]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple-ssa-strength-reduction.c
Set tabstop=8 for gcc-match file types.
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
CommitLineData
f9453c07 1/* Straight-line strength reduction.
a5544970 2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
f9453c07
BS
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
9b92d12b
BS
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
f9453c07
BS
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "rtl.h"
40e23961 41#include "tree.h"
c7131fb2 42#include "gimple.h"
957060b5
AM
43#include "cfghooks.h"
44#include "tree-pass.h"
c7131fb2 45#include "ssa.h"
957060b5 46#include "expmed.h"
957060b5 47#include "gimple-pretty-print.h"
40e23961 48#include "fold-const.h"
5be5c238 49#include "gimple-iterator.h"
18f429e2 50#include "gimplify-me.h"
d8a2d370 51#include "stor-layout.h"
f9453c07 52#include "cfgloop.h"
442b4905 53#include "tree-cfg.h"
f9453c07 54#include "domwalk.h"
ccdbfe93 55#include "params.h"
4484a35a 56#include "tree-ssa-address.h"
96d75a2c 57#include "tree-affine.h"
bef52a68 58#include "tree-eh.h"
9b2b7279 59#include "builtins.h"
f9453c07
BS
60\f
61/* Information about a strength reduction candidate. Each statement
62 in the candidate table represents an expression of one of the
63 following forms (the special case of CAND_REF will be described
64 later):
65
66 (CAND_MULT) S1: X = (B + i) * S
67 (CAND_ADD) S1: X = B + (i * S)
68
69 Here X and B are SSA names, i is an integer constant, and S is
70 either an SSA name or a constant. We call B the "base," i the
71 "index", and S the "stride."
72
73 Any statement S0 that dominates S1 and is of the form:
74
75 (CAND_MULT) S0: Y = (B + i') * S
76 (CAND_ADD) S0: Y = B + (i' * S)
77
78 is called a "basis" for S1. In both cases, S1 may be replaced by
79
80 S1': X = Y + (i - i') * S,
81
82 where (i - i') * S is folded to the extent possible.
83
84 All gimple statements are visited in dominator order, and each
85 statement that may contribute to one of the forms of S1 above is
86 given at least one entry in the candidate table. Such statements
87 include addition, pointer addition, subtraction, multiplication,
88 negation, copies, and nontrivial type casts. If a statement may
89 represent more than one expression of the forms of S1 above,
90 multiple "interpretations" are stored in the table and chained
91 together. Examples:
92
93 * An add of two SSA names may treat either operand as the base.
94 * A multiply of two SSA names, likewise.
95 * A copy or cast may be thought of as either a CAND_MULT with
96 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
97
98 Candidate records are allocated from an obstack. They are addressed
99 both from a hash table keyed on S1, and from a vector of candidate
100 pointers arranged in predominator order.
101
102 Opportunity note
103 ----------------
104 Currently we don't recognize:
105
106 S0: Y = (S * i') - B
107 S1: X = (S * i) - B
108
109 as a strength reduction opportunity, even though this S1 would
110 also be replaceable by the S1' above. This can be added if it
2749c8f6
BS
111 comes up in practice.
112
113 Strength reduction in addressing
114 --------------------------------
115 There is another kind of candidate known as CAND_REF. A CAND_REF
116 describes a statement containing a memory reference having
117 complex addressing that might benefit from strength reduction.
118 Specifically, we are interested in references for which
119 get_inner_reference returns a base address, offset, and bitpos as
120 follows:
121
122 base: MEM_REF (T1, C1)
123 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
124 bitpos: C4 * BITS_PER_UNIT
125
126 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
127 arbitrary integer constants. Note that C2 may be zero, in which
128 case the offset will be MULT_EXPR (T2, C3).
129
130 When this pattern is recognized, the original memory reference
131 can be replaced with:
132
133 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
134 C1 + (C2 * C3) + C4)
135
136 which distributes the multiply to allow constant folding. When
137 two or more addressing expressions can be represented by MEM_REFs
138 of this form, differing only in the constants C1, C2, and C4,
139 making this substitution produces more efficient addressing during
140 the RTL phases. When there are not at least two expressions with
141 the same values of T1, T2, and C3, there is nothing to be gained
142 by the replacement.
143
144 Strength reduction of CAND_REFs uses the same infrastructure as
145 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
146 field, MULT_EXPR (T2, C3) in the stride (S) field, and
147 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
148 is thus another CAND_REF with the same B and S values. When at
149 least two CAND_REFs are chained together using the basis relation,
150 each of them is replaced as above, resulting in improved code
9b92d12b
BS
151 generation for addressing.
152
153 Conditional candidates
154 ======================
155
156 Conditional candidates are best illustrated with an example.
157 Consider the code sequence:
158
159 (1) x_0 = ...;
160 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
161 if (...)
162 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
163 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
164 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
165 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
166
167 Here strength reduction is complicated by the uncertain value of x_2.
168 A legitimate transformation is:
169
170 (1) x_0 = ...;
171 (2) a_0 = x_0 * 5;
172 if (...)
173 {
174 (3) [x_1 = x_0 + 1;]
175 (3a) t_1 = a_0 + 5;
176 }
177 (4) [x_2 = PHI <x_0, x_1>;]
178 (4a) t_2 = PHI <a_0, t_1>;
179 (5) [x_3 = x_2 + 1;]
180 (6r) a_1 = t_2 + 5;
181
182 where the bracketed instructions may go dead.
183
184 To recognize this opportunity, we have to observe that statement (6)
185 has a "hidden basis" (2). The hidden basis is unlike a normal basis
186 in that the statement and the hidden basis have different base SSA
187 names (x_2 and x_0, respectively). The relationship is established
188 when a statement's base name (x_2) is defined by a phi statement (4),
189 each argument of which (x_0, x_1) has an identical "derived base name."
190 If the argument is defined by a candidate (as x_1 is by (3)) that is a
191 CAND_ADD having a stride of 1, the derived base name of the argument is
192 the base name of the candidate (x_0). Otherwise, the argument itself
193 is its derived base name (as is the case with argument x_0).
194
195 The hidden basis for statement (6) is the nearest dominating candidate
196 whose base name is the derived base name (x_0) of the feeding phi (4),
197 and whose stride is identical to that of the statement. We can then
198 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
199 allowing the final replacement of (6) by the strength-reduced (6r).
200
201 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
202 A CAND_PHI is not a candidate for replacement, but is maintained in the
203 candidate table to ease discovery of hidden bases. Any phi statement
204 whose arguments share a common derived base name is entered into the
205 table with the derived base name, an (arbitrary) index of zero, and a
206 stride of 1. A statement with a hidden basis can then be detected by
207 simply looking up its feeding phi definition in the candidate table,
208 extracting the derived base name, and searching for a basis in the
209 usual manner after substituting the derived base name.
210
211 Note that the transformation is only valid when the original phi and
212 the statements that define the phi's arguments are all at the same
213 position in the loop hierarchy. */
f9453c07
BS
214
215
216/* Index into the candidate vector, offset by 1. VECs are zero-based,
217 while cand_idx's are one-based, with zero indicating null. */
218typedef unsigned cand_idx;
219
220/* The kind of candidate. */
221enum cand_kind
222{
223 CAND_MULT,
2749c8f6 224 CAND_ADD,
9b92d12b
BS
225 CAND_REF,
226 CAND_PHI
f9453c07
BS
227};
228
6c1dae73 229class slsr_cand_d
f9453c07 230{
6c1dae73 231public:
f9453c07 232 /* The candidate statement S1. */
355fe088 233 gimple *cand_stmt;
f9453c07 234
3cfd4469
BS
235 /* The base expression B: often an SSA name, but not always. */
236 tree base_expr;
f9453c07
BS
237
238 /* The stride S. */
239 tree stride;
240
241 /* The index constant i. */
807e902e 242 widest_int index;
f9453c07 243
3cfd4469 244 /* The type of the candidate. This is normally the type of base_expr,
f9453c07 245 but casts may have occurred when combining feeding instructions.
2749c8f6
BS
246 A candidate can only be a basis for candidates of the same final type.
247 (For CAND_REFs, this is the type to be used for operand 1 of the
248 replacement MEM_REF.) */
f9453c07
BS
249 tree cand_type;
250
0b56e9ad
BS
251 /* The type to be used to interpret the stride field when the stride
252 is not a constant. Normally the same as the type of the recorded
253 stride, but when the stride has been cast we need to maintain that
254 knowledge in order to make legal substitutions without losing
255 precision. When the stride is a constant, this will be sizetype. */
256 tree stride_type;
257
f9453c07
BS
258 /* The kind of candidate (CAND_MULT, etc.). */
259 enum cand_kind kind;
260
261 /* Index of this candidate in the candidate vector. */
262 cand_idx cand_num;
263
264 /* Index of the next candidate record for the same statement.
265 A statement may be useful in more than one way (e.g., due to
266 commutativity). So we can have multiple "interpretations"
267 of a statement. */
268 cand_idx next_interp;
269
d71dc990
BS
270 /* Index of the first candidate record in a chain for the same
271 statement. */
272 cand_idx first_interp;
273
f9453c07
BS
274 /* Index of the basis statement S0, if any, in the candidate vector. */
275 cand_idx basis;
276
277 /* First candidate for which this candidate is a basis, if one exists. */
278 cand_idx dependent;
279
280 /* Next candidate having the same basis as this one. */
281 cand_idx sibling;
282
9b92d12b
BS
283 /* If this is a conditional candidate, the CAND_PHI candidate
284 that defines the base SSA name B. */
285 cand_idx def_phi;
f9453c07
BS
286
287 /* Savings that can be expected from eliminating dead code if this
288 candidate is replaced. */
289 int dead_savings;
65d3dce8
BS
290
291 /* For PHI candidates, use a visited flag to keep from processing the
292 same PHI twice from multiple paths. */
293 int visited;
294
295 /* We sometimes have to cache a phi basis with a phi candidate to
296 avoid processing it twice. Valid only if visited==1. */
297 tree cached_basis;
f9453c07
BS
298};
299
99b1c316
MS
300typedef class slsr_cand_d slsr_cand, *slsr_cand_t;
301typedef const class slsr_cand_d *const_slsr_cand_t;
f9453c07
BS
302
303/* Pointers to candidates are chained together as part of a mapping
3cfd4469 304 from base expressions to the candidates that use them. */
f9453c07
BS
305
306struct cand_chain_d
307{
3cfd4469
BS
308 /* Base expression for the chain of candidates: often, but not
309 always, an SSA name. */
310 tree base_expr;
f9453c07
BS
311
312 /* Pointer to a candidate. */
313 slsr_cand_t cand;
314
315 /* Chain pointer. */
316 struct cand_chain_d *next;
317
318};
319
320typedef struct cand_chain_d cand_chain, *cand_chain_t;
321typedef const struct cand_chain_d *const_cand_chain_t;
322
88ca9ea1
BS
323/* Information about a unique "increment" associated with candidates
324 having an SSA name for a stride. An increment is the difference
325 between the index of the candidate and the index of its basis,
326 i.e., (i - i') as discussed in the module commentary.
327
328 When we are not going to generate address arithmetic we treat
329 increments that differ only in sign as the same, allowing sharing
330 of the cost of initializers. The absolute value of the increment
331 is stored in the incr_info. */
332
6c1dae73 333class incr_info_d
88ca9ea1 334{
6c1dae73 335public:
88ca9ea1 336 /* The increment that relates a candidate to its basis. */
807e902e 337 widest_int incr;
88ca9ea1
BS
338
339 /* How many times the increment occurs in the candidate tree. */
340 unsigned count;
341
342 /* Cost of replacing candidates using this increment. Negative and
343 zero costs indicate replacement should be performed. */
344 int cost;
345
346 /* If this increment is profitable but is not -1, 0, or 1, it requires
347 an initializer T_0 = stride * incr to be found or introduced in the
348 nearest common dominator of all candidates. This field holds T_0
349 for subsequent use. */
350 tree initializer;
351
352 /* If the initializer was found to already exist, this is the block
353 where it was found. */
354 basic_block init_bb;
355};
356
99b1c316 357typedef class incr_info_d incr_info, *incr_info_t;
88ca9ea1 358
f9453c07
BS
359/* Candidates are maintained in a vector. If candidate X dominates
360 candidate Y, then X appears before Y in the vector; but the
361 converse does not necessarily hold. */
9771b263 362static vec<slsr_cand_t> cand_vec;
f9453c07
BS
363
364enum cost_consts
365{
366 COST_NEUTRAL = 0,
367 COST_INFINITE = 1000
368};
369
9b92d12b
BS
370enum stride_status
371{
372 UNKNOWN_STRIDE = 0,
373 KNOWN_STRIDE = 1
374};
375
376enum phi_adjust_status
377{
378 NOT_PHI_ADJUST = 0,
379 PHI_ADJUST = 1
380};
381
382enum count_phis_status
383{
384 DONT_COUNT_PHIS = 0,
385 COUNT_PHIS = 1
386};
65d3dce8
BS
387
388/* Constrain how many PHI nodes we will visit for a conditional
389 candidate (depth and breadth). */
390const int MAX_SPREAD = 16;
391
f9453c07 392/* Pointer map embodying a mapping from statements to candidates. */
355fe088 393static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
f9453c07
BS
394
395/* Obstack for candidates. */
396static struct obstack cand_obstack;
397
f9453c07
BS
398/* Obstack for candidate chains. */
399static struct obstack chain_obstack;
88ca9ea1
BS
400
401/* An array INCR_VEC of incr_infos is used during analysis of related
402 candidates having an SSA name for a stride. INCR_VEC_LEN describes
7bf55a70
BS
403 its current length. MAX_INCR_VEC_LEN is used to avoid costly
404 pathological cases. */
88ca9ea1
BS
405static incr_info_t incr_vec;
406static unsigned incr_vec_len;
7bf55a70 407const int MAX_INCR_VEC_LEN = 16;
88ca9ea1
BS
408
409/* For a chain of candidates with unknown stride, indicates whether or not
410 we must generate pointer arithmetic when replacing statements. */
411static bool address_arithmetic_p;
9b92d12b
BS
412
413/* Forward function declarations. */
414static slsr_cand_t base_cand_from_table (tree);
a7a7d10e 415static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
0916f876 416static bool legal_cast_p_1 (tree, tree);
f9453c07
BS
417\f
418/* Produce a pointer to the IDX'th candidate in the candidate vector. */
419
420static slsr_cand_t
421lookup_cand (cand_idx idx)
422{
98aaa1a6 423 return cand_vec[idx];
f9453c07
BS
424}
425
4a8fb1a1 426/* Helper for hashing a candidate chain header. */
2749c8f6 427
8d67ee55 428struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
2749c8f6 429{
67f58944
TS
430 static inline hashval_t hash (const cand_chain *);
431 static inline bool equal (const cand_chain *, const cand_chain *);
4a8fb1a1 432};
2749c8f6 433
4a8fb1a1 434inline hashval_t
67f58944 435cand_chain_hasher::hash (const cand_chain *p)
2749c8f6 436{
4a8fb1a1
LC
437 tree base_expr = p->base_expr;
438 return iterative_hash_expr (base_expr, 0);
2749c8f6
BS
439}
440
4a8fb1a1 441inline bool
67f58944 442cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
2749c8f6 443{
3cfd4469 444 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
2749c8f6 445}
4a8fb1a1
LC
446
447/* Hash table embodying a mapping from base exprs to chains of candidates. */
c203e8a7 448static hash_table<cand_chain_hasher> *base_cand_map;
2749c8f6 449\f
96d75a2c 450/* Pointer map used by tree_to_aff_combination_expand. */
39c8aaa4 451static hash_map<tree, name_expansion *> *name_expansions;
96d75a2c 452/* Pointer map embodying a mapping from bases to alternative bases. */
b787e7a2 453static hash_map<tree, tree> *alt_base_map;
96d75a2c
YZ
454
455/* Given BASE, use the tree affine combiniation facilities to
456 find the underlying tree expression for BASE, with any
8fde427f
YZ
457 immediate offset excluded.
