate C, and each
1915 dependent of candidate C with an equivalent strength-reduced data
1916 reference. */
1917
1918static void
1919replace_refs (slsr_cand_t c)
1920{
96d75a2c
YZ
1921 if (dump_file && (dump_flags & TDF_DETAILS))
1922 {
1923 fputs ("Replacing reference: ", dump_file);
1924 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1925 }
1926
2749c8f6
BS
1927 if (gimple_vdef (c->cand_stmt))
1928 {
1929 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1930 replace_ref (lhs, c);
1931 }
1932 else
1933 {
1934 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1935 replace_ref (rhs, c);
1936 }
1937
96d75a2c
YZ
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1939 {
1940 fputs ("With: ", dump_file);
1941 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1942 fputs ("\n", dump_file);
1943 }
1944
2749c8f6
BS
1945 if (c->sibling)
1946 replace_refs (lookup_cand (c->sibling));
1947
1948 if (c->dependent)
1949 replace_refs (lookup_cand (c->dependent));
1950}
1951
9b92d12b
BS
1952/* Return TRUE if candidate C is dependent upon a PHI. */
1953
1954static bool
1955phi_dependent_cand_p (slsr_cand_t c)
1956{
1957 /* A candidate is not necessarily dependent upon a PHI just because
1958 it has a phi definition for its base name. It may have a basis
1959 that relies upon the same phi definition, in which case the PHI
1960 is irrelevant to this candidate. */
1961 return (c->def_phi
1962 && c->basis
1963 && lookup_cand (c->basis)->def_phi != c->def_phi);
1964}
1965
f9453c07
BS
1966/* Calculate the increment required for candidate C relative to
1967 its basis. */
1968
1969static double_int
1970cand_increment (slsr_cand_t c)
1971{
1972 slsr_cand_t basis;
1973
1974 /* If the candidate doesn't have a basis, just return its own
1975 index. This is useful in record_increments to help us find
9b92d12b
BS
1976 an existing initializer. Also, if the candidate's basis is
1977 hidden by a phi, then its own index will be the increment
1978 from the newly introduced phi basis. */
1979 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
1980 return c->index;
1981
1982 basis = lookup_cand (c->basis);
3cfd4469 1983 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 1984 return c->index - basis->index;
f9453c07
BS
1985}
1986
88ca9ea1
BS
1987/* Calculate the increment required for candidate C relative to
1988 its basis. If we aren't going to generate pointer arithmetic
1989 for this candidate, return the absolute value of that increment
1990 instead. */
1991
1992static inline double_int
1993cand_abs_increment (slsr_cand_t c)
1994{
1995 double_int increment = cand_increment (c);
1996
27bcd47c
LC
1997 if (!address_arithmetic_p && increment.is_negative ())
1998 increment = -increment;
88ca9ea1
BS
1999
2000 return increment;
2001}
2002
f9453c07
BS
2003/* Return TRUE iff candidate C has already been replaced under
2004 another interpretation. */
2005
2006static inline bool
2007cand_already_replaced (slsr_cand_t c)
2008{
2009 return (gimple_bb (c->cand_stmt) == 0);
2010}
2011
9b92d12b
BS
2012/* Common logic used by replace_unconditional_candidate and
2013 replace_conditional_candidate. */
f9453c07
BS
2014
2015static void
a7a7d10e 2016replace_mult_candidate (slsr_cand_t c, tree basis_name, double_int bump)
f9453c07 2017{
9b92d12b
BS
2018 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2019 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2020
f9453c07
BS
2021 /* It is highly unlikely, but possible, that the resulting
2022 bump doesn't fit in a HWI. Abandon the replacement
9b92d12b
BS
2023 in this case. This does not affect siblings or dependents
2024 of C. Restriction to signed HWI is conservative for unsigned
2025 types but allows for safe negation without twisted logic. */
2026 if (bump.fits_shwi ()
2027 && bump.to_shwi () != HOST_WIDE_INT_MIN
2028 /* It is not useful to replace casts, copies, or adds of
2029 an SSA name and a constant. */
2030 && cand_code != MODIFY_EXPR
2031 && cand_code != NOP_EXPR
2032 && cand_code != PLUS_EXPR
2033 && cand_code != POINTER_PLUS_EXPR
2034 && cand_code != MINUS_EXPR)
2035 {
2036 enum tree_code code = PLUS_EXPR;
2037 tree bump_tree;
2038 gimple stmt_to_print = NULL;
2039
2040 /* If the basis name and the candidate's LHS have incompatible
2041 types, introduce a cast. */
2042 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
a7a7d10e 2043 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b
BS
2044 if (bump.is_negative ())
2045 {
2046 code = MINUS_EXPR;
2047 bump = -bump;
2048 }
2049
2050 bump_tree = double_int_to_tree (target_type, bump);
2051
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 {
2054 fputs ("Replacing: ", dump_file);
2055 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2056 }
2057
2058 if (bump.is_zero ())
2059 {
2060 tree lhs = gimple_assign_lhs (c->cand_stmt);
2061 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
2062 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2063 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2064 gsi_replace (&gsi, copy_stmt, false);
0100cd3f 2065 c->cand_stmt = copy_stmt;
9b92d12b
BS
2066 if (dump_file && (dump_flags & TDF_DETAILS))
2067 stmt_to_print = copy_stmt;
2068 }
2069 else
2070 {
2071 tree rhs1, rhs2;
2072 if (cand_code != NEGATE_EXPR) {
2073 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2074 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2075 }
2076 if (cand_code != NEGATE_EXPR
2077 && ((operand_equal_p (rhs1, basis_name, 0)
2078 && operand_equal_p (rhs2, bump_tree, 0))
2079 || (operand_equal_p (rhs1, bump_tree, 0)
2080 && operand_equal_p (rhs2, basis_name, 0))))
2081 {
2082 if (dump_file && (dump_flags & TDF_DETAILS))
2083 {
2084 fputs ("(duplicate, not actually replacing)", dump_file);
2085 stmt_to_print = c->cand_stmt;
2086 }
2087 }
2088 else
2089 {
2090 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2091 gimple_assign_set_rhs_with_ops (&gsi, code,
2092 basis_name, bump_tree);
2093 update_stmt (gsi_stmt (gsi));
bb0d2039 2094 c->cand_stmt = gsi_stmt (gsi);
9b92d12b
BS
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 stmt_to_print = gsi_stmt (gsi);
2097 }
2098 }
2099
2100 if (dump_file && (dump_flags & TDF_DETAILS))
2101 {
2102 fputs ("With: ", dump_file);
2103 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2104 fputs ("\n", dump_file);
2105 }
2106 }
2107}
2108
2109/* Replace candidate C with an add or subtract. Note that we only
2110 operate on CAND_MULTs with known strides, so we will never generate
2111 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2112 X = Y + ((i - i') * S), as described in the module commentary. The
2113 folded value ((i - i') * S) is referred to here as the "bump." */
2114
2115static void
2116replace_unconditional_candidate (slsr_cand_t c)
2117{
2118 slsr_cand_t basis;
2119 double_int stride, bump;
9b92d12b
BS
2120
2121 if (cand_already_replaced (c))
f9453c07
BS
2122 return;
2123
2124 basis = lookup_cand (c->basis);
9b92d12b
BS
2125 stride = tree_to_double_int (c->stride);
2126 bump = cand_increment (c) * stride;
2127
a7a7d10e 2128 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2129}
2130\f
7bf55a70
BS
2131/* Return the index in the increment vector of the given INCREMENT,
2132 or -1 if not found. The latter can occur if more than
2133 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2134
7bf55a70 2135static inline int
9b92d12b
BS
2136incr_vec_index (double_int increment)
2137{
2138 unsigned i;
2139
2140 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2141 ;
2142
7bf55a70
BS
2143 if (i < incr_vec_len)
2144 return i;
2145 else
2146 return -1;
