]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
poly_int: fold_comparison
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
cbe34bb5 2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
ccdbfe93 55#include "params.h"
4484a35a 56#include "tree-ssa-address.h"
96d75a2c 57#include "tree-affine.h"
9b2b7279 58#include "builtins.h"
f9453c07
BS
59\f
60/* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
9b92d12b
BS
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
f9453c07
BS
213
214
215/* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217typedef unsigned cand_idx;
218
219/* The kind of candidate. */
220enum cand_kind
221{
222 CAND_MULT,
2749c8f6 223 CAND_ADD,
9b92d12b
BS
224 CAND_REF,
225 CAND_PHI
f9453c07
BS
226};
227
228struct slsr_cand_d
229{
230 /* The candidate statement S1. */
355fe088 231 gimple *cand_stmt;
f9453c07 232
3cfd4469
BS
233 /* The base expression B: often an SSA name, but not always. */
234 tree base_expr;
f9453c07
BS
235
236 /* The stride S. */
237 tree stride;
238
239 /* The index constant i. */
807e902e 240 widest_int index;
f9453c07 241
3cfd4469 242 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 243 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
f9453c07
BS
247 tree cand_type;
248
0b56e9ad
BS
249 /* The type to be used to interpret the stride field when the stride
250 is not a constant. Normally the same as the type of the recorded
251 stride, but when the stride has been cast we need to maintain that
252 knowledge in order to make legal substitutions without losing
253 precision. When the stride is a constant, this will be sizetype. */
254 tree stride_type;
255
f9453c07
BS
256 /* The kind of candidate (CAND_MULT, etc.). */
257 enum cand_kind kind;
258
259 /* Index of this candidate in the candidate vector. */
260 cand_idx cand_num;
261
262 /* Index of the next candidate record for the same statement.
263 A statement may be useful in more than one way (e.g., due to
264 commutativity). So we can have multiple "interpretations"
265 of a statement. */
266 cand_idx next_interp;
267
268 /* Index of the basis statement S0, if any, in the candidate vector. */
269 cand_idx basis;
270
271 /* First candidate for which this candidate is a basis, if one exists. */
272 cand_idx dependent;
273
274 /* Next candidate having the same basis as this one. */
275 cand_idx sibling;
276
9b92d12b
BS
277 /* If this is a conditional candidate, the CAND_PHI candidate
278 that defines the base SSA name B. */
279 cand_idx def_phi;
f9453c07
BS
280
281 /* Savings that can be expected from eliminating dead code if this
282 candidate is replaced. */
283 int dead_savings;
65d3dce8
BS
284
285 /* For PHI candidates, use a visited flag to keep from processing the
286 same PHI twice from multiple paths. */
287 int visited;
288
289 /* We sometimes have to cache a phi basis with a phi candidate to
290 avoid processing it twice. Valid only if visited==1. */
291 tree cached_basis;
f9453c07
BS
292};
293
294typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
295typedef const struct slsr_cand_d *const_slsr_cand_t;
296
297/* Pointers to candidates are chained together as part of a mapping
3cfd4469 298 from base expressions to the candidates that use them. */
f9453c07
BS
299
300struct cand_chain_d
301{
3cfd4469
BS
302 /* Base expression for the chain of candidates: often, but not
303 always, an SSA name. */
304 tree base_expr;
f9453c07
BS
305
306 /* Pointer to a candidate. */
307 slsr_cand_t cand;
308
309 /* Chain pointer. */
310 struct cand_chain_d *next;
311
312};
313
314typedef struct cand_chain_d cand_chain, *cand_chain_t;
315typedef const struct cand_chain_d *const_cand_chain_t;
316
88ca9ea1
BS
317/* Information about a unique "increment" associated with candidates
318 having an SSA name for a stride. An increment is the difference
319 between the index of the candidate and the index of its basis,
320 i.e., (i - i') as discussed in the module commentary.
321
322 When we are not going to generate address arithmetic we treat
323 increments that differ only in sign as the same, allowing sharing
324 of the cost of initializers. The absolute value of the increment
325 is stored in the incr_info. */
326
327struct incr_info_d
328{
329 /* The increment that relates a candidate to its basis. */
807e902e 330 widest_int incr;
88ca9ea1
BS
331
332 /* How many times the increment occurs in the candidate tree. */
333 unsigned count;
334
335 /* Cost of replacing candidates using this increment. Negative and
336 zero costs indicate replacement should be performed. */
337 int cost;
338
339 /* If this increment is profitable but is not -1, 0, or 1, it requires
340 an initializer T_0 = stride * incr to be found or introduced in the
341 nearest common dominator of all candidates. This field holds T_0
342 for subsequent use. */
343 tree initializer;
344
345 /* If the initializer was found to already exist, this is the block
346 where it was found. */
347 basic_block init_bb;
348};
349
350typedef struct incr_info_d incr_info, *incr_info_t;
351
f9453c07
BS
352/* Candidates are maintained in a vector. If candidate X dominates
353 candidate Y, then X appears before Y in the vector; but the
354 converse does not necessarily hold. */
9771b263 355static vec<slsr_cand_t> cand_vec;
f9453c07
BS
356
357enum cost_consts
358{
359 COST_NEUTRAL = 0,
360 COST_INFINITE = 1000
361};
362
9b92d12b
BS
363enum stride_status
364{
365 UNKNOWN_STRIDE = 0,
366 KNOWN_STRIDE = 1
367};
368
369enum phi_adjust_status
370{
371 NOT_PHI_ADJUST = 0,
372 PHI_ADJUST = 1
373};
374
375enum count_phis_status
376{
377 DONT_COUNT_PHIS = 0,
378 COUNT_PHIS = 1
379};
65d3dce8
BS
380
381/* Constrain how many PHI nodes we will visit for a conditional
382 candidate (depth and breadth). */
383const int MAX_SPREAD = 16;
384
f9453c07 385/* Pointer map embodying a mapping from statements to candidates. */
355fe088 386static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
387
388/* Obstack for candidates. */
389static struct obstack cand_obstack;
390
f9453c07
BS
391/* Obstack for candidate chains. */
392static struct obstack chain_obstack;
88ca9ea1
BS
393
394/* An array INCR_VEC of incr_infos is used during analysis of related
395 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
396 its current length. MAX_INCR_VEC_LEN is used to avoid costly
397 pathological cases. */
88ca9ea1
BS
398static incr_info_t incr_vec;
399static unsigned incr_vec_len;
7bf55a70 400const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
401
402/* For a chain of candidates with unknown stride, indicates whether or not
403 we must generate pointer arithmetic when replacing statements. */
404static bool address_arithmetic_p;
9b92d12b
BS
405
406/* Forward function declarations. */
407static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 408static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 409static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
410\f
411/* Produce a pointer to the IDX'th candidate in the candidate vector. */
412
413static slsr_cand_t
414lookup_cand (cand_idx idx)
415{
9771b263 416 return cand_vec[idx - 1];
f9453c07
BS
417}
418
4a8fb1a1 419/* Helper for hashing a candidate chain header. */
2749c8f6 420
8d67ee55 421struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 422{
67f58944
TS
423 static inline hashval_t hash (const cand_chain *);
424 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 425};
2749c8f6 426
4a8fb1a1 427inline hashval_t
67f58944 428cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 429{
4a8fb1a1
LC
430 tree base_expr = p->base_expr;
431 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
432}
433
4a8fb1a1 434inline bool
67f58944 435cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 436{
3cfd4469 437 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 438}
4a8fb1a1
LC
439
440/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 441static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 442\f
96d75a2c 443/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 444static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 445/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 446static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
447
448/* Given BASE, use the tree affine combiniation facilities to
449 find the underlying tree expression for BASE, with any
8fde427f
YZ
450 immediate offset excluded.
451
452 N.B. we should eliminate this backtracking with better forward
453 analysis in a future release. */
96d75a2c
YZ
454
455static tree
456get_alternative_base (tree base)
457{
b787e7a2 458 tree *result = alt_base_map->get (base);
96d75a2c
YZ
459
460 if (result == NULL)
461 {
462 tree expr;
463 aff_tree aff;
464
465 tree_to_aff_combination_expand (base, TREE_TYPE (base),
466 &aff, &name_expansions);
807e902e 467 aff.offset = 0;
96d75a2c
YZ
468 expr = aff_combination_to_tree (&aff);
469
b787e7a2 470 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 471
b787e7a2 472 return expr == base ? NULL : expr;
96d75a2c
YZ
473 }
474
475 return *result;
476}
477
9b92d12b 478/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 479 return it if found; otherwise return NULL. */
f9453c07 480
9b92d12b 481static cand_idx
8b28cf47 482find_phi_def (tree base)
9b92d12b
BS
483{
484 slsr_cand_t c;
485
486 if (TREE_CODE (base) != SSA_NAME)
487 return 0;
29105868 488
9b92d12b
BS
489 c = base_cand_from_table (base);
490
e75210d6
BS
491 if (!c || c->kind != CAND_PHI
492 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
9b92d12b
BS
493 return 0;
494
495 return c->cand_num;
496}
497
df11b2ea
BS
498/* Determine whether all uses of NAME are directly or indirectly
499 used by STMT. That is, we want to know whether if STMT goes
500 dead, the definition of NAME also goes dead. */
501static bool
502uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
503{
504 gimple *use_stmt;
505 imm_use_iterator iter;
506 bool retval = true;
507
508 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
509 {
510 if (use_stmt == stmt || is_gimple_debug (use_stmt))
511 continue;
512
513 if (!is_gimple_assign (use_stmt)
514 || !gimple_get_lhs (use_stmt)
515 || !is_gimple_reg (gimple_get_lhs (use_stmt))
516 || recurse >= 10
517 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
518 recurse + 1))
519 {
520 retval = false;
521 BREAK_FROM_IMM_USE_STMT (iter);
522 }
523 }
524
525 return retval;
526}
527
9b92d12b 528/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
529 once for the candidate's base expr, and optionally again either for
530 the candidate's phi definition or for a CAND_REF's alternative base
531 expression. */
9b92d12b
BS
532
533static slsr_cand_t
534find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 535{
2749c8f6 536 cand_chain mapping_key;
f9453c07
BS
537 cand_chain_t chain;
538 slsr_cand_t basis = NULL;
539
ccdbfe93
BS
540 // Limit potential of N^2 behavior for long candidate chains.
541 int iters = 0;
542 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
543
9b92d12b 544 mapping_key.base_expr = base_expr;
c203e8a7 545 chain = base_cand_map->find (&mapping_key);
f9453c07 546
ccdbfe93 547 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
548 {
549 slsr_cand_t one_basis = chain->cand;
550
551 if (one_basis->kind != c->kind
69e1a1a3 552 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
553 || !operand_equal_p (one_basis->stride, c->stride, 0)
554 || !types_compatible_p (one_basis->cand_type, c->cand_type)
0b56e9ad 555 || !types_compatible_p (one_basis->stride_type, c->stride_type)
f9453c07
BS
556 || !dominated_by_p (CDI_DOMINATORS,
557 gimple_bb (c->cand_stmt),
558 gimple_bb (one_basis->cand_stmt)))
559 continue;
560
e75210d6
BS
561 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
562 if (lhs && TREE_CODE (lhs) == SSA_NAME
563 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
564 continue;
565
f9453c07
BS
566 if (!basis || basis->cand_num < one_basis->cand_num)
567 basis = one_basis;
568 }
569
9b92d12b
BS
570 return basis;
571}
572
573/* Use the base expr from candidate C to look for possible candidates
574 that can serve as a basis for C. Each potential basis must also
575 appear in a block that dominates the candidate statement and have
576 the same stride and type. If more than one possible basis exists,
577 the one with highest index in the vector is chosen; this will be
578 the most immediately dominating basis. */
579
580static int
581find_basis_for_candidate (slsr_cand_t c)
582{
583 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
584
585 /* If a candidate doesn't have a basis using its base expression,
586 it may have a basis hidden by one or more intervening phis. */
587 if (!basis && c->def_phi)
588 {
589 basic_block basis_bb, phi_bb;
590 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
591 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
592
593 if (basis)
594 {
595 /* A hidden basis must dominate the phi-definition of the
596 candidate's base name. */
597 phi_bb = gimple_bb (phi_cand->cand_stmt);
598 basis_bb = gimple_bb (basis->cand_stmt);
599
600 if (phi_bb == basis_bb
601 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
602 {
603 basis = NULL;
604 c->basis = 0;
605 }
606
607 /* If we found a hidden basis, estimate additional dead-code
608 savings if the phi and its feeding statements can be removed. */
df11b2ea
BS
609 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
610 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
9b92d12b
BS
611 c->dead_savings += phi_cand->dead_savings;
612 }
613 }
614
8fde427f 615 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
616 {
617 tree alt_base_expr = get_alternative_base (c->base_expr);
618 if (alt_base_expr)
619 basis = find_basis_for_base_expr (c, alt_base_expr);
620 }
621
f9453c07
BS
622 if (basis)
623 {
624 c->sibling = basis->dependent;
625 basis->dependent = c->cand_num;
626 return basis->cand_num;
627 }
628
629 return 0;
630}
631
96d75a2c
YZ
632/* Record a mapping from BASE to C, indicating that C may potentially serve
633 as a basis using that base expression. BASE may be the same as
634 C->BASE_EXPR; alternatively BASE can be a different tree that share the
635 underlining expression of C->BASE_EXPR. */
f9453c07
BS
636
637static void
96d75a2c 638record_potential_basis (slsr_cand_t c, tree base)
f9453c07 639{
2749c8f6 640 cand_chain_t node;
4a8fb1a1 641 cand_chain **slot;
f9453c07 642
96d75a2c
YZ
643 gcc_assert (base);
644
f9453c07 645 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 646 node->base_expr = base;
f9453c07
BS
647 node->cand = c;
648 node->next = NULL;
c203e8a7 649 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 650
2749c8f6 651 if (*slot)
f9453c07 652 {
2749c8f6 653 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
654 node->next = head->next;
655 head->next = node;
656 }
657 else
2749c8f6 658 *slot = node;
f9453c07
BS
659}
660
661/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
662 Attempt to find a basis for the candidate.
663
664 For CAND_REF, an alternative base may also be recorded and used
665 to find a basis. This helps cases where the expression hidden
666 behind BASE (which is usually an SSA_NAME) has immediate offset,
667 e.g.