458
459 N.B. we should eliminate this backtracking with better forward
460 analysis in a future release. */
96d75a2c
YZ
461
462static tree
463get_alternative_base (tree base)
464{
b787e7a2 465 tree *result = alt_base_map->get (base);
96d75a2c
YZ
466
467 if (result == NULL)
468 {
469 tree expr;
470 aff_tree aff;
471
472 tree_to_aff_combination_expand (base, TREE_TYPE (base),
473 &aff, &name_expansions);
807e902e 474 aff.offset = 0;
96d75a2c
YZ
475 expr = aff_combination_to_tree (&aff);
476
b787e7a2 477 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
96d75a2c 478
b787e7a2 479 return expr == base ? NULL : expr;
96d75a2c
YZ
480 }
481
482 return *result;
483}
484
9b92d12b 485/* Look in the candidate table for a CAND_PHI that defines BASE and
8b28cf47 486 return it if found; otherwise return NULL. */
f9453c07 487
9b92d12b 488static cand_idx
8b28cf47 489find_phi_def (tree base)
9b92d12b
BS
490{
491 slsr_cand_t c;
492
493 if (TREE_CODE (base) != SSA_NAME)
494 return 0;
29105868 495
9b92d12b
BS
496 c = base_cand_from_table (base);
497
e75210d6
BS
498 if (!c || c->kind != CAND_PHI
499 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
9b92d12b
BS
500 return 0;
501
502 return c->cand_num;
503}
504
df11b2ea
BS
505/* Determine whether all uses of NAME are directly or indirectly
506 used by STMT. That is, we want to know whether if STMT goes
507 dead, the definition of NAME also goes dead. */
508static bool
509uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
510{
511 gimple *use_stmt;
512 imm_use_iterator iter;
513 bool retval = true;
514
515 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
516 {
517 if (use_stmt == stmt || is_gimple_debug (use_stmt))
518 continue;
519
520 if (!is_gimple_assign (use_stmt)
521 || !gimple_get_lhs (use_stmt)
522 || !is_gimple_reg (gimple_get_lhs (use_stmt))
523 || recurse >= 10
524 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
525 recurse + 1))
526 {
527 retval = false;
528 BREAK_FROM_IMM_USE_STMT (iter);
529 }
530 }
531
532 return retval;
533}
534
9b92d12b 535/* Helper routine for find_basis_for_candidate. May be called twice:
96d75a2c
YZ
536 once for the candidate's base expr, and optionally again either for
537 the candidate's phi definition or for a CAND_REF's alternative base
538 expression. */
9b92d12b
BS
539
540static slsr_cand_t
541find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
f9453c07 542{
2749c8f6 543 cand_chain mapping_key;
f9453c07
BS
544 cand_chain_t chain;
545 slsr_cand_t basis = NULL;
546
ccdbfe93
BS
547 // Limit potential of N^2 behavior for long candidate chains.
548 int iters = 0;
549 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
550
9b92d12b 551 mapping_key.base_expr = base_expr;
c203e8a7 552 chain = base_cand_map->find (&mapping_key);
f9453c07 553
ccdbfe93 554 for (; chain && iters < max_iters; chain = chain->next, ++iters)
f9453c07
BS
555 {
556 slsr_cand_t one_basis = chain->cand;
557
558 if (one_basis->kind != c->kind
69e1a1a3 559 || one_basis->cand_stmt == c->cand_stmt
f9453c07
BS
560 || !operand_equal_p (one_basis->stride, c->stride, 0)
561 || !types_compatible_p (one_basis->cand_type, c->cand_type)
0b56e9ad 562 || !types_compatible_p (one_basis->stride_type, c->stride_type)
f9453c07
BS
563 || !dominated_by_p (CDI_DOMINATORS,
564 gimple_bb (c->cand_stmt),
565 gimple_bb (one_basis->cand_stmt)))
566 continue;
567
e75210d6
BS
568 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
569 if (lhs && TREE_CODE (lhs) == SSA_NAME
570 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
571 continue;
572
f9453c07
BS
573 if (!basis || basis->cand_num < one_basis->cand_num)
574 basis = one_basis;
575 }
576
9b92d12b
BS
577 return basis;
578}
579
580/* Use the base expr from candidate C to look for possible candidates
581 that can serve as a basis for C. Each potential basis must also
582 appear in a block that dominates the candidate statement and have
583 the same stride and type. If more than one possible basis exists,
584 the one with highest index in the vector is chosen; this will be
585 the most immediately dominating basis. */
586
587static int
588find_basis_for_candidate (slsr_cand_t c)
589{
590 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
591
592 /* If a candidate doesn't have a basis using its base expression,
593 it may have a basis hidden by one or more intervening phis. */
594 if (!basis && c->def_phi)
595 {
596 basic_block basis_bb, phi_bb;
597 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
598 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
599
600 if (basis)
601 {
602 /* A hidden basis must dominate the phi-definition of the
603 candidate's base name. */
604 phi_bb = gimple_bb (phi_cand->cand_stmt);
605 basis_bb = gimple_bb (basis->cand_stmt);
606
607 if (phi_bb == basis_bb
608 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
609 {
610 basis = NULL;
611 c->basis = 0;
612 }
613
614 /* If we found a hidden basis, estimate additional dead-code
615 savings if the phi and its feeding statements can be removed. */
df11b2ea
BS
616 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
617 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
9b92d12b
BS
618 c->dead_savings += phi_cand->dead_savings;
619 }
620 }
621
8fde427f 622 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
96d75a2c
YZ
623 {
624 tree alt_base_expr = get_alternative_base (c->base_expr);
625 if (alt_base_expr)
626 basis = find_basis_for_base_expr (c, alt_base_expr);
627 }
628
f9453c07
BS
629 if (basis)
630 {
631 c->sibling = basis->dependent;
632 basis->dependent = c->cand_num;
633 return basis->cand_num;
634 }
635
636 return 0;
637}
638
96d75a2c
YZ
639/* Record a mapping from BASE to C, indicating that C may potentially serve
640 as a basis using that base expression. BASE may be the same as
641 C->BASE_EXPR; alternatively BASE can be a different tree that share the
642 underlining expression of C->BASE_EXPR. */
f9453c07
BS
643
644static void
96d75a2c 645record_potential_basis (slsr_cand_t c, tree base)
f9453c07 646{
2749c8f6 647 cand_chain_t node;
4a8fb1a1 648 cand_chain **slot;
f9453c07 649
96d75a2c
YZ
650 gcc_assert (base);
651
f9453c07 652 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
96d75a2c 653 node->base_expr = base;
f9453c07
BS
654 node->cand = c;
655 node->next = NULL;
c203e8a7 656 slot = base_cand_map->find_slot (node, INSERT);
f9453c07 657
2749c8f6 658 if (*slot)
f9453c07 659 {
2749c8f6 660 cand_chain_t head = (cand_chain_t) (*slot);
f9453c07
BS
661 node->next = head->next;
662 head->next = node;
663 }
664 else
2749c8f6 665 *slot = node;
f9453c07
BS
666}
667
668/* Allocate storage for a new candidate and initialize its fields.
96d75a2c
YZ
669 Attempt to find a basis for the candidate.
670
671 For CAND_REF, an alternative base may also be recorded and used
672 to find a basis. This helps cases where the expression hidden
673 behind BASE (which is usually an SSA_NAME) has immediate offset,
674 e.g.
675
676 a2[i][j] = 1;
677 a2[i + 20][j] = 2; */
f9453c07
BS
678
679static slsr_cand_t
355fe088 680alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
807e902e 681 const widest_int &index, tree stride, tree ctype,
0b56e9ad 682 tree stype, unsigned savings)
f9453c07
BS
683{
684 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
685 sizeof (slsr_cand));
686 c->cand_stmt = gs;
3cfd4469 687 c->base_expr = base;
f9453c07
BS
688 c->stride = stride;
689 c->index = index;
690 c->cand_type = ctype;
0b56e9ad 691 c->stride_type = stype;
f9453c07 692 c->kind = kind;
98aaa1a6 693 c->cand_num = cand_vec.length ();
f9453c07 694 c->next_interp = 0;
d71dc990 695 c->first_interp = c->cand_num;
f9453c07
BS
696 c->dependent = 0;
697 c->sibling = 0;
8b28cf47 698 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
f9453c07 699 c->dead_savings = savings;
65d3dce8
BS
700 c->visited = 0;
701 c->cached_basis = NULL_TREE;
f9453c07 702
9771b263 703 cand_vec.safe_push (c);
9b92d12b
BS
704
705 if (kind == CAND_PHI)
706 c->basis = 0;
707 else
708 c->basis = find_basis_for_candidate (c);
709
96d75a2c 710 record_potential_basis (c, base);
8fde427f 711 if (flag_expensive_optimizations && kind == CAND_REF)
96d75a2c
YZ
712 {
713 tree alt_base = get_alternative_base (base);
714 if (alt_base)
715 record_potential_basis (c, alt_base);
716 }
f9453c07
BS
717
718 return c;
719}
720
721/* Determine the target cost of statement GS when compiling according
722 to SPEED. */
723
724static int
355fe088 725stmt_cost (gimple *gs, bool speed)
f9453c07
BS
726{
727 tree lhs, rhs1, rhs2;
ef4bddc2 728 machine_mode lhs_mode;
f9453c07
BS
729
730 gcc_assert (is_gimple_assign (gs));
731 lhs = gimple_assign_lhs (gs);
732 rhs1 = gimple_assign_rhs1 (gs);
733 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
734
735 switch (gimple_assign_rhs_code (gs))
736 {
737 case MULT_EXPR:
738 rhs2 = gimple_assign_rhs2 (gs);
739
9541ffee 740 if (tree_fits_shwi_p (rhs2))
eb1ce453 741 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
f9453c07
BS
742
743 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
5322d07e 744 return mul_cost (speed, lhs_mode);
f9453c07
BS
745
746 case PLUS_EXPR:
747 case POINTER_PLUS_EXPR:
748 case MINUS_EXPR:
5322d07e 749 return add_cost (speed, lhs_mode);
f9453c07
BS
750
751 case NEGATE_EXPR:
5322d07e 752 return neg_cost (speed, lhs_mode);
f9453c07 753
d822570f 754 CASE_CONVERT:
6dd8f4bb 755 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
f9453c07
BS
756
757 /* Note that we don't assign costs to copies that in most cases
758 will go away. */
fbcdc43e
BS
759 case SSA_NAME:
760 return 0;
761
f9453c07
BS
762 default:
763 ;
764 }
765
766 gcc_unreachable ();
767 return 0;
768}
769
770/* Look up the defining statement for BASE_IN and return a pointer
771 to its candidate in the candidate table, if any; otherwise NULL.
772 Only CAND_ADD and CAND_MULT candidates are returned. */
773
774static slsr_cand_t
775base_cand_from_table (tree base_in)
776{
777 slsr_cand_t *result;
778
355fe088 779 gimple *def = SSA_NAME_DEF_STMT (base_in);
f9453c07
BS
780 if (!def)
781 return (slsr_cand_t) NULL;
782
b787e7a2 783 result = stmt_cand_map->get (def);
2749c8f6
BS
784
785 if (result && (*result)->kind != CAND_REF)
786 return *result;
f9453c07 787
2749c8f6 788 return (slsr_cand_t) NULL;
f9453c07
BS
789}
790
791/* Add an entry to the statement-to-candidate mapping. */
792
793static void
355fe088 794add_cand_for_stmt (gimple *gs, slsr_cand_t c)
f9453c07 795{
b787e7a2 796 gcc_assert (!stmt_cand_map->put (gs, c));
f9453c07
BS
797}
798\f
9b92d12b
BS
799/* Given PHI which contains a phi statement, determine whether it
800 satisfies all the requirements of a phi candidate. If so, create
801 a candidate. Note that a CAND_PHI never has a basis itself, but
802 is used to help find a basis for subsequent candidates. */
803
804static void
538dd0b7 805slsr_process_phi (gphi *phi, bool speed)
9b92d12b
BS
806{
807 unsigned i;
808 tree arg0_base = NULL_TREE, base_type;
809 slsr_cand_t c;
99b1c316 810 class loop *cand_loop = gimple_bb (phi)->loop_father;
9b92d12b
BS
811 unsigned savings = 0;
812
813 /* A CAND_PHI requires each of its arguments to have the same
814 derived base name. (See the module header commentary for a
815 definition of derived base names.) Furthermore, all feeding
816 definitions must be in the same position in the loop hierarchy
817 as PHI. */
818
819 for (i = 0; i < gimple_phi_num_args (phi); i++)
820 {
821 slsr_cand_t arg_cand;
822 tree arg = gimple_phi_arg_def (phi, i);
823 tree derived_base_name = NULL_TREE;
355fe088 824 gimple *arg_stmt = NULL;
9b92d12b
BS
825 basic_block arg_bb = NULL;
826
827 if (TREE_CODE (arg) != SSA_NAME)
828 return;
829
830 arg_cand = base_cand_from_table (arg);
831
832 if (arg_cand)
833 {
834 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
835 {
836 if (!arg_cand->next_interp)
837 return;
838
839 arg_cand = lookup_cand (arg_cand->next_interp);
840 }
841
842 if (!integer_onep (arg_cand->stride))
843 return;
844
845 derived_base_name = arg_cand->base_expr;
846 arg_stmt = arg_cand->cand_stmt;
847 arg_bb = gimple_bb (arg_stmt);
848
849 /* Gather potential dead code savings if the phi statement
850 can be removed later on. */
df11b2ea 851 if (uses_consumed_by_stmt (arg, phi))
9b92d12b
BS
852 {
853 if (gimple_code (arg_stmt) == GIMPLE_PHI)
854 savings += arg_cand->dead_savings;
855 else
856 savings += stmt_cost (arg_stmt, speed);
857 }
858 }
6e281ce3 859 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
9b92d12b
BS
860 {
861 derived_base_name = arg;
6e281ce3 862 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
9b92d12b
BS
863 }
864
865 if (!arg_bb || arg_bb->loop_father != cand_loop)
866 return;
867
868 if (i == 0)
869 arg0_base = derived_base_name;
870 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
871 return;
872 }
873
874 /* Create the candidate. "alloc_cand_and_find_basis" is named
875 misleadingly for this case, as no basis will be sought for a
876 CAND_PHI. */
877 base_type = TREE_TYPE (arg0_base);
878
807e902e 879 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
0b56e9ad
BS
880 0, integer_one_node, base_type,
881 sizetype, savings);
9b92d12b
BS
882
883 /* Add the candidate to the statement-candidate mapping. */
884 add_cand_for_stmt (phi, c);
885}
886
c068654b
BC
887/* Given PBASE which is a pointer to tree, look up the defining
888 statement for it and check whether the candidate is in the
889 form of:
890
891 X = B + (1 * S), S is integer constant
892 X = B + (i * S), S is integer one
893
894 If so, set PBASE to the candidate's base_expr and return double
895 int (i * S).