9b92d12b
BS
2147}
2148
2149/* Create a new statement along edge E to add BASIS_NAME to the product
2150 of INCREMENT and the stride of candidate C. Create and return a new
2151 SSA name from *VAR to be used as the LHS of the new statement.
2152 KNOWN_STRIDE is true iff C's stride is a constant. */
2153
2154static tree
2155create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2156 double_int increment, edge e, location_t loc,
2157 bool known_stride)
2158{
2159 basic_block insert_bb;
2160 gimple_stmt_iterator gsi;
2161 tree lhs, basis_type;
2162 gimple new_stmt;
2163
2164 /* If the add candidate along this incoming edge has the same
2165 index as C's hidden basis, the hidden basis represents this
2166 edge correctly. */
2167 if (increment.is_zero ())
2168 return basis_name;
2169
2170 basis_type = TREE_TYPE (basis_name);
2171 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2172
2173 if (known_stride)
7139194b 2174 {
9b92d12b
BS
2175 tree bump_tree;
2176 enum tree_code code = PLUS_EXPR;
2177 double_int bump = increment * tree_to_double_int (c->stride);
2178 if (bump.is_negative ())
2179 {
2180 code = MINUS_EXPR;
2181 bump = -bump;
2182 }
2183
2184 bump_tree = double_int_to_tree (basis_type, bump);
2185 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2186 bump_tree);
7139194b
AH
2187 }
2188 else
2189 {
7bf55a70 2190 int i;
9b92d12b
BS
2191 bool negate_incr = (!address_arithmetic_p && increment.is_negative ());
2192 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2193 gcc_assert (i >= 0);
f9453c07 2194
9b92d12b
BS
2195 if (incr_vec[i].initializer)
2196 {
2197 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
2198 new_stmt = gimple_build_assign_with_ops (code, lhs, basis_name,
2199 incr_vec[i].initializer);
2200 }
2201 else if (increment.is_one ())
2202 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, lhs, basis_name,
2203 c->stride);
2204 else if (increment.is_minus_one ())
2205 new_stmt = gimple_build_assign_with_ops (MINUS_EXPR, lhs, basis_name,
2206 c->stride);
2207 else
2208 gcc_unreachable ();
f9453c07
BS
2209 }
2210
9b92d12b
BS
2211 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2212 gsi = gsi_last_bb (insert_bb);
2213
2214 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2215 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2216 else
2217 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2218
2219 gimple_set_location (new_stmt, loc);
f9453c07
BS
2220
2221 if (dump_file && (dump_flags & TDF_DETAILS))
2222 {
9b92d12b
BS
2223 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2224 print_gimple_stmt (dump_file, new_stmt, 0, 0);
f9453c07
BS
2225 }
2226
9b92d12b
BS
2227 return lhs;
2228}
2229
2230/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2231 is hidden by the phi node FROM_PHI, create a new phi node in the same
2232 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2233 with its phi arguments representing conditional adjustments to the
2234 hidden basis along conditional incoming paths. Those adjustments are
2235 made by creating add statements (and sometimes recursively creating
2236 phis) along those incoming paths. LOC is the location to attach to
2237 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2238 constant. */
2239
2240static tree
2241create_phi_basis (slsr_cand_t c, gimple from_phi, tree basis_name,
2242 location_t loc, bool known_stride)
2243{
2244 int i;
2245 tree name, phi_arg;
2246 gimple phi;
2247 vec<tree> phi_args;
2248 slsr_cand_t basis = lookup_cand (c->basis);
2249 int nargs = gimple_phi_num_args (from_phi);
2250 basic_block phi_bb = gimple_bb (from_phi);
2251 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi));
2252 phi_args.create (nargs);
2253
2254 /* Process each argument of the existing phi that represents
2255 conditionally-executed add candidates. */
2256 for (i = 0; i < nargs; i++)
f9453c07 2257 {
9b92d12b
BS
2258 edge e = (*phi_bb->preds)[i];
2259 tree arg = gimple_phi_arg_def (from_phi, i);
2260 tree feeding_def;
2261
2262 /* If the phi argument is the base name of the CAND_PHI, then
2263 this incoming arc should use the hidden basis. */
2264 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2265 if (basis->index.is_zero ())
2266 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2267 else
2268 {
28708525 2269 double_int incr = -basis->index;
9b92d12b
BS
2270 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2271 e, loc, known_stride);
2272 }
2273 else
f9453c07 2274 {
9b92d12b
BS
2275 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2276
2277 /* If there is another phi along this incoming edge, we must
2278 process it in the same fashion to ensure that all basis
2279 adjustments are made along its incoming edges. */
2280 if (gimple_code (arg_def) == GIMPLE_PHI)
2281 feeding_def = create_phi_basis (c, arg_def, basis_name,
2282 loc, known_stride);
2283 else
f9453c07 2284 {
9b92d12b
BS
2285 slsr_cand_t arg_cand = base_cand_from_table (arg);
2286 double_int diff = arg_cand->index - basis->index;
2287 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2288 e, loc, known_stride);
f9453c07
BS
2289 }
2290 }
9b92d12b
BS
2291
2292 /* Because of recursion, we need to save the arguments in a vector
2293 so we can create the PHI statement all at once. Otherwise the
2294 storage for the half-created PHI can be reclaimed. */
2295 phi_args.safe_push (feeding_def);
f9453c07 2296 }
9b92d12b
BS
2297
2298 /* Create the new phi basis. */
2299 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2300 phi = create_phi_node (name, phi_bb);
2301 SSA_NAME_DEF_STMT (name) = phi;
2302
2303 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2304 {
2305 edge e = (*phi_bb->preds)[i];
2306 add_phi_arg (phi, phi_arg, e, loc);
2307 }
2308
2309 update_stmt (phi);
2310
f9453c07
BS
2311 if (dump_file && (dump_flags & TDF_DETAILS))
2312 {
9b92d12b
BS
2313 fputs ("Introducing new phi basis: ", dump_file);
2314 print_gimple_stmt (dump_file, phi, 0, 0);
f9453c07 2315 }
9b92d12b
BS
2316
2317 return name;
f9453c07
BS
2318}
2319
9b92d12b
BS
2320/* Given a candidate C whose basis is hidden by at least one intervening
2321 phi, introduce a matching number of new phis to represent its basis
2322 adjusted by conditional increments along possible incoming paths. Then
2323 replace C as though it were an unconditional candidate, using the new
2324 basis. */
f9453c07
BS
2325
2326static void
9b92d12b 2327replace_conditional_candidate (slsr_cand_t c)
f9453c07 2328{
a7a7d10e 2329 tree basis_name, name;
9b92d12b
BS
2330 slsr_cand_t basis;
2331 location_t loc;
2332 double_int stride, bump;
f9453c07 2333
9b92d12b
BS
2334 /* Look up the LHS SSA name from C's basis. This will be the
2335 RHS1 of the adds we will introduce to create new phi arguments. */
2336 basis = lookup_cand (c->basis);
2337 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2338
9b92d12b
BS
2339 /* Create a new phi statement which will represent C's true basis
2340 after the transformation is complete. */
2341 loc = gimple_location (c->cand_stmt);
2342 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2343 basis_name, loc, KNOWN_STRIDE);
2344 /* Replace C with an add of the new basis phi and a constant. */
2345 stride = tree_to_double_int (c->stride);
2346 bump = c->index * stride;
f9453c07 2347
a7a7d10e 2348 replace_mult_candidate (c, name, bump);
f9453c07 2349}
88ca9ea1 2350
9b92d12b
BS
2351/* Compute the expected costs of inserting basis adjustments for
2352 candidate C with phi-definition PHI. The cost of inserting
2353 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2354 which are themselves phi results, recursively calculate costs
2355 for those phis as well. */
2356
2357static int
2358phi_add_costs (gimple phi, slsr_cand_t c, int one_add_cost)
88ca9ea1
BS
2359{
2360 unsigned i;
9b92d12b
BS
2361 int cost = 0;
2362 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
88ca9ea1 2363
0100cd3f
BS
2364 /* If we work our way back to a phi that isn't dominated by the hidden
2365 basis, this isn't a candidate for replacement. Indicate this by
2366 returning an unreasonably high cost. It's not easy to detect
2367 these situations when determining the basis, so we defer the
2368 decision until now. */
2369 basic_block phi_bb = gimple_bb (phi);
2370 slsr_cand_t basis = lookup_cand (c->basis);
2371 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2372
2373 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2374 return COST_INFINITE;
2375
9b92d12b
BS
2376 for (i = 0; i < gimple_phi_num_args (phi); i++)
2377 {
2378 tree arg = gimple_phi_arg_def (phi, i);
2379
2380 if (arg != phi_cand->base_expr)
2381 {
2382 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2383
2384 if (gimple_code (arg_def) == GIMPLE_PHI)
2385 cost += phi_add_costs (arg_def, c, one_add_cost);
2386 else
2387 {
2388 slsr_cand_t arg_cand = base_cand_from_table (arg);
2389
2390 if (arg_cand->index != c->index)
2391 cost += one_add_cost;
2392 }
2393 }
2394 }
2395
2396 return cost;
88ca9ea1
BS
2397}
2398
9b92d12b
BS
2399/* For candidate C, each sibling of candidate C, and each dependent of
2400 candidate C, determine whether the candidate is dependent upon a
2401 phi that hides its basis. If not, replace the candidate unconditionally.
