]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
runtime: copy mstats code from Go 1.7 runtime
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
818ab71a 2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
ccdbfe93 55#include "params.h"
4484a35a 56#include "tree-ssa-address.h"
96d75a2c 57#include "tree-affine.h"
9b2b7279 58#include "builtins.h"
f9453c07
BS
59\f
60/* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
9b92d12b
BS
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
f9453c07
BS
213
214
215/* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217typedef unsigned cand_idx;
218
219/* The kind of candidate. */
220enum cand_kind
221{
222 CAND_MULT,
2749c8f6 223 CAND_ADD,
9b92d12b
BS
224 CAND_REF,
225 CAND_PHI
f9453c07
BS
226};
227
228struct slsr_cand_d
229{
230 /* The candidate statement S1. */
355fe088 231 gimple *cand_stmt;
f9453c07 232
3cfd4469
BS
233 /* The base expression B: often an SSA name, but not always. */
234 tree base_expr;
f9453c07
BS
235
236 /* The stride S. */
237 tree stride;
238
239 /* The index constant i. */
807e902e 240 widest_int index;
f9453c07 241
3cfd4469 242 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 243 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
f9453c07
BS
247 tree cand_type;
248
249 /* The kind of candidate (CAND_MULT, etc.). */
250 enum cand_kind kind;
251
252 /* Index of this candidate in the candidate vector. */
253 cand_idx cand_num;
254
255 /* Index of the next candidate record for the same statement.
256 A statement may be useful in more than one way (e.g., due to
257 commutativity). So we can have multiple "interpretations"
258 of a statement. */
259 cand_idx next_interp;
260
261 /* Index of the basis statement S0, if any, in the candidate vector. */
262 cand_idx basis;
263
264 /* First candidate for which this candidate is a basis, if one exists. */
265 cand_idx dependent;
266
267 /* Next candidate having the same basis as this one. */
268 cand_idx sibling;
269
9b92d12b
BS
270 /* If this is a conditional candidate, the CAND_PHI candidate
271 that defines the base SSA name B. */
272 cand_idx def_phi;
f9453c07
BS
273
274 /* Savings that can be expected from eliminating dead code if this
275 candidate is replaced. */
276 int dead_savings;
277};
278
279typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
280typedef const struct slsr_cand_d *const_slsr_cand_t;
281
282/* Pointers to candidates are chained together as part of a mapping
3cfd4469 283 from base expressions to the candidates that use them. */
f9453c07
BS
284
285struct cand_chain_d
286{
3cfd4469
BS
287 /* Base expression for the chain of candidates: often, but not
288 always, an SSA name. */
289 tree base_expr;
f9453c07
BS
290
291 /* Pointer to a candidate. */
292 slsr_cand_t cand;
293
294 /* Chain pointer. */
295 struct cand_chain_d *next;
296
297};
298
299typedef struct cand_chain_d cand_chain, *cand_chain_t;
300typedef const struct cand_chain_d *const_cand_chain_t;
301
88ca9ea1
BS
302/* Information about a unique "increment" associated with candidates
303 having an SSA name for a stride. An increment is the difference
304 between the index of the candidate and the index of its basis,
305 i.e., (i - i') as discussed in the module commentary.
306
307 When we are not going to generate address arithmetic we treat
308 increments that differ only in sign as the same, allowing sharing
309 of the cost of initializers. The absolute value of the increment
310 is stored in the incr_info. */
311
312struct incr_info_d
313{
314 /* The increment that relates a candidate to its basis. */
807e902e 315 widest_int incr;
88ca9ea1
BS
316
317 /* How many times the increment occurs in the candidate tree. */
318 unsigned count;
319
320 /* Cost of replacing candidates using this increment. Negative and
321 zero costs indicate replacement should be performed. */
322 int cost;
323
324 /* If this increment is profitable but is not -1, 0, or 1, it requires
325 an initializer T_0 = stride * incr to be found or introduced in the
326 nearest common dominator of all candidates. This field holds T_0
327 for subsequent use. */
328 tree initializer;
329
330 /* If the initializer was found to already exist, this is the block
331 where it was found. */
332 basic_block init_bb;
333};
334
335typedef struct incr_info_d incr_info, *incr_info_t;
336
f9453c07
BS
337/* Candidates are maintained in a vector. If candidate X dominates
338 candidate Y, then X appears before Y in the vector; but the
339 converse does not necessarily hold. */
9771b263 340static vec<slsr_cand_t> cand_vec;
f9453c07
BS
341
342enum cost_consts
343{
344 COST_NEUTRAL = 0,
345 COST_INFINITE = 1000
346};
347
9b92d12b
BS
348enum stride_status
349{
350 UNKNOWN_STRIDE = 0,
351 KNOWN_STRIDE = 1
352};
353
354enum phi_adjust_status
355{
356 NOT_PHI_ADJUST = 0,
357 PHI_ADJUST = 1
358};
359
360enum count_phis_status
361{
362 DONT_COUNT_PHIS = 0,
363 COUNT_PHIS = 1
364};
365
f9453c07 366/* Pointer map embodying a mapping from statements to candidates. */
355fe088 367static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
368
369/* Obstack for candidates. */
370static struct obstack cand_obstack;
371
f9453c07
BS
372/* Obstack for candidate chains. */
373static struct obstack chain_obstack;
88ca9ea1
BS
374
375/* An array INCR_VEC of incr_infos is used during analysis of related
376 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
377 its current length. MAX_INCR_VEC_LEN is used to avoid costly
378 pathological cases. */
88ca9ea1
BS
379static incr_info_t incr_vec;
380static unsigned incr_vec_len;
7bf55a70 381const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
382
383/* For a chain of candidates with unknown stride, indicates whether or not
384 we must generate pointer arithmetic when replacing statements. */
385static bool address_arithmetic_p;
9b92d12b
BS
386
387/* Forward function declarations. */
388static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 389static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 390static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
391\f
392/* Produce a pointer to the IDX'th candidate in the candidate vector. */
393
394static slsr_cand_t
395lookup_cand (cand_idx idx)
396{
9771b263 397 return cand_vec[idx - 1];
f9453c07
BS
398}
399
4a8fb1a1 400/* Helper for hashing a candidate chain header. */
2749c8f6 401
8d67ee55 402struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 403{
67f58944
TS
404 static inline hashval_t hash (const cand_chain *);
405 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 406};
2749c8f6 407
4a8fb1a1 408inline hashval_t
67f58944 409cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 410{
4a8fb1a1
LC
411 tree base_expr = p->base_expr;
412 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
413}
414
4a8fb1a1 415inline bool
67f58944 416cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 417{
3cfd4469 418 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 419}
4a8fb1a1
LC
420
421/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 422static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 423\f
96d75a2c 424/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 425static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 426/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 427static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
428
429/* Given BASE, use the tree affine combiniation facilities to
430 find the underlying tree expression for BASE, with any
8fde427f
YZ
431 immediate offset excluded.
432
433 N.B. we should eliminate this backtracking with better forward
434 analysis in a future release. */
96d75a2c
YZ
435
436static tree
437get_alternative_base (tree base)
438{
b787e7a2 439 tree *result = alt_base_map->get (base);
96d75a2c
YZ
440
441 if (result == NULL)
442 {
443 tree expr;
444 aff_tree aff;
445
446 tree_to_aff_combination_expand (base, TREE_TYPE (base),
447 &aff, &name_expansions);
807e902e 448 aff.offset = 0;
96d75a2c
YZ
449 expr = aff_combination_to_tree (&aff);
450
b787e7a2 451 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 452
b787e7a2 453 return expr == base ? NULL : expr;
96d75a2c
YZ
454 }
455
456 return *result;
457}
458
9b92d12b 459/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 460 return it if found; otherwise return NULL. */
f9453c07 461
9b92d12b 462static cand_idx
8b28cf47 463find_phi_def (tree base)
9b92d12b
BS
464{
465 slsr_cand_t c;
466
467 if (TREE_CODE (base) != SSA_NAME)
468 return 0;
29105868 469
9b92d12b
BS
470 c = base_cand_from_table (base);
471
472 if (!c || c->kind != CAND_PHI)
473 return 0;
474
475 return c->cand_num;
476}
477
478/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
479 once for the candidate's base expr, and optionally again either for
480 the candidate's phi definition or for a CAND_REF's alternative base
481 expression. */
9b92d12b
BS
482
483static slsr_cand_t
484find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 485{
2749c8f6 486 cand_chain mapping_key;
f9453c07
BS
487 cand_chain_t chain;
488 slsr_cand_t basis = NULL;
489
ccdbfe93
BS
490 // Limit potential of N^2 behavior for long candidate chains.
491 int iters = 0;
492 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
493
9b92d12b 494 mapping_key.base_expr = base_expr;
c203e8a7 495 chain = base_cand_map->find (&mapping_key);
f9453c07 496
ccdbfe93 497 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
498 {
499 slsr_cand_t one_basis = chain->cand;
500
501 if (one_basis->kind != c->kind
69e1a1a3 502 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
503 || !operand_equal_p (one_basis->stride, c->stride, 0)
504 || !types_compatible_p (one_basis->cand_type, c->cand_type)
505 || !dominated_by_p (CDI_DOMINATORS,
506 gimple_bb (c->cand_stmt),
507 gimple_bb (one_basis->cand_stmt)))
508 continue;
509
510 if (!basis || basis->cand_num < one_basis->cand_num)
511 basis = one_basis;
512 }
513
9b92d12b
BS
514 return basis;
515}
516
517/* Use the base expr from candidate C to look for possible candidates
518 that can serve as a basis for C. Each potential basis must also
519 appear in a block that dominates the candidate statement and have
520 the same stride and type. If more than one possible basis exists,
521 the one with highest index in the vector is chosen; this will be
522 the most immediately dominating basis. */
523
524static int
525find_basis_for_candidate (slsr_cand_t c)
526{
527 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
528
529 /* If a candidate doesn't have a basis using its base expression,
530 it may have a basis hidden by one or more intervening phis. */
531 if (!basis && c->def_phi)
532 {
533 basic_block basis_bb, phi_bb;
534 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
535 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
536
537 if (basis)
538 {
539 /* A hidden basis must dominate the phi-definition of the
540 candidate's base name. */
541 phi_bb = gimple_bb (phi_cand->cand_stmt);
542 basis_bb = gimple_bb (basis->cand_stmt);
543
544 if (phi_bb == basis_bb
545 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
546 {
547 basis = NULL;
548 c->basis = 0;
549 }
550
551 /* If we found a hidden basis, estimate additional dead-code
552 savings if the phi and its feeding statements can be removed. */
553 if (basis && has_single_use (gimple_phi_result (phi_cand->cand_stmt)))
554 c->dead_savings += phi_cand->dead_savings;
555 }
556 }
557
8fde427f 558 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
559 {
560 tree alt_base_expr = get_alternative_base (c->base_expr);
561 if (alt_base_expr)
562 basis = find_basis_for_base_expr (c, alt_base_expr);
563 }
564
f9453c07
BS
565 if (basis)
566 {
567 c->sibling = basis->dependent;
568 basis->dependent = c->cand_num;
569 return basis->cand_num;
570 }
571
572 return 0;
573}
574
96d75a2c
YZ
575/* Record a mapping from BASE to C, indicating that C may potentially serve
576 as a basis using that base expression. BASE may be the same as
577 C->BASE_EXPR; alternatively BASE can be a different tree that share the
578 underlining expression of C->BASE_EXPR. */
f9453c07
BS
579
580static void
96d75a2c 581record_potential_basis (slsr_cand_t c, tree base)
f9453c07 582{
2749c8f6 583 cand_chain_t node;
4a8fb1a1 584 cand_chain **slot;
f9453c07 585
96d75a2c
YZ
586 gcc_assert (base);
587
f9453c07 588 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 589 node->base_expr = base;
f9453c07
BS
590 node->cand = c;
591 node->next = NULL;
c203e8a7 592 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 593
2749c8f6 594 if (*slot)
f9453c07 595 {
2749c8f6 596 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
597 node->next = head->next;
598 head->next = node;
599 }
600 else
2749c8f6 601 *slot = node;
f9453c07
BS
602}
603
604/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
605 Attempt to find a basis for the candidate.
606
607 For CAND_REF, an alternative base may also be recorded and used
608 to find a basis. This helps cases where the expression hidden
609 behind BASE (which is usually an SSA_NAME) has immediate offset,
610 e.g.
611
612 a2[i][j] = 1;
613 a2[i + 20][j] = 2; */
f9453c07
BS
614
615static slsr_cand_t
355fe088 616alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 617 const widest_int &index, tree stride, tree ctype,
f9453c07
BS
618 unsigned savings)
619{
620 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
621 sizeof (slsr_cand));
622 c->cand_stmt = gs;
3cfd4469 623 c->base_expr = base;
f9453c07
BS
624 c->stride = stride;
625 c->index = index;
626 c->cand_type = ctype;
627 c->kind = kind;
9771b263 628 c->cand_num = cand_vec.length () + 1;
f9453c07
BS
629 c->next_interp = 0;
630 c->dependent = 0;
631 c->sibling = 0;
8b28cf47 632 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07
BS
633 c->dead_savings = savings;
634
9771b263 635 cand_vec.safe_push (c);
9b92d12b
BS
636
637 if (kind == CAND_PHI)
638 c->basis = 0;
639 else
640 c->basis = find_basis_for_candidate (c);
641
96d75a2c 642 record_potential_basis (c, base);
8fde427f 643 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
644 {
645 tree alt_base = get_alternative_base (base);
646 if (alt_base)
647 record_potential_basis (c, alt_base);
648 }
f9453c07
BS
649
650 return c;
651}
652
653/* Determine the target cost of statement GS when compiling according
654 to SPEED. */
655
656static int
355fe088 657stmt_cost (gimple *gs, bool speed)
f9453c07
BS
658{
659 tree lhs, rhs1, rhs2;
ef4bddc2 660 machine_mode lhs_mode;
f9453c07
BS
661
662 gcc_assert (is_gimple_assign (gs));
663 lhs = gimple_assign_lhs (gs);
664 rhs1 = gimple_assign_rhs1 (gs);
665 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
666
667 switch (gimple_assign_rhs_code (gs))
668 {
669 case MULT_EXPR:
670 rhs2 = gimple_assign_rhs2 (gs);
671
9541ffee 672 if (tree_fits_shwi_p (rhs2))
eb1ce453 673 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
674
675 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 676 return mul_cost (speed, lhs_mode);
f9453c07
BS
677
678 case PLUS_EXPR:
679 case POINTER_PLUS_EXPR:
680 case MINUS_EXPR:
5322d07e 681 return add_cost (speed, lhs_mode);
f9453c07
BS
682
683 case NEGATE_EXPR:
5322d07e 684 return neg_cost (speed, lhs_mode);
f9453c07 685
d822570f 686 CASE_CONVERT:
6dd8f4bb 687 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
688
689 /* Note that we don't assign costs to copies that in most cases
690 will go away. */
fbcdc43e
BS
691 case SSA_NAME:
692 return 0;
693
f9453c07
BS
694 default:
695 ;
696 }
697
698 gcc_unreachable ();
699 return 0;
700}
701
702/* Look up the defining statement for BASE_IN and return a pointer
703 to its candidate in the candidate table, if any; otherwise NULL.
