]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
re PR tree-optimization/91114 (ICE in vect_analyze_loop, at tree-vect-loop.c:2415)
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
a5544970 2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
ccdbfe93 55#include "params.h"
4484a35a 56#include "tree-ssa-address.h"
96d75a2c 57#include "tree-affine.h"
bef52a68 58#include "tree-eh.h"
9b2b7279 59#include "builtins.h"
f9453c07
BS
60\f
61/* Information about a strength reduction candidate. Each statement
62 in the candidate table represents an expression of one of the
63 following forms (the special case of CAND_REF will be described
64 later):
65
66 (CAND_MULT) S1: X = (B + i) * S
67 (CAND_ADD) S1: X = B + (i * S)
68
69 Here X and B are SSA names, i is an integer constant, and S is
70 either an SSA name or a constant. We call B the "base," i the
71 "index", and S the "stride."
72
73 Any statement S0 that dominates S1 and is of the form:
74
75 (CAND_MULT) S0: Y = (B + i') * S
76 (CAND_ADD) S0: Y = B + (i' * S)
77
78 is called a "basis" for S1. In both cases, S1 may be replaced by
79
80 S1': X = Y + (i - i') * S,
81
82 where (i - i') * S is folded to the extent possible.
83
84 All gimple statements are visited in dominator order, and each
85 statement that may contribute to one of the forms of S1 above is
86 given at least one entry in the candidate table. Such statements
87 include addition, pointer addition, subtraction, multiplication,
88 negation, copies, and nontrivial type casts. If a statement may
89 represent more than one expression of the forms of S1 above,
90 multiple "interpretations" are stored in the table and chained
91 together. Examples:
92
93 * An add of two SSA names may treat either operand as the base.
94 * A multiply of two SSA names, likewise.
95 * A copy or cast may be thought of as either a CAND_MULT with
96 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97
98 Candidate records are allocated from an obstack. They are addressed
99 both from a hash table keyed on S1, and from a vector of candidate
100 pointers arranged in predominator order.
101
102 Opportunity note
103 ----------------
104 Currently we don't recognize:
105
106 S0: Y = (S * i') - B
107 S1: X = (S * i) - B
108
109 as a strength reduction opportunity, even though this S1 would
110 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
111 comes up in practice.
112
113 Strength reduction in addressing
114 --------------------------------
115 There is another kind of candidate known as CAND_REF. A CAND_REF
116 describes a statement containing a memory reference having
117 complex addressing that might benefit from strength reduction.
118 Specifically, we are interested in references for which
119 get_inner_reference returns a base address, offset, and bitpos as
120 follows:
121
122 base: MEM_REF (T1, C1)
123 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
124 bitpos: C4 * BITS_PER_UNIT
125
126 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
127 arbitrary integer constants. Note that C2 may be zero, in which
128 case the offset will be MULT_EXPR (T2, C3).
129
130 When this pattern is recognized, the original memory reference
131 can be replaced with:
132
133 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
134 C1 + (C2 * C3) + C4)
135
136 which distributes the multiply to allow constant folding. When
137 two or more addressing expressions can be represented by MEM_REFs
138 of this form, differing only in the constants C1, C2, and C4,
139 making this substitution produces more efficient addressing during
140 the RTL phases. When there are not at least two expressions with
141 the same values of T1, T2, and C3, there is nothing to be gained
142 by the replacement.
143
144 Strength reduction of CAND_REFs uses the same infrastructure as
145 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
146 field, MULT_EXPR (T2, C3) in the stride (S) field, and
147 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
148 is thus another CAND_REF with the same B and S values. When at
149 least two CAND_REFs are chained together using the basis relation,
150 each of them is replaced as above, resulting in improved code
9b92d12b
BS
151 generation for addressing.
152
153 Conditional candidates
154 ======================
155
156 Conditional candidates are best illustrated with an example.
157 Consider the code sequence:
158
159 (1) x_0 = ...;
160 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
161 if (...)
162 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
163 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
164 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
165 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166
167 Here strength reduction is complicated by the uncertain value of x_2.
168 A legitimate transformation is:
169
170 (1) x_0 = ...;
171 (2) a_0 = x_0 * 5;
172 if (...)
173 {
174 (3) [x_1 = x_0 + 1;]
175 (3a) t_1 = a_0 + 5;
176 }
177 (4) [x_2 = PHI <x_0, x_1>;]
178 (4a) t_2 = PHI <a_0, t_1>;
179 (5) [x_3 = x_2 + 1;]
180 (6r) a_1 = t_2 + 5;
181
182 where the bracketed instructions may go dead.
183
184 To recognize this opportunity, we have to observe that statement (6)
185 has a "hidden basis" (2). The hidden basis is unlike a normal basis
186 in that the statement and the hidden basis have different base SSA
187 names (x_2 and x_0, respectively). The relationship is established
188 when a statement's base name (x_2) is defined by a phi statement (4),
189 each argument of which (x_0, x_1) has an identical "derived base name."
190 If the argument is defined by a candidate (as x_1 is by (3)) that is a
191 CAND_ADD having a stride of 1, the derived base name of the argument is
192 the base name of the candidate (x_0). Otherwise, the argument itself
193 is its derived base name (as is the case with argument x_0).
194
195 The hidden basis for statement (6) is the nearest dominating candidate
196 whose base name is the derived base name (x_0) of the feeding phi (4),
197 and whose stride is identical to that of the statement. We can then
198 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
199 allowing the final replacement of (6) by the strength-reduced (6r).
200
201 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
202 A CAND_PHI is not a candidate for replacement, but is maintained in the
203 candidate table to ease discovery of hidden bases. Any phi statement
204 whose arguments share a common derived base name is entered into the
205 table with the derived base name, an (arbitrary) index of zero, and a
206 stride of 1. A statement with a hidden basis can then be detected by
207 simply looking up its feeding phi definition in the candidate table,
208 extracting the derived base name, and searching for a basis in the
209 usual manner after substituting the derived base name.
210
211 Note that the transformation is only valid when the original phi and
212 the statements that define the phi's arguments are all at the same
213 position in the loop hierarchy. */
f9453c07
BS
214
215
216/* Index into the candidate vector, offset by 1. VECs are zero-based,
217 while cand_idx's are one-based, with zero indicating null. */
218typedef unsigned cand_idx;
219
220/* The kind of candidate. */
221enum cand_kind
222{
223 CAND_MULT,
2749c8f6 224 CAND_ADD,
9b92d12b
BS
225 CAND_REF,
226 CAND_PHI
f9453c07
BS
227};
228
229struct slsr_cand_d
230{
231 /* The candidate statement S1. */
355fe088 232 gimple *cand_stmt;
f9453c07 233
3cfd4469
BS
234 /* The base expression B: often an SSA name, but not always. */
235 tree base_expr;
f9453c07
BS
236
237 /* The stride S. */
238 tree stride;
239
240 /* The index constant i. */
807e902e 241 widest_int index;
f9453c07 242
3cfd4469 243 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 244 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
245 A candidate can only be a basis for candidates of the same final type.
246 (For CAND_REFs, this is the type to be used for operand 1 of the
247 replacement MEM_REF.) */
f9453c07
BS
248 tree cand_type;
249
0b56e9ad
BS
250 /* The type to be used to interpret the stride field when the stride
251 is not a constant. Normally the same as the type of the recorded
252 stride, but when the stride has been cast we need to maintain that
253 knowledge in order to make legal substitutions without losing
254 precision. When the stride is a constant, this will be sizetype. */
255 tree stride_type;
256
f9453c07
BS
257 /* The kind of candidate (CAND_MULT, etc.). */
258 enum cand_kind kind;
259
260 /* Index of this candidate in the candidate vector. */
261 cand_idx cand_num;
262
263 /* Index of the next candidate record for the same statement.
264 A statement may be useful in more than one way (e.g., due to
265 commutativity). So we can have multiple "interpretations"
266 of a statement. */
267 cand_idx next_interp;
268
d71dc990
BS
269 /* Index of the first candidate record in a chain for the same
270 statement. */
271 cand_idx first_interp;
272
f9453c07
BS
273 /* Index of the basis statement S0, if any, in the candidate vector. */
274 cand_idx basis;
275
276 /* First candidate for which this candidate is a basis, if one exists. */
277 cand_idx dependent;
278
279 /* Next candidate having the same basis as this one. */
280 cand_idx sibling;
281
9b92d12b
BS
282 /* If this is a conditional candidate, the CAND_PHI candidate
283 that defines the base SSA name B. */
284 cand_idx def_phi;
f9453c07
BS
285
286 /* Savings that can be expected from eliminating dead code if this
287 candidate is replaced. */
288 int dead_savings;
65d3dce8
BS
289
290 /* For PHI candidates, use a visited flag to keep from processing the
291 same PHI twice from multiple paths. */
292 int visited;
293
294 /* We sometimes have to cache a phi basis with a phi candidate to
295 avoid processing it twice. Valid only if visited==1. */
296 tree cached_basis;
f9453c07
BS
297};
298
299typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
300typedef const struct slsr_cand_d *const_slsr_cand_t;
301
302/* Pointers to candidates are chained together as part of a mapping
3cfd4469 303 from base expressions to the candidates that use them. */
f9453c07
BS
304
305struct cand_chain_d
306{
3cfd4469
BS
307 /* Base expression for the chain of candidates: often, but not
308 always, an SSA name. */
309 tree base_expr;
f9453c07
BS
310
311 /* Pointer to a candidate. */
312 slsr_cand_t cand;
313
314 /* Chain pointer. */
315 struct cand_chain_d *next;
316
317};
318
319typedef struct cand_chain_d cand_chain, *cand_chain_t;
320typedef const struct cand_chain_d *const_cand_chain_t;
321
88ca9ea1
BS
322/* Information about a unique "increment" associated with candidates
323 having an SSA name for a stride. An increment is the difference
324 between the index of the candidate and the index of its basis,
325 i.e., (i - i') as discussed in the module commentary.
326
327 When we are not going to generate address arithmetic we treat
328 increments that differ only in sign as the same, allowing sharing
329 of the cost of initializers. The absolute value of the increment
330 is stored in the incr_info. */
331
332struct incr_info_d
333{
334 /* The increment that relates a candidate to its basis. */
807e902e 335 widest_int incr;
88ca9ea1
BS
336
337 /* How many times the increment occurs in the candidate tree. */
338 unsigned count;
339
340 /* Cost of replacing candidates using this increment. Negative and
341 zero costs indicate replacement should be performed. */
342 int cost;
343
344 /* If this increment is profitable but is not -1, 0, or 1, it requires
345 an initializer T_0 = stride * incr to be found or introduced in the
346 nearest common dominator of all candidates. This field holds T_0
347 for subsequent use. */
348 tree initializer;
349
350 /* If the initializer was found to already exist, this is the block
351 where it was found. */
352 basic_block init_bb;
353};
354
355typedef struct incr_info_d incr_info, *incr_info_t;
356
f9453c07
BS
357/* Candidates are maintained in a vector. If candidate X dominates
358 candidate Y, then X appears before Y in the vector; but the
359 converse does not necessarily hold. */
9771b263 360static vec<slsr_cand_t> cand_vec;
f9453c07
BS
361
362enum cost_consts
363{
364 COST_NEUTRAL = 0,
365 COST_INFINITE = 1000
366};
367
9b92d12b
BS
368enum stride_status
369{
370 UNKNOWN_STRIDE = 0,
371 KNOWN_STRIDE = 1
372};
373
374enum phi_adjust_status
375{
376 NOT_PHI_ADJUST = 0,
377 PHI_ADJUST = 1
378};
379
380enum count_phis_status
381{
382 DONT_COUNT_PHIS = 0,
383 COUNT_PHIS = 1
384};
65d3dce8
BS
385
386/* Constrain how many PHI nodes we will visit for a conditional
387 candidate (depth and breadth). */
388const int MAX_SPREAD = 16;
389
f9453c07 390/* Pointer map embodying a mapping from statements to candidates. */
355fe088 391static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
392
393/* Obstack for candidates. */
394static struct obstack cand_obstack;
395
f9453c07
BS
396/* Obstack for candidate chains. */
397static struct obstack chain_obstack;
88ca9ea1
BS
398
399/* An array INCR_VEC of incr_infos is used during analysis of related
400 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
401 its current length. MAX_INCR_VEC_LEN is used to avoid costly
402 pathological cases. */
88ca9ea1
BS
403static incr_info_t incr_vec;
404static unsigned incr_vec_len;
7bf55a70 405const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
406
407/* For a chain of candidates with unknown stride, indicates whether or not
408 we must generate pointer arithmetic when replacing statements. */
409static bool address_arithmetic_p;
9b92d12b
BS
410
411/* Forward function declarations. */
412static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 413static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 414static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
415\f
416/* Produce a pointer to the IDX'th candidate in the candidate vector. */
417
418static slsr_cand_t
419lookup_cand (cand_idx idx)
420{
98aaa1a6 421 return cand_vec[idx];
f9453c07
BS
422}
423
4a8fb1a1 424/* Helper for hashing a candidate chain header. */
2749c8f6 425
8d67ee55 426struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 427{
67f58944
TS
428 static inline hashval_t hash (const cand_chain *);
429 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 430};
2749c8f6 431
4a8fb1a1 432inline hashval_t
67f58944 433cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 434{
4a8fb1a1
LC
435 tree base_expr = p->base_expr;
436 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
437}
438
4a8fb1a1 439inline bool
67f58944 440cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 441{
3cfd4469 442 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 443}
4a8fb1a1
LC
444
445/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 446static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 447\f
96d75a2c 448/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 449static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 450/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 451static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
452
453/* Given BASE, use the tree affine combiniation facilities to
454 find the underlying tree expression for BASE, with any
8fde427f
YZ
455 immediate offset excluded.
456
457 N.B. we should eliminate this backtracking with better forward
458 analysis in a future release. */
96d75a2c
YZ
459
460static tree
461get_alternative_base (tree base)
462{
b787e7a2 463 tree *result = alt_base_map->get (base);
96d75a2c
YZ
464
465 if (result == NULL)
466 {
467 tree expr;
468 aff_tree aff;
469
470 tree_to_aff_combination_expand (base, TREE_TYPE (base),
471 &aff, &name_expansions);
807e902e 472 aff.offset = 0;
96d75a2c
YZ
473 expr = aff_combination_to_tree (&aff);
474
b787e7a2 475 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 476
b787e7a2 477 return expr == base ? NULL : expr;
96d75a2c
YZ
478 }
479
480 return *result;
481}
482
9b92d12b 483/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 484 return it if found; otherwise return NULL. */
f9453c07 485
9b92d12b 486static cand_idx
8b28cf47 487find_phi_def (tree base)
9b92d12b
BS
488{
489 slsr_cand_t c;
490
491 if (TREE_CODE (base) != SSA_NAME)
492 return 0;
29105868 493
9b92d12b
BS
494 c = base_cand_from_table (base);
495
e75210d6
BS
496 if (!c || c->kind != CAND_PHI
497 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
9b92d12b
BS
498 return 0;
499
500 return c->cand_num;
501}
502
df11b2ea
BS
503/* Determine whether all uses of NAME are directly or indirectly
504 used by STMT. That is, we want to know whether if STMT goes
505 dead, the definition of NAME also goes dead. */
506static bool
507uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
508{
509 gimple *use_stmt;
510 imm_use_iterator iter;
511 bool retval = true;
512
513 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
514 {
515 if (use_stmt == stmt || is_gimple_debug (use_stmt))
516 continue;
517
518 if (!is_gimple_assign (use_stmt)
519 || !gimple_get_lhs (use_stmt)
520 || !is_gimple_reg (gimple_get_lhs (use_stmt))
521 || recurse >= 10
522 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
523 recurse + 1))
524 {
525 retval = false;
526 BREAK_FROM_IMM_USE_STMT (iter);
527 }
528 }
529
530 return retval;
531}
532
9b92d12b 533/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
534 once for the candidate's base expr, and optionally again either for
535 the candidate's phi definition or for a CAND_REF's alternative base
536 expression. */
9b92d12b
BS
537
538static slsr_cand_t
539find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 540{
2749c8f6 541 cand_chain mapping_key;
f9453c07
BS
542 cand_chain_t chain;
543 slsr_cand_t basis = NULL;
544
ccdbfe93
BS
545 // Limit potential of N^2 behavior for long candidate chains.
