]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
Include new generated gcc/params.opt file.
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
a5544970 2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
ccdbfe93 55#include "params.h"
4484a35a 56#include "tree-ssa-address.h"
96d75a2c 57#include "tree-affine.h"
bef52a68 58#include "tree-eh.h"
9b2b7279 59#include "builtins.h"
f9453c07
BS
60\f
61/* Information about a strength reduction candidate. Each statement
62 in the candidate table represents an expression of one of the
63 following forms (the special case of CAND_REF will be described
64 later):
65
66 (CAND_MULT) S1: X = (B + i) * S
67 (CAND_ADD) S1: X = B + (i * S)
68
69 Here X and B are SSA names, i is an integer constant, and S is
70 either an SSA name or a constant. We call B the "base," i the
71 "index", and S the "stride."
72
73 Any statement S0 that dominates S1 and is of the form:
74
75 (CAND_MULT) S0: Y = (B + i') * S
76 (CAND_ADD) S0: Y = B + (i' * S)
77
78 is called a "basis" for S1. In both cases, S1 may be replaced by
79
80 S1': X = Y + (i - i') * S,
81
82 where (i - i') * S is folded to the extent possible.
83
84 All gimple statements are visited in dominator order, and each
85 statement that may contribute to one of the forms of S1 above is
86 given at least one entry in the candidate table. Such statements
87 include addition, pointer addition, subtraction, multiplication,
88 negation, copies, and nontrivial type casts. If a statement may
89 represent more than one expression of the forms of S1 above,
90 multiple "interpretations" are stored in the table and chained
91 together. Examples:
92
93 * An add of two SSA names may treat either operand as the base.
94 * A multiply of two SSA names, likewise.
95 * A copy or cast may be thought of as either a CAND_MULT with
96 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97
98 Candidate records are allocated from an obstack. They are addressed
99 both from a hash table keyed on S1, and from a vector of candidate
100 pointers arranged in predominator order.
101
102 Opportunity note
103 ----------------
104 Currently we don't recognize:
105
106 S0: Y = (S * i') - B
107 S1: X = (S * i) - B
108
109 as a strength reduction opportunity, even though this S1 would
110 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
111 comes up in practice.
112
113 Strength reduction in addressing
114 --------------------------------
115 There is another kind of candidate known as CAND_REF. A CAND_REF
116 describes a statement containing a memory reference having
117 complex addressing that might benefit from strength reduction.
118 Specifically, we are interested in references for which
119 get_inner_reference returns a base address, offset, and bitpos as
120 follows:
121
122 base: MEM_REF (T1, C1)
123 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
124 bitpos: C4 * BITS_PER_UNIT
125
126 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
127 arbitrary integer constants. Note that C2 may be zero, in which
128 case the offset will be MULT_EXPR (T2, C3).
129
130 When this pattern is recognized, the original memory reference
131 can be replaced with:
132
133 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
134 C1 + (C2 * C3) + C4)
135
136 which distributes the multiply to allow constant folding. When
137 two or more addressing expressions can be represented by MEM_REFs
138 of this form, differing only in the constants C1, C2, and C4,
139 making this substitution produces more efficient addressing during
140 the RTL phases. When there are not at least two expressions with
141 the same values of T1, T2, and C3, there is nothing to be gained
142 by the replacement.
143
144 Strength reduction of CAND_REFs uses the same infrastructure as
145 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
146 field, MULT_EXPR (T2, C3) in the stride (S) field, and
147 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
148 is thus another CAND_REF with the same B and S values. When at
149 least two CAND_REFs are chained together using the basis relation,
150 each of them is replaced as above, resulting in improved code
9b92d12b
BS
151 generation for addressing.
152
153 Conditional candidates
154 ======================
155
156 Conditional candidates are best illustrated with an example.
157 Consider the code sequence:
158
159 (1) x_0 = ...;
160 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
161 if (...)
162 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
163 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
164 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
165 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166
167 Here strength reduction is complicated by the uncertain value of x_2.
168 A legitimate transformation is:
169
170 (1) x_0 = ...;
171 (2) a_0 = x_0 * 5;
172 if (...)
173 {
174 (3) [x_1 = x_0 + 1;]
175 (3a) t_1 = a_0 + 5;
176 }
177 (4) [x_2 = PHI <x_0, x_1>;]
178 (4a) t_2 = PHI <a_0, t_1>;
179 (5) [x_3 = x_2 + 1;]
180 (6r) a_1 = t_2 + 5;
181
182 where the bracketed instructions may go dead.
183
184 To recognize this opportunity, we have to observe that statement (6)
185 has a "hidden basis" (2). The hidden basis is unlike a normal basis
186 in that the statement and the hidden basis have different base SSA
187 names (x_2 and x_0, respectively). The relationship is established
188 when a statement's base name (x_2) is defined by a phi statement (4),
189 each argument of which (x_0, x_1) has an identical "derived base name."
190 If the argument is defined by a candidate (as x_1 is by (3)) that is a
191 CAND_ADD having a stride of 1, the derived base name of the argument is
192 the base name of the candidate (x_0). Otherwise, the argument itself
193 is its derived base name (as is the case with argument x_0).
194
195 The hidden basis for statement (6) is the nearest dominating candidate
196 whose base name is the derived base name (x_0) of the feeding phi (4),
197 and whose stride is identical to that of the statement. We can then
198 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
199 allowing the final replacement of (6) by the strength-reduced (6r).
200
201 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
202 A CAND_PHI is not a candidate for replacement, but is maintained in the
203 candidate table to ease discovery of hidden bases. Any phi statement
204 whose arguments share a common derived base name is entered into the
205 table with the derived base name, an (arbitrary) index of zero, and a
206 stride of 1. A statement with a hidden basis can then be detected by
207 simply looking up its feeding phi definition in the candidate table,
208 extracting the derived base name, and searching for a basis in the
209 usual manner after substituting the derived base name.
210
211 Note that the transformation is only valid when the original phi and
212 the statements that define the phi's arguments are all at the same
213 position in the loop hierarchy. */
f9453c07
BS
214
215
216/* Index into the candidate vector, offset by 1. VECs are zero-based,
217 while cand_idx's are one-based, with zero indicating null. */
218typedef unsigned cand_idx;
219
220/* The kind of candidate. */
221enum cand_kind
222{
223 CAND_MULT,
2749c8f6 224 CAND_ADD,
9b92d12b
BS
225 CAND_REF,
226 CAND_PHI
f9453c07
BS
227};
228
6c1dae73 229class slsr_cand_d
f9453c07 230{
6c1dae73 231public:
f9453c07 232 /* The candidate statement S1. */
355fe088 233 gimple *cand_stmt;
f9453c07 234
3cfd4469
BS
235 /* The base expression B: often an SSA name, but not always. */
236 tree base_expr;
f9453c07
BS
237
238 /* The stride S. */
239 tree stride;
240
241 /* The index constant i. */
807e902e 242 widest_int index;
f9453c07 243
3cfd4469 244 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 245 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
246 A candidate can only be a basis for candidates of the same final type.
247 (For CAND_REFs, this is the type to be used for operand 1 of the
248 replacement MEM_REF.) */
f9453c07
BS
249 tree cand_type;
250
0b56e9ad
BS
251 /* The type to be used to interpret the stride field when the stride
252 is not a constant. Normally the same as the type of the recorded
253 stride, but when the stride has been cast we need to maintain that
254 knowledge in order to make legal substitutions without losing
255 precision. When the stride is a constant, this will be sizetype. */
256 tree stride_type;
257
f9453c07
BS
258 /* The kind of candidate (CAND_MULT, etc.). */
259 enum cand_kind kind;
260
261 /* Index of this candidate in the candidate vector. */
262 cand_idx cand_num;
263
264 /* Index of the next candidate record for the same statement.
265 A statement may be useful in more than one way (e.g., due to
266 commutativity). So we can have multiple "interpretations"
267 of a statement. */
268 cand_idx next_interp;
269
d71dc990
BS
270 /* Index of the first candidate record in a chain for the same
271 statement. */
272 cand_idx first_interp;
273
f9453c07
BS
274 /* Index of the basis statement S0, if any, in the candidate vector. */
275 cand_idx basis;
276
277 /* First candidate for which this candidate is a basis, if one exists. */
278 cand_idx dependent;
279
280 /* Next candidate having the same basis as this one. */
281 cand_idx sibling;
282
9b92d12b
BS
283 /* If this is a conditional candidate, the CAND_PHI candidate
284 that defines the base SSA name B. */
285 cand_idx def_phi;
f9453c07
BS
286
287 /* Savings that can be expected from eliminating dead code if this
288 candidate is replaced. */
289 int dead_savings;
65d3dce8
BS
290
291 /* For PHI candidates, use a visited flag to keep from processing the
292 same PHI twice from multiple paths. */
293 int visited;
294
295 /* We sometimes have to cache a phi basis with a phi candidate to
296 avoid processing it twice. Valid only if visited==1. */
297 tree cached_basis;
f9453c07
BS
298};
299
99b1c316
MS
300typedef class slsr_cand_d slsr_cand, *slsr_cand_t;
301typedef const class slsr_cand_d *const_slsr_cand_t;
f9453c07
BS
302
303/* Pointers to candidates are chained together as part of a mapping
3cfd4469 304 from base expressions to the candidates that use them. */
f9453c07
BS
305
306struct cand_chain_d
307{
3cfd4469
BS
308 /* Base expression for the chain of candidates: often, but not
309 always, an SSA name. */
310 tree base_expr;
f9453c07
BS
311
312 /* Pointer to a candidate. */
313 slsr_cand_t cand;
314
315 /* Chain pointer. */
316 struct cand_chain_d *next;
317
318};
319
320typedef struct cand_chain_d cand_chain, *cand_chain_t;
321typedef const struct cand_chain_d *const_cand_chain_t;
322
88ca9ea1
BS
323/* Information about a unique "increment" associated with candidates
324 having an SSA name for a stride. An increment is the difference
325 between the index of the candidate and the index of its basis,
326 i.e., (i - i') as discussed in the module commentary.
327
328 When we are not going to generate address arithmetic we treat
329 increments that differ only in sign as the same, allowing sharing
330 of the cost of initializers. The absolute value of the increment
331 is stored in the incr_info. */
332
6c1dae73 333class incr_info_d
88ca9ea1 334{
6c1dae73 335public:
88ca9ea1 336 /* The increment that relates a candidate to its basis. */
807e902e 337 widest_int incr;
88ca9ea1
BS
338
339 /* How many times the increment occurs in the candidate tree. */
340 unsigned count;
341
342 /* Cost of replacing candidates using this increment. Negative and
343 zero costs indicate replacement should be performed. */
344 int cost;
345
346 /* If this increment is profitable but is not -1, 0, or 1, it requires
347 an initializer T_0 = stride * incr to be found or introduced in the
348 nearest common dominator of all candidates. This field holds T_0
349 for subsequent use. */
350 tree initializer;
351
352 /* If the initializer was found to already exist, this is the block
353 where it was found. */
354 basic_block init_bb;
355};
356
99b1c316 357typedef class incr_info_d incr_info, *incr_info_t;
88ca9ea1 358
f9453c07
BS
359/* Candidates are maintained in a vector. If candidate X dominates
360 candidate Y, then X appears before Y in the vector; but the
361 converse does not necessarily hold. */
9771b263 362static vec<slsr_cand_t> cand_vec;
f9453c07
BS
363
364enum cost_consts
365{
366 COST_NEUTRAL = 0,
367 COST_INFINITE = 1000
368};
369
9b92d12b
BS
370enum stride_status
371{
372 UNKNOWN_STRIDE = 0,
373 KNOWN_STRIDE = 1
374};
375
376enum phi_adjust_status
377{
378 NOT_PHI_ADJUST = 0,
379 PHI_ADJUST = 1
380};
381
382enum count_phis_status
383{
384 DONT_COUNT_PHIS = 0,
385 COUNT_PHIS = 1
386};
65d3dce8
BS
387
388/* Constrain how many PHI nodes we will visit for a conditional
389 candidate (depth and breadth). */
390const int MAX_SPREAD = 16;
391
f9453c07 392/* Pointer map embodying a mapping from statements to candidates. */
355fe088 393static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
394
395/* Obstack for candidates. */
396static struct obstack cand_obstack;
397
f9453c07
BS
398/* Obstack for candidate chains. */
399static struct obstack chain_obstack;
88ca9ea1
BS
400
401/* An array INCR_VEC of incr_infos is used during analysis of related
402 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
403 its current length. MAX_INCR_VEC_LEN is used to avoid costly
404 pathological cases. */
88ca9ea1
BS
405static incr_info_t incr_vec;
406static unsigned incr_vec_len;
7bf55a70 407const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
408
409/* For a chain of candidates with unknown stride, indicates whether or not
410 we must generate pointer arithmetic when replacing statements. */
411static bool address_arithmetic_p;
9b92d12b
BS
412
413/* Forward function declarations. */
414static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 415static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 416static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
417\f
418/* Produce a pointer to the IDX'th candidate in the candidate vector. */
419
420static slsr_cand_t
421lookup_cand (cand_idx idx)
422{
98aaa1a6 423 return cand_vec[idx];
f9453c07
BS
424}
425
4a8fb1a1 426/* Helper for hashing a candidate chain header. */
2749c8f6 427
8d67ee55 428struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 429{
67f58944
TS
430 static inline hashval_t hash (const cand_chain *);
431 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 432};
2749c8f6 433
4a8fb1a1 434inline hashval_t
67f58944 435cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 436{
4a8fb1a1
LC
437 tree base_expr = p->base_expr;
438 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
439}
440
4a8fb1a1 441inline bool
67f58944 442cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 443{
3cfd4469 444 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 445}
4a8fb1a1
LC
446
447/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 448static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 449\f
96d75a2c 450/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 451static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 452/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 453static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
454
455/* Given BASE, use the tree affine combiniation facilities to
456 find the underlying tree expression for BASE, with any
8fde427f
YZ
457 immediate offset excluded.
458
459 N.B. we should eliminate this backtracking with better forward
460 analysis in a future release. */
96d75a2c
YZ
461
462static tree
463get_alternative_base (tree base)
464{
b787e7a2 465 tree *result = alt_base_map->get (base);
96d75a2c
YZ
466
467 if (result == NULL)
468 {
469 tree expr;
470 aff_tree aff;
471
472 tree_to_aff_combination_expand (base, TREE_TYPE (base),
473 &aff, &name_expansions);
807e902e 474 aff.offset = 0;
96d75a2c
YZ
475 expr = aff_combination_to_tree (&aff);
476
b787e7a2 477 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 478
b787e7a2 479 return expr == base ? NULL : expr;
96d75a2c
YZ
480 }
481
482 return *result;
483}
484
9b92d12b 485/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 486 return it if found; otherwise return NULL. */
f9453c07 487
9b92d12b 488static cand_idx
8b28cf47 489find_phi_def (tree base)
9b92d12b
BS
490{
491 slsr_cand_t c;
492
493 if (TREE_CODE (base) != SSA_NAME)
494 return 0;
29105868 495
9b92d12b
BS
496 c = base_cand_from_table (base);
497
e75210d6
BS
498 if (!c || c->kind != CAND_PHI
499 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
9b92d12b
BS
500 return 0;
501
502 return c->cand_num;
503}
504
df11b2ea
BS
505/* Determine whether all uses of NAME are directly or indirectly
506 used by STMT. That is, we want to know whether if STMT goes
507 dead, the definition of NAME also goes dead. */
508static bool
509uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
510{
511 gimple *use_stmt;
512 imm_use_iterator iter;
513 bool retval = true;
514
515 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
516 {
517 if (use_stmt == stmt || is_gimple_debug (use_stmt))
518 continue;
519
520 if (!is_gimple_assign (use_stmt)
521 || !gimple_get_lhs (use_stmt)
522 || !is_gimple_reg (gimple_get_lhs (use_stmt))
523 || recurse >= 10
524 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
525 recurse + 1))
526 {
527 retval = false;
528 BREAK_FROM_IMM_USE_STMT (iter);
529 }
530 }
531
532 return retval;
533}
534
9b92d12b 535/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
536 once for the candidate's base expr, and optionally again either for
537 the candidate's phi definition or for a CAND_REF's alternative base
538 expression. */
9b92d12b
BS
539
540static slsr_cand_t
541find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 542{
2749c8f6 543 cand_chain mapping_key;
f9453c07
BS
544 cand_chain_t chain;
545 slsr_cand_t basis = NULL;
546
ccdbfe93
BS
547 // Limit potential of N^2 behavior for long candidate chains.