704 Only CAND_ADD and CAND_MULT candidates are returned. */
705
706static slsr_cand_t
707base_cand_from_table (tree base_in)
708{
709 slsr_cand_t *result;
710
355fe088 711 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
712 if (!def)
713 return (slsr_cand_t) NULL;
714
b787e7a2 715 result = stmt_cand_map->get (def);
2749c8f6
BS
716
717 if (result && (*result)->kind != CAND_REF)
718 return *result;
f9453c07 719
2749c8f6 720 return (slsr_cand_t) NULL;
f9453c07
BS
721}
722
723/* Add an entry to the statement-to-candidate mapping. */
724
725static void
355fe088 726add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 727{
b787e7a2 728 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
729}
730\f
9b92d12b
BS
731/* Given PHI which contains a phi statement, determine whether it
732 satisfies all the requirements of a phi candidate. If so, create
733 a candidate. Note that a CAND_PHI never has a basis itself, but
734 is used to help find a basis for subsequent candidates. */
735
736static void
538dd0b7 737slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
738{
739 unsigned i;
740 tree arg0_base = NULL_TREE, base_type;
741 slsr_cand_t c;
742 struct loop *cand_loop = gimple_bb (phi)->loop_father;
743 unsigned savings = 0;
744
745 /* A CAND_PHI requires each of its arguments to have the same
746 derived base name. (See the module header commentary for a
747 definition of derived base names.) Furthermore, all feeding
748 definitions must be in the same position in the loop hierarchy
749 as PHI. */
750
751 for (i = 0; i < gimple_phi_num_args (phi); i++)
752 {
753 slsr_cand_t arg_cand;
754 tree arg = gimple_phi_arg_def (phi, i);
755 tree derived_base_name = NULL_TREE;
355fe088 756 gimple *arg_stmt = NULL;
9b92d12b
BS
757 basic_block arg_bb = NULL;
758
759 if (TREE_CODE (arg) != SSA_NAME)
760 return;
761
762 arg_cand = base_cand_from_table (arg);
763
764 if (arg_cand)
765 {
766 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
767 {
768 if (!arg_cand->next_interp)
769 return;
770
771 arg_cand = lookup_cand (arg_cand->next_interp);
772 }
773
774 if (!integer_onep (arg_cand->stride))
775 return;
776
777 derived_base_name = arg_cand->base_expr;
778 arg_stmt = arg_cand->cand_stmt;
779 arg_bb = gimple_bb (arg_stmt);
780
781 /* Gather potential dead code savings if the phi statement
782 can be removed later on. */
783 if (has_single_use (arg))
784 {
785 if (gimple_code (arg_stmt) == GIMPLE_PHI)
786 savings += arg_cand->dead_savings;
787 else
788 savings += stmt_cost (arg_stmt, speed);
789 }
790 }
6e281ce3 791 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
792 {
793 derived_base_name = arg;
6e281ce3 794 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
795 }
796
797 if (!arg_bb || arg_bb->loop_father != cand_loop)
798 return;
799
800 if (i == 0)
801 arg0_base = derived_base_name;
802 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
803 return;
804 }
805
806 /* Create the candidate. "alloc_cand_and_find_basis" is named
807 misleadingly for this case, as no basis will be sought for a
808 CAND_PHI. */
809 base_type = TREE_TYPE (arg0_base);
810
807e902e
KZ
811 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
812 0, integer_one_node, base_type, savings);
9b92d12b
BS
813
814 /* Add the candidate to the statement-candidate mapping. */
815 add_cand_for_stmt (phi, c);
816}
817
c068654b
BC
818/* Given PBASE which is a pointer to tree, look up the defining
819 statement for it and check whether the candidate is in the
820 form of:
821
822 X = B + (1 * S), S is integer constant
823 X = B + (i * S), S is integer one
824
825 If so, set PBASE to the candidate's base_expr and return double
826 int (i * S).
827 Otherwise, just return double int zero. */
828
807e902e 829static widest_int
c068654b
BC
830backtrace_base_for_ref (tree *pbase)
831{
832 tree base_in = *pbase;
833 slsr_cand_t base_cand;
834
835 STRIP_NOPS (base_in);
0916f876
YZ
836
837 /* Strip off widening conversion(s) to handle cases where
838 e.g. 'B' is widened from an 'int' in order to calculate
839 a 64-bit address. */
840 if (CONVERT_EXPR_P (base_in)
841 && legal_cast_p_1 (base_in, TREE_OPERAND (base_in, 0)))
842 base_in = get_unwidened (base_in, NULL_TREE);
843
c068654b 844 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 845 return 0;
c068654b
BC
846
847 base_cand = base_cand_from_table (base_in);
848
849 while (base_cand && base_cand->kind != CAND_PHI)
850 {
851 if (base_cand->kind == CAND_ADD
807e902e 852 && base_cand->index == 1
c068654b
BC
853 && TREE_CODE (base_cand->stride) == INTEGER_CST)
854 {
855 /* X = B + (1 * S), S is integer constant. */
856 *pbase = base_cand->base_expr;
807e902e 857 return wi::to_widest (base_cand->stride);
c068654b
BC
858 }
859 else if (base_cand->kind == CAND_ADD
860 && TREE_CODE (base_cand->stride) == INTEGER_CST
861 && integer_onep (base_cand->stride))
1d2151c6 862 {
c068654b
BC
863 /* X = B + (i * S), S is integer one. */
864 *pbase = base_cand->base_expr;
865 return base_cand->index;
866 }
867
868 if (base_cand->next_interp)
869 base_cand = lookup_cand (base_cand->next_interp);
870 else
871 base_cand = NULL;
872 }
873
807e902e 874 return 0;
c068654b
BC
875}
876
2749c8f6
BS
877/* Look for the following pattern:
878
879 *PBASE: MEM_REF (T1, C1)
880
881 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
882 or
883 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
884 or
885 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
886
887 *PINDEX: C4 * BITS_PER_UNIT
888
889 If not present, leave the input values unchanged and return FALSE.
890 Otherwise, modify the input values as follows and return TRUE:
891
892 *PBASE: T1
893 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
894 *PINDEX: C1 + (C2 * C3) + C4
895
896 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
897 will be further restructured to:
898
899 *PBASE: T1
900 *POFFSET: MULT_EXPR (T2', C3)
901 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
902
903static bool
807e902e 904restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
905 tree *ptype)
906{
907 tree base = *pbase, offset = *poffset;
807e902e
KZ
908 widest_int index = *pindex;
909 tree mult_op0, t1, t2, type;
910 widest_int c1, c2, c3, c4, c5;
2749c8f6
BS
911
912 if (!base
913 || !offset
914 || TREE_CODE (base) != MEM_REF
915 || TREE_CODE (offset) != MULT_EXPR
916 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 917 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
918 return false;
919
920 t1 = TREE_OPERAND (base, 0);
807e902e 921 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
2749c8f6
BS
922 type = TREE_TYPE (TREE_OPERAND (base, 1));
923
924 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 925 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
926
927 if (TREE_CODE (mult_op0) == PLUS_EXPR)
928
929 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
930 {
931 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 932 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
933 }
934 else
935 return false;
936
937 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
938
939 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
940 {
941 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 942 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
943 }
944 else
945 return false;
946
947 else
948 {
949 t2 = mult_op0;
807e902e 950 c2 = 0;
2749c8f6
BS
951 }
952
8de73453 953 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 954 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
955
956 *pbase = t1;
c068654b 957 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 958 wide_int_to_tree (sizetype, c3));
c068654b 959 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
960 *ptype = type;
961
962 return true;
963}
964
965/* Given GS which contains a data reference, create a CAND_REF entry in
966 the candidate table and attempt to find a basis. */
967
968static void
355fe088 969slsr_process_ref (gimple *gs)
2749c8f6
BS
970{
971 tree ref_expr, base, offset, type;
972 HOST_WIDE_INT bitsize, bitpos;
ef4bddc2 973 machine_mode mode;
ee45a32d 974 int unsignedp, reversep, volatilep;
2749c8f6
BS
975 slsr_cand_t c;
976
977 if (gimple_vdef (gs))
978 ref_expr = gimple_assign_lhs (gs);
979 else
980 ref_expr = gimple_assign_rhs1 (gs);
981
982 if (!handled_component_p (ref_expr)
983 || TREE_CODE (ref_expr) == BIT_FIELD_REF
984 || (TREE_CODE (ref_expr) == COMPONENT_REF
985 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
986 return;
987
988 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 989 &unsignedp, &reversep, &volatilep);
ee45a32d
EB
990 if (reversep)
991 return;
807e902e 992 widest_int index = bitpos;
2749c8f6
BS
993
994 if (!restructure_reference (&base, &offset, &index, &type))
995 return;
996
997 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
998 type, 0);
999
1000 /* Add the candidate to the statement-candidate mapping. */
1001 add_cand_for_stmt (gs, c);
1002}
1003
f9453c07
BS
1004/* Create a candidate entry for a statement GS, where GS multiplies
1005 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1006 about the two SSA names into the new candidate. Return the new
1007 candidate. */
1008
1009static slsr_cand_t
355fe088 1010create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1011{
1012 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1013 widest_int index;
f9453c07
BS
1014 unsigned savings = 0;
1015 slsr_cand_t c;
1016 slsr_cand_t base_cand = base_cand_from_table (base_in);
1017
1018 /* Look at all interpretations of the base candidate, if necessary,
1019 to find information to propagate into this candidate. */
9b92d12b 1020 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1021 {
1022
9b92d12b 1023 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1024 {
1025 /* Y = (B + i') * 1
1026 X = Y * Z
1027 ================
1028 X = (B + i') * Z */
3cfd4469 1029 base = base_cand->base_expr;
f9453c07
BS
1030 index = base_cand->index;
1031 stride = stride_in;
1032 ctype = base_cand->cand_type;
1033 if (has_single_use (base_in))
1034 savings = (base_cand->dead_savings
1035 + stmt_cost (base_cand->cand_stmt, speed));
1036 }
1037 else if (base_cand->kind == CAND_ADD
1038 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1039 {
1040 /* Y = B + (i' * S), S constant
1041 X = Y * Z
1042 ============================
1043 X = B + ((i' * S) * Z) */
3cfd4469 1044 base = base_cand->base_expr;
807e902e 1045 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1046 stride = stride_in;
1047 ctype = base_cand->cand_type;
1048 if (has_single_use (base_in))
1049 savings = (base_cand->dead_savings
1050 + stmt_cost (base_cand->cand_stmt, speed));
1051 }
1052
1053 if (base_cand->next_interp)
1054 base_cand = lookup_cand (base_cand->next_interp);
1055 else
1056 base_cand = NULL;
1057 }
1058
1059 if (!base)
1060 {
1061 /* No interpretations had anything useful to propagate, so
1062 produce X = (Y + 0) * Z. */
1063 base = base_in;
807e902e 1064 index = 0;
f9453c07 1065 stride = stride_in;
b2ec94d4 1066 ctype = TREE_TYPE (base_in);
f9453c07
BS
1067 }
1068
1069 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1070 ctype, savings);
1071 return c;
1072}
1073
1074/* Create a candidate entry for a statement GS, where GS multiplies
1075 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1076 information about BASE_IN into the new candidate. Return the new
1077 candidate. */
1078
1079static slsr_cand_t
355fe088 1080create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1081{
1082 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1083 widest_int index, temp;
f9453c07
BS
1084 unsigned savings = 0;
1085 slsr_cand_t c;
1086 slsr_cand_t base_cand = base_cand_from_table (base_in);
1087
1088 /* Look at all interpretations of the base candidate, if necessary,
1089 to find information to propagate into this candidate. */
9b92d12b 1090 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1091 {
1092 if (base_cand->kind == CAND_MULT
1093 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1094 {
1095 /* Y = (B + i') * S, S constant
1096 X = Y * c
1097 ============================
1098 X = (B + i') * (S * c) */
807e902e
KZ
1099 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1100 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1101 {
1102 base = base_cand->base_expr;
1103 index = base_cand->index;
807e902e 1104 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1105 ctype = base_cand->cand_type;
1106 if (has_single_use (base_in))
1107 savings = (base_cand->dead_savings
1108 + stmt_cost (base_cand->cand_stmt, speed));
1109 }
f9453c07 1110 }
9b92d12b 1111 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1112 {
1113 /* Y = B + (i' * 1)
1114 X = Y * c
1115 ===========================
1116 X = (B + i') * c */
3cfd4469 1117 base = base_cand->base_expr;
f9453c07
BS
1118 index = base_cand->index;
1119 stride = stride_in;
1120 ctype = base_cand->cand_type;
1121 if (has_single_use (base_in))
1122 savings = (base_cand->dead_savings
1123 + stmt_cost (base_cand->cand_stmt, speed));
1124 }
1125 else if (base_cand->kind == CAND_ADD
807e902e 1126 && base_cand->index == 1
f9453c07
BS
1127 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1128 {
1129 /* Y = B + (1 * S), S constant
1130 X = Y * c
1131 ===========================
1132 X = (B + S) * c */
3cfd4469 1133 base = base_cand->base_expr;
807e902e 1134 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1135 stride = stride_in;
1136 ctype = base_cand->cand_type;
1137 if (has_single_use (base_in))
1138 savings = (base_cand->dead_savings
1139 + stmt_cost (base_cand->cand_stmt, speed));
1140 }
1141
1142 if (base_cand->next_interp)
1143 base_cand = lookup_cand (base_cand->next_interp);
1144 else
1145 base_cand = NULL;
1146 }
1147
1148 if (!base)
1149 {
1150 /* No interpretations had anything useful to propagate, so
1151 produce X = (Y + 0) * c. */
1152 base = base_in;
807e902e 1153 index = 0;
f9453c07 1154 stride = stride_in;
b2ec94d4 1155 ctype = TREE_TYPE (base_in);
f9453c07
BS
1156 }
1157
1158 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1159 ctype, savings);
1160 return c;
1161}
1162
1163/* Given GS which is a multiply of scalar integers, make an appropriate
1164 entry in the candidate table. If this is a multiply of two SSA names,
1165 create two CAND_MULT interpretations and attempt to find a basis for
1166 each of them. Otherwise, create a single CAND_MULT and attempt to
1167 find a basis. */
1168
1169static void
355fe088 1170slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1171{
1172 slsr_cand_t c, c2;
1173
1174 /* If this is a multiply of an SSA name with itself, it is highly
1175 unlikely that we will get a strength reduction opportunity, so
1176 don't record it as a candidate. This simplifies the logic for
1177 finding a basis, so if this is removed that must be considered. */
1178 if (rhs1 == rhs2)
1179 return;
1180
1181 if (TREE_CODE (rhs2) == SSA_NAME)
1182 {
1183 /* Record an interpretation of this statement in the candidate table
3cfd4469 1184 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1185 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1186
1187 /* Add the first interpretation to the statement-candidate mapping. */
1188 add_cand_for_stmt (gs, c);
1189
1190 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1191 is the stride and RHS2 is the base expression. */
f9453c07
BS
1192 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1193 c->next_interp = c2->cand_num;
1194 }
1195 else
1196 {
1197 /* Record an interpretation for the multiply-immediate. */
1198 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1199
1200 /* Add the interpretation to the statement-candidate mapping. */
1201 add_cand_for_stmt (gs, c);
1202 }
1203}
1204
1205/* Create a candidate entry for a statement GS, where GS adds two
1206 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1207 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1208 information about the two SSA names into the new candidate.