546 int iters = 0;
547 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
548
9b92d12b 549 mapping_key.base_expr = base_expr;
c203e8a7 550 chain = base_cand_map->find (&mapping_key);
f9453c07 551
ccdbfe93 552 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
553 {
554 slsr_cand_t one_basis = chain->cand;
555
556 if (one_basis->kind != c->kind
69e1a1a3 557 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
558 || !operand_equal_p (one_basis->stride, c->stride, 0)
559 || !types_compatible_p (one_basis->cand_type, c->cand_type)
0b56e9ad 560 || !types_compatible_p (one_basis->stride_type, c->stride_type)
f9453c07
BS
561 || !dominated_by_p (CDI_DOMINATORS,
562 gimple_bb (c->cand_stmt),
563 gimple_bb (one_basis->cand_stmt)))
564 continue;
565
e75210d6
BS
566 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
567 if (lhs && TREE_CODE (lhs) == SSA_NAME
568 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
569 continue;
570
f9453c07
BS
571 if (!basis || basis->cand_num < one_basis->cand_num)
572 basis = one_basis;
573 }
574
9b92d12b
BS
575 return basis;
576}
577
578/* Use the base expr from candidate C to look for possible candidates
579 that can serve as a basis for C. Each potential basis must also
580 appear in a block that dominates the candidate statement and have
581 the same stride and type. If more than one possible basis exists,
582 the one with highest index in the vector is chosen; this will be
583 the most immediately dominating basis. */
584
585static int
586find_basis_for_candidate (slsr_cand_t c)
587{
588 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
589
590 /* If a candidate doesn't have a basis using its base expression,
591 it may have a basis hidden by one or more intervening phis. */
592 if (!basis && c->def_phi)
593 {
594 basic_block basis_bb, phi_bb;
595 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
596 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
597
598 if (basis)
599 {
600 /* A hidden basis must dominate the phi-definition of the
601 candidate's base name. */
602 phi_bb = gimple_bb (phi_cand->cand_stmt);
603 basis_bb = gimple_bb (basis->cand_stmt);
604
605 if (phi_bb == basis_bb
606 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
607 {
608 basis = NULL;
609 c->basis = 0;
610 }
611
612 /* If we found a hidden basis, estimate additional dead-code
613 savings if the phi and its feeding statements can be removed. */
df11b2ea
BS
614 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
615 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
9b92d12b
BS
616 c->dead_savings += phi_cand->dead_savings;
617 }
618 }
619
8fde427f 620 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
621 {
622 tree alt_base_expr = get_alternative_base (c->base_expr);
623 if (alt_base_expr)
624 basis = find_basis_for_base_expr (c, alt_base_expr);
625 }
626
f9453c07
BS
627 if (basis)
628 {
629 c->sibling = basis->dependent;
630 basis->dependent = c->cand_num;
631 return basis->cand_num;
632 }
633
634 return 0;
635}
636
96d75a2c
YZ
637/* Record a mapping from BASE to C, indicating that C may potentially serve
638 as a basis using that base expression. BASE may be the same as
639 C->BASE_EXPR; alternatively BASE can be a different tree that share the
640 underlining expression of C->BASE_EXPR. */
f9453c07
BS
641
642static void
96d75a2c 643record_potential_basis (slsr_cand_t c, tree base)
f9453c07 644{
2749c8f6 645 cand_chain_t node;
4a8fb1a1 646 cand_chain **slot;
f9453c07 647
96d75a2c
YZ
648 gcc_assert (base);
649
f9453c07 650 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 651 node->base_expr = base;
f9453c07
BS
652 node->cand = c;
653 node->next = NULL;
c203e8a7 654 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 655
2749c8f6 656 if (*slot)
f9453c07 657 {
2749c8f6 658 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
659 node->next = head->next;
660 head->next = node;
661 }
662 else
2749c8f6 663 *slot = node;
f9453c07
BS
664}
665
666/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
667 Attempt to find a basis for the candidate.
668
669 For CAND_REF, an alternative base may also be recorded and used
670 to find a basis. This helps cases where the expression hidden
671 behind BASE (which is usually an SSA_NAME) has immediate offset,
672 e.g.
673
674 a2[i][j] = 1;
675 a2[i + 20][j] = 2; */
f9453c07
BS
676
677static slsr_cand_t
355fe088 678alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 679 const widest_int &index, tree stride, tree ctype,
0b56e9ad 680 tree stype, unsigned savings)
f9453c07
BS
681{
682 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
683 sizeof (slsr_cand));
684 c->cand_stmt = gs;
3cfd4469 685 c->base_expr = base;
f9453c07
BS
686 c->stride = stride;
687 c->index = index;
688 c->cand_type = ctype;
0b56e9ad 689 c->stride_type = stype;
f9453c07 690 c->kind = kind;
98aaa1a6 691 c->cand_num = cand_vec.length ();
f9453c07 692 c->next_interp = 0;
d71dc990 693 c->first_interp = c->cand_num;
f9453c07
BS
694 c->dependent = 0;
695 c->sibling = 0;
8b28cf47 696 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07 697 c->dead_savings = savings;
65d3dce8
BS
698 c->visited = 0;
699 c->cached_basis = NULL_TREE;
f9453c07 700
9771b263 701 cand_vec.safe_push (c);
9b92d12b
BS
702
703 if (kind == CAND_PHI)
704 c->basis = 0;
705 else
706 c->basis = find_basis_for_candidate (c);
707
96d75a2c 708 record_potential_basis (c, base);
8fde427f 709 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
710 {
711 tree alt_base = get_alternative_base (base);
712 if (alt_base)
713 record_potential_basis (c, alt_base);
714 }
f9453c07
BS
715
716 return c;
717}
718
719/* Determine the target cost of statement GS when compiling according
720 to SPEED. */
721
722static int
355fe088 723stmt_cost (gimple *gs, bool speed)
f9453c07
BS
724{
725 tree lhs, rhs1, rhs2;
ef4bddc2 726 machine_mode lhs_mode;
f9453c07
BS
727
728 gcc_assert (is_gimple_assign (gs));
729 lhs = gimple_assign_lhs (gs);
730 rhs1 = gimple_assign_rhs1 (gs);
731 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
732
733 switch (gimple_assign_rhs_code (gs))
734 {
735 case MULT_EXPR:
736 rhs2 = gimple_assign_rhs2 (gs);
737
9541ffee 738 if (tree_fits_shwi_p (rhs2))
eb1ce453 739 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
740
741 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 742 return mul_cost (speed, lhs_mode);
f9453c07
BS
743
744 case PLUS_EXPR:
745 case POINTER_PLUS_EXPR:
746 case MINUS_EXPR:
5322d07e 747 return add_cost (speed, lhs_mode);
f9453c07
BS
748
749 case NEGATE_EXPR:
5322d07e 750 return neg_cost (speed, lhs_mode);
f9453c07 751
d822570f 752 CASE_CONVERT:
6dd8f4bb 753 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
754
755 /* Note that we don't assign costs to copies that in most cases
756 will go away. */
fbcdc43e
BS
757 case SSA_NAME:
758 return 0;
759
f9453c07
BS
760 default:
761 ;
762 }
763
764 gcc_unreachable ();
765 return 0;
766}
767
768/* Look up the defining statement for BASE_IN and return a pointer
769 to its candidate in the candidate table, if any; otherwise NULL.
770 Only CAND_ADD and CAND_MULT candidates are returned. */
771
772static slsr_cand_t
773base_cand_from_table (tree base_in)
774{
775 slsr_cand_t *result;
776
355fe088 777 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
778 if (!def)
779 return (slsr_cand_t) NULL;
780
b787e7a2 781 result = stmt_cand_map->get (def);
2749c8f6
BS
782
783 if (result && (*result)->kind != CAND_REF)
784 return *result;
f9453c07 785
2749c8f6 786 return (slsr_cand_t) NULL;
f9453c07
BS
787}
788
789/* Add an entry to the statement-to-candidate mapping. */
790
791static void
355fe088 792add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 793{
b787e7a2 794 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
795}
796\f
9b92d12b
BS
797/* Given PHI which contains a phi statement, determine whether it
798 satisfies all the requirements of a phi candidate. If so, create
799 a candidate. Note that a CAND_PHI never has a basis itself, but
800 is used to help find a basis for subsequent candidates. */
801
802static void
538dd0b7 803slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
804{
805 unsigned i;
806 tree arg0_base = NULL_TREE, base_type;
807 slsr_cand_t c;
808 struct loop *cand_loop = gimple_bb (phi)->loop_father;
809 unsigned savings = 0;
810
811 /* A CAND_PHI requires each of its arguments to have the same
812 derived base name. (See the module header commentary for a
813 definition of derived base names.) Furthermore, all feeding
814 definitions must be in the same position in the loop hierarchy
815 as PHI. */
816
817 for (i = 0; i < gimple_phi_num_args (phi); i++)
818 {
819 slsr_cand_t arg_cand;
820 tree arg = gimple_phi_arg_def (phi, i);
821 tree derived_base_name = NULL_TREE;
355fe088 822 gimple *arg_stmt = NULL;
9b92d12b
BS
823 basic_block arg_bb = NULL;
824
825 if (TREE_CODE (arg) != SSA_NAME)
826 return;
827
828 arg_cand = base_cand_from_table (arg);
829
830 if (arg_cand)
831 {
832 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
833 {
834 if (!arg_cand->next_interp)
835 return;
836
837 arg_cand = lookup_cand (arg_cand->next_interp);
838 }
839
840 if (!integer_onep (arg_cand->stride))
841 return;
842
843 derived_base_name = arg_cand->base_expr;
844 arg_stmt = arg_cand->cand_stmt;
845 arg_bb = gimple_bb (arg_stmt);
846
847 /* Gather potential dead code savings if the phi statement
848 can be removed later on. */
df11b2ea 849 if (uses_consumed_by_stmt (arg, phi))
9b92d12b
BS
850 {
851 if (gimple_code (arg_stmt) == GIMPLE_PHI)
852 savings += arg_cand->dead_savings;
853 else
854 savings += stmt_cost (arg_stmt, speed);
855 }
856 }
6e281ce3 857 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
858 {
859 derived_base_name = arg;
6e281ce3 860 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
861 }
862
863 if (!arg_bb || arg_bb->loop_father != cand_loop)
864 return;
865
866 if (i == 0)
867 arg0_base = derived_base_name;
868 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
869 return;
870 }
871
872 /* Create the candidate. "alloc_cand_and_find_basis" is named
873 misleadingly for this case, as no basis will be sought for a
874 CAND_PHI. */
875 base_type = TREE_TYPE (arg0_base);
876
807e902e 877 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
0b56e9ad
BS
878 0, integer_one_node, base_type,
879 sizetype, savings);
9b92d12b
BS
880
881 /* Add the candidate to the statement-candidate mapping. */
882 add_cand_for_stmt (phi, c);
883}
884
c068654b
BC
885/* Given PBASE which is a pointer to tree, look up the defining
886 statement for it and check whether the candidate is in the
887 form of:
888
889 X = B + (1 * S), S is integer constant
890 X = B + (i * S), S is integer one
891
892 If so, set PBASE to the candidate's base_expr and return double
893 int (i * S).
894 Otherwise, just return double int zero. */
895
807e902e 896static widest_int
c068654b
BC
897backtrace_base_for_ref (tree *pbase)
898{
899 tree base_in = *pbase;
900 slsr_cand_t base_cand;
901
902 STRIP_NOPS (base_in);
0916f876
YZ
903
904 /* Strip off widening conversion(s) to handle cases where
905 e.g. 'B' is widened from an 'int' in order to calculate
906 a 64-bit address. */
907 if (CONVERT_EXPR_P (base_in)
0b56e9ad
BS
908 && legal_cast_p_1 (TREE_TYPE (base_in),
909 TREE_TYPE (TREE_OPERAND (base_in, 0))))
0916f876
YZ
910 base_in = get_unwidened (base_in, NULL_TREE);
911
c068654b 912 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 913 return 0;
c068654b
BC
914
915 base_cand = base_cand_from_table (base_in);
916
917 while (base_cand && base_cand->kind != CAND_PHI)
918 {
919 if (base_cand->kind == CAND_ADD
807e902e 920 && base_cand->index == 1
c068654b
BC
921 && TREE_CODE (base_cand->stride) == INTEGER_CST)
922 {
923 /* X = B + (1 * S), S is integer constant. */
924 *pbase = base_cand->base_expr;
807e902e 925 return wi::to_widest (base_cand->stride);
c068654b
BC
926 }
927 else if (base_cand->kind == CAND_ADD
928 && TREE_CODE (base_cand->stride) == INTEGER_CST
929 && integer_onep (base_cand->stride))
1d2151c6 930 {
c068654b
BC
931 /* X = B + (i * S), S is integer one. */
932 *pbase = base_cand->base_expr;
933 return base_cand->index;
934 }
935
98aaa1a6 936 base_cand = lookup_cand (base_cand->next_interp);
c068654b
BC
937 }
938
807e902e 939 return 0;
c068654b
BC
940}
941
2749c8f6
BS
942/* Look for the following pattern:
943
944 *PBASE: MEM_REF (T1, C1)
