]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
analyzer: fix ICE merging dereferencing unknown ptrs [PR98628]
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
99dee823 2 Copyright (C) 2012-2021 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
4484a35a 55#include "tree-ssa-address.h"
96d75a2c 56#include "tree-affine.h"
bef52a68 57#include "tree-eh.h"
9b2b7279 58#include "builtins.h"
f9453c07
BS
59\f
60/* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
9b92d12b
BS
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
f9453c07
BS
213
214
215/* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217typedef unsigned cand_idx;
218
219/* The kind of candidate. */
220enum cand_kind
221{
222 CAND_MULT,
2749c8f6 223 CAND_ADD,
9b92d12b
BS
224 CAND_REF,
225 CAND_PHI
f9453c07
BS
226};
227
6c1dae73 228class slsr_cand_d
f9453c07 229{
6c1dae73 230public:
f9453c07 231 /* The candidate statement S1. */
355fe088 232 gimple *cand_stmt;
f9453c07 233
3cfd4469
BS
234 /* The base expression B: often an SSA name, but not always. */
235 tree base_expr;
f9453c07
BS
236
237 /* The stride S. */
238 tree stride;
239
240 /* The index constant i. */
807e902e 241 widest_int index;
f9453c07 242
3cfd4469 243 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 244 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
245 A candidate can only be a basis for candidates of the same final type.
246 (For CAND_REFs, this is the type to be used for operand 1 of the
247 replacement MEM_REF.) */
f9453c07
BS
248 tree cand_type;
249
0b56e9ad
BS
250 /* The type to be used to interpret the stride field when the stride
251 is not a constant. Normally the same as the type of the recorded
252 stride, but when the stride has been cast we need to maintain that
253 knowledge in order to make legal substitutions without losing
254 precision. When the stride is a constant, this will be sizetype. */
255 tree stride_type;
256
f9453c07
BS
257 /* The kind of candidate (CAND_MULT, etc.). */
258 enum cand_kind kind;
259
260 /* Index of this candidate in the candidate vector. */
261 cand_idx cand_num;
262
263 /* Index of the next candidate record for the same statement.
264 A statement may be useful in more than one way (e.g., due to
265 commutativity). So we can have multiple "interpretations"
266 of a statement. */
267 cand_idx next_interp;
268
d71dc990
BS
269 /* Index of the first candidate record in a chain for the same
270 statement. */
271 cand_idx first_interp;
272
f9453c07
BS
273 /* Index of the basis statement S0, if any, in the candidate vector. */
274 cand_idx basis;
275
276 /* First candidate for which this candidate is a basis, if one exists. */
277 cand_idx dependent;
278
279 /* Next candidate having the same basis as this one. */
280 cand_idx sibling;
281
9b92d12b
BS
282 /* If this is a conditional candidate, the CAND_PHI candidate
283 that defines the base SSA name B. */
284 cand_idx def_phi;
f9453c07
BS
285
286 /* Savings that can be expected from eliminating dead code if this
287 candidate is replaced. */
288 int dead_savings;
65d3dce8
BS
289
290 /* For PHI candidates, use a visited flag to keep from processing the
291 same PHI twice from multiple paths. */
292 int visited;
293
294 /* We sometimes have to cache a phi basis with a phi candidate to
295 avoid processing it twice. Valid only if visited==1. */
296 tree cached_basis;
f9453c07
BS
297};
298
99b1c316
MS
299typedef class slsr_cand_d slsr_cand, *slsr_cand_t;
300typedef const class slsr_cand_d *const_slsr_cand_t;
f9453c07
BS
301
302/* Pointers to candidates are chained together as part of a mapping
3cfd4469 303 from base expressions to the candidates that use them. */
f9453c07
BS
304
305struct cand_chain_d
306{
3cfd4469
BS
307 /* Base expression for the chain of candidates: often, but not
308 always, an SSA name. */
309 tree base_expr;
f9453c07
BS
310
311 /* Pointer to a candidate. */
312 slsr_cand_t cand;
313
314 /* Chain pointer. */
315 struct cand_chain_d *next;
316
317};
318
319typedef struct cand_chain_d cand_chain, *cand_chain_t;
320typedef const struct cand_chain_d *const_cand_chain_t;
321
88ca9ea1
BS
322/* Information about a unique "increment" associated with candidates
323 having an SSA name for a stride. An increment is the difference
324 between the index of the candidate and the index of its basis,
325 i.e., (i - i') as discussed in the module commentary.
326
327 When we are not going to generate address arithmetic we treat
328 increments that differ only in sign as the same, allowing sharing
329 of the cost of initializers. The absolute value of the increment
330 is stored in the incr_info. */
331
6c1dae73 332class incr_info_d
88ca9ea1 333{
6c1dae73 334public:
88ca9ea1 335 /* The increment that relates a candidate to its basis. */
807e902e 336 widest_int incr;
88ca9ea1
BS
337
338 /* How many times the increment occurs in the candidate tree. */
339 unsigned count;
340
341 /* Cost of replacing candidates using this increment. Negative and
342 zero costs indicate replacement should be performed. */
343 int cost;
344
345 /* If this increment is profitable but is not -1, 0, or 1, it requires
346 an initializer T_0 = stride * incr to be found or introduced in the
347 nearest common dominator of all candidates. This field holds T_0
348 for subsequent use. */
349 tree initializer;
350
351 /* If the initializer was found to already exist, this is the block
352 where it was found. */
353 basic_block init_bb;
354};
355
99b1c316 356typedef class incr_info_d incr_info, *incr_info_t;
88ca9ea1 357
f9453c07
BS
358/* Candidates are maintained in a vector. If candidate X dominates
359 candidate Y, then X appears before Y in the vector; but the
360 converse does not necessarily hold. */
9771b263 361static vec<slsr_cand_t> cand_vec;
f9453c07
BS
362
363enum cost_consts
364{
365 COST_NEUTRAL = 0,
366 COST_INFINITE = 1000
367};
368
9b92d12b
BS
369enum stride_status
370{
371 UNKNOWN_STRIDE = 0,
372 KNOWN_STRIDE = 1
373};
374
375enum phi_adjust_status
376{
377 NOT_PHI_ADJUST = 0,
378 PHI_ADJUST = 1
379};
380
381enum count_phis_status
382{
383 DONT_COUNT_PHIS = 0,
384 COUNT_PHIS = 1
385};
65d3dce8
BS
386
387/* Constrain how many PHI nodes we will visit for a conditional
388 candidate (depth and breadth). */
389const int MAX_SPREAD = 16;
390
f9453c07 391/* Pointer map embodying a mapping from statements to candidates. */
355fe088 392static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
393
394/* Obstack for candidates. */
395static struct obstack cand_obstack;
396
f9453c07
BS
397/* Obstack for candidate chains. */
398static struct obstack chain_obstack;
88ca9ea1
BS
399
400/* An array INCR_VEC of incr_infos is used during analysis of related
401 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
402 its current length. MAX_INCR_VEC_LEN is used to avoid costly
403 pathological cases. */
88ca9ea1
BS
404static incr_info_t incr_vec;
405static unsigned incr_vec_len;
7bf55a70 406const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
407
408/* For a chain of candidates with unknown stride, indicates whether or not
409 we must generate pointer arithmetic when replacing statements. */
410static bool address_arithmetic_p;
9b92d12b
BS
411
412/* Forward function declarations. */
413static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 414static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 415static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
416\f
417/* Produce a pointer to the IDX'th candidate in the candidate vector. */
418
419static slsr_cand_t
420lookup_cand (cand_idx idx)
421{
98aaa1a6 422 return cand_vec[idx];
f9453c07
BS
423}
424
4a8fb1a1 425/* Helper for hashing a candidate chain header. */
2749c8f6 426
8d67ee55 427struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 428{
67f58944
TS
429 static inline hashval_t hash (const cand_chain *);
430 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 431};
2749c8f6 432
4a8fb1a1 433inline hashval_t
67f58944 434cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 435{
4a8fb1a1
LC
436 tree base_expr = p->base_expr;
437 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
438}
439
4a8fb1a1 440inline bool
67f58944 441cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 442{
3cfd4469 443 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 444}
4a8fb1a1
LC
445
446/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 447static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 448\f
96d75a2c 449/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 450static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 451/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 452static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
453
454/* Given BASE, use the tree affine combiniation facilities to
455 find the underlying tree expression for BASE, with any
8fde427f
YZ
456 immediate offset excluded.
457
458 N.B. we should eliminate this backtracking with better forward
459 analysis in a future release. */
96d75a2c
YZ
460
461static tree
462get_alternative_base (tree base)
463{
b787e7a2 464 tree *result = alt_base_map->get (base);
96d75a2c
YZ
465
466 if (result == NULL)
467 {
468 tree expr;
469 aff_tree aff;
470
471 tree_to_aff_combination_expand (base, TREE_TYPE (base),
472 &aff, &name_expansions);
807e902e 473 aff.offset = 0;
96d75a2c
YZ
474 expr = aff_combination_to_tree (&aff);
475
b787e7a2 476 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 477
b787e7a2 478 return expr == base ? NULL : expr;
96d75a2c
YZ
479 }
480
481 return *result;
482}
483
9b92d12b 484/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 485 return it if found; otherwise return NULL. */
f9453c07 486
9b92d12b 487static cand_idx
8b28cf47 488find_phi_def (tree base)
9b92d12b
BS
489{
490 slsr_cand_t c;
491
492 if (TREE_CODE (base) != SSA_NAME)
493 return 0;
29105868 494
9b92d12b
BS
495 c = base_cand_from_table (base);
496
e75210d6
BS
497 if (!c || c->kind != CAND_PHI
498 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
9b92d12b
BS
499 return 0;
500
501 return c->cand_num;
502}
503
df11b2ea
BS
504/* Determine whether all uses of NAME are directly or indirectly
505 used by STMT. That is, we want to know whether if STMT goes
506 dead, the definition of NAME also goes dead. */
507static bool
508uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
509{
510 gimple *use_stmt;
511 imm_use_iterator iter;
512 bool retval = true;
513
514 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
515 {
516 if (use_stmt == stmt || is_gimple_debug (use_stmt))
517 continue;
518
519 if (!is_gimple_assign (use_stmt)
520 || !gimple_get_lhs (use_stmt)
521 || !is_gimple_reg (gimple_get_lhs (use_stmt))
522 || recurse >= 10
523 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
524 recurse + 1))
525 {
526 retval = false;
527 BREAK_FROM_IMM_USE_STMT (iter);
528 }
529 }
530
531 return retval;
532}
533
9b92d12b 534/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
535 once for the candidate's base expr, and optionally again either for
536 the candidate's phi definition or for a CAND_REF's alternative base
537 expression. */
9b92d12b
BS
538
539static slsr_cand_t
540find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 541{
2749c8f6 542 cand_chain mapping_key;
f9453c07
BS
543 cand_chain_t chain;
544 slsr_cand_t basis = NULL;
545
ccdbfe93
BS
546 // Limit potential of N^2 behavior for long candidate chains.
547 int iters = 0;
028d4092 548 int max_iters = param_max_slsr_candidate_scan;
ccdbfe93 549
9b92d12b 550 mapping_key.base_expr = base_expr;
c203e8a7 551 chain = base_cand_map->find (&mapping_key);
f9453c07 552
ccdbfe93 553 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
554 {
555 slsr_cand_t one_basis = chain->cand;
556
557 if (one_basis->kind != c->kind
69e1a1a3 558 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
559 || !operand_equal_p (one_basis->stride, c->stride, 0)
560 || !types_compatible_p (one_basis->cand_type, c->cand_type)
0b56e9ad 561 || !types_compatible_p (one_basis->stride_type, c->stride_type)
f9453c07
BS
562 || !dominated_by_p (CDI_DOMINATORS,
563 gimple_bb (c->cand_stmt),
564 gimple_bb (one_basis->cand_stmt)))
565 continue;
566
e75210d6
BS
567 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
568 if (lhs && TREE_CODE (lhs) == SSA_NAME
569 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
570 continue;
571
f9453c07
BS
572 if (!basis || basis->cand_num < one_basis->cand_num)
573 basis = one_basis;
574 }
575
9b92d12b
BS
576 return basis;
577}
578
579/* Use the base expr from candidate C to look for possible candidates
580 that can serve as a basis for C. Each potential basis must also
581 appear in a block that dominates the candidate statement and have
582 the same stride and type. If more than one possible basis exists,
583 the one with highest index in the vector is chosen; this will be
584 the most immediately dominating basis. */
585
586static int
587find_basis_for_candidate (slsr_cand_t c)
588{
589 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
590
591 /* If a candidate doesn't have a basis using its base expression,
592 it may have a basis hidden by one or more intervening phis. */
593 if (!basis && c->def_phi)
594 {
595 basic_block basis_bb, phi_bb;
596 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
597 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
598
599 if (basis)
600 {
601 /* A hidden basis must dominate the phi-definition of the
602 candidate's base name. */
603 phi_bb = gimple_bb (phi_cand->cand_stmt);
604 basis_bb = gimple_bb (basis->cand_stmt);
605
606 if (phi_bb == basis_bb
607 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
608 {
609 basis = NULL;
610 c->basis = 0;
611 }
612
613 /* If we found a hidden basis, estimate additional dead-code
614 savings if the phi and its feeding statements can be removed. */
df11b2ea
BS
615 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
616 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
9b92d12b
BS
617 c->dead_savings += phi_cand->dead_savings;
618 }
619 }
620
8fde427f 621 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
622 {
623 tree alt_base_expr = get_alternative_base (c->base_expr);
624 if (alt_base_expr)
625 basis = find_basis_for_base_expr (c, alt_base_expr);
626 }
627
f9453c07
BS
628 if (basis)
629 {
630 c->sibling = basis->dependent;
631 basis->dependent = c->cand_num;
632 return basis->cand_num;
633 }
634
635 return 0;
636}
637
96d75a2c
YZ
638/* Record a mapping from BASE to C, indicating that C may potentially serve
639 as a basis using that base expression. BASE may be the same as
640 C->BASE_EXPR; alternatively BASE can be a different tree that share the
641 underlining expression of C->BASE_EXPR. */
f9453c07
BS
642
643static void
96d75a2c 644record_potential_basis (slsr_cand_t c, tree base)
f9453c07 645{
2749c8f6 646 cand_chain_t node;
4a8fb1a1 647 cand_chain **slot;
f9453c07 648
96d75a2c
YZ
649 gcc_assert (base);
650
f9453c07 651 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 652 node->base_expr = base;
f9453c07
BS
653 node->cand = c;
654 node->next = NULL;
c203e8a7 655 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 656
2749c8f6 657 if (*slot)
f9453c07 658 {
2749c8f6 659 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
660 node->next = head->next;
661 head->next = node;
662 }
663 else
2749c8f6 664 *slot = node;
f9453c07
BS
665}
666
667/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
668 Attempt to find a basis for the candidate.
669
670 For CAND_REF, an alternative base may also be recorded and used
671 to find a basis. This helps cases where the expression hidden
672 behind BASE (which is usually an SSA_NAME) has immediate offset,
673 e.g.