668
669 a2[i][j] = 1;
670 a2[i + 20][j] = 2; */
f9453c07
BS
671
672static slsr_cand_t
355fe088 673alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 674 const widest_int &index, tree stride, tree ctype,
0b56e9ad 675 tree stype, unsigned savings)
f9453c07
BS
676{
677 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
678 sizeof (slsr_cand));
679 c->cand_stmt = gs;
3cfd4469 680 c->base_expr = base;
f9453c07
BS
681 c->stride = stride;
682 c->index = index;
683 c->cand_type = ctype;
0b56e9ad 684 c->stride_type = stype;
f9453c07 685 c->kind = kind;
9771b263 686 c->cand_num = cand_vec.length () + 1;
f9453c07
BS
687 c->next_interp = 0;
688 c->dependent = 0;
689 c->sibling = 0;
8b28cf47 690 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07 691 c->dead_savings = savings;
65d3dce8
BS
692 c->visited = 0;
693 c->cached_basis = NULL_TREE;
f9453c07 694
9771b263 695 cand_vec.safe_push (c);
9b92d12b
BS
696
697 if (kind == CAND_PHI)
698 c->basis = 0;
699 else
700 c->basis = find_basis_for_candidate (c);
701
96d75a2c 702 record_potential_basis (c, base);
8fde427f 703 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
704 {
705 tree alt_base = get_alternative_base (base);
706 if (alt_base)
707 record_potential_basis (c, alt_base);
708 }
f9453c07
BS
709
710 return c;
711}
712
713/* Determine the target cost of statement GS when compiling according
714 to SPEED. */
715
716static int
355fe088 717stmt_cost (gimple *gs, bool speed)
f9453c07
BS
718{
719 tree lhs, rhs1, rhs2;
ef4bddc2 720 machine_mode lhs_mode;
f9453c07
BS
721
722 gcc_assert (is_gimple_assign (gs));
723 lhs = gimple_assign_lhs (gs);
724 rhs1 = gimple_assign_rhs1 (gs);
725 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
726
727 switch (gimple_assign_rhs_code (gs))
728 {
729 case MULT_EXPR:
730 rhs2 = gimple_assign_rhs2 (gs);
731
9541ffee 732 if (tree_fits_shwi_p (rhs2))
eb1ce453 733 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
734
735 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 736 return mul_cost (speed, lhs_mode);
f9453c07
BS
737
738 case PLUS_EXPR:
739 case POINTER_PLUS_EXPR:
740 case MINUS_EXPR:
5322d07e 741 return add_cost (speed, lhs_mode);
f9453c07
BS
742
743 case NEGATE_EXPR:
5322d07e 744 return neg_cost (speed, lhs_mode);
f9453c07 745
d822570f 746 CASE_CONVERT:
6dd8f4bb 747 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
748
749 /* Note that we don't assign costs to copies that in most cases
750 will go away. */
fbcdc43e
BS
751 case SSA_NAME:
752 return 0;
753
f9453c07
BS
754 default:
755 ;
756 }
757
758 gcc_unreachable ();
759 return 0;
760}
761
762/* Look up the defining statement for BASE_IN and return a pointer
763 to its candidate in the candidate table, if any; otherwise NULL.
764 Only CAND_ADD and CAND_MULT candidates are returned. */
765
766static slsr_cand_t
767base_cand_from_table (tree base_in)
768{
769 slsr_cand_t *result;
770
355fe088 771 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
772 if (!def)
773 return (slsr_cand_t) NULL;
774
b787e7a2 775 result = stmt_cand_map->get (def);
2749c8f6
BS
776
777 if (result && (*result)->kind != CAND_REF)
778 return *result;
f9453c07 779
2749c8f6 780 return (slsr_cand_t) NULL;
f9453c07
BS
781}
782
783/* Add an entry to the statement-to-candidate mapping. */
784
785static void
355fe088 786add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 787{
b787e7a2 788 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
789}
790\f
9b92d12b
BS
791/* Given PHI which contains a phi statement, determine whether it
792 satisfies all the requirements of a phi candidate. If so, create
793 a candidate. Note that a CAND_PHI never has a basis itself, but
794 is used to help find a basis for subsequent candidates. */
795
796static void
538dd0b7 797slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
798{
799 unsigned i;
800 tree arg0_base = NULL_TREE, base_type;
801 slsr_cand_t c;
802 struct loop *cand_loop = gimple_bb (phi)->loop_father;
803 unsigned savings = 0;
804
805 /* A CAND_PHI requires each of its arguments to have the same
806 derived base name. (See the module header commentary for a
807 definition of derived base names.) Furthermore, all feeding
808 definitions must be in the same position in the loop hierarchy
809 as PHI. */
810
811 for (i = 0; i < gimple_phi_num_args (phi); i++)
812 {
813 slsr_cand_t arg_cand;
814 tree arg = gimple_phi_arg_def (phi, i);
815 tree derived_base_name = NULL_TREE;
355fe088 816 gimple *arg_stmt = NULL;
9b92d12b
BS
817 basic_block arg_bb = NULL;
818
819 if (TREE_CODE (arg) != SSA_NAME)
820 return;
821
822 arg_cand = base_cand_from_table (arg);
823
824 if (arg_cand)
825 {
826 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
827 {
828 if (!arg_cand->next_interp)
829 return;
830
831 arg_cand = lookup_cand (arg_cand->next_interp);
832 }
833
834 if (!integer_onep (arg_cand->stride))
835 return;
836
837 derived_base_name = arg_cand->base_expr;
838 arg_stmt = arg_cand->cand_stmt;
839 arg_bb = gimple_bb (arg_stmt);
840
841 /* Gather potential dead code savings if the phi statement
842 can be removed later on. */
df11b2ea 843 if (uses_consumed_by_stmt (arg, phi))
9b92d12b
BS
844 {
845 if (gimple_code (arg_stmt) == GIMPLE_PHI)
846 savings += arg_cand->dead_savings;
847 else
848 savings += stmt_cost (arg_stmt, speed);
849 }
850 }
6e281ce3 851 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
852 {
853 derived_base_name = arg;
6e281ce3 854 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
855 }
856
857 if (!arg_bb || arg_bb->loop_father != cand_loop)
858 return;
859
860 if (i == 0)
861 arg0_base = derived_base_name;
862 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
863 return;
864 }
865
866 /* Create the candidate. "alloc_cand_and_find_basis" is named
867 misleadingly for this case, as no basis will be sought for a
868 CAND_PHI. */
869 base_type = TREE_TYPE (arg0_base);
870
807e902e 871 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
0b56e9ad
BS
872 0, integer_one_node, base_type,
873 sizetype, savings);
9b92d12b
BS
874
875 /* Add the candidate to the statement-candidate mapping. */
876 add_cand_for_stmt (phi, c);
877}
878
c068654b
BC
879/* Given PBASE which is a pointer to tree, look up the defining
880 statement for it and check whether the candidate is in the
881 form of:
882
883 X = B + (1 * S), S is integer constant
884 X = B + (i * S), S is integer one
885
886 If so, set PBASE to the candidate's base_expr and return double
887 int (i * S).
888 Otherwise, just return double int zero. */
889
807e902e 890static widest_int
c068654b
BC
891backtrace_base_for_ref (tree *pbase)
892{
893 tree base_in = *pbase;
894 slsr_cand_t base_cand;
895
896 STRIP_NOPS (base_in);
0916f876
YZ
897
898 /* Strip off widening conversion(s) to handle cases where
899 e.g. 'B' is widened from an 'int' in order to calculate
900 a 64-bit address. */
901 if (CONVERT_EXPR_P (base_in)
0b56e9ad
BS
902 && legal_cast_p_1 (TREE_TYPE (base_in),
903 TREE_TYPE (TREE_OPERAND (base_in, 0))))
0916f876
YZ
904 base_in = get_unwidened (base_in, NULL_TREE);
905
c068654b 906 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 907 return 0;
c068654b
BC
908
909 base_cand = base_cand_from_table (base_in);
910
911 while (base_cand && base_cand->kind != CAND_PHI)
912 {
913 if (base_cand->kind == CAND_ADD
807e902e 914 && base_cand->index == 1
c068654b
BC
915 && TREE_CODE (base_cand->stride) == INTEGER_CST)
916 {
917 /* X = B + (1 * S), S is integer constant. */
918 *pbase = base_cand->base_expr;
807e902e 919 return wi::to_widest (base_cand->stride);
c068654b
BC
920 }
921 else if (base_cand->kind == CAND_ADD
922 && TREE_CODE (base_cand->stride) == INTEGER_CST
923 && integer_onep (base_cand->stride))
1d2151c6 924 {
c068654b
BC
925 /* X = B + (i * S), S is integer one. */
926 *pbase = base_cand->base_expr;
927 return base_cand->index;
928 }
929
930 if (base_cand->next_interp)
931 base_cand = lookup_cand (base_cand->next_interp);
932 else
933 base_cand = NULL;
934 }
935
807e902e 936 return 0;
c068654b
BC
937}
938
2749c8f6
BS
939/* Look for the following pattern:
940
941 *PBASE: MEM_REF (T1, C1)
942
943 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
944 or
945 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
946 or
947 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
948
949 *PINDEX: C4 * BITS_PER_UNIT
950
951 If not present, leave the input values unchanged and return FALSE.
952 Otherwise, modify the input values as follows and return TRUE:
953
954 *PBASE: T1
955 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
956 *PINDEX: C1 + (C2 * C3) + C4
957
958 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
959 will be further restructured to:
960
961 *PBASE: T1
962 *POFFSET: MULT_EXPR (T2', C3)
963 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
964
965static bool
807e902e 966restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
967 tree *ptype)
968{
969 tree base = *pbase, offset = *poffset;
807e902e
KZ
970 widest_int index = *pindex;
971 tree mult_op0, t1, t2, type;
972 widest_int c1, c2, c3, c4, c5;
2749c8f6
BS
973
974 if (!base
975 || !offset
976 || TREE_CODE (base) != MEM_REF
977 || TREE_CODE (offset) != MULT_EXPR
978 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 979 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
980 return false;
981
982 t1 = TREE_OPERAND (base, 0);
807e902e 983 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
2749c8f6
BS
984 type = TREE_TYPE (TREE_OPERAND (base, 1));
985
986 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 987 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
988
989 if (TREE_CODE (mult_op0) == PLUS_EXPR)
990
991 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
992 {
993 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 994 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
995 }
996 else
997 return false;
998
999 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1000
1001 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1002 {
1003 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1004 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1005 }
1006 else
1007 return false;
1008
1009 else
1010 {
1011 t2 = mult_op0;
807e902e 1012 c2 = 0;
2749c8f6
BS
1013 }
1014
8de73453 1015 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 1016 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
1017
1018 *pbase = t1;
c068654b 1019 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 1020 wide_int_to_tree (sizetype, c3));
c068654b 1021 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
1022 *ptype = type;
1023
1024 return true;
1025}
1026
1027/* Given GS which contains a data reference, create a CAND_REF entry in
1028 the candidate table and attempt to find a basis. */
1029
1030static void
355fe088 1031slsr_process_ref (gimple *gs)
2749c8f6
BS
1032{
1033 tree ref_expr, base, offset, type;
1034 HOST_WIDE_INT bitsize, bitpos;
ef4bddc2 1035 machine_mode mode;
ee45a32d 1036 int unsignedp, reversep, volatilep;
2749c8f6
BS
1037 slsr_cand_t c;
1038
1039 if (gimple_vdef (gs))
1040 ref_expr = gimple_assign_lhs (gs);
1041 else
1042 ref_expr = gimple_assign_rhs1 (gs);
1043
1044 if (!handled_component_p (ref_expr)
1045 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1046 || (TREE_CODE (ref_expr) == COMPONENT_REF
1047 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1048 return;
1049
1050 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 1051 &unsignedp, &reversep, &volatilep);
ee45a32d
EB
1052 if (reversep)
1053 return;
807e902e 1054 widest_int index = bitpos;
2749c8f6
BS
1055
1056 if (!restructure_reference (&base, &offset, &index, &type))
1057 return;
1058
1059 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
0b56e9ad 1060 type, sizetype, 0);
2749c8f6
BS
1061
1062 /* Add the candidate to the statement-candidate mapping. */
1063 add_cand_for_stmt (gs, c);
1064}
1065
f9453c07
BS
1066/* Create a candidate entry for a statement GS, where GS multiplies
1067 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1068 about the two SSA names into the new candidate. Return the new
1069 candidate. */
1070
1071static slsr_cand_t
355fe088 1072create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1073{
1074 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1075 tree stype = NULL_TREE;
807e902e 1076 widest_int index;
f9453c07
BS
1077 unsigned savings = 0;
1078 slsr_cand_t c;
1079 slsr_cand_t base_cand = base_cand_from_table (base_in);
1080
1081 /* Look at all interpretations of the base candidate, if necessary,
1082 to find information to propagate into this candidate. */
9b92d12b 1083 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1084 {
1085
9b92d12b 1086 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1087 {
1088 /* Y = (B + i') * 1
1089 X = Y * Z
1090 ================
1091 X = (B + i') * Z */
3cfd4469 1092 base = base_cand->base_expr;
f9453c07
BS
1093 index = base_cand->index;
1094 stride = stride_in;
1095 ctype = base_cand->cand_type;
0b56e9ad 1096 stype = TREE_TYPE (stride_in);
f9453c07
BS
1097 if (has_single_use (base_in))
1098 savings = (base_cand->dead_savings
1099 + stmt_cost (base_cand->cand_stmt, speed));
1100 }
1101 else if (base_cand->kind == CAND_ADD
1102 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1103 {
1104 /* Y = B + (i' * S), S constant
1105 X = Y * Z
1106 ============================
1107 X = B + ((i' * S) * Z) */
3cfd4469 1108 base = base_cand->base_expr;
807e902e 1109 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1110 stride = stride_in;
1111 ctype = base_cand->cand_type;
0b56e9ad 1112 stype = TREE_TYPE (stride_in);
f9453c07
BS
1113 if (has_single_use (base_in))
1114 savings = (base_cand->dead_savings
1115 + stmt_cost (base_cand->cand_stmt, speed));
1116 }
1117
1118 if (base_cand->next_interp)
1119 base_cand = lookup_cand (base_cand->next_interp);
1120 else
1121 base_cand = NULL;
1122 }
1123
1124 if (!base)
1125 {
1126 /* No interpretations had anything useful to propagate, so
1127 produce X = (Y + 0) * Z. */
1128 base = base_in;
807e902e 1129 index = 0;
f9453c07 1130 stride = stride_in;
b2ec94d4 1131 ctype = TREE_TYPE (base_in);
0b56e9ad 1132 stype = TREE_TYPE (stride_in);
f9453c07
BS
1133 }
1134
1135 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1136 ctype, stype, savings);
f9453c07
BS
1137 return c;
1138}
1139
1140/* Create a candidate entry for a statement GS, where GS multiplies
1141 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1142 information about BASE_IN into the new candidate. Return the new
1143 candidate. */
1144
1145static slsr_cand_t
355fe088 1146create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1147{
1148 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1149 widest_int index, temp;
f9453c07
BS
1150 unsigned savings = 0;
1151 slsr_cand_t c;
1152 slsr_cand_t base_cand = base_cand_from_table (base_in);
1153
1154 /* Look at all interpretations of the base candidate, if necessary,
1155 to find information to propagate into this candidate. */
9b92d12b 1156 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1157 {
1158 if (base_cand->kind == CAND_MULT
1159 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1160 {
1161 /* Y = (B + i') * S, S constant
1162 X = Y * c
1163 ============================
1164 X = (B + i') * (S * c) */
807e902e
KZ
1165 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1166 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1167 {
1168 base = base_cand->base_expr;
1169 index = base_cand->index;
807e902e 1170 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1171 ctype = base_cand->cand_type;
1172 if (has_single_use (base_in))
1173 savings = (base_cand->dead_savings
1174 + stmt_cost (base_cand->cand_stmt, speed));
1175 }
f9453c07 1176 }
9b92d12b 1177 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1178 {
1179 /* Y = B + (i' * 1)
1180 X = Y * c
1181 ===========================
1182 X = (B + i') * c */
3cfd4469 1183 base = base_cand->base_expr;
f9453c07
BS
1184 index = base_cand->index;
1185 stride = stride_in;
1186 ctype = base_cand->cand_type;
1187 if (has_single_use (base_in))
1188 savings = (base_cand->dead_savings
1189 + stmt_cost (base_cand->cand_stmt, speed));
1190 }
1191 else if (base_cand->kind == CAND_ADD
807e902e 1192 && base_cand->index == 1
f9453c07
BS
1193 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1194 {
1195 /* Y = B + (1 * S), S constant
1196 X = Y * c
1197 ===========================
1198 X = (B + S) * c */
3cfd4469 1199 base = base_cand->base_expr;
807e902e 1200 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1201 stride = stride_in;
1202 ctype = base_cand->cand_type;
1203 if (has_single_use (base_in))
1204 savings = (base_cand->dead_savings
1205 + stmt_cost (base_cand->cand_stmt, speed));
1206 }
1207
1208 if (base_cand->next_interp)
1209 base_cand = lookup_cand (base_cand->next_interp);
1210 else
1211 base_cand = NULL;
1212 }
1213
1214 if (!base)
1215 {
1216 /* No interpretations had anything useful to propagate, so
1217 produce X = (Y + 0) * c. */
1218 base = base_in;
807e902e 1219 index = 0;
f9453c07 1220 stride = stride_in;
b2ec94d4 1221 ctype = TREE_TYPE (base_in);
f9453c07
BS
1222 }
1223
1224 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1225 ctype, sizetype, savings);
f9453c07
BS
1226 return c;
1227}
1228
1229/* Given GS which is a multiply of scalar integers, make an appropriate
1230 entry in the candidate table. If this is a multiply of two SSA names,
1231 create two CAND_MULT interpretations and attempt to find a basis for
1232 each of them. Otherwise, create a single CAND_MULT and attempt to
1233 find a basis. */
1234
1235static void
355fe088 1236slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1237{
1238 slsr_cand_t c, c2;
1239
1240 /* If this is a multiply of an SSA name with itself, it is highly
1241 unlikely that we will get a strength reduction opportunity, so
1242 don't record it as a candidate. This simplifies the logic for
1243 finding a basis, so if this is removed that must be considered. */
1244 if (rhs1 == rhs2)
1245 return;
1246
1247 if (TREE_CODE (rhs2) == SSA_NAME)
1248 {
1249 /* Record an interpretation of this statement in the candidate table
3cfd4469 1250 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1251 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1252
1253 /* Add the first interpretation to the statement-candidate mapping. */
1254 add_cand_for_stmt (gs, c);
1255
1256 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1257 is the stride and RHS2 is the base expression. */
f9453c07
BS
1258 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1259 c->next_interp = c2->cand_num;
1260 }
36fd6408 1261 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07
BS
1262 {
1263 /* Record an interpretation for the multiply-immediate. */
1264 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1265
1266 /* Add the interpretation to the statement-candidate mapping. */
1267 add_cand_for_stmt (gs, c);
1268 }
1269}
1270
1271/* Create a candidate entry for a statement GS, where GS adds two
1272 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1273 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1274 information about the two SSA names into the new candidate.