945
946 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
947 or
948 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
949 or
950 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
951
952 *PINDEX: C4 * BITS_PER_UNIT
953
954 If not present, leave the input values unchanged and return FALSE.
955 Otherwise, modify the input values as follows and return TRUE:
956
957 *PBASE: T1
958 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
959 *PINDEX: C1 + (C2 * C3) + C4
960
961 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
962 will be further restructured to:
963
964 *PBASE: T1
965 *POFFSET: MULT_EXPR (T2', C3)
966 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
967
968static bool
807e902e 969restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
970 tree *ptype)
971{
972 tree base = *pbase, offset = *poffset;
807e902e
KZ
973 widest_int index = *pindex;
974 tree mult_op0, t1, t2, type;
975 widest_int c1, c2, c3, c4, c5;
aca52e6f 976 offset_int mem_offset;
2749c8f6
BS
977
978 if (!base
979 || !offset
980 || TREE_CODE (base) != MEM_REF
aca52e6f 981 || !mem_ref_offset (base).is_constant (&mem_offset)
2749c8f6
BS
982 || TREE_CODE (offset) != MULT_EXPR
983 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 984 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
985 return false;
986
987 t1 = TREE_OPERAND (base, 0);
aca52e6f 988 c1 = widest_int::from (mem_offset, SIGNED);
2749c8f6
BS
989 type = TREE_TYPE (TREE_OPERAND (base, 1));
990
991 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 992 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
993
994 if (TREE_CODE (mult_op0) == PLUS_EXPR)
995
996 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
997 {
998 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 999 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1000 }
1001 else
1002 return false;
1003
1004 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1005
1006 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1007 {
1008 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1009 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1010 }
1011 else
1012 return false;
1013
1014 else
1015 {
1016 t2 = mult_op0;
807e902e 1017 c2 = 0;
2749c8f6
BS
1018 }
1019
8de73453 1020 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 1021 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
1022
1023 *pbase = t1;
c068654b 1024 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 1025 wide_int_to_tree (sizetype, c3));
c068654b 1026 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
1027 *ptype = type;
1028
1029 return true;
1030}
1031
1032/* Given GS which contains a data reference, create a CAND_REF entry in
1033 the candidate table and attempt to find a basis. */
1034
1035static void
355fe088 1036slsr_process_ref (gimple *gs)
2749c8f6
BS
1037{
1038 tree ref_expr, base, offset, type;
f37fac2b 1039 poly_int64 bitsize, bitpos;
ef4bddc2 1040 machine_mode mode;
ee45a32d 1041 int unsignedp, reversep, volatilep;
2749c8f6
BS
1042 slsr_cand_t c;
1043
1044 if (gimple_vdef (gs))
1045 ref_expr = gimple_assign_lhs (gs);
1046 else
1047 ref_expr = gimple_assign_rhs1 (gs);
1048
1049 if (!handled_component_p (ref_expr)
1050 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1051 || (TREE_CODE (ref_expr) == COMPONENT_REF
1052 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1053 return;
1054
1055 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 1056 &unsignedp, &reversep, &volatilep);
f37fac2b
RS
1057 HOST_WIDE_INT cbitpos;
1058 if (reversep || !bitpos.is_constant (&cbitpos))
ee45a32d 1059 return;
f37fac2b 1060 widest_int index = cbitpos;
2749c8f6
BS
1061
1062 if (!restructure_reference (&base, &offset, &index, &type))
1063 return;
1064
1065 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
0b56e9ad 1066 type, sizetype, 0);
2749c8f6
BS
1067
1068 /* Add the candidate to the statement-candidate mapping. */
1069 add_cand_for_stmt (gs, c);
1070}
1071
f9453c07
BS
1072/* Create a candidate entry for a statement GS, where GS multiplies
1073 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1074 about the two SSA names into the new candidate. Return the new
1075 candidate. */
1076
1077static slsr_cand_t
355fe088 1078create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1079{
1080 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1081 tree stype = NULL_TREE;
807e902e 1082 widest_int index;
f9453c07
BS
1083 unsigned savings = 0;
1084 slsr_cand_t c;
1085 slsr_cand_t base_cand = base_cand_from_table (base_in);
1086
1087 /* Look at all interpretations of the base candidate, if necessary,
1088 to find information to propagate into this candidate. */
9b92d12b 1089 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1090 {
1091
9b92d12b 1092 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1093 {
1094 /* Y = (B + i') * 1
1095 X = Y * Z
1096 ================
1097 X = (B + i') * Z */
3cfd4469 1098 base = base_cand->base_expr;
f9453c07
BS
1099 index = base_cand->index;
1100 stride = stride_in;
1101 ctype = base_cand->cand_type;
0b56e9ad 1102 stype = TREE_TYPE (stride_in);
f9453c07
BS
1103 if (has_single_use (base_in))
1104 savings = (base_cand->dead_savings
1105 + stmt_cost (base_cand->cand_stmt, speed));
1106 }
1107 else if (base_cand->kind == CAND_ADD
1108 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1109 {
1110 /* Y = B + (i' * S), S constant
1111 X = Y * Z
1112 ============================
1113 X = B + ((i' * S) * Z) */
3cfd4469 1114 base = base_cand->base_expr;
807e902e 1115 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1116 stride = stride_in;
1117 ctype = base_cand->cand_type;
0b56e9ad 1118 stype = TREE_TYPE (stride_in);
f9453c07
BS
1119 if (has_single_use (base_in))
1120 savings = (base_cand->dead_savings
1121 + stmt_cost (base_cand->cand_stmt, speed));
1122 }
1123
98aaa1a6 1124 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1125 }
1126
1127 if (!base)
1128 {
1129 /* No interpretations had anything useful to propagate, so
1130 produce X = (Y + 0) * Z. */
1131 base = base_in;
807e902e 1132 index = 0;
f9453c07 1133 stride = stride_in;
b2ec94d4 1134 ctype = TREE_TYPE (base_in);
0b56e9ad 1135 stype = TREE_TYPE (stride_in);
f9453c07
BS
1136 }
1137
1138 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1139 ctype, stype, savings);
f9453c07
BS
1140 return c;
1141}
1142
1143/* Create a candidate entry for a statement GS, where GS multiplies
1144 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1145 information about BASE_IN into the new candidate. Return the new
1146 candidate. */
1147
1148static slsr_cand_t
355fe088 1149create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1150{
1151 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1152 widest_int index, temp;
f9453c07
BS
1153 unsigned savings = 0;
1154 slsr_cand_t c;
1155 slsr_cand_t base_cand = base_cand_from_table (base_in);
1156
1157 /* Look at all interpretations of the base candidate, if necessary,
1158 to find information to propagate into this candidate. */
9b92d12b 1159 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1160 {
1161 if (base_cand->kind == CAND_MULT
1162 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1163 {
1164 /* Y = (B + i') * S, S constant
1165 X = Y * c
1166 ============================
1167 X = (B + i') * (S * c) */
807e902e
KZ
1168 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1169 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1170 {
1171 base = base_cand->base_expr;
1172 index = base_cand->index;
807e902e 1173 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1174 ctype = base_cand->cand_type;
1175 if (has_single_use (base_in))
1176 savings = (base_cand->dead_savings
1177 + stmt_cost (base_cand->cand_stmt, speed));
1178 }
f9453c07 1179 }
9b92d12b 1180 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1181 {
1182 /* Y = B + (i' * 1)
1183 X = Y * c
1184 ===========================
1185 X = (B + i') * c */
3cfd4469 1186 base = base_cand->base_expr;
f9453c07
BS
1187 index = base_cand->index;
1188 stride = stride_in;
1189 ctype = base_cand->cand_type;
1190 if (has_single_use (base_in))
1191 savings = (base_cand->dead_savings
1192 + stmt_cost (base_cand->cand_stmt, speed));
1193 }
1194 else if (base_cand->kind == CAND_ADD
807e902e 1195 && base_cand->index == 1
f9453c07
BS
1196 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1197 {
1198 /* Y = B + (1 * S), S constant
1199 X = Y * c
1200 ===========================
1201 X = (B + S) * c */
3cfd4469 1202 base = base_cand->base_expr;
807e902e 1203 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1204 stride = stride_in;
1205 ctype = base_cand->cand_type;
1206 if (has_single_use (base_in))
1207 savings = (base_cand->dead_savings
1208 + stmt_cost (base_cand->cand_stmt, speed));
1209 }
1210
98aaa1a6 1211 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1212 }
1213
1214 if (!base)
1215 {
1216 /* No interpretations had anything useful to propagate, so
1217 produce X = (Y + 0) * c. */
1218 base = base_in;
807e902e 1219 index = 0;
f9453c07 1220 stride = stride_in;
b2ec94d4 1221 ctype = TREE_TYPE (base_in);
f9453c07
BS
1222 }
1223
1224 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1225 ctype, sizetype, savings);
f9453c07
BS
1226 return c;
1227}
1228
1229/* Given GS which is a multiply of scalar integers, make an appropriate
1230 entry in the candidate table. If this is a multiply of two SSA names,
1231 create two CAND_MULT interpretations and attempt to find a basis for
1232 each of them. Otherwise, create a single CAND_MULT and attempt to
1233 find a basis. */
1234
1235static void
355fe088 1236slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1237{
1238 slsr_cand_t c, c2;
1239
1240 /* If this is a multiply of an SSA name with itself, it is highly
1241 unlikely that we will get a strength reduction opportunity, so
1242 don't record it as a candidate. This simplifies the logic for
1243 finding a basis, so if this is removed that must be considered. */
1244 if (rhs1 == rhs2)
1245 return;
1246
1247 if (TREE_CODE (rhs2) == SSA_NAME)
1248 {
1249 /* Record an interpretation of this statement in the candidate table
3cfd4469 1250 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1251 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1252
1253 /* Add the first interpretation to the statement-candidate mapping. */
1254 add_cand_for_stmt (gs, c);
1255
1256 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1257 is the stride and RHS2 is the base expression. */
f9453c07
BS
1258 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1259 c->next_interp = c2->cand_num;
d71dc990 1260 c2->first_interp = c->cand_num;
f9453c07 1261 }
f942ef18 1262 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
f9453c07
BS
1263 {
1264 /* Record an interpretation for the multiply-immediate. */
1265 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1266
1267 /* Add the interpretation to the statement-candidate mapping. */
1268 add_cand_for_stmt (gs, c);
1269 }
1270}
1271
1272/* Create a candidate entry for a statement GS, where GS adds two
1273 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1274 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1275 information about the two SSA names into the new candidate.
1276 Return the new candidate. */
1277
1278static slsr_cand_t
355fe088 1279create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1280 bool subtract_p, bool speed)
1281{
0b56e9ad
BS
1282 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1283 tree stype = NULL_TREE;
807e902e 1284 widest_int index;
f9453c07
BS
1285 unsigned savings = 0;
1286 slsr_cand_t c;
1287 slsr_cand_t base_cand = base_cand_from_table (base_in);
1288 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1289
1290 /* The most useful transformation is a multiply-immediate feeding
1291 an add or subtract. Look for that first. */
9b92d12b 1292 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1293 {
1294 if (addend_cand->kind == CAND_MULT
807e902e 1295 && addend_cand->index == 0
f9453c07
BS
1296 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1297 {
1298 /* Z = (B + 0) * S, S constant
1299 X = Y +/- Z
1300 ===========================
1301 X = Y + ((+/-1 * S) * B) */
1302 base = base_in;
807e902e 1303 index = wi::to_widest (addend_cand->stride);
f9453c07 1304 if (subtract_p)
27bcd47c 1305 index = -index;
3cfd4469 1306 stride = addend_cand->base_expr;
b2ec94d4 1307 ctype = TREE_TYPE (base_in);
0b56e9ad 1308 stype = addend_cand->cand_type;
f9453c07
BS
1309 if (has_single_use (addend_in))
1310 savings = (addend_cand->dead_savings
1311 + stmt_cost (addend_cand->cand_stmt, speed));
1312 }
1313
98aaa1a6 1314 addend_cand = lookup_cand (addend_cand->next_interp);
f9453c07
BS
1315 }
1316
9b92d12b 1317 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1318 {
1319 if (base_cand->kind == CAND_ADD
807e902e 1320 && (base_cand->index == 0
f9453c07
BS
1321 || operand_equal_p (base_cand->stride,
1322 integer_zero_node, 0)))
1323 {
1324 /* Y = B + (i' * S), i' * S = 0
1325 X = Y +/- Z
1326 ============================
1327 X = B + (+/-1 * Z) */
3cfd4469 1328 base = base_cand->base_expr;
807e902e 1329 index = subtract_p ? -1 : 1;
f9453c07
BS
1330 stride = addend_in;
1331 ctype = base_cand->cand_type;
0b56e9ad
BS
1332 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1333 : TREE_TYPE (addend_in));
f9453c07
BS
1334 if (has_single_use (base_in))
1335 savings = (base_cand->dead_savings
1336 + stmt_cost (base_cand->cand_stmt, speed));
1337 }
1338 else if (subtract_p)
1339 {
1340 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1341
9b92d12b 1342 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1343 {
1344 if (subtrahend_cand->kind == CAND_MULT
807e902e 1345 && subtrahend_cand->index == 0
f9453c07
BS
1346 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1347 {
1348 /* Z = (B + 0) * S, S constant
1349 X = Y - Z
1350 ===========================
1351 Value: X = Y + ((-1 * S) * B) */
1352 base = base_in;
807e902e 1353 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1354 index = -index;
3cfd4469 1355 stride = subtrahend_cand->base_expr;
b2ec94d4 1356 ctype = TREE_TYPE (base_in);
0b56e9ad 1357 stype = subtrahend_cand->cand_type;
f9453c07
BS
1358 if (has_single_use (addend_in))
1359 savings = (subtrahend_cand->dead_savings
1360 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1361 }
98aaa1a6
BC
1362
1363 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
f9453c07
BS
1364 }
1365 }
1366
98aaa1a6 1367 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1368 }
1369
1370 if (!base)
1371 {
1372 /* No interpretations had anything useful to propagate, so
1373 produce X = Y + (1 * Z). */
1374 base = base_in;
807e902e 1375 index = subtract_p ? -1 : 1;
f9453c07 1376 stride = addend_in;
b2ec94d4 1377 ctype = TREE_TYPE (base_in);
0b56e9ad
BS
1378 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1379 : TREE_TYPE (addend_in));
f9453c07
BS
1380 }
1381
1382 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
0b56e9ad 1383 ctype, stype, savings);
f9453c07
BS
1384 return c;
1385}
1386
1387/* Create a candidate entry for a statement GS, where GS adds SSA
1388 name BASE_IN to constant INDEX_IN. Propagate any known information
1389 about BASE_IN into the new candidate. Return the new candidate. */
1390
1391static slsr_cand_t
355fe088 1392create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1393 bool speed)
f9453c07
BS
1394{
1395 enum cand_kind kind = CAND_ADD;
1396 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1397 tree stype = NULL_TREE;
807e902e 1398 widest_int index, multiple;
f9453c07
BS
1399 unsigned savings = 0;
1400 slsr_cand_t c;
1401 slsr_cand_t base_cand = base_cand_from_table (base_in);
1402
9b92d12b 1403 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1404 {
807e902e 1405 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1406
1407 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1408 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1409 sign, &multiple))
f9453c07
BS
1410 {
1411 /* Y = (B + i') * S, S constant, c = kS for some integer k
1412 X = Y + c
1413 ============================
1414 X = (B + (i'+ k)) * S
1415 OR
1416 Y = B + (i' * S), S constant, c = kS for some integer k
1417 X = Y + c
1418 ============================
1419 X = (B + (i'+ k)) * S */
1420 kind = base_cand->kind;
3cfd4469 1421 base = base_cand->base_expr;
27bcd47c 1422 index = base_cand->index + multiple;
f9453c07
BS
1423 stride = base_cand->stride;
1424 ctype = base_cand->cand_type;
0b56e9ad 1425 stype = base_cand->stride_type;
f9453c07
BS
1426 if (has_single_use (base_in))
1427 savings = (base_cand->dead_savings
1428 + stmt_cost (base_cand->cand_stmt, speed));
1429 }
1430
98aaa1a6 1431 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1432 }
1433
1434 if (!base)
1435 {
1436 /* No interpretations had anything useful to propagate, so
1437 produce X = Y + (c * 1). */
1438 kind = CAND_ADD;
1439 base = base_in;
1440 index = index_in;
1441 stride = integer_one_node;
b2ec94d4 1442 ctype = TREE_TYPE (base_in);
0b56e9ad 1443 stype = sizetype;
f9453c07
BS
1444 }
1445
1446 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
0b56e9ad 1447 ctype, stype, savings);
f9453c07
BS
1448 return c;
1449}
1450
1451/* Given GS which is an add or subtract of scalar integers or pointers,
1452 make at least one appropriate entry in the candidate table. */
1453
1454static void
355fe088 1455slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1456{
1457 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1458 slsr_cand_t c = NULL, c2;
1459
1460 if (TREE_CODE (rhs2) == SSA_NAME)
1461 {
3cfd4469 1462 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1463 and RHS2 is the stride. But it doesn't make sense for the
1464 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1465 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1466 {
1467 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1468
1469 /* Add the first interpretation to the statement-candidate
1470 mapping. */
1471 add_cand_for_stmt (gs, c);
1472 }
1473
1474 /* If the two RHS operands are identical, or this is a subtract,
1475 we're done. */
1476 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1477 return;
1478
1479 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1480 base expression and RHS1 is the stride, again provided that the
f9453c07 1481 stride is not a pointer. */
b2ec94d4 1482 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1483 {
1484 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1485 if (c)
d71dc990
BS
1486 {
1487 c->next_interp = c2->cand_num;
1488 c2->first_interp = c->cand_num;
1489 }
f9453c07
BS
1490 else
1491 add_cand_for_stmt (gs, c2);
1492 }
1493 }
36fd6408 1494 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07 1495 {
f9453c07 1496 /* Record an interpretation for the add-immediate. */
807e902e 1497 widest_int index = wi::to_widest (rhs2);
f9453c07 1498 if (subtract_p)
27bcd47c 1499 index = -index;
f9453c07
BS
1500
1501 c = create_add_imm_cand (gs, rhs1, index, speed);
1502
1503 /* Add the interpretation to the statement-candidate mapping. */
1504 add_cand_for_stmt (gs, c);
1505 }
1506}
1507
1508/* Given GS which is a negate of a scalar integer, make an appropriate
1509 entry in the candidate table. A negate is equivalent to a multiply
1510 by -1. */
1511
1512static void
355fe088 1513slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1514{
1515 /* Record a CAND_MULT interpretation for the multiply by -1. */
1516 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1517
1518 /* Add the interpretation to the statement-candidate mapping. */
1519 add_cand_for_stmt (gs, c);
1520}
1521
6b5eea61
BS
1522/* Help function for legal_cast_p, operating on two trees. Checks
1523 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1524 for more details. */
1525
1526static bool
0b56e9ad 1527legal_cast_p_1 (tree lhs_type, tree rhs_type)
6b5eea61 1528{
6b5eea61
BS
1529 unsigned lhs_size, rhs_size;
1530 bool lhs_wraps, rhs_wraps;
1531
6b5eea61
BS
1532 lhs_size = TYPE_PRECISION (lhs_type);
1533 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1534 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1535 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1536
1537 if (lhs_size < rhs_size
1538 || (rhs_wraps && !lhs_wraps)
1539 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1540 return false;
1541
1542 return true;
1543}
1544
f9453c07
BS
1545/* Return TRUE if GS is a statement that defines an SSA name from
1546 a conversion and is legal for us to combine with an add and multiply
1547 in the candidate table. For example, suppose we have:
1548
1549 A = B + i;
1550 C = (type) A;
1551 D = C * S;
1552
1553 Without the type-cast, we would create a CAND_MULT for D with base B,
1554 index i, and stride S. We want to record this candidate only if it
1555 is equivalent to apply the type cast following the multiply:
1556
1557 A = B + i;
1558 E = A * S;
1559 D = (type) E;
1560
1561 We will record the type with the candidate for D. This allows us
1562 to use a similar previous candidate as a basis. If we have earlier seen
1563
1564 A' = B + i';
1565 C' = (type) A';
1566 D' = C' * S;
1567
1568 we can replace D with
1569
1570 D = D' + (i - i') * S;
1571
1572 But if moving the type-cast would change semantics, we mustn't do this.
1573
1574 This is legitimate for casts from a non-wrapping integral type to
1575 any integral type of the same or larger size. It is not legitimate
1576 to convert a wrapping type to a non-wrapping type, or to a wrapping
1577 type of a different size. I.e., with a wrapping type, we must
1578 assume that the addition B + i could wrap, in which case performing
1579 the multiply before or after one of the "illegal" type casts will
1580 have different semantics. */
1581
1582static bool
355fe088 1583legal_cast_p (gimple *gs, tree rhs)
f9453c07 1584{
f9453c07
BS
1585 if (!is_gimple_assign (gs)
1586 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1587 return false;
1588
0b56e9ad 1589 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
f9453c07
BS
1590}
1591
1592/* Given GS which is a cast to a scalar integer type, determine whether
1593 the cast is legal for strength reduction. If so, make at least one
1594 appropriate entry in the candidate table. */
1595
1596static void
355fe088 1597slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1598{
1599 tree lhs, ctype;
ac2a97db 1600 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1601 unsigned savings = 0;
1602
1603 if (!legal_cast_p (gs, rhs1))
1604 return;
1605
1606 lhs = gimple_assign_lhs (gs);
1607 base_cand = base_cand_from_table (rhs1);
1608 ctype = TREE_TYPE (lhs);
1609
9b92d12b 1610 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1611 {
d71dc990
BS
1612 slsr_cand_t first_cand = NULL;
1613
f9453c07
BS
1614 while (base_cand)
1615 {
1616 /* Propagate all data from the base candidate except the type,
1617 which comes from the cast, and the base candidate's cast,
1618 which is no longer applicable. */
1619 if (has_single_use (rhs1))
1620 savings = (base_cand->dead_savings
1621 + stmt_cost (base_cand->cand_stmt, speed));
1622
1623 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1624 base_cand->base_expr,
f9453c07 1625 base_cand->index, base_cand->stride,
0b56e9ad
BS
1626 ctype, base_cand->stride_type,
1627 savings);
d71dc990
BS
1628 if (!first_cand)
1629 first_cand = c;
1630
1631 if (first_cand != c)
1632 c->first_interp = first_cand->cand_num;
1633
98aaa1a6 1634 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1635 }
1636 }
1637 else
1638 {
1639 /* If nothing is known about the RHS, create fresh CAND_ADD and
1640 CAND_MULT interpretations:
1641
1642 X = Y + (0 * 1)
1643 X = (Y + 0) * 1
1644
1645 The first of these is somewhat arbitrary, but the choice of
1646 1 for the stride simplifies the logic for propagating casts
1647 into their uses. */
0b56e9ad
BS
1648 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1649 integer_one_node, ctype, sizetype, 0);
1650 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1651 integer_one_node, ctype, sizetype, 0);
f9453c07 1652 c->next_interp = c2->cand_num;
d71dc990 1653 c2->first_interp = c->cand_num;
f9453c07
BS
1654 }
1655
1656 /* Add the first (or only) interpretation to the statement-candidate
1657 mapping. */
1658 add_cand_for_stmt (gs, c);
1659}
1660
1661/* Given GS which is a copy of a scalar integer type, make at least one
1662 appropriate entry in the candidate table.
1663
1664 This interface is included for completeness, but is unnecessary
1665 if this pass immediately follows a pass that performs copy
1666 propagation, such as DOM. */
1667
1668static void
355fe088 1669slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1670{
ac2a97db 1671 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1672 unsigned savings = 0;
1673
1674 base_cand = base_cand_from_table (rhs1);
1675
9b92d12b 1676 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1677 {
d71dc990
BS
1678 slsr_cand_t first_cand = NULL;
1679
f9453c07
BS
1680 while (base_cand)
1681 {
1682 /* Propagate all data from the base candidate. */
1683 if (has_single_use (rhs1))
1684 savings = (base_cand->dead_savings
1685 + stmt_cost (base_cand->cand_stmt, speed));
1686
1687 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1688 base_cand->base_expr,
f9453c07 1689 base_cand->index, base_cand->stride,
0b56e9ad
BS
1690 base_cand->cand_type,
1691 base_cand->stride_type, savings);
d71dc990
BS
1692 if (!first_cand)
1693 first_cand = c;
1694
1695 if (first_cand != c)
1696 c->first_interp = first_cand->cand_num;
1697
98aaa1a6 1698 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1699 }
1700 }
1701 else
1702 {
1703 /* If nothing is known about the RHS, create fresh CAND_ADD and
1704 CAND_MULT interpretations:
1705
1706 X = Y + (0 * 1)
1707 X = (Y + 0) * 1
1708
1709 The first of these is somewhat arbitrary, but the choice of
1710 1 for the stride simplifies the logic for propagating casts
1711 into their uses. */
0b56e9ad
BS
1712 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1713 integer_one_node, TREE_TYPE (rhs1),
1714 sizetype, 0);
1715 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1716 integer_one_node, TREE_TYPE (rhs1),
1717 sizetype, 0);
f9453c07 1718 c->next_interp = c2->cand_num;
d71dc990 1719 c2->first_interp = c->cand_num;
f9453c07
BS
1720 }
1721
1722 /* Add the first (or only) interpretation to the statement-candidate
1723 mapping. */
1724 add_cand_for_stmt (gs, c);
1725}
1726\f
4d9192b5
TS
1727class find_candidates_dom_walker : public dom_walker
1728{
1729public:
1730 find_candidates_dom_walker (cdi_direction direction)
1731 : dom_walker (direction) {}
3daacdcd 1732 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1733};
1734
f9453c07
BS
1735/* Find strength-reduction candidates in block BB. */
1736
3daacdcd 1737edge
4d9192b5 1738find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1739{
1740 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1741
538dd0b7
DM
1742 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1743 gsi_next (&gsi))
1744 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1745
538dd0b7
DM
1746 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1747 gsi_next (&gsi))
f9453c07 1748 {
355fe088 1749 gimple *gs = gsi_stmt (gsi);
f9453c07 1750
36bbc05d 1751 if (stmt_could_throw_p (cfun, gs))
bef52a68
JJ
1752 continue;
1753
2749c8f6
BS
1754 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1755 slsr_process_ref (gs);
1756
1757 else if (is_gimple_assign (gs)
1ffbb016
RB
1758 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1759 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1760 {
1761 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1762
1763 switch (gimple_assign_rhs_code (gs))
1764 {
1765 case MULT_EXPR:
1766 case PLUS_EXPR:
1767 rhs1 = gimple_assign_rhs1 (gs);
1768 rhs2 = gimple_assign_rhs2 (gs);
1769 /* Should never happen, but currently some buggy situations
1770 in earlier phases put constants in rhs1. */
1771 if (TREE_CODE (rhs1) != SSA_NAME)
1772 continue;
1773 break;
1774
1775 /* Possible future opportunity: rhs1 of a ptr+ can be
1776 an ADDR_EXPR. */
1777 case POINTER_PLUS_EXPR:
1778 case MINUS_EXPR:
1779 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1780 gcc_fallthrough ();
f9453c07 1781
d822570f 1782 CASE_CONVERT:
fbcdc43e 1783 case SSA_NAME:
f9453c07
BS
1784 case NEGATE_EXPR:
1785 rhs1 = gimple_assign_rhs1 (gs);
1786 if (TREE_CODE (rhs1) != SSA_NAME)
1787 continue;
1788 break;
1789
1790 default:
1791 ;
1792 }
1793
1794 switch (gimple_assign_rhs_code (gs))
1795 {
1796 case MULT_EXPR:
1797 slsr_process_mul (gs, rhs1, rhs2, speed);
1798 break;
1799
1800 case PLUS_EXPR:
1801 case POINTER_PLUS_EXPR:
1802 case MINUS_EXPR:
1803 slsr_process_add (gs, rhs1, rhs2, speed);
1804 break;
1805
1806 case NEGATE_EXPR:
1807 slsr_process_neg (gs, rhs1, speed);
1808 break;
1809
d822570f 1810 CASE_CONVERT:
f9453c07
BS
1811 slsr_process_cast (gs, rhs1, speed);
1812 break;
1813
fbcdc43e 1814 case SSA_NAME:
f9453c07
BS
1815 slsr_process_copy (gs, rhs1, speed);
1816 break;
1817
1818 default:
1819 ;
1820 }
1821 }
1822 }
3daacdcd 1823 return NULL;
f9453c07
BS
1824}
1825\f
1826/* Dump a candidate for debug. */
1827
1828static void
1829dump_candidate (slsr_cand_t c)
1830{
1831 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1832 gimple_bb (c->cand_stmt)->index);
ef6cb4c7 1833 print_gimple_stmt (dump_file, c->cand_stmt, 0);
f9453c07
BS
1834 switch (c->kind)
1835 {
1836 case CAND_MULT:
1837 fputs (" MULT : (", dump_file);
ef6cb4c7 1838 print_generic_expr (dump_file, c->base_expr);
f9453c07 1839 fputs (" + ", dump_file);
807e902e 1840 print_decs (c->index, dump_file);
f9453c07 1841 fputs (") * ", dump_file);
0b56e9ad
BS
1842 if (TREE_CODE (c->stride) != INTEGER_CST
1843 && c->stride_type != TREE_TYPE (c->stride))
1844 {
1845 fputs ("(", dump_file);
ef6cb4c7 1846 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1847 fputs (")", dump_file);
1848 }
ef6cb4c7 1849 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1850 fputs (" : ", dump_file);
1851 break;
1852 case CAND_ADD:
1853 fputs (" ADD : ", dump_file);
ef6cb4c7 1854 print_generic_expr (dump_file, c->base_expr);
f9453c07 1855 fputs (" + (", dump_file);
807e902e 1856 print_decs (c->index, dump_file);
f9453c07 1857 fputs (" * ", dump_file);
0b56e9ad
BS
1858 if (TREE_CODE (c->stride) != INTEGER_CST
1859 && c->stride_type != TREE_TYPE (c->stride))
1860 {
1861 fputs ("(", dump_file);
ef6cb4c7 1862 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1863 fputs (")", dump_file);
1864 }
ef6cb4c7 1865 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1866 fputs (") : ", dump_file);
1867 break;
2749c8f6
BS
1868 case CAND_REF:
1869 fputs (" REF : ", dump_file);
ef6cb4c7 1870 print_generic_expr (dump_file, c->base_expr);
2749c8f6 1871 fputs (" + (", dump_file);
ef6cb4c7 1872 print_generic_expr (dump_file, c->stride);
2749c8f6 1873 fputs (") + ", dump_file);
807e902e 1874 print_decs (c->index, dump_file);
2749c8f6
BS
1875 fputs (" : ", dump_file);
1876 break;
9b92d12b
BS
1877 case CAND_PHI:
1878 fputs (" PHI : ", dump_file);
ef6cb4c7 1879 print_generic_expr (dump_file, c->base_expr);
9b92d12b 1880 fputs (" + (unknown * ", dump_file);
ef6cb4c7 1881 print_generic_expr (dump_file, c->stride);
9b92d12b
BS
1882 fputs (") : ", dump_file);
1883 break;
f9453c07
BS
1884 default:
1885 gcc_unreachable ();
1886 }
ef6cb4c7 1887 print_generic_expr (dump_file, c->cand_type);
f9453c07
BS
1888 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1889 c->basis, c->dependent, c->sibling);
d71dc990
BS
1890 fprintf (dump_file,
1891 " next-interp: %d first-interp: %d dead-savings: %d\n",
1892 c->next_interp, c->first_interp, c->dead_savings);
f9453c07 1893 if (c->def_phi)
9b92d12b 1894 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1895 fputs ("\n", dump_file);
1896}
1897
1898/* Dump the candidate vector for debug. */
1899
1900static void
1901dump_cand_vec (void)
1902{
1903 unsigned i;
1904 slsr_cand_t c;
1905
1906 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1907
9771b263 1908 FOR_EACH_VEC_ELT (cand_vec, i, c)
98aaa1a6
BC
1909 if (c != NULL)
1910 dump_candidate (c);
f9453c07
BS
1911}
1912
2749c8f6 1913/* Callback used to dump the candidate chains hash table. */
f9453c07 1914
4a8fb1a1
LC
1915int
1916ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1917{
4a8fb1a1 1918 const_cand_chain_t chain = *slot;
2749c8f6 1919 cand_chain_t p;
f9453c07 1920
ef6cb4c7 1921 print_generic_expr (dump_file, chain->base_expr);
2749c8f6 1922 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1923
2749c8f6
BS
1924 for (p = chain->next; p; p = p->next)
1925 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1926
2749c8f6
BS
1927 fputs ("\n", dump_file);
1928 return 1;
1929}
f9453c07 1930
2749c8f6 1931/* Dump the candidate chains. */
f9453c07 1932
2749c8f6
BS
1933static void
1934dump_cand_chains (void)
1935{
1936 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1937 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1938 (NULL);
f9453c07
BS
1939 fputs ("\n", dump_file);
1940}
88ca9ea1
BS
1941
1942/* Dump the increment vector for debug. */
1943
1944static void
1945dump_incr_vec (void)
1946{
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 {
1949 unsigned i;
1950
1951 fprintf (dump_file, "\nIncrement vector:\n\n");
1952
1953 for (i = 0; i < incr_vec_len; i++)
1954 {
1955 fprintf (dump_file, "%3d increment: ", i);
807e902e 1956 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1957 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1958 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1959 fputs ("\n initializer: ", dump_file);
ef6cb4c7 1960 print_generic_expr (dump_file, incr_vec[i].initializer);
88ca9ea1
BS
1961 fputs ("\n\n", dump_file);
1962 }
1963 }
1964}
f9453c07 1965\f
2749c8f6
BS
1966/* Replace *EXPR in candidate C with an equivalent strength-reduced
1967 data reference. */
1968
1969static void
1970replace_ref (tree *expr, slsr_cand_t c)
1971{
78f6dd68
MJ
1972 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1973 unsigned HOST_WIDE_INT misalign;
1974 unsigned align;
1975
1976 /* Ensure the memory reference carries the minimum alignment
1977 requirement for the data type. See PR58041. */
1978 get_object_alignment_1 (*expr, &align, &misalign);
1979 if (misalign != 0)
146ec50f 1980 align = least_bit_hwi (misalign);
78f6dd68
MJ
1981 if (align < TYPE_ALIGN (acc_type))
1982 acc_type = build_aligned_type (acc_type, align);
1983
8907a722 1984 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
78f6dd68
MJ
1985 c->base_expr, c->stride);
1986 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1987 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1988
2749c8f6
BS
1989 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1990 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1991 TREE_OPERAND (mem_ref, 0)
1992 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1993 /*simple_p=*/true, NULL,
1994 /*before=*/true, GSI_SAME_STMT);
1995 copy_ref_info (mem_ref, *expr);
1996 *expr = mem_ref;
1997 update_stmt (c->cand_stmt);
1998}
1999
2000/* Replace CAND_REF candidate C, each sibling of candidate C, and each
2001 dependent of candidate C with an equivalent strength-reduced data
2002 reference. */
2003
2004static void
2005replace_refs (slsr_cand_t c)
2006{
96d75a2c
YZ
2007 if (dump_file && (dump_flags & TDF_DETAILS))
2008 {
2009 fputs ("Replacing reference: ", dump_file);
ef6cb4c7 2010 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2011 }
2012
2749c8f6
BS
2013 if (gimple_vdef (c->cand_stmt))
2014 {
2015 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2016 replace_ref (lhs, c);
2017 }
2018 else
2019 {
2020 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2021 replace_ref (rhs, c);
2022 }
2023
96d75a2c
YZ
2024 if (dump_file && (dump_flags & TDF_DETAILS))
2025 {
2026 fputs ("With: ", dump_file);
ef6cb4c7 2027 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2028 fputs ("\n", dump_file);
2029 }
2030
2749c8f6
BS
2031 if (c->sibling)
2032 replace_refs (lookup_cand (c->sibling));
2033
2034 if (c->dependent)
2035 replace_refs (lookup_cand (c->dependent));
2036}
2037
9b92d12b
BS
2038/* Return TRUE if candidate C is dependent upon a PHI. */
2039
2040static bool
2041phi_dependent_cand_p (slsr_cand_t c)
2042{
2043 /* A candidate is not necessarily dependent upon a PHI just because
2044 it has a phi definition for its base name. It may have a basis
2045 that relies upon the same phi definition, in which case the PHI
2046 is irrelevant to this candidate. */
2047 return (c->def_phi
2048 && c->basis
2049 && lookup_cand (c->basis)->def_phi != c->def_phi);
2050}
2051
f9453c07
BS
2052/* Calculate the increment required for candidate C relative to
2053 its basis. */
2054
807e902e 2055static widest_int
f9453c07
BS
2056cand_increment (slsr_cand_t c)
2057{
2058 slsr_cand_t basis;
2059
2060 /* If the candidate doesn't have a basis, just return its own
2061 index. This is useful in record_increments to help us find
9b92d12b
BS
2062 an existing initializer. Also, if the candidate's basis is
2063 hidden by a phi, then its own index will be the increment
2064 from the newly introduced phi basis. */
2065 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
2066 return c->index;
2067
2068 basis = lookup_cand (c->basis);
3cfd4469 2069 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 2070 return c->index - basis->index;
f9453c07
BS
2071}
2072
88ca9ea1
BS
2073/* Calculate the increment required for candidate C relative to
2074 its basis. If we aren't going to generate pointer arithmetic
2075 for this candidate, return the absolute value of that increment
2076 instead. */
2077
807e902e 2078static inline widest_int
88ca9ea1
BS
2079cand_abs_increment (slsr_cand_t c)
2080{
807e902e 2081 widest_int increment = cand_increment (c);
88ca9ea1 2082
807e902e 2083 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2084 increment = -increment;
88ca9ea1
BS
2085
2086 return increment;
2087}
2088
f9453c07
BS
2089/* Return TRUE iff candidate C has already been replaced under
2090 another interpretation. */
2091
2092static inline bool
2093cand_already_replaced (slsr_cand_t c)
2094{
2095 return (gimple_bb (c->cand_stmt) == 0);
2096}
2097
9b92d12b
BS
2098/* Common logic used by replace_unconditional_candidate and
2099 replace_conditional_candidate. */
f9453c07
BS
2100
2101static void
807e902e 2102replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2103{
9b92d12b
BS
2104 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2105 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2106
8eb91869
BS
2107 /* It is not useful to replace casts, copies, negates, or adds of
2108 an SSA name and a constant. */
2109 if (cand_code == SSA_NAME
2110 || CONVERT_EXPR_CODE_P (cand_code)
2111 || cand_code == PLUS_EXPR
2112 || cand_code == POINTER_PLUS_EXPR
2113 || cand_code == MINUS_EXPR
2114 || cand_code == NEGATE_EXPR)
2115 return;
2116
2117 enum tree_code code = PLUS_EXPR;
2118 tree bump_tree;
2119 gimple *stmt_to_print = NULL;
2120
2121 if (wi::neg_p (bump))
9b92d12b 2122 {
8eb91869
BS
2123 code = MINUS_EXPR;
2124 bump = -bump;
2125 }
9b92d12b 2126
8eb91869
BS
2127 /* It is possible that the resulting bump doesn't fit in target_type.