674
675 a2[i][j] = 1;
676 a2[i + 20][j] = 2; */
f9453c07
BS
677
678static slsr_cand_t
355fe088 679alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 680 const widest_int &index, tree stride, tree ctype,
0b56e9ad 681 tree stype, unsigned savings)
f9453c07
BS
682{
683 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
684 sizeof (slsr_cand));
685 c->cand_stmt = gs;
3cfd4469 686 c->base_expr = base;
f9453c07
BS
687 c->stride = stride;
688 c->index = index;
689 c->cand_type = ctype;
0b56e9ad 690 c->stride_type = stype;
f9453c07 691 c->kind = kind;
98aaa1a6 692 c->cand_num = cand_vec.length ();
f9453c07 693 c->next_interp = 0;
d71dc990 694 c->first_interp = c->cand_num;
f9453c07
BS
695 c->dependent = 0;
696 c->sibling = 0;
8b28cf47 697 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07 698 c->dead_savings = savings;
65d3dce8
BS
699 c->visited = 0;
700 c->cached_basis = NULL_TREE;
f9453c07 701
9771b263 702 cand_vec.safe_push (c);
9b92d12b
BS
703
704 if (kind == CAND_PHI)
705 c->basis = 0;
706 else
707 c->basis = find_basis_for_candidate (c);
708
96d75a2c 709 record_potential_basis (c, base);
8fde427f 710 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
711 {
712 tree alt_base = get_alternative_base (base);
713 if (alt_base)
714 record_potential_basis (c, alt_base);
715 }
f9453c07
BS
716
717 return c;
718}
719
720/* Determine the target cost of statement GS when compiling according
721 to SPEED. */
722
723static int
355fe088 724stmt_cost (gimple *gs, bool speed)
f9453c07
BS
725{
726 tree lhs, rhs1, rhs2;
ef4bddc2 727 machine_mode lhs_mode;
f9453c07
BS
728
729 gcc_assert (is_gimple_assign (gs));
730 lhs = gimple_assign_lhs (gs);
731 rhs1 = gimple_assign_rhs1 (gs);
732 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
733
734 switch (gimple_assign_rhs_code (gs))
735 {
736 case MULT_EXPR:
737 rhs2 = gimple_assign_rhs2 (gs);
738
9541ffee 739 if (tree_fits_shwi_p (rhs2))
eb1ce453 740 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
741
742 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 743 return mul_cost (speed, lhs_mode);
f9453c07
BS
744
745 case PLUS_EXPR:
746 case POINTER_PLUS_EXPR:
747 case MINUS_EXPR:
5322d07e 748 return add_cost (speed, lhs_mode);
f9453c07
BS
749
750 case NEGATE_EXPR:
5322d07e 751 return neg_cost (speed, lhs_mode);
f9453c07 752
d822570f 753 CASE_CONVERT:
6dd8f4bb 754 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
755
756 /* Note that we don't assign costs to copies that in most cases
757 will go away. */
fbcdc43e
BS
758 case SSA_NAME:
759 return 0;
760
f9453c07
BS
761 default:
762 ;
763 }
764
765 gcc_unreachable ();
766 return 0;
767}
768
769/* Look up the defining statement for BASE_IN and return a pointer
770 to its candidate in the candidate table, if any; otherwise NULL.
771 Only CAND_ADD and CAND_MULT candidates are returned. */
772
773static slsr_cand_t
774base_cand_from_table (tree base_in)
775{
776 slsr_cand_t *result;
777
355fe088 778 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
779 if (!def)
780 return (slsr_cand_t) NULL;
781
b787e7a2 782 result = stmt_cand_map->get (def);
2749c8f6
BS
783
784 if (result && (*result)->kind != CAND_REF)
785 return *result;
f9453c07 786
2749c8f6 787 return (slsr_cand_t) NULL;
f9453c07
BS
788}
789
790/* Add an entry to the statement-to-candidate mapping. */
791
792static void
355fe088 793add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 794{
b787e7a2 795 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
796}
797\f
9b92d12b
BS
798/* Given PHI which contains a phi statement, determine whether it
799 satisfies all the requirements of a phi candidate. If so, create
800 a candidate. Note that a CAND_PHI never has a basis itself, but
801 is used to help find a basis for subsequent candidates. */
802
803static void
538dd0b7 804slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
805{
806 unsigned i;
807 tree arg0_base = NULL_TREE, base_type;
808 slsr_cand_t c;
99b1c316 809 class loop *cand_loop = gimple_bb (phi)->loop_father;
9b92d12b
BS
810 unsigned savings = 0;
811
812 /* A CAND_PHI requires each of its arguments to have the same
813 derived base name. (See the module header commentary for a
814 definition of derived base names.) Furthermore, all feeding
815 definitions must be in the same position in the loop hierarchy
816 as PHI. */
817
818 for (i = 0; i < gimple_phi_num_args (phi); i++)
819 {
820 slsr_cand_t arg_cand;
821 tree arg = gimple_phi_arg_def (phi, i);
822 tree derived_base_name = NULL_TREE;
355fe088 823 gimple *arg_stmt = NULL;
9b92d12b
BS
824 basic_block arg_bb = NULL;
825
826 if (TREE_CODE (arg) != SSA_NAME)
827 return;
828
829 arg_cand = base_cand_from_table (arg);
830
831 if (arg_cand)
832 {
833 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
834 {
835 if (!arg_cand->next_interp)
836 return;
837
838 arg_cand = lookup_cand (arg_cand->next_interp);
839 }
840
841 if (!integer_onep (arg_cand->stride))
842 return;
843
844 derived_base_name = arg_cand->base_expr;
845 arg_stmt = arg_cand->cand_stmt;
846 arg_bb = gimple_bb (arg_stmt);
847
848 /* Gather potential dead code savings if the phi statement
849 can be removed later on. */
df11b2ea 850 if (uses_consumed_by_stmt (arg, phi))
9b92d12b
BS
851 {
852 if (gimple_code (arg_stmt) == GIMPLE_PHI)
853 savings += arg_cand->dead_savings;
854 else
855 savings += stmt_cost (arg_stmt, speed);
856 }
857 }
6e281ce3 858 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
859 {
860 derived_base_name = arg;
6e281ce3 861 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
862 }
863
864 if (!arg_bb || arg_bb->loop_father != cand_loop)
865 return;
866
867 if (i == 0)
868 arg0_base = derived_base_name;
869 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
870 return;
871 }
872
873 /* Create the candidate. "alloc_cand_and_find_basis" is named
874 misleadingly for this case, as no basis will be sought for a
875 CAND_PHI. */
876 base_type = TREE_TYPE (arg0_base);
877
807e902e 878 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
0b56e9ad
BS
879 0, integer_one_node, base_type,
880 sizetype, savings);
9b92d12b
BS
881
882 /* Add the candidate to the statement-candidate mapping. */
883 add_cand_for_stmt (phi, c);
884}
885
c068654b
BC
886/* Given PBASE which is a pointer to tree, look up the defining
887 statement for it and check whether the candidate is in the
888 form of:
889
890 X = B + (1 * S), S is integer constant
891 X = B + (i * S), S is integer one
892
893 If so, set PBASE to the candidate's base_expr and return double
894 int (i * S).
895 Otherwise, just return double int zero. */
896
807e902e 897static widest_int
c068654b
BC
898backtrace_base_for_ref (tree *pbase)
899{
900 tree base_in = *pbase;
901 slsr_cand_t base_cand;
902
903 STRIP_NOPS (base_in);
0916f876
YZ
904
905 /* Strip off widening conversion(s) to handle cases where
906 e.g. 'B' is widened from an 'int' in order to calculate
907 a 64-bit address. */
908 if (CONVERT_EXPR_P (base_in)
0b56e9ad
BS
909 && legal_cast_p_1 (TREE_TYPE (base_in),
910 TREE_TYPE (TREE_OPERAND (base_in, 0))))
0916f876
YZ
911 base_in = get_unwidened (base_in, NULL_TREE);
912
c068654b 913 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 914 return 0;
c068654b
BC
915
916 base_cand = base_cand_from_table (base_in);
917
918 while (base_cand && base_cand->kind != CAND_PHI)
919 {
920 if (base_cand->kind == CAND_ADD
807e902e 921 && base_cand->index == 1
c068654b
BC
922 && TREE_CODE (base_cand->stride) == INTEGER_CST)
923 {
924 /* X = B + (1 * S), S is integer constant. */
925 *pbase = base_cand->base_expr;
807e902e 926 return wi::to_widest (base_cand->stride);
c068654b
BC
927 }
928 else if (base_cand->kind == CAND_ADD
929 && TREE_CODE (base_cand->stride) == INTEGER_CST
930 && integer_onep (base_cand->stride))
1d2151c6 931 {
c068654b
BC
932 /* X = B + (i * S), S is integer one. */
933 *pbase = base_cand->base_expr;
934 return base_cand->index;
935 }
936
98aaa1a6 937 base_cand = lookup_cand (base_cand->next_interp);
c068654b
BC
938 }
939
807e902e 940 return 0;
c068654b
BC
941}
942
2749c8f6
BS
943/* Look for the following pattern:
944
945 *PBASE: MEM_REF (T1, C1)
946
947 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
948 or
949 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
950 or
951 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
952
953 *PINDEX: C4 * BITS_PER_UNIT
954
955 If not present, leave the input values unchanged and return FALSE.
956 Otherwise, modify the input values as follows and return TRUE:
957
958 *PBASE: T1
959 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
960 *PINDEX: C1 + (C2 * C3) + C4
961
962 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
963 will be further restructured to:
964
965 *PBASE: T1
966 *POFFSET: MULT_EXPR (T2', C3)
967 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
968
969static bool
807e902e 970restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
971 tree *ptype)
972{
973 tree base = *pbase, offset = *poffset;
807e902e
KZ
974 widest_int index = *pindex;
975 tree mult_op0, t1, t2, type;
976 widest_int c1, c2, c3, c4, c5;
aca52e6f 977 offset_int mem_offset;
2749c8f6
BS
978
979 if (!base
980 || !offset
981 || TREE_CODE (base) != MEM_REF
aca52e6f 982 || !mem_ref_offset (base).is_constant (&mem_offset)
2749c8f6
BS
983 || TREE_CODE (offset) != MULT_EXPR
984 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 985 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
986 return false;
987
988 t1 = TREE_OPERAND (base, 0);
aca52e6f 989 c1 = widest_int::from (mem_offset, SIGNED);
2749c8f6
BS
990 type = TREE_TYPE (TREE_OPERAND (base, 1));
991
992 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 993 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
994
995 if (TREE_CODE (mult_op0) == PLUS_EXPR)
996
997 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
998 {
999 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1000 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1001 }
1002 else
1003 return false;
1004
1005 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1006
1007 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1008 {
1009 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1010 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1011 }
1012 else
1013 return false;
1014
1015 else
1016 {
1017 t2 = mult_op0;
807e902e 1018 c2 = 0;
2749c8f6
BS
1019 }
1020
8de73453 1021 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 1022 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
1023
1024 *pbase = t1;
c068654b 1025 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 1026 wide_int_to_tree (sizetype, c3));
c068654b 1027 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
1028 *ptype = type;
1029
1030 return true;
1031}
1032
1033/* Given GS which contains a data reference, create a CAND_REF entry in
1034 the candidate table and attempt to find a basis. */
1035
1036static void
355fe088 1037slsr_process_ref (gimple *gs)
2749c8f6
BS
1038{
1039 tree ref_expr, base, offset, type;
f37fac2b 1040 poly_int64 bitsize, bitpos;
ef4bddc2 1041 machine_mode mode;
ee45a32d 1042 int unsignedp, reversep, volatilep;
2749c8f6
BS
1043 slsr_cand_t c;
1044
1045 if (gimple_vdef (gs))
1046 ref_expr = gimple_assign_lhs (gs);
1047 else
1048 ref_expr = gimple_assign_rhs1 (gs);
1049
1050 if (!handled_component_p (ref_expr)
1051 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1052 || (TREE_CODE (ref_expr) == COMPONENT_REF
1053 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1054 return;
1055
1056 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 1057 &unsignedp, &reversep, &volatilep);
f37fac2b
RS
1058 HOST_WIDE_INT cbitpos;
1059 if (reversep || !bitpos.is_constant (&cbitpos))
ee45a32d 1060 return;
f37fac2b 1061 widest_int index = cbitpos;
2749c8f6
BS
1062
1063 if (!restructure_reference (&base, &offset, &index, &type))
1064 return;
1065
1066 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
0b56e9ad 1067 type, sizetype, 0);
2749c8f6
BS
1068
1069 /* Add the candidate to the statement-candidate mapping. */
1070 add_cand_for_stmt (gs, c);
1071}
1072
f9453c07
BS
1073/* Create a candidate entry for a statement GS, where GS multiplies
1074 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1075 about the two SSA names into the new candidate. Return the new
1076 candidate. */
1077
1078static slsr_cand_t
355fe088 1079create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1080{
1081 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1082 tree stype = NULL_TREE;
807e902e 1083 widest_int index;
f9453c07
BS
1084 unsigned savings = 0;
1085 slsr_cand_t c;
1086 slsr_cand_t base_cand = base_cand_from_table (base_in);
1087
1088 /* Look at all interpretations of the base candidate, if necessary,
1089 to find information to propagate into this candidate. */
9b92d12b 1090 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1091 {
1092
9b92d12b 1093 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1094 {
1095 /* Y = (B + i') * 1
1096 X = Y * Z
1097 ================
1098 X = (B + i') * Z */
3cfd4469 1099 base = base_cand->base_expr;
f9453c07
BS
1100 index = base_cand->index;
1101 stride = stride_in;
1102 ctype = base_cand->cand_type;
0b56e9ad 1103 stype = TREE_TYPE (stride_in);
f9453c07
BS
1104 if (has_single_use (base_in))
1105 savings = (base_cand->dead_savings
1106 + stmt_cost (base_cand->cand_stmt, speed));
1107 }
1108 else if (base_cand->kind == CAND_ADD
1109 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1110 {
1111 /* Y = B + (i' * S), S constant
1112 X = Y * Z
1113 ============================
1114 X = B + ((i' * S) * Z) */
3cfd4469 1115 base = base_cand->base_expr;
807e902e 1116 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1117 stride = stride_in;
1118 ctype = base_cand->cand_type;
0b56e9ad 1119 stype = TREE_TYPE (stride_in);
f9453c07
BS
1120 if (has_single_use (base_in))
1121 savings = (base_cand->dead_savings
1122 + stmt_cost (base_cand->cand_stmt, speed));
1123 }
1124
98aaa1a6 1125 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1126 }
1127
1128 if (!base)
1129 {
1130 /* No interpretations had anything useful to propagate, so
1131 produce X = (Y + 0) * Z. */
1132 base = base_in;
807e902e 1133 index = 0;
f9453c07 1134 stride = stride_in;
b2ec94d4 1135 ctype = TREE_TYPE (base_in);
0b56e9ad 1136 stype = TREE_TYPE (stride_in);
f9453c07
BS
1137 }
1138
1139 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1140 ctype, stype, savings);
f9453c07
BS
1141 return c;
1142}
1143
1144/* Create a candidate entry for a statement GS, where GS multiplies
1145 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1146 information about BASE_IN into the new candidate. Return the new
1147 candidate. */
1148
1149static slsr_cand_t
355fe088 1150create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1151{
1152 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1153 widest_int index, temp;
f9453c07
BS
1154 unsigned savings = 0;
1155 slsr_cand_t c;
1156 slsr_cand_t base_cand = base_cand_from_table (base_in);
1157
1158 /* Look at all interpretations of the base candidate, if necessary,
1159 to find information to propagate into this candidate. */
9b92d12b 1160 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1161 {
1162 if (base_cand->kind == CAND_MULT
1163 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1164 {
1165 /* Y = (B + i') * S, S constant
1166 X = Y * c
1167 ============================
1168 X = (B + i') * (S * c) */
807e902e
KZ
1169 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1170 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1171 {
1172 base = base_cand->base_expr;
1173 index = base_cand->index;
807e902e 1174 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1175 ctype = base_cand->cand_type;
1176 if (has_single_use (base_in))
1177 savings = (base_cand->dead_savings
1178 + stmt_cost (base_cand->cand_stmt, speed));
1179 }
f9453c07 1180 }
9b92d12b 1181 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1182 {
1183 /* Y = B + (i' * 1)
1184 X = Y * c
1185 ===========================
1186 X = (B + i') * c */
3cfd4469 1187 base = base_cand->base_expr;
f9453c07
BS
1188 index = base_cand->index;
1189 stride = stride_in;
1190 ctype = base_cand->cand_type;
1191 if (has_single_use (base_in))
1192 savings = (base_cand->dead_savings
1193 + stmt_cost (base_cand->cand_stmt, speed));
1194 }
1195 else if (base_cand->kind == CAND_ADD
807e902e 1196 && base_cand->index == 1
f9453c07
BS
1197 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1198 {
1199 /* Y = B + (1 * S), S constant
1200 X = Y * c
1201 ===========================
1202 X = (B + S) * c */
3cfd4469 1203 base = base_cand->base_expr;
807e902e 1204 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1205 stride = stride_in;
1206 ctype = base_cand->cand_type;
1207 if (has_single_use (base_in))
1208 savings = (base_cand->dead_savings
1209 + stmt_cost (base_cand->cand_stmt, speed));
1210 }
1211
98aaa1a6 1212 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1213 }
1214
1215 if (!base)
1216 {
1217 /* No interpretations had anything useful to propagate, so
1218 produce X = (Y + 0) * c. */
1219 base = base_in;
807e902e 1220 index = 0;
f9453c07 1221 stride = stride_in;
b2ec94d4 1222 ctype = TREE_TYPE (base_in);
f9453c07
BS
1223 }
1224
1225 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1226 ctype, sizetype, savings);
f9453c07
BS
1227 return c;
1228}
1229
1230/* Given GS which is a multiply of scalar integers, make an appropriate
1231 entry in the candidate table. If this is a multiply of two SSA names,
1232 create two CAND_MULT interpretations and attempt to find a basis for
1233 each of them. Otherwise, create a single CAND_MULT and attempt to
1234 find a basis. */
1235
1236static void
355fe088 1237slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1238{
1239 slsr_cand_t c, c2;
1240
1241 /* If this is a multiply of an SSA name with itself, it is highly
1242 unlikely that we will get a strength reduction opportunity, so
1243 don't record it as a candidate. This simplifies the logic for
1244 finding a basis, so if this is removed that must be considered. */
1245 if (rhs1 == rhs2)
1246 return;
1247
1248 if (TREE_CODE (rhs2) == SSA_NAME)
1249 {
1250 /* Record an interpretation of this statement in the candidate table
3cfd4469 1251 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1252 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1253
1254 /* Add the first interpretation to the statement-candidate mapping. */
1255 add_cand_for_stmt (gs, c);
1256
1257 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1258 is the stride and RHS2 is the base expression. */
f9453c07
BS
1259 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1260 c->next_interp = c2->cand_num;
d71dc990 1261 c2->first_interp = c->cand_num;
f9453c07 1262 }
f942ef18 1263 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
f9453c07
BS
1264 {
1265 /* Record an interpretation for the multiply-immediate. */
1266 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1267
1268 /* Add the interpretation to the statement-candidate mapping. */
1269 add_cand_for_stmt (gs, c);
1270 }
1271}
1272
1273/* Create a candidate entry for a statement GS, where GS adds two
1274 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1275 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1276 information about the two SSA names into the new candidate.