1275 Return the new candidate. */
1276
1277static slsr_cand_t
355fe088 1278create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1279 bool subtract_p, bool speed)
1280{
0b56e9ad
BS
1281 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1282 tree stype = NULL_TREE;
807e902e 1283 widest_int index;
f9453c07
BS
1284 unsigned savings = 0;
1285 slsr_cand_t c;
1286 slsr_cand_t base_cand = base_cand_from_table (base_in);
1287 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1288
1289 /* The most useful transformation is a multiply-immediate feeding
1290 an add or subtract. Look for that first. */
9b92d12b 1291 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1292 {
1293 if (addend_cand->kind == CAND_MULT
807e902e 1294 && addend_cand->index == 0
f9453c07
BS
1295 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1296 {
1297 /* Z = (B + 0) * S, S constant
1298 X = Y +/- Z
1299 ===========================
1300 X = Y + ((+/-1 * S) * B) */
1301 base = base_in;
807e902e 1302 index = wi::to_widest (addend_cand->stride);
f9453c07 1303 if (subtract_p)
27bcd47c 1304 index = -index;
3cfd4469 1305 stride = addend_cand->base_expr;
b2ec94d4 1306 ctype = TREE_TYPE (base_in);
0b56e9ad 1307 stype = addend_cand->cand_type;
f9453c07
BS
1308 if (has_single_use (addend_in))
1309 savings = (addend_cand->dead_savings
1310 + stmt_cost (addend_cand->cand_stmt, speed));
1311 }
1312
1313 if (addend_cand->next_interp)
1314 addend_cand = lookup_cand (addend_cand->next_interp);
1315 else
1316 addend_cand = NULL;
1317 }
1318
9b92d12b 1319 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1320 {
1321 if (base_cand->kind == CAND_ADD
807e902e 1322 && (base_cand->index == 0
f9453c07
BS
1323 || operand_equal_p (base_cand->stride,
1324 integer_zero_node, 0)))
1325 {
1326 /* Y = B + (i' * S), i' * S = 0
1327 X = Y +/- Z
1328 ============================
1329 X = B + (+/-1 * Z) */
3cfd4469 1330 base = base_cand->base_expr;
807e902e 1331 index = subtract_p ? -1 : 1;
f9453c07
BS
1332 stride = addend_in;
1333 ctype = base_cand->cand_type;
0b56e9ad
BS
1334 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1335 : TREE_TYPE (addend_in));
f9453c07
BS
1336 if (has_single_use (base_in))
1337 savings = (base_cand->dead_savings
1338 + stmt_cost (base_cand->cand_stmt, speed));
1339 }
1340 else if (subtract_p)
1341 {
1342 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1343
9b92d12b 1344 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1345 {
1346 if (subtrahend_cand->kind == CAND_MULT
807e902e 1347 && subtrahend_cand->index == 0
f9453c07
BS
1348 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1349 {
1350 /* Z = (B + 0) * S, S constant
1351 X = Y - Z
1352 ===========================
1353 Value: X = Y + ((-1 * S) * B) */
1354 base = base_in;
807e902e 1355 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1356 index = -index;
3cfd4469 1357 stride = subtrahend_cand->base_expr;
b2ec94d4 1358 ctype = TREE_TYPE (base_in);
0b56e9ad 1359 stype = subtrahend_cand->cand_type;
f9453c07
BS
1360 if (has_single_use (addend_in))
1361 savings = (subtrahend_cand->dead_savings
1362 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1363 }
1364
1365 if (subtrahend_cand->next_interp)
1366 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1367 else
1368 subtrahend_cand = NULL;
1369 }
1370 }
1371
1372 if (base_cand->next_interp)
1373 base_cand = lookup_cand (base_cand->next_interp);
1374 else
1375 base_cand = NULL;
1376 }
1377
1378 if (!base)
1379 {
1380 /* No interpretations had anything useful to propagate, so
1381 produce X = Y + (1 * Z). */
1382 base = base_in;
807e902e 1383 index = subtract_p ? -1 : 1;
f9453c07 1384 stride = addend_in;
b2ec94d4 1385 ctype = TREE_TYPE (base_in);
0b56e9ad
BS
1386 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1387 : TREE_TYPE (addend_in));
f9453c07
BS
1388 }
1389
1390 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
0b56e9ad 1391 ctype, stype, savings);
f9453c07
BS
1392 return c;
1393}
1394
1395/* Create a candidate entry for a statement GS, where GS adds SSA
1396 name BASE_IN to constant INDEX_IN. Propagate any known information
1397 about BASE_IN into the new candidate. Return the new candidate. */
1398
1399static slsr_cand_t
355fe088 1400create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1401 bool speed)
f9453c07
BS
1402{
1403 enum cand_kind kind = CAND_ADD;
1404 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1405 tree stype = NULL_TREE;
807e902e 1406 widest_int index, multiple;
f9453c07
BS
1407 unsigned savings = 0;
1408 slsr_cand_t c;
1409 slsr_cand_t base_cand = base_cand_from_table (base_in);
1410
9b92d12b 1411 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1412 {
807e902e 1413 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1414
1415 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1416 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1417 sign, &multiple))
f9453c07
BS
1418 {
1419 /* Y = (B + i') * S, S constant, c = kS for some integer k
1420 X = Y + c
1421 ============================
1422 X = (B + (i'+ k)) * S
1423 OR
1424 Y = B + (i' * S), S constant, c = kS for some integer k
1425 X = Y + c
1426 ============================
1427 X = (B + (i'+ k)) * S */
1428 kind = base_cand->kind;
3cfd4469 1429 base = base_cand->base_expr;
27bcd47c 1430 index = base_cand->index + multiple;
f9453c07
BS
1431 stride = base_cand->stride;
1432 ctype = base_cand->cand_type;
0b56e9ad 1433 stype = base_cand->stride_type;
f9453c07
BS
1434 if (has_single_use (base_in))
1435 savings = (base_cand->dead_savings
1436 + stmt_cost (base_cand->cand_stmt, speed));
1437 }
1438
1439 if (base_cand->next_interp)
1440 base_cand = lookup_cand (base_cand->next_interp);
1441 else
1442 base_cand = NULL;
1443 }
1444
1445 if (!base)
1446 {
1447 /* No interpretations had anything useful to propagate, so
1448 produce X = Y + (c * 1). */
1449 kind = CAND_ADD;
1450 base = base_in;
1451 index = index_in;
1452 stride = integer_one_node;
b2ec94d4 1453 ctype = TREE_TYPE (base_in);
0b56e9ad 1454 stype = sizetype;
f9453c07
BS
1455 }
1456
1457 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
0b56e9ad 1458 ctype, stype, savings);
f9453c07
BS
1459 return c;
1460}
1461
1462/* Given GS which is an add or subtract of scalar integers or pointers,
1463 make at least one appropriate entry in the candidate table. */
1464
1465static void
355fe088 1466slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1467{
1468 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1469 slsr_cand_t c = NULL, c2;
1470
1471 if (TREE_CODE (rhs2) == SSA_NAME)
1472 {
3cfd4469 1473 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1474 and RHS2 is the stride. But it doesn't make sense for the
1475 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1476 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1477 {
1478 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1479
1480 /* Add the first interpretation to the statement-candidate
1481 mapping. */
1482 add_cand_for_stmt (gs, c);
1483 }
1484
1485 /* If the two RHS operands are identical, or this is a subtract,
1486 we're done. */
1487 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1488 return;
1489
1490 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1491 base expression and RHS1 is the stride, again provided that the
f9453c07 1492 stride is not a pointer. */
b2ec94d4 1493 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1494 {
1495 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1496 if (c)
1497 c->next_interp = c2->cand_num;
1498 else
1499 add_cand_for_stmt (gs, c2);
1500 }
1501 }
36fd6408 1502 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07 1503 {
f9453c07 1504 /* Record an interpretation for the add-immediate. */
807e902e 1505 widest_int index = wi::to_widest (rhs2);
f9453c07 1506 if (subtract_p)
27bcd47c 1507 index = -index;
f9453c07
BS
1508
1509 c = create_add_imm_cand (gs, rhs1, index, speed);
1510
1511 /* Add the interpretation to the statement-candidate mapping. */
1512 add_cand_for_stmt (gs, c);
1513 }
1514}
1515
1516/* Given GS which is a negate of a scalar integer, make an appropriate
1517 entry in the candidate table. A negate is equivalent to a multiply
1518 by -1. */
1519
1520static void
355fe088 1521slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1522{
1523 /* Record a CAND_MULT interpretation for the multiply by -1. */
1524 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1525
1526 /* Add the interpretation to the statement-candidate mapping. */
1527 add_cand_for_stmt (gs, c);
1528}
1529
6b5eea61
BS
1530/* Help function for legal_cast_p, operating on two trees. Checks
1531 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1532 for more details. */
1533
1534static bool
0b56e9ad 1535legal_cast_p_1 (tree lhs_type, tree rhs_type)
6b5eea61 1536{
6b5eea61
BS
1537 unsigned lhs_size, rhs_size;
1538 bool lhs_wraps, rhs_wraps;
1539
6b5eea61
BS
1540 lhs_size = TYPE_PRECISION (lhs_type);
1541 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1542 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1543 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1544
1545 if (lhs_size < rhs_size
1546 || (rhs_wraps && !lhs_wraps)
1547 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1548 return false;
1549
1550 return true;
1551}
1552
f9453c07
BS
1553/* Return TRUE if GS is a statement that defines an SSA name from
1554 a conversion and is legal for us to combine with an add and multiply
1555 in the candidate table. For example, suppose we have:
1556
1557 A = B + i;
1558 C = (type) A;
1559 D = C * S;
1560
1561 Without the type-cast, we would create a CAND_MULT for D with base B,
1562 index i, and stride S. We want to record this candidate only if it
1563 is equivalent to apply the type cast following the multiply:
1564
1565 A = B + i;
1566 E = A * S;
1567 D = (type) E;
1568
1569 We will record the type with the candidate for D. This allows us
1570 to use a similar previous candidate as a basis. If we have earlier seen
1571
1572 A' = B + i';
1573 C' = (type) A';
1574 D' = C' * S;
1575
1576 we can replace D with
1577
1578 D = D' + (i - i') * S;
1579
1580 But if moving the type-cast would change semantics, we mustn't do this.
1581
1582 This is legitimate for casts from a non-wrapping integral type to
1583 any integral type of the same or larger size. It is not legitimate
1584 to convert a wrapping type to a non-wrapping type, or to a wrapping
1585 type of a different size. I.e., with a wrapping type, we must
1586 assume that the addition B + i could wrap, in which case performing
1587 the multiply before or after one of the "illegal" type casts will
1588 have different semantics. */
1589
1590static bool
355fe088 1591legal_cast_p (gimple *gs, tree rhs)
f9453c07 1592{
f9453c07
BS
1593 if (!is_gimple_assign (gs)
1594 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1595 return false;
1596
0b56e9ad 1597 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
f9453c07
BS
1598}
1599
1600/* Given GS which is a cast to a scalar integer type, determine whether
1601 the cast is legal for strength reduction. If so, make at least one
1602 appropriate entry in the candidate table. */
1603
1604static void
355fe088 1605slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1606{
1607 tree lhs, ctype;
ac2a97db 1608 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1609 unsigned savings = 0;
1610
1611 if (!legal_cast_p (gs, rhs1))
1612 return;
1613
1614 lhs = gimple_assign_lhs (gs);
1615 base_cand = base_cand_from_table (rhs1);
1616 ctype = TREE_TYPE (lhs);
1617
9b92d12b 1618 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1619 {
1620 while (base_cand)
1621 {
1622 /* Propagate all data from the base candidate except the type,
1623 which comes from the cast, and the base candidate's cast,
1624 which is no longer applicable. */
1625 if (has_single_use (rhs1))
1626 savings = (base_cand->dead_savings
1627 + stmt_cost (base_cand->cand_stmt, speed));
1628
1629 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1630 base_cand->base_expr,
f9453c07 1631 base_cand->index, base_cand->stride,
0b56e9ad
BS
1632 ctype, base_cand->stride_type,
1633 savings);
f9453c07
BS
1634 if (base_cand->next_interp)
1635 base_cand = lookup_cand (base_cand->next_interp);
1636 else
1637 base_cand = NULL;
1638 }
1639 }
1640 else
1641 {
1642 /* If nothing is known about the RHS, create fresh CAND_ADD and
1643 CAND_MULT interpretations:
1644
1645 X = Y + (0 * 1)
1646 X = (Y + 0) * 1
1647
1648 The first of these is somewhat arbitrary, but the choice of
1649 1 for the stride simplifies the logic for propagating casts
1650 into their uses. */
0b56e9ad
BS
1651 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1652 integer_one_node, ctype, sizetype, 0);
1653 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1654 integer_one_node, ctype, sizetype, 0);
f9453c07
BS
1655 c->next_interp = c2->cand_num;
1656 }
1657
1658 /* Add the first (or only) interpretation to the statement-candidate
1659 mapping. */
1660 add_cand_for_stmt (gs, c);
1661}
1662
1663/* Given GS which is a copy of a scalar integer type, make at least one
1664 appropriate entry in the candidate table.