548 int iters = 0;
549 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
550
9b92d12b 551 mapping_key.base_expr = base_expr;
c203e8a7 552 chain = base_cand_map->find (&mapping_key);
f9453c07 553
ccdbfe93 554 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
555 {
556 slsr_cand_t one_basis = chain->cand;
557
558 if (one_basis->kind != c->kind
69e1a1a3 559 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
560 || !operand_equal_p (one_basis->stride, c->stride, 0)
561 || !types_compatible_p (one_basis->cand_type, c->cand_type)
0b56e9ad 562 || !types_compatible_p (one_basis->stride_type, c->stride_type)
f9453c07
BS
563 || !dominated_by_p (CDI_DOMINATORS,
564 gimple_bb (c->cand_stmt),
565 gimple_bb (one_basis->cand_stmt)))
566 continue;
567
e75210d6
BS
568 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
569 if (lhs && TREE_CODE (lhs) == SSA_NAME
570 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
571 continue;
572
f9453c07
BS
573 if (!basis || basis->cand_num < one_basis->cand_num)
574 basis = one_basis;
575 }
576
9b92d12b
BS
577 return basis;
578}
579
580/* Use the base expr from candidate C to look for possible candidates
581 that can serve as a basis for C. Each potential basis must also
582 appear in a block that dominates the candidate statement and have
583 the same stride and type. If more than one possible basis exists,
584 the one with highest index in the vector is chosen; this will be
585 the most immediately dominating basis. */
586
587static int
588find_basis_for_candidate (slsr_cand_t c)
589{
590 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
591
592 /* If a candidate doesn't have a basis using its base expression,
593 it may have a basis hidden by one or more intervening phis. */
594 if (!basis && c->def_phi)
595 {
596 basic_block basis_bb, phi_bb;
597 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
598 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
599
600 if (basis)
601 {
602 /* A hidden basis must dominate the phi-definition of the
603 candidate's base name. */
604 phi_bb = gimple_bb (phi_cand->cand_stmt);
605 basis_bb = gimple_bb (basis->cand_stmt);
606
607 if (phi_bb == basis_bb
608 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
609 {
610 basis = NULL;
611 c->basis = 0;
612 }
613
614 /* If we found a hidden basis, estimate additional dead-code
615 savings if the phi and its feeding statements can be removed. */
df11b2ea
BS
616 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
617 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
9b92d12b
BS
618 c->dead_savings += phi_cand->dead_savings;
619 }
620 }
621
8fde427f 622 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
623 {
624 tree alt_base_expr = get_alternative_base (c->base_expr);
625 if (alt_base_expr)
626 basis = find_basis_for_base_expr (c, alt_base_expr);
627 }
628
f9453c07
BS
629 if (basis)
630 {
631 c->sibling = basis->dependent;
632 basis->dependent = c->cand_num;
633 return basis->cand_num;
634 }
635
636 return 0;
637}
638
96d75a2c
YZ
639/* Record a mapping from BASE to C, indicating that C may potentially serve
640 as a basis using that base expression. BASE may be the same as
641 C->BASE_EXPR; alternatively BASE can be a different tree that share the
642 underlining expression of C->BASE_EXPR. */
f9453c07
BS
643
644static void
96d75a2c 645record_potential_basis (slsr_cand_t c, tree base)
f9453c07 646{
2749c8f6 647 cand_chain_t node;
4a8fb1a1 648 cand_chain **slot;
f9453c07 649
96d75a2c
YZ
650 gcc_assert (base);
651
f9453c07 652 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 653 node->base_expr = base;
f9453c07
BS
654 node->cand = c;
655 node->next = NULL;
c203e8a7 656 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 657
2749c8f6 658 if (*slot)
f9453c07 659 {
2749c8f6 660 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
661 node->next = head->next;
662 head->next = node;
663 }
664 else
2749c8f6 665 *slot = node;
f9453c07
BS
666}
667
668/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
669 Attempt to find a basis for the candidate.
670
671 For CAND_REF, an alternative base may also be recorded and used
672 to find a basis. This helps cases where the expression hidden
673 behind BASE (which is usually an SSA_NAME) has immediate offset,
674 e.g.
675
676 a2[i][j] = 1;
677 a2[i + 20][j] = 2; */
f9453c07
BS
678
679static slsr_cand_t
355fe088 680alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 681 const widest_int &index, tree stride, tree ctype,
0b56e9ad 682 tree stype, unsigned savings)
f9453c07
BS
683{
684 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
685 sizeof (slsr_cand));
686 c->cand_stmt = gs;
3cfd4469 687 c->base_expr = base;
f9453c07
BS
688 c->stride = stride;
689 c->index = index;
690 c->cand_type = ctype;
0b56e9ad 691 c->stride_type = stype;
f9453c07 692 c->kind = kind;
98aaa1a6 693 c->cand_num = cand_vec.length ();
f9453c07 694 c->next_interp = 0;
d71dc990 695 c->first_interp = c->cand_num;
f9453c07
BS
696 c->dependent = 0;
697 c->sibling = 0;
8b28cf47 698 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07 699 c->dead_savings = savings;
65d3dce8
BS
700 c->visited = 0;
701 c->cached_basis = NULL_TREE;
f9453c07 702
9771b263 703 cand_vec.safe_push (c);
9b92d12b
BS
704
705 if (kind == CAND_PHI)
706 c->basis = 0;
707 else
708 c->basis = find_basis_for_candidate (c);
709
96d75a2c 710 record_potential_basis (c, base);
8fde427f 711 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
712 {
713 tree alt_base = get_alternative_base (base);
714 if (alt_base)
715 record_potential_basis (c, alt_base);
716 }
f9453c07
BS
717
718 return c;
719}
720
721/* Determine the target cost of statement GS when compiling according
722 to SPEED. */
723
724static int
355fe088 725stmt_cost (gimple *gs, bool speed)
f9453c07
BS
726{
727 tree lhs, rhs1, rhs2;
ef4bddc2 728 machine_mode lhs_mode;
f9453c07
BS
729
730 gcc_assert (is_gimple_assign (gs));
731 lhs = gimple_assign_lhs (gs);
732 rhs1 = gimple_assign_rhs1 (gs);
733 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
734
735 switch (gimple_assign_rhs_code (gs))
736 {
737 case MULT_EXPR:
738 rhs2 = gimple_assign_rhs2 (gs);
739
9541ffee 740 if (tree_fits_shwi_p (rhs2))
eb1ce453 741 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
742
743 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 744 return mul_cost (speed, lhs_mode);
f9453c07
BS
745
746 case PLUS_EXPR:
747 case POINTER_PLUS_EXPR:
748 case MINUS_EXPR:
5322d07e 749 return add_cost (speed, lhs_mode);
f9453c07
BS
750
751 case NEGATE_EXPR:
5322d07e 752 return neg_cost (speed, lhs_mode);
f9453c07 753
d822570f 754 CASE_CONVERT:
6dd8f4bb 755 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
756
757 /* Note that we don't assign costs to copies that in most cases
758 will go away. */
fbcdc43e
BS
759 case SSA_NAME:
760 return 0;
761
f9453c07
BS
762 default:
763 ;
764 }
765
766 gcc_unreachable ();
767 return 0;
768}
769
770/* Look up the defining statement for BASE_IN and return a pointer
771 to its candidate in the candidate table, if any; otherwise NULL.
772 Only CAND_ADD and CAND_MULT candidates are returned. */
773
774static slsr_cand_t
775base_cand_from_table (tree base_in)
776{
777 slsr_cand_t *result;
778
355fe088 779 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
780 if (!def)
781 return (slsr_cand_t) NULL;
782
b787e7a2 783 result = stmt_cand_map->get (def);
2749c8f6
BS
784
785 if (result && (*result)->kind != CAND_REF)
786 return *result;
f9453c07 787
2749c8f6 788 return (slsr_cand_t) NULL;
f9453c07
BS
789}
790
791/* Add an entry to the statement-to-candidate mapping. */
792
793static void
355fe088 794add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 795{
b787e7a2 796 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
797}
798\f
9b92d12b
BS
799/* Given PHI which contains a phi statement, determine whether it
800 satisfies all the requirements of a phi candidate. If so, create
801 a candidate. Note that a CAND_PHI never has a basis itself, but
802 is used to help find a basis for subsequent candidates. */
803
804static void
538dd0b7 805slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
806{
807 unsigned i;
808 tree arg0_base = NULL_TREE, base_type;
809 slsr_cand_t c;
99b1c316 810 class loop *cand_loop = gimple_bb (phi)->loop_father;
9b92d12b
BS
811 unsigned savings = 0;
812
813 /* A CAND_PHI requires each of its arguments to have the same
814 derived base name. (See the module header commentary for a
815 definition of derived base names.) Furthermore, all feeding
816 definitions must be in the same position in the loop hierarchy
817 as PHI. */
818
819 for (i = 0; i < gimple_phi_num_args (phi); i++)
820 {
821 slsr_cand_t arg_cand;
822 tree arg = gimple_phi_arg_def (phi, i);
823 tree derived_base_name = NULL_TREE;
355fe088 824 gimple *arg_stmt = NULL;
9b92d12b
BS
825 basic_block arg_bb = NULL;
826
827 if (TREE_CODE (arg) != SSA_NAME)
828 return;
829
830 arg_cand = base_cand_from_table (arg);
831
832 if (arg_cand)
833 {
834 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
835 {
836 if (!arg_cand->next_interp)
837 return;
838
839 arg_cand = lookup_cand (arg_cand->next_interp);
840 }
841
842 if (!integer_onep (arg_cand->stride))
843 return;
844
845 derived_base_name = arg_cand->base_expr;
846 arg_stmt = arg_cand->cand_stmt;
847 arg_bb = gimple_bb (arg_stmt);
848
849 /* Gather potential dead code savings if the phi statement
850 can be removed later on. */
df11b2ea 851 if (uses_consumed_by_stmt (arg, phi))
9b92d12b
BS
852 {
853 if (gimple_code (arg_stmt) == GIMPLE_PHI)
854 savings += arg_cand->dead_savings;
855 else
856 savings += stmt_cost (arg_stmt, speed);
857 }
858 }
6e281ce3 859 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
860 {
861 derived_base_name = arg;
6e281ce3 862 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
863 }
864
865 if (!arg_bb || arg_bb->loop_father != cand_loop)
866 return;
867
868 if (i == 0)
869 arg0_base = derived_base_name;
870 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
871 return;
872 }
873
874 /* Create the candidate. "alloc_cand_and_find_basis" is named
875 misleadingly for this case, as no basis will be sought for a
876 CAND_PHI. */
877 base_type = TREE_TYPE (arg0_base);
878
807e902e 879 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
0b56e9ad
BS
880 0, integer_one_node, base_type,
881 sizetype, savings);
9b92d12b
BS
882
883 /* Add the candidate to the statement-candidate mapping. */
884 add_cand_for_stmt (phi, c);
885}
886
c068654b
BC
887/* Given PBASE which is a pointer to tree, look up the defining
888 statement for it and check whether the candidate is in the
889 form of:
890
891 X = B + (1 * S), S is integer constant
892 X = B + (i * S), S is integer one
893
894 If so, set PBASE to the candidate's base_expr and return double
895 int (i * S).
896 Otherwise, just return double int zero. */
897
807e902e 898static widest_int
c068654b
BC
899backtrace_base_for_ref (tree *pbase)
900{
901 tree base_in = *pbase;
902 slsr_cand_t base_cand;
903
904 STRIP_NOPS (base_in);
0916f876
YZ
905
906 /* Strip off widening conversion(s) to handle cases where
907 e.g. 'B' is widened from an 'int' in order to calculate
908 a 64-bit address. */
909 if (CONVERT_EXPR_P (base_in)
0b56e9ad
BS
910 && legal_cast_p_1 (TREE_TYPE (base_in),
911 TREE_TYPE (TREE_OPERAND (base_in, 0))))
0916f876
YZ
912 base_in = get_unwidened (base_in, NULL_TREE);
913
c068654b 914 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 915 return 0;
c068654b
BC
916
917 base_cand = base_cand_from_table (base_in);
918
919 while (base_cand && base_cand->kind != CAND_PHI)
920 {
921 if (base_cand->kind == CAND_ADD
807e902e 922 && base_cand->index == 1
c068654b
BC
923 && TREE_CODE (base_cand->stride) == INTEGER_CST)
924 {
925 /* X = B + (1 * S), S is integer constant. */
926 *pbase = base_cand->base_expr;
807e902e 927 return wi::to_widest (base_cand->stride);
c068654b
BC
928 }
929 else if (base_cand->kind == CAND_ADD
930 && TREE_CODE (base_cand->stride) == INTEGER_CST
931 && integer_onep (base_cand->stride))
1d2151c6 932 {
c068654b
BC
933 /* X = B + (i * S), S is integer one. */
934 *pbase = base_cand->base_expr;
935 return base_cand->index;
936 }
937
98aaa1a6 938 base_cand = lookup_cand (base_cand->next_interp);
c068654b
BC
939 }
940
807e902e 941 return 0;
c068654b
BC
942}
943
2749c8f6
BS
944/* Look for the following pattern:
945
946 *PBASE: MEM_REF (T1, C1)