1277 Return the new candidate. */
1278
1279static slsr_cand_t
355fe088 1280create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1281 bool subtract_p, bool speed)
1282{
0b56e9ad
BS
1283 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1284 tree stype = NULL_TREE;
807e902e 1285 widest_int index;
f9453c07
BS
1286 unsigned savings = 0;
1287 slsr_cand_t c;
1288 slsr_cand_t base_cand = base_cand_from_table (base_in);
1289 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1290
1291 /* The most useful transformation is a multiply-immediate feeding
1292 an add or subtract. Look for that first. */
9b92d12b 1293 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1294 {
1295 if (addend_cand->kind == CAND_MULT
807e902e 1296 && addend_cand->index == 0
f9453c07
BS
1297 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1298 {
1299 /* Z = (B + 0) * S, S constant
1300 X = Y +/- Z
1301 ===========================
1302 X = Y + ((+/-1 * S) * B) */
1303 base = base_in;
807e902e 1304 index = wi::to_widest (addend_cand->stride);
f9453c07 1305 if (subtract_p)
27bcd47c 1306 index = -index;
3cfd4469 1307 stride = addend_cand->base_expr;
b2ec94d4 1308 ctype = TREE_TYPE (base_in);
0b56e9ad 1309 stype = addend_cand->cand_type;
f9453c07
BS
1310 if (has_single_use (addend_in))
1311 savings = (addend_cand->dead_savings
1312 + stmt_cost (addend_cand->cand_stmt, speed));
1313 }
1314
98aaa1a6 1315 addend_cand = lookup_cand (addend_cand->next_interp);
f9453c07
BS
1316 }
1317
9b92d12b 1318 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1319 {
1320 if (base_cand->kind == CAND_ADD
807e902e 1321 && (base_cand->index == 0
f9453c07
BS
1322 || operand_equal_p (base_cand->stride,
1323 integer_zero_node, 0)))
1324 {
1325 /* Y = B + (i' * S), i' * S = 0
1326 X = Y +/- Z
1327 ============================
1328 X = B + (+/-1 * Z) */
3cfd4469 1329 base = base_cand->base_expr;
807e902e 1330 index = subtract_p ? -1 : 1;
f9453c07
BS
1331 stride = addend_in;
1332 ctype = base_cand->cand_type;
0b56e9ad
BS
1333 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1334 : TREE_TYPE (addend_in));
f9453c07
BS
1335 if (has_single_use (base_in))
1336 savings = (base_cand->dead_savings
1337 + stmt_cost (base_cand->cand_stmt, speed));
1338 }
1339 else if (subtract_p)
1340 {
1341 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1342
9b92d12b 1343 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1344 {
1345 if (subtrahend_cand->kind == CAND_MULT
807e902e 1346 && subtrahend_cand->index == 0
f9453c07
BS
1347 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1348 {
1349 /* Z = (B + 0) * S, S constant
1350 X = Y - Z
1351 ===========================
1352 Value: X = Y + ((-1 * S) * B) */
1353 base = base_in;
807e902e 1354 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1355 index = -index;
3cfd4469 1356 stride = subtrahend_cand->base_expr;
b2ec94d4 1357 ctype = TREE_TYPE (base_in);
0b56e9ad 1358 stype = subtrahend_cand->cand_type;
f9453c07
BS
1359 if (has_single_use (addend_in))
1360 savings = (subtrahend_cand->dead_savings
1361 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1362 }
98aaa1a6
BC
1363
1364 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
f9453c07
BS
1365 }
1366 }
1367
98aaa1a6 1368 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1369 }
1370
1371 if (!base)
1372 {
1373 /* No interpretations had anything useful to propagate, so
1374 produce X = Y + (1 * Z). */
1375 base = base_in;
807e902e 1376 index = subtract_p ? -1 : 1;
f9453c07 1377 stride = addend_in;
b2ec94d4 1378 ctype = TREE_TYPE (base_in);
0b56e9ad
BS
1379 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1380 : TREE_TYPE (addend_in));
f9453c07
BS
1381 }
1382
1383 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
0b56e9ad 1384 ctype, stype, savings);
f9453c07
BS
1385 return c;
1386}
1387
1388/* Create a candidate entry for a statement GS, where GS adds SSA
1389 name BASE_IN to constant INDEX_IN. Propagate any known information
1390 about BASE_IN into the new candidate. Return the new candidate. */
1391
1392static slsr_cand_t
355fe088 1393create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1394 bool speed)
f9453c07
BS
1395{
1396 enum cand_kind kind = CAND_ADD;
1397 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1398 tree stype = NULL_TREE;
807e902e 1399 widest_int index, multiple;
f9453c07
BS
1400 unsigned savings = 0;
1401 slsr_cand_t c;
1402 slsr_cand_t base_cand = base_cand_from_table (base_in);
1403
9b92d12b 1404 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1405 {
807e902e 1406 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1407
1408 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1409 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1410 sign, &multiple))
f9453c07
BS
1411 {
1412 /* Y = (B + i') * S, S constant, c = kS for some integer k
1413 X = Y + c
1414 ============================
1415 X = (B + (i'+ k)) * S
1416 OR
1417 Y = B + (i' * S), S constant, c = kS for some integer k
1418 X = Y + c
1419 ============================
1420 X = (B + (i'+ k)) * S */
1421 kind = base_cand->kind;
3cfd4469 1422 base = base_cand->base_expr;
27bcd47c 1423 index = base_cand->index + multiple;
f9453c07
BS
1424 stride = base_cand->stride;
1425 ctype = base_cand->cand_type;
0b56e9ad 1426 stype = base_cand->stride_type;
f9453c07
BS
1427 if (has_single_use (base_in))
1428 savings = (base_cand->dead_savings
1429 + stmt_cost (base_cand->cand_stmt, speed));
1430 }
1431
98aaa1a6 1432 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1433 }
1434
1435 if (!base)
1436 {
1437 /* No interpretations had anything useful to propagate, so
1438 produce X = Y + (c * 1). */
1439 kind = CAND_ADD;
1440 base = base_in;
1441 index = index_in;
1442 stride = integer_one_node;
b2ec94d4 1443 ctype = TREE_TYPE (base_in);
0b56e9ad 1444 stype = sizetype;
f9453c07
BS
1445 }
1446
1447 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
0b56e9ad 1448 ctype, stype, savings);
f9453c07
BS
1449 return c;
1450}
1451
1452/* Given GS which is an add or subtract of scalar integers or pointers,
1453 make at least one appropriate entry in the candidate table. */
1454
1455static void
355fe088 1456slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1457{
1458 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1459 slsr_cand_t c = NULL, c2;
1460
1461 if (TREE_CODE (rhs2) == SSA_NAME)
1462 {
3cfd4469 1463 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1464 and RHS2 is the stride. But it doesn't make sense for the
1465 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1466 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1467 {
1468 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1469
1470 /* Add the first interpretation to the statement-candidate
1471 mapping. */
1472 add_cand_for_stmt (gs, c);
1473 }
1474
1475 /* If the two RHS operands are identical, or this is a subtract,
1476 we're done. */
1477 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1478 return;
1479
1480 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1481 base expression and RHS1 is the stride, again provided that the
f9453c07 1482 stride is not a pointer. */
b2ec94d4 1483 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1484 {
1485 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1486 if (c)
d71dc990
BS
1487 {
1488 c->next_interp = c2->cand_num;
1489 c2->first_interp = c->cand_num;
1490 }
f9453c07
BS
1491 else
1492 add_cand_for_stmt (gs, c2);
1493 }
1494 }
36fd6408 1495 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07 1496 {
f9453c07 1497 /* Record an interpretation for the add-immediate. */
807e902e 1498 widest_int index = wi::to_widest (rhs2);
f9453c07 1499 if (subtract_p)
27bcd47c 1500 index = -index;
f9453c07
BS
1501
1502 c = create_add_imm_cand (gs, rhs1, index, speed);
1503
1504 /* Add the interpretation to the statement-candidate mapping. */
1505 add_cand_for_stmt (gs, c);
1506 }
1507}
1508
1509/* Given GS which is a negate of a scalar integer, make an appropriate
1510 entry in the candidate table. A negate is equivalent to a multiply
1511 by -1. */
1512
1513static void
355fe088 1514slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1515{
1516 /* Record a CAND_MULT interpretation for the multiply by -1. */
1517 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1518
1519 /* Add the interpretation to the statement-candidate mapping. */
1520 add_cand_for_stmt (gs, c);
1521}
1522
6b5eea61
BS
1523/* Help function for legal_cast_p, operating on two trees. Checks
1524 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1525 for more details. */
1526
1527static bool
0b56e9ad 1528legal_cast_p_1 (tree lhs_type, tree rhs_type)
6b5eea61 1529{
6b5eea61
BS
1530 unsigned lhs_size, rhs_size;
1531 bool lhs_wraps, rhs_wraps;
1532
6b5eea61
BS
1533 lhs_size = TYPE_PRECISION (lhs_type);
1534 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1535 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1536 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1537
1538 if (lhs_size < rhs_size
1539 || (rhs_wraps && !lhs_wraps)
1540 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1541 return false;
1542
1543 return true;
1544}
1545
f9453c07
BS
1546/* Return TRUE if GS is a statement that defines an SSA name from
1547 a conversion and is legal for us to combine with an add and multiply
1548 in the candidate table. For example, suppose we have:
1549
1550 A = B + i;
1551 C = (type) A;
1552 D = C * S;
1553
1554 Without the type-cast, we would create a CAND_MULT for D with base B,
1555 index i, and stride S. We want to record this candidate only if it
1556 is equivalent to apply the type cast following the multiply:
1557
1558 A = B + i;
1559 E = A * S;
1560 D = (type) E;
1561
1562 We will record the type with the candidate for D. This allows us
1563 to use a similar previous candidate as a basis. If we have earlier seen
1564
1565 A' = B + i';
1566 C' = (type) A';
1567 D' = C' * S;
1568
1569 we can replace D with
1570
1571 D = D' + (i - i') * S;
1572
1573 But if moving the type-cast would change semantics, we mustn't do this.
1574
1575 This is legitimate for casts from a non-wrapping integral type to
1576 any integral type of the same or larger size. It is not legitimate
1577 to convert a wrapping type to a non-wrapping type, or to a wrapping
1578 type of a different size. I.e., with a wrapping type, we must
1579 assume that the addition B + i could wrap, in which case performing
1580 the multiply before or after one of the "illegal" type casts will
1581 have different semantics. */
1582
1583static bool
355fe088 1584legal_cast_p (gimple *gs, tree rhs)
f9453c07 1585{
f9453c07
BS
1586 if (!is_gimple_assign (gs)
1587 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1588 return false;
1589
0b56e9ad 1590 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
f9453c07
BS
1591}
1592
1593/* Given GS which is a cast to a scalar integer type, determine whether
1594 the cast is legal for strength reduction. If so, make at least one
1595 appropriate entry in the candidate table. */
1596
1597static void
355fe088 1598slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1599{
1600 tree lhs, ctype;
ac2a97db 1601 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1602 unsigned savings = 0;
1603
1604 if (!legal_cast_p (gs, rhs1))
1605 return;
1606
1607 lhs = gimple_assign_lhs (gs);
1608 base_cand = base_cand_from_table (rhs1);
1609 ctype = TREE_TYPE (lhs);
1610
9b92d12b 1611 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1612 {
d71dc990
BS
1613 slsr_cand_t first_cand = NULL;
1614
f9453c07
BS
1615 while (base_cand)
1616 {
1617 /* Propagate all data from the base candidate except the type,
1618 which comes from the cast, and the base candidate's cast,
1619 which is no longer applicable. */
1620 if (has_single_use (rhs1))
1621 savings = (base_cand->dead_savings
1622 + stmt_cost (base_cand->cand_stmt, speed));
1623
1624 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1625 base_cand->base_expr,
f9453c07 1626 base_cand->index, base_cand->stride,
0b56e9ad
BS
1627 ctype, base_cand->stride_type,
1628 savings);
d71dc990
BS
1629 if (!first_cand)
1630 first_cand = c;
1631
1632 if (first_cand != c)
1633 c->first_interp = first_cand->cand_num;
1634
98aaa1a6 1635 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1636 }
1637 }
1638 else
1639 {
1640 /* If nothing is known about the RHS, create fresh CAND_ADD and
1641 CAND_MULT interpretations:
1642
1643 X = Y + (0 * 1)
1644 X = (Y + 0) * 1
1645
1646 The first of these is somewhat arbitrary, but the choice of
1647 1 for the stride simplifies the logic for propagating casts
1648 into their uses. */
0b56e9ad
BS
1649 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1650 integer_one_node, ctype, sizetype, 0);
1651 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1652 integer_one_node, ctype, sizetype, 0);
f9453c07 1653 c->next_interp = c2->cand_num;
d71dc990 1654 c2->first_interp = c->cand_num;
f9453c07
BS
1655 }
1656
1657 /* Add the first (or only) interpretation to the statement-candidate
1658 mapping. */
1659 add_cand_for_stmt (gs, c);
1660}
1661
1662/* Given GS which is a copy of a scalar integer type, make at least one
1663 appropriate entry in the candidate table.