1209 Return the new candidate. */
1210
1211static slsr_cand_t
355fe088 1212create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1213 bool subtract_p, bool speed)
1214{
1215 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL;
807e902e 1216 widest_int index;
f9453c07
BS
1217 unsigned savings = 0;
1218 slsr_cand_t c;
1219 slsr_cand_t base_cand = base_cand_from_table (base_in);
1220 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1221
1222 /* The most useful transformation is a multiply-immediate feeding
1223 an add or subtract. Look for that first. */
9b92d12b 1224 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1225 {
1226 if (addend_cand->kind == CAND_MULT
807e902e 1227 && addend_cand->index == 0
f9453c07
BS
1228 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1229 {
1230 /* Z = (B + 0) * S, S constant
1231 X = Y +/- Z
1232 ===========================
1233 X = Y + ((+/-1 * S) * B) */
1234 base = base_in;
807e902e 1235 index = wi::to_widest (addend_cand->stride);
f9453c07 1236 if (subtract_p)
27bcd47c 1237 index = -index;
3cfd4469 1238 stride = addend_cand->base_expr;
b2ec94d4 1239 ctype = TREE_TYPE (base_in);
f9453c07
BS
1240 if (has_single_use (addend_in))
1241 savings = (addend_cand->dead_savings
1242 + stmt_cost (addend_cand->cand_stmt, speed));
1243 }
1244
1245 if (addend_cand->next_interp)
1246 addend_cand = lookup_cand (addend_cand->next_interp);
1247 else
1248 addend_cand = NULL;
1249 }
1250
9b92d12b 1251 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1252 {
1253 if (base_cand->kind == CAND_ADD
807e902e 1254 && (base_cand->index == 0
f9453c07
BS
1255 || operand_equal_p (base_cand->stride,
1256 integer_zero_node, 0)))
1257 {
1258 /* Y = B + (i' * S), i' * S = 0
1259 X = Y +/- Z
1260 ============================
1261 X = B + (+/-1 * Z) */
3cfd4469 1262 base = base_cand->base_expr;
807e902e 1263 index = subtract_p ? -1 : 1;
f9453c07
BS
1264 stride = addend_in;
1265 ctype = base_cand->cand_type;
1266 if (has_single_use (base_in))
1267 savings = (base_cand->dead_savings
1268 + stmt_cost (base_cand->cand_stmt, speed));
1269 }
1270 else if (subtract_p)
1271 {
1272 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1273
9b92d12b 1274 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1275 {
1276 if (subtrahend_cand->kind == CAND_MULT
807e902e 1277 && subtrahend_cand->index == 0
f9453c07
BS
1278 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1279 {
1280 /* Z = (B + 0) * S, S constant
1281 X = Y - Z
1282 ===========================
1283 Value: X = Y + ((-1 * S) * B) */
1284 base = base_in;
807e902e 1285 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1286 index = -index;
3cfd4469 1287 stride = subtrahend_cand->base_expr;
b2ec94d4 1288 ctype = TREE_TYPE (base_in);
f9453c07
BS
1289 if (has_single_use (addend_in))
1290 savings = (subtrahend_cand->dead_savings
1291 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1292 }
1293
1294 if (subtrahend_cand->next_interp)
1295 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1296 else
1297 subtrahend_cand = NULL;
1298 }
1299 }
1300
1301 if (base_cand->next_interp)
1302 base_cand = lookup_cand (base_cand->next_interp);
1303 else
1304 base_cand = NULL;
1305 }
1306
1307 if (!base)
1308 {
1309 /* No interpretations had anything useful to propagate, so
1310 produce X = Y + (1 * Z). */
1311 base = base_in;
807e902e 1312 index = subtract_p ? -1 : 1;
f9453c07 1313 stride = addend_in;
b2ec94d4 1314 ctype = TREE_TYPE (base_in);
f9453c07
BS
1315 }
1316
1317 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1318 ctype, savings);
1319 return c;
1320}
1321
1322/* Create a candidate entry for a statement GS, where GS adds SSA
1323 name BASE_IN to constant INDEX_IN. Propagate any known information
1324 about BASE_IN into the new candidate. Return the new candidate. */
1325
1326static slsr_cand_t
355fe088 1327create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1328 bool speed)
f9453c07
BS
1329{
1330 enum cand_kind kind = CAND_ADD;
1331 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1332 widest_int index, multiple;
f9453c07
BS
1333 unsigned savings = 0;
1334 slsr_cand_t c;
1335 slsr_cand_t base_cand = base_cand_from_table (base_in);
1336
9b92d12b 1337 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1338 {
807e902e 1339 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1340
1341 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1342 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1343 sign, &multiple))
f9453c07
BS
1344 {
1345 /* Y = (B + i') * S, S constant, c = kS for some integer k
1346 X = Y + c
1347 ============================
1348 X = (B + (i'+ k)) * S
1349 OR
1350 Y = B + (i' * S), S constant, c = kS for some integer k
1351 X = Y + c
1352 ============================
1353 X = (B + (i'+ k)) * S */
1354 kind = base_cand->kind;
3cfd4469 1355 base = base_cand->base_expr;
27bcd47c 1356 index = base_cand->index + multiple;
f9453c07
BS
1357 stride = base_cand->stride;
1358 ctype = base_cand->cand_type;
1359 if (has_single_use (base_in))
1360 savings = (base_cand->dead_savings
1361 + stmt_cost (base_cand->cand_stmt, speed));
1362 }
1363
1364 if (base_cand->next_interp)
1365 base_cand = lookup_cand (base_cand->next_interp);
1366 else
1367 base_cand = NULL;
1368 }
1369
1370 if (!base)
1371 {
1372 /* No interpretations had anything useful to propagate, so
1373 produce X = Y + (c * 1). */
1374 kind = CAND_ADD;
1375 base = base_in;
1376 index = index_in;
1377 stride = integer_one_node;
b2ec94d4 1378 ctype = TREE_TYPE (base_in);
f9453c07
BS
1379 }
1380
1381 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1382 ctype, savings);
1383 return c;
1384}
1385
1386/* Given GS which is an add or subtract of scalar integers or pointers,
1387 make at least one appropriate entry in the candidate table. */
1388
1389static void
355fe088 1390slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1391{
1392 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1393 slsr_cand_t c = NULL, c2;
1394
1395 if (TREE_CODE (rhs2) == SSA_NAME)
1396 {
3cfd4469 1397 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1398 and RHS2 is the stride. But it doesn't make sense for the
1399 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1400 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1401 {
1402 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1403
1404 /* Add the first interpretation to the statement-candidate
1405 mapping. */
1406 add_cand_for_stmt (gs, c);
1407 }
1408
1409 /* If the two RHS operands are identical, or this is a subtract,
1410 we're done. */
1411 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1412 return;
1413
1414 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1415 base expression and RHS1 is the stride, again provided that the
f9453c07 1416 stride is not a pointer. */
b2ec94d4 1417 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1418 {
1419 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1420 if (c)
1421 c->next_interp = c2->cand_num;
1422 else
1423 add_cand_for_stmt (gs, c2);
1424 }
1425 }
1426 else
1427 {
f9453c07 1428 /* Record an interpretation for the add-immediate. */
807e902e 1429 widest_int index = wi::to_widest (rhs2);
f9453c07 1430 if (subtract_p)
27bcd47c 1431 index = -index;
f9453c07
BS
1432
1433 c = create_add_imm_cand (gs, rhs1, index, speed);
1434
1435 /* Add the interpretation to the statement-candidate mapping. */
1436 add_cand_for_stmt (gs, c);
1437 }
1438}
1439
1440/* Given GS which is a negate of a scalar integer, make an appropriate
1441 entry in the candidate table. A negate is equivalent to a multiply
1442 by -1. */
1443
1444static void
355fe088 1445slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1446{
1447 /* Record a CAND_MULT interpretation for the multiply by -1. */
1448 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1449
1450 /* Add the interpretation to the statement-candidate mapping. */
1451 add_cand_for_stmt (gs, c);
1452}
1453
6b5eea61
BS
1454/* Help function for legal_cast_p, operating on two trees. Checks
1455 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1456 for more details. */
1457
1458static bool
1459legal_cast_p_1 (tree lhs, tree rhs)
1460{
1461 tree lhs_type, rhs_type;
1462 unsigned lhs_size, rhs_size;
1463 bool lhs_wraps, rhs_wraps;
1464
1465 lhs_type = TREE_TYPE (lhs);
1466 rhs_type = TREE_TYPE (rhs);
1467 lhs_size = TYPE_PRECISION (lhs_type);
1468 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1469 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1470 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1471
1472 if (lhs_size < rhs_size
1473 || (rhs_wraps && !lhs_wraps)
1474 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1475 return false;
1476
1477 return true;
1478}
1479
f9453c07
BS
1480/* Return TRUE if GS is a statement that defines an SSA name from
1481 a conversion and is legal for us to combine with an add and multiply
1482 in the candidate table. For example, suppose we have:
1483
1484 A = B + i;
1485 C = (type) A;
1486 D = C * S;
1487
1488 Without the type-cast, we would create a CAND_MULT for D with base B,
1489 index i, and stride S. We want to record this candidate only if it
1490 is equivalent to apply the type cast following the multiply:
1491
1492 A = B + i;
1493 E = A * S;
1494 D = (type) E;
1495
1496 We will record the type with the candidate for D. This allows us
1497 to use a similar previous candidate as a basis. If we have earlier seen
1498
1499 A' = B + i';
1500 C' = (type) A';
1501 D' = C' * S;
1502
1503 we can replace D with
1504
1505 D = D' + (i - i') * S;
1506
1507 But if moving the type-cast would change semantics, we mustn't do this.
1508
1509 This is legitimate for casts from a non-wrapping integral type to
1510 any integral type of the same or larger size. It is not legitimate
1511 to convert a wrapping type to a non-wrapping type, or to a wrapping
1512 type of a different size. I.e., with a wrapping type, we must
1513 assume that the addition B + i could wrap, in which case performing
1514 the multiply before or after one of the "illegal" type casts will
1515 have different semantics. */
1516
1517static bool
355fe088 1518legal_cast_p (gimple *gs, tree rhs)
f9453c07 1519{
f9453c07
BS
1520 if (!is_gimple_assign (gs)
1521 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1522 return false;
1523
6b5eea61 1524 return legal_cast_p_1 (gimple_assign_lhs (gs), rhs);
f9453c07
BS
1525}
1526
1527/* Given GS which is a cast to a scalar integer type, determine whether
1528 the cast is legal for strength reduction. If so, make at least one
1529 appropriate entry in the candidate table. */
1530
1531static void
355fe088 1532slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1533{
1534 tree lhs, ctype;
ac2a97db 1535 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1536 unsigned savings = 0;
1537
1538 if (!legal_cast_p (gs, rhs1))
1539 return;
1540
1541 lhs = gimple_assign_lhs (gs);
1542 base_cand = base_cand_from_table (rhs1);
1543 ctype = TREE_TYPE (lhs);
1544
9b92d12b 1545 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1546 {
1547 while (base_cand)
1548 {
1549 /* Propagate all data from the base candidate except the type,
1550 which comes from the cast, and the base candidate's cast,
1551 which is no longer applicable. */
1552 if (has_single_use (rhs1))
1553 savings = (base_cand->dead_savings
1554 + stmt_cost (base_cand->cand_stmt, speed));
1555
1556 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1557 base_cand->base_expr,
f9453c07
BS
1558 base_cand->index, base_cand->stride,
1559 ctype, savings);
1560 if (base_cand->next_interp)
1561 base_cand = lookup_cand (base_cand->next_interp);
1562 else
1563 base_cand = NULL;
1564 }
1565 }
1566 else
1567 {
1568 /* If nothing is known about the RHS, create fresh CAND_ADD and
1569 CAND_MULT interpretations:
1570
1571 X = Y + (0 * 1)
1572 X = (Y + 0) * 1
1573
1574 The first of these is somewhat arbitrary, but the choice of
1575 1 for the stride simplifies the logic for propagating casts
1576 into their uses. */
807e902e
KZ
1577 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1578 0, integer_one_node, ctype, 0);
1579 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1580 0, integer_one_node, ctype, 0);
f9453c07
BS
1581 c->next_interp = c2->cand_num;
1582 }
1583
1584 /* Add the first (or only) interpretation to the statement-candidate
1585 mapping. */
1586 add_cand_for_stmt (gs, c);
1587}
1588
1589/* Given GS which is a copy of a scalar integer type, make at least one
1590 appropriate entry in the candidate table.