947
948 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
949 or
950 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
951 or
952 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
953
954 *PINDEX: C4 * BITS_PER_UNIT
955
956 If not present, leave the input values unchanged and return FALSE.
957 Otherwise, modify the input values as follows and return TRUE:
958
959 *PBASE: T1
960 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
961 *PINDEX: C1 + (C2 * C3) + C4
962
963 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
964 will be further restructured to:
965
966 *PBASE: T1
967 *POFFSET: MULT_EXPR (T2', C3)
968 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
969
970static bool
807e902e 971restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
972 tree *ptype)
973{
974 tree base = *pbase, offset = *poffset;
807e902e
KZ
975 widest_int index = *pindex;
976 tree mult_op0, t1, t2, type;
977 widest_int c1, c2, c3, c4, c5;
aca52e6f 978 offset_int mem_offset;
2749c8f6
BS
979
980 if (!base
981 || !offset
982 || TREE_CODE (base) != MEM_REF
aca52e6f 983 || !mem_ref_offset (base).is_constant (&mem_offset)
2749c8f6
BS
984 || TREE_CODE (offset) != MULT_EXPR
985 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 986 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
987 return false;
988
989 t1 = TREE_OPERAND (base, 0);
aca52e6f 990 c1 = widest_int::from (mem_offset, SIGNED);
2749c8f6
BS
991 type = TREE_TYPE (TREE_OPERAND (base, 1));
992
993 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 994 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
995
996 if (TREE_CODE (mult_op0) == PLUS_EXPR)
997
998 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
999 {
1000 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1001 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1002 }
1003 else
1004 return false;
1005
1006 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1007
1008 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1009 {
1010 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1011 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1012 }
1013 else
1014 return false;
1015
1016 else
1017 {
1018 t2 = mult_op0;
807e902e 1019 c2 = 0;
2749c8f6
BS
1020 }
1021
8de73453 1022 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 1023 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
1024
1025 *pbase = t1;
c068654b 1026 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 1027 wide_int_to_tree (sizetype, c3));
c068654b 1028 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
1029 *ptype = type;
1030
1031 return true;
1032}
1033
1034/* Given GS which contains a data reference, create a CAND_REF entry in
1035 the candidate table and attempt to find a basis. */
1036
1037static void
355fe088 1038slsr_process_ref (gimple *gs)
2749c8f6
BS
1039{
1040 tree ref_expr, base, offset, type;
f37fac2b 1041 poly_int64 bitsize, bitpos;
ef4bddc2 1042 machine_mode mode;
ee45a32d 1043 int unsignedp, reversep, volatilep;
2749c8f6
BS
1044 slsr_cand_t c;
1045
1046 if (gimple_vdef (gs))
1047 ref_expr = gimple_assign_lhs (gs);
1048 else
1049 ref_expr = gimple_assign_rhs1 (gs);
1050
1051 if (!handled_component_p (ref_expr)
1052 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1053 || (TREE_CODE (ref_expr) == COMPONENT_REF
1054 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1055 return;
1056
1057 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 1058 &unsignedp, &reversep, &volatilep);
f37fac2b
RS
1059 HOST_WIDE_INT cbitpos;
1060 if (reversep || !bitpos.is_constant (&cbitpos))
ee45a32d 1061 return;
f37fac2b 1062 widest_int index = cbitpos;
2749c8f6
BS
1063
1064 if (!restructure_reference (&base, &offset, &index, &type))
1065 return;
1066
1067 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
0b56e9ad 1068 type, sizetype, 0);
2749c8f6
BS
1069
1070 /* Add the candidate to the statement-candidate mapping. */
1071 add_cand_for_stmt (gs, c);
1072}
1073
f9453c07
BS
1074/* Create a candidate entry for a statement GS, where GS multiplies
1075 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1076 about the two SSA names into the new candidate. Return the new
1077 candidate. */
1078
1079static slsr_cand_t
355fe088 1080create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1081{
1082 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1083 tree stype = NULL_TREE;
807e902e 1084 widest_int index;
f9453c07
BS
1085 unsigned savings = 0;
1086 slsr_cand_t c;
1087 slsr_cand_t base_cand = base_cand_from_table (base_in);
1088
1089 /* Look at all interpretations of the base candidate, if necessary,
1090 to find information to propagate into this candidate. */
9b92d12b 1091 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1092 {
1093
9b92d12b 1094 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1095 {
1096 /* Y = (B + i') * 1
1097 X = Y * Z
1098 ================
1099 X = (B + i') * Z */
3cfd4469 1100 base = base_cand->base_expr;
f9453c07
BS
1101 index = base_cand->index;
1102 stride = stride_in;
1103 ctype = base_cand->cand_type;
0b56e9ad 1104 stype = TREE_TYPE (stride_in);
f9453c07
BS
1105 if (has_single_use (base_in))
1106 savings = (base_cand->dead_savings
1107 + stmt_cost (base_cand->cand_stmt, speed));
1108 }
1109 else if (base_cand->kind == CAND_ADD
1110 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1111 {
1112 /* Y = B + (i' * S), S constant
1113 X = Y * Z
1114 ============================
1115 X = B + ((i' * S) * Z) */
3cfd4469 1116 base = base_cand->base_expr;
807e902e 1117 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1118 stride = stride_in;
1119 ctype = base_cand->cand_type;
0b56e9ad 1120 stype = TREE_TYPE (stride_in);
f9453c07
BS
1121 if (has_single_use (base_in))
1122 savings = (base_cand->dead_savings
1123 + stmt_cost (base_cand->cand_stmt, speed));
1124 }
1125
98aaa1a6 1126 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1127 }
1128
1129 if (!base)
1130 {
1131 /* No interpretations had anything useful to propagate, so
1132 produce X = (Y + 0) * Z. */
1133 base = base_in;
807e902e 1134 index = 0;
f9453c07 1135 stride = stride_in;
b2ec94d4 1136 ctype = TREE_TYPE (base_in);
0b56e9ad 1137 stype = TREE_TYPE (stride_in);
f9453c07
BS
1138 }
1139
1140 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1141 ctype, stype, savings);
f9453c07
BS
1142 return c;
1143}
1144
1145/* Create a candidate entry for a statement GS, where GS multiplies
1146 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1147 information about BASE_IN into the new candidate. Return the new
1148 candidate. */
1149
1150static slsr_cand_t
355fe088 1151create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1152{
1153 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1154 widest_int index, temp;
f9453c07
BS
1155 unsigned savings = 0;
1156 slsr_cand_t c;
1157 slsr_cand_t base_cand = base_cand_from_table (base_in);
1158
1159 /* Look at all interpretations of the base candidate, if necessary,
1160 to find information to propagate into this candidate. */
9b92d12b 1161 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1162 {
1163 if (base_cand->kind == CAND_MULT
1164 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1165 {
1166 /* Y = (B + i') * S, S constant
1167 X = Y * c
1168 ============================
1169 X = (B + i') * (S * c) */
807e902e
KZ
1170 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1171 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1172 {
1173 base = base_cand->base_expr;
1174 index = base_cand->index;
807e902e 1175 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1176 ctype = base_cand->cand_type;
1177 if (has_single_use (base_in))
1178 savings = (base_cand->dead_savings
1179 + stmt_cost (base_cand->cand_stmt, speed));
1180 }
f9453c07 1181 }
9b92d12b 1182 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1183 {
1184 /* Y = B + (i' * 1)
1185 X = Y * c
1186 ===========================
1187 X = (B + i') * c */
3cfd4469 1188 base = base_cand->base_expr;
f9453c07
BS
1189 index = base_cand->index;
1190 stride = stride_in;
1191 ctype = base_cand->cand_type;
1192 if (has_single_use (base_in))
1193 savings = (base_cand->dead_savings
1194 + stmt_cost (base_cand->cand_stmt, speed));
1195 }
1196 else if (base_cand->kind == CAND_ADD
807e902e 1197 && base_cand->index == 1
f9453c07
BS
1198 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1199 {
1200 /* Y = B + (1 * S), S constant
1201 X = Y * c
1202 ===========================
1203 X = (B + S) * c */
3cfd4469 1204 base = base_cand->base_expr;
807e902e 1205 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1206 stride = stride_in;
1207 ctype = base_cand->cand_type;
1208 if (has_single_use (base_in))
1209 savings = (base_cand->dead_savings
1210 + stmt_cost (base_cand->cand_stmt, speed));
1211 }
1212
98aaa1a6 1213 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1214 }
1215
1216 if (!base)
1217 {
1218 /* No interpretations had anything useful to propagate, so
1219 produce X = (Y + 0) * c. */
1220 base = base_in;
807e902e 1221 index = 0;
f9453c07 1222 stride = stride_in;
b2ec94d4 1223 ctype = TREE_TYPE (base_in);
f9453c07
BS
1224 }
1225
1226 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1227 ctype, sizetype, savings);
f9453c07
BS
1228 return c;
1229}
1230
1231/* Given GS which is a multiply of scalar integers, make an appropriate
1232 entry in the candidate table. If this is a multiply of two SSA names,
1233 create two CAND_MULT interpretations and attempt to find a basis for
1234 each of them. Otherwise, create a single CAND_MULT and attempt to
1235 find a basis. */
1236
1237static void
355fe088 1238slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1239{
1240 slsr_cand_t c, c2;
1241
1242 /* If this is a multiply of an SSA name with itself, it is highly
1243 unlikely that we will get a strength reduction opportunity, so
1244 don't record it as a candidate. This simplifies the logic for
1245 finding a basis, so if this is removed that must be considered. */
1246 if (rhs1 == rhs2)
1247 return;
1248
1249 if (TREE_CODE (rhs2) == SSA_NAME)
1250 {
1251 /* Record an interpretation of this statement in the candidate table
3cfd4469 1252 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1253 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1254
1255 /* Add the first interpretation to the statement-candidate mapping. */
1256 add_cand_for_stmt (gs, c);
1257
1258 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1259 is the stride and RHS2 is the base expression. */
f9453c07
BS
1260 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1261 c->next_interp = c2->cand_num;
d71dc990 1262 c2->first_interp = c->cand_num;
f9453c07 1263 }
f942ef18 1264 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
f9453c07
BS
1265 {
1266 /* Record an interpretation for the multiply-immediate. */
1267 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1268
1269 /* Add the interpretation to the statement-candidate mapping. */
1270 add_cand_for_stmt (gs, c);
1271 }
1272}
1273
1274/* Create a candidate entry for a statement GS, where GS adds two
1275 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1276 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1277 information about the two SSA names into the new candidate.
1278 Return the new candidate. */
1279
1280static slsr_cand_t
355fe088 1281create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1282 bool subtract_p, bool speed)
1283{
0b56e9ad
BS
1284 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1285 tree stype = NULL_TREE;
807e902e 1286 widest_int index;
f9453c07
BS
1287 unsigned savings = 0;
1288 slsr_cand_t c;
1289 slsr_cand_t base_cand = base_cand_from_table (base_in);
1290 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1291
1292 /* The most useful transformation is a multiply-immediate feeding
1293 an add or subtract. Look for that first. */
9b92d12b 1294 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1295 {
1296 if (addend_cand->kind == CAND_MULT
807e902e 1297 && addend_cand->index == 0
f9453c07
BS
1298 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1299 {
1300 /* Z = (B + 0) * S, S constant
1301 X = Y +/- Z
1302 ===========================
1303 X = Y + ((+/-1 * S) * B) */
1304 base = base_in;
807e902e 1305 index = wi::to_widest (addend_cand->stride);
f9453c07 1306 if (subtract_p)
27bcd47c 1307 index = -index;
3cfd4469 1308 stride = addend_cand->base_expr;
b2ec94d4 1309 ctype = TREE_TYPE (base_in);
0b56e9ad 1310 stype = addend_cand->cand_type;
f9453c07
BS
1311 if (has_single_use (addend_in))
1312 savings = (addend_cand->dead_savings
1313 + stmt_cost (addend_cand->cand_stmt, speed));
1314 }
1315
98aaa1a6 1316 addend_cand = lookup_cand (addend_cand->next_interp);
f9453c07
BS
1317 }
1318
9b92d12b 1319 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1320 {
1321 if (base_cand->kind == CAND_ADD
807e902e 1322 && (base_cand->index == 0
f9453c07
BS
1323 || operand_equal_p (base_cand->stride,
1324 integer_zero_node, 0)))
1325 {
1326 /* Y = B + (i' * S), i' * S = 0
1327 X = Y +/- Z
1328 ============================
1329 X = B + (+/-1 * Z) */
3cfd4469 1330 base = base_cand->base_expr;
807e902e 1331 index = subtract_p ? -1 : 1;
f9453c07
BS
1332 stride = addend_in;
1333 ctype = base_cand->cand_type;
0b56e9ad
BS
1334 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1335 : TREE_TYPE (addend_in));
f9453c07
BS
1336 if (has_single_use (base_in))
1337 savings = (base_cand->dead_savings
1338 + stmt_cost (base_cand->cand_stmt, speed));
1339 }
1340 else if (subtract_p)
1341 {
1342 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1343
9b92d12b 1344 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1345 {
1346 if (subtrahend_cand->kind == CAND_MULT
807e902e 1347 && subtrahend_cand->index == 0
f9453c07
BS
1348 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1349 {
1350 /* Z = (B + 0) * S, S constant
1351 X = Y - Z
1352 ===========================
1353 Value: X = Y + ((-1 * S) * B) */
1354 base = base_in;
807e902e 1355 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1356 index = -index;
3cfd4469 1357 stride = subtrahend_cand->base_expr;
b2ec94d4 1358 ctype = TREE_TYPE (base_in);
0b56e9ad 1359 stype = subtrahend_cand->cand_type;
f9453c07
BS
1360 if (has_single_use (addend_in))
1361 savings = (subtrahend_cand->dead_savings
1362 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1363 }
98aaa1a6
BC
1364
1365 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
f9453c07
BS
1366 }
1367 }
1368
98aaa1a6 1369 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1370 }
1371
1372 if (!base)
1373 {
1374 /* No interpretations had anything useful to propagate, so
1375 produce X = Y + (1 * Z). */
1376 base = base_in;
807e902e 1377 index = subtract_p ? -1 : 1;
f9453c07 1378 stride = addend_in;
b2ec94d4 1379 ctype = TREE_TYPE (base_in);
0b56e9ad
BS
1380 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1381 : TREE_TYPE (addend_in));
f9453c07
BS
1382 }
1383
1384 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
0b56e9ad 1385 ctype, stype, savings);
f9453c07
BS
1386 return c;
1387}
1388
1389/* Create a candidate entry for a statement GS, where GS adds SSA
1390 name BASE_IN to constant INDEX_IN. Propagate any known information
1391 about BASE_IN into the new candidate. Return the new candidate. */
1392
1393static slsr_cand_t
355fe088 1394create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1395 bool speed)
f9453c07
BS
1396{
1397 enum cand_kind kind = CAND_ADD;
1398 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1399 tree stype = NULL_TREE;
807e902e 1400 widest_int index, multiple;
f9453c07
BS
1401 unsigned savings = 0;
1402 slsr_cand_t c;
1403 slsr_cand_t base_cand = base_cand_from_table (base_in);
1404
9b92d12b 1405 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1406 {
807e902e 1407 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1408
1409 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1410 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1411 sign, &multiple))
f9453c07
BS
1412 {
1413 /* Y = (B + i') * S, S constant, c = kS for some integer k
1414 X = Y + c
1415 ============================
1416 X = (B + (i'+ k)) * S
1417 OR
1418 Y = B + (i' * S), S constant, c = kS for some integer k
1419 X = Y + c
1420 ============================
1421 X = (B + (i'+ k)) * S */
1422 kind = base_cand->kind;
3cfd4469 1423 base = base_cand->base_expr;
27bcd47c 1424 index = base_cand->index + multiple;
f9453c07
BS
1425 stride = base_cand->stride;
1426 ctype = base_cand->cand_type;
0b56e9ad 1427 stype = base_cand->stride_type;
f9453c07
BS
1428 if (has_single_use (base_in))
1429 savings = (base_cand->dead_savings
1430 + stmt_cost (base_cand->cand_stmt, speed));
1431 }
1432
98aaa1a6 1433 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1434 }
1435
1436 if (!base)
1437 {
1438 /* No interpretations had anything useful to propagate, so
1439 produce X = Y + (c * 1). */
1440 kind = CAND_ADD;
1441 base = base_in;
1442 index = index_in;
1443 stride = integer_one_node;
b2ec94d4 1444 ctype = TREE_TYPE (base_in);
0b56e9ad 1445 stype = sizetype;
f9453c07
BS
1446 }
1447
1448 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
0b56e9ad 1449 ctype, stype, savings);
f9453c07
BS
1450 return c;
1451}
1452
1453/* Given GS which is an add or subtract of scalar integers or pointers,
1454 make at least one appropriate entry in the candidate table. */
1455
1456static void
355fe088 1457slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1458{
1459 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1460 slsr_cand_t c = NULL, c2;
1461
1462 if (TREE_CODE (rhs2) == SSA_NAME)
1463 {
3cfd4469 1464 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1465 and RHS2 is the stride. But it doesn't make sense for the
1466 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1467 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1468 {
1469 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1470
1471 /* Add the first interpretation to the statement-candidate
1472 mapping. */
1473 add_cand_for_stmt (gs, c);
1474 }
1475
1476 /* If the two RHS operands are identical, or this is a subtract,
1477 we're done. */
1478 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1479 return;
1480
1481 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1482 base expression and RHS1 is the stride, again provided that the
f9453c07 1483 stride is not a pointer. */
b2ec94d4 1484 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1485 {
1486 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1487 if (c)
d71dc990
BS
1488 {
1489 c->next_interp = c2->cand_num;
1490 c2->first_interp = c->cand_num;
1491 }
f9453c07
BS
1492 else
1493 add_cand_for_stmt (gs, c2);
1494 }
1495 }
36fd6408 1496 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07 1497 {
f9453c07 1498 /* Record an interpretation for the add-immediate. */
807e902e 1499 widest_int index = wi::to_widest (rhs2);
f9453c07 1500 if (subtract_p)
27bcd47c 1501 index = -index;
f9453c07
BS
1502
1503 c = create_add_imm_cand (gs, rhs1, index, speed);
1504
1505 /* Add the interpretation to the statement-candidate mapping. */
1506 add_cand_for_stmt (gs, c);
1507 }
1508}
1509
1510/* Given GS which is a negate of a scalar integer, make an appropriate
1511 entry in the candidate table. A negate is equivalent to a multiply
1512 by -1. */
1513
1514static void
355fe088 1515slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1516{
1517 /* Record a CAND_MULT interpretation for the multiply by -1. */
1518 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1519
1520 /* Add the interpretation to the statement-candidate mapping. */
1521 add_cand_for_stmt (gs, c);
1522}
1523
6b5eea61
BS
1524/* Help function for legal_cast_p, operating on two trees. Checks
1525 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1526 for more details. */
1527
1528static bool
0b56e9ad 1529legal_cast_p_1 (tree lhs_type, tree rhs_type)
6b5eea61 1530{
6b5eea61
BS
1531 unsigned lhs_size, rhs_size;
1532 bool lhs_wraps, rhs_wraps;
1533
6b5eea61
BS
1534 lhs_size = TYPE_PRECISION (lhs_type);
1535 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1536 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1537 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1538
1539 if (lhs_size < rhs_size
1540 || (rhs_wraps && !lhs_wraps)
1541 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1542 return false;
1543
1544 return true;
1545}
1546
f9453c07
BS
1547/* Return TRUE if GS is a statement that defines an SSA name from
1548 a conversion and is legal for us to combine with an add and multiply
1549 in the candidate table. For example, suppose we have:
1550
1551 A = B + i;
1552 C = (type) A;
1553 D = C * S;
1554
1555 Without the type-cast, we would create a CAND_MULT for D with base B,
1556 index i, and stride S. We want to record this candidate only if it
1557 is equivalent to apply the type cast following the multiply:
1558
1559 A = B + i;
1560 E = A * S;
1561 D = (type) E;
1562
1563 We will record the type with the candidate for D. This allows us
1564 to use a similar previous candidate as a basis. If we have earlier seen
1565
1566 A' = B + i';
1567 C' = (type) A';
1568 D' = C' * S;
1569
1570 we can replace D with
1571
1572 D = D' + (i - i') * S;
1573
1574 But if moving the type-cast would change semantics, we mustn't do this.
1575
1576 This is legitimate for casts from a non-wrapping integral type to
1577 any integral type of the same or larger size. It is not legitimate
1578 to convert a wrapping type to a non-wrapping type, or to a wrapping
1579 type of a different size. I.e., with a wrapping type, we must
1580 assume that the addition B + i could wrap, in which case performing
1581 the multiply before or after one of the "illegal" type casts will
1582 have different semantics. */
1583
1584static bool
355fe088 1585legal_cast_p (gimple *gs, tree rhs)
f9453c07 1586{
f9453c07
BS
1587 if (!is_gimple_assign (gs)
1588 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1589 return false;
1590
0b56e9ad 1591 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
f9453c07
BS
1592}
1593
1594/* Given GS which is a cast to a scalar integer type, determine whether
1595 the cast is legal for strength reduction. If so, make at least one
1596 appropriate entry in the candidate table. */
1597
1598static void
355fe088 1599slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1600{
1601 tree lhs, ctype;
ac2a97db 1602 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1603 unsigned savings = 0;
1604
1605 if (!legal_cast_p (gs, rhs1))
1606 return;
1607
1608 lhs = gimple_assign_lhs (gs);
1609 base_cand = base_cand_from_table (rhs1);
1610 ctype = TREE_TYPE (lhs);
1611
9b92d12b 1612 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1613 {
d71dc990
BS
1614 slsr_cand_t first_cand = NULL;
1615
f9453c07
BS
1616 while (base_cand)
1617 {
1618 /* Propagate all data from the base candidate except the type,
1619 which comes from the cast, and the base candidate's cast,
1620 which is no longer applicable. */
1621 if (has_single_use (rhs1))
1622 savings = (base_cand->dead_savings
1623 + stmt_cost (base_cand->cand_stmt, speed));
1624
1625 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1626 base_cand->base_expr,
f9453c07 1627 base_cand->index, base_cand->stride,
0b56e9ad
BS
1628 ctype, base_cand->stride_type,
1629 savings);
d71dc990
BS
1630 if (!first_cand)
1631 first_cand = c;
1632
1633 if (first_cand != c)
1634 c->first_interp = first_cand->cand_num;
1635
98aaa1a6 1636 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1637 }
1638 }
1639 else
1640 {
1641 /* If nothing is known about the RHS, create fresh CAND_ADD and
1642 CAND_MULT interpretations:
1643
1644 X = Y + (0 * 1)
1645 X = (Y + 0) * 1
1646
1647 The first of these is somewhat arbitrary, but the choice of
1648 1 for the stride simplifies the logic for propagating casts
1649 into their uses. */
0b56e9ad
BS
1650 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1651 integer_one_node, ctype, sizetype, 0);
1652 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1653 integer_one_node, ctype, sizetype, 0);
f9453c07 1654 c->next_interp = c2->cand_num;
d71dc990 1655 c2->first_interp = c->cand_num;
f9453c07
BS
1656 }
1657
1658 /* Add the first (or only) interpretation to the statement-candidate
1659 mapping. */
1660 add_cand_for_stmt (gs, c);
1661}
1662
1663/* Given GS which is a copy of a scalar integer type, make at least one
1664 appropriate entry in the candidate table.
1665
1666 This interface is included for completeness, but is unnecessary
1667 if this pass immediately follows a pass that performs copy
1668 propagation, such as DOM. */
1669
1670static void
355fe088 1671slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1672{
ac2a97db 1673 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1674 unsigned savings = 0;
1675
1676 base_cand = base_cand_from_table (rhs1);
1677
9b92d12b 1678 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1679 {
d71dc990
BS
1680 slsr_cand_t first_cand = NULL;
1681
f9453c07
BS
1682 while (base_cand)
1683 {
1684 /* Propagate all data from the base candidate. */
1685 if (has_single_use (rhs1))
1686 savings = (base_cand->dead_savings
1687 + stmt_cost (base_cand->cand_stmt, speed));
1688
1689 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1690 base_cand->base_expr,
f9453c07 1691 base_cand->index, base_cand->stride,
0b56e9ad
BS
1692 base_cand->cand_type,
1693 base_cand->stride_type, savings);
d71dc990
BS
1694 if (!first_cand)
1695 first_cand = c;
1696
1697 if (first_cand != c)
1698 c->first_interp = first_cand->cand_num;
1699
98aaa1a6 1700 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1701 }
1702 }
1703 else
1704 {
1705 /* If nothing is known about the RHS, create fresh CAND_ADD and
1706 CAND_MULT interpretations:
1707
1708 X = Y + (0 * 1)
1709 X = (Y + 0) * 1
1710
1711 The first of these is somewhat arbitrary, but the choice of
1712 1 for the stride simplifies the logic for propagating casts
1713 into their uses. */
0b56e9ad
BS
1714 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1715 integer_one_node, TREE_TYPE (rhs1),
1716 sizetype, 0);
1717 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1718 integer_one_node, TREE_TYPE (rhs1),
1719 sizetype, 0);
f9453c07 1720 c->next_interp = c2->cand_num;
d71dc990 1721 c2->first_interp = c->cand_num;
f9453c07
BS
1722 }
1723
1724 /* Add the first (or only) interpretation to the statement-candidate
1725 mapping. */
1726 add_cand_for_stmt (gs, c);
1727}
1728\f
4d9192b5
TS
1729class find_candidates_dom_walker : public dom_walker
1730{
1731public:
1732 find_candidates_dom_walker (cdi_direction direction)
1733 : dom_walker (direction) {}
3daacdcd 1734 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1735};
1736
f9453c07
BS
1737/* Find strength-reduction candidates in block BB. */
1738
3daacdcd 1739edge
4d9192b5 1740find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1741{
1742 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1743
538dd0b7
DM
1744 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1745 gsi_next (&gsi))
1746 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1747
538dd0b7
DM
1748 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1749 gsi_next (&gsi))
f9453c07 1750 {
355fe088 1751 gimple *gs = gsi_stmt (gsi);
f9453c07 1752
36bbc05d 1753 if (stmt_could_throw_p (cfun, gs))
bef52a68
JJ
1754 continue;
1755
2749c8f6
BS
1756 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1757 slsr_process_ref (gs);
1758
1759 else if (is_gimple_assign (gs)
1ffbb016
RB
1760 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1761 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1762 {
1763 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1764
1765 switch (gimple_assign_rhs_code (gs))
1766 {
1767 case MULT_EXPR:
1768 case PLUS_EXPR:
1769 rhs1 = gimple_assign_rhs1 (gs);
1770 rhs2 = gimple_assign_rhs2 (gs);
1771 /* Should never happen, but currently some buggy situations
1772 in earlier phases put constants in rhs1. */
1773 if (TREE_CODE (rhs1) != SSA_NAME)
1774 continue;
1775 break;
1776
1777 /* Possible future opportunity: rhs1 of a ptr+ can be
1778 an ADDR_EXPR. */
1779 case POINTER_PLUS_EXPR:
1780 case MINUS_EXPR:
1781 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1782 gcc_fallthrough ();
f9453c07 1783
d822570f 1784 CASE_CONVERT:
fbcdc43e 1785 case SSA_NAME:
f9453c07
BS
1786 case NEGATE_EXPR:
1787 rhs1 = gimple_assign_rhs1 (gs);
1788 if (TREE_CODE (rhs1) != SSA_NAME)
1789 continue;
1790 break;
1791
1792 default:
1793 ;
1794 }
1795
1796 switch (gimple_assign_rhs_code (gs))
1797 {
1798 case MULT_EXPR:
1799 slsr_process_mul (gs, rhs1, rhs2, speed);
1800 break;
1801
1802 case PLUS_EXPR:
1803 case POINTER_PLUS_EXPR:
1804 case MINUS_EXPR:
1805 slsr_process_add (gs, rhs1, rhs2, speed);
1806 break;
1807
1808 case NEGATE_EXPR:
1809 slsr_process_neg (gs, rhs1, speed);
1810 break;
1811
d822570f 1812 CASE_CONVERT:
f9453c07
BS
1813 slsr_process_cast (gs, rhs1, speed);
1814 break;
1815
fbcdc43e 1816 case SSA_NAME:
f9453c07
BS
1817 slsr_process_copy (gs, rhs1, speed);
1818 break;
1819
1820 default:
1821 ;
1822 }
1823 }
1824 }
3daacdcd 1825 return NULL;
f9453c07
BS
1826}
1827\f
1828/* Dump a candidate for debug. */
1829
1830static void
1831dump_candidate (slsr_cand_t c)
1832{
1833 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1834 gimple_bb (c->cand_stmt)->index);
ef6cb4c7 1835 print_gimple_stmt (dump_file, c->cand_stmt, 0);
f9453c07
BS
1836 switch (c->kind)
1837 {
1838 case CAND_MULT:
1839 fputs (" MULT : (", dump_file);
ef6cb4c7 1840 print_generic_expr (dump_file, c->base_expr);
f9453c07 1841 fputs (" + ", dump_file);
807e902e 1842 print_decs (c->index, dump_file);
f9453c07 1843 fputs (") * ", dump_file);
0b56e9ad
BS
1844 if (TREE_CODE (c->stride) != INTEGER_CST
1845 && c->stride_type != TREE_TYPE (c->stride))
1846 {
1847 fputs ("(", dump_file);
ef6cb4c7 1848 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1849 fputs (")", dump_file);
1850 }
ef6cb4c7 1851 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1852 fputs (" : ", dump_file);
1853 break;
1854 case CAND_ADD:
1855 fputs (" ADD : ", dump_file);
ef6cb4c7 1856 print_generic_expr (dump_file, c->base_expr);
f9453c07 1857 fputs (" + (", dump_file);
807e902e 1858 print_decs (c->index, dump_file);
f9453c07 1859 fputs (" * ", dump_file);
0b56e9ad
BS
1860 if (TREE_CODE (c->stride) != INTEGER_CST
1861 && c->stride_type != TREE_TYPE (c->stride))
1862 {
1863 fputs ("(", dump_file);
ef6cb4c7 1864 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1865 fputs (")", dump_file);
1866 }
ef6cb4c7 1867 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1868 fputs (") : ", dump_file);
1869 break;
2749c8f6
BS
1870 case CAND_REF:
1871 fputs (" REF : ", dump_file);
ef6cb4c7 1872 print_generic_expr (dump_file, c->base_expr);
2749c8f6 1873 fputs (" + (", dump_file);
ef6cb4c7 1874 print_generic_expr (dump_file, c->stride);
2749c8f6 1875 fputs (") + ", dump_file);
807e902e 1876 print_decs (c->index, dump_file);
2749c8f6
BS
1877 fputs (" : ", dump_file);
1878 break;
9b92d12b
BS
1879 case CAND_PHI:
1880 fputs (" PHI : ", dump_file);
ef6cb4c7 1881 print_generic_expr (dump_file, c->base_expr);
9b92d12b 1882 fputs (" + (unknown * ", dump_file);
ef6cb4c7 1883 print_generic_expr (dump_file, c->stride);
9b92d12b
BS
1884 fputs (") : ", dump_file);
1885 break;
f9453c07
BS
1886 default:
1887 gcc_unreachable ();
1888 }
ef6cb4c7 1889 print_generic_expr (dump_file, c->cand_type);
f9453c07
BS
1890 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1891 c->basis, c->dependent, c->sibling);
d71dc990
BS
1892 fprintf (dump_file,
1893 " next-interp: %d first-interp: %d dead-savings: %d\n",
1894 c->next_interp, c->first_interp, c->dead_savings);
f9453c07 1895 if (c->def_phi)
9b92d12b 1896 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1897 fputs ("\n", dump_file);
1898}
1899
1900/* Dump the candidate vector for debug. */
1901
1902static void
1903dump_cand_vec (void)
1904{
1905 unsigned i;
1906 slsr_cand_t c;
1907
1908 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1909
9771b263 1910 FOR_EACH_VEC_ELT (cand_vec, i, c)
98aaa1a6
BC
1911 if (c != NULL)
1912 dump_candidate (c);
f9453c07
BS
1913}
1914
2749c8f6 1915/* Callback used to dump the candidate chains hash table. */
f9453c07 1916
4a8fb1a1
LC
1917int
1918ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1919{
4a8fb1a1 1920 const_cand_chain_t chain = *slot;
2749c8f6 1921 cand_chain_t p;
f9453c07 1922
ef6cb4c7 1923 print_generic_expr (dump_file, chain->base_expr);
2749c8f6 1924 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1925
2749c8f6
BS
1926 for (p = chain->next; p; p = p->next)
1927 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1928
2749c8f6
BS
1929 fputs ("\n", dump_file);
1930 return 1;
1931}
f9453c07 1932
2749c8f6 1933/* Dump the candidate chains. */
f9453c07 1934
2749c8f6
BS
1935static void
1936dump_cand_chains (void)
1937{
1938 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1939 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1940 (NULL);
f9453c07
BS
1941 fputs ("\n", dump_file);
1942}
88ca9ea1
BS
1943
1944/* Dump the increment vector for debug. */
1945
1946static void
1947dump_incr_vec (void)
1948{
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1950 {
1951 unsigned i;
1952
1953 fprintf (dump_file, "\nIncrement vector:\n\n");
1954
1955 for (i = 0; i < incr_vec_len; i++)
1956 {
1957 fprintf (dump_file, "%3d increment: ", i);
807e902e 1958 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1959 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1960 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1961 fputs ("\n initializer: ", dump_file);
ef6cb4c7 1962 print_generic_expr (dump_file, incr_vec[i].initializer);
88ca9ea1
BS
1963 fputs ("\n\n", dump_file);
1964 }
1965 }
1966}
f9453c07 1967\f
2749c8f6
BS
1968/* Replace *EXPR in candidate C with an equivalent strength-reduced
1969 data reference. */
1970
1971static void
1972replace_ref (tree *expr, slsr_cand_t c)
1973{
78f6dd68
MJ
1974 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1975 unsigned HOST_WIDE_INT misalign;
1976 unsigned align;
1977
1978 /* Ensure the memory reference carries the minimum alignment
1979 requirement for the data type. See PR58041. */
1980 get_object_alignment_1 (*expr, &align, &misalign);
1981 if (misalign != 0)
146ec50f 1982 align = least_bit_hwi (misalign);
78f6dd68
MJ
1983 if (align < TYPE_ALIGN (acc_type))
1984 acc_type = build_aligned_type (acc_type, align);
1985
8907a722 1986 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
78f6dd68
MJ
1987 c->base_expr, c->stride);
1988 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1989 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1990
2749c8f6
BS
1991 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1992 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1993 TREE_OPERAND (mem_ref, 0)
1994 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1995 /*simple_p=*/true, NULL,
1996 /*before=*/true, GSI_SAME_STMT);
1997 copy_ref_info (mem_ref, *expr);
1998 *expr = mem_ref;
1999 update_stmt (c->cand_stmt);
2000}
2001
0f605e40
EB
2002/* Return true if CAND_REF candidate C is a valid memory reference. */
2003
2004static bool
2005valid_mem_ref_cand_p (slsr_cand_t c)
2006{
2007 if (TREE_CODE (TREE_OPERAND (c->stride, 1)) != INTEGER_CST)
2008 return false;
2009
2010 struct mem_address addr
2011 = { NULL_TREE, c->base_expr, TREE_OPERAND (c->stride, 0),
2012 TREE_OPERAND (c->stride, 1), wide_int_to_tree (sizetype, c->index) };
2013
2014 return
2015 valid_mem_ref_p (TYPE_MODE (c->cand_type), TYPE_ADDR_SPACE (c->cand_type),
2016 &addr);
2017}
2018
2749c8f6
BS
2019/* Replace CAND_REF candidate C, each sibling of candidate C, and each
2020 dependent of candidate C with an equivalent strength-reduced data
2021 reference. */
2022
2023static void
2024replace_refs (slsr_cand_t c)
2025{
0f605e40
EB
2026 /* Replacing a chain of only 2 candidates which are valid memory references
2027 is generally counter-productive because you cannot recoup the additional
2028 calculation added in front of them. */
2029 if (c->basis == 0
2030 && c->dependent
2031 && !lookup_cand (c->dependent)->dependent
2032 && valid_mem_ref_cand_p (c)
2033 && valid_mem_ref_cand_p (lookup_cand (c->dependent)))
2034 return;
2035
96d75a2c
YZ
2036 if (dump_file && (dump_flags & TDF_DETAILS))
2037 {
2038 fputs ("Replacing reference: ", dump_file);
ef6cb4c7 2039 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2040 }
2041
2749c8f6
BS
2042 if (gimple_vdef (c->cand_stmt))
2043 {
2044 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2045 replace_ref (lhs, c);
2046 }
2047 else
2048 {
2049 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2050 replace_ref (rhs, c);
2051 }
2052
96d75a2c
YZ
2053 if (dump_file && (dump_flags & TDF_DETAILS))
2054 {
2055 fputs ("With: ", dump_file);
ef6cb4c7 2056 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2057 fputs ("\n", dump_file);
2058 }
2059
2749c8f6
BS
2060 if (c->sibling)
2061 replace_refs (lookup_cand (c->sibling));
2062
2063 if (c->dependent)
2064 replace_refs (lookup_cand (c->dependent));
2065}
2066
9b92d12b
BS
2067/* Return TRUE if candidate C is dependent upon a PHI. */
2068
2069static bool
2070phi_dependent_cand_p (slsr_cand_t c)
2071{
2072 /* A candidate is not necessarily dependent upon a PHI just because
2073 it has a phi definition for its base name. It may have a basis
2074 that relies upon the same phi definition, in which case the PHI
2075 is irrelevant to this candidate. */
2076 return (c->def_phi
2077 && c->basis
2078 && lookup_cand (c->basis)->def_phi != c->def_phi);
2079}
2080
f9453c07
BS
2081/* Calculate the increment required for candidate C relative to
2082 its basis. */
2083
807e902e 2084static widest_int
f9453c07
BS
2085cand_increment (slsr_cand_t c)
2086{
2087 slsr_cand_t basis;
2088
2089 /* If the candidate doesn't have a basis, just return its own
2090 index. This is useful in record_increments to help us find
9b92d12b
BS
2091 an existing initializer. Also, if the candidate's basis is
2092 hidden by a phi, then its own index will be the increment
2093 from the newly introduced phi basis. */
2094 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
2095 return c->index;
2096
2097 basis = lookup_cand (c->basis);
3cfd4469 2098 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 2099 return c->index - basis->index;
f9453c07
BS
2100}
2101
88ca9ea1
BS
2102/* Calculate the increment required for candidate C relative to
2103 its basis. If we aren't going to generate pointer arithmetic
2104 for this candidate, return the absolute value of that increment
2105 instead. */
2106
807e902e 2107static inline widest_int
88ca9ea1
BS
2108cand_abs_increment (slsr_cand_t c)
2109{
807e902e 2110 widest_int increment = cand_increment (c);
88ca9ea1 2111
807e902e 2112 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2113 increment = -increment;
88ca9ea1
BS
2114
2115 return increment;
2116}
2117
f9453c07
BS
2118/* Return TRUE iff candidate C has already been replaced under
2119 another interpretation. */
2120
2121static inline bool
2122cand_already_replaced (slsr_cand_t c)
2123{
2124 return (gimple_bb (c->cand_stmt) == 0);
2125}
2126
9b92d12b
BS
2127/* Common logic used by replace_unconditional_candidate and
2128 replace_conditional_candidate. */
f9453c07
BS
2129
2130static void
807e902e 2131replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2132{
9b92d12b
BS
2133 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2134 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2135
8eb91869
BS
2136 /* It is not useful to replace casts, copies, negates, or adds of
2137 an SSA name and a constant. */
2138 if (cand_code == SSA_NAME
2139 || CONVERT_EXPR_CODE_P (cand_code)
2140 || cand_code == PLUS_EXPR
2141 || cand_code == POINTER_PLUS_EXPR
2142 || cand_code == MINUS_EXPR
2143 || cand_code == NEGATE_EXPR)
2144 return;
2145
2146 enum tree_code code = PLUS_EXPR;
2147 tree bump_tree;
2148 gimple *stmt_to_print = NULL;
2149
2150 if (wi::neg_p (bump))
9b92d12b 2151 {
8eb91869
BS
2152 code = MINUS_EXPR;
2153 bump = -bump;
2154 }
9b92d12b 2155
8eb91869
BS
2156 /* It is possible that the resulting bump doesn't fit in target_type.