1664
1665 This interface is included for completeness, but is unnecessary
1666 if this pass immediately follows a pass that performs copy
1667 propagation, such as DOM. */
1668
1669static void
355fe088 1670slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1671{
ac2a97db 1672 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1673 unsigned savings = 0;
1674
1675 base_cand = base_cand_from_table (rhs1);
1676
9b92d12b 1677 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1678 {
d71dc990
BS
1679 slsr_cand_t first_cand = NULL;
1680
f9453c07
BS
1681 while (base_cand)
1682 {
1683 /* Propagate all data from the base candidate. */
1684 if (has_single_use (rhs1))
1685 savings = (base_cand->dead_savings
1686 + stmt_cost (base_cand->cand_stmt, speed));
1687
1688 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1689 base_cand->base_expr,
f9453c07 1690 base_cand->index, base_cand->stride,
0b56e9ad
BS
1691 base_cand->cand_type,
1692 base_cand->stride_type, savings);
d71dc990
BS
1693 if (!first_cand)
1694 first_cand = c;
1695
1696 if (first_cand != c)
1697 c->first_interp = first_cand->cand_num;
1698
98aaa1a6 1699 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1700 }
1701 }
1702 else
1703 {
1704 /* If nothing is known about the RHS, create fresh CAND_ADD and
1705 CAND_MULT interpretations:
1706
1707 X = Y + (0 * 1)
1708 X = (Y + 0) * 1
1709
1710 The first of these is somewhat arbitrary, but the choice of
1711 1 for the stride simplifies the logic for propagating casts
1712 into their uses. */
0b56e9ad
BS
1713 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1714 integer_one_node, TREE_TYPE (rhs1),
1715 sizetype, 0);
1716 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1717 integer_one_node, TREE_TYPE (rhs1),
1718 sizetype, 0);
f9453c07 1719 c->next_interp = c2->cand_num;
d71dc990 1720 c2->first_interp = c->cand_num;
f9453c07
BS
1721 }
1722
1723 /* Add the first (or only) interpretation to the statement-candidate
1724 mapping. */
1725 add_cand_for_stmt (gs, c);
1726}
1727\f
4d9192b5
TS
1728class find_candidates_dom_walker : public dom_walker
1729{
1730public:
1731 find_candidates_dom_walker (cdi_direction direction)
1732 : dom_walker (direction) {}
3daacdcd 1733 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1734};
1735
f9453c07
BS
1736/* Find strength-reduction candidates in block BB. */
1737
3daacdcd 1738edge
4d9192b5 1739find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1740{
1741 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1742
538dd0b7
DM
1743 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1744 gsi_next (&gsi))
1745 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1746
538dd0b7
DM
1747 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1748 gsi_next (&gsi))
f9453c07 1749 {
355fe088 1750 gimple *gs = gsi_stmt (gsi);
f9453c07 1751
36bbc05d 1752 if (stmt_could_throw_p (cfun, gs))
bef52a68
JJ
1753 continue;
1754
2749c8f6
BS
1755 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1756 slsr_process_ref (gs);
1757
1758 else if (is_gimple_assign (gs)
1ffbb016
RB
1759 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1760 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1761 {
1762 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1763
1764 switch (gimple_assign_rhs_code (gs))
1765 {
1766 case MULT_EXPR:
1767 case PLUS_EXPR:
1768 rhs1 = gimple_assign_rhs1 (gs);
1769 rhs2 = gimple_assign_rhs2 (gs);
1770 /* Should never happen, but currently some buggy situations
1771 in earlier phases put constants in rhs1. */
1772 if (TREE_CODE (rhs1) != SSA_NAME)
1773 continue;
1774 break;
1775
1776 /* Possible future opportunity: rhs1 of a ptr+ can be
1777 an ADDR_EXPR. */
1778 case POINTER_PLUS_EXPR:
1779 case MINUS_EXPR:
1780 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1781 gcc_fallthrough ();
f9453c07 1782
d822570f 1783 CASE_CONVERT:
fbcdc43e 1784 case SSA_NAME:
f9453c07
BS
1785 case NEGATE_EXPR:
1786 rhs1 = gimple_assign_rhs1 (gs);
1787 if (TREE_CODE (rhs1) != SSA_NAME)
1788 continue;
1789 break;
1790
1791 default:
1792 ;
1793 }
1794
1795 switch (gimple_assign_rhs_code (gs))
1796 {
1797 case MULT_EXPR:
1798 slsr_process_mul (gs, rhs1, rhs2, speed);
1799 break;
1800
1801 case PLUS_EXPR:
1802 case POINTER_PLUS_EXPR:
1803 case MINUS_EXPR:
1804 slsr_process_add (gs, rhs1, rhs2, speed);
1805 break;
1806
1807 case NEGATE_EXPR:
1808 slsr_process_neg (gs, rhs1, speed);
1809 break;
1810
d822570f 1811 CASE_CONVERT:
f9453c07
BS
1812 slsr_process_cast (gs, rhs1, speed);
1813 break;
1814
fbcdc43e 1815 case SSA_NAME:
f9453c07
BS
1816 slsr_process_copy (gs, rhs1, speed);
1817 break;
1818
1819 default:
1820 ;
1821 }
1822 }
1823 }
3daacdcd 1824 return NULL;
f9453c07
BS
1825}
1826\f
1827/* Dump a candidate for debug. */
1828
1829static void
1830dump_candidate (slsr_cand_t c)
1831{
1832 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1833 gimple_bb (c->cand_stmt)->index);
ef6cb4c7 1834 print_gimple_stmt (dump_file, c->cand_stmt, 0);
f9453c07
BS
1835 switch (c->kind)
1836 {
1837 case CAND_MULT:
1838 fputs (" MULT : (", dump_file);
ef6cb4c7 1839 print_generic_expr (dump_file, c->base_expr);
f9453c07 1840 fputs (" + ", dump_file);
807e902e 1841 print_decs (c->index, dump_file);
f9453c07 1842 fputs (") * ", dump_file);
0b56e9ad
BS
1843 if (TREE_CODE (c->stride) != INTEGER_CST
1844 && c->stride_type != TREE_TYPE (c->stride))
1845 {
1846 fputs ("(", dump_file);
ef6cb4c7 1847 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1848 fputs (")", dump_file);
1849 }
ef6cb4c7 1850 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1851 fputs (" : ", dump_file);
1852 break;
1853 case CAND_ADD:
1854 fputs (" ADD : ", dump_file);
ef6cb4c7 1855 print_generic_expr (dump_file, c->base_expr);
f9453c07 1856 fputs (" + (", dump_file);
807e902e 1857 print_decs (c->index, dump_file);
f9453c07 1858 fputs (" * ", dump_file);
0b56e9ad
BS
1859 if (TREE_CODE (c->stride) != INTEGER_CST
1860 && c->stride_type != TREE_TYPE (c->stride))
1861 {
1862 fputs ("(", dump_file);
ef6cb4c7 1863 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1864 fputs (")", dump_file);
1865 }
ef6cb4c7 1866 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1867 fputs (") : ", dump_file);
1868 break;
2749c8f6
BS
1869 case CAND_REF:
1870 fputs (" REF : ", dump_file);
ef6cb4c7 1871 print_generic_expr (dump_file, c->base_expr);
2749c8f6 1872 fputs (" + (", dump_file);
ef6cb4c7 1873 print_generic_expr (dump_file, c->stride);
2749c8f6 1874 fputs (") + ", dump_file);
807e902e 1875 print_decs (c->index, dump_file);
2749c8f6
BS
1876 fputs (" : ", dump_file);
1877 break;
9b92d12b
BS
1878 case CAND_PHI:
1879 fputs (" PHI : ", dump_file);
ef6cb4c7 1880 print_generic_expr (dump_file, c->base_expr);
9b92d12b 1881 fputs (" + (unknown * ", dump_file);
ef6cb4c7 1882 print_generic_expr (dump_file, c->stride);
9b92d12b
BS
1883 fputs (") : ", dump_file);
1884 break;
f9453c07
BS
1885 default:
1886 gcc_unreachable ();
1887 }
ef6cb4c7 1888 print_generic_expr (dump_file, c->cand_type);
f9453c07
BS
1889 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1890 c->basis, c->dependent, c->sibling);
d71dc990
BS
1891 fprintf (dump_file,
1892 " next-interp: %d first-interp: %d dead-savings: %d\n",
1893 c->next_interp, c->first_interp, c->dead_savings);
f9453c07 1894 if (c->def_phi)
9b92d12b 1895 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1896 fputs ("\n", dump_file);
1897}
1898
1899/* Dump the candidate vector for debug. */
1900
1901static void
1902dump_cand_vec (void)
1903{
1904 unsigned i;
1905 slsr_cand_t c;
1906
1907 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1908
9771b263 1909 FOR_EACH_VEC_ELT (cand_vec, i, c)
98aaa1a6
BC
1910 if (c != NULL)
1911 dump_candidate (c);
f9453c07
BS
1912}
1913
2749c8f6 1914/* Callback used to dump the candidate chains hash table. */
f9453c07 1915
4a8fb1a1
LC
1916int
1917ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1918{
4a8fb1a1 1919 const_cand_chain_t chain = *slot;
2749c8f6 1920 cand_chain_t p;
f9453c07 1921
ef6cb4c7 1922 print_generic_expr (dump_file, chain->base_expr);
2749c8f6 1923 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1924
2749c8f6
BS
1925 for (p = chain->next; p; p = p->next)
1926 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1927
2749c8f6
BS
1928 fputs ("\n", dump_file);
1929 return 1;
1930}
f9453c07 1931
2749c8f6 1932/* Dump the candidate chains. */
f9453c07 1933
2749c8f6
BS
1934static void
1935dump_cand_chains (void)
1936{
1937 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1938 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1939 (NULL);
f9453c07
BS
1940 fputs ("\n", dump_file);
1941}
88ca9ea1
BS
1942
1943/* Dump the increment vector for debug. */
1944
1945static void
1946dump_incr_vec (void)
1947{
1948 if (dump_file && (dump_flags & TDF_DETAILS))
1949 {
1950 unsigned i;
1951
1952 fprintf (dump_file, "\nIncrement vector:\n\n");
1953
1954 for (i = 0; i < incr_vec_len; i++)
1955 {
1956 fprintf (dump_file, "%3d increment: ", i);
807e902e 1957 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1958 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1959 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1960 fputs ("\n initializer: ", dump_file);
ef6cb4c7 1961 print_generic_expr (dump_file, incr_vec[i].initializer);
88ca9ea1
BS
1962 fputs ("\n\n", dump_file);
1963 }
1964 }
1965}
f9453c07 1966\f
2749c8f6
BS
1967/* Replace *EXPR in candidate C with an equivalent strength-reduced
1968 data reference. */
1969
1970static void
1971replace_ref (tree *expr, slsr_cand_t c)
1972{
78f6dd68
MJ
1973 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1974 unsigned HOST_WIDE_INT misalign;
1975 unsigned align;
1976
1977 /* Ensure the memory reference carries the minimum alignment
1978 requirement for the data type. See PR58041. */
1979 get_object_alignment_1 (*expr, &align, &misalign);
1980 if (misalign != 0)
146ec50f 1981 align = least_bit_hwi (misalign);
78f6dd68
MJ
1982 if (align < TYPE_ALIGN (acc_type))
1983 acc_type = build_aligned_type (acc_type, align);
1984
8907a722 1985 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
78f6dd68
MJ
1986 c->base_expr, c->stride);
1987 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1988 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1989
2749c8f6
BS
1990 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1991 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1992 TREE_OPERAND (mem_ref, 0)
1993 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1994 /*simple_p=*/true, NULL,
1995 /*before=*/true, GSI_SAME_STMT);
1996 copy_ref_info (mem_ref, *expr);
1997 *expr = mem_ref;
1998 update_stmt (c->cand_stmt);
1999}
2000
0f605e40
EB
2001/* Return true if CAND_REF candidate C is a valid memory reference. */
2002
2003static bool
2004valid_mem_ref_cand_p (slsr_cand_t c)
2005{
2006 if (TREE_CODE (TREE_OPERAND (c->stride, 1)) != INTEGER_CST)
2007 return false;
2008
2009 struct mem_address addr
2010 = { NULL_TREE, c->base_expr, TREE_OPERAND (c->stride, 0),
2011 TREE_OPERAND (c->stride, 1), wide_int_to_tree (sizetype, c->index) };
2012
2013 return
2014 valid_mem_ref_p (TYPE_MODE (c->cand_type), TYPE_ADDR_SPACE (c->cand_type),
2015 &addr);
2016}
2017
2749c8f6
BS
2018/* Replace CAND_REF candidate C, each sibling of candidate C, and each
2019 dependent of candidate C with an equivalent strength-reduced data
2020 reference. */
2021
2022static void
2023replace_refs (slsr_cand_t c)
2024{
0f605e40
EB
2025 /* Replacing a chain of only 2 candidates which are valid memory references
2026 is generally counter-productive because you cannot recoup the additional
2027 calculation added in front of them. */
2028 if (c->basis == 0
2029 && c->dependent
2030 && !lookup_cand (c->dependent)->dependent
2031 && valid_mem_ref_cand_p (c)
2032 && valid_mem_ref_cand_p (lookup_cand (c->dependent)))
2033 return;
2034
96d75a2c
YZ
2035 if (dump_file && (dump_flags & TDF_DETAILS))
2036 {
2037 fputs ("Replacing reference: ", dump_file);
ef6cb4c7 2038 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2039 }
2040
2749c8f6
BS
2041 if (gimple_vdef (c->cand_stmt))
2042 {
2043 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2044 replace_ref (lhs, c);
2045 }
2046 else
2047 {
2048 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2049 replace_ref (rhs, c);
2050 }
2051
96d75a2c
YZ
2052 if (dump_file && (dump_flags & TDF_DETAILS))
2053 {
2054 fputs ("With: ", dump_file);
ef6cb4c7 2055 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2056 fputs ("\n", dump_file);
2057 }
2058
2749c8f6
BS
2059 if (c->sibling)
2060 replace_refs (lookup_cand (c->sibling));
2061
2062 if (c->dependent)
2063 replace_refs (lookup_cand (c->dependent));
2064}
2065
9b92d12b
BS
2066/* Return TRUE if candidate C is dependent upon a PHI. */
2067
2068static bool
2069phi_dependent_cand_p (slsr_cand_t c)
2070{
2071 /* A candidate is not necessarily dependent upon a PHI just because
2072 it has a phi definition for its base name. It may have a basis
2073 that relies upon the same phi definition, in which case the PHI
2074 is irrelevant to this candidate. */
2075 return (c->def_phi
2076 && c->basis
2077 && lookup_cand (c->basis)->def_phi != c->def_phi);
2078}
2079
f9453c07
BS
2080/* Calculate the increment required for candidate C relative to
2081 its basis. */
2082
807e902e 2083static widest_int
f9453c07
BS
2084cand_increment (slsr_cand_t c)
2085{
2086 slsr_cand_t basis;
2087
2088 /* If the candidate doesn't have a basis, just return its own
2089 index. This is useful in record_increments to help us find
9b92d12b
BS
2090 an existing initializer. Also, if the candidate's basis is
2091 hidden by a phi, then its own index will be the increment
2092 from the newly introduced phi basis. */
2093 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
2094 return c->index;
2095
2096 basis = lookup_cand (c->basis);
3cfd4469 2097 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 2098 return c->index - basis->index;
f9453c07
BS
2099}
2100
88ca9ea1
BS
2101/* Calculate the increment required for candidate C relative to
2102 its basis. If we aren't going to generate pointer arithmetic
2103 for this candidate, return the absolute value of that increment
2104 instead. */
2105
807e902e 2106static inline widest_int
88ca9ea1
BS
2107cand_abs_increment (slsr_cand_t c)
2108{
807e902e 2109 widest_int increment = cand_increment (c);
88ca9ea1 2110
807e902e 2111 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2112 increment = -increment;
88ca9ea1
BS
2113
2114 return increment;
2115}
2116
f9453c07
BS
2117/* Return TRUE iff candidate C has already been replaced under
2118 another interpretation. */
2119
2120static inline bool
2121cand_already_replaced (slsr_cand_t c)
2122{
2123 return (gimple_bb (c->cand_stmt) == 0);
2124}
2125
9b92d12b
BS
2126/* Common logic used by replace_unconditional_candidate and
2127 replace_conditional_candidate. */
f9453c07
BS
2128
2129static void
807e902e 2130replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2131{
9b92d12b
BS
2132 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2133 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2134
8eb91869
BS
2135 /* It is not useful to replace casts, copies, negates, or adds of
2136 an SSA name and a constant. */
2137 if (cand_code == SSA_NAME
2138 || CONVERT_EXPR_CODE_P (cand_code)
2139 || cand_code == PLUS_EXPR
2140 || cand_code == POINTER_PLUS_EXPR
2141 || cand_code == MINUS_EXPR
2142 || cand_code == NEGATE_EXPR)
2143 return;
2144
2145 enum tree_code code = PLUS_EXPR;
2146 tree bump_tree;
2147 gimple *stmt_to_print = NULL;
2148
2149 if (wi::neg_p (bump))
9b92d12b 2150 {
8eb91869
BS
2151 code = MINUS_EXPR;
2152 bump = -bump;
2153 }
9b92d12b 2154
8eb91869
BS
2155 /* It is possible that the resulting bump doesn't fit in target_type.