2402 Otherwise, determine whether the cost of introducing compensation code
2403 for the candidate is offset by the gains from strength reduction. If
2404 so, replace the candidate and introduce the compensation code. */
2405
2406static void
2407replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2408{
2409 if (phi_dependent_cand_p (c))
2410 {
2411 if (c->kind == CAND_MULT)
2412 {
2413 /* A candidate dependent upon a phi will replace a multiply by
2414 a constant with an add, and will insert at most one add for
2415 each phi argument. Add these costs with the potential dead-code
2416 savings to determine profitability. */
2417 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2418 int mult_savings = stmt_cost (c->cand_stmt, speed);
2419 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2420 tree phi_result = gimple_phi_result (phi);
2421 int one_add_cost = add_cost (speed,
2422 TYPE_MODE (TREE_TYPE (phi_result)));
2423 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2424 int cost = add_costs - mult_savings - c->dead_savings;
2425
2426 if (dump_file && (dump_flags & TDF_DETAILS))
2427 {
2428 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2429 fprintf (dump_file, " add_costs = %d\n", add_costs);
2430 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2431 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2432 fprintf (dump_file, " cost = %d\n", cost);
2433 if (cost <= COST_NEUTRAL)
2434 fputs (" Replacing...\n", dump_file);
2435 else
2436 fputs (" Not replaced.\n", dump_file);
2437 }
2438
2439 if (cost <= COST_NEUTRAL)
2440 replace_conditional_candidate (c);
2441 }
2442 }
2443 else
2444 replace_unconditional_candidate (c);
2445
2446 if (c->sibling)
2447 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2448
2449 if (c->dependent)
2450 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2451}
2452\f
88ca9ea1
BS
2453/* Count the number of candidates in the tree rooted at C that have
2454 not already been replaced under other interpretations. */
2455
1dc3d6e9 2456static int
88ca9ea1
BS
2457count_candidates (slsr_cand_t c)
2458{
2459 unsigned count = cand_already_replaced (c) ? 0 : 1;
2460
2461 if (c->sibling)
2462 count += count_candidates (lookup_cand (c->sibling));
2463
2464 if (c->dependent)
2465 count += count_candidates (lookup_cand (c->dependent));
2466
2467 return count;
2468}
2469
2470/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2471 INCREMENT is associated with candidate C. If INCREMENT is to be
2472 conditionally executed as part of a conditional candidate replacement,
2473 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2474 T_0 = stride * I is provided by a candidate that dominates all
2475 candidates with the same increment, also record T_0 for subsequent use. */
2476
2477static void
9b92d12b 2478record_increment (slsr_cand_t c, double_int increment, bool is_phi_adjust)
88ca9ea1
BS
2479{
2480 bool found = false;
2481 unsigned i;
2482
2483 /* Treat increments that differ only in sign as identical so as to
2484 share initializers, unless we are generating pointer arithmetic. */
27bcd47c
LC
2485 if (!address_arithmetic_p && increment.is_negative ())
2486 increment = -increment;
88ca9ea1
BS
2487
2488 for (i = 0; i < incr_vec_len; i++)
2489 {
27bcd47c 2490 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2491 {
2492 incr_vec[i].count++;
2493 found = true;
2494
2495 /* If we previously recorded an initializer that doesn't
2496 dominate this candidate, it's not going to be useful to
2497 us after all. */
2498 if (incr_vec[i].initializer
2499 && !dominated_by_p (CDI_DOMINATORS,
2500 gimple_bb (c->cand_stmt),
2501 incr_vec[i].init_bb))
2502 {
2503 incr_vec[i].initializer = NULL_TREE;
2504 incr_vec[i].init_bb = NULL;
2505 }
2506
2507 break;
2508 }
2509 }
2510
7bf55a70 2511 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2512 {
2513 /* The first time we see an increment, create the entry for it.
2514 If this is the root candidate which doesn't have a basis, set
2515 the count to zero. We're only processing it so it can possibly
2516 provide an initializer for other candidates. */
2517 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2518 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2519 incr_vec[incr_vec_len].cost = COST_INFINITE;
2520
2521 /* Optimistically record the first occurrence of this increment
2522 as providing an initializer (if it does); we will revise this
2523 opinion later if it doesn't dominate all other occurrences.