896 Otherwise, just return double int zero. */
897
807e902e 898static widest_int
c068654b
BC
899backtrace_base_for_ref (tree *pbase)
900{
901 tree base_in = *pbase;
902 slsr_cand_t base_cand;
903
904 STRIP_NOPS (base_in);
0916f876
YZ
905
906 /* Strip off widening conversion(s) to handle cases where
907 e.g. 'B' is widened from an 'int' in order to calculate
908 a 64-bit address. */
909 if (CONVERT_EXPR_P (base_in)
0b56e9ad
BS
910 && legal_cast_p_1 (TREE_TYPE (base_in),
911 TREE_TYPE (TREE_OPERAND (base_in, 0))))
0916f876
YZ
912 base_in = get_unwidened (base_in, NULL_TREE);
913
c068654b 914 if (TREE_CODE (base_in) != SSA_NAME)
807e902e 915 return 0;
c068654b
BC
916
917 base_cand = base_cand_from_table (base_in);
918
919 while (base_cand && base_cand->kind != CAND_PHI)
920 {
921 if (base_cand->kind == CAND_ADD
807e902e 922 && base_cand->index == 1
c068654b
BC
923 && TREE_CODE (base_cand->stride) == INTEGER_CST)
924 {
925 /* X = B + (1 * S), S is integer constant. */
926 *pbase = base_cand->base_expr;
807e902e 927 return wi::to_widest (base_cand->stride);
c068654b
BC
928 }
929 else if (base_cand->kind == CAND_ADD
930 && TREE_CODE (base_cand->stride) == INTEGER_CST
931 && integer_onep (base_cand->stride))
1d2151c6 932 {
c068654b
BC
933 /* X = B + (i * S), S is integer one. */
934 *pbase = base_cand->base_expr;
935 return base_cand->index;
936 }
937
98aaa1a6 938 base_cand = lookup_cand (base_cand->next_interp);
c068654b
BC
939 }
940
807e902e 941 return 0;
c068654b
BC
942}
943
2749c8f6
BS
944/* Look for the following pattern:
945
946 *PBASE: MEM_REF (T1, C1)
947
948 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
949 or
950 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
951 or
952 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
953
954 *PINDEX: C4 * BITS_PER_UNIT
955
956 If not present, leave the input values unchanged and return FALSE.
957 Otherwise, modify the input values as follows and return TRUE:
958
959 *PBASE: T1
960 *POFFSET: MULT_EXPR (T2, C3)
c068654b
BC
961 *PINDEX: C1 + (C2 * C3) + C4
962
963 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
964 will be further restructured to:
965
966 *PBASE: T1
967 *POFFSET: MULT_EXPR (T2', C3)
968 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
2749c8f6
BS
969
970static bool
807e902e 971restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
2749c8f6
BS
972 tree *ptype)
973{
974 tree base = *pbase, offset = *poffset;
807e902e
KZ
975 widest_int index = *pindex;
976 tree mult_op0, t1, t2, type;
977 widest_int c1, c2, c3, c4, c5;
aca52e6f 978 offset_int mem_offset;
2749c8f6
BS
979
980 if (!base
981 || !offset
982 || TREE_CODE (base) != MEM_REF
aca52e6f 983 || !mem_ref_offset (base).is_constant (&mem_offset)
2749c8f6
BS
984 || TREE_CODE (offset) != MULT_EXPR
985 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
807e902e 986 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
2749c8f6
BS
987 return false;
988
989 t1 = TREE_OPERAND (base, 0);
aca52e6f 990 c1 = widest_int::from (mem_offset, SIGNED);
2749c8f6
BS
991 type = TREE_TYPE (TREE_OPERAND (base, 1));
992
993 mult_op0 = TREE_OPERAND (offset, 0);
807e902e 994 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
2749c8f6
BS
995
996 if (TREE_CODE (mult_op0) == PLUS_EXPR)
997
998 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
999 {
1000 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1001 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1002 }
1003 else
1004 return false;
1005
1006 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1007
1008 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1009 {
1010 t2 = TREE_OPERAND (mult_op0, 0);
807e902e 1011 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
2749c8f6
BS
1012 }
1013 else
1014 return false;
1015
1016 else
1017 {
1018 t2 = mult_op0;
807e902e 1019 c2 = 0;
2749c8f6
BS
1020 }
1021
8de73453 1022 c4 = index >> LOG2_BITS_PER_UNIT;
c068654b 1023 c5 = backtrace_base_for_ref (&t2);
2749c8f6
BS
1024
1025 *pbase = t1;
c068654b 1026 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
807e902e 1027 wide_int_to_tree (sizetype, c3));
c068654b 1028 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
2749c8f6
BS
1029 *ptype = type;
1030
1031 return true;
1032}
1033
1034/* Given GS which contains a data reference, create a CAND_REF entry in
1035 the candidate table and attempt to find a basis. */
1036
1037static void
355fe088 1038slsr_process_ref (gimple *gs)
2749c8f6
BS
1039{
1040 tree ref_expr, base, offset, type;
f37fac2b 1041 poly_int64 bitsize, bitpos;
ef4bddc2 1042 machine_mode mode;
ee45a32d 1043 int unsignedp, reversep, volatilep;
2749c8f6
BS
1044 slsr_cand_t c;
1045
1046 if (gimple_vdef (gs))
1047 ref_expr = gimple_assign_lhs (gs);
1048 else
1049 ref_expr = gimple_assign_rhs1 (gs);
1050
1051 if (!handled_component_p (ref_expr)
1052 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1053 || (TREE_CODE (ref_expr) == COMPONENT_REF
1054 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1055 return;
1056
1057 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
25b75a48 1058 &unsignedp, &reversep, &volatilep);
f37fac2b
RS
1059 HOST_WIDE_INT cbitpos;
1060 if (reversep || !bitpos.is_constant (&cbitpos))
ee45a32d 1061 return;
f37fac2b 1062 widest_int index = cbitpos;
2749c8f6
BS
1063
1064 if (!restructure_reference (&base, &offset, &index, &type))
1065 return;
1066
1067 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
0b56e9ad 1068 type, sizetype, 0);
2749c8f6
BS
1069
1070 /* Add the candidate to the statement-candidate mapping. */
1071 add_cand_for_stmt (gs, c);
1072}
1073
f9453c07
BS
1074/* Create a candidate entry for a statement GS, where GS multiplies
1075 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1076 about the two SSA names into the new candidate. Return the new
1077 candidate. */
1078
1079static slsr_cand_t
355fe088 1080create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1081{
1082 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1083 tree stype = NULL_TREE;
807e902e 1084 widest_int index;
f9453c07
BS
1085 unsigned savings = 0;
1086 slsr_cand_t c;
1087 slsr_cand_t base_cand = base_cand_from_table (base_in);
1088
1089 /* Look at all interpretations of the base candidate, if necessary,
1090 to find information to propagate into this candidate. */
9b92d12b 1091 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1092 {
1093
9b92d12b 1094 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
f9453c07
BS
1095 {
1096 /* Y = (B + i') * 1
1097 X = Y * Z
1098 ================
1099 X = (B + i') * Z */
3cfd4469 1100 base = base_cand->base_expr;
f9453c07
BS
1101 index = base_cand->index;
1102 stride = stride_in;
1103 ctype = base_cand->cand_type;
0b56e9ad 1104 stype = TREE_TYPE (stride_in);
f9453c07
BS
1105 if (has_single_use (base_in))
1106 savings = (base_cand->dead_savings
1107 + stmt_cost (base_cand->cand_stmt, speed));
1108 }
1109 else if (base_cand->kind == CAND_ADD
1110 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1111 {
1112 /* Y = B + (i' * S), S constant
1113 X = Y * Z
1114 ============================
1115 X = B + ((i' * S) * Z) */
3cfd4469 1116 base = base_cand->base_expr;
807e902e 1117 index = base_cand->index * wi::to_widest (base_cand->stride);
f9453c07
BS
1118 stride = stride_in;
1119 ctype = base_cand->cand_type;
0b56e9ad 1120 stype = TREE_TYPE (stride_in);
f9453c07
BS
1121 if (has_single_use (base_in))
1122 savings = (base_cand->dead_savings
1123 + stmt_cost (base_cand->cand_stmt, speed));
1124 }
1125
98aaa1a6 1126 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1127 }
1128
1129 if (!base)
1130 {
1131 /* No interpretations had anything useful to propagate, so
1132 produce X = (Y + 0) * Z. */
1133 base = base_in;
807e902e 1134 index = 0;
f9453c07 1135 stride = stride_in;
b2ec94d4 1136 ctype = TREE_TYPE (base_in);
0b56e9ad 1137 stype = TREE_TYPE (stride_in);
f9453c07
BS
1138 }
1139
1140 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1141 ctype, stype, savings);
f9453c07
BS
1142 return c;
1143}
1144
1145/* Create a candidate entry for a statement GS, where GS multiplies
1146 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1147 information about BASE_IN into the new candidate. Return the new
1148 candidate. */
1149
1150static slsr_cand_t
355fe088 1151create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
f9453c07
BS
1152{
1153 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
807e902e 1154 widest_int index, temp;
f9453c07
BS
1155 unsigned savings = 0;
1156 slsr_cand_t c;
1157 slsr_cand_t base_cand = base_cand_from_table (base_in);
1158
1159 /* Look at all interpretations of the base candidate, if necessary,
1160 to find information to propagate into this candidate. */
9b92d12b 1161 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1162 {
1163 if (base_cand->kind == CAND_MULT
1164 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1165 {
1166 /* Y = (B + i') * S, S constant
1167 X = Y * c
1168 ============================
1169 X = (B + i') * (S * c) */
807e902e
KZ
1170 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1171 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
61ba7329
BS
1172 {
1173 base = base_cand->base_expr;
1174 index = base_cand->index;
807e902e 1175 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
61ba7329
BS
1176 ctype = base_cand->cand_type;
1177 if (has_single_use (base_in))
1178 savings = (base_cand->dead_savings
1179 + stmt_cost (base_cand->cand_stmt, speed));
1180 }
f9453c07 1181 }
9b92d12b 1182 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
f9453c07
BS
1183 {
1184 /* Y = B + (i' * 1)
1185 X = Y * c
1186 ===========================
1187 X = (B + i') * c */
3cfd4469 1188 base = base_cand->base_expr;
f9453c07
BS
1189 index = base_cand->index;
1190 stride = stride_in;
1191 ctype = base_cand->cand_type;
1192 if (has_single_use (base_in))
1193 savings = (base_cand->dead_savings
1194 + stmt_cost (base_cand->cand_stmt, speed));
1195 }
1196 else if (base_cand->kind == CAND_ADD
807e902e 1197 && base_cand->index == 1
f9453c07
BS
1198 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1199 {
1200 /* Y = B + (1 * S), S constant
1201 X = Y * c
1202 ===========================
1203 X = (B + S) * c */
3cfd4469 1204 base = base_cand->base_expr;
807e902e 1205 index = wi::to_widest (base_cand->stride);
f9453c07
BS
1206 stride = stride_in;
1207 ctype = base_cand->cand_type;
1208 if (has_single_use (base_in))
1209 savings = (base_cand->dead_savings
1210 + stmt_cost (base_cand->cand_stmt, speed));
1211 }
1212
98aaa1a6 1213 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1214 }
1215
1216 if (!base)
1217 {
1218 /* No interpretations had anything useful to propagate, so
1219 produce X = (Y + 0) * c. */
1220 base = base_in;
807e902e 1221 index = 0;
f9453c07 1222 stride = stride_in;
b2ec94d4 1223 ctype = TREE_TYPE (base_in);
f9453c07
BS
1224 }
1225
1226 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
0b56e9ad 1227 ctype, sizetype, savings);
f9453c07
BS
1228 return c;
1229}
1230
1231/* Given GS which is a multiply of scalar integers, make an appropriate
1232 entry in the candidate table. If this is a multiply of two SSA names,
1233 create two CAND_MULT interpretations and attempt to find a basis for
1234 each of them. Otherwise, create a single CAND_MULT and attempt to
1235 find a basis. */
1236
1237static void
355fe088 1238slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1239{
1240 slsr_cand_t c, c2;
1241
1242 /* If this is a multiply of an SSA name with itself, it is highly
1243 unlikely that we will get a strength reduction opportunity, so
1244 don't record it as a candidate. This simplifies the logic for
1245 finding a basis, so if this is removed that must be considered. */
1246 if (rhs1 == rhs2)
1247 return;
1248
1249 if (TREE_CODE (rhs2) == SSA_NAME)
1250 {
1251 /* Record an interpretation of this statement in the candidate table
3cfd4469 1252 assuming RHS1 is the base expression and RHS2 is the stride. */
f9453c07
BS
1253 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1254
1255 /* Add the first interpretation to the statement-candidate mapping. */
1256 add_cand_for_stmt (gs, c);
1257
1258 /* Record another interpretation of this statement assuming RHS1
3cfd4469 1259 is the stride and RHS2 is the base expression. */
f9453c07
BS
1260 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1261 c->next_interp = c2->cand_num;
d71dc990 1262 c2->first_interp = c->cand_num;
f9453c07 1263 }
f942ef18 1264 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
f9453c07
BS
1265 {
1266 /* Record an interpretation for the multiply-immediate. */
1267 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1268
1269 /* Add the interpretation to the statement-candidate mapping. */
1270 add_cand_for_stmt (gs, c);
1271 }
1272}
1273
1274/* Create a candidate entry for a statement GS, where GS adds two
1275 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1276 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1277 information about the two SSA names into the new candidate.
1278 Return the new candidate. */
1279
1280static slsr_cand_t
355fe088 1281create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
f9453c07
BS
1282 bool subtract_p, bool speed)
1283{
0b56e9ad
BS
1284 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1285 tree stype = NULL_TREE;
807e902e 1286 widest_int index;
f9453c07
BS
1287 unsigned savings = 0;
1288 slsr_cand_t c;
1289 slsr_cand_t base_cand = base_cand_from_table (base_in);
1290 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1291
1292 /* The most useful transformation is a multiply-immediate feeding
1293 an add or subtract. Look for that first. */
9b92d12b 1294 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
f9453c07
BS
1295 {
1296 if (addend_cand->kind == CAND_MULT
807e902e 1297 && addend_cand->index == 0
f9453c07
BS
1298 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1299 {
1300 /* Z = (B + 0) * S, S constant
1301 X = Y +/- Z
1302 ===========================
1303 X = Y + ((+/-1 * S) * B) */
1304 base = base_in;
807e902e 1305 index = wi::to_widest (addend_cand->stride);
f9453c07 1306 if (subtract_p)
27bcd47c 1307 index = -index;
3cfd4469 1308 stride = addend_cand->base_expr;
b2ec94d4 1309 ctype = TREE_TYPE (base_in);
0b56e9ad 1310 stype = addend_cand->cand_type;
f9453c07
BS
1311 if (has_single_use (addend_in))
1312 savings = (addend_cand->dead_savings
1313 + stmt_cost (addend_cand->cand_stmt, speed));
1314 }
1315
98aaa1a6 1316 addend_cand = lookup_cand (addend_cand->next_interp);
f9453c07
BS
1317 }
1318
9b92d12b 1319 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07
BS
1320 {
1321 if (base_cand->kind == CAND_ADD
807e902e 1322 && (base_cand->index == 0
f9453c07
BS
1323 || operand_equal_p (base_cand->stride,
1324 integer_zero_node, 0)))
1325 {
1326 /* Y = B + (i' * S), i' * S = 0
1327 X = Y +/- Z
1328 ============================
1329 X = B + (+/-1 * Z) */
3cfd4469 1330 base = base_cand->base_expr;
807e902e 1331 index = subtract_p ? -1 : 1;
f9453c07
BS
1332 stride = addend_in;
1333 ctype = base_cand->cand_type;
0b56e9ad
BS
1334 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1335 : TREE_TYPE (addend_in));