2156 Abandon the replacement in this case. This does not affect
2157 siblings or dependents of C. */
2158 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2159 TYPE_SIGN (target_type)))
2160 return;
2161
2162 bump_tree = wide_int_to_tree (target_type, bump);
2163
2164 /* If the basis name and the candidate's LHS have incompatible types,
2165 introduce a cast. */
2166 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2167 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b 2168
8eb91869
BS
2169 if (dump_file && (dump_flags & TDF_DETAILS))
2170 {
2171 fputs ("Replacing: ", dump_file);
2172 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2173 }
2174
2175 if (bump == 0)
2176 {
2177 tree lhs = gimple_assign_lhs (c->cand_stmt);
2178 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2179 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2180 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2181 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2182 gsi_replace (&gsi, copy_stmt, false);
d71dc990 2183 while (cc)
8eb91869 2184 {
8eb91869 2185 cc->cand_stmt = copy_stmt;
98aaa1a6 2186 cc = lookup_cand (cc->next_interp);
8eb91869 2187 }
9b92d12b 2188 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869
BS
2189 stmt_to_print = copy_stmt;
2190 }
2191 else
2192 {
2193 tree rhs1, rhs2;
2194 if (cand_code != NEGATE_EXPR) {
2195 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2196 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2197 }
2198 if (cand_code != NEGATE_EXPR
2199 && ((operand_equal_p (rhs1, basis_name, 0)
2200 && operand_equal_p (rhs2, bump_tree, 0))
2201 || (operand_equal_p (rhs1, bump_tree, 0)
2202 && operand_equal_p (rhs2, basis_name, 0))))
9b92d12b 2203 {
8eb91869
BS
2204 if (dump_file && (dump_flags & TDF_DETAILS))
2205 {
2206 fputs ("(duplicate, not actually replacing)", dump_file);
2207 stmt_to_print = c->cand_stmt;
2208 }
9b92d12b 2209 }
8eb91869 2210 else
9b92d12b 2211 {
9b92d12b 2212 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2213 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2214 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2215 update_stmt (gsi_stmt (gsi));
d71dc990 2216 while (cc)
9fbbba71 2217 {
8eb91869 2218 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 2219 cc = lookup_cand (cc->next_interp);
9fbbba71 2220 }
9b92d12b 2221 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869 2222 stmt_to_print = gsi_stmt (gsi);
9b92d12b 2223 }
8eb91869 2224 }
9b92d12b 2225
8eb91869
BS
2226 if (dump_file && (dump_flags & TDF_DETAILS))
2227 {
2228 fputs ("With: ", dump_file);
2229 print_gimple_stmt (dump_file, stmt_to_print, 0);
2230 fputs ("\n", dump_file);
9b92d12b
BS
2231 }
2232}
2233
2234/* Replace candidate C with an add or subtract. Note that we only
2235 operate on CAND_MULTs with known strides, so we will never generate
2236 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2237 X = Y + ((i - i') * S), as described in the module commentary. The
2238 folded value ((i - i') * S) is referred to here as the "bump." */
2239
2240static void
2241replace_unconditional_candidate (slsr_cand_t c)
2242{
2243 slsr_cand_t basis;
9b92d12b
BS
2244
2245 if (cand_already_replaced (c))
f9453c07
BS
2246 return;
2247
2248 basis = lookup_cand (c->basis);
807e902e 2249 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2250
a7a7d10e 2251 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2252}
2253\f
7bf55a70
BS
2254/* Return the index in the increment vector of the given INCREMENT,
2255 or -1 if not found. The latter can occur if more than
2256 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2257
7bf55a70 2258static inline int
807e902e 2259incr_vec_index (const widest_int &increment)
9b92d12b
BS
2260{
2261 unsigned i;
2262
2263 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2264 ;
2265
7bf55a70
BS
2266 if (i < incr_vec_len)
2267 return i;
2268 else
2269 return -1;
9b92d12b
BS
2270}
2271
2272/* Create a new statement along edge E to add BASIS_NAME to the product
2273 of INCREMENT and the stride of candidate C. Create and return a new
2274 SSA name from *VAR to be used as the LHS of the new statement.
2275 KNOWN_STRIDE is true iff C's stride is a constant. */
2276
2277static tree
2278create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2279 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2280 bool known_stride)
2281{
9b92d12b 2282 tree lhs, basis_type;
0b56e9ad 2283 gassign *new_stmt, *cast_stmt = NULL;
9b92d12b
BS
2284
2285 /* If the add candidate along this incoming edge has the same
2286 index as C's hidden basis, the hidden basis represents this
2287 edge correctly. */
807e902e 2288 if (increment == 0)
9b92d12b
BS
2289 return basis_name;
2290
2291 basis_type = TREE_TYPE (basis_name);
2292 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2293
a929f266
BS
2294 /* Occasionally people convert integers to pointers without a
2295 cast, leading us into trouble if we aren't careful. */
2296 enum tree_code plus_code
2297 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2298
9b92d12b 2299 if (known_stride)
7139194b 2300 {
9b92d12b 2301 tree bump_tree;
a929f266 2302 enum tree_code code = plus_code;
807e902e 2303 widest_int bump = increment * wi::to_widest (c->stride);
a929f266 2304 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
9b92d12b
BS
2305 {
2306 code = MINUS_EXPR;
2307 bump = -bump;
2308 }
2309
a929f266
BS
2310 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2311 bump_tree = wide_int_to_tree (stride_type, bump);
0d0e4a03 2312 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2313 }
2314 else
2315 {
7bf55a70 2316 int i;
a929f266 2317 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
9b92d12b 2318 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2319 gcc_assert (i >= 0);
f9453c07 2320
9b92d12b
BS
2321 if (incr_vec[i].initializer)
2322 {
a929f266 2323 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
0d0e4a03
JJ
2324 new_stmt = gimple_build_assign (lhs, code, basis_name,
2325 incr_vec[i].initializer);
9b92d12b 2326 }
0b56e9ad
BS
2327 else {
2328 tree stride;
2329
2330 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2331 {
2332 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2333 "slsr");
2334 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2335 c->stride);
2336 stride = cast_stride;
2337 }
2338 else
2339 stride = c->stride;
2340
2341 if (increment == 1)
2342 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2343 else if (increment == -1)
2344 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2345 else
2346 gcc_unreachable ();
2347 }
f9453c07
BS
2348 }
2349
b115e803 2350 if (cast_stmt)
0b56e9ad 2351 {
b115e803
BS
2352 gimple_set_location (cast_stmt, loc);
2353 gsi_insert_on_edge (e, cast_stmt);
0b56e9ad 2354 }
9b92d12b
BS
2355
2356 gimple_set_location (new_stmt, loc);
b115e803 2357 gsi_insert_on_edge (e, new_stmt);
f9453c07
BS
2358
2359 if (dump_file && (dump_flags & TDF_DETAILS))
2360 {
0b56e9ad
BS
2361 if (cast_stmt)
2362 {
b115e803
BS
2363 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2364 e->src->index, e->dest->index);
ef6cb4c7 2365 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 2366 }
b115e803
BS
2367 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2368 e->dest->index);
ef6cb4c7 2369 print_gimple_stmt (dump_file, new_stmt, 0);
f9453c07
BS
2370 }
2371
9b92d12b
BS
2372 return lhs;
2373}
2374
65d3dce8
BS
2375/* Clear the visited field for a tree of PHI candidates. */
2376
2377static void
2378clear_visited (gphi *phi)
2379{
2380 unsigned i;
2381 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2382
2383 if (phi_cand->visited)
2384 {
2385 phi_cand->visited = 0;
2386
2387 for (i = 0; i < gimple_phi_num_args (phi); i++)
2388 {
2389 tree arg = gimple_phi_arg_def (phi, i);
2390 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2391 if (gimple_code (arg_def) == GIMPLE_PHI)
2392 clear_visited (as_a <gphi *> (arg_def));
2393 }
2394 }
2395}
2396
2397/* Recursive helper function for create_phi_basis. */
9b92d12b
BS
2398
2399static tree
65d3dce8
BS
2400create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2401 location_t loc, bool known_stride)
9b92d12b
BS
2402{
2403 int i;
2404 tree name, phi_arg;
538dd0b7 2405 gphi *phi;
9b92d12b
BS
2406 slsr_cand_t basis = lookup_cand (c->basis);
2407 int nargs = gimple_phi_num_args (from_phi);
2408 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2409 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2410 auto_vec<tree> phi_args (nargs);
9b92d12b 2411
65d3dce8
BS
2412 if (phi_cand->visited)
2413 return phi_cand->cached_basis;
2414 phi_cand->visited = 1;
2415
9b92d12b
BS
2416 /* Process each argument of the existing phi that represents
2417 conditionally-executed add candidates. */
2418 for (i = 0; i < nargs; i++)
f9453c07 2419 {
9b92d12b
BS
2420 edge e = (*phi_bb->preds)[i];
2421 tree arg = gimple_phi_arg_def (from_phi, i);
2422 tree feeding_def;
2423
2424 /* If the phi argument is the base name of the CAND_PHI, then
2425 this incoming arc should use the hidden basis. */
2426 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2427 if (basis->index == 0)
9b92d12b
BS
2428 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2429 else
2430 {
807e902e 2431 widest_int incr = -basis->index;
9b92d12b
BS
2432 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2433 e, loc, known_stride);
2434 }
2435 else
f9453c07 2436 {
355fe088 2437 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2438
2439 /* If there is another phi along this incoming edge, we must
2440 process it in the same fashion to ensure that all basis
2441 adjustments are made along its incoming edges. */
2442 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2443 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2444 loc, known_stride);
9b92d12b 2445 else
f9453c07 2446 {
9b92d12b 2447 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2448 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2449 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2450 e, loc, known_stride);
f9453c07
BS
2451 }
2452 }
9b92d12b
BS
2453
2454 /* Because of recursion, we need to save the arguments in a vector
2455 so we can create the PHI statement all at once. Otherwise the
2456 storage for the half-created PHI can be reclaimed. */
2457 phi_args.safe_push (feeding_def);
f9453c07 2458 }
9b92d12b
BS
2459
2460 /* Create the new phi basis. */
2461 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2462 phi = create_phi_node (name, phi_bb);
2463 SSA_NAME_DEF_STMT (name) = phi;
2464
2465 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2466 {
2467 edge e = (*phi_bb->preds)[i];
2468 add_phi_arg (phi, phi_arg, e, loc);
2469 }
2470
2471 update_stmt (phi);
2472
f9453c07
BS
2473 if (dump_file && (dump_flags & TDF_DETAILS))
2474 {
9b92d12b 2475 fputs ("Introducing new phi basis: ", dump_file);
ef6cb4c7 2476 print_gimple_stmt (dump_file, phi, 0);
f9453c07 2477 }
9b92d12b 2478
65d3dce8 2479 phi_cand->cached_basis = name;
9b92d12b 2480 return name;
f9453c07
BS
2481}
2482
65d3dce8
BS
2483/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2484 is hidden by the phi node FROM_PHI, create a new phi node in the same
2485 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2486 with its phi arguments representing conditional adjustments to the
2487 hidden basis along conditional incoming paths. Those adjustments are
2488 made by creating add statements (and sometimes recursively creating
2489 phis) along those incoming paths. LOC is the location to attach to
2490 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2491 constant. */
2492
2493static tree
2494create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2495 location_t loc, bool known_stride)
2496{
2497 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2498 known_stride);
2499 gcc_assert (retval);
2500 clear_visited (as_a <gphi *> (from_phi));
2501 return retval;
2502}
2503
9b92d12b
BS
2504/* Given a candidate C whose basis is hidden by at least one intervening
2505 phi, introduce a matching number of new phis to represent its basis
2506 adjusted by conditional increments along possible incoming paths. Then
2507 replace C as though it were an unconditional candidate, using the new
2508 basis. */
f9453c07
BS
2509
2510static void
9b92d12b 2511replace_conditional_candidate (slsr_cand_t c)
f9453c07 2512{
a7a7d10e 2513 tree basis_name, name;
9b92d12b
BS
2514 slsr_cand_t basis;
2515 location_t loc;
f9453c07 2516
9b92d12b
BS
2517 /* Look up the LHS SSA name from C's basis. This will be the
2518 RHS1 of the adds we will introduce to create new phi arguments. */
2519 basis = lookup_cand (c->basis);
2520 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2521
9b92d12b
BS
2522 /* Create a new phi statement which will represent C's true basis
2523 after the transformation is complete. */
2524 loc = gimple_location (c->cand_stmt);
2525 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2526 basis_name, loc, KNOWN_STRIDE);
65d3dce8 2527
9b92d12b 2528 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2529 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2530
a7a7d10e 2531 replace_mult_candidate (c, name, bump);
f9453c07 2532}
88ca9ea1 2533
65d3dce8
BS
2534/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2535 how many PHI nodes we have visited at this point in the tree walk. */
9b92d12b
BS
2536
2537static int
65d3dce8 2538phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
88ca9ea1
BS
2539{
2540 unsigned i;
9b92d12b 2541 int cost = 0;
5b3d5f76 2542 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2543
65d3dce8
BS
2544 if (phi_cand->visited)
2545 return 0;
2546
2547 phi_cand->visited = 1;
2548 (*spread)++;
2549
0100cd3f
BS
2550 /* If we work our way back to a phi that isn't dominated by the hidden
2551 basis, this isn't a candidate for replacement. Indicate this by
2552 returning an unreasonably high cost. It's not easy to detect
2553 these situations when determining the basis, so we defer the
2554 decision until now. */
2555 basic_block phi_bb = gimple_bb (phi);
2556 slsr_cand_t basis = lookup_cand (c->basis);
2557 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2558
2559 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2560 return COST_INFINITE;
2561
9b92d12b
BS
2562 for (i = 0; i < gimple_phi_num_args (phi); i++)
2563 {
2564 tree arg = gimple_phi_arg_def (phi, i);
2565
2566 if (arg != phi_cand->base_expr)
2567 {
355fe088 2568 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2569
2570 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2571 {
2572 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2573
2574 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2575 return COST_INFINITE;
2576 }
9b92d12b
BS
2577 else
2578 {
2579 slsr_cand_t arg_cand = base_cand_from_table (arg);
2580
2581 if (arg_cand->index != c->index)
2582 cost += one_add_cost;
2583 }
2584 }
2585 }
2586
2587 return cost;
88ca9ea1
BS
2588}
2589
65d3dce8
BS
2590/* Compute the expected costs of inserting basis adjustments for
2591 candidate C with phi-definition PHI. The cost of inserting
2592 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2593 which are themselves phi results, recursively calculate costs
2594 for those phis as well. */
2595
2596static int
2597phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2598{
2599 int spread = 0;
2600 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2601 clear_visited (as_a <gphi *> (phi));
2602 return retval;
2603}
9b92d12b
BS
2604/* For candidate C, each sibling of candidate C, and each dependent of
2605 candidate C, determine whether the candidate is dependent upon a
2606 phi that hides its basis. If not, replace the candidate unconditionally.