9b92d12b
BS
2524 Exception: increments of -1, 0, 1 never need initializers;
2525 and phi adjustments don't ever provide initializers. */
88ca9ea1 2526 if (c->kind == CAND_ADD
9b92d12b 2527 && !is_phi_adjust
27bcd47c
LC
2528 && c->index == increment
2529 && (increment.sgt (double_int_one)
7b8265ba
JJ
2530 || increment.slt (double_int_minus_one))
2531 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2532 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2533 {
7b8265ba 2534 tree t0 = NULL_TREE;
88ca9ea1
BS
2535 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2536 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2537 if (operand_equal_p (rhs1, c->base_expr, 0))
2538 t0 = rhs2;
7b8265ba 2539 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2540 t0 = rhs1;
7b8265ba
JJ
2541 if (t0
2542 && SSA_NAME_DEF_STMT (t0)
2543 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2544 {
2545 incr_vec[incr_vec_len].initializer = t0;
2546 incr_vec[incr_vec_len++].init_bb
2547 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2548 }
2549 else
2550 {
2551 incr_vec[incr_vec_len].initializer = NULL_TREE;
2552 incr_vec[incr_vec_len++].init_bb = NULL;
2553 }
2554 }
2555 else
2556 {
2557 incr_vec[incr_vec_len].initializer = NULL_TREE;
2558 incr_vec[incr_vec_len++].init_bb = NULL;
2559 }
2560 }
2561}
2562
9b92d12b
BS
2563/* Given phi statement PHI that hides a candidate from its BASIS, find
2564 the increments along each incoming arc (recursively handling additional
2565 phis that may be present) and record them. These increments are the
2566 difference in index between the index-adjusting statements and the
2567 index of the basis. */
2568
2569static void
2570record_phi_increments (slsr_cand_t basis, gimple phi)
2571{
2572 unsigned i;
2573 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2574
2575 for (i = 0; i < gimple_phi_num_args (phi); i++)
2576 {
2577 tree arg = gimple_phi_arg_def (phi, i);
2578
2579 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2580 {
2581 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2582
2583 if (gimple_code (arg_def) == GIMPLE_PHI)
2584 record_phi_increments (basis, arg_def);
2585 else
2586 {
2587 slsr_cand_t arg_cand = base_cand_from_table (arg);
2588 double_int diff = arg_cand->index - basis->index;
2589 record_increment (arg_cand, diff, PHI_ADJUST);
2590 }
2591 }
2592 }
2593}
2594
88ca9ea1
BS
2595/* Determine how many times each unique increment occurs in the set
2596 of candidates rooted at C's parent, recording the data in the
2597 increment vector. For each unique increment I, if an initializer
2598 T_0 = stride * I is provided by a candidate that dominates all
2599 candidates with the same increment, also record T_0 for subsequent
2600 use. */
2601
2602static void
2603record_increments (slsr_cand_t c)
2604{
2605 if (!cand_already_replaced (c))
9b92d12b
BS
2606 {
2607 if (!phi_dependent_cand_p (c))
2608 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2609 else
2610 {
2611 /* A candidate with a basis hidden by a phi will have one
2612 increment for its relationship to the index represented by
2613 the phi, and potentially additional increments along each
2614 incoming edge. For the root of the dependency tree (which
2615 has no basis), process just the initial index in case it has
2616 an initializer that can be used by subsequent candidates. */
2617 record_increment (c, c->index, NOT_PHI_ADJUST);
2618
2619 if (c->basis)
2620 record_phi_increments (lookup_cand (c->basis),
2621 lookup_cand (c->def_phi)->cand_stmt);
2622 }
2623 }
88ca9ea1
BS
2624
2625 if (c->sibling)
2626 record_increments (lookup_cand (c->sibling));
2627
2628 if (c->dependent)
2629 record_increments (lookup_cand (c->dependent));
2630}
2631
9b92d12b
BS
2632/* Add up and return the costs of introducing add statements that
2633 require the increment INCR on behalf of candidate C and phi
2634 statement PHI. Accumulate into *SAVINGS the potential savings
2635 from removing existing statements that feed PHI and have no other
2636 uses. */
2637
2638static int
2639phi_incr_cost (slsr_cand_t c, double_int incr, gimple phi, int *savings)
2640{
2641 unsigned i;
2642 int cost = 0;
2643 slsr_cand_t basis = lookup_cand (c->basis);
2644 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2645
2646 for (i = 0; i < gimple_phi_num_args (phi); i++)
2647 {
2648 tree arg = gimple_phi_arg_def (phi, i);
2649
2650 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2651 {
2652 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2653
2654 if (gimple_code (arg_def) == GIMPLE_PHI)
2655 {
2656 int feeding_savings = 0;
2657 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2658 if (has_single_use (gimple_phi_result (arg_def)))
2659 *savings += feeding_savings;
2660 }
2661 else
2662 {
2663 slsr_cand_t arg_cand = base_cand_from_table (arg);
2664 double_int diff = arg_cand->index - basis->index;
2665
2666 if (incr == diff)
2667 {
2668 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2669 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2670 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2671 if (has_single_use (lhs))
2672 *savings += stmt_cost (arg_cand->cand_stmt, true);
2673 }
2674 }
2675 }
2676 }
2677
2678 return cost;
2679}
2680
88ca9ea1
BS
2681/* Return the first candidate in the tree rooted at C that has not
2682 already been replaced, favoring siblings over dependents. */
2683
2684static slsr_cand_t
2685unreplaced_cand_in_tree (slsr_cand_t c)
2686{
2687 if (!cand_already_replaced (c))
2688 return c;
2689
2690 if (c->sibling)
2691 {
2692 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2693 if (sib)
2694 return sib;
2695 }
2696
2697 if (c->dependent)
2698 {
2699 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2700 if (dep)
2701 return dep;
2702 }
2703
2704 return NULL;
2705}
2706
2707/* Return TRUE if the candidates in the tree rooted at C should be
2708 optimized for speed, else FALSE. We estimate this based on the block
2709 containing the most dominant candidate in the tree that has not yet
2710 been replaced. */
2711
2712static bool
2713optimize_cands_for_speed_p (slsr_cand_t c)
2714{
2715 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2716 gcc_assert (c2);
2717 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2718}
2719
2720/* Add COST_IN to the lowest cost of any dependent path starting at
2721 candidate C or any of its siblings, counting only candidates along
2722 such paths with increment INCR. Assume that replacing a candidate
2723 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2724 statements that would go dead. If COUNT_PHIS is true, include
2725 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2726
2727static int
9b92d12b
BS
2728lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2729 double_int incr, bool count_phis)
88ca9ea1 2730{
9b92d12b 2731 int local_cost, sib_cost, savings = 0;
88ca9ea1
BS
2732 double_int cand_incr = cand_abs_increment (c);
2733
2734 if (cand_already_replaced (c))
2735 local_cost = cost_in;
27bcd47c 2736 else if (incr == cand_incr)
88ca9ea1
BS
2737 local_cost = cost_in - repl_savings - c->dead_savings;
2738 else
2739 local_cost = cost_in - c->dead_savings;
2740
9b92d12b
BS
2741 if (count_phis
2742 && phi_dependent_cand_p (c)
2743 && !cand_already_replaced (c))
2744 {
2745 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2746 local_cost += phi_incr_cost (c, incr, phi, &savings);
2747
2748 if (has_single_use (gimple_phi_result (phi)))
2749 local_cost -= savings;
2750 }
2751
88ca9ea1
BS
2752 if (c->dependent)
2753 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
2754 lookup_cand (c->dependent), incr,
2755 count_phis);
88ca9ea1
BS
2756
2757 if (c->sibling)
2758 {
2759 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
2760 lookup_cand (c->sibling), incr,
2761 count_phis);
88ca9ea1
BS
2762 local_cost = MIN (local_cost, sib_cost);
2763 }
2764
2765 return local_cost;
2766}
2767
2768/* Compute the total savings that would accrue from all replacements
2769 in the candidate tree rooted at C, counting only candidates with
2770 increment INCR. Assume that replacing a candidate reduces cost
2771 by REPL_SAVINGS. Also account for savings from statements that
2772 would go dead. */
2773
2774static int
9b92d12b
BS
2775total_savings (int repl_savings, slsr_cand_t c, double_int incr,
2776 bool count_phis)
88ca9ea1
BS
2777{
2778 int savings = 0;
2779 double_int cand_incr = cand_abs_increment (c);
2780
27bcd47c 2781 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
2782 savings += repl_savings + c->dead_savings;
2783
9b92d12b
BS
2784 if (count_phis
2785 && phi_dependent_cand_p (c)
2786 && !cand_already_replaced (c))
2787 {
2788 int phi_savings = 0;
2789 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
2790 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2791
2792 if (has_single_use (gimple_phi_result (phi)))
2793 savings += phi_savings;
2794 }
2795
88ca9ea1 2796 if (c->dependent)
9b92d12b
BS
2797 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2798 count_phis);
88ca9ea1
BS
2799
2800 if (c->sibling)
9b92d12b
BS
2801 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2802 count_phis);
88ca9ea1
BS
2803
2804 return savings;
2805}
2806
2807/* Use target-specific costs to determine and record which increments
2808 in the current candidate tree are profitable to replace, assuming
2809 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2810 the candidate tree.