1591
1592 This interface is included for completeness, but is unnecessary
1593 if this pass immediately follows a pass that performs copy
1594 propagation, such as DOM. */
1595
1596static void
355fe088 1597slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1598{
ac2a97db 1599 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1600 unsigned savings = 0;
1601
1602 base_cand = base_cand_from_table (rhs1);
1603
9b92d12b 1604 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1605 {
1606 while (base_cand)
1607 {
1608 /* Propagate all data from the base candidate. */
1609 if (has_single_use (rhs1))
1610 savings = (base_cand->dead_savings
1611 + stmt_cost (base_cand->cand_stmt, speed));
1612
1613 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1614 base_cand->base_expr,
f9453c07
BS
1615 base_cand->index, base_cand->stride,
1616 base_cand->cand_type, savings);
1617 if (base_cand->next_interp)
1618 base_cand = lookup_cand (base_cand->next_interp);
1619 else
1620 base_cand = NULL;
1621 }
1622 }
1623 else
1624 {
1625 /* If nothing is known about the RHS, create fresh CAND_ADD and
1626 CAND_MULT interpretations:
1627
1628 X = Y + (0 * 1)
1629 X = (Y + 0) * 1
1630
1631 The first of these is somewhat arbitrary, but the choice of
1632 1 for the stride simplifies the logic for propagating casts
1633 into their uses. */
807e902e
KZ
1634 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1,
1635 0, integer_one_node, TREE_TYPE (rhs1), 0);
1636 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1,
1637 0, integer_one_node, TREE_TYPE (rhs1), 0);
f9453c07
BS
1638 c->next_interp = c2->cand_num;
1639 }
1640
1641 /* Add the first (or only) interpretation to the statement-candidate
1642 mapping. */
1643 add_cand_for_stmt (gs, c);
1644}
1645\f
4d9192b5
TS
1646class find_candidates_dom_walker : public dom_walker
1647{
1648public:
1649 find_candidates_dom_walker (cdi_direction direction)
1650 : dom_walker (direction) {}
3daacdcd 1651 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1652};
1653
f9453c07
BS
1654/* Find strength-reduction candidates in block BB. */
1655
3daacdcd 1656edge
4d9192b5 1657find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1658{
1659 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1660
538dd0b7
DM
1661 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1662 gsi_next (&gsi))
1663 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1664
538dd0b7
DM
1665 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1666 gsi_next (&gsi))
f9453c07 1667 {
355fe088 1668 gimple *gs = gsi_stmt (gsi);
f9453c07 1669
2749c8f6
BS
1670 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1671 slsr_process_ref (gs);
1672
1673 else if (is_gimple_assign (gs)
1674 && SCALAR_INT_MODE_P
1675 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1676 {
1677 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1678
1679 switch (gimple_assign_rhs_code (gs))
1680 {
1681 case MULT_EXPR:
1682 case PLUS_EXPR:
1683 rhs1 = gimple_assign_rhs1 (gs);
1684 rhs2 = gimple_assign_rhs2 (gs);
1685 /* Should never happen, but currently some buggy situations
1686 in earlier phases put constants in rhs1. */
1687 if (TREE_CODE (rhs1) != SSA_NAME)
1688 continue;
1689 break;
1690
1691 /* Possible future opportunity: rhs1 of a ptr+ can be
1692 an ADDR_EXPR. */
1693 case POINTER_PLUS_EXPR:
1694 case MINUS_EXPR:
1695 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1696 gcc_fallthrough ();
f9453c07 1697
d822570f 1698 CASE_CONVERT:
fbcdc43e 1699 case SSA_NAME:
f9453c07
BS
1700 case NEGATE_EXPR:
1701 rhs1 = gimple_assign_rhs1 (gs);
1702 if (TREE_CODE (rhs1) != SSA_NAME)
1703 continue;
1704 break;
1705
1706 default:
1707 ;
1708 }
1709
1710 switch (gimple_assign_rhs_code (gs))
1711 {
1712 case MULT_EXPR:
1713 slsr_process_mul (gs, rhs1, rhs2, speed);
1714 break;
1715
1716 case PLUS_EXPR:
1717 case POINTER_PLUS_EXPR:
1718 case MINUS_EXPR:
1719 slsr_process_add (gs, rhs1, rhs2, speed);
1720 break;
1721
1722 case NEGATE_EXPR:
1723 slsr_process_neg (gs, rhs1, speed);
1724 break;
1725
d822570f 1726 CASE_CONVERT:
f9453c07
BS
1727 slsr_process_cast (gs, rhs1, speed);
1728 break;
1729
fbcdc43e 1730 case SSA_NAME:
f9453c07
BS
1731 slsr_process_copy (gs, rhs1, speed);
1732 break;
1733
1734 default:
1735 ;
1736 }
1737 }
1738 }
3daacdcd 1739 return NULL;
f9453c07
BS
1740}
1741\f
1742/* Dump a candidate for debug. */
1743
1744static void
1745dump_candidate (slsr_cand_t c)
1746{
1747 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1748 gimple_bb (c->cand_stmt)->index);
1749 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1750 switch (c->kind)
1751 {
1752 case CAND_MULT:
1753 fputs (" MULT : (", dump_file);
3cfd4469 1754 print_generic_expr (dump_file, c->base_expr, 0);
f9453c07 1755 fputs (" + ", dump_file);
807e902e 1756 print_decs (c->index, dump_file);
f9453c07
BS
1757 fputs (") * ", dump_file);
1758 print_generic_expr (dump_file, c->stride, 0);
1759 fputs (" : ", dump_file);
1760 break;
1761 case CAND_ADD:
1762 fputs (" ADD : ", dump_file);
3cfd4469 1763 print_generic_expr (dump_file, c->base_expr, 0);
f9453c07 1764 fputs (" + (", dump_file);
807e902e 1765 print_decs (c->index, dump_file);
f9453c07
BS
1766 fputs (" * ", dump_file);
1767 print_generic_expr (dump_file, c->stride, 0);
1768 fputs (") : ", dump_file);
1769 break;
2749c8f6
BS
1770 case CAND_REF:
1771 fputs (" REF : ", dump_file);
3cfd4469 1772 print_generic_expr (dump_file, c->base_expr, 0);
2749c8f6
BS
1773 fputs (" + (", dump_file);
1774 print_generic_expr (dump_file, c->stride, 0);
1775 fputs (") + ", dump_file);
807e902e 1776 print_decs (c->index, dump_file);
2749c8f6
BS
1777 fputs (" : ", dump_file);
1778 break;
9b92d12b
BS
1779 case CAND_PHI:
1780 fputs (" PHI : ", dump_file);
1781 print_generic_expr (dump_file, c->base_expr, 0);
1782 fputs (" + (unknown * ", dump_file);
1783 print_generic_expr (dump_file, c->stride, 0);
1784 fputs (") : ", dump_file);
1785 break;
f9453c07
BS
1786 default:
1787 gcc_unreachable ();
1788 }
1789 print_generic_expr (dump_file, c->cand_type, 0);
1790 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1791 c->basis, c->dependent, c->sibling);
1792 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1793 c->next_interp, c->dead_savings);
1794 if (c->def_phi)
9b92d12b 1795 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1796 fputs ("\n", dump_file);
1797}
1798
1799/* Dump the candidate vector for debug. */
1800
1801static void
1802dump_cand_vec (void)
1803{
1804 unsigned i;
1805 slsr_cand_t c;
1806
1807 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1808
9771b263 1809 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
1810 dump_candidate (c);
1811}
1812
2749c8f6 1813/* Callback used to dump the candidate chains hash table. */
f9453c07 1814
4a8fb1a1
LC
1815int
1816ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1817{
4a8fb1a1 1818 const_cand_chain_t chain = *slot;
2749c8f6 1819 cand_chain_t p;
f9453c07 1820
3cfd4469 1821 print_generic_expr (dump_file, chain->base_expr, 0);
2749c8f6 1822 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1823
2749c8f6
BS
1824 for (p = chain->next; p; p = p->next)
1825 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1826
2749c8f6
BS
1827 fputs ("\n", dump_file);
1828 return 1;
1829}
f9453c07 1830
2749c8f6 1831/* Dump the candidate chains. */
f9453c07 1832
2749c8f6
BS
1833static void
1834dump_cand_chains (void)
1835{
1836 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1837 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1838 (NULL);
f9453c07
BS
1839 fputs ("\n", dump_file);
1840}
88ca9ea1
BS
1841
1842/* Dump the increment vector for debug. */
1843
1844static void
1845dump_incr_vec (void)
1846{
1847 if (dump_file && (dump_flags & TDF_DETAILS))
1848 {
1849 unsigned i;
1850
1851 fprintf (dump_file, "\nIncrement vector:\n\n");
1852
1853 for (i = 0; i < incr_vec_len; i++)
1854 {
1855 fprintf (dump_file, "%3d increment: ", i);
807e902e 1856 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1857 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1858 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1859 fputs ("\n initializer: ", dump_file);
1860 print_generic_expr (dump_file, incr_vec[i].initializer, 0);
1861 fputs ("\n\n", dump_file);
1862 }
1863 }
1864}
f9453c07 1865\f
2749c8f6
BS
1866/* Replace *EXPR in candidate C with an equivalent strength-reduced
1867 data reference. */
1868
1869static void
1870replace_ref (tree *expr, slsr_cand_t c)
1871{
78f6dd68
MJ
1872 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1873 unsigned HOST_WIDE_INT misalign;
1874 unsigned align;
1875
1876 /* Ensure the memory reference carries the minimum alignment
1877 requirement for the data type. See PR58041. */
1878 get_object_alignment_1 (*expr, &align, &misalign);
1879 if (misalign != 0)
146ec50f 1880 align = least_bit_hwi (misalign);
78f6dd68
MJ
1881 if (align < TYPE_ALIGN (acc_type))
1882 acc_type = build_aligned_type (acc_type, align);
1883
1884 add_expr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (c->base_expr),
1885 c->base_expr, c->stride);
1886 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1887 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1888
2749c8f6
BS
1889 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1890 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1891 TREE_OPERAND (mem_ref, 0)
1892 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1893 /*simple_p=*/true, NULL,
1894 /*before=*/true, GSI_SAME_STMT);
1895 copy_ref_info (mem_ref, *expr);
1896 *expr = mem_ref;
1897 update_stmt (c->cand_stmt);
1898}
1899
1900/* Replace CAND_REF candidate C, each sibling of candidate C, and each
1901 dependent of candidate C with an equivalent strength-reduced data
1902 reference. */
1903
1904static void
1905replace_refs (slsr_cand_t c)
1906{
96d75a2c
YZ
1907 if (dump_file && (dump_flags & TDF_DETAILS))
1908 {
1909 fputs ("Replacing reference: ", dump_file);
1910 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1911 }
1912
2749c8f6
BS
1913 if (gimple_vdef (c->cand_stmt))
1914 {
1915 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
1916 replace_ref (lhs, c);
1917 }
1918 else
1919 {
1920 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
1921 replace_ref (rhs, c);
1922 }
1923
96d75a2c
YZ
1924 if (dump_file && (dump_flags & TDF_DETAILS))
1925 {
1926 fputs ("With: ", dump_file);
1927 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
1928 fputs ("\n", dump_file);
1929 }
1930
2749c8f6
BS
1931 if (c->sibling)
1932 replace_refs (lookup_cand (c->sibling));
1933
1934 if (c->dependent)
1935 replace_refs (lookup_cand (c->dependent));
1936}
1937
9b92d12b
BS
1938/* Return TRUE if candidate C is dependent upon a PHI. */
1939
1940static bool
1941phi_dependent_cand_p (slsr_cand_t c)
1942{
1943 /* A candidate is not necessarily dependent upon a PHI just because
1944 it has a phi definition for its base name. It may have a basis
1945 that relies upon the same phi definition, in which case the PHI
1946 is irrelevant to this candidate. */
1947 return (c->def_phi
1948 && c->basis
1949 && lookup_cand (c->basis)->def_phi != c->def_phi);
1950}
1951
f9453c07
BS
1952/* Calculate the increment required for candidate C relative to
1953 its basis. */
1954
807e902e 1955static widest_int
f9453c07
BS
1956cand_increment (slsr_cand_t c)
1957{
1958 slsr_cand_t basis;
1959
1960 /* If the candidate doesn't have a basis, just return its own
1961 index. This is useful in record_increments to help us find
9b92d12b
BS
1962 an existing initializer. Also, if the candidate's basis is
1963 hidden by a phi, then its own index will be the increment
1964 from the newly introduced phi basis. */
1965 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
1966 return c->index;
1967
1968 basis = lookup_cand (c->basis);
3cfd4469 1969 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 1970 return c->index - basis->index;
f9453c07
BS
1971}
1972
88ca9ea1
BS
1973/* Calculate the increment required for candidate C relative to
1974 its basis. If we aren't going to generate pointer arithmetic
1975 for this candidate, return the absolute value of that increment
1976 instead. */
1977
807e902e 1978static inline widest_int
88ca9ea1
BS
1979cand_abs_increment (slsr_cand_t c)
1980{
807e902e 1981 widest_int increment = cand_increment (c);
88ca9ea1 1982
807e902e 1983 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 1984 increment = -increment;
88ca9ea1
BS
1985
1986 return increment;
1987}
1988
f9453c07
BS
1989/* Return TRUE iff candidate C has already been replaced under
1990 another interpretation. */
1991
1992static inline bool
1993cand_already_replaced (slsr_cand_t c)
1994{
1995 return (gimple_bb (c->cand_stmt) == 0);
1996}
1997
9b92d12b
BS
1998/* Common logic used by replace_unconditional_candidate and
1999 replace_conditional_candidate. */
f9453c07
BS
2000
2001static void
807e902e 2002replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2003{
9b92d12b
BS
2004 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2005 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2006
f9453c07
BS
2007 /* It is highly unlikely, but possible, that the resulting
2008 bump doesn't fit in a HWI. Abandon the replacement
9b92d12b
BS
2009 in this case. This does not affect siblings or dependents
2010 of C. Restriction to signed HWI is conservative for unsigned