2607 Otherwise, determine whether the cost of introducing compensation code
2608 for the candidate is offset by the gains from strength reduction. If
2609 so, replace the candidate and introduce the compensation code. */
2610
2611static void
2612replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2613{
2614 if (phi_dependent_cand_p (c))
2615 {
df11b2ea
BS
2616 /* A multiply candidate with a stride of 1 is just an artifice
2617 of a copy or cast; there is no value in replacing it. */
2618 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
9b92d12b
BS
2619 {
2620 /* A candidate dependent upon a phi will replace a multiply by
2621 a constant with an add, and will insert at most one add for
2622 each phi argument. Add these costs with the potential dead-code
2623 savings to determine profitability. */
2624 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2625 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2626 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2627 tree phi_result = gimple_phi_result (phi);
2628 int one_add_cost = add_cost (speed,
2629 TYPE_MODE (TREE_TYPE (phi_result)));
2630 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2631 int cost = add_costs - mult_savings - c->dead_savings;
2632
2633 if (dump_file && (dump_flags & TDF_DETAILS))
2634 {
2635 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2636 fprintf (dump_file, " add_costs = %d\n", add_costs);
2637 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2638 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2639 fprintf (dump_file, " cost = %d\n", cost);
2640 if (cost <= COST_NEUTRAL)
2641 fputs (" Replacing...\n", dump_file);
2642 else
2643 fputs (" Not replaced.\n", dump_file);
2644 }
2645
2646 if (cost <= COST_NEUTRAL)
2647 replace_conditional_candidate (c);
2648 }
2649 }
2650 else
2651 replace_unconditional_candidate (c);
2652
2653 if (c->sibling)
2654 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2655
2656 if (c->dependent)
2657 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2658}
2659\f
88ca9ea1
BS
2660/* Count the number of candidates in the tree rooted at C that have
2661 not already been replaced under other interpretations. */
2662
1dc3d6e9 2663static int
88ca9ea1
BS
2664count_candidates (slsr_cand_t c)
2665{
2666 unsigned count = cand_already_replaced (c) ? 0 : 1;
2667
2668 if (c->sibling)
2669 count += count_candidates (lookup_cand (c->sibling));
2670
2671 if (c->dependent)
2672 count += count_candidates (lookup_cand (c->dependent));
2673
2674 return count;
2675}
2676
2677/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2678 INCREMENT is associated with candidate C. If INCREMENT is to be
2679 conditionally executed as part of a conditional candidate replacement,
2680 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2681 T_0 = stride * I is provided by a candidate that dominates all
2682 candidates with the same increment, also record T_0 for subsequent use. */
2683
2684static void
807e902e 2685record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2686{
2687 bool found = false;
2688 unsigned i;
2689
2690 /* Treat increments that differ only in sign as identical so as to
2691 share initializers, unless we are generating pointer arithmetic. */
807e902e 2692 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2693 increment = -increment;
88ca9ea1
BS
2694
2695 for (i = 0; i < incr_vec_len; i++)
2696 {
27bcd47c 2697 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2698 {
2699 incr_vec[i].count++;
2700 found = true;
2701
2702 /* If we previously recorded an initializer that doesn't
2703 dominate this candidate, it's not going to be useful to
2704 us after all. */
2705 if (incr_vec[i].initializer
2706 && !dominated_by_p (CDI_DOMINATORS,
2707 gimple_bb (c->cand_stmt),
2708 incr_vec[i].init_bb))
2709 {
2710 incr_vec[i].initializer = NULL_TREE;
2711 incr_vec[i].init_bb = NULL;
2712 }
2713
2714 break;
2715 }
2716 }
2717
7bf55a70 2718 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2719 {
2720 /* The first time we see an increment, create the entry for it.
2721 If this is the root candidate which doesn't have a basis, set
2722 the count to zero. We're only processing it so it can possibly
2723 provide an initializer for other candidates. */
2724 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2725 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2726 incr_vec[incr_vec_len].cost = COST_INFINITE;
2727
2728 /* Optimistically record the first occurrence of this increment
2729 as providing an initializer (if it does); we will revise this
2730 opinion later if it doesn't dominate all other occurrences.
a929f266 2731 Exception: increments of 0, 1 never need initializers;
806696eb 2732 and phi adjustments don't ever provide initializers. */
88ca9ea1 2733 if (c->kind == CAND_ADD
9b92d12b 2734 && !is_phi_adjust
27bcd47c 2735 && c->index == increment
a929f266 2736 && (increment > 1 || increment < 0)
7b8265ba
JJ
2737 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2738 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2739 {
7b8265ba 2740 tree t0 = NULL_TREE;
88ca9ea1
BS
2741 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2742 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2743 if (operand_equal_p (rhs1, c->base_expr, 0))
2744 t0 = rhs2;
7b8265ba 2745 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2746 t0 = rhs1;
7b8265ba
JJ
2747 if (t0
2748 && SSA_NAME_DEF_STMT (t0)
2749 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2750 {
2751 incr_vec[incr_vec_len].initializer = t0;
2752 incr_vec[incr_vec_len++].init_bb
2753 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2754 }
2755 else
2756 {
2757 incr_vec[incr_vec_len].initializer = NULL_TREE;
2758 incr_vec[incr_vec_len++].init_bb = NULL;
2759 }
2760 }
2761 else
2762 {
2763 incr_vec[incr_vec_len].initializer = NULL_TREE;
2764 incr_vec[incr_vec_len++].init_bb = NULL;
2765 }
2766 }
2767}
2768
65d3dce8 2769/* Recursive helper function for record_phi_increments. */
9b92d12b
BS
2770
2771static void
65d3dce8 2772record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2773{
2774 unsigned i;
5b3d5f76 2775 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2776
65d3dce8
BS
2777 if (phi_cand->visited)
2778 return;
2779 phi_cand->visited = 1;
2780
9b92d12b
BS
2781 for (i = 0; i < gimple_phi_num_args (phi); i++)
2782 {
2783 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2784 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2785
3146c60f
WS
2786 if (gimple_code (arg_def) == GIMPLE_PHI)
2787 record_phi_increments_1 (basis, arg_def);
2788 else
9b92d12b 2789 {
3146c60f 2790 widest_int diff;
9b92d12b 2791
3146c60f
WS
2792 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2793 {
2794 diff = -basis->index;
2795 record_increment (phi_cand, diff, PHI_ADJUST);
2796 }
9b92d12b
BS
2797 else
2798 {
2799 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 2800 diff = arg_cand->index - basis->index;
9b92d12b
BS
2801 record_increment (arg_cand, diff, PHI_ADJUST);
2802 }
2803 }
2804 }
2805}
2806
65d3dce8
BS
2807/* Given phi statement PHI that hides a candidate from its BASIS, find
2808 the increments along each incoming arc (recursively handling additional
2809 phis that may be present) and record them. These increments are the
2810 difference in index between the index-adjusting statements and the
2811 index of the basis. */
2812
2813static void
2814record_phi_increments (slsr_cand_t basis, gimple *phi)
2815{
2816 record_phi_increments_1 (basis, phi);
2817 clear_visited (as_a <gphi *> (phi));
2818}
2819
88ca9ea1
BS
2820/* Determine how many times each unique increment occurs in the set
2821 of candidates rooted at C's parent, recording the data in the
2822 increment vector. For each unique increment I, if an initializer
2823 T_0 = stride * I is provided by a candidate that dominates all
2824 candidates with the same increment, also record T_0 for subsequent
2825 use. */
2826
2827static void
2828record_increments (slsr_cand_t c)
2829{
2830 if (!cand_already_replaced (c))
9b92d12b
BS
2831 {
2832 if (!phi_dependent_cand_p (c))
2833 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2834 else
2835 {
2836 /* A candidate with a basis hidden by a phi will have one
2837 increment for its relationship to the index represented by
2838 the phi, and potentially additional increments along each
2839 incoming edge. For the root of the dependency tree (which
2840 has no basis), process just the initial index in case it has
2841 an initializer that can be used by subsequent candidates. */
2842 record_increment (c, c->index, NOT_PHI_ADJUST);
2843
2844 if (c->basis)
2845 record_phi_increments (lookup_cand (c->basis),
2846 lookup_cand (c->def_phi)->cand_stmt);
2847 }
2848 }
88ca9ea1
BS
2849
2850 if (c->sibling)
2851 record_increments (lookup_cand (c->sibling));
2852
2853 if (c->dependent)
2854 record_increments (lookup_cand (c->dependent));
2855}
2856
65d3dce8 2857/* Recursive helper function for phi_incr_cost. */
9b92d12b
BS
2858
2859static int
65d3dce8
BS
2860phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2861 int *savings)
9b92d12b
BS
2862{
2863 unsigned i;
2864 int cost = 0;
2865 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2866 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2867
65d3dce8
BS
2868 if (phi_cand->visited)
2869 return 0;
2870 phi_cand->visited = 1;
2871
9b92d12b
BS
2872 for (i = 0; i < gimple_phi_num_args (phi); i++)
2873 {
2874 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2875 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2876
3146c60f 2877 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 2878 {
3146c60f
WS
2879 int feeding_savings = 0;
2880 tree feeding_var = gimple_phi_result (arg_def);
2881 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2882 if (uses_consumed_by_stmt (feeding_var, phi))
2883 *savings += feeding_savings;
2884 }
2885 else
2886 {
2887 widest_int diff;
2888 slsr_cand_t arg_cand;
2889
2890 /* When the PHI argument is just a pass-through to the base
2891 expression of the hidden basis, the difference is zero minus
2892 the index of the basis. There is no potential savings by
2893 eliminating a statement in this case. */
2894 if (operand_equal_p (arg, phi_cand->base_expr, 0))
9b92d12b 2895 {
3146c60f
WS
2896 arg_cand = (slsr_cand_t)NULL;
2897 diff = -basis->index;
9b92d12b
BS
2898 }
2899 else
2900 {
3146c60f
WS
2901 arg_cand = base_cand_from_table (arg);
2902 diff = arg_cand->index - basis->index;
2903 }
2904
2905 if (incr == diff)
2906 {
2907 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2908 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2909 if (arg_cand)
9b92d12b 2910 {
9b92d12b 2911 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
df11b2ea 2912 if (uses_consumed_by_stmt (lhs, phi))
9b92d12b
BS
2913 *savings += stmt_cost (arg_cand->cand_stmt, true);
2914 }
2915 }
2916 }
2917 }
2918
2919 return cost;
2920}
2921
65d3dce8
BS
2922/* Add up and return the costs of introducing add statements that
2923 require the increment INCR on behalf of candidate C and phi
2924 statement PHI. Accumulate into *SAVINGS the potential savings
2925 from removing existing statements that feed PHI and have no other
2926 uses. */
2927
2928static int
2929phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2930 int *savings)
2931{
2932 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2933 clear_visited (as_a <gphi *> (phi));
2934 return retval;
2935}
2936
88ca9ea1
BS
2937/* Return the first candidate in the tree rooted at C that has not
2938 already been replaced, favoring siblings over dependents. */
2939
2940static slsr_cand_t
2941unreplaced_cand_in_tree (slsr_cand_t c)
2942{
2943 if (!cand_already_replaced (c))
2944 return c;
2945
2946 if (c->sibling)
2947 {
2948 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2949 if (sib)
2950 return sib;
2951 }
2952
2953 if (c->dependent)
2954 {
2955 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2956 if (dep)
2957 return dep;
2958 }
2959
2960 return NULL;
2961}
2962
2963/* Return TRUE if the candidates in the tree rooted at C should be
2964 optimized for speed, else FALSE. We estimate this based on the block
2965 containing the most dominant candidate in the tree that has not yet
2966 been replaced. */
2967
2968static bool
2969optimize_cands_for_speed_p (slsr_cand_t c)
2970{
2971 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2972 gcc_assert (c2);
2973 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2974}
2975
2976/* Add COST_IN to the lowest cost of any dependent path starting at
2977 candidate C or any of its siblings, counting only candidates along
2978 such paths with increment INCR. Assume that replacing a candidate
2979 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2980 statements that would go dead. If COUNT_PHIS is true, include
2981 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2982
2983static int
9b92d12b 2984lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2985 const widest_int &incr, bool count_phis)
88ca9ea1 2986{
9b92d12b 2987 int local_cost, sib_cost, savings = 0;
807e902e 2988 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2989
2990 if (cand_already_replaced (c))
2991 local_cost = cost_in;
27bcd47c 2992 else if (incr == cand_incr)
88ca9ea1
BS
2993 local_cost = cost_in - repl_savings - c->dead_savings;
2994 else
2995 local_cost = cost_in - c->dead_savings;
2996
9b92d12b
BS
2997 if (count_phis
2998 && phi_dependent_cand_p (c)
2999 && !cand_already_replaced (c))
3000 {
355fe088 3001 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3002 local_cost += phi_incr_cost (c, incr, phi, &savings);
3003
df11b2ea 3004 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3005 local_cost -= savings;
3006 }
3007
88ca9ea1
BS
3008 if (c->dependent)
3009 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
3010 lookup_cand (c->dependent), incr,
3011 count_phis);
88ca9ea1
BS
3012
3013 if (c->sibling)
3014 {
3015 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
3016 lookup_cand (c->sibling), incr,
3017 count_phis);
88ca9ea1
BS
3018 local_cost = MIN (local_cost, sib_cost);
3019 }
3020
3021 return local_cost;
3022}
3023
3024/* Compute the total savings that would accrue from all replacements
3025 in the candidate tree rooted at C, counting only candidates with
3026 increment INCR. Assume that replacing a candidate reduces cost
3027 by REPL_SAVINGS. Also account for savings from statements that
3028 would go dead. */
3029
3030static int
807e902e 3031total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 3032 bool count_phis)
88ca9ea1
BS
3033{
3034 int savings = 0;
807e902e 3035 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 3036
27bcd47c 3037 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
3038 savings += repl_savings + c->dead_savings;
3039
9b92d12b
BS
3040 if (count_phis
3041 && phi_dependent_cand_p (c)
3042 && !cand_already_replaced (c))
3043 {
3044 int phi_savings = 0;
355fe088 3045 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3046 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
3047
df11b2ea 3048 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3049 savings += phi_savings;
3050 }
3051
88ca9ea1 3052 if (c->dependent)
9b92d12b
BS
3053 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3054 count_phis);
88ca9ea1
BS
3055
3056 if (c->sibling)
9b92d12b
BS
3057 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3058 count_phis);
88ca9ea1
BS
3059
3060 return savings;
3061}
3062
3063/* Use target-specific costs to determine and record which increments
3064 in the current candidate tree are profitable to replace, assuming
3065 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3066 the candidate tree.
3067
3068 One slight limitation here is that we don't account for the possible
3069 introduction of casts in some cases. See replace_one_candidate for
3070 the cases where these are introduced. This should probably be cleaned
3071 up sometime. */
3072
3073static void
ef4bddc2 3074analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
3075{
3076 unsigned i;
3077
3078 for (i = 0; i < incr_vec_len; i++)
3079 {
27bcd47c 3080 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
3081
3082 /* If somehow this increment is bigger than a HWI, we won't
3083 be optimizing candidates that use it. And if the increment
3084 has a count of zero, nothing will be done with it. */
807e902e 3085 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
3086 incr_vec[i].cost = COST_INFINITE;
3087
3088 /* Increments of 0, 1, and -1 are always profitable to replace,
3089 because they always replace a multiply or add with an add or
3090 copy, and may cause one or more existing instructions to go
3091 dead. Exception: -1 can't be assumed to be profitable for
3092 pointer addition. */
3093 else if (incr == 0
3094 || incr == 1
3095 || (incr == -1
457e189d 3096 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1 3097 incr_vec[i].cost = COST_NEUTRAL;
2d4035dc 3098
0b56e9ad
BS
3099 /* If we need to add an initializer, give up if a cast from the
3100 candidate's type to its stride's type can lose precision.