1665
1666 This interface is included for completeness, but is unnecessary
1667 if this pass immediately follows a pass that performs copy
1668 propagation, such as DOM. */
1669
1670static void
355fe088 1671slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1672{
ac2a97db 1673 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1674 unsigned savings = 0;
1675
1676 base_cand = base_cand_from_table (rhs1);
1677
9b92d12b 1678 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07
BS
1679 {
1680 while (base_cand)
1681 {
1682 /* Propagate all data from the base candidate. */
1683 if (has_single_use (rhs1))
1684 savings = (base_cand->dead_savings
1685 + stmt_cost (base_cand->cand_stmt, speed));
1686
1687 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1688 base_cand->base_expr,
f9453c07 1689 base_cand->index, base_cand->stride,
0b56e9ad
BS
1690 base_cand->cand_type,
1691 base_cand->stride_type, savings);
f9453c07
BS
1692 if (base_cand->next_interp)
1693 base_cand = lookup_cand (base_cand->next_interp);
1694 else
1695 base_cand = NULL;
1696 }
1697 }
1698 else
1699 {
1700 /* If nothing is known about the RHS, create fresh CAND_ADD and
1701 CAND_MULT interpretations:
1702
1703 X = Y + (0 * 1)
1704 X = (Y + 0) * 1
1705
1706 The first of these is somewhat arbitrary, but the choice of
1707 1 for the stride simplifies the logic for propagating casts
1708 into their uses. */
0b56e9ad
BS
1709 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1710 integer_one_node, TREE_TYPE (rhs1),
1711 sizetype, 0);
1712 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1713 integer_one_node, TREE_TYPE (rhs1),
1714 sizetype, 0);
f9453c07
BS
1715 c->next_interp = c2->cand_num;
1716 }
1717
1718 /* Add the first (or only) interpretation to the statement-candidate
1719 mapping. */
1720 add_cand_for_stmt (gs, c);
1721}
1722\f
4d9192b5
TS
1723class find_candidates_dom_walker : public dom_walker
1724{
1725public:
1726 find_candidates_dom_walker (cdi_direction direction)
1727 : dom_walker (direction) {}
3daacdcd 1728 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1729};
1730
f9453c07
BS
1731/* Find strength-reduction candidates in block BB. */
1732
3daacdcd 1733edge
4d9192b5 1734find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1735{
1736 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1737
538dd0b7
DM
1738 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1740 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1741
538dd0b7
DM
1742 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1743 gsi_next (&gsi))
f9453c07 1744 {
355fe088 1745 gimple *gs = gsi_stmt (gsi);
f9453c07 1746
2749c8f6
BS
1747 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1748 slsr_process_ref (gs);
1749
1750 else if (is_gimple_assign (gs)
1ffbb016
RB
1751 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1752 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1753 {
1754 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1755
1756 switch (gimple_assign_rhs_code (gs))
1757 {
1758 case MULT_EXPR:
1759 case PLUS_EXPR:
1760 rhs1 = gimple_assign_rhs1 (gs);
1761 rhs2 = gimple_assign_rhs2 (gs);
1762 /* Should never happen, but currently some buggy situations
1763 in earlier phases put constants in rhs1. */
1764 if (TREE_CODE (rhs1) != SSA_NAME)
1765 continue;
1766 break;
1767
1768 /* Possible future opportunity: rhs1 of a ptr+ can be
1769 an ADDR_EXPR. */
1770 case POINTER_PLUS_EXPR:
1771 case MINUS_EXPR:
1772 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1773 gcc_fallthrough ();
f9453c07 1774
d822570f 1775 CASE_CONVERT:
fbcdc43e 1776 case SSA_NAME:
f9453c07
BS
1777 case NEGATE_EXPR:
1778 rhs1 = gimple_assign_rhs1 (gs);
1779 if (TREE_CODE (rhs1) != SSA_NAME)
1780 continue;
1781 break;
1782
1783 default:
1784 ;
1785 }
1786
1787 switch (gimple_assign_rhs_code (gs))
1788 {
1789 case MULT_EXPR:
1790 slsr_process_mul (gs, rhs1, rhs2, speed);
1791 break;
1792
1793 case PLUS_EXPR:
1794 case POINTER_PLUS_EXPR:
1795 case MINUS_EXPR:
1796 slsr_process_add (gs, rhs1, rhs2, speed);
1797 break;
1798
1799 case NEGATE_EXPR:
1800 slsr_process_neg (gs, rhs1, speed);
1801 break;
1802
d822570f 1803 CASE_CONVERT:
f9453c07
BS
1804 slsr_process_cast (gs, rhs1, speed);
1805 break;
1806
fbcdc43e 1807 case SSA_NAME:
f9453c07
BS
1808 slsr_process_copy (gs, rhs1, speed);
1809 break;
1810
1811 default:
1812 ;
1813 }
1814 }
1815 }
3daacdcd 1816 return NULL;
f9453c07
BS
1817}
1818\f
1819/* Dump a candidate for debug. */
1820
1821static void
1822dump_candidate (slsr_cand_t c)
1823{
1824 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1825 gimple_bb (c->cand_stmt)->index);
ef6cb4c7 1826 print_gimple_stmt (dump_file, c->cand_stmt, 0);
f9453c07
BS
1827 switch (c->kind)
1828 {
1829 case CAND_MULT:
1830 fputs (" MULT : (", dump_file);
ef6cb4c7 1831 print_generic_expr (dump_file, c->base_expr);
f9453c07 1832 fputs (" + ", dump_file);
807e902e 1833 print_decs (c->index, dump_file);
f9453c07 1834 fputs (") * ", dump_file);
0b56e9ad
BS
1835 if (TREE_CODE (c->stride) != INTEGER_CST
1836 && c->stride_type != TREE_TYPE (c->stride))
1837 {
1838 fputs ("(", dump_file);
ef6cb4c7 1839 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1840 fputs (")", dump_file);
1841 }
ef6cb4c7 1842 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1843 fputs (" : ", dump_file);
1844 break;
1845 case CAND_ADD:
1846 fputs (" ADD : ", dump_file);
ef6cb4c7 1847 print_generic_expr (dump_file, c->base_expr);
f9453c07 1848 fputs (" + (", dump_file);
807e902e 1849 print_decs (c->index, dump_file);
f9453c07 1850 fputs (" * ", dump_file);
0b56e9ad
BS
1851 if (TREE_CODE (c->stride) != INTEGER_CST
1852 && c->stride_type != TREE_TYPE (c->stride))
1853 {
1854 fputs ("(", dump_file);
ef6cb4c7 1855 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1856 fputs (")", dump_file);
1857 }
ef6cb4c7 1858 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1859 fputs (") : ", dump_file);
1860 break;
2749c8f6
BS
1861 case CAND_REF:
1862 fputs (" REF : ", dump_file);
ef6cb4c7 1863 print_generic_expr (dump_file, c->base_expr);
2749c8f6 1864 fputs (" + (", dump_file);
ef6cb4c7 1865 print_generic_expr (dump_file, c->stride);
2749c8f6 1866 fputs (") + ", dump_file);
807e902e 1867 print_decs (c->index, dump_file);
2749c8f6
BS
1868 fputs (" : ", dump_file);
1869 break;
9b92d12b
BS
1870 case CAND_PHI:
1871 fputs (" PHI : ", dump_file);
ef6cb4c7 1872 print_generic_expr (dump_file, c->base_expr);
9b92d12b 1873 fputs (" + (unknown * ", dump_file);
ef6cb4c7 1874 print_generic_expr (dump_file, c->stride);
9b92d12b
BS
1875 fputs (") : ", dump_file);
1876 break;
f9453c07
BS
1877 default:
1878 gcc_unreachable ();
1879 }
ef6cb4c7 1880 print_generic_expr (dump_file, c->cand_type);
f9453c07
BS
1881 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1882 c->basis, c->dependent, c->sibling);
1883 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1884 c->next_interp, c->dead_savings);
1885 if (c->def_phi)
9b92d12b 1886 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1887 fputs ("\n", dump_file);
1888}
1889
1890/* Dump the candidate vector for debug. */
1891
1892static void
1893dump_cand_vec (void)
1894{
1895 unsigned i;
1896 slsr_cand_t c;
1897
1898 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1899
9771b263 1900 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
1901 dump_candidate (c);
1902}
1903
2749c8f6 1904/* Callback used to dump the candidate chains hash table. */
f9453c07 1905
4a8fb1a1
LC
1906int
1907ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1908{
4a8fb1a1 1909 const_cand_chain_t chain = *slot;
2749c8f6 1910 cand_chain_t p;
f9453c07 1911
ef6cb4c7 1912 print_generic_expr (dump_file, chain->base_expr);
2749c8f6 1913 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1914
2749c8f6
BS
1915 for (p = chain->next; p; p = p->next)
1916 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1917
2749c8f6
BS
1918 fputs ("\n", dump_file);
1919 return 1;
1920}
f9453c07 1921
2749c8f6 1922/* Dump the candidate chains. */
f9453c07 1923
2749c8f6
BS
1924static void
1925dump_cand_chains (void)
1926{
1927 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1928 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1929 (NULL);
f9453c07
BS
1930 fputs ("\n", dump_file);
1931}
88ca9ea1
BS
1932
1933/* Dump the increment vector for debug. */
1934
1935static void
1936dump_incr_vec (void)
1937{
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1939 {
1940 unsigned i;
1941
1942 fprintf (dump_file, "\nIncrement vector:\n\n");
1943
1944 for (i = 0; i < incr_vec_len; i++)
1945 {
1946 fprintf (dump_file, "%3d increment: ", i);
807e902e 1947 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1948 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1949 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1950 fputs ("\n initializer: ", dump_file);
ef6cb4c7 1951 print_generic_expr (dump_file, incr_vec[i].initializer);
88ca9ea1
BS
1952 fputs ("\n\n", dump_file);
1953 }
1954 }
1955}
f9453c07 1956\f
2749c8f6
BS
1957/* Replace *EXPR in candidate C with an equivalent strength-reduced
1958 data reference. */
1959
1960static void
1961replace_ref (tree *expr, slsr_cand_t c)
1962{
78f6dd68
MJ
1963 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1964 unsigned HOST_WIDE_INT misalign;
1965 unsigned align;
1966
1967 /* Ensure the memory reference carries the minimum alignment
1968 requirement for the data type. See PR58041. */
1969 get_object_alignment_1 (*expr, &align, &misalign);
1970 if (misalign != 0)
146ec50f 1971 align = least_bit_hwi (misalign);
78f6dd68
MJ
1972 if (align < TYPE_ALIGN (acc_type))
1973 acc_type = build_aligned_type (acc_type, align);
1974
8907a722 1975 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
78f6dd68
MJ
1976 c->base_expr, c->stride);
1977 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1978 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1979
2749c8f6
BS
1980 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1981 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1982 TREE_OPERAND (mem_ref, 0)
1983 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1984 /*simple_p=*/true, NULL,
1985 /*before=*/true, GSI_SAME_STMT);
1986 copy_ref_info (mem_ref, *expr);
1987 *expr = mem_ref;
1988 update_stmt (c->cand_stmt);
1989}
1990
1991/* Replace CAND_REF candidate C, each sibling of candidate C, and each
1992 dependent of candidate C with an equivalent strength-reduced data
1993 reference. */
1994
1995static void
1996replace_refs (slsr_cand_t c)
1997{
96d75a2c
YZ
1998 if (dump_file && (dump_flags & TDF_DETAILS))
1999 {
2000 fputs ("Replacing reference: ", dump_file);
ef6cb4c7 2001 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2002 }
2003
2749c8f6
BS
2004 if (gimple_vdef (c->cand_stmt))
2005 {
2006 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2007 replace_ref (lhs, c);
2008 }
2009 else
2010 {
2011 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2012 replace_ref (rhs, c);
2013 }
2014
96d75a2c
YZ
2015 if (dump_file && (dump_flags & TDF_DETAILS))
2016 {
2017 fputs ("With: ", dump_file);
ef6cb4c7 2018 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2019 fputs ("\n", dump_file);
2020 }
2021
2749c8f6
BS
2022 if (c->sibling)
2023 replace_refs (lookup_cand (c->sibling));
2024
2025 if (c->dependent)
2026 replace_refs (lookup_cand (c->dependent));
2027}
2028
9b92d12b
BS
2029/* Return TRUE if candidate C is dependent upon a PHI. */
2030
2031static bool
2032phi_dependent_cand_p (slsr_cand_t c)
2033{
2034 /* A candidate is not necessarily dependent upon a PHI just because
2035 it has a phi definition for its base name. It may have a basis
2036 that relies upon the same phi definition, in which case the PHI
2037 is irrelevant to this candidate. */
2038 return (c->def_phi
2039 && c->basis
2040 && lookup_cand (c->basis)->def_phi != c->def_phi);
2041}
2042
f9453c07
BS
2043/* Calculate the increment required for candidate C relative to
2044 its basis. */
2045
807e902e 2046static widest_int
f9453c07
BS
2047cand_increment (slsr_cand_t c)
2048{
2049 slsr_cand_t basis;
2050
2051 /* If the candidate doesn't have a basis, just return its own
2052 index. This is useful in record_increments to help us find
9b92d12b
BS
2053 an existing initializer. Also, if the candidate's basis is
2054 hidden by a phi, then its own index will be the increment
2055 from the newly introduced phi basis. */
2056 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
2057 return c->index;
2058
2059 basis = lookup_cand (c->basis);
3cfd4469 2060 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 2061 return c->index - basis->index;
f9453c07
BS
2062}
2063
88ca9ea1
BS
2064/* Calculate the increment required for candidate C relative to
2065 its basis. If we aren't going to generate pointer arithmetic
2066 for this candidate, return the absolute value of that increment
2067 instead. */
2068
807e902e 2069static inline widest_int
88ca9ea1
BS
2070cand_abs_increment (slsr_cand_t c)
2071{
807e902e 2072 widest_int increment = cand_increment (c);
88ca9ea1 2073
807e902e 2074 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2075 increment = -increment;
88ca9ea1
BS
2076
2077 return increment;
2078}
2079
f9453c07
BS
2080/* Return TRUE iff candidate C has already been replaced under
2081 another interpretation. */
2082
2083static inline bool
2084cand_already_replaced (slsr_cand_t c)
2085{
2086 return (gimple_bb (c->cand_stmt) == 0);
2087}
2088
9b92d12b
BS
2089/* Common logic used by replace_unconditional_candidate and
2090 replace_conditional_candidate. */
f9453c07
BS
2091
2092static void
807e902e 2093replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2094{
9b92d12b
BS
2095 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2096 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2097
8eb91869
BS
2098 /* It is not useful to replace casts, copies, negates, or adds of
2099 an SSA name and a constant. */
2100 if (cand_code == SSA_NAME
2101 || CONVERT_EXPR_CODE_P (cand_code)
2102 || cand_code == PLUS_EXPR
2103 || cand_code == POINTER_PLUS_EXPR
2104 || cand_code == MINUS_EXPR
2105 || cand_code == NEGATE_EXPR)
2106 return;
2107
2108 enum tree_code code = PLUS_EXPR;
2109 tree bump_tree;
2110 gimple *stmt_to_print = NULL;
2111
2112 if (wi::neg_p (bump))
9b92d12b 2113 {
8eb91869
BS
2114 code = MINUS_EXPR;
2115 bump = -bump;
2116 }
9b92d12b 2117
8eb91869
BS
2118 /* It is possible that the resulting bump doesn't fit in target_type.