2011 types but allows for safe negation without twisted logic. */
807e902e 2012 if (wi::fits_shwi_p (bump)
9b92d12b
BS
2013 && bump.to_shwi () != HOST_WIDE_INT_MIN
2014 /* It is not useful to replace casts, copies, or adds of
2015 an SSA name and a constant. */
fbcdc43e 2016 && cand_code != SSA_NAME
d822570f 2017 && !CONVERT_EXPR_CODE_P (cand_code)
9b92d12b
BS
2018 && cand_code != PLUS_EXPR
2019 && cand_code != POINTER_PLUS_EXPR
2020 && cand_code != MINUS_EXPR)
2021 {
2022 enum tree_code code = PLUS_EXPR;
2023 tree bump_tree;
355fe088 2024 gimple *stmt_to_print = NULL;
9b92d12b
BS
2025
2026 /* If the basis name and the candidate's LHS have incompatible
2027 types, introduce a cast. */
2028 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
a7a7d10e 2029 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
807e902e 2030 if (wi::neg_p (bump))
9b92d12b
BS
2031 {
2032 code = MINUS_EXPR;
2033 bump = -bump;
2034 }
2035
807e902e 2036 bump_tree = wide_int_to_tree (target_type, bump);
9b92d12b
BS
2037
2038 if (dump_file && (dump_flags & TDF_DETAILS))
2039 {
2040 fputs ("Replacing: ", dump_file);
2041 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
2042 }
2043
807e902e 2044 if (bump == 0)
9b92d12b
BS
2045 {
2046 tree lhs = gimple_assign_lhs (c->cand_stmt);
538dd0b7 2047 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
9b92d12b
BS
2048 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2049 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2050 gsi_replace (&gsi, copy_stmt, false);
0100cd3f 2051 c->cand_stmt = copy_stmt;
9b92d12b
BS
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 stmt_to_print = copy_stmt;
2054 }
2055 else
2056 {
2057 tree rhs1, rhs2;
2058 if (cand_code != NEGATE_EXPR) {
2059 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2060 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2061 }
2062 if (cand_code != NEGATE_EXPR
2063 && ((operand_equal_p (rhs1, basis_name, 0)
2064 && operand_equal_p (rhs2, bump_tree, 0))
2065 || (operand_equal_p (rhs1, bump_tree, 0)
2066 && operand_equal_p (rhs2, basis_name, 0))))
2067 {
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2069 {
2070 fputs ("(duplicate, not actually replacing)", dump_file);
2071 stmt_to_print = c->cand_stmt;
2072 }
2073 }
2074 else
2075 {
2076 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2077 gimple_assign_set_rhs_with_ops (&gsi, code,
2078 basis_name, bump_tree);
2079 update_stmt (gsi_stmt (gsi));
bb0d2039 2080 c->cand_stmt = gsi_stmt (gsi);
9b92d12b
BS
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 stmt_to_print = gsi_stmt (gsi);
2083 }
2084 }
2085
2086 if (dump_file && (dump_flags & TDF_DETAILS))
2087 {
2088 fputs ("With: ", dump_file);
2089 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
2090 fputs ("\n", dump_file);
2091 }
2092 }
2093}
2094
2095/* Replace candidate C with an add or subtract. Note that we only
2096 operate on CAND_MULTs with known strides, so we will never generate
2097 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2098 X = Y + ((i - i') * S), as described in the module commentary. The
2099 folded value ((i - i') * S) is referred to here as the "bump." */
2100
2101static void
2102replace_unconditional_candidate (slsr_cand_t c)
2103{
2104 slsr_cand_t basis;
9b92d12b
BS
2105
2106 if (cand_already_replaced (c))
f9453c07
BS
2107 return;
2108
2109 basis = lookup_cand (c->basis);
807e902e 2110 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2111
a7a7d10e 2112 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2113}
2114\f
7bf55a70
BS
2115/* Return the index in the increment vector of the given INCREMENT,
2116 or -1 if not found. The latter can occur if more than
2117 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2118
7bf55a70 2119static inline int
807e902e 2120incr_vec_index (const widest_int &increment)
9b92d12b
BS
2121{
2122 unsigned i;
2123
2124 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2125 ;
2126
7bf55a70
BS
2127 if (i < incr_vec_len)
2128 return i;
2129 else
2130 return -1;
9b92d12b
BS
2131}
2132
2133/* Create a new statement along edge E to add BASIS_NAME to the product
2134 of INCREMENT and the stride of candidate C. Create and return a new
2135 SSA name from *VAR to be used as the LHS of the new statement.
2136 KNOWN_STRIDE is true iff C's stride is a constant. */
2137
2138static tree
2139create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2140 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2141 bool known_stride)
2142{
2143 basic_block insert_bb;
2144 gimple_stmt_iterator gsi;
2145 tree lhs, basis_type;
538dd0b7 2146 gassign *new_stmt;
9b92d12b
BS
2147
2148 /* If the add candidate along this incoming edge has the same
2149 index as C's hidden basis, the hidden basis represents this
2150 edge correctly. */
807e902e 2151 if (increment == 0)
9b92d12b
BS
2152 return basis_name;
2153
2154 basis_type = TREE_TYPE (basis_name);
2155 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2156
2157 if (known_stride)
7139194b 2158 {
9b92d12b
BS
2159 tree bump_tree;
2160 enum tree_code code = PLUS_EXPR;
807e902e
KZ
2161 widest_int bump = increment * wi::to_widest (c->stride);
2162 if (wi::neg_p (bump))
9b92d12b
BS
2163 {
2164 code = MINUS_EXPR;
2165 bump = -bump;
2166 }
2167
807e902e 2168 bump_tree = wide_int_to_tree (basis_type, bump);
0d0e4a03 2169 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2170 }
2171 else
2172 {
7bf55a70 2173 int i;
807e902e 2174 bool negate_incr = (!address_arithmetic_p && wi::neg_p (increment));
9b92d12b 2175 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2176 gcc_assert (i >= 0);
f9453c07 2177
9b92d12b
BS
2178 if (incr_vec[i].initializer)
2179 {
2180 enum tree_code code = negate_incr ? MINUS_EXPR : PLUS_EXPR;
0d0e4a03
JJ
2181 new_stmt = gimple_build_assign (lhs, code, basis_name,
2182 incr_vec[i].initializer);
9b92d12b 2183 }
807e902e 2184 else if (increment == 1)
0d0e4a03 2185 new_stmt = gimple_build_assign (lhs, PLUS_EXPR, basis_name, c->stride);
807e902e 2186 else if (increment == -1)
0d0e4a03
JJ
2187 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name,
2188 c->stride);
9b92d12b
BS
2189 else
2190 gcc_unreachable ();
f9453c07
BS
2191 }
2192
9b92d12b
BS
2193 insert_bb = single_succ_p (e->src) ? e->src : split_edge (e);
2194 gsi = gsi_last_bb (insert_bb);
2195
2196 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
2197 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2198 else
2199 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2200
2201 gimple_set_location (new_stmt, loc);
f9453c07
BS
2202
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2204 {
9b92d12b
BS
2205 fprintf (dump_file, "Inserting in block %d: ", insert_bb->index);
2206 print_gimple_stmt (dump_file, new_stmt, 0, 0);
f9453c07
BS
2207 }
2208
9b92d12b
BS
2209 return lhs;
2210}
2211
2212/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2213 is hidden by the phi node FROM_PHI, create a new phi node in the same
2214 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2215 with its phi arguments representing conditional adjustments to the
2216 hidden basis along conditional incoming paths. Those adjustments are
2217 made by creating add statements (and sometimes recursively creating
2218 phis) along those incoming paths. LOC is the location to attach to
2219 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2220 constant. */
2221
2222static tree
355fe088 2223create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
9b92d12b
BS
2224 location_t loc, bool known_stride)
2225{
2226 int i;
2227 tree name, phi_arg;
538dd0b7 2228 gphi *phi;
9b92d12b
BS
2229 slsr_cand_t basis = lookup_cand (c->basis);
2230 int nargs = gimple_phi_num_args (from_phi);
2231 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2232 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2233 auto_vec<tree> phi_args (nargs);
9b92d12b
BS
2234
2235 /* Process each argument of the existing phi that represents
2236 conditionally-executed add candidates. */
2237 for (i = 0; i < nargs; i++)
f9453c07 2238 {
9b92d12b
BS
2239 edge e = (*phi_bb->preds)[i];
2240 tree arg = gimple_phi_arg_def (from_phi, i);
2241 tree feeding_def;
2242
2243 /* If the phi argument is the base name of the CAND_PHI, then
2244 this incoming arc should use the hidden basis. */
2245 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2246 if (basis->index == 0)
9b92d12b
BS
2247 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2248 else
2249 {
807e902e 2250 widest_int incr = -basis->index;
9b92d12b
BS
2251 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2252 e, loc, known_stride);
2253 }
2254 else
f9453c07 2255 {
355fe088 2256 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2257
2258 /* If there is another phi along this incoming edge, we must
2259 process it in the same fashion to ensure that all basis
2260 adjustments are made along its incoming edges. */
2261 if (gimple_code (arg_def) == GIMPLE_PHI)
2262 feeding_def = create_phi_basis (c, arg_def, basis_name,
2263 loc, known_stride);
2264 else
f9453c07 2265 {
9b92d12b 2266 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2267 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2268 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2269 e, loc, known_stride);
f9453c07
BS
2270 }
2271 }
9b92d12b
BS
2272
2273 /* Because of recursion, we need to save the arguments in a vector
2274 so we can create the PHI statement all at once. Otherwise the
2275 storage for the half-created PHI can be reclaimed. */
2276 phi_args.safe_push (feeding_def);
f9453c07 2277 }
9b92d12b
BS
2278
2279 /* Create the new phi basis. */
2280 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2281 phi = create_phi_node (name, phi_bb);
2282 SSA_NAME_DEF_STMT (name) = phi;
2283
2284 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2285 {
2286 edge e = (*phi_bb->preds)[i];
2287 add_phi_arg (phi, phi_arg, e, loc);
2288 }
2289
2290 update_stmt (phi);
2291
f9453c07
BS
2292 if (dump_file && (dump_flags & TDF_DETAILS))
2293 {
9b92d12b
BS
2294 fputs ("Introducing new phi basis: ", dump_file);
2295 print_gimple_stmt (dump_file, phi, 0, 0);
f9453c07 2296 }
9b92d12b
BS
2297
2298 return name;
f9453c07
BS
2299}
2300
9b92d12b
BS
2301/* Given a candidate C whose basis is hidden by at least one intervening
2302 phi, introduce a matching number of new phis to represent its basis
2303 adjusted by conditional increments along possible incoming paths. Then
2304 replace C as though it were an unconditional candidate, using the new
2305 basis. */
f9453c07
BS
2306
2307static void
9b92d12b 2308replace_conditional_candidate (slsr_cand_t c)
f9453c07 2309{
a7a7d10e 2310 tree basis_name, name;
9b92d12b
BS
2311 slsr_cand_t basis;
2312 location_t loc;
f9453c07 2313
9b92d12b
BS
2314 /* Look up the LHS SSA name from C's basis. This will be the
2315 RHS1 of the adds we will introduce to create new phi arguments. */
2316 basis = lookup_cand (c->basis);
2317 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2318
9b92d12b
BS
2319 /* Create a new phi statement which will represent C's true basis
2320 after the transformation is complete. */
2321 loc = gimple_location (c->cand_stmt);
2322 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2323 basis_name, loc, KNOWN_STRIDE);
2324 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2325 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2326
a7a7d10e 2327 replace_mult_candidate (c, name, bump);
f9453c07 2328}
88ca9ea1 2329
9b92d12b
BS
2330/* Compute the expected costs of inserting basis adjustments for
2331 candidate C with phi-definition PHI. The cost of inserting
2332 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2333 which are themselves phi results, recursively calculate costs
2334 for those phis as well. */
2335
2336static int
355fe088 2337phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
88ca9ea1
BS
2338{
2339 unsigned i;
9b92d12b 2340 int cost = 0;
5b3d5f76 2341 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2342
0100cd3f
BS
2343 /* If we work our way back to a phi that isn't dominated by the hidden
2344 basis, this isn't a candidate for replacement. Indicate this by
2345 returning an unreasonably high cost. It's not easy to detect
2346 these situations when determining the basis, so we defer the
2347 decision until now. */
2348 basic_block phi_bb = gimple_bb (phi);
2349 slsr_cand_t basis = lookup_cand (c->basis);
2350 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2351
2352 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2353 return COST_INFINITE;
2354
9b92d12b
BS
2355 for (i = 0; i < gimple_phi_num_args (phi); i++)
2356 {
2357 tree arg = gimple_phi_arg_def (phi, i);
2358
2359 if (arg != phi_cand->base_expr)
2360 {
355fe088 2361 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2362
2363 if (gimple_code (arg_def) == GIMPLE_PHI)
2364 cost += phi_add_costs (arg_def, c, one_add_cost);
2365 else
2366 {
2367 slsr_cand_t arg_cand = base_cand_from_table (arg);
2368
2369 if (arg_cand->index != c->index)
2370 cost += one_add_cost;
2371 }
2372 }
2373 }
2374
2375 return cost;
88ca9ea1
BS
2376}
2377
9b92d12b
BS
2378/* For candidate C, each sibling of candidate C, and each dependent of
2379 candidate C, determine whether the candidate is dependent upon a
2380 phi that hides its basis. If not, replace the candidate unconditionally.