3101 Note that this already takes into account that the stride may
3102 have been cast to a wider type, in which case this test won't
3103 fire. Example:
6b5eea61
BS
3104
3105 short int _1;
3106 _2 = (int) _1;
3107 _3 = _2 * 10;
0b56e9ad 3108 _4 = x + _3; ADD: x + (10 * (int)_1) : int
6b5eea61 3109 _5 = _2 * 15;
0b56e9ad
BS
3110 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3111
3112 Although the stride was a short int initially, the stride
3113 used in the analysis has been widened to an int, and such
3114 widening will be done in the initializer as well. */
6b5eea61
BS
3115 else if (!incr_vec[i].initializer
3116 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad
BS
3117 && !legal_cast_p_1 (first_dep->stride_type,
3118 TREE_TYPE (gimple_assign_lhs
3119 (first_dep->cand_stmt))))
6b5eea61
BS
3120 incr_vec[i].cost = COST_INFINITE;
3121
50251425
BS
3122 /* If we need to add an initializer, make sure we don't introduce
3123 a multiply by a pointer type, which can happen in certain cast
0b56e9ad 3124 scenarios. */
50251425
BS
3125 else if (!incr_vec[i].initializer
3126 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad 3127 && POINTER_TYPE_P (first_dep->stride_type))
50251425
BS
3128 incr_vec[i].cost = COST_INFINITE;
3129
88ca9ea1
BS
3130 /* For any other increment, if this is a multiply candidate, we
3131 must introduce a temporary T and initialize it with
3132 T_0 = stride * increment. When optimizing for speed, walk the
3133 candidate tree to calculate the best cost reduction along any
3134 path; if it offsets the fixed cost of inserting the initializer,
3135 replacing the increment is profitable. When optimizing for
3136 size, instead calculate the total cost reduction from replacing
3137 all candidates with this increment. */
3138 else if (first_dep->kind == CAND_MULT)
3139 {
3140 int cost = mult_by_coeff_cost (incr, mode, speed);
d5f6f04c
BS
3141 int repl_savings;
3142
3143 if (tree_fits_shwi_p (first_dep->stride))
3144 {
3145 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3146 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3147 }
3148 else
3149 repl_savings = mul_cost (speed, mode);
3150 repl_savings -= add_cost (speed, mode);
3151
88ca9ea1
BS
3152 if (speed)
3153 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 3154 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 3155 else
9b92d12b
BS
3156 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3157 COUNT_PHIS);
88ca9ea1
BS
3158
3159 incr_vec[i].cost = cost;
3160 }
3161
3162 /* If this is an add candidate, the initializer may already
3163 exist, so only calculate the cost of the initializer if it
3164 doesn't. We are replacing one add with another here, so the
3165 known replacement savings is zero. We will account for removal
3166 of dead instructions in lowest_cost_path or total_savings. */
3167 else
3168 {
3169 int cost = 0;
3170 if (!incr_vec[i].initializer)
3171 cost = mult_by_coeff_cost (incr, mode, speed);
3172
3173 if (speed)
9b92d12b
BS
3174 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3175 DONT_COUNT_PHIS);
88ca9ea1 3176 else
9b92d12b
BS
3177 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3178 DONT_COUNT_PHIS);
88ca9ea1
BS
3179
3180 incr_vec[i].cost = cost;
3181 }
3182 }
3183}
3184
3185/* Return the nearest common dominator of BB1 and BB2. If the blocks
3186 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3187 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3188 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3189 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3190
3191static basic_block
3192ncd_for_two_cands (basic_block bb1, basic_block bb2,
3193 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3194{
3195 basic_block ncd;
3196
3197 if (!bb1)
3198 {
3199 *where = c2;
3200 return bb2;
3201 }
3202
3203 if (!bb2)
3204 {
3205 *where = c1;
3206 return bb1;
3207 }
3208
3209 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3210
3211 /* If both candidates are in the same block, the earlier
3212 candidate wins. */
3213 if (bb1 == ncd && bb2 == ncd)
3214 {
3215 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3216 *where = c2;
3217 else
3218 *where = c1;
3219 }
3220
3221 /* Otherwise, if one of them produced a candidate in the
3222 dominator, that one wins. */
3223 else if (bb1 == ncd)
3224 *where = c1;
3225
3226 else if (bb2 == ncd)
3227 *where = c2;
3228
3229 /* If neither matches the dominator, neither wins. */
3230 else
3231 *where = NULL;
3232
3233 return ncd;
3234}
3235
9b92d12b
BS
3236/* Consider all candidates that feed PHI. Find the nearest common
3237 dominator of those candidates requiring the given increment INCR.
3238 Further find and return the nearest common dominator of this result
3239 with block NCD. If the returned block contains one or more of the
3240 candidates, return the earliest candidate in the block in *WHERE. */
3241
3242static basic_block
538dd0b7 3243ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
3244 basic_block ncd, slsr_cand_t *where)
3245{
3246 unsigned i;
3247 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3248 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3249
3250 for (i = 0; i < gimple_phi_num_args (phi); i++)
3251 {
3252 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3253 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3254
3146c60f
WS
3255 if (gimple_code (arg_def) == GIMPLE_PHI)
3256 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd, where);
3257 else
9b92d12b 3258 {
3146c60f 3259 widest_int diff;
9b92d12b 3260
3146c60f
WS
3261 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3262 diff = -basis->index;
3263 else
9b92d12b
BS
3264 {
3265 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 3266 diff = arg_cand->index - basis->index;
9b92d12b 3267 }
3146c60f
WS
3268
3269 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3270
3271 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3272 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3273 }
3274 }
3275
3276 return ncd;
3277}
3278
3279/* Consider the candidate C together with any candidates that feed
3280 C's phi dependence (if any). Find and return the nearest common
3281 dominator of those candidates requiring the given increment INCR.
3282 If the returned block contains one or more of the candidates,
3283 return the earliest candidate in the block in *WHERE. */
3284
3285static basic_block
807e902e 3286ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3287{
3288 basic_block ncd = NULL;
3289
3290 if (cand_abs_increment (c) == incr)
3291 {
3292 ncd = gimple_bb (c->cand_stmt);
3293 *where = c;
3294 }
3295
3296 if (phi_dependent_cand_p (c))
538dd0b7
DM
3297 ncd = ncd_with_phi (c, incr,
3298 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3299 ncd, where);
3300
3301 return ncd;
3302}
3303
88ca9ea1
BS
3304/* Consider all candidates in the tree rooted at C for which INCR
3305 represents the required increment of C relative to its basis.
3306 Find and return the basic block that most nearly dominates all
3307 such candidates. If the returned block contains one or more of
3308 the candidates, return the earliest candidate in the block in
3309 *WHERE. */
3310
3311static basic_block
807e902e 3312nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3313 slsr_cand_t *where)
3314{
3315 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3316 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3317
3318 /* First find the NCD of all siblings and dependents. */
3319 if (c->sibling)
3320 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3321 incr, &sib_where);
3322 if (c->dependent)
3323 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3324 incr, &dep_where);
3325 if (!sib_ncd && !dep_ncd)
3326 {
3327 new_where = NULL;
3328 ncd = NULL;
3329 }
3330 else if (sib_ncd && !dep_ncd)
3331 {
3332 new_where = sib_where;
3333 ncd = sib_ncd;
3334 }
3335 else if (dep_ncd && !sib_ncd)
3336 {
3337 new_where = dep_where;
3338 ncd = dep_ncd;
3339 }
3340 else
3341 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3342 dep_where, &new_where);
3343
3344 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3345 in (and nor do any increments for feeding defs of a phi-dependence),
3346 then the result depends only on siblings and dependents. */
3347 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3348
9b92d12b 3349 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3350 {
3351 *where = new_where;
3352 return ncd;
3353 }
3354
3355 /* Otherwise, compare this candidate with the result from all siblings
3356 and dependents. */
88ca9ea1
BS
3357 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3358
3359 return ncd;
3360}
3361
3362/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3363
3364static inline bool
3365profitable_increment_p (unsigned index)
3366{
3367 return (incr_vec[index].cost <= COST_NEUTRAL);
3368}
3369
3370/* For each profitable increment in the increment vector not equal to
3371 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3372 dominator of all statements in the candidate chain rooted at C
3373 that require that increment, and insert an initializer
3374 T_0 = stride * increment at that location. Record T_0 with the
3375 increment record. */
3376
3377static void
3378insert_initializers (slsr_cand_t c)
3379{
3380 unsigned i;
88ca9ea1
BS
3381
3382 for (i = 0; i < incr_vec_len; i++)
3383 {
3384 basic_block bb;
3385 slsr_cand_t where = NULL;
538dd0b7 3386 gassign *init_stmt;
0b56e9ad
BS
3387 gassign *cast_stmt = NULL;
3388 tree new_name, incr_tree, init_stride;
807e902e 3389 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3390
3391 if (!profitable_increment_p (i)
807e902e
KZ
3392 || incr == 1
3393 || (incr == -1
6e3d8cb4 3394 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
807e902e 3395 || incr == 0)
88ca9ea1
BS
3396 continue;
3397
3398 /* We may have already identified an existing initializer that
3399 will suffice. */
3400 if (incr_vec[i].initializer)
3401 {
3402 if (dump_file && (dump_flags & TDF_DETAILS))
3403 {
3404 fputs ("Using existing initializer: ", dump_file);
3405 print_gimple_stmt (dump_file,
3406 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
4af78ef8 3407 0, TDF_NONE);
88ca9ea1
BS
3408 }
3409 continue;
3410 }
3411
3412 /* Find the block that most closely dominates all candidates
3413 with this increment. If there is at least one candidate in
3414 that block, the earliest one will be returned in WHERE. */
3415 bb = nearest_common_dominator_for_cands (c, incr, &where);
3416
3e75ec3f
BS
3417 /* If the NCD is not dominated by the block containing the
3418 definition of the stride, we can't legally insert a
3419 single initializer. Mark the increment as unprofitable
3420 so we don't make any replacements. FIXME: Multiple
3421 initializers could be placed with more analysis. */
3422 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3423 basic_block stride_bb = gimple_bb (stride_def);
3424
3425 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3426 {
3427 if (dump_file && (dump_flags & TDF_DETAILS))
3428 fprintf (dump_file,
3429 "Initializer #%d cannot be legally placed\n", i);
3430 incr_vec[i].cost = COST_INFINITE;
3431 continue;
3432 }
3433
0b56e9ad
BS
3434 /* If the nominal stride has a different type than the recorded
3435 stride type, build a cast from the nominal stride to that type. */
3436 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3437 {
3438 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3439 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3440 }
3441 else
3442 init_stride = c->stride;
3443
88ca9ea1 3444 /* Create a new SSA name to hold the initializer's value. */
0b56e9ad 3445 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
88ca9ea1
BS
3446 incr_vec[i].initializer = new_name;
3447
3448 /* Create the initializer and insert it in the latest possible
3449 dominating position. */
0b56e9ad 3450 incr_tree = wide_int_to_tree (c->stride_type, incr);
0d0e4a03 3451 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
0b56e9ad 3452 init_stride, incr_tree);
88ca9ea1
BS
3453 if (where)
3454 {
3455 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
0b56e9ad
BS
3456 location_t loc = gimple_location (where->cand_stmt);
3457
3458 if (cast_stmt)
3459 {
3460 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3461 gimple_set_location (cast_stmt, loc);
3462 }
3463
88ca9ea1 3464 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
0b56e9ad 3465 gimple_set_location (init_stmt, loc);
88ca9ea1
BS
3466 }
3467 else
3468 {
3469 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3470 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
0b56e9ad 3471 location_t loc = gimple_location (basis_stmt);
88ca9ea1 3472
1697df8c 3473 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
0b56e9ad
BS
3474 {
3475 if (cast_stmt)
3476 {
3477 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3478 gimple_set_location (cast_stmt, loc);
3479 }
3480 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3481 }
88ca9ea1 3482 else
0b56e9ad
BS
3483 {
3484 if (cast_stmt)
3485 {
3486 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3487 gimple_set_location (cast_stmt, loc);
3488 }
06f97084 3489 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
0b56e9ad 3490 }
88ca9ea1
BS
3491
3492 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3493 }
3494
3495 if (dump_file && (dump_flags & TDF_DETAILS))
3496 {
0b56e9ad
BS
3497 if (cast_stmt)
3498 {
3499 fputs ("Inserting stride cast: ", dump_file);
ef6cb4c7 3500 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 3501 }
88ca9ea1 3502 fputs ("Inserting initializer: ", dump_file);
ef6cb4c7 3503 print_gimple_stmt (dump_file, init_stmt, 0);
88ca9ea1
BS
3504 }
3505 }
3506}
3507
65d3dce8 3508/* Recursive helper function for all_phi_incrs_profitable. */
9b92d12b
BS
3509
3510static bool
65d3dce8 3511all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
9b92d12b
BS
3512{
3513 unsigned i;
3514 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3515 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 3516
65d3dce8
BS
3517 if (phi_cand->visited)
3518 return true;
3519
3520 phi_cand->visited = 1;
3521 (*spread)++;
3522
c34923c4
BS
3523 /* If the basis doesn't dominate the PHI (including when the PHI is
3524 in the same block as the basis), we won't be able to create a PHI
3525 using the basis here. */
3526 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3527 basic_block phi_bb = gimple_bb (phi);
3528
3529 if (phi_bb == basis_bb
3530 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3531 return false;
3532
9b92d12b
BS
3533 for (i = 0; i < gimple_phi_num_args (phi); i++)
3534 {
c34923c4
BS
3535 /* If the PHI arg resides in a block not dominated by the basis,
3536 we won't be able to create a PHI using the basis here. */
3537 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3538
3539 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3540 return false;
3541
9b92d12b 3542 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3543 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3544
3146c60f 3545 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 3546 {
3146c60f
WS
3547 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def), spread)
3548 || *spread > MAX_SPREAD)
3549 return false;
3550 }
3551 else
3552 {
3553 int j;
3554 widest_int increment;
9b92d12b 3555
3146c60f
WS
3556 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3557 increment = -basis->index;
9b92d12b
BS
3558 else
3559 {
9b92d12b 3560 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f
WS
3561 increment = arg_cand->index - basis->index;
3562 }
9b92d12b 3563
3146c60f
WS
3564 if (!address_arithmetic_p && wi::neg_p (increment))
3565 increment = -increment;
9b92d12b 3566
3146c60f 3567 j = incr_vec_index (increment);
9b92d12b 3568
3146c60f
WS
3569 if (dump_file && (dump_flags & TDF_DETAILS))
3570 {
3571 fprintf (dump_file, " Conditional candidate %d, phi: ",
3572 c->cand_num);
3573 print_gimple_stmt (dump_file, phi, 0);
3574 fputs (" increment: ", dump_file);
3575 print_decs (increment, dump_file);
3576 if (j < 0)
3577 fprintf (dump_file,
3578 "\n Not replaced; incr_vec overflow.\n");
3579 else {
3580 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3581 if (profitable_increment_p (j))
3582 fputs (" Replacing...\n", dump_file);
3583 else
3584 fputs (" Not replaced.\n", dump_file);
3585 }
9b92d12b 3586 }
3146c60f
WS
3587
3588 if (j < 0 || !profitable_increment_p (j))
3589 return false;
9b92d12b
BS
3590 }
3591 }
3592
3593 return true;
3594}
3595
65d3dce8
BS
3596/* Return TRUE iff all required increments for candidates feeding PHI