f9453c07
BS
1336 if (has_single_use (base_in))
1337 savings = (base_cand->dead_savings
1338 + stmt_cost (base_cand->cand_stmt, speed));
1339 }
1340 else if (subtract_p)
1341 {
1342 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1343
9b92d12b 1344 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
f9453c07
BS
1345 {
1346 if (subtrahend_cand->kind == CAND_MULT
807e902e 1347 && subtrahend_cand->index == 0
f9453c07
BS
1348 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1349 {
1350 /* Z = (B + 0) * S, S constant
1351 X = Y - Z
1352 ===========================
1353 Value: X = Y + ((-1 * S) * B) */
1354 base = base_in;
807e902e 1355 index = wi::to_widest (subtrahend_cand->stride);
27bcd47c 1356 index = -index;
3cfd4469 1357 stride = subtrahend_cand->base_expr;
b2ec94d4 1358 ctype = TREE_TYPE (base_in);
0b56e9ad 1359 stype = subtrahend_cand->cand_type;
f9453c07
BS
1360 if (has_single_use (addend_in))
1361 savings = (subtrahend_cand->dead_savings
1362 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1363 }
98aaa1a6
BC
1364
1365 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
f9453c07
BS
1366 }
1367 }
1368
98aaa1a6 1369 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1370 }
1371
1372 if (!base)
1373 {
1374 /* No interpretations had anything useful to propagate, so
1375 produce X = Y + (1 * Z). */
1376 base = base_in;
807e902e 1377 index = subtract_p ? -1 : 1;
f9453c07 1378 stride = addend_in;
b2ec94d4 1379 ctype = TREE_TYPE (base_in);
0b56e9ad
BS
1380 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1381 : TREE_TYPE (addend_in));
f9453c07
BS
1382 }
1383
1384 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
0b56e9ad 1385 ctype, stype, savings);
f9453c07
BS
1386 return c;
1387}
1388
1389/* Create a candidate entry for a statement GS, where GS adds SSA
1390 name BASE_IN to constant INDEX_IN. Propagate any known information
1391 about BASE_IN into the new candidate. Return the new candidate. */
1392
1393static slsr_cand_t
355fe088 1394create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
807e902e 1395 bool speed)
f9453c07
BS
1396{
1397 enum cand_kind kind = CAND_ADD;
1398 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
0b56e9ad 1399 tree stype = NULL_TREE;
807e902e 1400 widest_int index, multiple;
f9453c07
BS
1401 unsigned savings = 0;
1402 slsr_cand_t c;
1403 slsr_cand_t base_cand = base_cand_from_table (base_in);
1404
9b92d12b 1405 while (base_cand && !base && base_cand->kind != CAND_PHI)
f9453c07 1406 {
807e902e 1407 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
f9453c07
BS
1408
1409 if (TREE_CODE (base_cand->stride) == INTEGER_CST
807e902e
KZ
1410 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1411 sign, &multiple))
f9453c07
BS
1412 {
1413 /* Y = (B + i') * S, S constant, c = kS for some integer k
1414 X = Y + c
1415 ============================
1416 X = (B + (i'+ k)) * S
1417 OR
1418 Y = B + (i' * S), S constant, c = kS for some integer k
1419 X = Y + c
1420 ============================
1421 X = (B + (i'+ k)) * S */
1422 kind = base_cand->kind;
3cfd4469 1423 base = base_cand->base_expr;
27bcd47c 1424 index = base_cand->index + multiple;
f9453c07
BS
1425 stride = base_cand->stride;
1426 ctype = base_cand->cand_type;
0b56e9ad 1427 stype = base_cand->stride_type;
f9453c07
BS
1428 if (has_single_use (base_in))
1429 savings = (base_cand->dead_savings
1430 + stmt_cost (base_cand->cand_stmt, speed));
1431 }
1432
98aaa1a6 1433 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1434 }
1435
1436 if (!base)
1437 {
1438 /* No interpretations had anything useful to propagate, so
1439 produce X = Y + (c * 1). */
1440 kind = CAND_ADD;
1441 base = base_in;
1442 index = index_in;
1443 stride = integer_one_node;
b2ec94d4 1444 ctype = TREE_TYPE (base_in);
0b56e9ad 1445 stype = sizetype;
f9453c07
BS
1446 }
1447
1448 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
0b56e9ad 1449 ctype, stype, savings);
f9453c07
BS
1450 return c;
1451}
1452
1453/* Given GS which is an add or subtract of scalar integers or pointers,
1454 make at least one appropriate entry in the candidate table. */
1455
1456static void
355fe088 1457slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
f9453c07
BS
1458{
1459 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1460 slsr_cand_t c = NULL, c2;
1461
1462 if (TREE_CODE (rhs2) == SSA_NAME)
1463 {
3cfd4469 1464 /* First record an interpretation assuming RHS1 is the base expression
f9453c07
BS
1465 and RHS2 is the stride. But it doesn't make sense for the
1466 stride to be a pointer, so don't record a candidate in that case. */
b2ec94d4 1467 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
f9453c07
BS
1468 {
1469 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1470
1471 /* Add the first interpretation to the statement-candidate
1472 mapping. */
1473 add_cand_for_stmt (gs, c);
1474 }
1475
1476 /* If the two RHS operands are identical, or this is a subtract,
1477 we're done. */
1478 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1479 return;
1480
1481 /* Otherwise, record another interpretation assuming RHS2 is the
3cfd4469 1482 base expression and RHS1 is the stride, again provided that the
f9453c07 1483 stride is not a pointer. */
b2ec94d4 1484 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
f9453c07
BS
1485 {
1486 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1487 if (c)
d71dc990
BS
1488 {
1489 c->next_interp = c2->cand_num;
1490 c2->first_interp = c->cand_num;
1491 }
f9453c07
BS
1492 else
1493 add_cand_for_stmt (gs, c2);
1494 }
1495 }
36fd6408 1496 else if (TREE_CODE (rhs2) == INTEGER_CST)
f9453c07 1497 {
f9453c07 1498 /* Record an interpretation for the add-immediate. */
807e902e 1499 widest_int index = wi::to_widest (rhs2);
f9453c07 1500 if (subtract_p)
27bcd47c 1501 index = -index;
f9453c07
BS
1502
1503 c = create_add_imm_cand (gs, rhs1, index, speed);
1504
1505 /* Add the interpretation to the statement-candidate mapping. */
1506 add_cand_for_stmt (gs, c);
1507 }
1508}
1509
1510/* Given GS which is a negate of a scalar integer, make an appropriate
1511 entry in the candidate table. A negate is equivalent to a multiply
1512 by -1. */
1513
1514static void
355fe088 1515slsr_process_neg (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1516{
1517 /* Record a CAND_MULT interpretation for the multiply by -1. */
1518 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1519
1520 /* Add the interpretation to the statement-candidate mapping. */
1521 add_cand_for_stmt (gs, c);
1522}
1523
6b5eea61
BS
1524/* Help function for legal_cast_p, operating on two trees. Checks
1525 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1526 for more details. */
1527
1528static bool
0b56e9ad 1529legal_cast_p_1 (tree lhs_type, tree rhs_type)
6b5eea61 1530{
6b5eea61
BS
1531 unsigned lhs_size, rhs_size;
1532 bool lhs_wraps, rhs_wraps;
1533
6b5eea61
BS
1534 lhs_size = TYPE_PRECISION (lhs_type);
1535 rhs_size = TYPE_PRECISION (rhs_type);
20bd649a
MP
1536 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1537 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
6b5eea61
BS
1538
1539 if (lhs_size < rhs_size
1540 || (rhs_wraps && !lhs_wraps)
1541 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1542 return false;
1543
1544 return true;
1545}
1546
f9453c07
BS
1547/* Return TRUE if GS is a statement that defines an SSA name from
1548 a conversion and is legal for us to combine with an add and multiply
1549 in the candidate table. For example, suppose we have:
1550
1551 A = B + i;
1552 C = (type) A;
1553 D = C * S;
1554
1555 Without the type-cast, we would create a CAND_MULT for D with base B,
1556 index i, and stride S. We want to record this candidate only if it
1557 is equivalent to apply the type cast following the multiply:
1558
1559 A = B + i;
1560 E = A * S;
1561 D = (type) E;
1562
1563 We will record the type with the candidate for D. This allows us
1564 to use a similar previous candidate as a basis. If we have earlier seen
1565
1566 A' = B + i';
1567 C' = (type) A';
1568 D' = C' * S;
1569
1570 we can replace D with
1571
1572 D = D' + (i - i') * S;
1573
1574 But if moving the type-cast would change semantics, we mustn't do this.
1575
1576 This is legitimate for casts from a non-wrapping integral type to
1577 any integral type of the same or larger size. It is not legitimate
1578 to convert a wrapping type to a non-wrapping type, or to a wrapping
1579 type of a different size. I.e., with a wrapping type, we must
1580 assume that the addition B + i could wrap, in which case performing
1581 the multiply before or after one of the "illegal" type casts will
1582 have different semantics. */
1583
1584static bool
355fe088 1585legal_cast_p (gimple *gs, tree rhs)
f9453c07 1586{
f9453c07
BS
1587 if (!is_gimple_assign (gs)
1588 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1589 return false;
1590
0b56e9ad 1591 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
f9453c07
BS
1592}
1593
1594/* Given GS which is a cast to a scalar integer type, determine whether
1595 the cast is legal for strength reduction. If so, make at least one
1596 appropriate entry in the candidate table. */
1597
1598static void
355fe088 1599slsr_process_cast (gimple *gs, tree rhs1, bool speed)
f9453c07
BS
1600{
1601 tree lhs, ctype;
ac2a97db 1602 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1603 unsigned savings = 0;
1604
1605 if (!legal_cast_p (gs, rhs1))
1606 return;
1607
1608 lhs = gimple_assign_lhs (gs);
1609 base_cand = base_cand_from_table (rhs1);
1610 ctype = TREE_TYPE (lhs);
1611
9b92d12b 1612 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1613 {
d71dc990
BS
1614 slsr_cand_t first_cand = NULL;
1615
f9453c07
BS
1616 while (base_cand)
1617 {
1618 /* Propagate all data from the base candidate except the type,
1619 which comes from the cast, and the base candidate's cast,
1620 which is no longer applicable. */
1621 if (has_single_use (rhs1))
1622 savings = (base_cand->dead_savings
1623 + stmt_cost (base_cand->cand_stmt, speed));
1624
1625 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1626 base_cand->base_expr,
f9453c07 1627 base_cand->index, base_cand->stride,
0b56e9ad
BS
1628 ctype, base_cand->stride_type,
1629 savings);
d71dc990
BS
1630 if (!first_cand)
1631 first_cand = c;
1632
1633 if (first_cand != c)
1634 c->first_interp = first_cand->cand_num;
1635
98aaa1a6 1636 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1637 }
1638 }
1639 else
1640 {
1641 /* If nothing is known about the RHS, create fresh CAND_ADD and
1642 CAND_MULT interpretations:
1643
1644 X = Y + (0 * 1)
1645 X = (Y + 0) * 1
1646
1647 The first of these is somewhat arbitrary, but the choice of
1648 1 for the stride simplifies the logic for propagating casts
1649 into their uses. */
0b56e9ad
BS
1650 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1651 integer_one_node, ctype, sizetype, 0);
1652 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1653 integer_one_node, ctype, sizetype, 0);
f9453c07 1654 c->next_interp = c2->cand_num;
d71dc990 1655 c2->first_interp = c->cand_num;
f9453c07
BS
1656 }
1657
1658 /* Add the first (or only) interpretation to the statement-candidate
1659 mapping. */
1660 add_cand_for_stmt (gs, c);
1661}
1662
1663/* Given GS which is a copy of a scalar integer type, make at least one
1664 appropriate entry in the candidate table.
1665
1666 This interface is included for completeness, but is unnecessary
1667 if this pass immediately follows a pass that performs copy
1668 propagation, such as DOM. */
1669
1670static void
355fe088 1671slsr_process_copy (gimple *gs, tree rhs1, bool speed)
f9453c07 1672{
ac2a97db 1673 slsr_cand_t base_cand, c = NULL, c2;
f9453c07
BS
1674 unsigned savings = 0;
1675
1676 base_cand = base_cand_from_table (rhs1);
1677
9b92d12b 1678 if (base_cand && base_cand->kind != CAND_PHI)
f9453c07 1679 {
d71dc990
BS
1680 slsr_cand_t first_cand = NULL;
1681
f9453c07
BS
1682 while (base_cand)
1683 {
1684 /* Propagate all data from the base candidate. */
1685 if (has_single_use (rhs1))
1686 savings = (base_cand->dead_savings
1687 + stmt_cost (base_cand->cand_stmt, speed));
1688
1689 c = alloc_cand_and_find_basis (base_cand->kind, gs,
3cfd4469 1690 base_cand->base_expr,
f9453c07 1691 base_cand->index, base_cand->stride,
0b56e9ad
BS
1692 base_cand->cand_type,
1693 base_cand->stride_type, savings);
d71dc990
BS
1694 if (!first_cand)
1695 first_cand = c;
1696
1697 if (first_cand != c)
1698 c->first_interp = first_cand->cand_num;
1699
98aaa1a6 1700 base_cand = lookup_cand (base_cand->next_interp);
f9453c07
BS
1701 }
1702 }
1703 else
1704 {
1705 /* If nothing is known about the RHS, create fresh CAND_ADD and
1706 CAND_MULT interpretations:
1707
1708 X = Y + (0 * 1)
1709 X = (Y + 0) * 1
1710
1711 The first of these is somewhat arbitrary, but the choice of
1712 1 for the stride simplifies the logic for propagating casts
1713 into their uses. */
0b56e9ad
BS
1714 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1715 integer_one_node, TREE_TYPE (rhs1),
1716 sizetype, 0);
1717 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1718 integer_one_node, TREE_TYPE (rhs1),
1719 sizetype, 0);
f9453c07 1720 c->next_interp = c2->cand_num;
d71dc990 1721 c2->first_interp = c->cand_num;
f9453c07
BS
1722 }
1723
1724 /* Add the first (or only) interpretation to the statement-candidate
1725 mapping. */
1726 add_cand_for_stmt (gs, c);
1727}
1728\f
4d9192b5
TS
1729class find_candidates_dom_walker : public dom_walker
1730{
1731public:
1732 find_candidates_dom_walker (cdi_direction direction)
1733 : dom_walker (direction) {}
3daacdcd 1734 virtual edge before_dom_children (basic_block);
4d9192b5
TS
1735};
1736
f9453c07
BS
1737/* Find strength-reduction candidates in block BB. */
1738
3daacdcd 1739edge
4d9192b5 1740find_candidates_dom_walker::before_dom_children (basic_block bb)
f9453c07
BS
1741{
1742 bool speed = optimize_bb_for_speed_p (bb);
f9453c07 1743
538dd0b7
DM
1744 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1745 gsi_next (&gsi))
1746 slsr_process_phi (gsi.phi (), speed);
9b92d12b 1747
538dd0b7
DM
1748 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1749 gsi_next (&gsi))
f9453c07 1750 {
355fe088 1751 gimple *gs = gsi_stmt (gsi);
f9453c07 1752
36bbc05d 1753 if (stmt_could_throw_p (cfun, gs))
bef52a68
JJ
1754 continue;
1755
2749c8f6
BS
1756 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1757 slsr_process_ref (gs);
1758
1759 else if (is_gimple_assign (gs)
1ffbb016
RB
1760 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1761 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
f9453c07
BS
1762 {
1763 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1764
1765 switch (gimple_assign_rhs_code (gs))
1766 {
1767 case MULT_EXPR:
1768 case PLUS_EXPR:
1769 rhs1 = gimple_assign_rhs1 (gs);
1770 rhs2 = gimple_assign_rhs2 (gs);
1771 /* Should never happen, but currently some buggy situations
1772 in earlier phases put constants in rhs1. */
1773 if (TREE_CODE (rhs1) != SSA_NAME)
1774 continue;
1775 break;
1776
1777 /* Possible future opportunity: rhs1 of a ptr+ can be
1778 an ADDR_EXPR. */