2811
2812 One slight limitation here is that we don't account for the possible
2813 introduction of casts in some cases. See replace_one_candidate for
2814 the cases where these are introduced. This should probably be cleaned
2815 up sometime. */
2816
2817static void
2818analyze_increments (slsr_cand_t first_dep, enum machine_mode mode, bool speed)
2819{
2820 unsigned i;
2821
2822 for (i = 0; i < incr_vec_len; i++)
2823 {
27bcd47c 2824 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
2825
2826 /* If somehow this increment is bigger than a HWI, we won't
2827 be optimizing candidates that use it. And if the increment
2828 has a count of zero, nothing will be done with it. */
27bcd47c 2829 if (!incr_vec[i].incr.fits_shwi () || !incr_vec[i].count)
88ca9ea1
BS
2830 incr_vec[i].cost = COST_INFINITE;
2831
2832 /* Increments of 0, 1, and -1 are always profitable to replace,
2833 because they always replace a multiply or add with an add or
2834 copy, and may cause one or more existing instructions to go
2835 dead. Exception: -1 can't be assumed to be profitable for
2836 pointer addition. */
2837 else if (incr == 0
2838 || incr == 1
2839 || (incr == -1
2840 && (gimple_assign_rhs_code (first_dep->cand_stmt)
2841 != POINTER_PLUS_EXPR)))
2842 incr_vec[i].cost = COST_NEUTRAL;
2843
6b5eea61
BS
2844 /* FORNOW: If we need to add an initializer, give up if a cast from
2845 the candidate's type to its stride's type can lose precision.
2846 This could eventually be handled better by expressly retaining the
2847 result of a cast to a wider type in the stride. Example:
2848
2849 short int _1;
2850 _2 = (int) _1;
2851 _3 = _2 * 10;
2852 _4 = x + _3; ADD: x + (10 * _1) : int
2853 _5 = _2 * 15;
2854 _6 = x + _3; ADD: x + (15 * _1) : int
2855
2856 Right now replacing _6 would cause insertion of an initializer
2857 of the form "short int T = _1 * 5;" followed by a cast to
2858 int, which could overflow incorrectly. Had we recorded _2 or
2859 (int)_1 as the stride, this wouldn't happen. However, doing
2860 this breaks other opportunities, so this will require some
2861 care. */
2862 else if (!incr_vec[i].initializer
2863 && TREE_CODE (first_dep->stride) != INTEGER_CST
2864 && !legal_cast_p_1 (first_dep->stride,
2865 gimple_assign_lhs (first_dep->cand_stmt)))
2866
2867 incr_vec[i].cost = COST_INFINITE;
2868
50251425
BS
2869 /* If we need to add an initializer, make sure we don't introduce
2870 a multiply by a pointer type, which can happen in certain cast
2871 scenarios. FIXME: When cleaning up these cast issues, we can
2872 afford to introduce the multiply provided we cast out to an
2873 unsigned int of appropriate size. */
2874 else if (!incr_vec[i].initializer
2875 && TREE_CODE (first_dep->stride) != INTEGER_CST
2876 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2877
2878 incr_vec[i].cost = COST_INFINITE;
2879
88ca9ea1
BS
2880 /* For any other increment, if this is a multiply candidate, we
2881 must introduce a temporary T and initialize it with
2882 T_0 = stride * increment. When optimizing for speed, walk the
2883 candidate tree to calculate the best cost reduction along any
2884 path; if it offsets the fixed cost of inserting the initializer,
2885 replacing the increment is profitable. When optimizing for
2886 size, instead calculate the total cost reduction from replacing
2887 all candidates with this increment. */
2888 else if (first_dep->kind == CAND_MULT)
2889 {
2890 int cost = mult_by_coeff_cost (incr, mode, speed);
2891 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2892 if (speed)
2893 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 2894 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 2895 else
9b92d12b
BS
2896 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2897 COUNT_PHIS);
88ca9ea1
BS
2898
2899 incr_vec[i].cost = cost;
2900 }
2901
2902 /* If this is an add candidate, the initializer may already
2903 exist, so only calculate the cost of the initializer if it
2904 doesn't. We are replacing one add with another here, so the
2905 known replacement savings is zero. We will account for removal
2906 of dead instructions in lowest_cost_path or total_savings. */
2907 else
2908 {
2909 int cost = 0;
2910 if (!incr_vec[i].initializer)
2911 cost = mult_by_coeff_cost (incr, mode, speed);
2912
2913 if (speed)
9b92d12b
BS
2914 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2915 DONT_COUNT_PHIS);
88ca9ea1 2916 else
9b92d12b
BS
2917 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2918 DONT_COUNT_PHIS);
88ca9ea1
BS
2919
2920 incr_vec[i].cost = cost;
2921 }
2922 }
2923}
2924
2925/* Return the nearest common dominator of BB1 and BB2. If the blocks
2926 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2927 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2928 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2929 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2930
2931static basic_block
2932ncd_for_two_cands (basic_block bb1, basic_block bb2,
2933 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2934{
2935 basic_block ncd;
2936
2937 if (!bb1)
2938 {
2939 *where = c2;
2940 return bb2;
2941 }
2942
2943 if (!bb2)
2944 {
2945 *where = c1;
2946 return bb1;
2947 }
2948
2949 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2950
2951 /* If both candidates are in the same block, the earlier
2952 candidate wins. */
2953 if (bb1 == ncd && bb2 == ncd)
2954 {
2955 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2956 *where = c2;
2957 else
2958 *where = c1;
2959 }
2960
2961 /* Otherwise, if one of them produced a candidate in the
2962 dominator, that one wins. */
2963 else if (bb1 == ncd)
2964 *where = c1;
2965
2966 else if (bb2 == ncd)
2967 *where = c2;
2968
2969 /* If neither matches the dominator, neither wins. */
2970 else
2971 *where = NULL;
2972
2973 return ncd;
2974}
2975
9b92d12b
BS
2976/* Consider all candidates that feed PHI. Find the nearest common
2977 dominator of those candidates requiring the given increment INCR.
2978 Further find and return the nearest common dominator of this result
2979 with block NCD. If the returned block contains one or more of the
2980 candidates, return the earliest candidate in the block in *WHERE. */
2981
2982static basic_block
2983ncd_with_phi (slsr_cand_t c, double_int incr, gimple phi,
2984 basic_block ncd, slsr_cand_t *where)
2985{
2986 unsigned i;
2987 slsr_cand_t basis = lookup_cand (c->basis);
2988 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
2989
2990 for (i = 0; i < gimple_phi_num_args (phi); i++)
2991 {
2992 tree arg = gimple_phi_arg_def (phi, i);
2993
2994 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2995 {
2996 gimple arg_def = SSA_NAME_DEF_STMT (arg);
2997
2998 if (gimple_code (arg_def) == GIMPLE_PHI)
2999 ncd = ncd_with_phi (c, incr, arg_def, ncd, where);
3000 else
3001 {
3002 slsr_cand_t arg_cand = base_cand_from_table (arg);
3003 double_int diff = arg_cand->index - basis->index;
1e386bb8 3004 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
9b92d12b
BS
3005
3006 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
1e386bb8 3007 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3008 }
3009 }
3010 }
3011
3012 return ncd;
3013}
3014
3015/* Consider the candidate C together with any candidates that feed
3016 C's phi dependence (if any). Find and return the nearest common
3017 dominator of those candidates requiring the given increment INCR.