2119 Abandon the replacement in this case. This does not affect
2120 siblings or dependents of C. */
2121 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2122 TYPE_SIGN (target_type)))
2123 return;
2124
2125 bump_tree = wide_int_to_tree (target_type, bump);
2126
2127 /* If the basis name and the candidate's LHS have incompatible types,
2128 introduce a cast. */
2129 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2130 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b 2131
8eb91869
BS
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2133 {
2134 fputs ("Replacing: ", dump_file);
2135 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2136 }
2137
2138 if (bump == 0)
2139 {
2140 tree lhs = gimple_assign_lhs (c->cand_stmt);
2141 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2142 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2143 slsr_cand_t cc = c;
2144 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2145 gsi_replace (&gsi, copy_stmt, false);
2146 c->cand_stmt = copy_stmt;
2147 while (cc->next_interp)
2148 {
2149 cc = lookup_cand (cc->next_interp);
2150 cc->cand_stmt = copy_stmt;
2151 }
9b92d12b 2152 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869
BS
2153 stmt_to_print = copy_stmt;
2154 }
2155 else
2156 {
2157 tree rhs1, rhs2;
2158 if (cand_code != NEGATE_EXPR) {
2159 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2160 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2161 }
2162 if (cand_code != NEGATE_EXPR
2163 && ((operand_equal_p (rhs1, basis_name, 0)
2164 && operand_equal_p (rhs2, bump_tree, 0))
2165 || (operand_equal_p (rhs1, bump_tree, 0)
2166 && operand_equal_p (rhs2, basis_name, 0))))
9b92d12b 2167 {
8eb91869
BS
2168 if (dump_file && (dump_flags & TDF_DETAILS))
2169 {
2170 fputs ("(duplicate, not actually replacing)", dump_file);
2171 stmt_to_print = c->cand_stmt;
2172 }
9b92d12b 2173 }
8eb91869 2174 else
9b92d12b 2175 {
9b92d12b 2176 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
9fbbba71 2177 slsr_cand_t cc = c;
8eb91869
BS
2178 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2179 update_stmt (gsi_stmt (gsi));
2180 c->cand_stmt = gsi_stmt (gsi);
9fbbba71
BS
2181 while (cc->next_interp)
2182 {
2183 cc = lookup_cand (cc->next_interp);
8eb91869 2184 cc->cand_stmt = gsi_stmt (gsi);
9fbbba71 2185 }
9b92d12b 2186 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869 2187 stmt_to_print = gsi_stmt (gsi);
9b92d12b 2188 }
8eb91869 2189 }
9b92d12b 2190
8eb91869
BS
2191 if (dump_file && (dump_flags & TDF_DETAILS))
2192 {
2193 fputs ("With: ", dump_file);
2194 print_gimple_stmt (dump_file, stmt_to_print, 0);
2195 fputs ("\n", dump_file);
9b92d12b
BS
2196 }
2197}
2198
2199/* Replace candidate C with an add or subtract. Note that we only
2200 operate on CAND_MULTs with known strides, so we will never generate
2201 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2202 X = Y + ((i - i') * S), as described in the module commentary. The
2203 folded value ((i - i') * S) is referred to here as the "bump." */
2204
2205static void
2206replace_unconditional_candidate (slsr_cand_t c)
2207{
2208 slsr_cand_t basis;
9b92d12b
BS
2209
2210 if (cand_already_replaced (c))
f9453c07
BS
2211 return;
2212
2213 basis = lookup_cand (c->basis);
807e902e 2214 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2215
a7a7d10e 2216 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2217}
2218\f
7bf55a70
BS
2219/* Return the index in the increment vector of the given INCREMENT,
2220 or -1 if not found. The latter can occur if more than
2221 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2222
7bf55a70 2223static inline int
807e902e 2224incr_vec_index (const widest_int &increment)
9b92d12b
BS
2225{
2226 unsigned i;
2227
2228 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2229 ;
2230
7bf55a70
BS
2231 if (i < incr_vec_len)
2232 return i;
2233 else
2234 return -1;
9b92d12b
BS
2235}
2236
2237/* Create a new statement along edge E to add BASIS_NAME to the product
2238 of INCREMENT and the stride of candidate C. Create and return a new
2239 SSA name from *VAR to be used as the LHS of the new statement.
2240 KNOWN_STRIDE is true iff C's stride is a constant. */
2241
2242static tree
2243create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2244 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2245 bool known_stride)
2246{
9b92d12b 2247 tree lhs, basis_type;
0b56e9ad 2248 gassign *new_stmt, *cast_stmt = NULL;
9b92d12b
BS
2249
2250 /* If the add candidate along this incoming edge has the same
2251 index as C's hidden basis, the hidden basis represents this
2252 edge correctly. */
807e902e 2253 if (increment == 0)
9b92d12b
BS
2254 return basis_name;
2255
2256 basis_type = TREE_TYPE (basis_name);
2257 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2258
a929f266
BS
2259 /* Occasionally people convert integers to pointers without a
2260 cast, leading us into trouble if we aren't careful. */
2261 enum tree_code plus_code
2262 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2263
9b92d12b 2264 if (known_stride)
7139194b 2265 {
9b92d12b 2266 tree bump_tree;
a929f266 2267 enum tree_code code = plus_code;
807e902e 2268 widest_int bump = increment * wi::to_widest (c->stride);
a929f266 2269 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
9b92d12b
BS
2270 {
2271 code = MINUS_EXPR;
2272 bump = -bump;
2273 }
2274
a929f266
BS
2275 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2276 bump_tree = wide_int_to_tree (stride_type, bump);
0d0e4a03 2277 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2278 }
2279 else
2280 {
7bf55a70 2281 int i;
a929f266 2282 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
9b92d12b 2283 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2284 gcc_assert (i >= 0);
f9453c07 2285
9b92d12b
BS
2286 if (incr_vec[i].initializer)
2287 {
a929f266 2288 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
0d0e4a03
JJ
2289 new_stmt = gimple_build_assign (lhs, code, basis_name,
2290 incr_vec[i].initializer);
9b92d12b 2291 }
0b56e9ad
BS
2292 else {
2293 tree stride;
2294
2295 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2296 {
2297 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2298 "slsr");
2299 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2300 c->stride);
2301 stride = cast_stride;
2302 }
2303 else
2304 stride = c->stride;
2305
2306 if (increment == 1)
2307 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2308 else if (increment == -1)
2309 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2310 else
2311 gcc_unreachable ();
2312 }
f9453c07
BS
2313 }
2314
b115e803 2315 if (cast_stmt)
0b56e9ad 2316 {
b115e803
BS
2317 gimple_set_location (cast_stmt, loc);
2318 gsi_insert_on_edge (e, cast_stmt);
0b56e9ad 2319 }
9b92d12b
BS
2320
2321 gimple_set_location (new_stmt, loc);
b115e803 2322 gsi_insert_on_edge (e, new_stmt);
f9453c07
BS
2323
2324 if (dump_file && (dump_flags & TDF_DETAILS))
2325 {
0b56e9ad
BS
2326 if (cast_stmt)
2327 {
b115e803
BS
2328 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2329 e->src->index, e->dest->index);
ef6cb4c7 2330 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 2331 }
b115e803
BS
2332 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2333 e->dest->index);
ef6cb4c7 2334 print_gimple_stmt (dump_file, new_stmt, 0);
f9453c07
BS
2335 }
2336
9b92d12b
BS
2337 return lhs;
2338}
2339
65d3dce8
BS
2340/* Clear the visited field for a tree of PHI candidates. */
2341
2342static void
2343clear_visited (gphi *phi)
2344{
2345 unsigned i;
2346 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2347
2348 if (phi_cand->visited)
2349 {
2350 phi_cand->visited = 0;
2351
2352 for (i = 0; i < gimple_phi_num_args (phi); i++)
2353 {
2354 tree arg = gimple_phi_arg_def (phi, i);
2355 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2356 if (gimple_code (arg_def) == GIMPLE_PHI)
2357 clear_visited (as_a <gphi *> (arg_def));
2358 }
2359 }
2360}
2361
2362/* Recursive helper function for create_phi_basis. */
9b92d12b
BS
2363
2364static tree
65d3dce8
BS
2365create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2366 location_t loc, bool known_stride)
9b92d12b
BS
2367{
2368 int i;
2369 tree name, phi_arg;
538dd0b7 2370 gphi *phi;
9b92d12b
BS
2371 slsr_cand_t basis = lookup_cand (c->basis);
2372 int nargs = gimple_phi_num_args (from_phi);
2373 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2374 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2375 auto_vec<tree> phi_args (nargs);
9b92d12b 2376
65d3dce8
BS
2377 if (phi_cand->visited)
2378 return phi_cand->cached_basis;
2379 phi_cand->visited = 1;
2380
9b92d12b
BS
2381 /* Process each argument of the existing phi that represents
2382 conditionally-executed add candidates. */
2383 for (i = 0; i < nargs; i++)
f9453c07 2384 {
9b92d12b
BS
2385 edge e = (*phi_bb->preds)[i];
2386 tree arg = gimple_phi_arg_def (from_phi, i);
2387 tree feeding_def;
2388
2389 /* If the phi argument is the base name of the CAND_PHI, then
2390 this incoming arc should use the hidden basis. */
2391 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2392 if (basis->index == 0)
9b92d12b
BS
2393 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2394 else
2395 {
807e902e 2396 widest_int incr = -basis->index;
9b92d12b
BS
2397 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2398 e, loc, known_stride);
2399 }
2400 else
f9453c07 2401 {
355fe088 2402 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2403
2404 /* If there is another phi along this incoming edge, we must
2405 process it in the same fashion to ensure that all basis
2406 adjustments are made along its incoming edges. */
2407 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2408 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2409 loc, known_stride);
9b92d12b 2410 else
f9453c07 2411 {
9b92d12b 2412 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2413 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2414 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2415 e, loc, known_stride);
f9453c07
BS
2416 }
2417 }
9b92d12b
BS
2418
2419 /* Because of recursion, we need to save the arguments in a vector
2420 so we can create the PHI statement all at once. Otherwise the
2421 storage for the half-created PHI can be reclaimed. */
2422 phi_args.safe_push (feeding_def);
f9453c07 2423 }
9b92d12b
BS
2424
2425 /* Create the new phi basis. */
2426 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2427 phi = create_phi_node (name, phi_bb);
2428 SSA_NAME_DEF_STMT (name) = phi;
2429
2430 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2431 {
2432 edge e = (*phi_bb->preds)[i];
2433 add_phi_arg (phi, phi_arg, e, loc);
2434 }
2435
2436 update_stmt (phi);
2437
f9453c07
BS
2438 if (dump_file && (dump_flags & TDF_DETAILS))
2439 {
9b92d12b 2440 fputs ("Introducing new phi basis: ", dump_file);
ef6cb4c7 2441 print_gimple_stmt (dump_file, phi, 0);
f9453c07 2442 }
9b92d12b 2443
65d3dce8 2444 phi_cand->cached_basis = name;
9b92d12b 2445 return name;
f9453c07
BS
2446}
2447
65d3dce8
BS
2448/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2449 is hidden by the phi node FROM_PHI, create a new phi node in the same
2450 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2451 with its phi arguments representing conditional adjustments to the
2452 hidden basis along conditional incoming paths. Those adjustments are
2453 made by creating add statements (and sometimes recursively creating
2454 phis) along those incoming paths. LOC is the location to attach to
2455 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2456 constant. */
2457
2458static tree
2459create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2460 location_t loc, bool known_stride)
2461{
2462 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2463 known_stride);
2464 gcc_assert (retval);
2465 clear_visited (as_a <gphi *> (from_phi));
2466 return retval;
2467}
2468
9b92d12b
BS
2469/* Given a candidate C whose basis is hidden by at least one intervening
2470 phi, introduce a matching number of new phis to represent its basis
2471 adjusted by conditional increments along possible incoming paths. Then
2472 replace C as though it were an unconditional candidate, using the new
2473 basis. */
f9453c07
BS
2474
2475static void
9b92d12b 2476replace_conditional_candidate (slsr_cand_t c)
f9453c07 2477{
a7a7d10e 2478 tree basis_name, name;
9b92d12b
BS
2479 slsr_cand_t basis;
2480 location_t loc;
f9453c07 2481
9b92d12b
BS
2482 /* Look up the LHS SSA name from C's basis. This will be the
2483 RHS1 of the adds we will introduce to create new phi arguments. */
2484 basis = lookup_cand (c->basis);
2485 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2486
9b92d12b
BS
2487 /* Create a new phi statement which will represent C's true basis
2488 after the transformation is complete. */
2489 loc = gimple_location (c->cand_stmt);
2490 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2491 basis_name, loc, KNOWN_STRIDE);
65d3dce8 2492
9b92d12b 2493 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2494 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2495
a7a7d10e 2496 replace_mult_candidate (c, name, bump);
f9453c07 2497}
88ca9ea1 2498
65d3dce8
BS
2499/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2500 how many PHI nodes we have visited at this point in the tree walk. */
9b92d12b
BS
2501
2502static int
65d3dce8 2503phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
88ca9ea1
BS
2504{
2505 unsigned i;
9b92d12b 2506 int cost = 0;
5b3d5f76 2507 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2508
65d3dce8
BS
2509 if (phi_cand->visited)
2510 return 0;
2511
2512 phi_cand->visited = 1;
2513 (*spread)++;
2514
0100cd3f
BS
2515 /* If we work our way back to a phi that isn't dominated by the hidden
2516 basis, this isn't a candidate for replacement. Indicate this by
2517 returning an unreasonably high cost. It's not easy to detect
2518 these situations when determining the basis, so we defer the
2519 decision until now. */
2520 basic_block phi_bb = gimple_bb (phi);
2521 slsr_cand_t basis = lookup_cand (c->basis);
2522 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2523
2524 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2525 return COST_INFINITE;
2526
9b92d12b
BS
2527 for (i = 0; i < gimple_phi_num_args (phi); i++)
2528 {
2529 tree arg = gimple_phi_arg_def (phi, i);
2530
2531 if (arg != phi_cand->base_expr)
2532 {
355fe088 2533 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2534
2535 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2536 {
2537 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2538
2539 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2540 return COST_INFINITE;
2541 }
9b92d12b
BS
2542 else
2543 {
2544 slsr_cand_t arg_cand = base_cand_from_table (arg);
2545
2546 if (arg_cand->index != c->index)
2547 cost += one_add_cost;
2548 }
2549 }
2550 }
2551
2552 return cost;
88ca9ea1
BS
2553}
2554
65d3dce8
BS
2555/* Compute the expected costs of inserting basis adjustments for
2556 candidate C with phi-definition PHI. The cost of inserting
2557 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2558 which are themselves phi results, recursively calculate costs
2559 for those phis as well. */
2560
2561static int
2562phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2563{
2564 int spread = 0;
2565 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2566 clear_visited (as_a <gphi *> (phi));
2567 return retval;
2568}
9b92d12b
BS
2569/* For candidate C, each sibling of candidate C, and each dependent of
2570 candidate C, determine whether the candidate is dependent upon a
2571 phi that hides its basis. If not, replace the candidate unconditionally.