2381 Otherwise, determine whether the cost of introducing compensation code
2382 for the candidate is offset by the gains from strength reduction. If
2383 so, replace the candidate and introduce the compensation code. */
2384
2385static void
2386replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2387{
2388 if (phi_dependent_cand_p (c))
2389 {
2390 if (c->kind == CAND_MULT)
2391 {
2392 /* A candidate dependent upon a phi will replace a multiply by
2393 a constant with an add, and will insert at most one add for
2394 each phi argument. Add these costs with the potential dead-code
2395 savings to determine profitability. */
2396 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2397 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2398 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2399 tree phi_result = gimple_phi_result (phi);
2400 int one_add_cost = add_cost (speed,
2401 TYPE_MODE (TREE_TYPE (phi_result)));
2402 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2403 int cost = add_costs - mult_savings - c->dead_savings;
2404
2405 if (dump_file && (dump_flags & TDF_DETAILS))
2406 {
2407 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2408 fprintf (dump_file, " add_costs = %d\n", add_costs);
2409 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2410 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2411 fprintf (dump_file, " cost = %d\n", cost);
2412 if (cost <= COST_NEUTRAL)
2413 fputs (" Replacing...\n", dump_file);
2414 else
2415 fputs (" Not replaced.\n", dump_file);
2416 }
2417
2418 if (cost <= COST_NEUTRAL)
2419 replace_conditional_candidate (c);
2420 }
2421 }
2422 else
2423 replace_unconditional_candidate (c);
2424
2425 if (c->sibling)
2426 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2427
2428 if (c->dependent)
2429 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2430}
2431\f
88ca9ea1
BS
2432/* Count the number of candidates in the tree rooted at C that have
2433 not already been replaced under other interpretations. */
2434
1dc3d6e9 2435static int
88ca9ea1
BS
2436count_candidates (slsr_cand_t c)
2437{
2438 unsigned count = cand_already_replaced (c) ? 0 : 1;
2439
2440 if (c->sibling)
2441 count += count_candidates (lookup_cand (c->sibling));
2442
2443 if (c->dependent)
2444 count += count_candidates (lookup_cand (c->dependent));
2445
2446 return count;
2447}
2448
2449/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2450 INCREMENT is associated with candidate C. If INCREMENT is to be
2451 conditionally executed as part of a conditional candidate replacement,
2452 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2453 T_0 = stride * I is provided by a candidate that dominates all
2454 candidates with the same increment, also record T_0 for subsequent use. */
2455
2456static void
807e902e 2457record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2458{
2459 bool found = false;
2460 unsigned i;
2461
2462 /* Treat increments that differ only in sign as identical so as to
2463 share initializers, unless we are generating pointer arithmetic. */
807e902e 2464 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2465 increment = -increment;
88ca9ea1
BS
2466
2467 for (i = 0; i < incr_vec_len; i++)
2468 {
27bcd47c 2469 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2470 {
2471 incr_vec[i].count++;
2472 found = true;
2473
2474 /* If we previously recorded an initializer that doesn't
2475 dominate this candidate, it's not going to be useful to
2476 us after all. */
2477 if (incr_vec[i].initializer
2478 && !dominated_by_p (CDI_DOMINATORS,
2479 gimple_bb (c->cand_stmt),
2480 incr_vec[i].init_bb))
2481 {
2482 incr_vec[i].initializer = NULL_TREE;
2483 incr_vec[i].init_bb = NULL;
2484 }
2485
2486 break;
2487 }
2488 }
2489
7bf55a70 2490 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2491 {
2492 /* The first time we see an increment, create the entry for it.
2493 If this is the root candidate which doesn't have a basis, set
2494 the count to zero. We're only processing it so it can possibly
2495 provide an initializer for other candidates. */
2496 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2497 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2498 incr_vec[incr_vec_len].cost = COST_INFINITE;
2499
2500 /* Optimistically record the first occurrence of this increment
2501 as providing an initializer (if it does); we will revise this
2502 opinion later if it doesn't dominate all other occurrences.
9b92d12b
BS
2503 Exception: increments of -1, 0, 1 never need initializers;
2504 and phi adjustments don't ever provide initializers. */
88ca9ea1 2505 if (c->kind == CAND_ADD
9b92d12b 2506 && !is_phi_adjust
27bcd47c 2507 && c->index == increment
032c80e9 2508 && (increment > 1 || increment < -1)
7b8265ba
JJ
2509 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2510 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2511 {
7b8265ba 2512 tree t0 = NULL_TREE;
88ca9ea1
BS
2513 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2514 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2515 if (operand_equal_p (rhs1, c->base_expr, 0))
2516 t0 = rhs2;
7b8265ba 2517 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2518 t0 = rhs1;
7b8265ba
JJ
2519 if (t0
2520 && SSA_NAME_DEF_STMT (t0)
2521 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2522 {
2523 incr_vec[incr_vec_len].initializer = t0;
2524 incr_vec[incr_vec_len++].init_bb
2525 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2526 }
2527 else
2528 {
2529 incr_vec[incr_vec_len].initializer = NULL_TREE;
2530 incr_vec[incr_vec_len++].init_bb = NULL;
2531 }
2532 }
2533 else
2534 {
2535 incr_vec[incr_vec_len].initializer = NULL_TREE;
2536 incr_vec[incr_vec_len++].init_bb = NULL;
2537 }
2538 }
2539}
2540
9b92d12b
BS
2541/* Given phi statement PHI that hides a candidate from its BASIS, find
2542 the increments along each incoming arc (recursively handling additional
2543 phis that may be present) and record them. These increments are the
2544 difference in index between the index-adjusting statements and the
2545 index of the basis. */
2546
2547static void
355fe088 2548record_phi_increments (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2549{
2550 unsigned i;
5b3d5f76 2551 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
2552
2553 for (i = 0; i < gimple_phi_num_args (phi); i++)
2554 {
2555 tree arg = gimple_phi_arg_def (phi, i);
2556
2557 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2558 {
355fe088 2559 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2560
2561 if (gimple_code (arg_def) == GIMPLE_PHI)
2562 record_phi_increments (basis, arg_def);
2563 else
2564 {
2565 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2566 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2567 record_increment (arg_cand, diff, PHI_ADJUST);
2568 }
2569 }
2570 }
2571}
2572
88ca9ea1
BS
2573/* Determine how many times each unique increment occurs in the set
2574 of candidates rooted at C's parent, recording the data in the
2575 increment vector. For each unique increment I, if an initializer
2576 T_0 = stride * I is provided by a candidate that dominates all
2577 candidates with the same increment, also record T_0 for subsequent
2578 use. */
2579
2580static void
2581record_increments (slsr_cand_t c)
2582{
2583 if (!cand_already_replaced (c))
9b92d12b
BS
2584 {
2585 if (!phi_dependent_cand_p (c))
2586 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2587 else
2588 {
2589 /* A candidate with a basis hidden by a phi will have one
2590 increment for its relationship to the index represented by
2591 the phi, and potentially additional increments along each
2592 incoming edge. For the root of the dependency tree (which
2593 has no basis), process just the initial index in case it has
2594 an initializer that can be used by subsequent candidates. */
2595 record_increment (c, c->index, NOT_PHI_ADJUST);
2596
2597 if (c->basis)
2598 record_phi_increments (lookup_cand (c->basis),
2599 lookup_cand (c->def_phi)->cand_stmt);
2600 }
2601 }
88ca9ea1
BS
2602
2603 if (c->sibling)
2604 record_increments (lookup_cand (c->sibling));
2605
2606 if (c->dependent)
2607 record_increments (lookup_cand (c->dependent));
2608}
2609
9b92d12b
BS
2610/* Add up and return the costs of introducing add statements that
2611 require the increment INCR on behalf of candidate C and phi
2612 statement PHI. Accumulate into *SAVINGS the potential savings
2613 from removing existing statements that feed PHI and have no other
2614 uses. */
2615
2616static int
355fe088
TS
2617phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2618 int *savings)
9b92d12b
BS
2619{
2620 unsigned i;
2621 int cost = 0;
2622 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2623 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
2624
2625 for (i = 0; i < gimple_phi_num_args (phi); i++)
2626 {
2627 tree arg = gimple_phi_arg_def (phi, i);
2628
2629 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2630 {
355fe088 2631 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2632
2633 if (gimple_code (arg_def) == GIMPLE_PHI)
2634 {
2635 int feeding_savings = 0;
2636 cost += phi_incr_cost (c, incr, arg_def, &feeding_savings);
2637 if (has_single_use (gimple_phi_result (arg_def)))
2638 *savings += feeding_savings;
2639 }
2640 else
2641 {
2642 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2643 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2644
2645 if (incr == diff)
2646 {
2647 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2648 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2649 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2650 if (has_single_use (lhs))
2651 *savings += stmt_cost (arg_cand->cand_stmt, true);
2652 }
2653 }
2654 }
2655 }
2656
2657 return cost;
2658}
2659
88ca9ea1
BS
2660/* Return the first candidate in the tree rooted at C that has not
2661 already been replaced, favoring siblings over dependents. */
2662
2663static slsr_cand_t
2664unreplaced_cand_in_tree (slsr_cand_t c)
2665{
2666 if (!cand_already_replaced (c))
2667 return c;
2668
2669 if (c->sibling)
2670 {
2671 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2672 if (sib)
2673 return sib;
2674 }
2675
2676 if (c->dependent)
2677 {
2678 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2679 if (dep)
2680 return dep;
2681 }
2682
2683 return NULL;
2684}
2685
2686/* Return TRUE if the candidates in the tree rooted at C should be
2687 optimized for speed, else FALSE. We estimate this based on the block
2688 containing the most dominant candidate in the tree that has not yet
2689 been replaced. */
2690
2691static bool
2692optimize_cands_for_speed_p (slsr_cand_t c)
2693{
2694 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2695 gcc_assert (c2);
2696 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2697}
2698
2699/* Add COST_IN to the lowest cost of any dependent path starting at
2700 candidate C or any of its siblings, counting only candidates along
2701 such paths with increment INCR. Assume that replacing a candidate
2702 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2703 statements that would go dead. If COUNT_PHIS is true, include
2704 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2705
2706static int
9b92d12b 2707lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2708 const widest_int &incr, bool count_phis)
88ca9ea1 2709{
9b92d12b 2710 int local_cost, sib_cost, savings = 0;
807e902e 2711 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2712
2713 if (cand_already_replaced (c))
2714 local_cost = cost_in;
27bcd47c 2715 else if (incr == cand_incr)
88ca9ea1
BS
2716 local_cost = cost_in - repl_savings - c->dead_savings;
2717 else
2718 local_cost = cost_in - c->dead_savings;
2719
9b92d12b
BS
2720 if (count_phis
2721 && phi_dependent_cand_p (c)
2722 && !cand_already_replaced (c))
2723 {
355fe088 2724 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2725 local_cost += phi_incr_cost (c, incr, phi, &savings);
2726
2727 if (has_single_use (gimple_phi_result (phi)))
2728 local_cost -= savings;
2729 }
2730
88ca9ea1
BS
2731 if (c->dependent)
2732 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
2733 lookup_cand (c->dependent), incr,
2734 count_phis);
88ca9ea1
BS
2735
2736 if (c->sibling)
2737 {
2738 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
2739 lookup_cand (c->sibling), incr,
2740 count_phis);
88ca9ea1
BS
2741 local_cost = MIN (local_cost, sib_cost);
2742 }
2743
2744 return local_cost;
2745}
2746
2747/* Compute the total savings that would accrue from all replacements
2748 in the candidate tree rooted at C, counting only candidates with
2749 increment INCR. Assume that replacing a candidate reduces cost
2750 by REPL_SAVINGS. Also account for savings from statements that
2751 would go dead. */
2752
2753static int
807e902e 2754total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 2755 bool count_phis)
88ca9ea1
BS
2756{
2757 int savings = 0;
807e902e 2758 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 2759
27bcd47c 2760 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
2761 savings += repl_savings + c->dead_savings;
2762
9b92d12b
BS
2763 if (count_phis
2764 && phi_dependent_cand_p (c)
2765 && !cand_already_replaced (c))
2766 {
2767 int phi_savings = 0;
355fe088 2768 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2769 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2770
2771 if (has_single_use (gimple_phi_result (phi)))
2772 savings += phi_savings;
2773 }
2774
88ca9ea1 2775 if (c->dependent)
9b92d12b
BS
2776 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2777 count_phis);
88ca9ea1
BS
2778
2779 if (c->sibling)
9b92d12b
BS
2780 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
2781 count_phis);
88ca9ea1
BS
2782
2783 return savings;
2784}
2785
2786/* Use target-specific costs to determine and record which increments
2787 in the current candidate tree are profitable to replace, assuming
2788 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2789 the candidate tree.
2790
2791 One slight limitation here is that we don't account for the possible
2792 introduction of casts in some cases. See replace_one_candidate for
2793 the cases where these are introduced. This should probably be cleaned
2794 up sometime. */
2795
2796static void
ef4bddc2 2797analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
2798{
2799 unsigned i;
2800
2801 for (i = 0; i < incr_vec_len; i++)
2802 {
27bcd47c 2803 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
2804
2805 /* If somehow this increment is bigger than a HWI, we won't
2806 be optimizing candidates that use it. And if the increment
2807 has a count of zero, nothing will be done with it. */
807e902e 2808 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
2809 incr_vec[i].cost = COST_INFINITE;
2810
2811 /* Increments of 0, 1, and -1 are always profitable to replace,
2812 because they always replace a multiply or add with an add or
2813 copy, and may cause one or more existing instructions to go
2814 dead. Exception: -1 can't be assumed to be profitable for
2815 pointer addition. */
2816 else if (incr == 0
2817 || incr == 1
2818 || (incr == -1
457e189d 2819 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1
BS
2820 incr_vec[i].cost = COST_NEUTRAL;
2821
6b5eea61
BS
2822 /* FORNOW: If we need to add an initializer, give up if a cast from
2823 the candidate's type to its stride's type can lose precision.