1779 case POINTER_PLUS_EXPR:
1780 case MINUS_EXPR:
1781 rhs2 = gimple_assign_rhs2 (gs);
81fea426 1782 gcc_fallthrough ();
f9453c07 1783
d822570f 1784 CASE_CONVERT:
fbcdc43e 1785 case SSA_NAME:
f9453c07
BS
1786 case NEGATE_EXPR:
1787 rhs1 = gimple_assign_rhs1 (gs);
1788 if (TREE_CODE (rhs1) != SSA_NAME)
1789 continue;
1790 break;
1791
1792 default:
1793 ;
1794 }
1795
1796 switch (gimple_assign_rhs_code (gs))
1797 {
1798 case MULT_EXPR:
1799 slsr_process_mul (gs, rhs1, rhs2, speed);
1800 break;
1801
1802 case PLUS_EXPR:
1803 case POINTER_PLUS_EXPR:
1804 case MINUS_EXPR:
1805 slsr_process_add (gs, rhs1, rhs2, speed);
1806 break;
1807
1808 case NEGATE_EXPR:
1809 slsr_process_neg (gs, rhs1, speed);
1810 break;
1811
d822570f 1812 CASE_CONVERT:
f9453c07
BS
1813 slsr_process_cast (gs, rhs1, speed);
1814 break;
1815
fbcdc43e 1816 case SSA_NAME:
f9453c07
BS
1817 slsr_process_copy (gs, rhs1, speed);
1818 break;
1819
1820 default:
1821 ;
1822 }
1823 }
1824 }
3daacdcd 1825 return NULL;
f9453c07
BS
1826}
1827\f
1828/* Dump a candidate for debug. */
1829
1830static void
1831dump_candidate (slsr_cand_t c)
1832{
1833 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1834 gimple_bb (c->cand_stmt)->index);
ef6cb4c7 1835 print_gimple_stmt (dump_file, c->cand_stmt, 0);
f9453c07
BS
1836 switch (c->kind)
1837 {
1838 case CAND_MULT:
1839 fputs (" MULT : (", dump_file);
ef6cb4c7 1840 print_generic_expr (dump_file, c->base_expr);
f9453c07 1841 fputs (" + ", dump_file);
807e902e 1842 print_decs (c->index, dump_file);
f9453c07 1843 fputs (") * ", dump_file);
0b56e9ad
BS
1844 if (TREE_CODE (c->stride) != INTEGER_CST
1845 && c->stride_type != TREE_TYPE (c->stride))
1846 {
1847 fputs ("(", dump_file);
ef6cb4c7 1848 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1849 fputs (")", dump_file);
1850 }
ef6cb4c7 1851 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1852 fputs (" : ", dump_file);
1853 break;
1854 case CAND_ADD:
1855 fputs (" ADD : ", dump_file);
ef6cb4c7 1856 print_generic_expr (dump_file, c->base_expr);
f9453c07 1857 fputs (" + (", dump_file);
807e902e 1858 print_decs (c->index, dump_file);
f9453c07 1859 fputs (" * ", dump_file);
0b56e9ad
BS
1860 if (TREE_CODE (c->stride) != INTEGER_CST
1861 && c->stride_type != TREE_TYPE (c->stride))
1862 {
1863 fputs ("(", dump_file);
ef6cb4c7 1864 print_generic_expr (dump_file, c->stride_type);
0b56e9ad
BS
1865 fputs (")", dump_file);
1866 }
ef6cb4c7 1867 print_generic_expr (dump_file, c->stride);
f9453c07
BS
1868 fputs (") : ", dump_file);
1869 break;
2749c8f6
BS
1870 case CAND_REF:
1871 fputs (" REF : ", dump_file);
ef6cb4c7 1872 print_generic_expr (dump_file, c->base_expr);
2749c8f6 1873 fputs (" + (", dump_file);
ef6cb4c7 1874 print_generic_expr (dump_file, c->stride);
2749c8f6 1875 fputs (") + ", dump_file);
807e902e 1876 print_decs (c->index, dump_file);
2749c8f6
BS
1877 fputs (" : ", dump_file);
1878 break;
9b92d12b
BS
1879 case CAND_PHI:
1880 fputs (" PHI : ", dump_file);
ef6cb4c7 1881 print_generic_expr (dump_file, c->base_expr);
9b92d12b 1882 fputs (" + (unknown * ", dump_file);
ef6cb4c7 1883 print_generic_expr (dump_file, c->stride);
9b92d12b
BS
1884 fputs (") : ", dump_file);
1885 break;
f9453c07
BS
1886 default:
1887 gcc_unreachable ();
1888 }
ef6cb4c7 1889 print_generic_expr (dump_file, c->cand_type);
f9453c07
BS
1890 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1891 c->basis, c->dependent, c->sibling);
d71dc990
BS
1892 fprintf (dump_file,
1893 " next-interp: %d first-interp: %d dead-savings: %d\n",
1894 c->next_interp, c->first_interp, c->dead_savings);
f9453c07 1895 if (c->def_phi)
9b92d12b 1896 fprintf (dump_file, " phi: %d\n", c->def_phi);
f9453c07
BS
1897 fputs ("\n", dump_file);
1898}
1899
1900/* Dump the candidate vector for debug. */
1901
1902static void
1903dump_cand_vec (void)
1904{
1905 unsigned i;
1906 slsr_cand_t c;
1907
1908 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1909
9771b263 1910 FOR_EACH_VEC_ELT (cand_vec, i, c)
98aaa1a6
BC
1911 if (c != NULL)
1912 dump_candidate (c);
f9453c07
BS
1913}
1914
2749c8f6 1915/* Callback used to dump the candidate chains hash table. */
f9453c07 1916
4a8fb1a1
LC
1917int
1918ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
f9453c07 1919{
4a8fb1a1 1920 const_cand_chain_t chain = *slot;
2749c8f6 1921 cand_chain_t p;
f9453c07 1922
ef6cb4c7 1923 print_generic_expr (dump_file, chain->base_expr);
2749c8f6 1924 fprintf (dump_file, " -> %d", chain->cand->cand_num);
f9453c07 1925
2749c8f6
BS
1926 for (p = chain->next; p; p = p->next)
1927 fprintf (dump_file, " -> %d", p->cand->cand_num);
f9453c07 1928
2749c8f6
BS
1929 fputs ("\n", dump_file);
1930 return 1;
1931}
f9453c07 1932
2749c8f6 1933/* Dump the candidate chains. */
f9453c07 1934
2749c8f6
BS
1935static void
1936dump_cand_chains (void)
1937{
1938 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
c203e8a7
TS
1939 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1940 (NULL);
f9453c07
BS
1941 fputs ("\n", dump_file);
1942}
88ca9ea1
BS
1943
1944/* Dump the increment vector for debug. */
1945
1946static void
1947dump_incr_vec (void)
1948{
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1950 {
1951 unsigned i;
1952
1953 fprintf (dump_file, "\nIncrement vector:\n\n");
1954
1955 for (i = 0; i < incr_vec_len; i++)
1956 {
1957 fprintf (dump_file, "%3d increment: ", i);
807e902e 1958 print_decs (incr_vec[i].incr, dump_file);
88ca9ea1
BS
1959 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1960 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1961 fputs ("\n initializer: ", dump_file);
ef6cb4c7 1962 print_generic_expr (dump_file, incr_vec[i].initializer);
88ca9ea1
BS
1963 fputs ("\n\n", dump_file);
1964 }
1965 }
1966}
f9453c07 1967\f
2749c8f6
BS
1968/* Replace *EXPR in candidate C with an equivalent strength-reduced
1969 data reference. */
1970
1971static void
1972replace_ref (tree *expr, slsr_cand_t c)
1973{
78f6dd68
MJ
1974 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1975 unsigned HOST_WIDE_INT misalign;
1976 unsigned align;
1977
1978 /* Ensure the memory reference carries the minimum alignment
1979 requirement for the data type. See PR58041. */
1980 get_object_alignment_1 (*expr, &align, &misalign);
1981 if (misalign != 0)
146ec50f 1982 align = least_bit_hwi (misalign);
78f6dd68
MJ
1983 if (align < TYPE_ALIGN (acc_type))
1984 acc_type = build_aligned_type (acc_type, align);
1985
8907a722 1986 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
78f6dd68
MJ
1987 c->base_expr, c->stride);
1988 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
807e902e 1989 wide_int_to_tree (c->cand_type, c->index));
78f6dd68 1990
2749c8f6
BS
1991 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1992 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1993 TREE_OPERAND (mem_ref, 0)
1994 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1995 /*simple_p=*/true, NULL,
1996 /*before=*/true, GSI_SAME_STMT);
1997 copy_ref_info (mem_ref, *expr);
1998 *expr = mem_ref;
1999 update_stmt (c->cand_stmt);
2000}
2001
2002/* Replace CAND_REF candidate C, each sibling of candidate C, and each
2003 dependent of candidate C with an equivalent strength-reduced data
2004 reference. */
2005
2006static void
2007replace_refs (slsr_cand_t c)
2008{
96d75a2c
YZ
2009 if (dump_file && (dump_flags & TDF_DETAILS))
2010 {
2011 fputs ("Replacing reference: ", dump_file);
ef6cb4c7 2012 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2013 }
2014
2749c8f6
BS
2015 if (gimple_vdef (c->cand_stmt))
2016 {
2017 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2018 replace_ref (lhs, c);
2019 }
2020 else
2021 {
2022 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2023 replace_ref (rhs, c);
2024 }
2025
96d75a2c
YZ
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2027 {
2028 fputs ("With: ", dump_file);
ef6cb4c7 2029 print_gimple_stmt (dump_file, c->cand_stmt, 0);
96d75a2c
YZ
2030 fputs ("\n", dump_file);
2031 }
2032
2749c8f6
BS
2033 if (c->sibling)
2034 replace_refs (lookup_cand (c->sibling));
2035
2036 if (c->dependent)
2037 replace_refs (lookup_cand (c->dependent));
2038}
2039
9b92d12b
BS
2040/* Return TRUE if candidate C is dependent upon a PHI. */
2041
2042static bool
2043phi_dependent_cand_p (slsr_cand_t c)
2044{
2045 /* A candidate is not necessarily dependent upon a PHI just because
2046 it has a phi definition for its base name. It may have a basis
2047 that relies upon the same phi definition, in which case the PHI
2048 is irrelevant to this candidate. */
2049 return (c->def_phi
2050 && c->basis
2051 && lookup_cand (c->basis)->def_phi != c->def_phi);
2052}
2053
f9453c07
BS
2054/* Calculate the increment required for candidate C relative to
2055 its basis. */
2056
807e902e 2057static widest_int
f9453c07
BS
2058cand_increment (slsr_cand_t c)
2059{
2060 slsr_cand_t basis;
2061
2062 /* If the candidate doesn't have a basis, just return its own
2063 index. This is useful in record_increments to help us find
9b92d12b
BS
2064 an existing initializer. Also, if the candidate's basis is
2065 hidden by a phi, then its own index will be the increment
2066 from the newly introduced phi basis. */
2067 if (!c->basis || phi_dependent_cand_p (c))
f9453c07
BS
2068 return c->index;
2069
2070 basis = lookup_cand (c->basis);
3cfd4469 2071 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
27bcd47c 2072 return c->index - basis->index;
f9453c07
BS
2073}
2074
88ca9ea1
BS
2075/* Calculate the increment required for candidate C relative to
2076 its basis. If we aren't going to generate pointer arithmetic
2077 for this candidate, return the absolute value of that increment
2078 instead. */
2079
807e902e 2080static inline widest_int
88ca9ea1
BS
2081cand_abs_increment (slsr_cand_t c)
2082{
807e902e 2083 widest_int increment = cand_increment (c);
88ca9ea1 2084
807e902e 2085 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2086 increment = -increment;
88ca9ea1
BS
2087
2088 return increment;
2089}
2090
f9453c07
BS
2091/* Return TRUE iff candidate C has already been replaced under
2092 another interpretation. */
2093
2094static inline bool
2095cand_already_replaced (slsr_cand_t c)
2096{
2097 return (gimple_bb (c->cand_stmt) == 0);
2098}
2099
9b92d12b
BS
2100/* Common logic used by replace_unconditional_candidate and
2101 replace_conditional_candidate. */
f9453c07
BS
2102
2103static void
807e902e 2104replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
f9453c07 2105{
9b92d12b
BS
2106 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2107 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2108
8eb91869
BS
2109 /* It is not useful to replace casts, copies, negates, or adds of
2110 an SSA name and a constant. */
2111 if (cand_code == SSA_NAME
2112 || CONVERT_EXPR_CODE_P (cand_code)
2113 || cand_code == PLUS_EXPR
2114 || cand_code == POINTER_PLUS_EXPR
2115 || cand_code == MINUS_EXPR
2116 || cand_code == NEGATE_EXPR)
2117 return;
2118
2119 enum tree_code code = PLUS_EXPR;
2120 tree bump_tree;
2121 gimple *stmt_to_print = NULL;
2122
2123 if (wi::neg_p (bump))
9b92d12b 2124 {
8eb91869
BS
2125 code = MINUS_EXPR;
2126 bump = -bump;
2127 }
9b92d12b 2128
8eb91869
BS
2129 /* It is possible that the resulting bump doesn't fit in target_type.
2130 Abandon the replacement in this case. This does not affect
2131 siblings or dependents of C. */
2132 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2133 TYPE_SIGN (target_type)))
2134 return;
2135
2136 bump_tree = wide_int_to_tree (target_type, bump);
2137
2138 /* If the basis name and the candidate's LHS have incompatible types,
2139 introduce a cast. */
2140 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2141 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
9b92d12b 2142
8eb91869
BS
2143 if (dump_file && (dump_flags & TDF_DETAILS))
2144 {
2145 fputs ("Replacing: ", dump_file);
2146 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2147 }
2148
2149 if (bump == 0)
2150 {
2151 tree lhs = gimple_assign_lhs (c->cand_stmt);
2152 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2153 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2154 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2155 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2156 gsi_replace (&gsi, copy_stmt, false);
d71dc990 2157 while (cc)
8eb91869 2158 {
8eb91869 2159 cc->cand_stmt = copy_stmt;
98aaa1a6 2160 cc = lookup_cand (cc->next_interp);
8eb91869 2161 }
9b92d12b 2162 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869
BS
2163 stmt_to_print = copy_stmt;
2164 }
2165 else
2166 {
2167 tree rhs1, rhs2;
2168 if (cand_code != NEGATE_EXPR) {
2169 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2170 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2171 }
2172 if (cand_code != NEGATE_EXPR
2173 && ((operand_equal_p (rhs1, basis_name, 0)
2174 && operand_equal_p (rhs2, bump_tree, 0))
2175 || (operand_equal_p (rhs1, bump_tree, 0)
2176 && operand_equal_p (rhs2, basis_name, 0))))
9b92d12b 2177 {
8eb91869
BS
2178 if (dump_file && (dump_flags & TDF_DETAILS))
2179 {
2180 fputs ("(duplicate, not actually replacing)", dump_file);
2181 stmt_to_print = c->cand_stmt;
2182 }
9b92d12b 2183 }
8eb91869 2184 else
9b92d12b 2185 {
9b92d12b 2186 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 2187 slsr_cand_t cc = lookup_cand (c->first_interp);
8eb91869
BS
2188 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2189 update_stmt (gsi_stmt (gsi));
d71dc990 2190 while (cc)
9fbbba71 2191 {
8eb91869 2192 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 2193 cc = lookup_cand (cc->next_interp);
9fbbba71 2194 }
9b92d12b 2195 if (dump_file && (dump_flags & TDF_DETAILS))
8eb91869 2196 stmt_to_print = gsi_stmt (gsi);
9b92d12b 2197 }
8eb91869 2198 }
9b92d12b 2199
8eb91869
BS
2200 if (dump_file && (dump_flags & TDF_DETAILS))
2201 {
2202 fputs ("With: ", dump_file);
2203 print_gimple_stmt (dump_file, stmt_to_print, 0);
2204 fputs ("\n", dump_file);
9b92d12b
BS
2205 }
2206}
2207
2208/* Replace candidate C with an add or subtract. Note that we only
2209 operate on CAND_MULTs with known strides, so we will never generate
2210 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2211 X = Y + ((i - i') * S), as described in the module commentary. The
2212 folded value ((i - i') * S) is referred to here as the "bump." */
2213
2214static void
2215replace_unconditional_candidate (slsr_cand_t c)
2216{
2217 slsr_cand_t basis;
9b92d12b
BS
2218
2219 if (cand_already_replaced (c))
f9453c07
BS
2220 return;
2221
2222 basis = lookup_cand (c->basis);
807e902e 2223 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
9b92d12b 2224
a7a7d10e 2225 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
9b92d12b
BS
2226}
2227\f
7bf55a70
BS
2228/* Return the index in the increment vector of the given INCREMENT,
2229 or -1 if not found. The latter can occur if more than
2230 MAX_INCR_VEC_LEN increments have been found. */
9b92d12b 2231
7bf55a70 2232static inline int
807e902e 2233incr_vec_index (const widest_int &increment)
9b92d12b
BS
2234{
2235 unsigned i;
2236
2237 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2238 ;
2239
7bf55a70
BS
2240 if (i < incr_vec_len)
2241 return i;
2242 else
2243 return -1;