3018 If the returned block contains one or more of the candidates,
3019 return the earliest candidate in the block in *WHERE. */
3020
3021static basic_block
3022ncd_of_cand_and_phis (slsr_cand_t c, double_int incr, slsr_cand_t *where)
3023{
3024 basic_block ncd = NULL;
3025
3026 if (cand_abs_increment (c) == incr)
3027 {
3028 ncd = gimple_bb (c->cand_stmt);
3029 *where = c;
3030 }
3031
3032 if (phi_dependent_cand_p (c))
3033 ncd = ncd_with_phi (c, incr, lookup_cand (c->def_phi)->cand_stmt,
3034 ncd, where);
3035
3036 return ncd;
3037}
3038
88ca9ea1
BS
3039/* Consider all candidates in the tree rooted at C for which INCR
3040 represents the required increment of C relative to its basis.
3041 Find and return the basic block that most nearly dominates all
3042 such candidates. If the returned block contains one or more of
3043 the candidates, return the earliest candidate in the block in
3044 *WHERE. */
3045
3046static basic_block
3047nearest_common_dominator_for_cands (slsr_cand_t c, double_int incr,
3048 slsr_cand_t *where)
3049{
3050 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3051 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3052
3053 /* First find the NCD of all siblings and dependents. */
3054 if (c->sibling)
3055 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3056 incr, &sib_where);
3057 if (c->dependent)
3058 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3059 incr, &dep_where);
3060 if (!sib_ncd && !dep_ncd)
3061 {
3062 new_where = NULL;
3063 ncd = NULL;
3064 }
3065 else if (sib_ncd && !dep_ncd)
3066 {
3067 new_where = sib_where;
3068 ncd = sib_ncd;
3069 }
3070 else if (dep_ncd && !sib_ncd)
3071 {
3072 new_where = dep_where;
3073 ncd = dep_ncd;
3074 }
3075 else
3076 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3077 dep_where, &new_where);
3078
3079 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3080 in (and nor do any increments for feeding defs of a phi-dependence),
3081 then the result depends only on siblings and dependents. */
3082 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3083
9b92d12b 3084 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3085 {
3086 *where = new_where;
3087 return ncd;
3088 }
3089
3090 /* Otherwise, compare this candidate with the result from all siblings
3091 and dependents. */
88ca9ea1
BS
3092 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3093
3094 return ncd;
3095}
3096
3097/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3098
3099static inline bool
3100profitable_increment_p (unsigned index)
3101{
3102 return (incr_vec[index].cost <= COST_NEUTRAL);
3103}
3104
3105/* For each profitable increment in the increment vector not equal to
3106 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3107 dominator of all statements in the candidate chain rooted at C
3108 that require that increment, and insert an initializer
3109 T_0 = stride * increment at that location. Record T_0 with the
3110 increment record. */
3111
3112static void
3113insert_initializers (slsr_cand_t c)
3114{
3115 unsigned i;
88ca9ea1
BS
3116
3117 for (i = 0; i < incr_vec_len; i++)
3118 {
3119 basic_block bb;
3120 slsr_cand_t where = NULL;
3121 gimple init_stmt;
3122 tree stride_type, new_name, incr_tree;
3123 double_int incr = incr_vec[i].incr;
3124
3125 if (!profitable_increment_p (i)
27bcd47c
LC
3126 || incr.is_one ()
3127 || (incr.is_minus_one ()
88ca9ea1 3128 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
27bcd47c 3129 || incr.is_zero ())
88ca9ea1
BS
3130 continue;
3131
3132 /* We may have already identified an existing initializer that
3133 will suffice. */
3134 if (incr_vec[i].initializer)
3135 {
3136 if (dump_file && (dump_flags & TDF_DETAILS))
3137 {
3138 fputs ("Using existing initializer: ", dump_file);
3139 print_gimple_stmt (dump_file,
3140 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3141 0, 0);
3142 }
3143 continue;
3144 }
3145
3146 /* Find the block that most closely dominates all candidates
3147 with this increment. If there is at least one candidate in
3148 that block, the earliest one will be returned in WHERE. */
3149 bb = nearest_common_dominator_for_cands (c, incr, &where);
3150
3151 /* Create a new SSA name to hold the initializer's value. */
3152 stride_type = TREE_TYPE (c->stride);
a7a7d10e 3153 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
88ca9ea1
BS
3154 incr_vec[i].initializer = new_name;
3155
3156 /* Create the initializer and insert it in the latest possible
3157 dominating position. */
3158 incr_tree = double_int_to_tree (stride_type, incr);
3159 init_stmt = gimple_build_assign_with_ops (MULT_EXPR, new_name,
3160 c->stride, incr_tree);
3161 if (where)
3162 {
3163 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3164 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3165 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3166 }
3167 else
3168 {
3169 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3170 gimple basis_stmt = lookup_cand (c->basis)->cand_stmt;
3171
3172 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3173 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3174 else
3175 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3176
3177 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3178 }
3179
3180 if (dump_file && (dump_flags & TDF_DETAILS))
3181 {
3182 fputs ("Inserting initializer: ", dump_file);
3183 print_gimple_stmt (dump_file, init_stmt, 0, 0);
3184 }
3185 }
3186}
3187
9b92d12b
BS
3188/* Return TRUE iff all required increments for candidates feeding PHI
3189 are profitable to replace on behalf of candidate C. */
3190
3191static bool
3192all_phi_incrs_profitable (slsr_cand_t c, gimple phi)
3193{
3194 unsigned i;
3195 slsr_cand_t basis = lookup_cand (c->basis);
3196 slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi));
3197
3198 for (i = 0; i < gimple_phi_num_args (phi); i++)
3199 {
3200 tree arg = gimple_phi_arg_def (phi, i);
3201
3202 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3203 {
3204 gimple arg_def = SSA_NAME_DEF_STMT (arg);
3205
3206 if (gimple_code (arg_def) == GIMPLE_PHI)
3207 {
3208 if (!all_phi_incrs_profitable (c, arg_def))
3209 return false;
3210 }
3211 else
3212 {
7bf55a70 3213 int j;
9b92d12b
BS
3214 slsr_cand_t arg_cand = base_cand_from_table (arg);
3215 double_int increment = arg_cand->index - basis->index;
3216
3217 if (!address_arithmetic_p && increment.is_negative ())
3218 increment = -increment;
3219
3220 j = incr_vec_index (increment);
3221
3222 if (dump_file && (dump_flags & TDF_DETAILS))
3223 {
3224 fprintf (dump_file, " Conditional candidate %d, phi: ",
3225 c->cand_num);
3226 print_gimple_stmt (dump_file, phi, 0, 0);
3227 fputs (" increment: ", dump_file);
3228 dump_double_int (dump_file, increment, false);
7bf55a70
BS
3229 if (j < 0)
3230 fprintf (dump_file,
3231 "\n Not replaced; incr_vec overflow.\n");
3232 else {
3233 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3234 if (profitable_increment_p (j))
3235 fputs (" Replacing...\n", dump_file);
3236 else
3237 fputs (" Not replaced.\n", dump_file);
3238 }
9b92d12b
BS
3239 }
3240
7bf55a70 3241 if (j < 0 || !profitable_increment_p (j))
9b92d12b
BS
3242 return false;
3243 }
3244 }
3245 }
3246
3247 return true;
3248}
3249
88ca9ea1
BS
3250/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3251 type TO_TYPE, and insert it in front of the statement represented
3252 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3253 the new SSA name. */
3254
3255static tree
a7a7d10e 3256introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3257{
3258 tree cast_lhs;
3259 gimple cast_stmt;
3260 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3261
a7a7d10e 3262 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
88ca9ea1
BS
3263 cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, cast_lhs,
3264 from_expr, NULL_TREE);
3265 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3266 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3267
3268 if (dump_file && (dump_flags & TDF_DETAILS))
3269 {
3270 fputs (" Inserting: ", dump_file);
3271 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3272 }
3273
3274 return cast_lhs;
3275}
3276
3277/* Replace the RHS of the statement represented by candidate C with
3278 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3279 leave C unchanged or just interchange its operands. The original