2157 Abandon the replacement in this case. This does not affect
2158 siblings or dependents of C. */
2159 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2160 TYPE_SIGN (target_type)))
2161 return;
2162
2163 bump_tree = wide_int_to_tree (target_type, bump);
2164
2165 /* If the basis name and the candidate's LHS have incompatible types,
2166 introduce a cast. */
2167 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2168 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b 2169
8eb91869
BS
2170 if (dump_file && (dump_flags & TDF_DETAILS))
2171 {
2172 fputs ("Replacing: ", dump_file);
2173 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2174 }
2175
2176 if (bump == 0)
2177 {
2178 tree lhs = gimple_assign_lhs (c->cand_stmt);
2179 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2180 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2181 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2182 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2183 gsi_replace (&gsi, copy_stmt, false);
d71dc990 2184 while (cc)
8eb91869 2185 {
8eb91869 2186 cc->cand_stmt = copy_stmt;
98aaa1a6 2187 cc = lookup_cand (cc->next_interp);
8eb91869 2188 }
9b92d12b 2189 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869
BS
2190 stmt_to_print = copy_stmt;
2191 }
2192 else
2193 {
2194 tree rhs1, rhs2;
2195 if (cand_code != NEGATE_EXPR) {
2196 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2197 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2198 }
2199 if (cand_code != NEGATE_EXPR
2200 && ((operand_equal_p (rhs1, basis_name, 0)
2201 && operand_equal_p (rhs2, bump_tree, 0))
2202 || (operand_equal_p (rhs1, bump_tree, 0)
2203 && operand_equal_p (rhs2, basis_name, 0))))
9b92d12b 2204 {
8eb91869
BS
2205 if (dump_file && (dump_flags & TDF_DETAILS))
2206 {
2207 fputs ("(duplicate, not actually replacing)", dump_file);
2208 stmt_to_print = c->cand_stmt;
2209 }
9b92d12b 2210 }
8eb91869 2211 else
9b92d12b 2212 {
9b92d12b 2213 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2214 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2215 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2216 update_stmt (gsi_stmt (gsi));
d71dc990 2217 while (cc)
9fbbba71 2218 {
8eb91869 2219 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 2220 cc = lookup_cand (cc->next_interp);
9fbbba71 2221 }
9b92d12b 2222 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869 2223 stmt_to_print = gsi_stmt (gsi);
9b92d12b 2224 }
8eb91869 2225 }
9b92d12b 2226
8eb91869
BS
2227 if (dump_file && (dump_flags & TDF_DETAILS))
2228 {
2229 fputs ("With: ", dump_file);
2230 print_gimple_stmt (dump_file, stmt_to_print, 0);
2231 fputs ("\n", dump_file);
9b92d12b
BS
2232 }
2233}
2234
2235/* Replace candidate C with an add or subtract. Note that we only
2236 operate on CAND_MULTs with known strides, so we will never generate
2237 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2238 X = Y + ((i - i') * S), as described in the module commentary. The
2239 folded value ((i - i') * S) is referred to here as the "bump." */
2240
2241static void
2242replace_unconditional_candidate (slsr_cand_t c)
2243{
2244 slsr_cand_t basis;
9b92d12b
BS
2245
2246 if (cand_already_replaced (c))
f9453c07
BS
2247 return;
2248
2249 basis = lookup_cand (c->basis);
807e902e 2250 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2251
a7a7d10e 2252 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2253}
2254\f
7bf55a70
BS
2255/* Return the index in the increment vector of the given INCREMENT,
2256 or -1 if not found. The latter can occur if more than
2257 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2258
7bf55a70 2259static inline int
807e902e 2260incr_vec_index (const widest_int &increment)
9b92d12b
BS
2261{
2262 unsigned i;
2263
2264 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2265 ;
2266
7bf55a70
BS
2267 if (i < incr_vec_len)
2268 return i;
2269 else
2270 return -1;
9b92d12b
BS
2271}
2272
2273/* Create a new statement along edge E to add BASIS_NAME to the product
2274 of INCREMENT and the stride of candidate C. Create and return a new
2275 SSA name from *VAR to be used as the LHS of the new statement.
2276 KNOWN_STRIDE is true iff C's stride is a constant. */
2277
2278static tree
2279create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2280 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2281 bool known_stride)
2282{
9b92d12b 2283 tree lhs, basis_type;
0b56e9ad 2284 gassign *new_stmt, *cast_stmt = NULL;
9b92d12b
BS
2285
2286 /* If the add candidate along this incoming edge has the same
2287 index as C's hidden basis, the hidden basis represents this
2288 edge correctly. */
807e902e 2289 if (increment == 0)
9b92d12b
BS
2290 return basis_name;
2291
2292 basis_type = TREE_TYPE (basis_name);
2293 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2294
a929f266
BS
2295 /* Occasionally people convert integers to pointers without a
2296 cast, leading us into trouble if we aren't careful. */
2297 enum tree_code plus_code
2298 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2299
9b92d12b 2300 if (known_stride)
7139194b 2301 {
9b92d12b 2302 tree bump_tree;
a929f266 2303 enum tree_code code = plus_code;
807e902e 2304 widest_int bump = increment * wi::to_widest (c->stride);
a929f266 2305 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
9b92d12b
BS
2306 {
2307 code = MINUS_EXPR;
2308 bump = -bump;
2309 }
2310
a929f266
BS
2311 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2312 bump_tree = wide_int_to_tree (stride_type, bump);
0d0e4a03 2313 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2314 }
2315 else
2316 {
7bf55a70 2317 int i;
a929f266 2318 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
9b92d12b 2319 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2320 gcc_assert (i >= 0);
f9453c07 2321
9b92d12b
BS
2322 if (incr_vec[i].initializer)
2323 {
a929f266 2324 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
0d0e4a03
JJ
2325 new_stmt = gimple_build_assign (lhs, code, basis_name,
2326 incr_vec[i].initializer);
9b92d12b 2327 }
0b56e9ad
BS
2328 else {
2329 tree stride;
2330
2331 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2332 {
2333 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2334 "slsr");
2335 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2336 c->stride);
2337 stride = cast_stride;
2338 }
2339 else
2340 stride = c->stride;
2341
2342 if (increment == 1)
2343 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2344 else if (increment == -1)
2345 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2346 else
2347 gcc_unreachable ();
2348 }
f9453c07
BS
2349 }
2350
b115e803 2351 if (cast_stmt)
0b56e9ad 2352 {
b115e803
BS
2353 gimple_set_location (cast_stmt, loc);
2354 gsi_insert_on_edge (e, cast_stmt);
0b56e9ad 2355 }
9b92d12b
BS
2356
2357 gimple_set_location (new_stmt, loc);
b115e803 2358 gsi_insert_on_edge (e, new_stmt);
f9453c07
BS
2359
2360 if (dump_file && (dump_flags & TDF_DETAILS))
2361 {
0b56e9ad
BS
2362 if (cast_stmt)
2363 {
b115e803
BS
2364 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2365 e->src->index, e->dest->index);
ef6cb4c7 2366 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 2367 }
b115e803
BS
2368 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2369 e->dest->index);
ef6cb4c7 2370 print_gimple_stmt (dump_file, new_stmt, 0);
f9453c07
BS
2371 }
2372
9b92d12b
BS
2373 return lhs;
2374}
2375
65d3dce8
BS
2376/* Clear the visited field for a tree of PHI candidates. */
2377
2378static void
2379clear_visited (gphi *phi)
2380{
2381 unsigned i;
2382 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2383
2384 if (phi_cand->visited)
2385 {
2386 phi_cand->visited = 0;
2387
2388 for (i = 0; i < gimple_phi_num_args (phi); i++)
2389 {
2390 tree arg = gimple_phi_arg_def (phi, i);
2391 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2392 if (gimple_code (arg_def) == GIMPLE_PHI)
2393 clear_visited (as_a <gphi *> (arg_def));
2394 }
2395 }
2396}
2397
2398/* Recursive helper function for create_phi_basis. */
9b92d12b
BS
2399
2400static tree
65d3dce8
BS
2401create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2402 location_t loc, bool known_stride)
9b92d12b
BS
2403{
2404 int i;
2405 tree name, phi_arg;
538dd0b7 2406 gphi *phi;
9b92d12b
BS
2407 slsr_cand_t basis = lookup_cand (c->basis);
2408 int nargs = gimple_phi_num_args (from_phi);
2409 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2410 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2411 auto_vec<tree> phi_args (nargs);
9b92d12b 2412
65d3dce8
BS
2413 if (phi_cand->visited)
2414 return phi_cand->cached_basis;
2415 phi_cand->visited = 1;
2416
9b92d12b
BS
2417 /* Process each argument of the existing phi that represents
2418 conditionally-executed add candidates. */
2419 for (i = 0; i < nargs; i++)
f9453c07 2420 {
9b92d12b
BS
2421 edge e = (*phi_bb->preds)[i];
2422 tree arg = gimple_phi_arg_def (from_phi, i);
2423 tree feeding_def;
2424
2425 /* If the phi argument is the base name of the CAND_PHI, then
2426 this incoming arc should use the hidden basis. */
2427 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2428 if (basis->index == 0)
9b92d12b
BS
2429 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2430 else
2431 {
807e902e 2432 widest_int incr = -basis->index;
9b92d12b
BS
2433 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2434 e, loc, known_stride);
2435 }
2436 else
f9453c07 2437 {
355fe088 2438 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2439
2440 /* If there is another phi along this incoming edge, we must
2441 process it in the same fashion to ensure that all basis
2442 adjustments are made along its incoming edges. */
2443 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2444 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2445 loc, known_stride);
9b92d12b 2446 else
f9453c07 2447 {
9b92d12b 2448 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2449 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2450 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2451 e, loc, known_stride);
f9453c07
BS
2452 }
2453 }
9b92d12b
BS
2454
2455 /* Because of recursion, we need to save the arguments in a vector
2456 so we can create the PHI statement all at once. Otherwise the
2457 storage for the half-created PHI can be reclaimed. */
2458 phi_args.safe_push (feeding_def);
f9453c07 2459 }
9b92d12b
BS
2460
2461 /* Create the new phi basis. */
2462 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2463 phi = create_phi_node (name, phi_bb);
2464 SSA_NAME_DEF_STMT (name) = phi;
2465
2466 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2467 {
2468 edge e = (*phi_bb->preds)[i];
2469 add_phi_arg (phi, phi_arg, e, loc);
2470 }
2471
2472 update_stmt (phi);
2473
f9453c07
BS
2474 if (dump_file && (dump_flags & TDF_DETAILS))
2475 {
9b92d12b 2476 fputs ("Introducing new phi basis: ", dump_file);
ef6cb4c7 2477 print_gimple_stmt (dump_file, phi, 0);
f9453c07 2478 }
9b92d12b 2479
65d3dce8 2480 phi_cand->cached_basis = name;
9b92d12b 2481 return name;
f9453c07
BS
2482}
2483
65d3dce8
BS
2484/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2485 is hidden by the phi node FROM_PHI, create a new phi node in the same
2486 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2487 with its phi arguments representing conditional adjustments to the
2488 hidden basis along conditional incoming paths. Those adjustments are
2489 made by creating add statements (and sometimes recursively creating
2490 phis) along those incoming paths. LOC is the location to attach to
2491 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2492 constant. */
2493
2494static tree
2495create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2496 location_t loc, bool known_stride)
2497{
2498 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2499 known_stride);
2500 gcc_assert (retval);
2501 clear_visited (as_a <gphi *> (from_phi));
2502 return retval;
2503}
2504
9b92d12b
BS
2505/* Given a candidate C whose basis is hidden by at least one intervening
2506 phi, introduce a matching number of new phis to represent its basis
2507 adjusted by conditional increments along possible incoming paths. Then
2508 replace C as though it were an unconditional candidate, using the new
2509 basis. */
f9453c07
BS
2510
2511static void
9b92d12b 2512replace_conditional_candidate (slsr_cand_t c)
f9453c07 2513{
a7a7d10e 2514 tree basis_name, name;
9b92d12b
BS
2515 slsr_cand_t basis;
2516 location_t loc;
f9453c07 2517
9b92d12b
BS
2518 /* Look up the LHS SSA name from C's basis. This will be the
2519 RHS1 of the adds we will introduce to create new phi arguments. */
2520 basis = lookup_cand (c->basis);
2521 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2522
9b92d12b
BS
2523 /* Create a new phi statement which will represent C's true basis
2524 after the transformation is complete. */
2525 loc = gimple_location (c->cand_stmt);
2526 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2527 basis_name, loc, KNOWN_STRIDE);
65d3dce8 2528
9b92d12b 2529 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2530 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2531
a7a7d10e 2532 replace_mult_candidate (c, name, bump);
f9453c07 2533}
88ca9ea1 2534
65d3dce8
BS
2535/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2536 how many PHI nodes we have visited at this point in the tree walk. */
9b92d12b
BS
2537
2538static int
65d3dce8 2539phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
88ca9ea1
BS
2540{
2541 unsigned i;
9b92d12b 2542 int cost = 0;
5b3d5f76 2543 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2544
65d3dce8
BS
2545 if (phi_cand->visited)
2546 return 0;
2547
2548 phi_cand->visited = 1;
2549 (*spread)++;
2550
0100cd3f
BS
2551 /* If we work our way back to a phi that isn't dominated by the hidden
2552 basis, this isn't a candidate for replacement. Indicate this by
2553 returning an unreasonably high cost. It's not easy to detect
2554 these situations when determining the basis, so we defer the
2555 decision until now. */
2556 basic_block phi_bb = gimple_bb (phi);
2557 slsr_cand_t basis = lookup_cand (c->basis);
2558 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2559
2560 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2561 return COST_INFINITE;
2562
9b92d12b
BS
2563 for (i = 0; i < gimple_phi_num_args (phi); i++)
2564 {
2565 tree arg = gimple_phi_arg_def (phi, i);
2566
2567 if (arg != phi_cand->base_expr)
2568 {
355fe088 2569 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2570
2571 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2572 {
2573 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2574
2575 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2576 return COST_INFINITE;
2577 }
9b92d12b
BS
2578 else
2579 {
2580 slsr_cand_t arg_cand = base_cand_from_table (arg);
2581
2582 if (arg_cand->index != c->index)
2583 cost += one_add_cost;
2584 }
2585 }
2586 }
2587
2588 return cost;
88ca9ea1
BS
2589}
2590
65d3dce8
BS
2591/* Compute the expected costs of inserting basis adjustments for
2592 candidate C with phi-definition PHI. The cost of inserting
2593 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2594 which are themselves phi results, recursively calculate costs
2595 for those phis as well. */
2596
2597static int
2598phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2599{
2600 int spread = 0;
2601 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2602 clear_visited (as_a <gphi *> (phi));
2603 return retval;
2604}
9b92d12b
BS
2605/* For candidate C, each sibling of candidate C, and each dependent of
2606 candidate C, determine whether the candidate is dependent upon a
2607 phi that hides its basis. If not, replace the candidate unconditionally.