2128 Abandon the replacement in this case. This does not affect
2129 siblings or dependents of C. */
2130 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2131 TYPE_SIGN (target_type)))
2132 return;
2133
2134 bump_tree = wide_int_to_tree (target_type, bump);
2135
2136 /* If the basis name and the candidate's LHS have incompatible types,
2137 introduce a cast. */
2138 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2139 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b 2140
8eb91869
BS
2141 if (dump_file && (dump_flags & TDF_DETAILS))
2142 {
2143 fputs ("Replacing: ", dump_file);
2144 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2145 }
2146
2147 if (bump == 0)
2148 {
2149 tree lhs = gimple_assign_lhs (c->cand_stmt);
2150 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2151 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2152 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2153 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2154 gsi_replace (&gsi, copy_stmt, false);
d71dc990 2155 while (cc)
8eb91869 2156 {
8eb91869 2157 cc->cand_stmt = copy_stmt;
98aaa1a6 2158 cc = lookup_cand (cc->next_interp);
8eb91869 2159 }
9b92d12b 2160 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869
BS
2161 stmt_to_print = copy_stmt;
2162 }
2163 else
2164 {
2165 tree rhs1, rhs2;
2166 if (cand_code != NEGATE_EXPR) {
2167 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2168 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2169 }
2170 if (cand_code != NEGATE_EXPR
2171 && ((operand_equal_p (rhs1, basis_name, 0)
2172 && operand_equal_p (rhs2, bump_tree, 0))
2173 || (operand_equal_p (rhs1, bump_tree, 0)
2174 && operand_equal_p (rhs2, basis_name, 0))))
9b92d12b 2175 {
8eb91869
BS
2176 if (dump_file && (dump_flags & TDF_DETAILS))
2177 {
2178 fputs ("(duplicate, not actually replacing)", dump_file);
2179 stmt_to_print = c->cand_stmt;
2180 }
9b92d12b 2181 }
8eb91869 2182 else
9b92d12b 2183 {
9b92d12b 2184 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2185 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2186 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2187 update_stmt (gsi_stmt (gsi));
d71dc990 2188 while (cc)
9fbbba71 2189 {
8eb91869 2190 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 2191 cc = lookup_cand (cc->next_interp);
9fbbba71 2192 }
9b92d12b 2193 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869 2194 stmt_to_print = gsi_stmt (gsi);
9b92d12b 2195 }
8eb91869 2196 }
9b92d12b 2197
8eb91869
BS
2198 if (dump_file && (dump_flags & TDF_DETAILS))
2199 {
2200 fputs ("With: ", dump_file);
2201 print_gimple_stmt (dump_file, stmt_to_print, 0);
2202 fputs ("\n", dump_file);
9b92d12b
BS
2203 }
2204}
2205
2206/* Replace candidate C with an add or subtract. Note that we only
2207 operate on CAND_MULTs with known strides, so we will never generate
2208 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2209 X = Y + ((i - i') * S), as described in the module commentary. The
2210 folded value ((i - i') * S) is referred to here as the "bump." */
2211
2212static void
2213replace_unconditional_candidate (slsr_cand_t c)
2214{
2215 slsr_cand_t basis;
9b92d12b
BS
2216
2217 if (cand_already_replaced (c))
f9453c07
BS
2218 return;
2219
2220 basis = lookup_cand (c->basis);
807e902e 2221 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2222
a7a7d10e 2223 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2224}
2225\f
7bf55a70
BS
2226/* Return the index in the increment vector of the given INCREMENT,
2227 or -1 if not found. The latter can occur if more than
2228 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2229
7bf55a70 2230static inline int
807e902e 2231incr_vec_index (const widest_int &increment)
9b92d12b
BS
2232{
2233 unsigned i;
2234
2235 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2236 ;
2237
7bf55a70
BS
2238 if (i < incr_vec_len)
2239 return i;
2240 else
2241 return -1;
9b92d12b
BS
2242}
2243
2244/* Create a new statement along edge E to add BASIS_NAME to the product
2245 of INCREMENT and the stride of candidate C. Create and return a new
2246 SSA name from *VAR to be used as the LHS of the new statement.
2247 KNOWN_STRIDE is true iff C's stride is a constant. */
2248
2249static tree
2250create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2251 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2252 bool known_stride)
2253{
9b92d12b 2254 tree lhs, basis_type;
0b56e9ad 2255 gassign *new_stmt, *cast_stmt = NULL;
9b92d12b
BS
2256
2257 /* If the add candidate along this incoming edge has the same
2258 index as C's hidden basis, the hidden basis represents this
2259 edge correctly. */
807e902e 2260 if (increment == 0)
9b92d12b
BS
2261 return basis_name;
2262
2263 basis_type = TREE_TYPE (basis_name);
2264 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2265
a929f266
BS
2266 /* Occasionally people convert integers to pointers without a
2267 cast, leading us into trouble if we aren't careful. */
2268 enum tree_code plus_code
2269 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2270
9b92d12b 2271 if (known_stride)
7139194b 2272 {
9b92d12b 2273 tree bump_tree;
a929f266 2274 enum tree_code code = plus_code;
807e902e 2275 widest_int bump = increment * wi::to_widest (c->stride);
a929f266 2276 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
9b92d12b
BS
2277 {
2278 code = MINUS_EXPR;
2279 bump = -bump;
2280 }
2281
a929f266
BS
2282 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2283 bump_tree = wide_int_to_tree (stride_type, bump);
0d0e4a03 2284 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2285 }
2286 else
2287 {
7bf55a70 2288 int i;
a929f266 2289 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
9b92d12b 2290 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2291 gcc_assert (i >= 0);
f9453c07 2292
9b92d12b
BS
2293 if (incr_vec[i].initializer)
2294 {
a929f266 2295 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
0d0e4a03
JJ
2296 new_stmt = gimple_build_assign (lhs, code, basis_name,
2297 incr_vec[i].initializer);
9b92d12b 2298 }
0b56e9ad
BS
2299 else {
2300 tree stride;
2301
2302 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2303 {
2304 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2305 "slsr");
2306 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2307 c->stride);
2308 stride = cast_stride;
2309 }
2310 else
2311 stride = c->stride;
2312
2313 if (increment == 1)
2314 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2315 else if (increment == -1)
2316 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2317 else
2318 gcc_unreachable ();
2319 }
f9453c07
BS
2320 }
2321
b115e803 2322 if (cast_stmt)
0b56e9ad 2323 {
b115e803
BS
2324 gimple_set_location (cast_stmt, loc);
2325 gsi_insert_on_edge (e, cast_stmt);
0b56e9ad 2326 }
9b92d12b
BS
2327
2328 gimple_set_location (new_stmt, loc);
b115e803 2329 gsi_insert_on_edge (e, new_stmt);
f9453c07
BS
2330
2331 if (dump_file && (dump_flags & TDF_DETAILS))
2332 {
0b56e9ad
BS
2333 if (cast_stmt)
2334 {
b115e803
BS
2335 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2336 e->src->index, e->dest->index);
ef6cb4c7 2337 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 2338 }
b115e803
BS
2339 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2340 e->dest->index);
ef6cb4c7 2341 print_gimple_stmt (dump_file, new_stmt, 0);
f9453c07
BS
2342 }
2343
9b92d12b
BS
2344 return lhs;
2345}
2346
65d3dce8
BS
2347/* Clear the visited field for a tree of PHI candidates. */
2348
2349static void
2350clear_visited (gphi *phi)
2351{
2352 unsigned i;
2353 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2354
2355 if (phi_cand->visited)
2356 {
2357 phi_cand->visited = 0;
2358
2359 for (i = 0; i < gimple_phi_num_args (phi); i++)
2360 {
2361 tree arg = gimple_phi_arg_def (phi, i);
2362 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2363 if (gimple_code (arg_def) == GIMPLE_PHI)
2364 clear_visited (as_a <gphi *> (arg_def));
2365 }
2366 }
2367}
2368
2369/* Recursive helper function for create_phi_basis. */
9b92d12b
BS
2370
2371static tree
65d3dce8
BS
2372create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2373 location_t loc, bool known_stride)
9b92d12b
BS
2374{
2375 int i;
2376 tree name, phi_arg;
538dd0b7 2377 gphi *phi;
9b92d12b
BS
2378 slsr_cand_t basis = lookup_cand (c->basis);
2379 int nargs = gimple_phi_num_args (from_phi);
2380 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2381 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2382 auto_vec<tree> phi_args (nargs);
9b92d12b 2383
65d3dce8
BS
2384 if (phi_cand->visited)
2385 return phi_cand->cached_basis;
2386 phi_cand->visited = 1;
2387
9b92d12b
BS
2388 /* Process each argument of the existing phi that represents
2389 conditionally-executed add candidates. */
2390 for (i = 0; i < nargs; i++)
f9453c07 2391 {
9b92d12b
BS
2392 edge e = (*phi_bb->preds)[i];
2393 tree arg = gimple_phi_arg_def (from_phi, i);
2394 tree feeding_def;
2395
2396 /* If the phi argument is the base name of the CAND_PHI, then
2397 this incoming arc should use the hidden basis. */
2398 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2399 if (basis->index == 0)
9b92d12b
BS
2400 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2401 else
2402 {
807e902e 2403 widest_int incr = -basis->index;
9b92d12b
BS
2404 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2405 e, loc, known_stride);
2406 }
2407 else
f9453c07 2408 {
355fe088 2409 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2410
2411 /* If there is another phi along this incoming edge, we must
2412 process it in the same fashion to ensure that all basis
2413 adjustments are made along its incoming edges. */
2414 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2415 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2416 loc, known_stride);
9b92d12b 2417 else
f9453c07 2418 {
9b92d12b 2419 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2420 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2421 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2422 e, loc, known_stride);
f9453c07
BS
2423 }
2424 }
9b92d12b
BS
2425
2426 /* Because of recursion, we need to save the arguments in a vector
2427 so we can create the PHI statement all at once. Otherwise the
2428 storage for the half-created PHI can be reclaimed. */
2429 phi_args.safe_push (feeding_def);
f9453c07 2430 }
9b92d12b
BS
2431
2432 /* Create the new phi basis. */
2433 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2434 phi = create_phi_node (name, phi_bb);
2435 SSA_NAME_DEF_STMT (name) = phi;
2436
2437 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2438 {
2439 edge e = (*phi_bb->preds)[i];
2440 add_phi_arg (phi, phi_arg, e, loc);
2441 }
2442
2443 update_stmt (phi);
2444
f9453c07
BS
2445 if (dump_file && (dump_flags & TDF_DETAILS))
2446 {
9b92d12b 2447 fputs ("Introducing new phi basis: ", dump_file);
ef6cb4c7 2448 print_gimple_stmt (dump_file, phi, 0);
f9453c07 2449 }
9b92d12b 2450
65d3dce8 2451 phi_cand->cached_basis = name;
9b92d12b 2452 return name;
f9453c07
BS
2453}
2454
65d3dce8
BS
2455/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2456 is hidden by the phi node FROM_PHI, create a new phi node in the same
2457 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2458 with its phi arguments representing conditional adjustments to the
2459 hidden basis along conditional incoming paths. Those adjustments are
2460 made by creating add statements (and sometimes recursively creating
2461 phis) along those incoming paths. LOC is the location to attach to
2462 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2463 constant. */
2464
2465static tree
2466create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2467 location_t loc, bool known_stride)
2468{
2469 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2470 known_stride);
2471 gcc_assert (retval);
2472 clear_visited (as_a <gphi *> (from_phi));
2473 return retval;
2474}
2475
9b92d12b
BS
2476/* Given a candidate C whose basis is hidden by at least one intervening
2477 phi, introduce a matching number of new phis to represent its basis
2478 adjusted by conditional increments along possible incoming paths. Then
2479 replace C as though it were an unconditional candidate, using the new
2480 basis. */
f9453c07
BS
2481
2482static void
9b92d12b 2483replace_conditional_candidate (slsr_cand_t c)
f9453c07 2484{
a7a7d10e 2485 tree basis_name, name;
9b92d12b
BS
2486 slsr_cand_t basis;
2487 location_t loc;
f9453c07 2488
9b92d12b
BS
2489 /* Look up the LHS SSA name from C's basis. This will be the
2490 RHS1 of the adds we will introduce to create new phi arguments. */
2491 basis = lookup_cand (c->basis);
2492 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2493
9b92d12b
BS
2494 /* Create a new phi statement which will represent C's true basis
2495 after the transformation is complete. */
2496 loc = gimple_location (c->cand_stmt);
2497 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2498 basis_name, loc, KNOWN_STRIDE);
65d3dce8 2499
9b92d12b 2500 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2501 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2502
a7a7d10e 2503 replace_mult_candidate (c, name, bump);
f9453c07 2504}
88ca9ea1 2505
65d3dce8
BS
2506/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2507 how many PHI nodes we have visited at this point in the tree walk. */
9b92d12b
BS
2508
2509static int
65d3dce8 2510phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
88ca9ea1
BS
2511{
2512 unsigned i;
9b92d12b 2513 int cost = 0;
5b3d5f76 2514 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2515
65d3dce8
BS
2516 if (phi_cand->visited)
2517 return 0;
2518
2519 phi_cand->visited = 1;
2520 (*spread)++;
2521
0100cd3f
BS
2522 /* If we work our way back to a phi that isn't dominated by the hidden
2523 basis, this isn't a candidate for replacement. Indicate this by
2524 returning an unreasonably high cost. It's not easy to detect
2525 these situations when determining the basis, so we defer the
2526 decision until now. */
2527 basic_block phi_bb = gimple_bb (phi);
2528 slsr_cand_t basis = lookup_cand (c->basis);
2529 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2530
2531 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2532 return COST_INFINITE;
2533
9b92d12b
BS
2534 for (i = 0; i < gimple_phi_num_args (phi); i++)
2535 {
2536 tree arg = gimple_phi_arg_def (phi, i);
2537
2538 if (arg != phi_cand->base_expr)
2539 {
355fe088 2540 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2541
2542 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2543 {
2544 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2545
2546 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2547 return COST_INFINITE;
2548 }
9b92d12b
BS
2549 else
2550 {
2551 slsr_cand_t arg_cand = base_cand_from_table (arg);
2552
2553 if (arg_cand->index != c->index)
2554 cost += one_add_cost;
2555 }
2556 }
2557 }
2558
2559 return cost;
88ca9ea1
BS
2560}
2561
65d3dce8
BS
2562/* Compute the expected costs of inserting basis adjustments for
2563 candidate C with phi-definition PHI. The cost of inserting
2564 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2565 which are themselves phi results, recursively calculate costs
2566 for those phis as well. */
2567
2568static int
2569phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2570{
2571 int spread = 0;
2572 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2573 clear_visited (as_a <gphi *> (phi));
2574 return retval;
2575}
9b92d12b
BS
2576/* For candidate C, each sibling of candidate C, and each dependent of
2577 candidate C, determine whether the candidate is dependent upon a
2578 phi that hides its basis. If not, replace the candidate unconditionally.