9b92d12b
BS
2244}
2245
2246/* Create a new statement along edge E to add BASIS_NAME to the product
2247 of INCREMENT and the stride of candidate C. Create and return a new
2248 SSA name from *VAR to be used as the LHS of the new statement.
2249 KNOWN_STRIDE is true iff C's stride is a constant. */
2250
2251static tree
2252create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
807e902e 2253 widest_int increment, edge e, location_t loc,
9b92d12b
BS
2254 bool known_stride)
2255{
9b92d12b 2256 tree lhs, basis_type;
0b56e9ad 2257 gassign *new_stmt, *cast_stmt = NULL;
9b92d12b
BS
2258
2259 /* If the add candidate along this incoming edge has the same
2260 index as C's hidden basis, the hidden basis represents this
2261 edge correctly. */
807e902e 2262 if (increment == 0)
9b92d12b
BS
2263 return basis_name;
2264
2265 basis_type = TREE_TYPE (basis_name);
2266 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2267
a929f266
BS
2268 /* Occasionally people convert integers to pointers without a
2269 cast, leading us into trouble if we aren't careful. */
2270 enum tree_code plus_code
2271 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2272
9b92d12b 2273 if (known_stride)
7139194b 2274 {
9b92d12b 2275 tree bump_tree;
a929f266 2276 enum tree_code code = plus_code;
807e902e 2277 widest_int bump = increment * wi::to_widest (c->stride);
a929f266 2278 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
9b92d12b
BS
2279 {
2280 code = MINUS_EXPR;
2281 bump = -bump;
2282 }
2283
a929f266
BS
2284 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2285 bump_tree = wide_int_to_tree (stride_type, bump);
0d0e4a03 2286 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
7139194b
AH
2287 }
2288 else
2289 {
7bf55a70 2290 int i;
a929f266 2291 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
9b92d12b 2292 i = incr_vec_index (negate_incr ? -increment : increment);
7bf55a70 2293 gcc_assert (i >= 0);
f9453c07 2294
9b92d12b
BS
2295 if (incr_vec[i].initializer)
2296 {
a929f266 2297 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
0d0e4a03
JJ
2298 new_stmt = gimple_build_assign (lhs, code, basis_name,
2299 incr_vec[i].initializer);
9b92d12b 2300 }
0b56e9ad
BS
2301 else {
2302 tree stride;
2303
2304 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2305 {
2306 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2307 "slsr");
2308 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2309 c->stride);
2310 stride = cast_stride;
2311 }
2312 else
2313 stride = c->stride;
2314
2315 if (increment == 1)
2316 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2317 else if (increment == -1)
2318 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2319 else
2320 gcc_unreachable ();
2321 }
f9453c07
BS
2322 }
2323
b115e803 2324 if (cast_stmt)
0b56e9ad 2325 {
b115e803
BS
2326 gimple_set_location (cast_stmt, loc);
2327 gsi_insert_on_edge (e, cast_stmt);
0b56e9ad 2328 }
9b92d12b
BS
2329
2330 gimple_set_location (new_stmt, loc);
b115e803 2331 gsi_insert_on_edge (e, new_stmt);
f9453c07
BS
2332
2333 if (dump_file && (dump_flags & TDF_DETAILS))
2334 {
0b56e9ad
BS
2335 if (cast_stmt)
2336 {
b115e803
BS
2337 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2338 e->src->index, e->dest->index);
ef6cb4c7 2339 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 2340 }
b115e803
BS
2341 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2342 e->dest->index);
ef6cb4c7 2343 print_gimple_stmt (dump_file, new_stmt, 0);
f9453c07
BS
2344 }
2345
9b92d12b
BS
2346 return lhs;
2347}
2348
65d3dce8
BS
2349/* Clear the visited field for a tree of PHI candidates. */
2350
2351static void
2352clear_visited (gphi *phi)
2353{
2354 unsigned i;
2355 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2356
2357 if (phi_cand->visited)
2358 {
2359 phi_cand->visited = 0;
2360
2361 for (i = 0; i < gimple_phi_num_args (phi); i++)
2362 {
2363 tree arg = gimple_phi_arg_def (phi, i);
2364 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2365 if (gimple_code (arg_def) == GIMPLE_PHI)
2366 clear_visited (as_a <gphi *> (arg_def));
2367 }
2368 }
2369}
2370
2371/* Recursive helper function for create_phi_basis. */
9b92d12b
BS
2372
2373static tree
65d3dce8
BS
2374create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2375 location_t loc, bool known_stride)
9b92d12b
BS
2376{
2377 int i;
2378 tree name, phi_arg;
538dd0b7 2379 gphi *phi;
9b92d12b
BS
2380 slsr_cand_t basis = lookup_cand (c->basis);
2381 int nargs = gimple_phi_num_args (from_phi);
2382 basic_block phi_bb = gimple_bb (from_phi);
5b3d5f76 2383 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
c8189787 2384 auto_vec<tree> phi_args (nargs);
9b92d12b 2385
65d3dce8
BS
2386 if (phi_cand->visited)
2387 return phi_cand->cached_basis;
2388 phi_cand->visited = 1;
2389
9b92d12b
BS
2390 /* Process each argument of the existing phi that represents
2391 conditionally-executed add candidates. */
2392 for (i = 0; i < nargs; i++)
f9453c07 2393 {
9b92d12b
BS
2394 edge e = (*phi_bb->preds)[i];
2395 tree arg = gimple_phi_arg_def (from_phi, i);
2396 tree feeding_def;
2397
2398 /* If the phi argument is the base name of the CAND_PHI, then
2399 this incoming arc should use the hidden basis. */
2400 if (operand_equal_p (arg, phi_cand->base_expr, 0))
807e902e 2401 if (basis->index == 0)
9b92d12b
BS
2402 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2403 else
2404 {
807e902e 2405 widest_int incr = -basis->index;
9b92d12b
BS
2406 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2407 e, loc, known_stride);
2408 }
2409 else
f9453c07 2410 {
355fe088 2411 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2412
2413 /* If there is another phi along this incoming edge, we must
2414 process it in the same fashion to ensure that all basis
2415 adjustments are made along its incoming edges. */
2416 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2417 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2418 loc, known_stride);
9b92d12b 2419 else
f9453c07 2420 {
9b92d12b 2421 slsr_cand_t arg_cand = base_cand_from_table (arg);
807e902e 2422 widest_int diff = arg_cand->index - basis->index;
9b92d12b
BS
2423 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2424 e, loc, known_stride);
f9453c07
BS
2425 }
2426 }
9b92d12b
BS
2427
2428 /* Because of recursion, we need to save the arguments in a vector
2429 so we can create the PHI statement all at once. Otherwise the
2430 storage for the half-created PHI can be reclaimed. */
2431 phi_args.safe_push (feeding_def);
f9453c07 2432 }
9b92d12b
BS
2433
2434 /* Create the new phi basis. */
2435 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2436 phi = create_phi_node (name, phi_bb);
2437 SSA_NAME_DEF_STMT (name) = phi;
2438
2439 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2440 {
2441 edge e = (*phi_bb->preds)[i];
2442 add_phi_arg (phi, phi_arg, e, loc);
2443 }
2444
2445 update_stmt (phi);
2446
f9453c07
BS
2447 if (dump_file && (dump_flags & TDF_DETAILS))
2448 {
9b92d12b 2449 fputs ("Introducing new phi basis: ", dump_file);
ef6cb4c7 2450 print_gimple_stmt (dump_file, phi, 0);
f9453c07 2451 }
9b92d12b 2452
65d3dce8 2453 phi_cand->cached_basis = name;
9b92d12b 2454 return name;
f9453c07
BS
2455}
2456
65d3dce8
BS
2457/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2458 is hidden by the phi node FROM_PHI, create a new phi node in the same
2459 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2460 with its phi arguments representing conditional adjustments to the
2461 hidden basis along conditional incoming paths. Those adjustments are
2462 made by creating add statements (and sometimes recursively creating
2463 phis) along those incoming paths. LOC is the location to attach to
2464 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2465 constant. */
2466
2467static tree
2468create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2469 location_t loc, bool known_stride)
2470{
2471 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2472 known_stride);
2473 gcc_assert (retval);
2474 clear_visited (as_a <gphi *> (from_phi));
2475 return retval;
2476}
2477
9b92d12b
BS
2478/* Given a candidate C whose basis is hidden by at least one intervening
2479 phi, introduce a matching number of new phis to represent its basis
2480 adjusted by conditional increments along possible incoming paths. Then
2481 replace C as though it were an unconditional candidate, using the new
2482 basis. */
f9453c07
BS
2483
2484static void
9b92d12b 2485replace_conditional_candidate (slsr_cand_t c)
f9453c07 2486{
a7a7d10e 2487 tree basis_name, name;
9b92d12b
BS
2488 slsr_cand_t basis;
2489 location_t loc;
f9453c07 2490
9b92d12b
BS
2491 /* Look up the LHS SSA name from C's basis. This will be the
2492 RHS1 of the adds we will introduce to create new phi arguments. */
2493 basis = lookup_cand (c->basis);
2494 basis_name = gimple_assign_lhs (basis->cand_stmt);
f9453c07 2495
9b92d12b
BS
2496 /* Create a new phi statement which will represent C's true basis
2497 after the transformation is complete. */
2498 loc = gimple_location (c->cand_stmt);
2499 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2500 basis_name, loc, KNOWN_STRIDE);
65d3dce8 2501
9b92d12b 2502 /* Replace C with an add of the new basis phi and a constant. */
807e902e 2503 widest_int bump = c->index * wi::to_widest (c->stride);
f9453c07 2504
a7a7d10e 2505 replace_mult_candidate (c, name, bump);
f9453c07 2506}
88ca9ea1 2507
65d3dce8
BS
2508/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2509 how many PHI nodes we have visited at this point in the tree walk. */
9b92d12b
BS
2510
2511static int
65d3dce8 2512phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
88ca9ea1
BS
2513{
2514 unsigned i;
9b92d12b 2515 int cost = 0;
5b3d5f76 2516 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
88ca9ea1 2517
65d3dce8
BS
2518 if (phi_cand->visited)
2519 return 0;
2520
2521 phi_cand->visited = 1;
2522 (*spread)++;
2523
0100cd3f
BS
2524 /* If we work our way back to a phi that isn't dominated by the hidden
2525 basis, this isn't a candidate for replacement. Indicate this by
2526 returning an unreasonably high cost. It's not easy to detect
2527 these situations when determining the basis, so we defer the
2528 decision until now. */
2529 basic_block phi_bb = gimple_bb (phi);
2530 slsr_cand_t basis = lookup_cand (c->basis);
2531 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2532
2533 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2534 return COST_INFINITE;
2535
9b92d12b
BS
2536 for (i = 0; i < gimple_phi_num_args (phi); i++)
2537 {
2538 tree arg = gimple_phi_arg_def (phi, i);
2539
2540 if (arg != phi_cand->base_expr)
2541 {
355fe088 2542 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b
BS
2543
2544 if (gimple_code (arg_def) == GIMPLE_PHI)
65d3dce8
BS
2545 {
2546 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2547
2548 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2549 return COST_INFINITE;
2550 }
9b92d12b
BS
2551 else
2552 {
2553 slsr_cand_t arg_cand = base_cand_from_table (arg);
2554
2555 if (arg_cand->index != c->index)
2556 cost += one_add_cost;
2557 }
2558 }
2559 }
2560
2561 return cost;
88ca9ea1
BS
2562}
2563
65d3dce8
BS
2564/* Compute the expected costs of inserting basis adjustments for
2565 candidate C with phi-definition PHI. The cost of inserting
2566 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2567 which are themselves phi results, recursively calculate costs
2568 for those phis as well. */
2569
2570static int
2571phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2572{
2573 int spread = 0;
2574 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2575 clear_visited (as_a <gphi *> (phi));
2576 return retval;
2577}
9b92d12b
BS
2578/* For candidate C, each sibling of candidate C, and each dependent of
2579 candidate C, determine whether the candidate is dependent upon a
2580 phi that hides its basis. If not, replace the candidate unconditionally.
2581 Otherwise, determine whether the cost of introducing compensation code
2582 for the candidate is offset by the gains from strength reduction. If
2583 so, replace the candidate and introduce the compensation code. */
2584
2585static void
2586replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2587{
2588 if (phi_dependent_cand_p (c))
2589 {
df11b2ea
BS
2590 /* A multiply candidate with a stride of 1 is just an artifice
2591 of a copy or cast; there is no value in replacing it. */
2592 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
9b92d12b
BS
2593 {
2594 /* A candidate dependent upon a phi will replace a multiply by
2595 a constant with an add, and will insert at most one add for
2596 each phi argument. Add these costs with the potential dead-code
2597 savings to determine profitability. */
2598 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2599 int mult_savings = stmt_cost (c->cand_stmt, speed);
355fe088 2600 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2601 tree phi_result = gimple_phi_result (phi);
2602 int one_add_cost = add_cost (speed,
2603 TYPE_MODE (TREE_TYPE (phi_result)));
2604 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2605 int cost = add_costs - mult_savings - c->dead_savings;
2606
2607 if (dump_file && (dump_flags & TDF_DETAILS))
2608 {
2609 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2610 fprintf (dump_file, " add_costs = %d\n", add_costs);
2611 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2612 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2613 fprintf (dump_file, " cost = %d\n", cost);
2614 if (cost <= COST_NEUTRAL)
2615 fputs (" Replacing...\n", dump_file);
2616 else
2617 fputs (" Not replaced.\n", dump_file);
2618 }
2619
2620 if (cost <= COST_NEUTRAL)
2621 replace_conditional_candidate (c);
2622 }
2623 }
2624 else
2625 replace_unconditional_candidate (c);
2626
2627 if (c->sibling)
2628 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2629
2630 if (c->dependent)
2631 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2632}
2633\f
88ca9ea1
BS
2634/* Count the number of candidates in the tree rooted at C that have
2635 not already been replaced under other interpretations. */
2636
1dc3d6e9 2637static int
88ca9ea1
BS
2638count_candidates (slsr_cand_t c)
2639{
2640 unsigned count = cand_already_replaced (c) ? 0 : 1;
2641
2642 if (c->sibling)
2643 count += count_candidates (lookup_cand (c->sibling));
2644
2645 if (c->dependent)
2646 count += count_candidates (lookup_cand (c->dependent));
2647
2648 return count;
2649}
2650
2651/* Increase the count of INCREMENT by one in the increment vector.
9b92d12b
BS
2652 INCREMENT is associated with candidate C. If INCREMENT is to be
2653 conditionally executed as part of a conditional candidate replacement,
2654 IS_PHI_ADJUST is true, otherwise false. If an initializer
88ca9ea1
BS
2655 T_0 = stride * I is provided by a candidate that dominates all
2656 candidates with the same increment, also record T_0 for subsequent use. */
2657
2658static void
807e902e 2659record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
88ca9ea1
BS
2660{
2661 bool found = false;
2662 unsigned i;
2663
2664 /* Treat increments that differ only in sign as identical so as to
2665 share initializers, unless we are generating pointer arithmetic. */
807e902e 2666 if (!address_arithmetic_p && wi::neg_p (increment))
27bcd47c 2667 increment = -increment;
88ca9ea1
BS
2668
2669 for (i = 0; i < incr_vec_len; i++)
2670 {
27bcd47c 2671 if (incr_vec[i].incr == increment)
88ca9ea1
BS
2672 {
2673 incr_vec[i].count++;
2674 found = true;
2675
2676 /* If we previously recorded an initializer that doesn't
2677 dominate this candidate, it's not going to be useful to
2678 us after all. */
2679 if (incr_vec[i].initializer
2680 && !dominated_by_p (CDI_DOMINATORS,
2681 gimple_bb (c->cand_stmt),
2682 incr_vec[i].init_bb))
2683 {
2684 incr_vec[i].initializer = NULL_TREE;
2685 incr_vec[i].init_bb = NULL;
2686 }
2687
2688 break;
2689 }
2690 }
2691
7bf55a70 2692 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
88ca9ea1
BS
2693 {
2694 /* The first time we see an increment, create the entry for it.
2695 If this is the root candidate which doesn't have a basis, set
2696 the count to zero. We're only processing it so it can possibly
2697 provide an initializer for other candidates. */
2698 incr_vec[incr_vec_len].incr = increment;
9b92d12b 2699 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
88ca9ea1
BS
2700 incr_vec[incr_vec_len].cost = COST_INFINITE;
2701
2702 /* Optimistically record the first occurrence of this increment
2703 as providing an initializer (if it does); we will revise this
2704 opinion later if it doesn't dominate all other occurrences.