3280 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3281 If the replacement was made and we are doing a details dump,
3282 return the revised statement, else NULL. */
3283
3284static gimple
3285replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3286 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3287 slsr_cand_t c)
3288{
3289 if (new_code != old_code
3290 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3291 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3292 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3293 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3294 {
3295 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3296 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3297 update_stmt (gsi_stmt (gsi));
bb0d2039 3298 c->cand_stmt = gsi_stmt (gsi);
88ca9ea1
BS
3299
3300 if (dump_file && (dump_flags & TDF_DETAILS))
3301 return gsi_stmt (gsi);
3302 }
3303
3304 else if (dump_file && (dump_flags & TDF_DETAILS))
3305 fputs (" (duplicate, not actually replacing)\n", dump_file);
3306
3307 return NULL;
3308}
3309
3310/* Strength-reduce the statement represented by candidate C by replacing
3311 it with an equivalent addition or subtraction. I is the index into
3312 the increment vector identifying C's increment. NEW_VAR is used to
3313 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3314 is the rhs1 to use in creating the add/subtract. */
3315
3316static void
a7a7d10e 3317replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1
BS
3318{
3319 gimple stmt_to_print = NULL;
3320 tree orig_rhs1, orig_rhs2;
3321 tree rhs2;
3322 enum tree_code orig_code, repl_code;
3323 double_int cand_incr;
3324
3325 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3326 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3327 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3328 cand_incr = cand_increment (c);
3329
3330 if (dump_file && (dump_flags & TDF_DETAILS))
3331 {
3332 fputs ("Replacing: ", dump_file);
3333 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3334 stmt_to_print = c->cand_stmt;
3335 }
3336
3337 if (address_arithmetic_p)
3338 repl_code = POINTER_PLUS_EXPR;
3339 else
3340 repl_code = PLUS_EXPR;
3341
3342 /* If the increment has an initializer T_0, replace the candidate
3343 statement with an add of the basis name and the initializer. */
3344 if (incr_vec[i].initializer)
3345 {
3346 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3347 tree orig_type = TREE_TYPE (orig_rhs2);
3348
3349 if (types_compatible_p (orig_type, init_type))
3350 rhs2 = incr_vec[i].initializer;
3351 else
3352 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3353 incr_vec[i].initializer);
88ca9ea1 3354
27bcd47c 3355 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3356 {
3357 gcc_assert (repl_code == PLUS_EXPR);
3358 repl_code = MINUS_EXPR;
3359 }
3360
3361 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3362 orig_code, orig_rhs1, orig_rhs2,
3363 c);
3364 }
3365
3366 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3367 with a subtract of the stride from the basis name, a copy
3368 from the basis name, or an add of the stride to the basis
3369 name, respectively. It may be necessary to introduce a
3370 cast (or reuse an existing cast). */
27bcd47c 3371 else if (cand_incr.is_one ())
88ca9ea1
BS
3372 {
3373 tree stride_type = TREE_TYPE (c->stride);
3374 tree orig_type = TREE_TYPE (orig_rhs2);
3375
3376 if (types_compatible_p (orig_type, stride_type))
3377 rhs2 = c->stride;
3378 else
a7a7d10e 3379 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3380
3381 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3382 orig_code, orig_rhs1, orig_rhs2,
3383 c);
3384 }
3385
27bcd47c 3386 else if (cand_incr.is_minus_one ())
88ca9ea1
BS
3387 {
3388 tree stride_type = TREE_TYPE (c->stride);
3389 tree orig_type = TREE_TYPE (orig_rhs2);
3390 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3391
3392 if (types_compatible_p (orig_type, stride_type))
3393 rhs2 = c->stride;
3394 else
a7a7d10e 3395 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3396
3397 if (orig_code != MINUS_EXPR
3398 || !operand_equal_p (basis_name, orig_rhs1, 0)
3399 || !operand_equal_p (rhs2, orig_rhs2, 0))
3400 {
3401 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3402 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3403 update_stmt (gsi_stmt (gsi));
bb0d2039 3404 c->cand_stmt = gsi_stmt (gsi);
88ca9ea1
BS
3405
3406 if (dump_file && (dump_flags & TDF_DETAILS))
3407 stmt_to_print = gsi_stmt (gsi);
3408 }
3409 else if (dump_file && (dump_flags & TDF_DETAILS))
3410 fputs (" (duplicate, not actually replacing)\n", dump_file);
3411 }
3412
27bcd47c 3413 else if (cand_incr.is_zero ())
88ca9ea1
BS
3414 {
3415 tree lhs = gimple_assign_lhs (c->cand_stmt);
3416 tree lhs_type = TREE_TYPE (lhs);
3417 tree basis_type = TREE_TYPE (basis_name);
3418
3419 if (types_compatible_p (lhs_type, basis_type))
3420 {
3421 gimple copy_stmt = gimple_build_assign (lhs, basis_name);
3422 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3423 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3424 gsi_replace (&gsi, copy_stmt, false);
0100cd3f 3425 c->cand_stmt = copy_stmt;
88ca9ea1
BS
3426
3427 if (dump_file && (dump_flags & TDF_DETAILS))
3428 stmt_to_print = copy_stmt;
3429 }
3430 else
3431 {
3432 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3433 gimple cast_stmt = gimple_build_assign_with_ops (NOP_EXPR, lhs,
3434 basis_name,
3435 NULL_TREE);
3436 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3437 gsi_replace (&gsi, cast_stmt, false);
0100cd3f 3438 c->cand_stmt = cast_stmt;
88ca9ea1
BS
3439
3440 if (dump_file && (dump_flags & TDF_DETAILS))
3441 stmt_to_print = cast_stmt;
3442 }
3443 }
3444 else
3445 gcc_unreachable ();
3446
3447 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3448 {
3449 fputs ("With: ", dump_file);
3450 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3451 fputs ("\n", dump_file);
3452 }
3453}
3454
3455/* For each candidate in the tree rooted at C, replace it with
3456 an increment if such has been shown to be profitable. */
3457
3458static void
3459replace_profitable_candidates (slsr_cand_t c)
3460{
3461 if (!cand_already_replaced (c))
3462 {
3463 double_int increment = cand_abs_increment (c);
88ca9ea1 3464 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3465 int i;
88ca9ea1
BS
3466
3467 i = incr_vec_index (increment);
3468
3469 /* Only process profitable increments. Nothing useful can be done
3470 to a cast or copy. */
7bf55a70
BS
3471 if (i >= 0
3472 && profitable_increment_p (i)
88ca9ea1
BS
3473 && orig_code != MODIFY_EXPR
3474 && orig_code != NOP_EXPR)
3475 {
9b92d12b
BS
3476 if (phi_dependent_cand_p (c))
3477 {
3478 gimple phi = lookup_cand (c->def_phi)->cand_stmt;
3479
3480 if (all_phi_incrs_profitable (c, phi))
3481 {
3482 /* Look up the LHS SSA name from C's basis. This will be
3483 the RHS1 of the adds we will introduce to create new
3484 phi arguments. */
3485 slsr_cand_t basis = lookup_cand (c->basis);
3486 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3487
3488 /* Create a new phi statement that will represent C's true
3489 basis after the transformation is complete. */
3490 location_t loc = gimple_location (c->cand_stmt);
3491 tree name = create_phi_basis (c, phi, basis_name,
3492 loc, UNKNOWN_STRIDE);
3493
3494 /* Replace C with an add of the new basis phi and the
3495 increment. */
a7a7d10e 3496 replace_one_candidate (c, i, name);
9b92d12b
BS
3497 }
3498 }
3499 else
3500 {
3501 slsr_cand_t basis = lookup_cand (c->basis);
3502 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3503 replace_one_candidate (c, i, basis_name);
9b92d12b 3504 }
88ca9ea1
BS
3505 }
3506 }
3507
3508 if (c->sibling)
3509 replace_profitable_candidates (lookup_cand (c->sibling));
3510
3511 if (c->dependent)
3512 replace_profitable_candidates (lookup_cand (c->dependent));
3513}
3514\f
f9453c07
BS
3515/* Analyze costs of related candidates in the candidate vector,
3516 and make beneficial replacements. */
3517
3518static void
3519analyze_candidates_and_replace (void)
3520{
3521 unsigned i;
3522 slsr_cand_t c;
3523
3524 /* Each candidate that has a null basis and a non-null
3525 dependent is the root of a tree of related statements.