2579 Otherwise, determine whether the cost of introducing compensation code
2580 for the candidate is offset by the gains from strength reduction. If
2581 so, replace the candidate and introduce the compensation code. */
2582
2583static void
2584replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2585{
2586 if (phi_dependent_cand_p (c))
2587 {
df11b2ea
BS
2588 /* A multiply candidate with a stride of 1 is just an artifice
2589 of a copy or cast; there is no value in replacing it. */
2590 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
9b92d12b
BS
2591 {
2592 /* A candidate dependent upon a phi will replace a multiply by
2593 a constant with an add, and will insert at most one add for
2594 each phi argument. Add these costs with the potential dead-code
2595 savings to determine profitability. */
2596 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2597 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2598 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2599 tree phi_result = gimple_phi_result (phi);
2600 int one_add_cost = add_cost (speed,
2601 TYPE_MODE (TREE_TYPE (phi_result)));
2602 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2603 int cost = add_costs - mult_savings - c->dead_savings;
2604
2605 if (dump_file && (dump_flags & TDF_DETAILS))
2606 {
2607 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2608 fprintf (dump_file, " add_costs = %d\n", add_costs);
2609 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2610 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2611 fprintf (dump_file, " cost = %d\n", cost);
2612 if (cost <= COST_NEUTRAL)
2613 fputs (" Replacing...\n", dump_file);
2614 else
2615 fputs (" Not replaced.\n", dump_file);
2616 }
2617
2618 if (cost <= COST_NEUTRAL)
2619 replace_conditional_candidate (c);
2620 }
2621 }
2622 else
2623 replace_unconditional_candidate (c);
2624
2625 if (c->sibling)
2626 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2627
2628 if (c->dependent)
2629 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2630}
2631\f
88ca9ea1
BS
2632/* Count the number of candidates in the tree rooted at C that have
2633 not already been replaced under other interpretations. */
2634
1dc3d6e9 2635static int
88ca9ea1
BS
2636count_candidates (slsr_cand_t c)
2637{
2638 unsigned count = cand_already_replaced (c) ? 0 : 1;
2639
2640 if (c->sibling)
2641 count += count_candidates (lookup_cand (c->sibling));
2642
2643 if (c->dependent)
2644 count += count_candidates (lookup_cand (c->dependent));
2645
2646 return count;
2647}
2648
2649/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2650 INCREMENT is associated with candidate C. If INCREMENT is to be
2651 conditionally executed as part of a conditional candidate replacement,
2652 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2653 T_0 = stride * I is provided by a candidate that dominates all
2654 candidates with the same increment, also record T_0 for subsequent use. */
2655
2656static void
807e902e 2657record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2658{
2659 bool found = false;
2660 unsigned i;
2661
2662 /* Treat increments that differ only in sign as identical so as to
2663 share initializers, unless we are generating pointer arithmetic. */
807e902e 2664 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2665 increment = -increment;
88ca9ea1
BS
2666
2667 for (i = 0; i < incr_vec_len; i++)
2668 {
27bcd47c 2669 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2670 {
2671 incr_vec[i].count++;
2672 found = true;
2673
2674 /* If we previously recorded an initializer that doesn't
2675 dominate this candidate, it's not going to be useful to
2676 us after all. */
2677 if (incr_vec[i].initializer
2678 && !dominated_by_p (CDI_DOMINATORS,
2679 gimple_bb (c->cand_stmt),
2680 incr_vec[i].init_bb))
2681 {
2682 incr_vec[i].initializer = NULL_TREE;
2683 incr_vec[i].init_bb = NULL;
2684 }
2685
2686 break;
2687 }
2688 }
2689
7bf55a70 2690 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2691 {
2692 /* The first time we see an increment, create the entry for it.
2693 If this is the root candidate which doesn't have a basis, set
2694 the count to zero. We're only processing it so it can possibly
2695 provide an initializer for other candidates. */
2696 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2697 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2698 incr_vec[incr_vec_len].cost = COST_INFINITE;
2699
2700 /* Optimistically record the first occurrence of this increment
2701 as providing an initializer (if it does); we will revise this
2702 opinion later if it doesn't dominate all other occurrences.
a929f266 2703 Exception: increments of 0, 1 never need initializers;
806696eb 2704 and phi adjustments don't ever provide initializers. */
88ca9ea1 2705 if (c->kind == CAND_ADD
9b92d12b 2706 && !is_phi_adjust
27bcd47c 2707 && c->index == increment
a929f266 2708 && (increment > 1 || increment < 0)
7b8265ba
JJ
2709 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2710 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2711 {
7b8265ba 2712 tree t0 = NULL_TREE;
88ca9ea1
BS
2713 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2714 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2715 if (operand_equal_p (rhs1, c->base_expr, 0))
2716 t0 = rhs2;
7b8265ba 2717 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2718 t0 = rhs1;
7b8265ba
JJ
2719 if (t0
2720 && SSA_NAME_DEF_STMT (t0)
2721 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2722 {
2723 incr_vec[incr_vec_len].initializer = t0;
2724 incr_vec[incr_vec_len++].init_bb
2725 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2726 }
2727 else
2728 {
2729 incr_vec[incr_vec_len].initializer = NULL_TREE;
2730 incr_vec[incr_vec_len++].init_bb = NULL;
2731 }
2732 }
2733 else
2734 {
2735 incr_vec[incr_vec_len].initializer = NULL_TREE;
2736 incr_vec[incr_vec_len++].init_bb = NULL;
2737 }
2738 }
2739}
2740
65d3dce8 2741/* Recursive helper function for record_phi_increments. */
9b92d12b
BS
2742
2743static void
65d3dce8 2744record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2745{
2746 unsigned i;
5b3d5f76 2747 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2748
65d3dce8
BS
2749 if (phi_cand->visited)
2750 return;
2751 phi_cand->visited = 1;
2752
9b92d12b
BS
2753 for (i = 0; i < gimple_phi_num_args (phi); i++)
2754 {
2755 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2756 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2757
3146c60f
WS
2758 if (gimple_code (arg_def) == GIMPLE_PHI)
2759 record_phi_increments_1 (basis, arg_def);
2760 else
9b92d12b 2761 {
3146c60f 2762 widest_int diff;
9b92d12b 2763
3146c60f
WS
2764 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2765 {
2766 diff = -basis->index;
2767 record_increment (phi_cand, diff, PHI_ADJUST);
2768 }
9b92d12b
BS
2769 else
2770 {
2771 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 2772 diff = arg_cand->index - basis->index;
9b92d12b
BS
2773 record_increment (arg_cand, diff, PHI_ADJUST);
2774 }
2775 }
2776 }
2777}
2778
65d3dce8
BS
2779/* Given phi statement PHI that hides a candidate from its BASIS, find
2780 the increments along each incoming arc (recursively handling additional
2781 phis that may be present) and record them. These increments are the
2782 difference in index between the index-adjusting statements and the
2783 index of the basis. */
2784
2785static void
2786record_phi_increments (slsr_cand_t basis, gimple *phi)
2787{
2788 record_phi_increments_1 (basis, phi);
2789 clear_visited (as_a <gphi *> (phi));
2790}
2791
88ca9ea1
BS
2792/* Determine how many times each unique increment occurs in the set
2793 of candidates rooted at C's parent, recording the data in the
2794 increment vector. For each unique increment I, if an initializer
2795 T_0 = stride * I is provided by a candidate that dominates all
2796 candidates with the same increment, also record T_0 for subsequent
2797 use. */
2798
2799static void
2800record_increments (slsr_cand_t c)
2801{
2802 if (!cand_already_replaced (c))
9b92d12b
BS
2803 {
2804 if (!phi_dependent_cand_p (c))
2805 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2806 else
2807 {
2808 /* A candidate with a basis hidden by a phi will have one
2809 increment for its relationship to the index represented by
2810 the phi, and potentially additional increments along each
2811 incoming edge. For the root of the dependency tree (which
2812 has no basis), process just the initial index in case it has
2813 an initializer that can be used by subsequent candidates. */
2814 record_increment (c, c->index, NOT_PHI_ADJUST);
2815
2816 if (c->basis)
2817 record_phi_increments (lookup_cand (c->basis),
2818 lookup_cand (c->def_phi)->cand_stmt);
2819 }
2820 }
88ca9ea1
BS
2821
2822 if (c->sibling)
2823 record_increments (lookup_cand (c->sibling));
2824
2825 if (c->dependent)
2826 record_increments (lookup_cand (c->dependent));
2827}
2828
65d3dce8 2829/* Recursive helper function for phi_incr_cost. */
9b92d12b
BS
2830
2831static int
65d3dce8
BS
2832phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2833 int *savings)
9b92d12b
BS
2834{
2835 unsigned i;
2836 int cost = 0;
2837 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2838 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2839
65d3dce8
BS
2840 if (phi_cand->visited)
2841 return 0;
2842 phi_cand->visited = 1;
2843
9b92d12b
BS
2844 for (i = 0; i < gimple_phi_num_args (phi); i++)
2845 {
2846 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2847 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2848
3146c60f 2849 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 2850 {
3146c60f
WS
2851 int feeding_savings = 0;
2852 tree feeding_var = gimple_phi_result (arg_def);
2853 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2854 if (uses_consumed_by_stmt (feeding_var, phi))
2855 *savings += feeding_savings;
2856 }
2857 else
2858 {
2859 widest_int diff;
2860 slsr_cand_t arg_cand;
2861
2862 /* When the PHI argument is just a pass-through to the base
2863 expression of the hidden basis, the difference is zero minus
2864 the index of the basis. There is no potential savings by
2865 eliminating a statement in this case. */
2866 if (operand_equal_p (arg, phi_cand->base_expr, 0))
9b92d12b 2867 {
3146c60f
WS
2868 arg_cand = (slsr_cand_t)NULL;
2869 diff = -basis->index;
9b92d12b
BS
2870 }
2871 else
2872 {
3146c60f
WS
2873 arg_cand = base_cand_from_table (arg);
2874 diff = arg_cand->index - basis->index;
2875 }
2876
2877 if (incr == diff)
2878 {
2879 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2880 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2881 if (arg_cand)
9b92d12b 2882 {
9b92d12b 2883 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
df11b2ea 2884 if (uses_consumed_by_stmt (lhs, phi))
9b92d12b
BS
2885 *savings += stmt_cost (arg_cand->cand_stmt, true);
2886 }
2887 }
2888 }
2889 }
2890
2891 return cost;
2892}
2893
65d3dce8
BS
2894/* Add up and return the costs of introducing add statements that
2895 require the increment INCR on behalf of candidate C and phi
2896 statement PHI. Accumulate into *SAVINGS the potential savings
2897 from removing existing statements that feed PHI and have no other
2898 uses. */
2899
2900static int
2901phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2902 int *savings)
2903{
2904 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2905 clear_visited (as_a <gphi *> (phi));
2906 return retval;
2907}
2908
88ca9ea1
BS
2909/* Return the first candidate in the tree rooted at C that has not
2910 already been replaced, favoring siblings over dependents. */
2911
2912static slsr_cand_t
2913unreplaced_cand_in_tree (slsr_cand_t c)
2914{
2915 if (!cand_already_replaced (c))
2916 return c;
2917
2918 if (c->sibling)
2919 {
2920 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2921 if (sib)
2922 return sib;
2923 }
2924
2925 if (c->dependent)
2926 {
2927 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2928 if (dep)
2929 return dep;
2930 }
2931
2932 return NULL;
2933}
2934
2935/* Return TRUE if the candidates in the tree rooted at C should be
2936 optimized for speed, else FALSE. We estimate this based on the block
2937 containing the most dominant candidate in the tree that has not yet
2938 been replaced. */
2939
2940static bool
2941optimize_cands_for_speed_p (slsr_cand_t c)
2942{
2943 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2944 gcc_assert (c2);
2945 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2946}
2947
2948/* Add COST_IN to the lowest cost of any dependent path starting at
2949 candidate C or any of its siblings, counting only candidates along
2950 such paths with increment INCR. Assume that replacing a candidate
2951 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2952 statements that would go dead. If COUNT_PHIS is true, include
2953 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2954
2955static int
9b92d12b 2956lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2957 const widest_int &incr, bool count_phis)
88ca9ea1 2958{
9b92d12b 2959 int local_cost, sib_cost, savings = 0;
807e902e 2960 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2961
2962 if (cand_already_replaced (c))
2963 local_cost = cost_in;
27bcd47c 2964 else if (incr == cand_incr)
88ca9ea1
BS
2965 local_cost = cost_in - repl_savings - c->dead_savings;
2966 else
2967 local_cost = cost_in - c->dead_savings;
2968
9b92d12b
BS
2969 if (count_phis
2970 && phi_dependent_cand_p (c)
2971 && !cand_already_replaced (c))
2972 {
355fe088 2973 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2974 local_cost += phi_incr_cost (c, incr, phi, &savings);
2975
df11b2ea 2976 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
2977 local_cost -= savings;
2978 }
2979
88ca9ea1
BS
2980 if (c->dependent)
2981 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
2982 lookup_cand (c->dependent), incr,
2983 count_phis);
88ca9ea1
BS
2984
2985 if (c->sibling)
2986 {
2987 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
2988 lookup_cand (c->sibling), incr,
2989 count_phis);
88ca9ea1
BS
2990 local_cost = MIN (local_cost, sib_cost);
2991 }
2992
2993 return local_cost;
2994}
2995
2996/* Compute the total savings that would accrue from all replacements
2997 in the candidate tree rooted at C, counting only candidates with
2998 increment INCR. Assume that replacing a candidate reduces cost
2999 by REPL_SAVINGS. Also account for savings from statements that
3000 would go dead. */
3001
3002static int
807e902e 3003total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 3004 bool count_phis)
88ca9ea1
BS
3005{
3006 int savings = 0;
807e902e 3007 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 3008
27bcd47c 3009 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
3010 savings += repl_savings + c->dead_savings;
3011
9b92d12b
BS
3012 if (count_phis
3013 && phi_dependent_cand_p (c)
3014 && !cand_already_replaced (c))
3015 {
3016 int phi_savings = 0;
355fe088 3017 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3018 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
3019
df11b2ea 3020 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3021 savings += phi_savings;
3022 }
3023
88ca9ea1 3024 if (c->dependent)
9b92d12b
BS
3025 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3026 count_phis);
88ca9ea1
BS
3027
3028 if (c->sibling)
9b92d12b
BS
3029 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3030 count_phis);
88ca9ea1
BS
3031
3032 return savings;
3033}
3034
3035/* Use target-specific costs to determine and record which increments
3036 in the current candidate tree are profitable to replace, assuming
3037 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3038 the candidate tree.