2572 Otherwise, determine whether the cost of introducing compensation code
2573 for the candidate is offset by the gains from strength reduction. If
2574 so, replace the candidate and introduce the compensation code. */
2575
2576static void
2577replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2578{
2579 if (phi_dependent_cand_p (c))
2580 {
df11b2ea
BS
2581 /* A multiply candidate with a stride of 1 is just an artifice
2582 of a copy or cast; there is no value in replacing it. */
2583 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
9b92d12b
BS
2584 {
2585 /* A candidate dependent upon a phi will replace a multiply by
2586 a constant with an add, and will insert at most one add for
2587 each phi argument. Add these costs with the potential dead-code
2588 savings to determine profitability. */
2589 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2590 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2591 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2592 tree phi_result = gimple_phi_result (phi);
2593 int one_add_cost = add_cost (speed,
2594 TYPE_MODE (TREE_TYPE (phi_result)));
2595 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2596 int cost = add_costs - mult_savings - c->dead_savings;
2597
2598 if (dump_file && (dump_flags & TDF_DETAILS))
2599 {
2600 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2601 fprintf (dump_file, " add_costs = %d\n", add_costs);
2602 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2603 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2604 fprintf (dump_file, " cost = %d\n", cost);
2605 if (cost <= COST_NEUTRAL)
2606 fputs (" Replacing...\n", dump_file);
2607 else
2608 fputs (" Not replaced.\n", dump_file);
2609 }
2610
2611 if (cost <= COST_NEUTRAL)
2612 replace_conditional_candidate (c);
2613 }
2614 }
2615 else
2616 replace_unconditional_candidate (c);
2617
2618 if (c->sibling)
2619 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2620
2621 if (c->dependent)
2622 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2623}
2624\f
88ca9ea1
BS
2625/* Count the number of candidates in the tree rooted at C that have
2626 not already been replaced under other interpretations. */
2627
1dc3d6e9 2628static int
88ca9ea1
BS
2629count_candidates (slsr_cand_t c)
2630{
2631 unsigned count = cand_already_replaced (c) ? 0 : 1;
2632
2633 if (c->sibling)
2634 count += count_candidates (lookup_cand (c->sibling));
2635
2636 if (c->dependent)
2637 count += count_candidates (lookup_cand (c->dependent));
2638
2639 return count;
2640}
2641
2642/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2643 INCREMENT is associated with candidate C. If INCREMENT is to be
2644 conditionally executed as part of a conditional candidate replacement,
2645 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2646 T_0 = stride * I is provided by a candidate that dominates all
2647 candidates with the same increment, also record T_0 for subsequent use. */
2648
2649static void
807e902e 2650record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2651{
2652 bool found = false;
2653 unsigned i;
2654
2655 /* Treat increments that differ only in sign as identical so as to
2656 share initializers, unless we are generating pointer arithmetic. */
807e902e 2657 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2658 increment = -increment;
88ca9ea1
BS
2659
2660 for (i = 0; i < incr_vec_len; i++)
2661 {
27bcd47c 2662 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2663 {
2664 incr_vec[i].count++;
2665 found = true;
2666
2667 /* If we previously recorded an initializer that doesn't
2668 dominate this candidate, it's not going to be useful to
2669 us after all. */
2670 if (incr_vec[i].initializer
2671 && !dominated_by_p (CDI_DOMINATORS,
2672 gimple_bb (c->cand_stmt),
2673 incr_vec[i].init_bb))
2674 {
2675 incr_vec[i].initializer = NULL_TREE;
2676 incr_vec[i].init_bb = NULL;
2677 }
2678
2679 break;
2680 }
2681 }
2682
7bf55a70 2683 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2684 {
2685 /* The first time we see an increment, create the entry for it.
2686 If this is the root candidate which doesn't have a basis, set
2687 the count to zero. We're only processing it so it can possibly
2688 provide an initializer for other candidates. */
2689 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2690 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2691 incr_vec[incr_vec_len].cost = COST_INFINITE;
2692
2693 /* Optimistically record the first occurrence of this increment
2694 as providing an initializer (if it does); we will revise this
2695 opinion later if it doesn't dominate all other occurrences.
a929f266 2696 Exception: increments of 0, 1 never need initializers;
806696eb 2697 and phi adjustments don't ever provide initializers. */
88ca9ea1 2698 if (c->kind == CAND_ADD
9b92d12b 2699 && !is_phi_adjust
27bcd47c 2700 && c->index == increment
a929f266 2701 && (increment > 1 || increment < 0)
7b8265ba
JJ
2702 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2703 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2704 {
7b8265ba 2705 tree t0 = NULL_TREE;
88ca9ea1
BS
2706 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2707 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2708 if (operand_equal_p (rhs1, c->base_expr, 0))
2709 t0 = rhs2;
7b8265ba 2710 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2711 t0 = rhs1;
7b8265ba
JJ
2712 if (t0
2713 && SSA_NAME_DEF_STMT (t0)
2714 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2715 {
2716 incr_vec[incr_vec_len].initializer = t0;
2717 incr_vec[incr_vec_len++].init_bb
2718 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2719 }
2720 else
2721 {
2722 incr_vec[incr_vec_len].initializer = NULL_TREE;
2723 incr_vec[incr_vec_len++].init_bb = NULL;
2724 }
2725 }
2726 else
2727 {
2728 incr_vec[incr_vec_len].initializer = NULL_TREE;
2729 incr_vec[incr_vec_len++].init_bb = NULL;
2730 }
2731 }
2732}
2733
65d3dce8 2734/* Recursive helper function for record_phi_increments. */
9b92d12b
BS
2735
2736static void
65d3dce8 2737record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2738{
2739 unsigned i;
5b3d5f76 2740 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2741
65d3dce8
BS
2742 if (phi_cand->visited)
2743 return;
2744 phi_cand->visited = 1;
2745
9b92d12b
BS
2746 for (i = 0; i < gimple_phi_num_args (phi); i++)
2747 {
2748 tree arg = gimple_phi_arg_def (phi, i);
2749
2750 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2751 {
355fe088 2752 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2753
2754 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8 2755 record_phi_increments_1 (basis, arg_def);
9b92d12b
BS
2756 else
2757 {
2758 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2759 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2760 record_increment (arg_cand, diff, PHI_ADJUST);
2761 }
2762 }
2763 }
2764}
2765
65d3dce8
BS
2766/* Given phi statement PHI that hides a candidate from its BASIS, find
2767 the increments along each incoming arc (recursively handling additional
2768 phis that may be present) and record them. These increments are the
2769 difference in index between the index-adjusting statements and the
2770 index of the basis. */
2771
2772static void
2773record_phi_increments (slsr_cand_t basis, gimple *phi)
2774{
2775 record_phi_increments_1 (basis, phi);
2776 clear_visited (as_a <gphi *> (phi));
2777}
2778
88ca9ea1
BS
2779/* Determine how many times each unique increment occurs in the set
2780 of candidates rooted at C's parent, recording the data in the
2781 increment vector. For each unique increment I, if an initializer
2782 T_0 = stride * I is provided by a candidate that dominates all
2783 candidates with the same increment, also record T_0 for subsequent
2784 use. */
2785
2786static void
2787record_increments (slsr_cand_t c)
2788{
2789 if (!cand_already_replaced (c))
9b92d12b
BS
2790 {
2791 if (!phi_dependent_cand_p (c))
2792 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2793 else
2794 {
2795 /* A candidate with a basis hidden by a phi will have one
2796 increment for its relationship to the index represented by
2797 the phi, and potentially additional increments along each
2798 incoming edge. For the root of the dependency tree (which
2799 has no basis), process just the initial index in case it has
2800 an initializer that can be used by subsequent candidates. */
2801 record_increment (c, c->index, NOT_PHI_ADJUST);
2802
2803 if (c->basis)
2804 record_phi_increments (lookup_cand (c->basis),
2805 lookup_cand (c->def_phi)->cand_stmt);
2806 }
2807 }
88ca9ea1
BS
2808
2809 if (c->sibling)
2810 record_increments (lookup_cand (c->sibling));
2811
2812 if (c->dependent)
2813 record_increments (lookup_cand (c->dependent));
2814}
2815
65d3dce8 2816/* Recursive helper function for phi_incr_cost. */
9b92d12b
BS
2817
2818static int
65d3dce8
BS
2819phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2820 int *savings)
9b92d12b
BS
2821{
2822 unsigned i;
2823 int cost = 0;
2824 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2825 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2826
65d3dce8
BS
2827 if (phi_cand->visited)
2828 return 0;
2829 phi_cand->visited = 1;
2830
9b92d12b
BS
2831 for (i = 0; i < gimple_phi_num_args (phi); i++)
2832 {
2833 tree arg = gimple_phi_arg_def (phi, i);
2834
2835 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2836 {
355fe088 2837 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2838
2839 if (gimple_code (arg_def) == GIMPLE_PHI)
2840 {
2841 int feeding_savings = 0;
df11b2ea 2842 tree feeding_var = gimple_phi_result (arg_def);
65d3dce8 2843 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
df11b2ea 2844 if (uses_consumed_by_stmt (feeding_var, phi))
9b92d12b
BS
2845 *savings += feeding_savings;
2846 }
2847 else
2848 {
2849 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2850 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2851
2852 if (incr == diff)
2853 {
2854 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2855 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2856 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
df11b2ea 2857 if (uses_consumed_by_stmt (lhs, phi))
9b92d12b
BS
2858 *savings += stmt_cost (arg_cand->cand_stmt, true);
2859 }
2860 }
2861 }
2862 }
2863
2864 return cost;
2865}
2866
65d3dce8
BS
2867/* Add up and return the costs of introducing add statements that
2868 require the increment INCR on behalf of candidate C and phi
2869 statement PHI. Accumulate into *SAVINGS the potential savings
2870 from removing existing statements that feed PHI and have no other
2871 uses. */
2872
2873static int
2874phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2875 int *savings)
2876{
2877 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2878 clear_visited (as_a <gphi *> (phi));
2879 return retval;
2880}
2881
88ca9ea1
BS
2882/* Return the first candidate in the tree rooted at C that has not
2883 already been replaced, favoring siblings over dependents. */
2884
2885static slsr_cand_t
2886unreplaced_cand_in_tree (slsr_cand_t c)
2887{
2888 if (!cand_already_replaced (c))
2889 return c;
2890
2891 if (c->sibling)
2892 {
2893 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2894 if (sib)
2895 return sib;
2896 }
2897
2898 if (c->dependent)
2899 {
2900 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2901 if (dep)
2902 return dep;
2903 }
2904
2905 return NULL;
2906}
2907
2908/* Return TRUE if the candidates in the tree rooted at C should be
2909 optimized for speed, else FALSE. We estimate this based on the block
2910 containing the most dominant candidate in the tree that has not yet
2911 been replaced. */
2912
2913static bool
2914optimize_cands_for_speed_p (slsr_cand_t c)
2915{
2916 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2917 gcc_assert (c2);
2918 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2919}
2920
2921/* Add COST_IN to the lowest cost of any dependent path starting at
2922 candidate C or any of its siblings, counting only candidates along
2923 such paths with increment INCR. Assume that replacing a candidate
2924 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2925 statements that would go dead. If COUNT_PHIS is true, include
2926 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2927
2928static int
9b92d12b 2929lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2930 const widest_int &incr, bool count_phis)
88ca9ea1 2931{
9b92d12b 2932 int local_cost, sib_cost, savings = 0;
807e902e 2933 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2934
2935 if (cand_already_replaced (c))
2936 local_cost = cost_in;
27bcd47c 2937 else if (incr == cand_incr)
88ca9ea1
BS
2938 local_cost = cost_in - repl_savings - c->dead_savings;
2939 else
2940 local_cost = cost_in - c->dead_savings;
2941
9b92d12b
BS
2942 if (count_phis
2943 && phi_dependent_cand_p (c)
2944 && !cand_already_replaced (c))
2945 {
355fe088 2946 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2947 local_cost += phi_incr_cost (c, incr, phi, &savings);
2948
df11b2ea 2949 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
2950 local_cost -= savings;
2951 }
2952
88ca9ea1
BS
2953 if (c->dependent)
2954 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
2955 lookup_cand (c->dependent), incr,
2956 count_phis);
88ca9ea1
BS
2957
2958 if (c->sibling)
2959 {
2960 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
2961 lookup_cand (c->sibling), incr,
2962 count_phis);
88ca9ea1
BS
2963 local_cost = MIN (local_cost, sib_cost);
2964 }
2965
2966 return local_cost;
2967}
2968
2969/* Compute the total savings that would accrue from all replacements
2970 in the candidate tree rooted at C, counting only candidates with
2971 increment INCR. Assume that replacing a candidate reduces cost
2972 by REPL_SAVINGS. Also account for savings from statements that
2973 would go dead. */
2974
2975static int
807e902e 2976total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 2977 bool count_phis)
88ca9ea1
BS
2978{
2979 int savings = 0;
807e902e 2980 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 2981
27bcd47c 2982 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
2983 savings += repl_savings + c->dead_savings;
2984
9b92d12b
BS
2985 if (count_phis
2986 && phi_dependent_cand_p (c)
2987 && !cand_already_replaced (c))
2988 {
2989 int phi_savings = 0;
355fe088 2990 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2991 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2992
df11b2ea 2993 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
2994 savings += phi_savings;
2995 }
2996
88ca9ea1 2997 if (c->dependent)
9b92d12b
BS
2998 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
2999 count_phis);
88ca9ea1
BS
3000
3001 if (c->sibling)
9b92d12b
BS
3002 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3003 count_phis);
88ca9ea1
BS
3004
3005 return savings;
3006}
3007
3008/* Use target-specific costs to determine and record which increments
3009 in the current candidate tree are profitable to replace, assuming
3010 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3011 the candidate tree.
3012
3013 One slight limitation here is that we don't account for the possible
3014 introduction of casts in some cases. See replace_one_candidate for
3015 the cases where these are introduced. This should probably be cleaned
3016 up sometime. */
3017
3018static void
ef4bddc2 3019analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
3020{
3021 unsigned i;
3022
3023 for (i = 0; i < incr_vec_len; i++)
3024 {
27bcd47c 3025 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
3026
3027 /* If somehow this increment is bigger than a HWI, we won't
3028 be optimizing candidates that use it. And if the increment
3029 has a count of zero, nothing will be done with it. */
807e902e 3030 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
3031 incr_vec[i].cost = COST_INFINITE;
3032
3033 /* Increments of 0, 1, and -1 are always profitable to replace,
3034 because they always replace a multiply or add with an add or
3035 copy, and may cause one or more existing instructions to go
3036 dead. Exception: -1 can't be assumed to be profitable for
3037 pointer addition. */
3038 else if (incr == 0
3039 || incr == 1
3040 || (incr == -1
457e189d 3041 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1 3042 incr_vec[i].cost = COST_NEUTRAL;
2d4035dc 3043
0b56e9ad
BS
3044 /* If we need to add an initializer, give up if a cast from the
3045 candidate's type to its stride's type can lose precision.