2824 This could eventually be handled better by expressly retaining the
2825 result of a cast to a wider type in the stride. Example:
2826
2827 short int _1;
2828 _2 = (int) _1;
2829 _3 = _2 * 10;
2830 _4 = x + _3; ADD: x + (10 * _1) : int
2831 _5 = _2 * 15;
2832 _6 = x + _3; ADD: x + (15 * _1) : int
2833
2834 Right now replacing _6 would cause insertion of an initializer
2835 of the form "short int T = _1 * 5;" followed by a cast to
2836 int, which could overflow incorrectly. Had we recorded _2 or
2837 (int)_1 as the stride, this wouldn't happen. However, doing
2838 this breaks other opportunities, so this will require some
2839 care. */
2840 else if (!incr_vec[i].initializer
2841 && TREE_CODE (first_dep->stride) != INTEGER_CST
2842 && !legal_cast_p_1 (first_dep->stride,
2843 gimple_assign_lhs (first_dep->cand_stmt)))
2844
2845 incr_vec[i].cost = COST_INFINITE;
2846
50251425
BS
2847 /* If we need to add an initializer, make sure we don't introduce
2848 a multiply by a pointer type, which can happen in certain cast
2849 scenarios. FIXME: When cleaning up these cast issues, we can
2850 afford to introduce the multiply provided we cast out to an
2851 unsigned int of appropriate size. */
2852 else if (!incr_vec[i].initializer
2853 && TREE_CODE (first_dep->stride) != INTEGER_CST
2854 && POINTER_TYPE_P (TREE_TYPE (first_dep->stride)))
2855
2856 incr_vec[i].cost = COST_INFINITE;
2857
88ca9ea1
BS
2858 /* For any other increment, if this is a multiply candidate, we
2859 must introduce a temporary T and initialize it with
2860 T_0 = stride * increment. When optimizing for speed, walk the
2861 candidate tree to calculate the best cost reduction along any
2862 path; if it offsets the fixed cost of inserting the initializer,
2863 replacing the increment is profitable. When optimizing for
2864 size, instead calculate the total cost reduction from replacing
2865 all candidates with this increment. */
2866 else if (first_dep->kind == CAND_MULT)
2867 {
2868 int cost = mult_by_coeff_cost (incr, mode, speed);
2869 int repl_savings = mul_cost (speed, mode) - add_cost (speed, mode);
2870 if (speed)
2871 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 2872 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 2873 else
9b92d12b
BS
2874 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
2875 COUNT_PHIS);
88ca9ea1
BS
2876
2877 incr_vec[i].cost = cost;
2878 }
2879
2880 /* If this is an add candidate, the initializer may already
2881 exist, so only calculate the cost of the initializer if it
2882 doesn't. We are replacing one add with another here, so the
2883 known replacement savings is zero. We will account for removal
2884 of dead instructions in lowest_cost_path or total_savings. */
2885 else
2886 {
2887 int cost = 0;
2888 if (!incr_vec[i].initializer)
2889 cost = mult_by_coeff_cost (incr, mode, speed);
2890
2891 if (speed)
9b92d12b
BS
2892 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
2893 DONT_COUNT_PHIS);
88ca9ea1 2894 else
9b92d12b
BS
2895 cost -= total_savings (0, first_dep, incr_vec[i].incr,
2896 DONT_COUNT_PHIS);
88ca9ea1
BS
2897
2898 incr_vec[i].cost = cost;
2899 }
2900 }
2901}
2902
2903/* Return the nearest common dominator of BB1 and BB2. If the blocks
2904 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2905 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2906 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2907 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2908
2909static basic_block
2910ncd_for_two_cands (basic_block bb1, basic_block bb2,
2911 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
2912{
2913 basic_block ncd;
2914
2915 if (!bb1)
2916 {
2917 *where = c2;
2918 return bb2;
2919 }
2920
2921 if (!bb2)
2922 {
2923 *where = c1;
2924 return bb1;
2925 }
2926
2927 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
2928
2929 /* If both candidates are in the same block, the earlier
2930 candidate wins. */
2931 if (bb1 == ncd && bb2 == ncd)
2932 {
2933 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
2934 *where = c2;
2935 else
2936 *where = c1;
2937 }
2938
2939 /* Otherwise, if one of them produced a candidate in the
2940 dominator, that one wins. */
2941 else if (bb1 == ncd)
2942 *where = c1;
2943
2944 else if (bb2 == ncd)
2945 *where = c2;
2946
2947 /* If neither matches the dominator, neither wins. */
2948 else
2949 *where = NULL;
2950
2951 return ncd;
2952}
2953
9b92d12b
BS
2954/* Consider all candidates that feed PHI. Find the nearest common
2955 dominator of those candidates requiring the given increment INCR.
2956 Further find and return the nearest common dominator of this result
2957 with block NCD. If the returned block contains one or more of the
2958 candidates, return the earliest candidate in the block in *WHERE. */
2959
2960static basic_block
538dd0b7 2961ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
2962 basic_block ncd, slsr_cand_t *where)
2963{
2964 unsigned i;
2965 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2966 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
2967
2968 for (i = 0; i < gimple_phi_num_args (phi); i++)
2969 {
2970 tree arg = gimple_phi_arg_def (phi, i);
2971
2972 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2973 {
355fe088 2974 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2975
2976 if (gimple_code (arg_def) == GIMPLE_PHI)
538dd0b7
DM
2977 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
2978 where);
9b92d12b
BS
2979 else
2980 {
2981 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2982 widest_int diff = arg_cand->index - basis->index;
1e386bb8 2983 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
9b92d12b
BS
2984
2985 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
1e386bb8 2986 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
2987 }
2988 }
2989 }
2990
2991 return ncd;
2992}
2993
2994/* Consider the candidate C together with any candidates that feed
2995 C's phi dependence (if any). Find and return the nearest common
2996 dominator of those candidates requiring the given increment INCR.
2997 If the returned block contains one or more of the candidates,
2998 return the earliest candidate in the block in *WHERE. */
2999
3000static basic_block
807e902e 3001ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3002{
3003 basic_block ncd = NULL;
3004
3005 if (cand_abs_increment (c) == incr)
3006 {
3007 ncd = gimple_bb (c->cand_stmt);
3008 *where = c;
3009 }
3010
3011 if (phi_dependent_cand_p (c))
538dd0b7
DM
3012 ncd = ncd_with_phi (c, incr,
3013 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3014 ncd, where);
3015
3016 return ncd;
3017}
3018
88ca9ea1
BS
3019/* Consider all candidates in the tree rooted at C for which INCR
3020 represents the required increment of C relative to its basis.
3021 Find and return the basic block that most nearly dominates all
3022 such candidates. If the returned block contains one or more of
3023 the candidates, return the earliest candidate in the block in
3024 *WHERE. */
3025
3026static basic_block
807e902e 3027nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3028 slsr_cand_t *where)
3029{
3030 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3031 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3032
3033 /* First find the NCD of all siblings and dependents. */
3034 if (c->sibling)
3035 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3036 incr, &sib_where);
3037 if (c->dependent)
3038 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3039 incr, &dep_where);
3040 if (!sib_ncd && !dep_ncd)
3041 {
3042 new_where = NULL;
3043 ncd = NULL;
3044 }
3045 else if (sib_ncd && !dep_ncd)
3046 {
3047 new_where = sib_where;
3048 ncd = sib_ncd;
3049 }
3050 else if (dep_ncd && !sib_ncd)
3051 {
3052 new_where = dep_where;
3053 ncd = dep_ncd;
3054 }
3055 else
3056 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3057 dep_where, &new_where);
3058
3059 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3060 in (and nor do any increments for feeding defs of a phi-dependence),
3061 then the result depends only on siblings and dependents. */
3062 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3063
9b92d12b 3064 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3065 {
3066 *where = new_where;
3067 return ncd;
3068 }
3069
3070 /* Otherwise, compare this candidate with the result from all siblings
3071 and dependents. */
88ca9ea1
BS
3072 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3073
3074 return ncd;
3075}
3076
3077/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3078
3079static inline bool
3080profitable_increment_p (unsigned index)
3081{
3082 return (incr_vec[index].cost <= COST_NEUTRAL);
3083}
3084
3085/* For each profitable increment in the increment vector not equal to
3086 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3087 dominator of all statements in the candidate chain rooted at C
3088 that require that increment, and insert an initializer
3089 T_0 = stride * increment at that location. Record T_0 with the
3090 increment record. */
3091
3092static void
3093insert_initializers (slsr_cand_t c)
3094{
3095 unsigned i;
88ca9ea1
BS
3096
3097 for (i = 0; i < incr_vec_len; i++)
3098 {
3099 basic_block bb;
3100 slsr_cand_t where = NULL;
538dd0b7 3101 gassign *init_stmt;
88ca9ea1 3102 tree stride_type, new_name, incr_tree;
807e902e 3103 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3104
3105 if (!profitable_increment_p (i)
807e902e
KZ
3106 || incr == 1
3107 || (incr == -1
88ca9ea1 3108 && gimple_assign_rhs_code (c->cand_stmt) != POINTER_PLUS_EXPR)
807e902e 3109 || incr == 0)
88ca9ea1
BS
3110 continue;
3111
3112 /* We may have already identified an existing initializer that
3113 will suffice. */
3114 if (incr_vec[i].initializer)
3115 {
3116 if (dump_file && (dump_flags & TDF_DETAILS))
3117 {
3118 fputs ("Using existing initializer: ", dump_file);
3119 print_gimple_stmt (dump_file,
3120 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3121 0, 0);
3122 }
3123 continue;
3124 }
3125
3126 /* Find the block that most closely dominates all candidates
3127 with this increment. If there is at least one candidate in
3128 that block, the earliest one will be returned in WHERE. */
3129 bb = nearest_common_dominator_for_cands (c, incr, &where);
3130
3131 /* Create a new SSA name to hold the initializer's value. */
3132 stride_type = TREE_TYPE (c->stride);
a7a7d10e 3133 new_name = make_temp_ssa_name (stride_type, NULL, "slsr");
88ca9ea1
BS
3134 incr_vec[i].initializer = new_name;
3135
3136 /* Create the initializer and insert it in the latest possible
3137 dominating position. */
807e902e 3138 incr_tree = wide_int_to_tree (stride_type, incr);
0d0e4a03
JJ
3139 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3140 c->stride, incr_tree);
88ca9ea1
BS
3141 if (where)
3142 {
3143 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3144 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3145 gimple_set_location (init_stmt, gimple_location (where->cand_stmt));
3146 }
3147 else
3148 {
3149 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3150 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
88ca9ea1
BS
3151
3152 if (!gsi_end_p (gsi) && is_ctrl_stmt (gsi_stmt (gsi)))
3153 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3154 else
3155 gsi_insert_after (&gsi, init_stmt, GSI_SAME_STMT);
3156
3157 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3158 }
3159
3160 if (dump_file && (dump_flags & TDF_DETAILS))
3161 {
3162 fputs ("Inserting initializer: ", dump_file);
3163 print_gimple_stmt (dump_file, init_stmt, 0, 0);
3164 }
3165 }
3166}
3167
9b92d12b
BS
3168/* Return TRUE iff all required increments for candidates feeding PHI
3169 are profitable to replace on behalf of candidate C. */
3170
3171static bool
355fe088 3172all_phi_incrs_profitable (slsr_cand_t c, gimple *phi)
9b92d12b
BS
3173{
3174 unsigned i;
3175 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3176 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3177
3178 for (i = 0; i < gimple_phi_num_args (phi); i++)
3179 {
3180 tree arg = gimple_phi_arg_def (phi, i);
3181
3182 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3183 {
355fe088 3184 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
3185
3186 if (gimple_code (arg_def) == GIMPLE_PHI)
3187 {
3188 if (!all_phi_incrs_profitable (c, arg_def))
3189 return false;
3190 }
3191 else
3192 {
7bf55a70 3193 int j;
9b92d12b 3194 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 3195 widest_int increment = arg_cand->index - basis->index;
9b92d12b 3196
807e902e 3197 if (!address_arithmetic_p && wi::neg_p (increment))
9b92d12b
BS
3198 increment = -increment;
3199
3200 j = incr_vec_index (increment);
3201
3202 if (dump_file && (dump_flags & TDF_DETAILS))
3203 {
3204 fprintf (dump_file, " Conditional candidate %d, phi: ",
3205 c->cand_num);
3206 print_gimple_stmt (dump_file, phi, 0, 0);
3207 fputs (" increment: ", dump_file);
807e902e 3208 print_decs (increment, dump_file);
7bf55a70
BS
3209 if (j < 0)
3210 fprintf (dump_file,
3211 "\n Not replaced; incr_vec overflow.\n");
3212 else {
3213 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3214 if (profitable_increment_p (j))
3215 fputs (" Replacing...\n", dump_file);
3216 else
3217 fputs (" Not replaced.\n", dump_file);
3218 }
9b92d12b
BS
3219 }
3220
7bf55a70 3221 if (j < 0 || !profitable_increment_p (j))
9b92d12b
BS
3222 return false;
3223 }
3224 }
3225 }
3226
3227 return true;
3228}
3229
88ca9ea1
BS
3230/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3231 type TO_TYPE, and insert it in front of the statement represented
3232 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3233 the new SSA name. */
3234
3235static tree
a7a7d10e 3236introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3237{
3238 tree cast_lhs;
538dd0b7 3239 gassign *cast_stmt;
88ca9ea1
BS
3240 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3241
a7a7d10e 3242 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3243 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3244 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3245 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3246
3247 if (dump_file && (dump_flags & TDF_DETAILS))
3248 {
3249 fputs (" Inserting: ", dump_file);
3250 print_gimple_stmt (dump_file, cast_stmt, 0, 0);