2608 Otherwise, determine whether the cost of introducing compensation code
2609 for the candidate is offset by the gains from strength reduction. If
2610 so, replace the candidate and introduce the compensation code. */
2611
2612static void
2613replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2614{
2615 if (phi_dependent_cand_p (c))
2616 {
df11b2ea
BS
2617 /* A multiply candidate with a stride of 1 is just an artifice
2618 of a copy or cast; there is no value in replacing it. */
2619 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
9b92d12b
BS
2620 {
2621 /* A candidate dependent upon a phi will replace a multiply by
2622 a constant with an add, and will insert at most one add for
2623 each phi argument. Add these costs with the potential dead-code
2624 savings to determine profitability. */
2625 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2626 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2627 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2628 tree phi_result = gimple_phi_result (phi);
2629 int one_add_cost = add_cost (speed,
2630 TYPE_MODE (TREE_TYPE (phi_result)));
2631 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2632 int cost = add_costs - mult_savings - c->dead_savings;
2633
2634 if (dump_file && (dump_flags & TDF_DETAILS))
2635 {
2636 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2637 fprintf (dump_file, " add_costs = %d\n", add_costs);
2638 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2639 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2640 fprintf (dump_file, " cost = %d\n", cost);
2641 if (cost <= COST_NEUTRAL)
2642 fputs (" Replacing...\n", dump_file);
2643 else
2644 fputs (" Not replaced.\n", dump_file);
2645 }
2646
2647 if (cost <= COST_NEUTRAL)
2648 replace_conditional_candidate (c);
2649 }
2650 }
2651 else
2652 replace_unconditional_candidate (c);
2653
2654 if (c->sibling)
2655 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2656
2657 if (c->dependent)
2658 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2659}
2660\f
88ca9ea1
BS
2661/* Count the number of candidates in the tree rooted at C that have
2662 not already been replaced under other interpretations. */
2663
1dc3d6e9 2664static int
88ca9ea1
BS
2665count_candidates (slsr_cand_t c)
2666{
2667 unsigned count = cand_already_replaced (c) ? 0 : 1;
2668
2669 if (c->sibling)
2670 count += count_candidates (lookup_cand (c->sibling));
2671
2672 if (c->dependent)
2673 count += count_candidates (lookup_cand (c->dependent));
2674
2675 return count;
2676}
2677
2678/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2679 INCREMENT is associated with candidate C. If INCREMENT is to be
2680 conditionally executed as part of a conditional candidate replacement,
2681 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2682 T_0 = stride * I is provided by a candidate that dominates all
2683 candidates with the same increment, also record T_0 for subsequent use. */
2684
2685static void
807e902e 2686record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2687{
2688 bool found = false;
2689 unsigned i;
2690
2691 /* Treat increments that differ only in sign as identical so as to
2692 share initializers, unless we are generating pointer arithmetic. */
807e902e 2693 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2694 increment = -increment;
88ca9ea1
BS
2695
2696 for (i = 0; i < incr_vec_len; i++)
2697 {
27bcd47c 2698 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2699 {
2700 incr_vec[i].count++;
2701 found = true;
2702
2703 /* If we previously recorded an initializer that doesn't
2704 dominate this candidate, it's not going to be useful to
2705 us after all. */
2706 if (incr_vec[i].initializer
2707 && !dominated_by_p (CDI_DOMINATORS,
2708 gimple_bb (c->cand_stmt),
2709 incr_vec[i].init_bb))
2710 {
2711 incr_vec[i].initializer = NULL_TREE;
2712 incr_vec[i].init_bb = NULL;
2713 }
2714
2715 break;
2716 }
2717 }
2718
7bf55a70 2719 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2720 {
2721 /* The first time we see an increment, create the entry for it.
2722 If this is the root candidate which doesn't have a basis, set
2723 the count to zero. We're only processing it so it can possibly
2724 provide an initializer for other candidates. */
2725 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2726 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2727 incr_vec[incr_vec_len].cost = COST_INFINITE;
2728
2729 /* Optimistically record the first occurrence of this increment
2730 as providing an initializer (if it does); we will revise this
2731 opinion later if it doesn't dominate all other occurrences.
a929f266 2732 Exception: increments of 0, 1 never need initializers;
806696eb 2733 and phi adjustments don't ever provide initializers. */
88ca9ea1 2734 if (c->kind == CAND_ADD
9b92d12b 2735 && !is_phi_adjust
27bcd47c 2736 && c->index == increment
a929f266 2737 && (increment > 1 || increment < 0)
7b8265ba
JJ
2738 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2739 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2740 {
7b8265ba 2741 tree t0 = NULL_TREE;
88ca9ea1
BS
2742 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2743 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2744 if (operand_equal_p (rhs1, c->base_expr, 0))
2745 t0 = rhs2;
7b8265ba 2746 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2747 t0 = rhs1;
7b8265ba
JJ
2748 if (t0
2749 && SSA_NAME_DEF_STMT (t0)
2750 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2751 {
2752 incr_vec[incr_vec_len].initializer = t0;
2753 incr_vec[incr_vec_len++].init_bb
2754 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2755 }
2756 else
2757 {
2758 incr_vec[incr_vec_len].initializer = NULL_TREE;
2759 incr_vec[incr_vec_len++].init_bb = NULL;
2760 }
2761 }
2762 else
2763 {
2764 incr_vec[incr_vec_len].initializer = NULL_TREE;
2765 incr_vec[incr_vec_len++].init_bb = NULL;
2766 }
2767 }
2768}
2769
65d3dce8 2770/* Recursive helper function for record_phi_increments. */
9b92d12b
BS
2771
2772static void
65d3dce8 2773record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2774{
2775 unsigned i;
5b3d5f76 2776 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2777
65d3dce8
BS
2778 if (phi_cand->visited)
2779 return;
2780 phi_cand->visited = 1;
2781
9b92d12b
BS
2782 for (i = 0; i < gimple_phi_num_args (phi); i++)
2783 {
2784 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2785 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2786
3146c60f
WS
2787 if (gimple_code (arg_def) == GIMPLE_PHI)
2788 record_phi_increments_1 (basis, arg_def);
2789 else
9b92d12b 2790 {
3146c60f 2791 widest_int diff;
9b92d12b 2792
3146c60f
WS
2793 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2794 {
2795 diff = -basis->index;
2796 record_increment (phi_cand, diff, PHI_ADJUST);
2797 }
9b92d12b
BS
2798 else
2799 {
2800 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 2801 diff = arg_cand->index - basis->index;
9b92d12b
BS
2802 record_increment (arg_cand, diff, PHI_ADJUST);
2803 }
2804 }
2805 }
2806}
2807
65d3dce8
BS
2808/* Given phi statement PHI that hides a candidate from its BASIS, find
2809 the increments along each incoming arc (recursively handling additional
2810 phis that may be present) and record them. These increments are the
2811 difference in index between the index-adjusting statements and the
2812 index of the basis. */
2813
2814static void
2815record_phi_increments (slsr_cand_t basis, gimple *phi)
2816{
2817 record_phi_increments_1 (basis, phi);
2818 clear_visited (as_a <gphi *> (phi));
2819}
2820
88ca9ea1
BS
2821/* Determine how many times each unique increment occurs in the set
2822 of candidates rooted at C's parent, recording the data in the
2823 increment vector. For each unique increment I, if an initializer
2824 T_0 = stride * I is provided by a candidate that dominates all
2825 candidates with the same increment, also record T_0 for subsequent
2826 use. */
2827
2828static void
2829record_increments (slsr_cand_t c)
2830{
2831 if (!cand_already_replaced (c))
9b92d12b
BS
2832 {
2833 if (!phi_dependent_cand_p (c))
2834 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2835 else
2836 {
2837 /* A candidate with a basis hidden by a phi will have one
2838 increment for its relationship to the index represented by
2839 the phi, and potentially additional increments along each
2840 incoming edge. For the root of the dependency tree (which
2841 has no basis), process just the initial index in case it has
2842 an initializer that can be used by subsequent candidates. */
2843 record_increment (c, c->index, NOT_PHI_ADJUST);
2844
2845 if (c->basis)
2846 record_phi_increments (lookup_cand (c->basis),
2847 lookup_cand (c->def_phi)->cand_stmt);
2848 }
2849 }
88ca9ea1
BS
2850
2851 if (c->sibling)
2852 record_increments (lookup_cand (c->sibling));
2853
2854 if (c->dependent)
2855 record_increments (lookup_cand (c->dependent));
2856}
2857
65d3dce8 2858/* Recursive helper function for phi_incr_cost. */
9b92d12b
BS
2859
2860static int
65d3dce8
BS
2861phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2862 int *savings)
9b92d12b
BS
2863{
2864 unsigned i;
2865 int cost = 0;
2866 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2867 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2868
65d3dce8
BS
2869 if (phi_cand->visited)
2870 return 0;
2871 phi_cand->visited = 1;
2872
9b92d12b
BS
2873 for (i = 0; i < gimple_phi_num_args (phi); i++)
2874 {
2875 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2876 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2877
3146c60f 2878 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 2879 {
3146c60f
WS
2880 int feeding_savings = 0;
2881 tree feeding_var = gimple_phi_result (arg_def);
2882 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2883 if (uses_consumed_by_stmt (feeding_var, phi))
2884 *savings += feeding_savings;
2885 }
2886 else
2887 {
2888 widest_int diff;
2889 slsr_cand_t arg_cand;
2890
2891 /* When the PHI argument is just a pass-through to the base
2892 expression of the hidden basis, the difference is zero minus
2893 the index of the basis. There is no potential savings by
2894 eliminating a statement in this case. */
2895 if (operand_equal_p (arg, phi_cand->base_expr, 0))
9b92d12b 2896 {
3146c60f
WS
2897 arg_cand = (slsr_cand_t)NULL;
2898 diff = -basis->index;
9b92d12b
BS
2899 }
2900 else
2901 {
3146c60f
WS
2902 arg_cand = base_cand_from_table (arg);
2903 diff = arg_cand->index - basis->index;
2904 }
2905
2906 if (incr == diff)
2907 {
2908 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2909 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2910 if (arg_cand)
9b92d12b 2911 {
9b92d12b 2912 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
df11b2ea 2913 if (uses_consumed_by_stmt (lhs, phi))
9b92d12b
BS
2914 *savings += stmt_cost (arg_cand->cand_stmt, true);
2915 }
2916 }
2917 }
2918 }
2919
2920 return cost;
2921}
2922
65d3dce8
BS
2923/* Add up and return the costs of introducing add statements that
2924 require the increment INCR on behalf of candidate C and phi
2925 statement PHI. Accumulate into *SAVINGS the potential savings
2926 from removing existing statements that feed PHI and have no other
2927 uses. */
2928
2929static int
2930phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2931 int *savings)
2932{
2933 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2934 clear_visited (as_a <gphi *> (phi));
2935 return retval;
2936}
2937
88ca9ea1
BS
2938/* Return the first candidate in the tree rooted at C that has not
2939 already been replaced, favoring siblings over dependents. */
2940
2941static slsr_cand_t
2942unreplaced_cand_in_tree (slsr_cand_t c)
2943{
2944 if (!cand_already_replaced (c))
2945 return c;
2946
2947 if (c->sibling)
2948 {
2949 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2950 if (sib)
2951 return sib;
2952 }
2953
2954 if (c->dependent)
2955 {
2956 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2957 if (dep)
2958 return dep;
2959 }
2960
2961 return NULL;
2962}
2963
2964/* Return TRUE if the candidates in the tree rooted at C should be
2965 optimized for speed, else FALSE. We estimate this based on the block
2966 containing the most dominant candidate in the tree that has not yet
2967 been replaced. */
2968
2969static bool
2970optimize_cands_for_speed_p (slsr_cand_t c)
2971{
2972 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2973 gcc_assert (c2);
2974 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2975}
2976
2977/* Add COST_IN to the lowest cost of any dependent path starting at
2978 candidate C or any of its siblings, counting only candidates along
2979 such paths with increment INCR. Assume that replacing a candidate
2980 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2981 statements that would go dead. If COUNT_PHIS is true, include
2982 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2983
2984static int
9b92d12b 2985lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2986 const widest_int &incr, bool count_phis)
88ca9ea1 2987{
9b92d12b 2988 int local_cost, sib_cost, savings = 0;
807e902e 2989 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2990
2991 if (cand_already_replaced (c))
2992 local_cost = cost_in;
27bcd47c 2993 else if (incr == cand_incr)
88ca9ea1
BS
2994 local_cost = cost_in - repl_savings - c->dead_savings;
2995 else
2996 local_cost = cost_in - c->dead_savings;
2997
9b92d12b
BS
2998 if (count_phis
2999 && phi_dependent_cand_p (c)
3000 && !cand_already_replaced (c))
3001 {
355fe088 3002 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3003 local_cost += phi_incr_cost (c, incr, phi, &savings);
3004
df11b2ea 3005 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3006 local_cost -= savings;
3007 }
3008
88ca9ea1
BS
3009 if (c->dependent)
3010 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
3011 lookup_cand (c->dependent), incr,
3012 count_phis);
88ca9ea1
BS
3013
3014 if (c->sibling)
3015 {
3016 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
3017 lookup_cand (c->sibling), incr,
3018 count_phis);
88ca9ea1
BS
3019 local_cost = MIN (local_cost, sib_cost);
3020 }
3021
3022 return local_cost;
3023}
3024
3025/* Compute the total savings that would accrue from all replacements
3026 in the candidate tree rooted at C, counting only candidates with
3027 increment INCR. Assume that replacing a candidate reduces cost
3028 by REPL_SAVINGS. Also account for savings from statements that
3029 would go dead. */
3030
3031static int
807e902e 3032total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 3033 bool count_phis)
88ca9ea1
BS
3034{
3035 int savings = 0;
807e902e 3036 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 3037
27bcd47c 3038 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
3039 savings += repl_savings + c->dead_savings;
3040
9b92d12b
BS
3041 if (count_phis
3042 && phi_dependent_cand_p (c)
3043 && !cand_already_replaced (c))
3044 {
3045 int phi_savings = 0;
355fe088 3046 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3047 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
3048
df11b2ea 3049 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3050 savings += phi_savings;
3051 }
3052
88ca9ea1 3053 if (c->dependent)
9b92d12b
BS
3054 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3055 count_phis);
88ca9ea1
BS
3056
3057 if (c->sibling)
9b92d12b
BS
3058 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3059 count_phis);
88ca9ea1
BS
3060
3061 return savings;
3062}
3063
3064/* Use target-specific costs to determine and record which increments
3065 in the current candidate tree are profitable to replace, assuming
3066 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3067 the candidate tree.