a929f266 2705 Exception: increments of 0, 1 never need initializers;
806696eb 2706 and phi adjustments don't ever provide initializers. */
88ca9ea1 2707 if (c->kind == CAND_ADD
9b92d12b 2708 && !is_phi_adjust
27bcd47c 2709 && c->index == increment
a929f266 2710 && (increment > 1 || increment < 0)
7b8265ba
JJ
2711 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2712 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
88ca9ea1 2713 {
7b8265ba 2714 tree t0 = NULL_TREE;
88ca9ea1
BS
2715 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2716 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2717 if (operand_equal_p (rhs1, c->base_expr, 0))
2718 t0 = rhs2;
7b8265ba 2719 else if (operand_equal_p (rhs2, c->base_expr, 0))
88ca9ea1 2720 t0 = rhs1;
7b8265ba
JJ
2721 if (t0
2722 && SSA_NAME_DEF_STMT (t0)
2723 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
88ca9ea1
BS
2724 {
2725 incr_vec[incr_vec_len].initializer = t0;
2726 incr_vec[incr_vec_len++].init_bb
2727 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2728 }
2729 else
2730 {
2731 incr_vec[incr_vec_len].initializer = NULL_TREE;
2732 incr_vec[incr_vec_len++].init_bb = NULL;
2733 }
2734 }
2735 else
2736 {
2737 incr_vec[incr_vec_len].initializer = NULL_TREE;
2738 incr_vec[incr_vec_len++].init_bb = NULL;
2739 }
2740 }
2741}
2742
65d3dce8 2743/* Recursive helper function for record_phi_increments. */
9b92d12b
BS
2744
2745static void
65d3dce8 2746record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
9b92d12b
BS
2747{
2748 unsigned i;
5b3d5f76 2749 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2750
65d3dce8
BS
2751 if (phi_cand->visited)
2752 return;
2753 phi_cand->visited = 1;
2754
9b92d12b
BS
2755 for (i = 0; i < gimple_phi_num_args (phi); i++)
2756 {
2757 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2758 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2759
3146c60f
WS
2760 if (gimple_code (arg_def) == GIMPLE_PHI)
2761 record_phi_increments_1 (basis, arg_def);
2762 else
9b92d12b 2763 {
3146c60f 2764 widest_int diff;
9b92d12b 2765
3146c60f
WS
2766 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2767 {
2768 diff = -basis->index;
2769 record_increment (phi_cand, diff, PHI_ADJUST);
2770 }
9b92d12b
BS
2771 else
2772 {
2773 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 2774 diff = arg_cand->index - basis->index;
9b92d12b
BS
2775 record_increment (arg_cand, diff, PHI_ADJUST);
2776 }
2777 }
2778 }
2779}
2780
65d3dce8
BS
2781/* Given phi statement PHI that hides a candidate from its BASIS, find
2782 the increments along each incoming arc (recursively handling additional
2783 phis that may be present) and record them. These increments are the
2784 difference in index between the index-adjusting statements and the
2785 index of the basis. */
2786
2787static void
2788record_phi_increments (slsr_cand_t basis, gimple *phi)
2789{
2790 record_phi_increments_1 (basis, phi);
2791 clear_visited (as_a <gphi *> (phi));
2792}
2793
88ca9ea1
BS
2794/* Determine how many times each unique increment occurs in the set
2795 of candidates rooted at C's parent, recording the data in the
2796 increment vector. For each unique increment I, if an initializer
2797 T_0 = stride * I is provided by a candidate that dominates all
2798 candidates with the same increment, also record T_0 for subsequent
2799 use. */
2800
2801static void
2802record_increments (slsr_cand_t c)
2803{
2804 if (!cand_already_replaced (c))
9b92d12b
BS
2805 {
2806 if (!phi_dependent_cand_p (c))
2807 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2808 else
2809 {
2810 /* A candidate with a basis hidden by a phi will have one
2811 increment for its relationship to the index represented by
2812 the phi, and potentially additional increments along each
2813 incoming edge. For the root of the dependency tree (which
2814 has no basis), process just the initial index in case it has
2815 an initializer that can be used by subsequent candidates. */
2816 record_increment (c, c->index, NOT_PHI_ADJUST);
2817
2818 if (c->basis)
2819 record_phi_increments (lookup_cand (c->basis),
2820 lookup_cand (c->def_phi)->cand_stmt);
2821 }
2822 }
88ca9ea1
BS
2823
2824 if (c->sibling)
2825 record_increments (lookup_cand (c->sibling));
2826
2827 if (c->dependent)
2828 record_increments (lookup_cand (c->dependent));
2829}
2830
65d3dce8 2831/* Recursive helper function for phi_incr_cost. */
9b92d12b
BS
2832
2833static int
65d3dce8
BS
2834phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2835 int *savings)
9b92d12b
BS
2836{
2837 unsigned i;
2838 int cost = 0;
2839 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 2840 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 2841
65d3dce8
BS
2842 if (phi_cand->visited)
2843 return 0;
2844 phi_cand->visited = 1;
2845
9b92d12b
BS
2846 for (i = 0; i < gimple_phi_num_args (phi); i++)
2847 {
2848 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 2849 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 2850
3146c60f 2851 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 2852 {
3146c60f
WS
2853 int feeding_savings = 0;
2854 tree feeding_var = gimple_phi_result (arg_def);
2855 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2856 if (uses_consumed_by_stmt (feeding_var, phi))
2857 *savings += feeding_savings;
2858 }
2859 else
2860 {
2861 widest_int diff;
2862 slsr_cand_t arg_cand;
2863
2864 /* When the PHI argument is just a pass-through to the base
2865 expression of the hidden basis, the difference is zero minus
2866 the index of the basis. There is no potential savings by
2867 eliminating a statement in this case. */
2868 if (operand_equal_p (arg, phi_cand->base_expr, 0))
9b92d12b 2869 {
3146c60f
WS
2870 arg_cand = (slsr_cand_t)NULL;
2871 diff = -basis->index;
9b92d12b
BS
2872 }
2873 else
2874 {
3146c60f
WS
2875 arg_cand = base_cand_from_table (arg);
2876 diff = arg_cand->index - basis->index;
2877 }
2878
2879 if (incr == diff)
2880 {
2881 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2882 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2883 if (arg_cand)
9b92d12b 2884 {
9b92d12b 2885 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
df11b2ea 2886 if (uses_consumed_by_stmt (lhs, phi))
9b92d12b
BS
2887 *savings += stmt_cost (arg_cand->cand_stmt, true);
2888 }
2889 }
2890 }
2891 }
2892
2893 return cost;
2894}
2895
65d3dce8
BS
2896/* Add up and return the costs of introducing add statements that
2897 require the increment INCR on behalf of candidate C and phi
2898 statement PHI. Accumulate into *SAVINGS the potential savings
2899 from removing existing statements that feed PHI and have no other
2900 uses. */
2901
2902static int
2903phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2904 int *savings)
2905{
2906 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2907 clear_visited (as_a <gphi *> (phi));
2908 return retval;
2909}
2910
88ca9ea1
BS
2911/* Return the first candidate in the tree rooted at C that has not
2912 already been replaced, favoring siblings over dependents. */
2913
2914static slsr_cand_t
2915unreplaced_cand_in_tree (slsr_cand_t c)
2916{
2917 if (!cand_already_replaced (c))
2918 return c;
2919
2920 if (c->sibling)
2921 {
2922 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2923 if (sib)
2924 return sib;
2925 }
2926
2927 if (c->dependent)
2928 {
2929 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2930 if (dep)
2931 return dep;
2932 }
2933
2934 return NULL;
2935}
2936
2937/* Return TRUE if the candidates in the tree rooted at C should be
2938 optimized for speed, else FALSE. We estimate this based on the block
2939 containing the most dominant candidate in the tree that has not yet
2940 been replaced. */
2941
2942static bool
2943optimize_cands_for_speed_p (slsr_cand_t c)
2944{
2945 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2946 gcc_assert (c2);
2947 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2948}
2949
2950/* Add COST_IN to the lowest cost of any dependent path starting at
2951 candidate C or any of its siblings, counting only candidates along
2952 such paths with increment INCR. Assume that replacing a candidate
2953 reduces cost by REPL_SAVINGS. Also account for savings from any
9b92d12b
BS
2954 statements that would go dead. If COUNT_PHIS is true, include
2955 costs of introducing feeding statements for conditional candidates. */
88ca9ea1
BS
2956
2957static int
9b92d12b 2958lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
807e902e 2959 const widest_int &incr, bool count_phis)
88ca9ea1 2960{
9b92d12b 2961 int local_cost, sib_cost, savings = 0;
807e902e 2962 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1
BS
2963
2964 if (cand_already_replaced (c))
2965 local_cost = cost_in;
27bcd47c 2966 else if (incr == cand_incr)
88ca9ea1
BS
2967 local_cost = cost_in - repl_savings - c->dead_savings;
2968 else
2969 local_cost = cost_in - c->dead_savings;
2970
9b92d12b
BS
2971 if (count_phis
2972 && phi_dependent_cand_p (c)
2973 && !cand_already_replaced (c))
2974 {
355fe088 2975 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
2976 local_cost += phi_incr_cost (c, incr, phi, &savings);
2977
df11b2ea 2978 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
2979 local_cost -= savings;
2980 }
2981
88ca9ea1
BS
2982 if (c->dependent)
2983 local_cost = lowest_cost_path (local_cost, repl_savings,
9b92d12b
BS
2984 lookup_cand (c->dependent), incr,
2985 count_phis);
88ca9ea1
BS
2986
2987 if (c->sibling)
2988 {
2989 sib_cost = lowest_cost_path (cost_in, repl_savings,
9b92d12b
BS
2990 lookup_cand (c->sibling), incr,
2991 count_phis);
88ca9ea1
BS
2992 local_cost = MIN (local_cost, sib_cost);
2993 }
2994
2995 return local_cost;
2996}
2997
2998/* Compute the total savings that would accrue from all replacements
2999 in the candidate tree rooted at C, counting only candidates with
3000 increment INCR. Assume that replacing a candidate reduces cost
3001 by REPL_SAVINGS. Also account for savings from statements that
3002 would go dead. */
3003
3004static int
807e902e 3005total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
9b92d12b 3006 bool count_phis)
88ca9ea1
BS
3007{
3008 int savings = 0;
807e902e 3009 widest_int cand_incr = cand_abs_increment (c);
88ca9ea1 3010
27bcd47c 3011 if (incr == cand_incr && !cand_already_replaced (c))
88ca9ea1
BS
3012 savings += repl_savings + c->dead_savings;
3013
9b92d12b
BS
3014 if (count_phis
3015 && phi_dependent_cand_p (c)
3016 && !cand_already_replaced (c))
3017 {
3018 int phi_savings = 0;
355fe088 3019 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
9b92d12b
BS
3020 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
3021
df11b2ea 3022 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
9b92d12b
BS
3023 savings += phi_savings;
3024 }
3025
88ca9ea1 3026 if (c->dependent)
9b92d12b
BS
3027 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3028 count_phis);
88ca9ea1
BS
3029
3030 if (c->sibling)
9b92d12b
BS
3031 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3032 count_phis);
88ca9ea1
BS
3033
3034 return savings;
3035}
3036
3037/* Use target-specific costs to determine and record which increments
3038 in the current candidate tree are profitable to replace, assuming
3039 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3040 the candidate tree.
3041
3042 One slight limitation here is that we don't account for the possible
3043 introduction of casts in some cases. See replace_one_candidate for
3044 the cases where these are introduced. This should probably be cleaned
3045 up sometime. */
3046
3047static void
ef4bddc2 3048analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
88ca9ea1
BS
3049{
3050 unsigned i;
3051
3052 for (i = 0; i < incr_vec_len; i++)
3053 {
27bcd47c 3054 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
88ca9ea1
BS
3055
3056 /* If somehow this increment is bigger than a HWI, we won't
3057 be optimizing candidates that use it. And if the increment
3058 has a count of zero, nothing will be done with it. */
807e902e 3059 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
88ca9ea1
BS
3060 incr_vec[i].cost = COST_INFINITE;
3061
3062 /* Increments of 0, 1, and -1 are always profitable to replace,
3063 because they always replace a multiply or add with an add or
3064 copy, and may cause one or more existing instructions to go
3065 dead. Exception: -1 can't be assumed to be profitable for
3066 pointer addition. */
3067 else if (incr == 0
3068 || incr == 1
3069 || (incr == -1
457e189d 3070 && !POINTER_TYPE_P (first_dep->cand_type)))
88ca9ea1 3071 incr_vec[i].cost = COST_NEUTRAL;
2d4035dc 3072
0b56e9ad
BS
3073 /* If we need to add an initializer, give up if a cast from the
3074 candidate's type to its stride's type can lose precision.
3075 Note that this already takes into account that the stride may
3076 have been cast to a wider type, in which case this test won't
3077 fire. Example:
6b5eea61
BS
3078
3079 short int _1;
3080 _2 = (int) _1;
3081 _3 = _2 * 10;
0b56e9ad 3082 _4 = x + _3; ADD: x + (10 * (int)_1) : int
6b5eea61 3083 _5 = _2 * 15;
0b56e9ad
BS
3084 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3085
3086 Although the stride was a short int initially, the stride
3087 used in the analysis has been widened to an int, and such
3088 widening will be done in the initializer as well. */
6b5eea61
BS
3089 else if (!incr_vec[i].initializer
3090 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad
BS
3091 && !legal_cast_p_1 (first_dep->stride_type,
3092 TREE_TYPE (gimple_assign_lhs
3093 (first_dep->cand_stmt))))
6b5eea61
BS
3094 incr_vec[i].cost = COST_INFINITE;
3095
50251425
BS
3096 /* If we need to add an initializer, make sure we don't introduce
3097 a multiply by a pointer type, which can happen in certain cast
0b56e9ad 3098 scenarios. */
50251425
BS
3099 else if (!incr_vec[i].initializer
3100 && TREE_CODE (first_dep->stride) != INTEGER_CST
0b56e9ad 3101 && POINTER_TYPE_P (first_dep->stride_type))
50251425
BS
3102 incr_vec[i].cost = COST_INFINITE;
3103
88ca9ea1
BS
3104 /* For any other increment, if this is a multiply candidate, we
3105 must introduce a temporary T and initialize it with
3106 T_0 = stride * increment. When optimizing for speed, walk the
3107 candidate tree to calculate the best cost reduction along any
3108 path; if it offsets the fixed cost of inserting the initializer,
3109 replacing the increment is profitable. When optimizing for
3110 size, instead calculate the total cost reduction from replacing
3111 all candidates with this increment. */
3112 else if (first_dep->kind == CAND_MULT)
3113 {
3114 int cost = mult_by_coeff_cost (incr, mode, speed);
d5f6f04c
BS
3115 int repl_savings;
3116
3117 if (tree_fits_shwi_p (first_dep->stride))
3118 {
3119 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3120 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3121 }
3122 else
3123 repl_savings = mul_cost (speed, mode);
3124 repl_savings -= add_cost (speed, mode);
3125
88ca9ea1
BS
3126 if (speed)
3127 cost = lowest_cost_path (cost, repl_savings, first_dep,
9b92d12b 3128 incr_vec[i].incr, COUNT_PHIS);
88ca9ea1 3129 else
9b92d12b
BS
3130 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3131 COUNT_PHIS);
88ca9ea1
BS
3132
3133 incr_vec[i].cost = cost;
3134 }
3135
3136 /* If this is an add candidate, the initializer may already
3137 exist, so only calculate the cost of the initializer if it
3138 doesn't. We are replacing one add with another here, so the
3139 known replacement savings is zero. We will account for removal
3140 of dead instructions in lowest_cost_path or total_savings. */
3141 else
3142 {
3143 int cost = 0;
3144 if (!incr_vec[i].initializer)
3145 cost = mult_by_coeff_cost (incr, mode, speed);
3146
3147 if (speed)
9b92d12b
BS
3148 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3149 DONT_COUNT_PHIS);
88ca9ea1 3150 else
9b92d12b
BS
3151 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3152 DONT_COUNT_PHIS);
88ca9ea1
BS
3153
3154 incr_vec[i].cost = cost;
3155 }
3156 }
3157}
3158
3159/* Return the nearest common dominator of BB1 and BB2. If the blocks
3160 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3161 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3162 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3163 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3164
3165static basic_block
3166ncd_for_two_cands (basic_block bb1, basic_block bb2,
3167 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3168{
3169 basic_block ncd;
3170
3171 if (!bb1)
3172 {
3173 *where = c2;
3174 return bb2;
3175 }
3176
3177 if (!bb2)
3178 {
3179 *where = c1;
3180 return bb1;
3181 }
3182
3183 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3184
3185 /* If both candidates are in the same block, the earlier
3186 candidate wins. */
3187 if (bb1 == ncd && bb2 == ncd)
3188 {
3189 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3190 *where = c2;
3191 else
3192 *where = c1;
3193 }
3194
3195 /* Otherwise, if one of them produced a candidate in the
3196 dominator, that one wins. */
3197 else if (bb1 == ncd)
3198 *where = c1;
3199
3200 else if (bb2 == ncd)
3201 *where = c2;
3202
3203 /* If neither matches the dominator, neither wins. */
3204 else
3205 *where = NULL;
3206
3207 return ncd;
3208}
3209
9b92d12b
BS
3210/* Consider all candidates that feed PHI. Find the nearest common
3211 dominator of those candidates requiring the given increment INCR.
3212 Further find and return the nearest common dominator of this result
3213 with block NCD. If the returned block contains one or more of the
3214 candidates, return the earliest candidate in the block in *WHERE. */
3215
3216static basic_block
538dd0b7 3217ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
9b92d12b
BS
3218 basic_block ncd, slsr_cand_t *where)
3219{
3220 unsigned i;
3221 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3222 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b
BS
3223
3224 for (i = 0; i < gimple_phi_num_args (phi); i++)
3225 {
3226 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3227 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3228
3146c60f
WS
3229 if (gimple_code (arg_def) == GIMPLE_PHI)
3230 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd, where);
3231 else
9b92d12b 3232 {
3146c60f 3233 widest_int diff;
9b92d12b 3234
3146c60f
WS
3235 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3236 diff = -basis->index;
3237 else
9b92d12b
BS
3238 {
3239 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f 3240 diff = arg_cand->index - basis->index;
9b92d12b 3241 }
3146c60f
WS
3242
3243 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3244
3245 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3246 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
9b92d12b
BS
3247 }
3248 }
3249
3250 return ncd;
3251}
3252
3253/* Consider the candidate C together with any candidates that feed
3254 C's phi dependence (if any). Find and return the nearest common
3255 dominator of those candidates requiring the given increment INCR.
3256 If the returned block contains one or more of the candidates,
3257 return the earliest candidate in the block in *WHERE. */
3258
3259static basic_block
807e902e 3260ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
9b92d12b
BS
3261{
3262 basic_block ncd = NULL;
3263
3264 if (cand_abs_increment (c) == incr)
3265 {
3266 ncd = gimple_bb (c->cand_stmt);
3267 *where = c;
3268 }
3269
3270 if (phi_dependent_cand_p (c))
538dd0b7
DM
3271 ncd = ncd_with_phi (c, incr,
3272 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
9b92d12b
BS
3273 ncd, where);
3274
3275 return ncd;
3276}
3277
88ca9ea1
BS
3278/* Consider all candidates in the tree rooted at C for which INCR
3279 represents the required increment of C relative to its basis.