3251 }
3252
3253 return cast_lhs;
3254}
3255
3256/* Replace the RHS of the statement represented by candidate C with
3257 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3258 leave C unchanged or just interchange its operands. The original
3259 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3260 If the replacement was made and we are doing a details dump,
3261 return the revised statement, else NULL. */
3262
355fe088 3263static gimple *
88ca9ea1
BS
3264replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3265 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3266 slsr_cand_t c)
3267{
3268 if (new_code != old_code
3269 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3270 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3271 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3272 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3273 {
3274 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3275 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3276 update_stmt (gsi_stmt (gsi));
bb0d2039 3277 c->cand_stmt = gsi_stmt (gsi);
88ca9ea1
BS
3278
3279 if (dump_file && (dump_flags & TDF_DETAILS))
3280 return gsi_stmt (gsi);
3281 }
3282
3283 else if (dump_file && (dump_flags & TDF_DETAILS))
3284 fputs (" (duplicate, not actually replacing)\n", dump_file);
3285
3286 return NULL;
3287}
3288
3289/* Strength-reduce the statement represented by candidate C by replacing
3290 it with an equivalent addition or subtraction. I is the index into
3291 the increment vector identifying C's increment. NEW_VAR is used to
3292 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3293 is the rhs1 to use in creating the add/subtract. */
3294
3295static void
a7a7d10e 3296replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3297{
355fe088 3298 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3299 tree orig_rhs1, orig_rhs2;
3300 tree rhs2;
3301 enum tree_code orig_code, repl_code;
807e902e 3302 widest_int cand_incr;
88ca9ea1
BS
3303
3304 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3305 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3306 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3307 cand_incr = cand_increment (c);
3308
3309 if (dump_file && (dump_flags & TDF_DETAILS))
3310 {
3311 fputs ("Replacing: ", dump_file);
3312 print_gimple_stmt (dump_file, c->cand_stmt, 0, 0);
3313 stmt_to_print = c->cand_stmt;
3314 }
3315
3316 if (address_arithmetic_p)
3317 repl_code = POINTER_PLUS_EXPR;
3318 else
3319 repl_code = PLUS_EXPR;
3320
3321 /* If the increment has an initializer T_0, replace the candidate
3322 statement with an add of the basis name and the initializer. */
3323 if (incr_vec[i].initializer)
3324 {
3325 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3326 tree orig_type = TREE_TYPE (orig_rhs2);
3327
3328 if (types_compatible_p (orig_type, init_type))
3329 rhs2 = incr_vec[i].initializer;
3330 else
3331 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3332 incr_vec[i].initializer);
88ca9ea1 3333
27bcd47c 3334 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3335 {
3336 gcc_assert (repl_code == PLUS_EXPR);
3337 repl_code = MINUS_EXPR;
3338 }
3339
3340 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3341 orig_code, orig_rhs1, orig_rhs2,
3342 c);
3343 }
3344
3345 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3346 with a subtract of the stride from the basis name, a copy
3347 from the basis name, or an add of the stride to the basis
3348 name, respectively. It may be necessary to introduce a
3349 cast (or reuse an existing cast). */
807e902e 3350 else if (cand_incr == 1)
88ca9ea1
BS
3351 {
3352 tree stride_type = TREE_TYPE (c->stride);
3353 tree orig_type = TREE_TYPE (orig_rhs2);
3354
3355 if (types_compatible_p (orig_type, stride_type))
3356 rhs2 = c->stride;
3357 else
a7a7d10e 3358 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3359
3360 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3361 orig_code, orig_rhs1, orig_rhs2,
3362 c);
3363 }
3364
807e902e 3365 else if (cand_incr == -1)
88ca9ea1
BS
3366 {
3367 tree stride_type = TREE_TYPE (c->stride);
3368 tree orig_type = TREE_TYPE (orig_rhs2);
3369 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3370
3371 if (types_compatible_p (orig_type, stride_type))
3372 rhs2 = c->stride;
3373 else
a7a7d10e 3374 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3375
3376 if (orig_code != MINUS_EXPR
3377 || !operand_equal_p (basis_name, orig_rhs1, 0)
3378 || !operand_equal_p (rhs2, orig_rhs2, 0))
3379 {
3380 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3381 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3382 update_stmt (gsi_stmt (gsi));
bb0d2039 3383 c->cand_stmt = gsi_stmt (gsi);
88ca9ea1
BS
3384
3385 if (dump_file && (dump_flags & TDF_DETAILS))
3386 stmt_to_print = gsi_stmt (gsi);
3387 }
3388 else if (dump_file && (dump_flags & TDF_DETAILS))
3389 fputs (" (duplicate, not actually replacing)\n", dump_file);
3390 }
3391
807e902e 3392 else if (cand_incr == 0)
88ca9ea1
BS
3393 {
3394 tree lhs = gimple_assign_lhs (c->cand_stmt);
3395 tree lhs_type = TREE_TYPE (lhs);
3396 tree basis_type = TREE_TYPE (basis_name);
3397
3398 if (types_compatible_p (lhs_type, basis_type))
3399 {
538dd0b7 3400 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1
BS
3401 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3402 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3403 gsi_replace (&gsi, copy_stmt, false);
0100cd3f 3404 c->cand_stmt = copy_stmt;
88ca9ea1
BS
3405
3406 if (dump_file && (dump_flags & TDF_DETAILS))
3407 stmt_to_print = copy_stmt;
3408 }
3409 else
3410 {
3411 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3412 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
88ca9ea1
BS
3413 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3414 gsi_replace (&gsi, cast_stmt, false);
0100cd3f 3415 c->cand_stmt = cast_stmt;
88ca9ea1
BS
3416
3417 if (dump_file && (dump_flags & TDF_DETAILS))
3418 stmt_to_print = cast_stmt;
3419 }
3420 }
3421 else
3422 gcc_unreachable ();
3423
3424 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3425 {
3426 fputs ("With: ", dump_file);
3427 print_gimple_stmt (dump_file, stmt_to_print, 0, 0);
3428 fputs ("\n", dump_file);
3429 }
3430}
3431
3432/* For each candidate in the tree rooted at C, replace it with
3433 an increment if such has been shown to be profitable. */
3434
3435static void
3436replace_profitable_candidates (slsr_cand_t c)
3437{
3438 if (!cand_already_replaced (c))
3439 {
807e902e 3440 widest_int increment = cand_abs_increment (c);
88ca9ea1 3441 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3442 int i;
88ca9ea1
BS
3443
3444 i = incr_vec_index (increment);
3445
3446 /* Only process profitable increments. Nothing useful can be done
3447 to a cast or copy. */
7bf55a70
BS
3448 if (i >= 0
3449 && profitable_increment_p (i)
fbcdc43e 3450 && orig_code != SSA_NAME
d822570f 3451 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3452 {
9b92d12b
BS
3453 if (phi_dependent_cand_p (c))
3454 {
355fe088 3455 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3456
3457 if (all_phi_incrs_profitable (c, phi))
3458 {
3459 /* Look up the LHS SSA name from C's basis. This will be
3460 the RHS1 of the adds we will introduce to create new
3461 phi arguments. */
3462 slsr_cand_t basis = lookup_cand (c->basis);
3463 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3464
3465 /* Create a new phi statement that will represent C's true
3466 basis after the transformation is complete. */
3467 location_t loc = gimple_location (c->cand_stmt);
3468 tree name = create_phi_basis (c, phi, basis_name,
3469 loc, UNKNOWN_STRIDE);
3470
3471 /* Replace C with an add of the new basis phi and the
3472 increment. */
a7a7d10e 3473 replace_one_candidate (c, i, name);
9b92d12b
BS
3474 }
3475 }
3476 else
3477 {
3478 slsr_cand_t basis = lookup_cand (c->basis);
3479 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3480 replace_one_candidate (c, i, basis_name);
9b92d12b 3481 }
88ca9ea1
BS
3482 }
3483 }
3484
3485 if (c->sibling)
3486 replace_profitable_candidates (lookup_cand (c->sibling));
3487
3488 if (c->dependent)
3489 replace_profitable_candidates (lookup_cand (c->dependent));
3490}
3491\f
f9453c07
BS
3492/* Analyze costs of related candidates in the candidate vector,
3493 and make beneficial replacements. */
3494
3495static void
3496analyze_candidates_and_replace (void)
3497{
3498 unsigned i;
3499 slsr_cand_t c;
3500
3501 /* Each candidate that has a null basis and a non-null
3502 dependent is the root of a tree of related statements.
3503 Analyze each tree to determine a subset of those
3504 statements that can be replaced with maximum benefit. */
9771b263 3505 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
3506 {
3507 slsr_cand_t first_dep;
3508
3509 if (c->basis != 0 || c->dependent == 0)
3510 continue;
3511
3512 if (dump_file && (dump_flags & TDF_DETAILS))
3513 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3514 c->cand_num);
3515
3516 first_dep = lookup_cand (c->dependent);
3517
2749c8f6
BS
3518 /* If this is a chain of CAND_REFs, unconditionally replace
3519 each of them with a strength-reduced data reference. */
3520 if (c->kind == CAND_REF)
3521 replace_refs (c);
3522
9b92d12b
BS
3523 /* If the common stride of all related candidates is a known
3524 constant, each candidate without a phi-dependence can be
3525 profitably replaced. Each replaces a multiply by a single
3526 add, with the possibility that a feeding add also goes dead.
3527 A candidate with a phi-dependence is replaced only if the
3528 compensation code it requires is offset by the strength
3529 reduction savings. */
3530 else if (TREE_CODE (c->stride) == INTEGER_CST)
3531 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3532
88ca9ea1
BS
3533 /* When the stride is an SSA name, it may still be profitable
3534 to replace some or all of the dependent candidates, depending
3535 on whether the introduced increments can be reused, or are
3536 less expensive to calculate than the replaced statements. */
3537 else
3538 {
ef4bddc2 3539 machine_mode mode;
88ca9ea1
BS
3540 bool speed;
3541
3542 /* Determine whether we'll be generating pointer arithmetic
3543 when replacing candidates. */
3544 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3545 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3546
3547 /* If all candidates have already been replaced under other
3548 interpretations, nothing remains to be done. */
4b847da9 3549 if (!count_candidates (c))
88ca9ea1
BS
3550 continue;
3551
3552 /* Construct an array of increments for this candidate chain. */
4b847da9 3553 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3554 incr_vec_len = 0;
3555 record_increments (c);
3556
3557 /* Determine which increments are profitable to replace. */
3558 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3559 speed = optimize_cands_for_speed_p (c);
3560 analyze_increments (first_dep, mode, speed);
3561
3562 /* Insert initializers of the form T_0 = stride * increment
3563 for use in profitable replacements. */
3564 insert_initializers (first_dep);
3565 dump_incr_vec ();
3566
3567 /* Perform the replacements. */
3568 replace_profitable_candidates (first_dep);
3569 free (incr_vec);
3570 }
f9453c07
BS
3571 }
3572}
3573
17795822
TS
3574namespace {
3575
3576const pass_data pass_data_strength_reduction =
be55bfe6
TS
3577{
3578 GIMPLE_PASS, /* type */
3579 "slsr", /* name */
3580 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3581 TV_GIMPLE_SLSR, /* tv_id */
3582 ( PROP_cfg | PROP_ssa ), /* properties_required */
3583 0, /* properties_provided */
3584 0, /* properties_destroyed */
3585 0, /* todo_flags_start */
3bea341f 3586 0, /* todo_flags_finish */
be55bfe6
TS
3587};
3588
17795822 3589class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
3590{
3591public:
3592 pass_strength_reduction (gcc::context *ctxt)
3593 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3594 {}
3595
3596 /* opt_pass methods: */
3597 virtual bool gate (function *) { return flag_tree_slsr; }
3598 virtual unsigned int execute (function *);
3599
3600}; // class pass_strength_reduction
3601
3602unsigned
3603pass_strength_reduction::execute (function *fun)
f9453c07 3604{
f9453c07
BS
3605 /* Create the obstack where candidates will reside. */
3606 gcc_obstack_init (&cand_obstack);
3607
3608 /* Allocate the candidate vector. */
9771b263 3609 cand_vec.create (128);
f9453c07
BS
3610
3611 /* Allocate the mapping from statements to candidate indices. */
355fe088 3612 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
3613
3614 /* Create the obstack where candidate chains will reside. */
3615 gcc_obstack_init (&chain_obstack);
3616
3cfd4469 3617 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 3618 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 3619
96d75a2c 3620 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 3621 alt_base_map = new hash_map<tree, tree>;
96d75a2c 3622
f9453c07
BS
3623 /* Initialize the loop optimizer. We need to detect flow across
3624 back edges, and this gives us dominator information as well. */
3625 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3626
f9453c07
BS
3627 /* Walk the CFG in predominator order looking for strength reduction
3628 candidates. */
4d9192b5 3629 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 3630 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
3631
3632 if (dump_file && (dump_flags & TDF_DETAILS))
3633 {
3634 dump_cand_vec ();
3635 dump_cand_chains ();
3636 }
3637
b787e7a2 3638 delete alt_base_map;
96d75a2c
YZ
3639 free_affine_expand_cache (&name_expansions);
3640
f9453c07
BS
3641 /* Analyze costs and make appropriate replacements. */
3642 analyze_candidates_and_replace ();
3643
f9453c07 3644 loop_optimizer_finalize ();
c203e8a7
TS
3645 delete base_cand_map;
3646 base_cand_map = NULL;
f9453c07 3647 obstack_free (&chain_obstack, NULL);
b787e7a2 3648 delete stmt_cand_map;
9771b263 3649 cand_vec.release ();
f9453c07 3650 obstack_free (&cand_obstack, NULL);
f9453c07
BS
3651
3652 return 0;
3653}
3654
17795822
TS
3655} // anon namespace
3656
27a4cd48
DM
3657gimple_opt_pass *
3658make_pass_strength_reduction (gcc::context *ctxt)
3659{
3660 return new pass_strength_reduction (ctxt);
3661}