3039
3040 One slight limitation here is that we don't account for the possible
3041 introduction of casts in some cases. See replace_one_candidate for
3042 the cases where these are introduced. This should probably be cleaned
3043 up sometime. */
3044
3045static void
ef4bddc2 3046analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
3047{
3048 unsigned i;
3049
3050 for (i = 0; i < incr_vec_len; i++)
3051 {
27bcd47c 3052 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
3053
3054 /* If somehow this increment is bigger than a HWI, we won't
3055 be optimizing candidates that use it. And if the increment
3056 has a count of zero, nothing will be done with it. */
807e902e 3057 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
3058 incr_vec[i].cost = COST_INFINITE;
3059
3060 /* Increments of 0, 1, and -1 are always profitable to replace,
3061 because they always replace a multiply or add with an add or
3062 copy, and may cause one or more existing instructions to go
3063 dead. Exception: -1 can't be assumed to be profitable for
3064 pointer addition. */
3065 else if (incr == 0
3066 || incr == 1
3067 || (incr == -1
457e189d 3068 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1 3069 incr_vec[i].cost = COST_NEUTRAL;
2d4035dc 3070
0b56e9ad
BS
3071 /* If we need to add an initializer, give up if a cast from the
3072 candidate's type to its stride's type can lose precision.
3073 Note that this already takes into account that the stride may
3074 have been cast to a wider type, in which case this test won't
3075 fire. Example:
6b5eea61
BS
3076
3077 short int _1;
3078 _2 = (int) _1;
3079 _3 = _2 * 10;
0b56e9ad 3080 _4 = x + _3; ADD: x + (10 * (int)_1) : int
6b5eea61 3081 _5 = _2 * 15;
0b56e9ad
BS
3082 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3083
3084 Although the stride was a short int initially, the stride
3085 used in the analysis has been widened to an int, and such
3086 widening will be done in the initializer as well. */
6b5eea61
BS
3087 else if (!incr_vec[i].initializer
3088 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad
BS
3089 && !legal_cast_p_1 (first_dep->stride_type,
3090 TREE_TYPE (gimple_assign_lhs
3091 (first_dep->cand_stmt))))
6b5eea61
BS
3092 incr_vec[i].cost = COST_INFINITE;
3093
50251425
BS
3094 /* If we need to add an initializer, make sure we don't introduce
3095 a multiply by a pointer type, which can happen in certain cast
0b56e9ad 3096 scenarios. */
50251425
BS
3097 else if (!incr_vec[i].initializer
3098 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad 3099 && POINTER_TYPE_P (first_dep->stride_type))
50251425
BS
3100 incr_vec[i].cost = COST_INFINITE;
3101
88ca9ea1
BS
3102 /* For any other increment, if this is a multiply candidate, we
3103 must introduce a temporary T and initialize it with
3104 T_0 = stride * increment. When optimizing for speed, walk the
3105 candidate tree to calculate the best cost reduction along any
3106 path; if it offsets the fixed cost of inserting the initializer,
3107 replacing the increment is profitable. When optimizing for
3108 size, instead calculate the total cost reduction from replacing
3109 all candidates with this increment. */
3110 else if (first_dep->kind == CAND_MULT)
3111 {
3112 int cost = mult_by_coeff_cost (incr, mode, speed);
d5f6f04c
BS
3113 int repl_savings;
3114
3115 if (tree_fits_shwi_p (first_dep->stride))
3116 {
3117 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3118 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3119 }
3120 else
3121 repl_savings = mul_cost (speed, mode);
3122 repl_savings -= add_cost (speed, mode);
3123
88ca9ea1
BS
3124 if (speed)
3125 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 3126 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 3127 else
9b92d12b
BS
3128 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3129 COUNT_PHIS);
88ca9ea1
BS
3130
3131 incr_vec[i].cost = cost;
3132 }
3133
3134 /* If this is an add candidate, the initializer may already
3135 exist, so only calculate the cost of the initializer if it
3136 doesn't. We are replacing one add with another here, so the
3137 known replacement savings is zero. We will account for removal
3138 of dead instructions in lowest_cost_path or total_savings. */
3139 else
3140 {
3141 int cost = 0;
3142 if (!incr_vec[i].initializer)
3143 cost = mult_by_coeff_cost (incr, mode, speed);
3144
3145 if (speed)
9b92d12b
BS
3146 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3147 DONT_COUNT_PHIS);
88ca9ea1 3148 else
9b92d12b
BS
3149 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3150 DONT_COUNT_PHIS);
88ca9ea1
BS
3151
3152 incr_vec[i].cost = cost;
3153 }
3154 }
3155}
3156
3157/* Return the nearest common dominator of BB1 and BB2. If the blocks
3158 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3159 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3160 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3161 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3162
3163static basic_block
3164ncd_for_two_cands (basic_block bb1, basic_block bb2,
3165 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3166{
3167 basic_block ncd;
3168
3169 if (!bb1)
3170 {
3171 *where = c2;
3172 return bb2;
3173 }
3174
3175 if (!bb2)
3176 {
3177 *where = c1;
3178 return bb1;
3179 }
3180
3181 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3182
3183 /* If both candidates are in the same block, the earlier
3184 candidate wins. */
3185 if (bb1 == ncd && bb2 == ncd)
3186 {
3187 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3188 *where = c2;
3189 else
3190 *where = c1;
3191 }
3192
3193 /* Otherwise, if one of them produced a candidate in the
3194 dominator, that one wins. */
3195 else if (bb1 == ncd)
3196 *where = c1;
3197
3198 else if (bb2 == ncd)
3199 *where = c2;
3200
3201 /* If neither matches the dominator, neither wins. */
3202 else
3203 *where = NULL;
3204
3205 return ncd;
3206}
3207
9b92d12b
BS
3208/* Consider all candidates that feed PHI. Find the nearest common
3209 dominator of those candidates requiring the given increment INCR.
3210 Further find and return the nearest common dominator of this result
3211 with block NCD. If the returned block contains one or more of the
3212 candidates, return the earliest candidate in the block in *WHERE. */
3213
3214static basic_block
538dd0b7 3215ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
3216 basic_block ncd, slsr_cand_t *where)
3217{
3218 unsigned i;
3219 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3220 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3221
3222 for (i = 0; i < gimple_phi_num_args (phi); i++)
3223 {
3224 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3225 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3226
3146c60f
WS
3227 if (gimple_code (arg_def) == GIMPLE_PHI)
3228 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd, where);
3229 else
9b92d12b 3230 {
3146c60f 3231 widest_int diff;
9b92d12b 3232
3146c60f
WS
3233 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3234 diff = -basis->index;
3235 else
9b92d12b
BS
3236 {
3237 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 3238 diff = arg_cand->index - basis->index;
9b92d12b 3239 }
3146c60f
WS
3240
3241 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3242
3243 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3244 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3245 }
3246 }
3247
3248 return ncd;
3249}
3250
3251/* Consider the candidate C together with any candidates that feed
3252 C's phi dependence (if any). Find and return the nearest common
3253 dominator of those candidates requiring the given increment INCR.
3254 If the returned block contains one or more of the candidates,
3255 return the earliest candidate in the block in *WHERE. */
3256
3257static basic_block
807e902e 3258ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3259{
3260 basic_block ncd = NULL;
3261
3262 if (cand_abs_increment (c) == incr)
3263 {
3264 ncd = gimple_bb (c->cand_stmt);
3265 *where = c;
3266 }
3267
3268 if (phi_dependent_cand_p (c))
538dd0b7
DM
3269 ncd = ncd_with_phi (c, incr,
3270 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3271 ncd, where);
3272
3273 return ncd;
3274}
3275
88ca9ea1
BS
3276/* Consider all candidates in the tree rooted at C for which INCR
3277 represents the required increment of C relative to its basis.
3278 Find and return the basic block that most nearly dominates all
3279 such candidates. If the returned block contains one or more of
3280 the candidates, return the earliest candidate in the block in
3281 *WHERE. */
3282
3283static basic_block
807e902e 3284nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3285 slsr_cand_t *where)
3286{
3287 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3288 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3289
3290 /* First find the NCD of all siblings and dependents. */
3291 if (c->sibling)
3292 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3293 incr, &sib_where);
3294 if (c->dependent)
3295 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3296 incr, &dep_where);
3297 if (!sib_ncd && !dep_ncd)
3298 {
3299 new_where = NULL;
3300 ncd = NULL;
3301 }
3302 else if (sib_ncd && !dep_ncd)
3303 {
3304 new_where = sib_where;
3305 ncd = sib_ncd;
3306 }
3307 else if (dep_ncd && !sib_ncd)
3308 {
3309 new_where = dep_where;
3310 ncd = dep_ncd;
3311 }
3312 else
3313 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3314 dep_where, &new_where);
3315
3316 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3317 in (and nor do any increments for feeding defs of a phi-dependence),
3318 then the result depends only on siblings and dependents. */
3319 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3320
9b92d12b 3321 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3322 {
3323 *where = new_where;
3324 return ncd;
3325 }
3326
3327 /* Otherwise, compare this candidate with the result from all siblings
3328 and dependents. */
88ca9ea1
BS
3329 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3330
3331 return ncd;
3332}
3333
3334/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3335
3336static inline bool
3337profitable_increment_p (unsigned index)
3338{
3339 return (incr_vec[index].cost <= COST_NEUTRAL);
3340}
3341
3342/* For each profitable increment in the increment vector not equal to
3343 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3344 dominator of all statements in the candidate chain rooted at C
3345 that require that increment, and insert an initializer
3346 T_0 = stride * increment at that location. Record T_0 with the
3347 increment record. */
3348
3349static void
3350insert_initializers (slsr_cand_t c)
3351{
3352 unsigned i;
88ca9ea1
BS
3353
3354 for (i = 0; i < incr_vec_len; i++)
3355 {
3356 basic_block bb;
3357 slsr_cand_t where = NULL;
538dd0b7 3358 gassign *init_stmt;
0b56e9ad
BS
3359 gassign *cast_stmt = NULL;
3360 tree new_name, incr_tree, init_stride;
807e902e 3361 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3362
3363 if (!profitable_increment_p (i)
807e902e
KZ
3364 || incr == 1
3365 || (incr == -1
6e3d8cb4 3366 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
807e902e 3367 || incr == 0)
88ca9ea1
BS
3368 continue;
3369
3370 /* We may have already identified an existing initializer that
3371 will suffice. */
3372 if (incr_vec[i].initializer)
3373 {
3374 if (dump_file && (dump_flags & TDF_DETAILS))
3375 {
3376 fputs ("Using existing initializer: ", dump_file);
3377 print_gimple_stmt (dump_file,
3378 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
4af78ef8 3379 0, TDF_NONE);
88ca9ea1
BS
3380 }
3381 continue;
3382 }
3383
3384 /* Find the block that most closely dominates all candidates
3385 with this increment. If there is at least one candidate in
3386 that block, the earliest one will be returned in WHERE. */
3387 bb = nearest_common_dominator_for_cands (c, incr, &where);
3388
3e75ec3f
BS
3389 /* If the NCD is not dominated by the block containing the
3390 definition of the stride, we can't legally insert a
3391 single initializer. Mark the increment as unprofitable
3392 so we don't make any replacements. FIXME: Multiple
3393 initializers could be placed with more analysis. */
3394 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3395 basic_block stride_bb = gimple_bb (stride_def);
3396
3397 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3398 {
3399 if (dump_file && (dump_flags & TDF_DETAILS))
3400 fprintf (dump_file,
3401 "Initializer #%d cannot be legally placed\n", i);
3402 incr_vec[i].cost = COST_INFINITE;
3403 continue;
3404 }
3405
0b56e9ad
BS
3406 /* If the nominal stride has a different type than the recorded
3407 stride type, build a cast from the nominal stride to that type. */
3408 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3409 {
3410 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3411 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3412 }
3413 else
3414 init_stride = c->stride;
3415
88ca9ea1 3416 /* Create a new SSA name to hold the initializer's value. */
0b56e9ad 3417 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
88ca9ea1
BS
3418 incr_vec[i].initializer = new_name;
3419
3420 /* Create the initializer and insert it in the latest possible
3421 dominating position. */
0b56e9ad 3422 incr_tree = wide_int_to_tree (c->stride_type, incr);
0d0e4a03 3423 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
0b56e9ad 3424 init_stride, incr_tree);
88ca9ea1
BS
3425 if (where)
3426 {
3427 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
0b56e9ad
BS
3428 location_t loc = gimple_location (where->cand_stmt);
3429
3430 if (cast_stmt)
3431 {
3432 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3433 gimple_set_location (cast_stmt, loc);
3434 }
3435
88ca9ea1 3436 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
0b56e9ad 3437 gimple_set_location (init_stmt, loc);
88ca9ea1
BS
3438 }
3439 else
3440 {
3441 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3442 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
0b56e9ad 3443 location_t loc = gimple_location (basis_stmt);
88ca9ea1 3444
1697df8c 3445 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
0b56e9ad
BS
3446 {
3447 if (cast_stmt)
3448 {
3449 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3450 gimple_set_location (cast_stmt, loc);
3451 }
3452 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3453 }
88ca9ea1 3454 else
0b56e9ad
BS
3455 {
3456 if (cast_stmt)
3457 {
3458 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3459 gimple_set_location (cast_stmt, loc);
3460 }
06f97084 3461 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
0b56e9ad 3462 }
88ca9ea1
BS
3463
3464 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3465 }
3466
3467 if (dump_file && (dump_flags & TDF_DETAILS))
3468 {
0b56e9ad
BS
3469 if (cast_stmt)
3470 {
3471 fputs ("Inserting stride cast: ", dump_file);
ef6cb4c7 3472 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 3473 }
88ca9ea1 3474 fputs ("Inserting initializer: ", dump_file);
ef6cb4c7 3475 print_gimple_stmt (dump_file, init_stmt, 0);
88ca9ea1
BS
3476 }
3477 }
3478}
3479
65d3dce8 3480/* Recursive helper function for all_phi_incrs_profitable. */
9b92d12b
BS
3481
3482static bool
65d3dce8 3483all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
9b92d12b
BS
3484{
3485 unsigned i;
3486 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3487 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 3488
65d3dce8
BS
3489 if (phi_cand->visited)
3490 return true;
3491
3492 phi_cand->visited = 1;
3493 (*spread)++;
3494
c34923c4
BS
3495 /* If the basis doesn't dominate the PHI (including when the PHI is
3496 in the same block as the basis), we won't be able to create a PHI
3497 using the basis here. */
3498 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3499 basic_block phi_bb = gimple_bb (phi);
3500
3501 if (phi_bb == basis_bb
3502 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3503 return false;
3504
9b92d12b
BS
3505 for (i = 0; i < gimple_phi_num_args (phi); i++)
3506 {
c34923c4
BS
3507 /* If the PHI arg resides in a block not dominated by the basis,
3508 we won't be able to create a PHI using the basis here. */
3509 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3510
3511 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3512 return false;
3513
9b92d12b 3514 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3515 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3516
3146c60f 3517 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 3518 {
3146c60f
WS
3519 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def), spread)
3520 || *spread > MAX_SPREAD)
3521 return false;
3522 }
3523 else
3524 {
3525 int j;
3526 widest_int increment;
9b92d12b 3527
3146c60f
WS
3528 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3529 increment = -basis->index;
9b92d12b
BS
3530 else
3531 {
9b92d12b 3532 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f
WS
3533 increment = arg_cand->index - basis->index;
3534 }
9b92d12b 3535
3146c60f
WS
3536 if (!address_arithmetic_p && wi::neg_p (increment))
3537 increment = -increment;
9b92d12b 3538
3146c60f 3539 j = incr_vec_index (increment);
9b92d12b 3540
3146c60f
WS
3541 if (dump_file && (dump_flags & TDF_DETAILS))
3542 {
3543 fprintf (dump_file, " Conditional candidate %d, phi: ",