3046 Note that this already takes into account that the stride may
3047 have been cast to a wider type, in which case this test won't
3048 fire. Example:
6b5eea61
BS
3049
3050 short int _1;
3051 _2 = (int) _1;
3052 _3 = _2 * 10;
0b56e9ad 3053 _4 = x + _3; ADD: x + (10 * (int)_1) : int
6b5eea61 3054 _5 = _2 * 15;
0b56e9ad
BS
3055 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3056
3057 Although the stride was a short int initially, the stride
3058 used in the analysis has been widened to an int, and such
3059 widening will be done in the initializer as well. */
6b5eea61
BS
3060 else if (!incr_vec[i].initializer
3061 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad
BS
3062 && !legal_cast_p_1 (first_dep->stride_type,
3063 TREE_TYPE (gimple_assign_lhs
3064 (first_dep->cand_stmt))))
6b5eea61
BS
3065 incr_vec[i].cost = COST_INFINITE;
3066
50251425
BS
3067 /* If we need to add an initializer, make sure we don't introduce
3068 a multiply by a pointer type, which can happen in certain cast
0b56e9ad 3069 scenarios. */
50251425
BS
3070 else if (!incr_vec[i].initializer
3071 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad 3072 && POINTER_TYPE_P (first_dep->stride_type))
50251425
BS
3073 incr_vec[i].cost = COST_INFINITE;
3074
88ca9ea1
BS
3075 /* For any other increment, if this is a multiply candidate, we
3076 must introduce a temporary T and initialize it with
3077 T_0 = stride * increment. When optimizing for speed, walk the
3078 candidate tree to calculate the best cost reduction along any
3079 path; if it offsets the fixed cost of inserting the initializer,
3080 replacing the increment is profitable. When optimizing for
3081 size, instead calculate the total cost reduction from replacing
3082 all candidates with this increment. */
3083 else if (first_dep->kind == CAND_MULT)
3084 {
3085 int cost = mult_by_coeff_cost (incr, mode, speed);
d5f6f04c
BS
3086 int repl_savings;
3087
3088 if (tree_fits_shwi_p (first_dep->stride))
3089 {
3090 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3091 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3092 }
3093 else
3094 repl_savings = mul_cost (speed, mode);
3095 repl_savings -= add_cost (speed, mode);
3096
88ca9ea1
BS
3097 if (speed)
3098 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 3099 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 3100 else
9b92d12b
BS
3101 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3102 COUNT_PHIS);
88ca9ea1
BS
3103
3104 incr_vec[i].cost = cost;
3105 }
3106
3107 /* If this is an add candidate, the initializer may already
3108 exist, so only calculate the cost of the initializer if it
3109 doesn't. We are replacing one add with another here, so the
3110 known replacement savings is zero. We will account for removal
3111 of dead instructions in lowest_cost_path or total_savings. */
3112 else
3113 {
3114 int cost = 0;
3115 if (!incr_vec[i].initializer)
3116 cost = mult_by_coeff_cost (incr, mode, speed);
3117
3118 if (speed)
9b92d12b
BS
3119 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3120 DONT_COUNT_PHIS);
88ca9ea1 3121 else
9b92d12b
BS
3122 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3123 DONT_COUNT_PHIS);
88ca9ea1
BS
3124
3125 incr_vec[i].cost = cost;
3126 }
3127 }
3128}
3129
3130/* Return the nearest common dominator of BB1 and BB2. If the blocks
3131 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3132 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3133 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3134 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3135
3136static basic_block
3137ncd_for_two_cands (basic_block bb1, basic_block bb2,
3138 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3139{
3140 basic_block ncd;
3141
3142 if (!bb1)
3143 {
3144 *where = c2;
3145 return bb2;
3146 }
3147
3148 if (!bb2)
3149 {
3150 *where = c1;
3151 return bb1;
3152 }
3153
3154 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3155
3156 /* If both candidates are in the same block, the earlier
3157 candidate wins. */
3158 if (bb1 == ncd && bb2 == ncd)
3159 {
3160 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3161 *where = c2;
3162 else
3163 *where = c1;
3164 }
3165
3166 /* Otherwise, if one of them produced a candidate in the
3167 dominator, that one wins. */
3168 else if (bb1 == ncd)
3169 *where = c1;
3170
3171 else if (bb2 == ncd)
3172 *where = c2;
3173
3174 /* If neither matches the dominator, neither wins. */
3175 else
3176 *where = NULL;
3177
3178 return ncd;
3179}
3180
9b92d12b
BS
3181/* Consider all candidates that feed PHI. Find the nearest common
3182 dominator of those candidates requiring the given increment INCR.
3183 Further find and return the nearest common dominator of this result
3184 with block NCD. If the returned block contains one or more of the
3185 candidates, return the earliest candidate in the block in *WHERE. */
3186
3187static basic_block
538dd0b7 3188ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
3189 basic_block ncd, slsr_cand_t *where)
3190{
3191 unsigned i;
3192 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3193 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3194
3195 for (i = 0; i < gimple_phi_num_args (phi); i++)
3196 {
3197 tree arg = gimple_phi_arg_def (phi, i);
3198
3199 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3200 {
355fe088 3201 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
3202
3203 if (gimple_code (arg_def) == GIMPLE_PHI)
538dd0b7
DM
3204 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
3205 where);
9b92d12b
BS
3206 else
3207 {
3208 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 3209 widest_int diff = arg_cand->index - basis->index;
1e386bb8 3210 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
9b92d12b
BS
3211
3212 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
1e386bb8 3213 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3214 }
3215 }
3216 }
3217
3218 return ncd;
3219}
3220
3221/* Consider the candidate C together with any candidates that feed
3222 C's phi dependence (if any). Find and return the nearest common
3223 dominator of those candidates requiring the given increment INCR.
3224 If the returned block contains one or more of the candidates,
3225 return the earliest candidate in the block in *WHERE. */
3226
3227static basic_block
807e902e 3228ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3229{
3230 basic_block ncd = NULL;
3231
3232 if (cand_abs_increment (c) == incr)
3233 {
3234 ncd = gimple_bb (c->cand_stmt);
3235 *where = c;
3236 }
3237
3238 if (phi_dependent_cand_p (c))
538dd0b7
DM
3239 ncd = ncd_with_phi (c, incr,
3240 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3241 ncd, where);
3242
3243 return ncd;
3244}
3245
88ca9ea1
BS
3246/* Consider all candidates in the tree rooted at C for which INCR
3247 represents the required increment of C relative to its basis.
3248 Find and return the basic block that most nearly dominates all
3249 such candidates. If the returned block contains one or more of
3250 the candidates, return the earliest candidate in the block in
3251 *WHERE. */
3252
3253static basic_block
807e902e 3254nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3255 slsr_cand_t *where)
3256{
3257 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3258 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3259
3260 /* First find the NCD of all siblings and dependents. */
3261 if (c->sibling)
3262 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3263 incr, &sib_where);
3264 if (c->dependent)
3265 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3266 incr, &dep_where);
3267 if (!sib_ncd && !dep_ncd)
3268 {
3269 new_where = NULL;
3270 ncd = NULL;
3271 }
3272 else if (sib_ncd && !dep_ncd)
3273 {
3274 new_where = sib_where;
3275 ncd = sib_ncd;
3276 }
3277 else if (dep_ncd && !sib_ncd)
3278 {
3279 new_where = dep_where;
3280 ncd = dep_ncd;
3281 }
3282 else
3283 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3284 dep_where, &new_where);
3285
3286 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3287 in (and nor do any increments for feeding defs of a phi-dependence),
3288 then the result depends only on siblings and dependents. */
3289 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3290
9b92d12b 3291 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3292 {
3293 *where = new_where;
3294 return ncd;
3295 }
3296
3297 /* Otherwise, compare this candidate with the result from all siblings
3298 and dependents. */
88ca9ea1
BS
3299 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3300
3301 return ncd;
3302}
3303
3304/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3305
3306static inline bool
3307profitable_increment_p (unsigned index)
3308{
3309 return (incr_vec[index].cost <= COST_NEUTRAL);
3310}
3311
3312/* For each profitable increment in the increment vector not equal to
3313 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3314 dominator of all statements in the candidate chain rooted at C
3315 that require that increment, and insert an initializer
3316 T_0 = stride * increment at that location. Record T_0 with the
3317 increment record. */
3318
3319static void
3320insert_initializers (slsr_cand_t c)
3321{
3322 unsigned i;
88ca9ea1
BS
3323
3324 for (i = 0; i < incr_vec_len; i++)
3325 {
3326 basic_block bb;
3327 slsr_cand_t where = NULL;
538dd0b7 3328 gassign *init_stmt;
0b56e9ad
BS
3329 gassign *cast_stmt = NULL;
3330 tree new_name, incr_tree, init_stride;
807e902e 3331 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3332
3333 if (!profitable_increment_p (i)
807e902e
KZ
3334 || incr == 1
3335 || (incr == -1
6e3d8cb4 3336 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
807e902e 3337 || incr == 0)
88ca9ea1
BS
3338 continue;
3339
3340 /* We may have already identified an existing initializer that
3341 will suffice. */
3342 if (incr_vec[i].initializer)
3343 {
3344 if (dump_file && (dump_flags & TDF_DETAILS))
3345 {
3346 fputs ("Using existing initializer: ", dump_file);
3347 print_gimple_stmt (dump_file,
3348 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3349 0, 0);
3350 }
3351 continue;
3352 }
3353
3354 /* Find the block that most closely dominates all candidates
3355 with this increment. If there is at least one candidate in
3356 that block, the earliest one will be returned in WHERE. */
3357 bb = nearest_common_dominator_for_cands (c, incr, &where);
3358
3e75ec3f
BS
3359 /* If the NCD is not dominated by the block containing the
3360 definition of the stride, we can't legally insert a
3361 single initializer. Mark the increment as unprofitable
3362 so we don't make any replacements. FIXME: Multiple
3363 initializers could be placed with more analysis. */
3364 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3365 basic_block stride_bb = gimple_bb (stride_def);
3366
3367 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3368 {
3369 if (dump_file && (dump_flags & TDF_DETAILS))
3370 fprintf (dump_file,
3371 "Initializer #%d cannot be legally placed\n", i);
3372 incr_vec[i].cost = COST_INFINITE;
3373 continue;
3374 }
3375
0b56e9ad
BS
3376 /* If the nominal stride has a different type than the recorded
3377 stride type, build a cast from the nominal stride to that type. */
3378 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3379 {
3380 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3381 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3382 }
3383 else
3384 init_stride = c->stride;
3385
88ca9ea1 3386 /* Create a new SSA name to hold the initializer's value. */
0b56e9ad 3387 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
88ca9ea1
BS
3388 incr_vec[i].initializer = new_name;
3389
3390 /* Create the initializer and insert it in the latest possible
3391 dominating position. */
0b56e9ad 3392 incr_tree = wide_int_to_tree (c->stride_type, incr);
0d0e4a03 3393 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
0b56e9ad 3394 init_stride, incr_tree);
88ca9ea1
BS
3395 if (where)
3396 {
3397 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
0b56e9ad
BS
3398 location_t loc = gimple_location (where->cand_stmt);
3399
3400 if (cast_stmt)
3401 {
3402 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3403 gimple_set_location (cast_stmt, loc);
3404 }
3405
88ca9ea1 3406 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
0b56e9ad 3407 gimple_set_location (init_stmt, loc);
88ca9ea1
BS
3408 }
3409 else
3410 {
3411 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3412 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
0b56e9ad 3413 location_t loc = gimple_location (basis_stmt);
88ca9ea1 3414
1697df8c 3415 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
0b56e9ad
BS
3416 {
3417 if (cast_stmt)
3418 {
3419 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3420 gimple_set_location (cast_stmt, loc);
3421 }
3422 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3423 }
88ca9ea1 3424 else
0b56e9ad
BS
3425 {
3426 if (cast_stmt)
3427 {
3428 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3429 gimple_set_location (cast_stmt, loc);
3430 }
06f97084 3431 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
0b56e9ad 3432 }
88ca9ea1
BS
3433
3434 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3435 }
3436
3437 if (dump_file && (dump_flags & TDF_DETAILS))
3438 {
0b56e9ad
BS
3439 if (cast_stmt)
3440 {
3441 fputs ("Inserting stride cast: ", dump_file);
ef6cb4c7 3442 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 3443 }
88ca9ea1 3444 fputs ("Inserting initializer: ", dump_file);
ef6cb4c7 3445 print_gimple_stmt (dump_file, init_stmt, 0);
88ca9ea1
BS
3446 }
3447 }
3448}
3449
65d3dce8 3450/* Recursive helper function for all_phi_incrs_profitable. */
9b92d12b
BS
3451
3452static bool
65d3dce8 3453all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
9b92d12b
BS
3454{
3455 unsigned i;
3456 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3457 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 3458
65d3dce8
BS
3459 if (phi_cand->visited)
3460 return true;
3461
3462 phi_cand->visited = 1;
3463 (*spread)++;
3464
c34923c4
BS
3465 /* If the basis doesn't dominate the PHI (including when the PHI is
3466 in the same block as the basis), we won't be able to create a PHI
3467 using the basis here. */
3468 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3469 basic_block phi_bb = gimple_bb (phi);
3470
3471 if (phi_bb == basis_bb
3472 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3473 return false;
3474
9b92d12b
BS
3475 for (i = 0; i < gimple_phi_num_args (phi); i++)
3476 {
c34923c4
BS
3477 /* If the PHI arg resides in a block not dominated by the basis,
3478 we won't be able to create a PHI using the basis here. */
3479 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3480
3481 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3482 return false;
3483
9b92d12b
BS
3484 tree arg = gimple_phi_arg_def (phi, i);
3485
3486 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3487 {
355fe088 3488 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
3489
3490 if (gimple_code (arg_def) == GIMPLE_PHI)
3491 {
65d3dce8
BS
3492 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def),
3493 spread)
3494 || *spread > MAX_SPREAD)
9b92d12b
BS
3495 return false;
3496 }
3497 else
3498 {
7bf55a70 3499 int j;
9b92d12b 3500 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 3501 widest_int increment = arg_cand->index - basis->index;
9b92d12b 3502
807e902e 3503 if (!address_arithmetic_p && wi::neg_p (increment))
9b92d12b
BS
3504 increment = -increment;
3505
3506 j = incr_vec_index (increment);
3507
3508 if (dump_file && (dump_flags & TDF_DETAILS))
3509 {
3510 fprintf (dump_file, " Conditional candidate %d, phi: ",
3511 c->cand_num);
ef6cb4c7 3512 print_gimple_stmt (dump_file, phi, 0);
9b92d12b 3513 fputs (" increment: ", dump_file);
807e902e 3514 print_decs (increment, dump_file);
7bf55a70
BS
3515 if (j < 0)
3516 fprintf (dump_file,
3517 "\n Not replaced; incr_vec overflow.\n");
3518 else {
3519 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3520 if (profitable_increment_p (j))
3521 fputs (" Replacing...\n", dump_file);
3522 else
3523 fputs (" Not replaced.\n", dump_file);
3524 }
9b92d12b
BS
3525 }
3526
7bf55a70 3527 if (j < 0 || !profitable_increment_p (j))
9b92d12b
BS
3528 return false;
3529 }
3530 }
3531 }
3532
3533 return true;
3534}
3535
65d3dce8
BS