3526 Analyze each tree to determine a subset of those
3527 statements that can be replaced with maximum benefit. */
9771b263 3528 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
3529 {
3530 slsr_cand_t first_dep;
3531
3532 if (c->basis != 0 || c->dependent == 0)
3533 continue;
3534
3535 if (dump_file && (dump_flags & TDF_DETAILS))
3536 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3537 c->cand_num);
3538
3539 first_dep = lookup_cand (c->dependent);
3540
2749c8f6
BS
3541 /* If this is a chain of CAND_REFs, unconditionally replace
3542 each of them with a strength-reduced data reference. */
3543 if (c->kind == CAND_REF)
3544 replace_refs (c);
3545
9b92d12b
BS
3546 /* If the common stride of all related candidates is a known
3547 constant, each candidate without a phi-dependence can be
3548 profitably replaced. Each replaces a multiply by a single
3549 add, with the possibility that a feeding add also goes dead.
3550 A candidate with a phi-dependence is replaced only if the
3551 compensation code it requires is offset by the strength
3552 reduction savings. */
3553 else if (TREE_CODE (c->stride) == INTEGER_CST)
3554 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3555
88ca9ea1
BS
3556 /* When the stride is an SSA name, it may still be profitable
3557 to replace some or all of the dependent candidates, depending
3558 on whether the introduced increments can be reused, or are
3559 less expensive to calculate than the replaced statements. */
3560 else
3561 {
88ca9ea1
BS
3562 enum machine_mode mode;
3563 bool speed;
3564
3565 /* Determine whether we'll be generating pointer arithmetic
3566 when replacing candidates. */
3567 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3568 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3569
3570 /* If all candidates have already been replaced under other
3571 interpretations, nothing remains to be done. */
4b847da9 3572 if (!count_candidates (c))
88ca9ea1
BS
3573 continue;
3574
3575 /* Construct an array of increments for this candidate chain. */
4b847da9 3576 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3577 incr_vec_len = 0;
3578 record_increments (c);
3579
3580 /* Determine which increments are profitable to replace. */
3581 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3582 speed = optimize_cands_for_speed_p (c);
3583 analyze_increments (first_dep, mode, speed);
3584
3585 /* Insert initializers of the form T_0 = stride * increment
3586 for use in profitable replacements. */
3587 insert_initializers (first_dep);
3588 dump_incr_vec ();
3589
3590 /* Perform the replacements. */
3591 replace_profitable_candidates (first_dep);
3592 free (incr_vec);
3593 }
f9453c07
BS
3594 }
3595}
3596
3597static unsigned
3598execute_strength_reduction (void)
3599{
f9453c07
BS
3600 /* Create the obstack where candidates will reside. */
3601 gcc_obstack_init (&cand_obstack);
3602
3603 /* Allocate the candidate vector. */
9771b263 3604 cand_vec.create (128);
f9453c07
BS
3605
3606 /* Allocate the mapping from statements to candidate indices. */
3607 stmt_cand_map = pointer_map_create ();
3608
3609 /* Create the obstack where candidate chains will reside. */
3610 gcc_obstack_init (&chain_obstack);
3611
3cfd4469 3612 /* Allocate the mapping from base expressions to candidate chains. */
4a8fb1a1 3613 base_cand_map.create (500);
f9453c07 3614
96d75a2c
YZ
3615 /* Allocate the mapping from bases to alternative bases. */
3616 alt_base_map = pointer_map_create ();
3617
f9453c07
BS
3618 /* Initialize the loop optimizer. We need to detect flow across
3619 back edges, and this gives us dominator information as well. */
3620 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3621
f9453c07
BS
3622 /* Walk the CFG in predominator order looking for strength reduction
3623 candidates. */
4d9192b5
TS
3624 find_candidates_dom_walker (CDI_DOMINATORS)
3625 .walk (cfun->cfg->x_entry_block_ptr);
f9453c07
BS
3626
3627 if (dump_file && (dump_flags & TDF_DETAILS))
3628 {
3629 dump_cand_vec ();
3630 dump_cand_chains ();
3631 }
3632
96d75a2c
YZ
3633 pointer_map_destroy (alt_base_map);
3634 free_affine_expand_cache (&name_expansions);
3635
f9453c07
BS
3636 /* Analyze costs and make appropriate replacements. */
3637 analyze_candidates_and_replace ();
3638
f9453c07 3639 loop_optimizer_finalize ();
4a8fb1a1 3640 base_cand_map.dispose ();
f9453c07
BS
3641 obstack_free (&chain_obstack, NULL);
3642 pointer_map_destroy (stmt_cand_map);
9771b263 3643 cand_vec.release ();
f9453c07 3644 obstack_free (&cand_obstack, NULL);
f9453c07
BS
3645
3646 return 0;
3647}
3648
27a4cd48
DM
3649namespace {
3650
3651const pass_data pass_data_strength_reduction =
3652{
3653 GIMPLE_PASS, /* type */
3654 "slsr", /* name */
3655 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3656 true, /* has_execute */
3657 TV_GIMPLE_SLSR, /* tv_id */
3658 ( PROP_cfg | PROP_ssa ), /* properties_required */
3659 0, /* properties_provided */
3660 0, /* properties_destroyed */
3661 0, /* todo_flags_start */
3662 TODO_verify_ssa, /* todo_flags_finish */
f9453c07 3663};
27a4cd48
DM
3664
3665class pass_strength_reduction : public gimple_opt_pass
3666{
3667public:
c3284718
RS
3668 pass_strength_reduction (gcc::context *ctxt)
3669 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
27a4cd48
DM
3670 {}
3671
3672 /* opt_pass methods: */
1a3d085c 3673 virtual bool gate (function *) { return flag_tree_slsr; }
27a4cd48
DM
3674 unsigned int execute () { return execute_strength_reduction (); }
3675
3676}; // class pass_strength_reduction
3677
3678} // anon namespace
3679
3680gimple_opt_pass *
3681make_pass_strength_reduction (gcc::context *ctxt)
3682{
3683 return new pass_strength_reduction (ctxt);
3684}