3544 c->cand_num);
3545 print_gimple_stmt (dump_file, phi, 0);
3546 fputs (" increment: ", dump_file);
3547 print_decs (increment, dump_file);
3548 if (j < 0)
3549 fprintf (dump_file,
3550 "\n Not replaced; incr_vec overflow.\n");
3551 else {
3552 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3553 if (profitable_increment_p (j))
3554 fputs (" Replacing...\n", dump_file);
3555 else
3556 fputs (" Not replaced.\n", dump_file);
3557 }
9b92d12b 3558 }
3146c60f
WS
3559
3560 if (j < 0 || !profitable_increment_p (j))
3561 return false;
9b92d12b
BS
3562 }
3563 }
3564
3565 return true;
3566}
3567
65d3dce8
BS
3568/* Return TRUE iff all required increments for candidates feeding PHI
3569 are profitable (and legal!) to replace on behalf of candidate C. */
3570
3571static bool
3572all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3573{
3574 int spread = 0;
3575 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3576 clear_visited (phi);
3577 return retval;
3578}
3579
88ca9ea1
BS
3580/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3581 type TO_TYPE, and insert it in front of the statement represented
3582 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3583 the new SSA name. */
3584
3585static tree
a7a7d10e 3586introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3587{
3588 tree cast_lhs;
538dd0b7 3589 gassign *cast_stmt;
88ca9ea1
BS
3590 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3591
a7a7d10e 3592 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3593 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3594 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3595 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3596
3597 if (dump_file && (dump_flags & TDF_DETAILS))
3598 {
3599 fputs (" Inserting: ", dump_file);
ef6cb4c7 3600 print_gimple_stmt (dump_file, cast_stmt, 0);
88ca9ea1
BS
3601 }
3602
3603 return cast_lhs;
3604}
3605
3606/* Replace the RHS of the statement represented by candidate C with
3607 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3608 leave C unchanged or just interchange its operands. The original
3609 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3610 If the replacement was made and we are doing a details dump,
3611 return the revised statement, else NULL. */
3612
355fe088 3613static gimple *
88ca9ea1
BS
3614replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3615 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3616 slsr_cand_t c)
3617{
3618 if (new_code != old_code
3619 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3620 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3621 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3622 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3623 {
3624 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3625 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3626 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3627 update_stmt (gsi_stmt (gsi));
d71dc990 3628 while (cc)
9fbbba71 3629 {
9fbbba71 3630 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3631 cc = lookup_cand (cc->next_interp);
9fbbba71 3632 }
88ca9ea1
BS
3633
3634 if (dump_file && (dump_flags & TDF_DETAILS))
3635 return gsi_stmt (gsi);
3636 }
3637
3638 else if (dump_file && (dump_flags & TDF_DETAILS))
3639 fputs (" (duplicate, not actually replacing)\n", dump_file);
3640
3641 return NULL;
3642}
3643
3644/* Strength-reduce the statement represented by candidate C by replacing
3645 it with an equivalent addition or subtraction. I is the index into
3646 the increment vector identifying C's increment. NEW_VAR is used to
3647 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3648 is the rhs1 to use in creating the add/subtract. */
3649
3650static void
a7a7d10e 3651replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3652{
355fe088 3653 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3654 tree orig_rhs1, orig_rhs2;
3655 tree rhs2;
3656 enum tree_code orig_code, repl_code;
807e902e 3657 widest_int cand_incr;
88ca9ea1
BS
3658
3659 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3660 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3661 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3662 cand_incr = cand_increment (c);
3663
9d502741
BS
3664 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3665 a copy statement under another interpretation. */
3666 if (!orig_rhs2)
3667 return;
3668
88ca9ea1
BS
3669 if (dump_file && (dump_flags & TDF_DETAILS))
3670 {
3671 fputs ("Replacing: ", dump_file);
ef6cb4c7 3672 print_gimple_stmt (dump_file, c->cand_stmt, 0);
88ca9ea1
BS
3673 stmt_to_print = c->cand_stmt;
3674 }
3675
3676 if (address_arithmetic_p)
3677 repl_code = POINTER_PLUS_EXPR;
3678 else
3679 repl_code = PLUS_EXPR;
3680
3681 /* If the increment has an initializer T_0, replace the candidate
3682 statement with an add of the basis name and the initializer. */
3683 if (incr_vec[i].initializer)
3684 {
3685 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3686 tree orig_type = TREE_TYPE (orig_rhs2);
3687
3688 if (types_compatible_p (orig_type, init_type))
3689 rhs2 = incr_vec[i].initializer;
3690 else
3691 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3692 incr_vec[i].initializer);
88ca9ea1 3693
27bcd47c 3694 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3695 {
3696 gcc_assert (repl_code == PLUS_EXPR);
3697 repl_code = MINUS_EXPR;
3698 }
3699
3700 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3701 orig_code, orig_rhs1, orig_rhs2,
3702 c);
3703 }
3704
3705 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3706 with a subtract of the stride from the basis name, a copy
3707 from the basis name, or an add of the stride to the basis
3708 name, respectively. It may be necessary to introduce a
3709 cast (or reuse an existing cast). */
807e902e 3710 else if (cand_incr == 1)
88ca9ea1
BS
3711 {
3712 tree stride_type = TREE_TYPE (c->stride);
3713 tree orig_type = TREE_TYPE (orig_rhs2);
3714
3715 if (types_compatible_p (orig_type, stride_type))
3716 rhs2 = c->stride;
3717 else
a7a7d10e 3718 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3719
3720 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3721 orig_code, orig_rhs1, orig_rhs2,
3722 c);
3723 }
3724
807e902e 3725 else if (cand_incr == -1)
88ca9ea1
BS
3726 {
3727 tree stride_type = TREE_TYPE (c->stride);
3728 tree orig_type = TREE_TYPE (orig_rhs2);
3729 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3730
3731 if (types_compatible_p (orig_type, stride_type))
3732 rhs2 = c->stride;
3733 else
a7a7d10e 3734 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3735
3736 if (orig_code != MINUS_EXPR
3737 || !operand_equal_p (basis_name, orig_rhs1, 0)
3738 || !operand_equal_p (rhs2, orig_rhs2, 0))
3739 {
3740 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3741 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3742 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3743 update_stmt (gsi_stmt (gsi));
d71dc990 3744 while (cc)
9fbbba71 3745 {
9fbbba71 3746 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3747 cc = lookup_cand (cc->next_interp);
9fbbba71 3748 }
88ca9ea1
BS
3749
3750 if (dump_file && (dump_flags & TDF_DETAILS))
3751 stmt_to_print = gsi_stmt (gsi);
3752 }
3753 else if (dump_file && (dump_flags & TDF_DETAILS))
3754 fputs (" (duplicate, not actually replacing)\n", dump_file);
3755 }
3756
807e902e 3757 else if (cand_incr == 0)
88ca9ea1
BS
3758 {
3759 tree lhs = gimple_assign_lhs (c->cand_stmt);
3760 tree lhs_type = TREE_TYPE (lhs);
3761 tree basis_type = TREE_TYPE (basis_name);
3762
3763 if (types_compatible_p (lhs_type, basis_type))
3764 {
538dd0b7 3765 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1 3766 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3767 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3768 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3769 gsi_replace (&gsi, copy_stmt, false);
d71dc990 3770 while (cc)
9fbbba71 3771 {
9fbbba71 3772 cc->cand_stmt = copy_stmt;
98aaa1a6 3773 cc = lookup_cand (cc->next_interp);
9fbbba71 3774 }
88ca9ea1
BS
3775
3776 if (dump_file && (dump_flags & TDF_DETAILS))
3777 stmt_to_print = copy_stmt;
3778 }
3779 else
3780 {
3781 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3782 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
d71dc990 3783 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3784 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3785 gsi_replace (&gsi, cast_stmt, false);
d71dc990 3786 while (cc)
9fbbba71 3787 {
9fbbba71 3788 cc->cand_stmt = cast_stmt;
98aaa1a6 3789 cc = lookup_cand (cc->next_interp);
9fbbba71 3790 }
88ca9ea1
BS
3791
3792 if (dump_file && (dump_flags & TDF_DETAILS))
3793 stmt_to_print = cast_stmt;
3794 }
3795 }
3796 else
3797 gcc_unreachable ();
3798
3799 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3800 {
3801 fputs ("With: ", dump_file);
ef6cb4c7 3802 print_gimple_stmt (dump_file, stmt_to_print, 0);
88ca9ea1
BS
3803 fputs ("\n", dump_file);
3804 }
3805}
3806
3807/* For each candidate in the tree rooted at C, replace it with
3808 an increment if such has been shown to be profitable. */
3809
3810static void
3811replace_profitable_candidates (slsr_cand_t c)
3812{
3813 if (!cand_already_replaced (c))
3814 {
807e902e 3815 widest_int increment = cand_abs_increment (c);
88ca9ea1 3816 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3817 int i;
88ca9ea1
BS
3818
3819 i = incr_vec_index (increment);
3820
3821 /* Only process profitable increments. Nothing useful can be done
3822 to a cast or copy. */
7bf55a70
BS
3823 if (i >= 0
3824 && profitable_increment_p (i)
fbcdc43e 3825 && orig_code != SSA_NAME
d822570f 3826 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3827 {
9b92d12b
BS
3828 if (phi_dependent_cand_p (c))
3829 {
c34923c4 3830 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
9b92d12b
BS
3831
3832 if (all_phi_incrs_profitable (c, phi))
3833 {
3834 /* Look up the LHS SSA name from C's basis. This will be
3835 the RHS1 of the adds we will introduce to create new
3836 phi arguments. */
3837 slsr_cand_t basis = lookup_cand (c->basis);
3838 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3839
3840 /* Create a new phi statement that will represent C's true
3841 basis after the transformation is complete. */
3842 location_t loc = gimple_location (c->cand_stmt);
3843 tree name = create_phi_basis (c, phi, basis_name,
3844 loc, UNKNOWN_STRIDE);
3845
3846 /* Replace C with an add of the new basis phi and the
3847 increment. */
a7a7d10e 3848 replace_one_candidate (c, i, name);
9b92d12b
BS
3849 }
3850 }
3851 else
3852 {
3853 slsr_cand_t basis = lookup_cand (c->basis);
3854 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3855 replace_one_candidate (c, i, basis_name);
9b92d12b 3856 }
88ca9ea1
BS
3857 }
3858 }
3859
3860 if (c->sibling)
3861 replace_profitable_candidates (lookup_cand (c->sibling));
3862
3863 if (c->dependent)
3864 replace_profitable_candidates (lookup_cand (c->dependent));
3865}
3866\f
f9453c07
BS
3867/* Analyze costs of related candidates in the candidate vector,
3868 and make beneficial replacements. */
3869
3870static void
3871analyze_candidates_and_replace (void)
3872{
3873 unsigned i;
3874 slsr_cand_t c;
3875
3876 /* Each candidate that has a null basis and a non-null
3877 dependent is the root of a tree of related statements.
3878 Analyze each tree to determine a subset of those
98aaa1a6
BC
3879 statements that can be replaced with maximum benefit.
3880
3881 Note the first NULL element is skipped. */
3882 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
f9453c07
BS
3883 {
3884 slsr_cand_t first_dep;
3885
3886 if (c->basis != 0 || c->dependent == 0)
3887 continue;
3888
3889 if (dump_file && (dump_flags & TDF_DETAILS))
3890 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3891 c->cand_num);
3892
3893 first_dep = lookup_cand (c->dependent);
3894
2749c8f6
BS
3895 /* If this is a chain of CAND_REFs, unconditionally replace
3896 each of them with a strength-reduced data reference. */
3897 if (c->kind == CAND_REF)
3898 replace_refs (c);
3899
9b92d12b
BS
3900 /* If the common stride of all related candidates is a known
3901 constant, each candidate without a phi-dependence can be
3902 profitably replaced. Each replaces a multiply by a single
3903 add, with the possibility that a feeding add also goes dead.
3904 A candidate with a phi-dependence is replaced only if the
3905 compensation code it requires is offset by the strength
3906 reduction savings. */
3907 else if (TREE_CODE (c->stride) == INTEGER_CST)
3908 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3909
88ca9ea1
BS
3910 /* When the stride is an SSA name, it may still be profitable
3911 to replace some or all of the dependent candidates, depending
3912 on whether the introduced increments can be reused, or are
3913 less expensive to calculate than the replaced statements. */
3914 else
3915 {
ef4bddc2 3916 machine_mode mode;
88ca9ea1
BS
3917 bool speed;
3918
3919 /* Determine whether we'll be generating pointer arithmetic
3920 when replacing candidates. */
3921 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3922 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3923
3924 /* If all candidates have already been replaced under other
3925 interpretations, nothing remains to be done. */
4b847da9 3926 if (!count_candidates (c))
88ca9ea1
BS
3927 continue;
3928
3929 /* Construct an array of increments for this candidate chain. */
4b847da9 3930 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3931 incr_vec_len = 0;
3932 record_increments (c);
3933
3934 /* Determine which increments are profitable to replace. */
3935 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3936 speed = optimize_cands_for_speed_p (c);
3937 analyze_increments (first_dep, mode, speed);
3938
3939 /* Insert initializers of the form T_0 = stride * increment
3940 for use in profitable replacements. */
3941 insert_initializers (first_dep);
3942 dump_incr_vec ();
3943
3944 /* Perform the replacements. */
3945 replace_profitable_candidates (first_dep);
3946 free (incr_vec);
3947 }
f9453c07 3948 }
b115e803
BS
3949
3950 /* For conditional candidates, we may have uncommitted insertions
3951 on edges to clean up. */
3952 gsi_commit_edge_inserts ();
f9453c07
BS
3953}
3954
17795822
TS
3955namespace {
3956
3957const pass_data pass_data_strength_reduction =
be55bfe6
TS
3958{
3959 GIMPLE_PASS, /* type */
3960 "slsr", /* name */
3961 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3962 TV_GIMPLE_SLSR, /* tv_id */
3963 ( PROP_cfg | PROP_ssa ), /* properties_required */
3964 0, /* properties_provided */
3965 0, /* properties_destroyed */
3966 0, /* todo_flags_start */
3bea341f 3967 0, /* todo_flags_finish */
be55bfe6
TS
3968};
3969
17795822 3970class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
3971{
3972public:
3973 pass_strength_reduction (gcc::context *ctxt)
3974 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3975 {}
3976
3977 /* opt_pass methods: */
3978 virtual bool gate (function *) { return flag_tree_slsr; }
3979 virtual unsigned int execute (function *);
3980
3981}; // class pass_strength_reduction
3982
3983unsigned
3984pass_strength_reduction::execute (function *fun)
f9453c07 3985{
f9453c07
BS
3986 /* Create the obstack where candidates will reside. */
3987 gcc_obstack_init (&cand_obstack);
3988
98aaa1a6 3989 /* Allocate the candidate vector and initialize the first NULL element. */
9771b263 3990 cand_vec.create (128);
98aaa1a6 3991 cand_vec.safe_push (NULL);
f9453c07
BS
3992
3993 /* Allocate the mapping from statements to candidate indices. */
355fe088 3994 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
3995
3996 /* Create the obstack where candidate chains will reside. */
3997 gcc_obstack_init (&chain_obstack);
3998
3cfd4469 3999 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 4000 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 4001
96d75a2c 4002 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 4003 alt_base_map = new hash_map<tree, tree>;
96d75a2c 4004
f9453c07
BS
4005 /* Initialize the loop optimizer. We need to detect flow across
4006 back edges, and this gives us dominator information as well. */
4007 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4008
f9453c07
BS
4009 /* Walk the CFG in predominator order looking for strength reduction
4010 candidates. */
4d9192b5 4011 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 4012 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
4013
4014 if (dump_file && (dump_flags & TDF_DETAILS))
4015 {
4016 dump_cand_vec ();
4017 dump_cand_chains ();
4018 }
4019
b787e7a2 4020 delete alt_base_map;
96d75a2c
YZ
4021 free_affine_expand_cache (&name_expansions);
4022
f9453c07
BS
4023 /* Analyze costs and make appropriate replacements. */
4024 analyze_candidates_and_replace ();
4025
f9453c07 4026 loop_optimizer_finalize ();
c203e8a7
TS
4027 delete base_cand_map;
4028 base_cand_map = NULL;
f9453c07 4029 obstack_free (&chain_obstack, NULL);
b787e7a2 4030 delete stmt_cand_map;
9771b263 4031 cand_vec.release ();
f9453c07 4032 obstack_free (&cand_obstack, NULL);
f9453c07
BS
4033
4034 return 0;
4035}
4036
17795822
TS
4037} // anon namespace
4038
27a4cd48
DM
4039gimple_opt_pass *
4040make_pass_strength_reduction (gcc::context *ctxt)
4041{
4042 return new pass_strength_reduction (ctxt);
4043}