3597 are profitable (and legal!) to replace on behalf of candidate C. */
3598
3599static bool
3600all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3601{
3602 int spread = 0;
3603 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3604 clear_visited (phi);
3605 return retval;
3606}
3607
88ca9ea1
BS
3608/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3609 type TO_TYPE, and insert it in front of the statement represented
3610 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3611 the new SSA name. */
3612
3613static tree
a7a7d10e 3614introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3615{
3616 tree cast_lhs;
538dd0b7 3617 gassign *cast_stmt;
88ca9ea1
BS
3618 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3619
a7a7d10e 3620 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3621 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3622 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3623 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3624
3625 if (dump_file && (dump_flags & TDF_DETAILS))
3626 {
3627 fputs (" Inserting: ", dump_file);
ef6cb4c7 3628 print_gimple_stmt (dump_file, cast_stmt, 0);
88ca9ea1
BS
3629 }
3630
3631 return cast_lhs;
3632}
3633
3634/* Replace the RHS of the statement represented by candidate C with
3635 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3636 leave C unchanged or just interchange its operands. The original
3637 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3638 If the replacement was made and we are doing a details dump,
3639 return the revised statement, else NULL. */
3640
355fe088 3641static gimple *
88ca9ea1
BS
3642replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3643 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3644 slsr_cand_t c)
3645{
3646 if (new_code != old_code
3647 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3648 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3649 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3650 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3651 {
3652 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3653 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3654 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3655 update_stmt (gsi_stmt (gsi));
d71dc990 3656 while (cc)
9fbbba71 3657 {
9fbbba71 3658 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3659 cc = lookup_cand (cc->next_interp);
9fbbba71 3660 }
88ca9ea1
BS
3661
3662 if (dump_file && (dump_flags & TDF_DETAILS))
3663 return gsi_stmt (gsi);
3664 }
3665
3666 else if (dump_file && (dump_flags & TDF_DETAILS))
3667 fputs (" (duplicate, not actually replacing)\n", dump_file);
3668
3669 return NULL;
3670}
3671
3672/* Strength-reduce the statement represented by candidate C by replacing
3673 it with an equivalent addition or subtraction. I is the index into
3674 the increment vector identifying C's increment. NEW_VAR is used to
3675 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3676 is the rhs1 to use in creating the add/subtract. */
3677
3678static void
a7a7d10e 3679replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3680{
355fe088 3681 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3682 tree orig_rhs1, orig_rhs2;
3683 tree rhs2;
3684 enum tree_code orig_code, repl_code;
807e902e 3685 widest_int cand_incr;
88ca9ea1
BS
3686
3687 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3688 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3689 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3690 cand_incr = cand_increment (c);
3691
9d502741
BS
3692 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3693 a copy statement under another interpretation. */
3694 if (!orig_rhs2)
3695 return;
3696
88ca9ea1
BS
3697 if (dump_file && (dump_flags & TDF_DETAILS))
3698 {
3699 fputs ("Replacing: ", dump_file);
ef6cb4c7 3700 print_gimple_stmt (dump_file, c->cand_stmt, 0);
88ca9ea1
BS
3701 stmt_to_print = c->cand_stmt;
3702 }
3703
3704 if (address_arithmetic_p)
3705 repl_code = POINTER_PLUS_EXPR;
3706 else
3707 repl_code = PLUS_EXPR;
3708
3709 /* If the increment has an initializer T_0, replace the candidate
3710 statement with an add of the basis name and the initializer. */
3711 if (incr_vec[i].initializer)
3712 {
3713 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3714 tree orig_type = TREE_TYPE (orig_rhs2);
3715
3716 if (types_compatible_p (orig_type, init_type))
3717 rhs2 = incr_vec[i].initializer;
3718 else
3719 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3720 incr_vec[i].initializer);
88ca9ea1 3721
27bcd47c 3722 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3723 {
3724 gcc_assert (repl_code == PLUS_EXPR);
3725 repl_code = MINUS_EXPR;
3726 }
3727
3728 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3729 orig_code, orig_rhs1, orig_rhs2,
3730 c);
3731 }
3732
3733 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3734 with a subtract of the stride from the basis name, a copy
3735 from the basis name, or an add of the stride to the basis
3736 name, respectively. It may be necessary to introduce a
3737 cast (or reuse an existing cast). */
807e902e 3738 else if (cand_incr == 1)
88ca9ea1
BS
3739 {
3740 tree stride_type = TREE_TYPE (c->stride);
3741 tree orig_type = TREE_TYPE (orig_rhs2);
3742
3743 if (types_compatible_p (orig_type, stride_type))
3744 rhs2 = c->stride;
3745 else
a7a7d10e 3746 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3747
3748 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3749 orig_code, orig_rhs1, orig_rhs2,
3750 c);
3751 }
3752
807e902e 3753 else if (cand_incr == -1)
88ca9ea1
BS
3754 {
3755 tree stride_type = TREE_TYPE (c->stride);
3756 tree orig_type = TREE_TYPE (orig_rhs2);
3757 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3758
3759 if (types_compatible_p (orig_type, stride_type))
3760 rhs2 = c->stride;
3761 else
a7a7d10e 3762 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3763
3764 if (orig_code != MINUS_EXPR
3765 || !operand_equal_p (basis_name, orig_rhs1, 0)
3766 || !operand_equal_p (rhs2, orig_rhs2, 0))
3767 {
3768 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3769 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3770 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3771 update_stmt (gsi_stmt (gsi));
d71dc990 3772 while (cc)
9fbbba71 3773 {
9fbbba71 3774 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3775 cc = lookup_cand (cc->next_interp);
9fbbba71 3776 }
88ca9ea1
BS
3777
3778 if (dump_file && (dump_flags & TDF_DETAILS))
3779 stmt_to_print = gsi_stmt (gsi);
3780 }
3781 else if (dump_file && (dump_flags & TDF_DETAILS))
3782 fputs (" (duplicate, not actually replacing)\n", dump_file);
3783 }
3784
807e902e 3785 else if (cand_incr == 0)
88ca9ea1
BS
3786 {
3787 tree lhs = gimple_assign_lhs (c->cand_stmt);
3788 tree lhs_type = TREE_TYPE (lhs);
3789 tree basis_type = TREE_TYPE (basis_name);
3790
3791 if (types_compatible_p (lhs_type, basis_type))
3792 {
538dd0b7 3793 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1 3794 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3795 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3796 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3797 gsi_replace (&gsi, copy_stmt, false);
d71dc990 3798 while (cc)
9fbbba71 3799 {
9fbbba71 3800 cc->cand_stmt = copy_stmt;
98aaa1a6 3801 cc = lookup_cand (cc->next_interp);
9fbbba71 3802 }
88ca9ea1
BS
3803
3804 if (dump_file && (dump_flags & TDF_DETAILS))
3805 stmt_to_print = copy_stmt;
3806 }
3807 else
3808 {
3809 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3810 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
d71dc990 3811 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3812 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3813 gsi_replace (&gsi, cast_stmt, false);
d71dc990 3814 while (cc)
9fbbba71 3815 {
9fbbba71 3816 cc->cand_stmt = cast_stmt;
98aaa1a6 3817 cc = lookup_cand (cc->next_interp);
9fbbba71 3818 }
88ca9ea1
BS
3819
3820 if (dump_file && (dump_flags & TDF_DETAILS))
3821 stmt_to_print = cast_stmt;
3822 }
3823 }
3824 else
3825 gcc_unreachable ();
3826
3827 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3828 {
3829 fputs ("With: ", dump_file);
ef6cb4c7 3830 print_gimple_stmt (dump_file, stmt_to_print, 0);
88ca9ea1
BS
3831 fputs ("\n", dump_file);
3832 }
3833}
3834
3835/* For each candidate in the tree rooted at C, replace it with
3836 an increment if such has been shown to be profitable. */
3837
3838static void
3839replace_profitable_candidates (slsr_cand_t c)
3840{
3841 if (!cand_already_replaced (c))
3842 {
807e902e 3843 widest_int increment = cand_abs_increment (c);
88ca9ea1 3844 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3845 int i;
88ca9ea1
BS
3846
3847 i = incr_vec_index (increment);
3848
3849 /* Only process profitable increments. Nothing useful can be done
3850 to a cast or copy. */
7bf55a70
BS
3851 if (i >= 0
3852 && profitable_increment_p (i)
fbcdc43e 3853 && orig_code != SSA_NAME
d822570f 3854 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3855 {
9b92d12b
BS
3856 if (phi_dependent_cand_p (c))
3857 {
c34923c4 3858 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
9b92d12b
BS
3859
3860 if (all_phi_incrs_profitable (c, phi))
3861 {
3862 /* Look up the LHS SSA name from C's basis. This will be
3863 the RHS1 of the adds we will introduce to create new
3864 phi arguments. */
3865 slsr_cand_t basis = lookup_cand (c->basis);
3866 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3867
3868 /* Create a new phi statement that will represent C's true
3869 basis after the transformation is complete. */
3870 location_t loc = gimple_location (c->cand_stmt);
3871 tree name = create_phi_basis (c, phi, basis_name,
3872 loc, UNKNOWN_STRIDE);
3873
3874 /* Replace C with an add of the new basis phi and the
3875 increment. */
a7a7d10e 3876 replace_one_candidate (c, i, name);
9b92d12b
BS
3877 }
3878 }
3879 else
3880 {
3881 slsr_cand_t basis = lookup_cand (c->basis);
3882 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3883 replace_one_candidate (c, i, basis_name);
9b92d12b 3884 }
88ca9ea1
BS
3885 }
3886 }
3887
3888 if (c->sibling)
3889 replace_profitable_candidates (lookup_cand (c->sibling));
3890
3891 if (c->dependent)
3892 replace_profitable_candidates (lookup_cand (c->dependent));
3893}
3894\f
f9453c07
BS
3895/* Analyze costs of related candidates in the candidate vector,
3896 and make beneficial replacements. */
3897
3898static void
3899analyze_candidates_and_replace (void)
3900{
3901 unsigned i;
3902 slsr_cand_t c;
3903
3904 /* Each candidate that has a null basis and a non-null
3905 dependent is the root of a tree of related statements.
3906 Analyze each tree to determine a subset of those
98aaa1a6
BC
3907 statements that can be replaced with maximum benefit.
3908
3909 Note the first NULL element is skipped. */
3910 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
f9453c07
BS
3911 {
3912 slsr_cand_t first_dep;
3913
3914 if (c->basis != 0 || c->dependent == 0)
3915 continue;
3916
3917 if (dump_file && (dump_flags & TDF_DETAILS))
3918 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3919 c->cand_num);
3920
3921 first_dep = lookup_cand (c->dependent);
3922
2749c8f6
BS
3923 /* If this is a chain of CAND_REFs, unconditionally replace
3924 each of them with a strength-reduced data reference. */
3925 if (c->kind == CAND_REF)
3926 replace_refs (c);
3927
9b92d12b
BS
3928 /* If the common stride of all related candidates is a known
3929 constant, each candidate without a phi-dependence can be
3930 profitably replaced. Each replaces a multiply by a single
3931 add, with the possibility that a feeding add also goes dead.
3932 A candidate with a phi-dependence is replaced only if the
3933 compensation code it requires is offset by the strength
3934 reduction savings. */
3935 else if (TREE_CODE (c->stride) == INTEGER_CST)
3936 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3937
88ca9ea1
BS
3938 /* When the stride is an SSA name, it may still be profitable
3939 to replace some or all of the dependent candidates, depending
3940 on whether the introduced increments can be reused, or are
3941 less expensive to calculate than the replaced statements. */
3942 else
3943 {
ef4bddc2 3944 machine_mode mode;
88ca9ea1
BS
3945 bool speed;
3946
3947 /* Determine whether we'll be generating pointer arithmetic
3948 when replacing candidates. */
3949 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3950 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3951
3952 /* If all candidates have already been replaced under other
3953 interpretations, nothing remains to be done. */
4b847da9 3954 if (!count_candidates (c))
88ca9ea1
BS
3955 continue;
3956
3957 /* Construct an array of increments for this candidate chain. */
4b847da9 3958 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3959 incr_vec_len = 0;
3960 record_increments (c);
3961
3962 /* Determine which increments are profitable to replace. */
3963 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3964 speed = optimize_cands_for_speed_p (c);
3965 analyze_increments (first_dep, mode, speed);
3966
3967 /* Insert initializers of the form T_0 = stride * increment
3968 for use in profitable replacements. */
3969 insert_initializers (first_dep);
3970 dump_incr_vec ();
3971
3972 /* Perform the replacements. */
3973 replace_profitable_candidates (first_dep);
3974 free (incr_vec);
3975 }
f9453c07 3976 }
b115e803
BS
3977
3978 /* For conditional candidates, we may have uncommitted insertions
3979 on edges to clean up. */
3980 gsi_commit_edge_inserts ();
f9453c07
BS
3981}
3982
17795822
TS
3983namespace {
3984
3985const pass_data pass_data_strength_reduction =
be55bfe6
TS
3986{
3987 GIMPLE_PASS, /* type */
3988 "slsr", /* name */
3989 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3990 TV_GIMPLE_SLSR, /* tv_id */
3991 ( PROP_cfg | PROP_ssa ), /* properties_required */
3992 0, /* properties_provided */
3993 0, /* properties_destroyed */
3994 0, /* todo_flags_start */
3bea341f 3995 0, /* todo_flags_finish */
be55bfe6
TS
3996};
3997
17795822 3998class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
3999{
4000public:
4001 pass_strength_reduction (gcc::context *ctxt)
4002 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
4003 {}
4004
4005 /* opt_pass methods: */
4006 virtual bool gate (function *) { return flag_tree_slsr; }
4007 virtual unsigned int execute (function *);
4008
4009}; // class pass_strength_reduction
4010
4011unsigned
4012pass_strength_reduction::execute (function *fun)
f9453c07 4013{
f9453c07
BS
4014 /* Create the obstack where candidates will reside. */
4015 gcc_obstack_init (&cand_obstack);
4016
98aaa1a6 4017 /* Allocate the candidate vector and initialize the first NULL element. */
9771b263 4018 cand_vec.create (128);
98aaa1a6 4019 cand_vec.safe_push (NULL);
f9453c07
BS
4020
4021 /* Allocate the mapping from statements to candidate indices. */
355fe088 4022 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
4023
4024 /* Create the obstack where candidate chains will reside. */
4025 gcc_obstack_init (&chain_obstack);
4026
3cfd4469 4027 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 4028 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 4029
96d75a2c 4030 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 4031 alt_base_map = new hash_map<tree, tree>;
96d75a2c 4032
f9453c07
BS
4033 /* Initialize the loop optimizer. We need to detect flow across
4034 back edges, and this gives us dominator information as well. */
4035 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4036
f9453c07
BS
4037 /* Walk the CFG in predominator order looking for strength reduction
4038 candidates. */
4d9192b5 4039 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 4040 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
4041
4042 if (dump_file && (dump_flags & TDF_DETAILS))
4043 {
4044 dump_cand_vec ();
4045 dump_cand_chains ();
4046 }
4047
b787e7a2 4048 delete alt_base_map;
96d75a2c
YZ
4049 free_affine_expand_cache (&name_expansions);
4050
f9453c07
BS
4051 /* Analyze costs and make appropriate replacements. */
4052 analyze_candidates_and_replace ();
4053
f9453c07 4054 loop_optimizer_finalize ();
c203e8a7
TS
4055 delete base_cand_map;
4056 base_cand_map = NULL;
f9453c07 4057 obstack_free (&chain_obstack, NULL);
b787e7a2 4058 delete stmt_cand_map;
9771b263 4059 cand_vec.release ();
f9453c07 4060 obstack_free (&cand_obstack, NULL);
f9453c07
BS
4061
4062 return 0;
4063}
4064
17795822
TS
4065} // anon namespace
4066
27a4cd48
DM
4067gimple_opt_pass *
4068make_pass_strength_reduction (gcc::context *ctxt)
4069{
4070 return new pass_strength_reduction (ctxt);
4071}