3068
3069 One slight limitation here is that we don't account for the possible
3070 introduction of casts in some cases. See replace_one_candidate for
3071 the cases where these are introduced. This should probably be cleaned
3072 up sometime. */
3073
3074static void
ef4bddc2 3075analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
3076{
3077 unsigned i;
3078
3079 for (i = 0; i < incr_vec_len; i++)
3080 {
27bcd47c 3081 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
3082
3083 /* If somehow this increment is bigger than a HWI, we won't
3084 be optimizing candidates that use it. And if the increment
3085 has a count of zero, nothing will be done with it. */
807e902e 3086 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
3087 incr_vec[i].cost = COST_INFINITE;
3088
3089 /* Increments of 0, 1, and -1 are always profitable to replace,
3090 because they always replace a multiply or add with an add or
3091 copy, and may cause one or more existing instructions to go
3092 dead. Exception: -1 can't be assumed to be profitable for
3093 pointer addition. */
3094 else if (incr == 0
3095 || incr == 1
3096 || (incr == -1
457e189d 3097 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1 3098 incr_vec[i].cost = COST_NEUTRAL;
2d4035dc 3099
0b56e9ad
BS
3100 /* If we need to add an initializer, give up if a cast from the
3101 candidate's type to its stride's type can lose precision.
3102 Note that this already takes into account that the stride may
3103 have been cast to a wider type, in which case this test won't
3104 fire. Example:
6b5eea61
BS
3105
3106 short int _1;
3107 _2 = (int) _1;
3108 _3 = _2 * 10;
0b56e9ad 3109 _4 = x + _3; ADD: x + (10 * (int)_1) : int
6b5eea61 3110 _5 = _2 * 15;
0b56e9ad
BS
3111 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3112
3113 Although the stride was a short int initially, the stride
3114 used in the analysis has been widened to an int, and such
3115 widening will be done in the initializer as well. */
6b5eea61
BS
3116 else if (!incr_vec[i].initializer
3117 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad
BS
3118 && !legal_cast_p_1 (first_dep->stride_type,
3119 TREE_TYPE (gimple_assign_lhs
3120 (first_dep->cand_stmt))))
6b5eea61
BS
3121 incr_vec[i].cost = COST_INFINITE;
3122
50251425
BS
3123 /* If we need to add an initializer, make sure we don't introduce
3124 a multiply by a pointer type, which can happen in certain cast
0b56e9ad 3125 scenarios. */
50251425
BS
3126 else if (!incr_vec[i].initializer
3127 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad 3128 && POINTER_TYPE_P (first_dep->stride_type))
50251425
BS
3129 incr_vec[i].cost = COST_INFINITE;
3130
88ca9ea1
BS
3131 /* For any other increment, if this is a multiply candidate, we
3132 must introduce a temporary T and initialize it with
3133 T_0 = stride * increment. When optimizing for speed, walk the
3134 candidate tree to calculate the best cost reduction along any
3135 path; if it offsets the fixed cost of inserting the initializer,
3136 replacing the increment is profitable. When optimizing for
3137 size, instead calculate the total cost reduction from replacing
3138 all candidates with this increment. */
3139 else if (first_dep->kind == CAND_MULT)
3140 {
3141 int cost = mult_by_coeff_cost (incr, mode, speed);
d5f6f04c
BS
3142 int repl_savings;
3143
3144 if (tree_fits_shwi_p (first_dep->stride))
3145 {
3146 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3147 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3148 }
3149 else
3150 repl_savings = mul_cost (speed, mode);
3151 repl_savings -= add_cost (speed, mode);
3152
88ca9ea1
BS
3153 if (speed)
3154 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 3155 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 3156 else
9b92d12b
BS
3157 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3158 COUNT_PHIS);
88ca9ea1
BS
3159
3160 incr_vec[i].cost = cost;
3161 }
3162
3163 /* If this is an add candidate, the initializer may already
3164 exist, so only calculate the cost of the initializer if it
3165 doesn't. We are replacing one add with another here, so the
3166 known replacement savings is zero. We will account for removal
3167 of dead instructions in lowest_cost_path or total_savings. */
3168 else
3169 {
3170 int cost = 0;
3171 if (!incr_vec[i].initializer)
3172 cost = mult_by_coeff_cost (incr, mode, speed);
3173
3174 if (speed)
9b92d12b
BS
3175 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3176 DONT_COUNT_PHIS);
88ca9ea1 3177 else
9b92d12b
BS
3178 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3179 DONT_COUNT_PHIS);
88ca9ea1
BS
3180
3181 incr_vec[i].cost = cost;
3182 }
3183 }
3184}
3185
3186/* Return the nearest common dominator of BB1 and BB2. If the blocks
3187 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3188 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3189 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3190 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3191
3192static basic_block
3193ncd_for_two_cands (basic_block bb1, basic_block bb2,
3194 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3195{
3196 basic_block ncd;
3197
3198 if (!bb1)
3199 {
3200 *where = c2;
3201 return bb2;
3202 }
3203
3204 if (!bb2)
3205 {
3206 *where = c1;
3207 return bb1;
3208 }
3209
3210 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3211
3212 /* If both candidates are in the same block, the earlier
3213 candidate wins. */
3214 if (bb1 == ncd && bb2 == ncd)
3215 {
3216 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3217 *where = c2;
3218 else
3219 *where = c1;
3220 }
3221
3222 /* Otherwise, if one of them produced a candidate in the
3223 dominator, that one wins. */
3224 else if (bb1 == ncd)
3225 *where = c1;
3226
3227 else if (bb2 == ncd)
3228 *where = c2;
3229
3230 /* If neither matches the dominator, neither wins. */
3231 else
3232 *where = NULL;
3233
3234 return ncd;
3235}
3236
9b92d12b
BS
3237/* Consider all candidates that feed PHI. Find the nearest common
3238 dominator of those candidates requiring the given increment INCR.
3239 Further find and return the nearest common dominator of this result
3240 with block NCD. If the returned block contains one or more of the
3241 candidates, return the earliest candidate in the block in *WHERE. */
3242
3243static basic_block
538dd0b7 3244ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
3245 basic_block ncd, slsr_cand_t *where)
3246{
3247 unsigned i;
3248 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3249 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3250
3251 for (i = 0; i < gimple_phi_num_args (phi); i++)
3252 {
3253 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3254 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3255
3146c60f
WS
3256 if (gimple_code (arg_def) == GIMPLE_PHI)
3257 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd, where);
3258 else
9b92d12b 3259 {
3146c60f 3260 widest_int diff;
9b92d12b 3261
3146c60f
WS
3262 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3263 diff = -basis->index;
3264 else
9b92d12b
BS
3265 {
3266 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 3267 diff = arg_cand->index - basis->index;
9b92d12b 3268 }
3146c60f
WS
3269
3270 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3271
3272 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3273 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3274 }
3275 }
3276
3277 return ncd;
3278}
3279
3280/* Consider the candidate C together with any candidates that feed
3281 C's phi dependence (if any). Find and return the nearest common
3282 dominator of those candidates requiring the given increment INCR.
3283 If the returned block contains one or more of the candidates,
3284 return the earliest candidate in the block in *WHERE. */
3285
3286static basic_block
807e902e 3287ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3288{
3289 basic_block ncd = NULL;
3290
3291 if (cand_abs_increment (c) == incr)
3292 {
3293 ncd = gimple_bb (c->cand_stmt);
3294 *where = c;
3295 }
3296
3297 if (phi_dependent_cand_p (c))
538dd0b7
DM
3298 ncd = ncd_with_phi (c, incr,
3299 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3300 ncd, where);
3301
3302 return ncd;
3303}
3304
88ca9ea1
BS
3305/* Consider all candidates in the tree rooted at C for which INCR
3306 represents the required increment of C relative to its basis.
3307 Find and return the basic block that most nearly dominates all
3308 such candidates. If the returned block contains one or more of
3309 the candidates, return the earliest candidate in the block in
3310 *WHERE. */
3311
3312static basic_block
807e902e 3313nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3314 slsr_cand_t *where)
3315{
3316 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3317 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3318
3319 /* First find the NCD of all siblings and dependents. */
3320 if (c->sibling)
3321 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3322 incr, &sib_where);
3323 if (c->dependent)
3324 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3325 incr, &dep_where);
3326 if (!sib_ncd && !dep_ncd)
3327 {
3328 new_where = NULL;
3329 ncd = NULL;
3330 }
3331 else if (sib_ncd && !dep_ncd)
3332 {
3333 new_where = sib_where;
3334 ncd = sib_ncd;
3335 }
3336 else if (dep_ncd && !sib_ncd)
3337 {
3338 new_where = dep_where;
3339 ncd = dep_ncd;
3340 }
3341 else
3342 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3343 dep_where, &new_where);
3344
3345 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3346 in (and nor do any increments for feeding defs of a phi-dependence),
3347 then the result depends only on siblings and dependents. */
3348 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3349
9b92d12b 3350 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3351 {
3352 *where = new_where;
3353 return ncd;
3354 }
3355
3356 /* Otherwise, compare this candidate with the result from all siblings
3357 and dependents. */
88ca9ea1
BS
3358 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3359
3360 return ncd;
3361}
3362
3363/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3364
3365static inline bool
3366profitable_increment_p (unsigned index)
3367{
3368 return (incr_vec[index].cost <= COST_NEUTRAL);
3369}
3370
3371/* For each profitable increment in the increment vector not equal to
3372 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3373 dominator of all statements in the candidate chain rooted at C
3374 that require that increment, and insert an initializer
3375 T_0 = stride * increment at that location. Record T_0 with the
3376 increment record. */
3377
3378static void
3379insert_initializers (slsr_cand_t c)
3380{
3381 unsigned i;
88ca9ea1
BS
3382
3383 for (i = 0; i < incr_vec_len; i++)
3384 {
3385 basic_block bb;
3386 slsr_cand_t where = NULL;
538dd0b7 3387 gassign *init_stmt;
0b56e9ad
BS
3388 gassign *cast_stmt = NULL;
3389 tree new_name, incr_tree, init_stride;
807e902e 3390 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3391
3392 if (!profitable_increment_p (i)
807e902e
KZ
3393 || incr == 1
3394 || (incr == -1
6e3d8cb4 3395 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
807e902e 3396 || incr == 0)
88ca9ea1
BS
3397 continue;
3398
3399 /* We may have already identified an existing initializer that
3400 will suffice. */
3401 if (incr_vec[i].initializer)
3402 {
3403 if (dump_file && (dump_flags & TDF_DETAILS))
3404 {
3405 fputs ("Using existing initializer: ", dump_file);
3406 print_gimple_stmt (dump_file,
3407 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
4af78ef8 3408 0, TDF_NONE);
88ca9ea1
BS
3409 }
3410 continue;
3411 }
3412
3413 /* Find the block that most closely dominates all candidates
3414 with this increment. If there is at least one candidate in
3415 that block, the earliest one will be returned in WHERE. */
3416 bb = nearest_common_dominator_for_cands (c, incr, &where);
3417
3e75ec3f
BS
3418 /* If the NCD is not dominated by the block containing the
3419 definition of the stride, we can't legally insert a
3420 single initializer. Mark the increment as unprofitable
3421 so we don't make any replacements. FIXME: Multiple
3422 initializers could be placed with more analysis. */
3423 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3424 basic_block stride_bb = gimple_bb (stride_def);
3425
3426 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3427 {
3428 if (dump_file && (dump_flags & TDF_DETAILS))
3429 fprintf (dump_file,
3430 "Initializer #%d cannot be legally placed\n", i);
3431 incr_vec[i].cost = COST_INFINITE;
3432 continue;
3433 }
3434
0b56e9ad
BS
3435 /* If the nominal stride has a different type than the recorded
3436 stride type, build a cast from the nominal stride to that type. */
3437 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3438 {
3439 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3440 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3441 }
3442 else
3443 init_stride = c->stride;
3444
88ca9ea1 3445 /* Create a new SSA name to hold the initializer's value. */
0b56e9ad 3446 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
88ca9ea1
BS
3447 incr_vec[i].initializer = new_name;
3448
3449 /* Create the initializer and insert it in the latest possible
3450 dominating position. */
0b56e9ad 3451 incr_tree = wide_int_to_tree (c->stride_type, incr);
0d0e4a03 3452 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
0b56e9ad 3453 init_stride, incr_tree);
88ca9ea1
BS
3454 if (where)
3455 {
3456 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
0b56e9ad
BS
3457 location_t loc = gimple_location (where->cand_stmt);
3458
3459 if (cast_stmt)
3460 {
3461 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3462 gimple_set_location (cast_stmt, loc);
3463 }
3464
88ca9ea1 3465 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
0b56e9ad 3466 gimple_set_location (init_stmt, loc);
88ca9ea1
BS
3467 }
3468 else
3469 {
3470 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3471 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
0b56e9ad 3472 location_t loc = gimple_location (basis_stmt);
88ca9ea1 3473
1697df8c 3474 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
0b56e9ad
BS
3475 {
3476 if (cast_stmt)
3477 {
3478 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3479 gimple_set_location (cast_stmt, loc);
3480 }
3481 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3482 }
88ca9ea1 3483 else
0b56e9ad
BS
3484 {
3485 if (cast_stmt)
3486 {
3487 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3488 gimple_set_location (cast_stmt, loc);
3489 }
06f97084 3490 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
0b56e9ad 3491 }
88ca9ea1
BS
3492
3493 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3494 }
3495
3496 if (dump_file && (dump_flags & TDF_DETAILS))
3497 {
0b56e9ad
BS
3498 if (cast_stmt)
3499 {
3500 fputs ("Inserting stride cast: ", dump_file);
ef6cb4c7 3501 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 3502 }
88ca9ea1 3503 fputs ("Inserting initializer: ", dump_file);
ef6cb4c7 3504 print_gimple_stmt (dump_file, init_stmt, 0);
88ca9ea1
BS
3505 }
3506 }
3507}
3508
65d3dce8 3509/* Recursive helper function for all_phi_incrs_profitable. */
9b92d12b
BS
3510
3511static bool
65d3dce8 3512all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
9b92d12b
BS
3513{
3514 unsigned i;
3515 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3516 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 3517
65d3dce8
BS
3518 if (phi_cand->visited)
3519 return true;
3520
3521 phi_cand->visited = 1;
3522 (*spread)++;
3523
c34923c4
BS
3524 /* If the basis doesn't dominate the PHI (including when the PHI is
3525 in the same block as the basis), we won't be able to create a PHI
3526 using the basis here. */
3527 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3528 basic_block phi_bb = gimple_bb (phi);
3529
3530 if (phi_bb == basis_bb
3531 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3532 return false;
3533
9b92d12b
BS
3534 for (i = 0; i < gimple_phi_num_args (phi); i++)
3535 {
c34923c4
BS
3536 /* If the PHI arg resides in a block not dominated by the basis,
3537 we won't be able to create a PHI using the basis here. */
3538 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3539
3540 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3541 return false;
3542
9b92d12b 3543 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3544 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3545
3146c60f 3546 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 3547 {
3146c60f
WS
3548 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def), spread)
3549 || *spread > MAX_SPREAD)
3550 return false;
3551 }
3552 else
3553 {
3554 int j;
3555 widest_int increment;
9b92d12b 3556
3146c60f
WS
3557 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3558 increment = -basis->index;
9b92d12b
BS
3559 else
3560 {
9b92d12b 3561 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f
WS
3562 increment = arg_cand->index - basis->index;
3563 }
9b92d12b 3564
3146c60f
WS
3565 if (!address_arithmetic_p && wi::neg_p (increment))
3566 increment = -increment;
9b92d12b 3567
3146c60f 3568 j = incr_vec_index (increment);
9b92d12b 3569
3146c60f
WS
3570 if (dump_file && (dump_flags & TDF_DETAILS))
3571 {
3572 fprintf (dump_file, " Conditional candidate %d, phi: ",