3536/* Return TRUE iff all required increments for candidates feeding PHI
3537 are profitable (and legal!) to replace on behalf of candidate C. */
3538
3539static bool
3540all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3541{
3542 int spread = 0;
3543 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3544 clear_visited (phi);
3545 return retval;
3546}
3547
88ca9ea1
BS
3548/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3549 type TO_TYPE, and insert it in front of the statement represented
3550 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3551 the new SSA name. */
3552
3553static tree
a7a7d10e 3554introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3555{
3556 tree cast_lhs;
538dd0b7 3557 gassign *cast_stmt;
88ca9ea1
BS
3558 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3559
a7a7d10e 3560 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3561 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3562 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3563 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3564
3565 if (dump_file && (dump_flags & TDF_DETAILS))
3566 {
3567 fputs (" Inserting: ", dump_file);
ef6cb4c7 3568 print_gimple_stmt (dump_file, cast_stmt, 0);
88ca9ea1
BS
3569 }
3570
3571 return cast_lhs;
3572}
3573
3574/* Replace the RHS of the statement represented by candidate C with
3575 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3576 leave C unchanged or just interchange its operands. The original
3577 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3578 If the replacement was made and we are doing a details dump,
3579 return the revised statement, else NULL. */
3580
355fe088 3581static gimple *
88ca9ea1
BS
3582replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3583 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3584 slsr_cand_t c)
3585{
3586 if (new_code != old_code
3587 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3588 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3589 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3590 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3591 {
3592 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
9fbbba71 3593 slsr_cand_t cc = c;
88ca9ea1
BS
3594 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3595 update_stmt (gsi_stmt (gsi));
bb0d2039 3596 c->cand_stmt = gsi_stmt (gsi);
9fbbba71
BS
3597 while (cc->next_interp)
3598 {
3599 cc = lookup_cand (cc->next_interp);
3600 cc->cand_stmt = gsi_stmt (gsi);
3601 }
88ca9ea1
BS
3602
3603 if (dump_file && (dump_flags & TDF_DETAILS))
3604 return gsi_stmt (gsi);
3605 }
3606
3607 else if (dump_file && (dump_flags & TDF_DETAILS))
3608 fputs (" (duplicate, not actually replacing)\n", dump_file);
3609
3610 return NULL;
3611}
3612
3613/* Strength-reduce the statement represented by candidate C by replacing
3614 it with an equivalent addition or subtraction. I is the index into
3615 the increment vector identifying C's increment. NEW_VAR is used to
3616 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3617 is the rhs1 to use in creating the add/subtract. */
3618
3619static void
a7a7d10e 3620replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3621{
355fe088 3622 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3623 tree orig_rhs1, orig_rhs2;
3624 tree rhs2;
3625 enum tree_code orig_code, repl_code;
807e902e 3626 widest_int cand_incr;
88ca9ea1
BS
3627
3628 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3629 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3630 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3631 cand_incr = cand_increment (c);
3632
3633 if (dump_file && (dump_flags & TDF_DETAILS))
3634 {
3635 fputs ("Replacing: ", dump_file);
ef6cb4c7 3636 print_gimple_stmt (dump_file, c->cand_stmt, 0);
88ca9ea1
BS
3637 stmt_to_print = c->cand_stmt;
3638 }
3639
3640 if (address_arithmetic_p)
3641 repl_code = POINTER_PLUS_EXPR;
3642 else
3643 repl_code = PLUS_EXPR;
3644
3645 /* If the increment has an initializer T_0, replace the candidate
3646 statement with an add of the basis name and the initializer. */
3647 if (incr_vec[i].initializer)
3648 {
3649 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3650 tree orig_type = TREE_TYPE (orig_rhs2);
3651
3652 if (types_compatible_p (orig_type, init_type))
3653 rhs2 = incr_vec[i].initializer;
3654 else
3655 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3656 incr_vec[i].initializer);
88ca9ea1 3657
27bcd47c 3658 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3659 {
3660 gcc_assert (repl_code == PLUS_EXPR);
3661 repl_code = MINUS_EXPR;
3662 }
3663
3664 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3665 orig_code, orig_rhs1, orig_rhs2,
3666 c);
3667 }
3668
3669 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3670 with a subtract of the stride from the basis name, a copy
3671 from the basis name, or an add of the stride to the basis
3672 name, respectively. It may be necessary to introduce a
3673 cast (or reuse an existing cast). */
807e902e 3674 else if (cand_incr == 1)
88ca9ea1
BS
3675 {
3676 tree stride_type = TREE_TYPE (c->stride);
3677 tree orig_type = TREE_TYPE (orig_rhs2);
3678
3679 if (types_compatible_p (orig_type, stride_type))
3680 rhs2 = c->stride;
3681 else
a7a7d10e 3682 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3683
3684 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3685 orig_code, orig_rhs1, orig_rhs2,
3686 c);
3687 }
3688
807e902e 3689 else if (cand_incr == -1)
88ca9ea1
BS
3690 {
3691 tree stride_type = TREE_TYPE (c->stride);
3692 tree orig_type = TREE_TYPE (orig_rhs2);
3693 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3694
3695 if (types_compatible_p (orig_type, stride_type))
3696 rhs2 = c->stride;
3697 else
a7a7d10e 3698 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3699
3700 if (orig_code != MINUS_EXPR
3701 || !operand_equal_p (basis_name, orig_rhs1, 0)
3702 || !operand_equal_p (rhs2, orig_rhs2, 0))
3703 {
3704 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
9fbbba71 3705 slsr_cand_t cc = c;
88ca9ea1
BS
3706 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3707 update_stmt (gsi_stmt (gsi));
bb0d2039 3708 c->cand_stmt = gsi_stmt (gsi);
9fbbba71
BS
3709 while (cc->next_interp)
3710 {
3711 cc = lookup_cand (cc->next_interp);
3712 cc->cand_stmt = gsi_stmt (gsi);
3713 }
88ca9ea1
BS
3714
3715 if (dump_file && (dump_flags & TDF_DETAILS))
3716 stmt_to_print = gsi_stmt (gsi);
3717 }
3718 else if (dump_file && (dump_flags & TDF_DETAILS))
3719 fputs (" (duplicate, not actually replacing)\n", dump_file);
3720 }
3721
807e902e 3722 else if (cand_incr == 0)
88ca9ea1
BS
3723 {
3724 tree lhs = gimple_assign_lhs (c->cand_stmt);
3725 tree lhs_type = TREE_TYPE (lhs);
3726 tree basis_type = TREE_TYPE (basis_name);
3727
3728 if (types_compatible_p (lhs_type, basis_type))
3729 {
538dd0b7 3730 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1 3731 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
9fbbba71 3732 slsr_cand_t cc = c;
88ca9ea1
BS
3733 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3734 gsi_replace (&gsi, copy_stmt, false);
0100cd3f 3735 c->cand_stmt = copy_stmt;
9fbbba71
BS
3736 while (cc->next_interp)
3737 {
3738 cc = lookup_cand (cc->next_interp);
3739 cc->cand_stmt = copy_stmt;
3740 }
88ca9ea1
BS
3741
3742 if (dump_file && (dump_flags & TDF_DETAILS))
3743 stmt_to_print = copy_stmt;
3744 }
3745 else
3746 {
3747 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3748 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
9fbbba71 3749 slsr_cand_t cc = c;
88ca9ea1
BS
3750 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3751 gsi_replace (&gsi, cast_stmt, false);
0100cd3f 3752 c->cand_stmt = cast_stmt;
9fbbba71
BS
3753 while (cc->next_interp)
3754 {
3755 cc = lookup_cand (cc->next_interp);
3756 cc->cand_stmt = cast_stmt;
3757 }
88ca9ea1
BS
3758
3759 if (dump_file && (dump_flags & TDF_DETAILS))
3760 stmt_to_print = cast_stmt;
3761 }
3762 }
3763 else
3764 gcc_unreachable ();
3765
3766 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3767 {
3768 fputs ("With: ", dump_file);
ef6cb4c7 3769 print_gimple_stmt (dump_file, stmt_to_print, 0);
88ca9ea1
BS
3770 fputs ("\n", dump_file);
3771 }
3772}
3773
3774/* For each candidate in the tree rooted at C, replace it with
3775 an increment if such has been shown to be profitable. */
3776
3777static void
3778replace_profitable_candidates (slsr_cand_t c)
3779{
3780 if (!cand_already_replaced (c))
3781 {
807e902e 3782 widest_int increment = cand_abs_increment (c);
88ca9ea1 3783 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3784 int i;
88ca9ea1
BS
3785
3786 i = incr_vec_index (increment);
3787
3788 /* Only process profitable increments. Nothing useful can be done
3789 to a cast or copy. */
7bf55a70
BS
3790 if (i >= 0
3791 && profitable_increment_p (i)
fbcdc43e 3792 && orig_code != SSA_NAME
d822570f 3793 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3794 {
9b92d12b
BS
3795 if (phi_dependent_cand_p (c))
3796 {
c34923c4 3797 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
9b92d12b
BS
3798
3799 if (all_phi_incrs_profitable (c, phi))
3800 {
3801 /* Look up the LHS SSA name from C's basis. This will be
3802 the RHS1 of the adds we will introduce to create new
3803 phi arguments. */
3804 slsr_cand_t basis = lookup_cand (c->basis);
3805 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3806
3807 /* Create a new phi statement that will represent C's true
3808 basis after the transformation is complete. */
3809 location_t loc = gimple_location (c->cand_stmt);
3810 tree name = create_phi_basis (c, phi, basis_name,
3811 loc, UNKNOWN_STRIDE);
3812
3813 /* Replace C with an add of the new basis phi and the
3814 increment. */
a7a7d10e 3815 replace_one_candidate (c, i, name);
9b92d12b
BS
3816 }
3817 }
3818 else
3819 {
3820 slsr_cand_t basis = lookup_cand (c->basis);
3821 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3822 replace_one_candidate (c, i, basis_name);
9b92d12b 3823 }
88ca9ea1
BS
3824 }
3825 }
3826
3827 if (c->sibling)
3828 replace_profitable_candidates (lookup_cand (c->sibling));
3829
3830 if (c->dependent)
3831 replace_profitable_candidates (lookup_cand (c->dependent));
3832}
3833\f
f9453c07
BS
3834/* Analyze costs of related candidates in the candidate vector,
3835 and make beneficial replacements. */
3836
3837static void
3838analyze_candidates_and_replace (void)
3839{
3840 unsigned i;
3841 slsr_cand_t c;
3842
3843 /* Each candidate that has a null basis and a non-null
3844 dependent is the root of a tree of related statements.
3845 Analyze each tree to determine a subset of those
3846 statements that can be replaced with maximum benefit. */
9771b263 3847 FOR_EACH_VEC_ELT (cand_vec, i, c)
f9453c07
BS
3848 {
3849 slsr_cand_t first_dep;
3850
3851 if (c->basis != 0 || c->dependent == 0)
3852 continue;
3853
3854 if (dump_file && (dump_flags & TDF_DETAILS))
3855 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3856 c->cand_num);
3857
3858 first_dep = lookup_cand (c->dependent);
3859
2749c8f6
BS
3860 /* If this is a chain of CAND_REFs, unconditionally replace
3861 each of them with a strength-reduced data reference. */
3862 if (c->kind == CAND_REF)
3863 replace_refs (c);
3864
9b92d12b
BS
3865 /* If the common stride of all related candidates is a known
3866 constant, each candidate without a phi-dependence can be
3867 profitably replaced. Each replaces a multiply by a single
3868 add, with the possibility that a feeding add also goes dead.
3869 A candidate with a phi-dependence is replaced only if the
3870 compensation code it requires is offset by the strength
3871 reduction savings. */
3872 else if (TREE_CODE (c->stride) == INTEGER_CST)
3873 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3874
88ca9ea1
BS
3875 /* When the stride is an SSA name, it may still be profitable
3876 to replace some or all of the dependent candidates, depending
3877 on whether the introduced increments can be reused, or are
3878 less expensive to calculate than the replaced statements. */
3879 else
3880 {
ef4bddc2 3881 machine_mode mode;
88ca9ea1
BS
3882 bool speed;
3883
3884 /* Determine whether we'll be generating pointer arithmetic
3885 when replacing candidates. */
3886 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3887 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3888
3889 /* If all candidates have already been replaced under other
3890 interpretations, nothing remains to be done. */
4b847da9 3891 if (!count_candidates (c))
88ca9ea1
BS
3892 continue;
3893
3894 /* Construct an array of increments for this candidate chain. */
4b847da9 3895 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3896 incr_vec_len = 0;
3897 record_increments (c);
3898
3899 /* Determine which increments are profitable to replace. */
3900 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3901 speed = optimize_cands_for_speed_p (c);
3902 analyze_increments (first_dep, mode, speed);
3903
3904 /* Insert initializers of the form T_0 = stride * increment
3905 for use in profitable replacements. */
3906 insert_initializers (first_dep);
3907 dump_incr_vec ();
3908
3909 /* Perform the replacements. */
3910 replace_profitable_candidates (first_dep);
3911 free (incr_vec);
3912 }
f9453c07 3913 }
b115e803
BS
3914
3915 /* For conditional candidates, we may have uncommitted insertions
3916 on edges to clean up. */
3917 gsi_commit_edge_inserts ();
f9453c07
BS
3918}
3919
17795822
TS
3920namespace {
3921
3922const pass_data pass_data_strength_reduction =
be55bfe6
TS
3923{
3924 GIMPLE_PASS, /* type */
3925 "slsr", /* name */
3926 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3927 TV_GIMPLE_SLSR, /* tv_id */
3928 ( PROP_cfg | PROP_ssa ), /* properties_required */
3929 0, /* properties_provided */
3930 0, /* properties_destroyed */
3931 0, /* todo_flags_start */
3bea341f 3932 0, /* todo_flags_finish */
be55bfe6
TS
3933};
3934
17795822 3935class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
3936{
3937public:
3938 pass_strength_reduction (gcc::context *ctxt)
3939 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3940 {}
3941
3942 /* opt_pass methods: */
3943 virtual bool gate (function *) { return flag_tree_slsr; }
3944 virtual unsigned int execute (function *);
3945
3946}; // class pass_strength_reduction
3947
3948unsigned
3949pass_strength_reduction::execute (function *fun)
f9453c07 3950{
f9453c07
BS
3951 /* Create the obstack where candidates will reside. */
3952 gcc_obstack_init (&cand_obstack);
3953
3954 /* Allocate the candidate vector. */
9771b263 3955 cand_vec.create (128);
f9453c07
BS
3956
3957 /* Allocate the mapping from statements to candidate indices. */
355fe088 3958 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
3959
3960 /* Create the obstack where candidate chains will reside. */
3961 gcc_obstack_init (&chain_obstack);
3962
3cfd4469 3963 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 3964 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 3965
96d75a2c 3966 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 3967 alt_base_map = new hash_map<tree, tree>;
96d75a2c 3968
f9453c07
BS
3969 /* Initialize the loop optimizer. We need to detect flow across
3970 back edges, and this gives us dominator information as well. */
3971 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3972
f9453c07
BS
3973 /* Walk the CFG in predominator order looking for strength reduction
3974 candidates. */
4d9192b5 3975 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 3976 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
3977
3978 if (dump_file && (dump_flags & TDF_DETAILS))
3979 {
3980 dump_cand_vec ();
3981 dump_cand_chains ();
3982 }
3983
b787e7a2 3984 delete alt_base_map;
96d75a2c
YZ
3985 free_affine_expand_cache (&name_expansions);
3986
f9453c07
BS
3987 /* Analyze costs and make appropriate replacements. */
3988 analyze_candidates_and_replace ();
3989
f9453c07 3990 loop_optimizer_finalize ();
c203e8a7
TS
3991 delete base_cand_map;
3992 base_cand_map = NULL;
f9453c07 3993 obstack_free (&chain_obstack, NULL);
b787e7a2 3994 delete stmt_cand_map;
9771b263 3995 cand_vec.release ();
f9453c07 3996 obstack_free (&cand_obstack, NULL);
f9453c07
BS
3997
3998 return 0;
3999}
4000
17795822
TS
4001} // anon namespace
4002
27a4cd48
DM
4003gimple_opt_pass *
4004make_pass_strength_reduction (gcc::context *ctxt)
4005{
4006 return new pass_strength_reduction (ctxt);
4007}