3573 c->cand_num);
3574 print_gimple_stmt (dump_file, phi, 0);
3575 fputs (" increment: ", dump_file);
3576 print_decs (increment, dump_file);
3577 if (j < 0)
3578 fprintf (dump_file,
3579 "\n Not replaced; incr_vec overflow.\n");
3580 else {
3581 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3582 if (profitable_increment_p (j))
3583 fputs (" Replacing...\n", dump_file);
3584 else
3585 fputs (" Not replaced.\n", dump_file);
3586 }
9b92d12b 3587 }
3146c60f
WS
3588
3589 if (j < 0 || !profitable_increment_p (j))
3590 return false;
9b92d12b
BS
3591 }
3592 }
3593
3594 return true;
3595}
3596
65d3dce8
BS
3597/* Return TRUE iff all required increments for candidates feeding PHI
3598 are profitable (and legal!) to replace on behalf of candidate C. */
3599
3600static bool
3601all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3602{
3603 int spread = 0;
3604 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3605 clear_visited (phi);
3606 return retval;
3607}
3608
88ca9ea1
BS
3609/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3610 type TO_TYPE, and insert it in front of the statement represented
3611 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3612 the new SSA name. */
3613
3614static tree
a7a7d10e 3615introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3616{
3617 tree cast_lhs;
538dd0b7 3618 gassign *cast_stmt;
88ca9ea1
BS
3619 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3620
a7a7d10e 3621 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3622 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3623 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3624 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3625
3626 if (dump_file && (dump_flags & TDF_DETAILS))
3627 {
3628 fputs (" Inserting: ", dump_file);
ef6cb4c7 3629 print_gimple_stmt (dump_file, cast_stmt, 0);
88ca9ea1
BS
3630 }
3631
3632 return cast_lhs;
3633}
3634
3635/* Replace the RHS of the statement represented by candidate C with
3636 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3637 leave C unchanged or just interchange its operands. The original
3638 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3639 If the replacement was made and we are doing a details dump,
3640 return the revised statement, else NULL. */
3641
355fe088 3642static gimple *
88ca9ea1
BS
3643replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3644 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3645 slsr_cand_t c)
3646{
3647 if (new_code != old_code
3648 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3649 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3650 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3651 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3652 {
3653 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3654 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3655 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3656 update_stmt (gsi_stmt (gsi));
d71dc990 3657 while (cc)
9fbbba71 3658 {
9fbbba71 3659 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3660 cc = lookup_cand (cc->next_interp);
9fbbba71 3661 }
88ca9ea1
BS
3662
3663 if (dump_file && (dump_flags & TDF_DETAILS))
3664 return gsi_stmt (gsi);
3665 }
3666
3667 else if (dump_file && (dump_flags & TDF_DETAILS))
3668 fputs (" (duplicate, not actually replacing)\n", dump_file);
3669
3670 return NULL;
3671}
3672
3673/* Strength-reduce the statement represented by candidate C by replacing
3674 it with an equivalent addition or subtraction. I is the index into
3675 the increment vector identifying C's increment. NEW_VAR is used to
3676 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3677 is the rhs1 to use in creating the add/subtract. */
3678
3679static void
a7a7d10e 3680replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3681{
355fe088 3682 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3683 tree orig_rhs1, orig_rhs2;
3684 tree rhs2;
3685 enum tree_code orig_code, repl_code;
807e902e 3686 widest_int cand_incr;
88ca9ea1
BS
3687
3688 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3689 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3690 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3691 cand_incr = cand_increment (c);
3692
9d502741
BS
3693 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3694 a copy statement under another interpretation. */
3695 if (!orig_rhs2)
3696 return;
3697
88ca9ea1
BS
3698 if (dump_file && (dump_flags & TDF_DETAILS))
3699 {
3700 fputs ("Replacing: ", dump_file);
ef6cb4c7 3701 print_gimple_stmt (dump_file, c->cand_stmt, 0);
88ca9ea1
BS
3702 stmt_to_print = c->cand_stmt;
3703 }
3704
3705 if (address_arithmetic_p)
3706 repl_code = POINTER_PLUS_EXPR;
3707 else
3708 repl_code = PLUS_EXPR;
3709
3710 /* If the increment has an initializer T_0, replace the candidate
3711 statement with an add of the basis name and the initializer. */
3712 if (incr_vec[i].initializer)
3713 {
3714 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3715 tree orig_type = TREE_TYPE (orig_rhs2);
3716
3717 if (types_compatible_p (orig_type, init_type))
3718 rhs2 = incr_vec[i].initializer;
3719 else
3720 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3721 incr_vec[i].initializer);
88ca9ea1 3722
27bcd47c 3723 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3724 {
3725 gcc_assert (repl_code == PLUS_EXPR);
3726 repl_code = MINUS_EXPR;
3727 }
3728
3729 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3730 orig_code, orig_rhs1, orig_rhs2,
3731 c);
3732 }
3733
3734 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3735 with a subtract of the stride from the basis name, a copy
3736 from the basis name, or an add of the stride to the basis
3737 name, respectively. It may be necessary to introduce a
3738 cast (or reuse an existing cast). */
807e902e 3739 else if (cand_incr == 1)
88ca9ea1
BS
3740 {
3741 tree stride_type = TREE_TYPE (c->stride);
3742 tree orig_type = TREE_TYPE (orig_rhs2);
3743
3744 if (types_compatible_p (orig_type, stride_type))
3745 rhs2 = c->stride;
3746 else
a7a7d10e 3747 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3748
3749 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3750 orig_code, orig_rhs1, orig_rhs2,
3751 c);
3752 }
3753
807e902e 3754 else if (cand_incr == -1)
88ca9ea1
BS
3755 {
3756 tree stride_type = TREE_TYPE (c->stride);
3757 tree orig_type = TREE_TYPE (orig_rhs2);
3758 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3759
3760 if (types_compatible_p (orig_type, stride_type))
3761 rhs2 = c->stride;
3762 else
a7a7d10e 3763 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3764
3765 if (orig_code != MINUS_EXPR
3766 || !operand_equal_p (basis_name, orig_rhs1, 0)
3767 || !operand_equal_p (rhs2, orig_rhs2, 0))
3768 {
3769 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3770 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3771 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3772 update_stmt (gsi_stmt (gsi));
d71dc990 3773 while (cc)
9fbbba71 3774 {
9fbbba71 3775 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3776 cc = lookup_cand (cc->next_interp);
9fbbba71 3777 }
88ca9ea1
BS
3778
3779 if (dump_file && (dump_flags & TDF_DETAILS))
3780 stmt_to_print = gsi_stmt (gsi);
3781 }
3782 else if (dump_file && (dump_flags & TDF_DETAILS))
3783 fputs (" (duplicate, not actually replacing)\n", dump_file);
3784 }
3785
807e902e 3786 else if (cand_incr == 0)
88ca9ea1
BS
3787 {
3788 tree lhs = gimple_assign_lhs (c->cand_stmt);
3789 tree lhs_type = TREE_TYPE (lhs);
3790 tree basis_type = TREE_TYPE (basis_name);
3791
3792 if (types_compatible_p (lhs_type, basis_type))
3793 {
538dd0b7 3794 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1 3795 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3796 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3797 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3798 gsi_replace (&gsi, copy_stmt, false);
d71dc990 3799 while (cc)
9fbbba71 3800 {
9fbbba71 3801 cc->cand_stmt = copy_stmt;
98aaa1a6 3802 cc = lookup_cand (cc->next_interp);
9fbbba71 3803 }
88ca9ea1
BS
3804
3805 if (dump_file && (dump_flags & TDF_DETAILS))
3806 stmt_to_print = copy_stmt;
3807 }
3808 else
3809 {
3810 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3811 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
d71dc990 3812 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3813 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3814 gsi_replace (&gsi, cast_stmt, false);
d71dc990 3815 while (cc)
9fbbba71 3816 {
9fbbba71 3817 cc->cand_stmt = cast_stmt;
98aaa1a6 3818 cc = lookup_cand (cc->next_interp);
9fbbba71 3819 }
88ca9ea1
BS
3820
3821 if (dump_file && (dump_flags & TDF_DETAILS))
3822 stmt_to_print = cast_stmt;
3823 }
3824 }
3825 else
3826 gcc_unreachable ();
3827
3828 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3829 {
3830 fputs ("With: ", dump_file);
ef6cb4c7 3831 print_gimple_stmt (dump_file, stmt_to_print, 0);
88ca9ea1
BS
3832 fputs ("\n", dump_file);
3833 }
3834}
3835
3836/* For each candidate in the tree rooted at C, replace it with
3837 an increment if such has been shown to be profitable. */
3838
3839static void
3840replace_profitable_candidates (slsr_cand_t c)
3841{
3842 if (!cand_already_replaced (c))
3843 {
807e902e 3844 widest_int increment = cand_abs_increment (c);
88ca9ea1 3845 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3846 int i;
88ca9ea1
BS
3847
3848 i = incr_vec_index (increment);
3849
3850 /* Only process profitable increments. Nothing useful can be done
3851 to a cast or copy. */
7bf55a70
BS
3852 if (i >= 0
3853 && profitable_increment_p (i)
fbcdc43e 3854 && orig_code != SSA_NAME
d822570f 3855 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3856 {
9b92d12b
BS
3857 if (phi_dependent_cand_p (c))
3858 {
c34923c4 3859 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
9b92d12b
BS
3860
3861 if (all_phi_incrs_profitable (c, phi))
3862 {
3863 /* Look up the LHS SSA name from C's basis. This will be
3864 the RHS1 of the adds we will introduce to create new
3865 phi arguments. */
3866 slsr_cand_t basis = lookup_cand (c->basis);
3867 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3868
3869 /* Create a new phi statement that will represent C's true
3870 basis after the transformation is complete. */
3871 location_t loc = gimple_location (c->cand_stmt);
3872 tree name = create_phi_basis (c, phi, basis_name,
3873 loc, UNKNOWN_STRIDE);
3874
3875 /* Replace C with an add of the new basis phi and the
3876 increment. */
a7a7d10e 3877 replace_one_candidate (c, i, name);
9b92d12b
BS
3878 }
3879 }
3880 else
3881 {
3882 slsr_cand_t basis = lookup_cand (c->basis);
3883 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3884 replace_one_candidate (c, i, basis_name);
9b92d12b 3885 }
88ca9ea1
BS
3886 }
3887 }
3888
3889 if (c->sibling)
3890 replace_profitable_candidates (lookup_cand (c->sibling));
3891
3892 if (c->dependent)
3893 replace_profitable_candidates (lookup_cand (c->dependent));
3894}
3895\f
f9453c07
BS
3896/* Analyze costs of related candidates in the candidate vector,
3897 and make beneficial replacements. */
3898
3899static void
3900analyze_candidates_and_replace (void)
3901{
3902 unsigned i;
3903 slsr_cand_t c;
3904
3905 /* Each candidate that has a null basis and a non-null
3906 dependent is the root of a tree of related statements.
3907 Analyze each tree to determine a subset of those
98aaa1a6
BC
3908 statements that can be replaced with maximum benefit.
3909
3910 Note the first NULL element is skipped. */
3911 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
f9453c07
BS
3912 {
3913 slsr_cand_t first_dep;
3914
3915 if (c->basis != 0 || c->dependent == 0)
3916 continue;
3917
3918 if (dump_file && (dump_flags & TDF_DETAILS))
3919 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3920 c->cand_num);
3921
3922 first_dep = lookup_cand (c->dependent);
3923
2749c8f6
BS
3924 /* If this is a chain of CAND_REFs, unconditionally replace
3925 each of them with a strength-reduced data reference. */
3926 if (c->kind == CAND_REF)
3927 replace_refs (c);
3928
9b92d12b
BS
3929 /* If the common stride of all related candidates is a known
3930 constant, each candidate without a phi-dependence can be
3931 profitably replaced. Each replaces a multiply by a single
3932 add, with the possibility that a feeding add also goes dead.
3933 A candidate with a phi-dependence is replaced only if the
3934 compensation code it requires is offset by the strength
3935 reduction savings. */
3936 else if (TREE_CODE (c->stride) == INTEGER_CST)
3937 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3938
88ca9ea1
BS
3939 /* When the stride is an SSA name, it may still be profitable
3940 to replace some or all of the dependent candidates, depending
3941 on whether the introduced increments can be reused, or are
3942 less expensive to calculate than the replaced statements. */
3943 else
3944 {
ef4bddc2 3945 machine_mode mode;
88ca9ea1
BS
3946 bool speed;
3947
3948 /* Determine whether we'll be generating pointer arithmetic
3949 when replacing candidates. */
3950 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3951 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3952
3953 /* If all candidates have already been replaced under other
3954 interpretations, nothing remains to be done. */
4b847da9 3955 if (!count_candidates (c))
88ca9ea1
BS
3956 continue;
3957
3958 /* Construct an array of increments for this candidate chain. */
4b847da9 3959 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3960 incr_vec_len = 0;
3961 record_increments (c);
3962
3963 /* Determine which increments are profitable to replace. */
3964 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3965 speed = optimize_cands_for_speed_p (c);
3966 analyze_increments (first_dep, mode, speed);
3967
3968 /* Insert initializers of the form T_0 = stride * increment
3969 for use in profitable replacements. */
3970 insert_initializers (first_dep);
3971 dump_incr_vec ();
3972
3973 /* Perform the replacements. */
3974 replace_profitable_candidates (first_dep);
3975 free (incr_vec);
3976 }
f9453c07 3977 }
b115e803
BS
3978
3979 /* For conditional candidates, we may have uncommitted insertions
3980 on edges to clean up. */
3981 gsi_commit_edge_inserts ();
f9453c07
BS
3982}
3983
17795822
TS
3984namespace {
3985
3986const pass_data pass_data_strength_reduction =
be55bfe6
TS
3987{
3988 GIMPLE_PASS, /* type */
3989 "slsr", /* name */
3990 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3991 TV_GIMPLE_SLSR, /* tv_id */
3992 ( PROP_cfg | PROP_ssa ), /* properties_required */
3993 0, /* properties_provided */
3994 0, /* properties_destroyed */
3995 0, /* todo_flags_start */
3bea341f 3996 0, /* todo_flags_finish */
be55bfe6
TS
3997};
3998
17795822 3999class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
4000{
4001public:
4002 pass_strength_reduction (gcc::context *ctxt)
4003 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
4004 {}
4005
4006 /* opt_pass methods: */
4007 virtual bool gate (function *) { return flag_tree_slsr; }
4008 virtual unsigned int execute (function *);
4009
4010}; // class pass_strength_reduction
4011
4012unsigned
4013pass_strength_reduction::execute (function *fun)
f9453c07 4014{
f9453c07
BS
4015 /* Create the obstack where candidates will reside. */
4016 gcc_obstack_init (&cand_obstack);
4017
98aaa1a6 4018 /* Allocate the candidate vector and initialize the first NULL element. */
9771b263 4019 cand_vec.create (128);
98aaa1a6 4020 cand_vec.safe_push (NULL);
f9453c07
BS
4021
4022 /* Allocate the mapping from statements to candidate indices. */
355fe088 4023 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
4024
4025 /* Create the obstack where candidate chains will reside. */
4026 gcc_obstack_init (&chain_obstack);
4027
3cfd4469 4028 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 4029 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 4030
96d75a2c 4031 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 4032 alt_base_map = new hash_map<tree, tree>;
96d75a2c 4033
f9453c07
BS
4034 /* Initialize the loop optimizer. We need to detect flow across
4035 back edges, and this gives us dominator information as well. */
4036 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4037
f9453c07
BS
4038 /* Walk the CFG in predominator order looking for strength reduction
4039 candidates. */
4d9192b5 4040 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 4041 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
4042
4043 if (dump_file && (dump_flags & TDF_DETAILS))
4044 {
4045 dump_cand_vec ();
4046 dump_cand_chains ();
4047 }
4048
b787e7a2 4049 delete alt_base_map;
96d75a2c
YZ
4050 free_affine_expand_cache (&name_expansions);
4051
f9453c07
BS
4052 /* Analyze costs and make appropriate replacements. */
4053 analyze_candidates_and_replace ();
4054
f9453c07 4055 loop_optimizer_finalize ();
c203e8a7
TS
4056 delete base_cand_map;
4057 base_cand_map = NULL;
f9453c07 4058 obstack_free (&chain_obstack, NULL);
b787e7a2 4059 delete stmt_cand_map;
9771b263 4060 cand_vec.release ();
f9453c07 4061 obstack_free (&cand_obstack, NULL);
f9453c07
BS
4062
4063 return 0;
4064}
4065
17795822
TS
4066} // anon namespace
4067
27a4cd48
DM
4068gimple_opt_pass *
4069make_pass_strength_reduction (gcc::context *ctxt)
4070{
4071 return new pass_strength_reduction (ctxt);
4072}