3280 Find and return the basic block that most nearly dominates all
3281 such candidates. If the returned block contains one or more of
3282 the candidates, return the earliest candidate in the block in
3283 *WHERE. */
3284
3285static basic_block
807e902e 3286nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
88ca9ea1
BS
3287 slsr_cand_t *where)
3288{
3289 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3290 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
88ca9ea1
BS
3291
3292 /* First find the NCD of all siblings and dependents. */
3293 if (c->sibling)
3294 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3295 incr, &sib_where);
3296 if (c->dependent)
3297 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3298 incr, &dep_where);
3299 if (!sib_ncd && !dep_ncd)
3300 {
3301 new_where = NULL;
3302 ncd = NULL;
3303 }
3304 else if (sib_ncd && !dep_ncd)
3305 {
3306 new_where = sib_where;
3307 ncd = sib_ncd;
3308 }
3309 else if (dep_ncd && !sib_ncd)
3310 {
3311 new_where = dep_where;
3312 ncd = dep_ncd;
3313 }
3314 else
3315 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3316 dep_where, &new_where);
3317
3318 /* If the candidate's increment doesn't match the one we're interested
9b92d12b
BS
3319 in (and nor do any increments for feeding defs of a phi-dependence),
3320 then the result depends only on siblings and dependents. */
3321 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
88ca9ea1 3322
9b92d12b 3323 if (!this_ncd || cand_already_replaced (c))
88ca9ea1
BS
3324 {
3325 *where = new_where;
3326 return ncd;
3327 }
3328
3329 /* Otherwise, compare this candidate with the result from all siblings
3330 and dependents. */
88ca9ea1
BS
3331 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3332
3333 return ncd;
3334}
3335
3336/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3337
3338static inline bool
3339profitable_increment_p (unsigned index)
3340{
3341 return (incr_vec[index].cost <= COST_NEUTRAL);
3342}
3343
3344/* For each profitable increment in the increment vector not equal to
3345 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3346 dominator of all statements in the candidate chain rooted at C
3347 that require that increment, and insert an initializer
3348 T_0 = stride * increment at that location. Record T_0 with the
3349 increment record. */
3350
3351static void
3352insert_initializers (slsr_cand_t c)
3353{
3354 unsigned i;
88ca9ea1
BS
3355
3356 for (i = 0; i < incr_vec_len; i++)
3357 {
3358 basic_block bb;
3359 slsr_cand_t where = NULL;
538dd0b7 3360 gassign *init_stmt;
0b56e9ad
BS
3361 gassign *cast_stmt = NULL;
3362 tree new_name, incr_tree, init_stride;
807e902e 3363 widest_int incr = incr_vec[i].incr;
88ca9ea1
BS
3364
3365 if (!profitable_increment_p (i)
807e902e
KZ
3366 || incr == 1
3367 || (incr == -1
6e3d8cb4 3368 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
807e902e 3369 || incr == 0)
88ca9ea1
BS
3370 continue;
3371
3372 /* We may have already identified an existing initializer that
3373 will suffice. */
3374 if (incr_vec[i].initializer)
3375 {
3376 if (dump_file && (dump_flags & TDF_DETAILS))
3377 {
3378 fputs ("Using existing initializer: ", dump_file);
3379 print_gimple_stmt (dump_file,
3380 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
4af78ef8 3381 0, TDF_NONE);
88ca9ea1
BS
3382 }
3383 continue;
3384 }
3385
3386 /* Find the block that most closely dominates all candidates
3387 with this increment. If there is at least one candidate in
3388 that block, the earliest one will be returned in WHERE. */
3389 bb = nearest_common_dominator_for_cands (c, incr, &where);
3390
3e75ec3f
BS
3391 /* If the NCD is not dominated by the block containing the
3392 definition of the stride, we can't legally insert a
3393 single initializer. Mark the increment as unprofitable
3394 so we don't make any replacements. FIXME: Multiple
3395 initializers could be placed with more analysis. */
3396 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3397 basic_block stride_bb = gimple_bb (stride_def);
3398
3399 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3400 {
3401 if (dump_file && (dump_flags & TDF_DETAILS))
3402 fprintf (dump_file,
3403 "Initializer #%d cannot be legally placed\n", i);
3404 incr_vec[i].cost = COST_INFINITE;
3405 continue;
3406 }
3407
0b56e9ad
BS
3408 /* If the nominal stride has a different type than the recorded
3409 stride type, build a cast from the nominal stride to that type. */
3410 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3411 {
3412 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3413 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3414 }
3415 else
3416 init_stride = c->stride;
3417
88ca9ea1 3418 /* Create a new SSA name to hold the initializer's value. */
0b56e9ad 3419 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
88ca9ea1
BS
3420 incr_vec[i].initializer = new_name;
3421
3422 /* Create the initializer and insert it in the latest possible
3423 dominating position. */
0b56e9ad 3424 incr_tree = wide_int_to_tree (c->stride_type, incr);
0d0e4a03 3425 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
0b56e9ad 3426 init_stride, incr_tree);
88ca9ea1
BS
3427 if (where)
3428 {
3429 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
0b56e9ad
BS
3430 location_t loc = gimple_location (where->cand_stmt);
3431
3432 if (cast_stmt)
3433 {
3434 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3435 gimple_set_location (cast_stmt, loc);
3436 }
3437
88ca9ea1 3438 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
0b56e9ad 3439 gimple_set_location (init_stmt, loc);
88ca9ea1
BS
3440 }
3441 else
3442 {
3443 gimple_stmt_iterator gsi = gsi_last_bb (bb);
355fe088 3444 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
0b56e9ad 3445 location_t loc = gimple_location (basis_stmt);
88ca9ea1 3446
1697df8c 3447 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
0b56e9ad
BS
3448 {
3449 if (cast_stmt)
3450 {
3451 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3452 gimple_set_location (cast_stmt, loc);
3453 }
3454 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3455 }
88ca9ea1 3456 else
0b56e9ad
BS
3457 {
3458 if (cast_stmt)
3459 {
3460 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3461 gimple_set_location (cast_stmt, loc);
3462 }
06f97084 3463 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
0b56e9ad 3464 }
88ca9ea1
BS
3465
3466 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3467 }
3468
3469 if (dump_file && (dump_flags & TDF_DETAILS))
3470 {
0b56e9ad
BS
3471 if (cast_stmt)
3472 {
3473 fputs ("Inserting stride cast: ", dump_file);
ef6cb4c7 3474 print_gimple_stmt (dump_file, cast_stmt, 0);
0b56e9ad 3475 }
88ca9ea1 3476 fputs ("Inserting initializer: ", dump_file);
ef6cb4c7 3477 print_gimple_stmt (dump_file, init_stmt, 0);
88ca9ea1
BS
3478 }
3479 }
3480}
3481
65d3dce8 3482/* Recursive helper function for all_phi_incrs_profitable. */
9b92d12b
BS
3483
3484static bool
65d3dce8 3485all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
9b92d12b
BS
3486{
3487 unsigned i;
3488 slsr_cand_t basis = lookup_cand (c->basis);
5b3d5f76 3489 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
9b92d12b 3490
65d3dce8
BS
3491 if (phi_cand->visited)
3492 return true;
3493
3494 phi_cand->visited = 1;
3495 (*spread)++;
3496
c34923c4
BS
3497 /* If the basis doesn't dominate the PHI (including when the PHI is
3498 in the same block as the basis), we won't be able to create a PHI
3499 using the basis here. */
3500 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3501 basic_block phi_bb = gimple_bb (phi);
3502
3503 if (phi_bb == basis_bb
3504 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3505 return false;
3506
9b92d12b
BS
3507 for (i = 0; i < gimple_phi_num_args (phi); i++)
3508 {
c34923c4
BS
3509 /* If the PHI arg resides in a block not dominated by the basis,
3510 we won't be able to create a PHI using the basis here. */
3511 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3512
3513 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3514 return false;
3515
9b92d12b 3516 tree arg = gimple_phi_arg_def (phi, i);
3146c60f 3517 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
9b92d12b 3518
3146c60f 3519 if (gimple_code (arg_def) == GIMPLE_PHI)
9b92d12b 3520 {
3146c60f
WS
3521 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def), spread)
3522 || *spread > MAX_SPREAD)
3523 return false;
3524 }
3525 else
3526 {
3527 int j;
3528 widest_int increment;
9b92d12b 3529
3146c60f
WS
3530 if (operand_equal_p (arg, phi_cand->base_expr, 0))
3531 increment = -basis->index;
9b92d12b
BS
3532 else
3533 {
9b92d12b 3534 slsr_cand_t arg_cand = base_cand_from_table (arg);
3146c60f
WS
3535 increment = arg_cand->index - basis->index;
3536 }
9b92d12b 3537
3146c60f
WS
3538 if (!address_arithmetic_p && wi::neg_p (increment))
3539 increment = -increment;
9b92d12b 3540
3146c60f 3541 j = incr_vec_index (increment);
9b92d12b 3542
3146c60f
WS
3543 if (dump_file && (dump_flags & TDF_DETAILS))
3544 {
3545 fprintf (dump_file, " Conditional candidate %d, phi: ",
3546 c->cand_num);
3547 print_gimple_stmt (dump_file, phi, 0);
3548 fputs (" increment: ", dump_file);
3549 print_decs (increment, dump_file);
3550 if (j < 0)
3551 fprintf (dump_file,
3552 "\n Not replaced; incr_vec overflow.\n");
3553 else {
3554 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3555 if (profitable_increment_p (j))
3556 fputs (" Replacing...\n", dump_file);
3557 else
3558 fputs (" Not replaced.\n", dump_file);
3559 }
9b92d12b 3560 }
3146c60f
WS
3561
3562 if (j < 0 || !profitable_increment_p (j))
3563 return false;
9b92d12b
BS
3564 }
3565 }
3566
3567 return true;
3568}
3569
65d3dce8
BS
3570/* Return TRUE iff all required increments for candidates feeding PHI
3571 are profitable (and legal!) to replace on behalf of candidate C. */
3572
3573static bool
3574all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3575{
3576 int spread = 0;
3577 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3578 clear_visited (phi);
3579 return retval;
3580}
3581
88ca9ea1
BS
3582/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3583 type TO_TYPE, and insert it in front of the statement represented
3584 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3585 the new SSA name. */
3586
3587static tree
a7a7d10e 3588introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
88ca9ea1
BS
3589{
3590 tree cast_lhs;
538dd0b7 3591 gassign *cast_stmt;
88ca9ea1
BS
3592 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3593
a7a7d10e 3594 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
0d0e4a03 3595 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
88ca9ea1
BS
3596 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3597 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3598
3599 if (dump_file && (dump_flags & TDF_DETAILS))
3600 {
3601 fputs (" Inserting: ", dump_file);
ef6cb4c7 3602 print_gimple_stmt (dump_file, cast_stmt, 0);
88ca9ea1
BS
3603 }
3604
3605 return cast_lhs;
3606}
3607
3608/* Replace the RHS of the statement represented by candidate C with
3609 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3610 leave C unchanged or just interchange its operands. The original
3611 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3612 If the replacement was made and we are doing a details dump,
3613 return the revised statement, else NULL. */
3614
355fe088 3615static gimple *
88ca9ea1
BS
3616replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3617 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3618 slsr_cand_t c)
3619{
3620 if (new_code != old_code
3621 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3622 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3623 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3624 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3625 {
3626 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3627 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3628 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3629 update_stmt (gsi_stmt (gsi));
d71dc990 3630 while (cc)
9fbbba71 3631 {
9fbbba71 3632 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3633 cc = lookup_cand (cc->next_interp);
9fbbba71 3634 }
88ca9ea1
BS
3635
3636 if (dump_file && (dump_flags & TDF_DETAILS))
3637 return gsi_stmt (gsi);
3638 }
3639
3640 else if (dump_file && (dump_flags & TDF_DETAILS))
3641 fputs (" (duplicate, not actually replacing)\n", dump_file);
3642
3643 return NULL;
3644}
3645
3646/* Strength-reduce the statement represented by candidate C by replacing
3647 it with an equivalent addition or subtraction. I is the index into
3648 the increment vector identifying C's increment. NEW_VAR is used to
3649 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3650 is the rhs1 to use in creating the add/subtract. */
3651
3652static void
a7a7d10e 3653replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
88ca9ea1 3654{
355fe088 3655 gimple *stmt_to_print = NULL;
88ca9ea1
BS
3656 tree orig_rhs1, orig_rhs2;
3657 tree rhs2;
3658 enum tree_code orig_code, repl_code;
807e902e 3659 widest_int cand_incr;
88ca9ea1
BS
3660
3661 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3662 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3663 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3664 cand_incr = cand_increment (c);
3665
9d502741
BS
3666 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3667 a copy statement under another interpretation. */
3668 if (!orig_rhs2)
3669 return;
3670
88ca9ea1
BS
3671 if (dump_file && (dump_flags & TDF_DETAILS))
3672 {
3673 fputs ("Replacing: ", dump_file);
ef6cb4c7 3674 print_gimple_stmt (dump_file, c->cand_stmt, 0);
88ca9ea1
BS
3675 stmt_to_print = c->cand_stmt;
3676 }
3677
3678 if (address_arithmetic_p)
3679 repl_code = POINTER_PLUS_EXPR;
3680 else
3681 repl_code = PLUS_EXPR;
3682
3683 /* If the increment has an initializer T_0, replace the candidate
3684 statement with an add of the basis name and the initializer. */
3685 if (incr_vec[i].initializer)
3686 {
3687 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3688 tree orig_type = TREE_TYPE (orig_rhs2);
3689
3690 if (types_compatible_p (orig_type, init_type))
3691 rhs2 = incr_vec[i].initializer;
3692 else
3693 rhs2 = introduce_cast_before_cand (c, orig_type,
a7a7d10e 3694 incr_vec[i].initializer);
88ca9ea1 3695
27bcd47c 3696 if (incr_vec[i].incr != cand_incr)
88ca9ea1
BS
3697 {
3698 gcc_assert (repl_code == PLUS_EXPR);
3699 repl_code = MINUS_EXPR;
3700 }
3701
3702 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3703 orig_code, orig_rhs1, orig_rhs2,
3704 c);
3705 }
3706
3707 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3708 with a subtract of the stride from the basis name, a copy
3709 from the basis name, or an add of the stride to the basis
3710 name, respectively. It may be necessary to introduce a
3711 cast (or reuse an existing cast). */
807e902e 3712 else if (cand_incr == 1)
88ca9ea1
BS
3713 {
3714 tree stride_type = TREE_TYPE (c->stride);
3715 tree orig_type = TREE_TYPE (orig_rhs2);
3716
3717 if (types_compatible_p (orig_type, stride_type))
3718 rhs2 = c->stride;
3719 else
a7a7d10e 3720 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3721
3722 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3723 orig_code, orig_rhs1, orig_rhs2,
3724 c);
3725 }
3726
807e902e 3727 else if (cand_incr == -1)
88ca9ea1
BS
3728 {
3729 tree stride_type = TREE_TYPE (c->stride);
3730 tree orig_type = TREE_TYPE (orig_rhs2);
3731 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3732
3733 if (types_compatible_p (orig_type, stride_type))
3734 rhs2 = c->stride;
3735 else
a7a7d10e 3736 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
88ca9ea1
BS
3737
3738 if (orig_code != MINUS_EXPR
3739 || !operand_equal_p (basis_name, orig_rhs1, 0)
3740 || !operand_equal_p (rhs2, orig_rhs2, 0))
3741 {
3742 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3743 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3744 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3745 update_stmt (gsi_stmt (gsi));
d71dc990 3746 while (cc)
9fbbba71 3747 {
9fbbba71 3748 cc->cand_stmt = gsi_stmt (gsi);
98aaa1a6 3749 cc = lookup_cand (cc->next_interp);
9fbbba71 3750 }
88ca9ea1
BS
3751
3752 if (dump_file && (dump_flags & TDF_DETAILS))
3753 stmt_to_print = gsi_stmt (gsi);
3754 }
3755 else if (dump_file && (dump_flags & TDF_DETAILS))
3756 fputs (" (duplicate, not actually replacing)\n", dump_file);
3757 }
3758
807e902e 3759 else if (cand_incr == 0)
88ca9ea1
BS
3760 {
3761 tree lhs = gimple_assign_lhs (c->cand_stmt);
3762 tree lhs_type = TREE_TYPE (lhs);
3763 tree basis_type = TREE_TYPE (basis_name);
3764
3765 if (types_compatible_p (lhs_type, basis_type))
3766 {
538dd0b7 3767 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
88ca9ea1 3768 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
d71dc990 3769 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3770 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3771 gsi_replace (&gsi, copy_stmt, false);
d71dc990 3772 while (cc)
9fbbba71 3773 {
9fbbba71 3774 cc->cand_stmt = copy_stmt;
98aaa1a6 3775 cc = lookup_cand (cc->next_interp);
9fbbba71 3776 }
88ca9ea1
BS
3777
3778 if (dump_file && (dump_flags & TDF_DETAILS))
3779 stmt_to_print = copy_stmt;
3780 }
3781 else
3782 {
3783 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
0d0e4a03 3784 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
d71dc990 3785 slsr_cand_t cc = lookup_cand (c->first_interp);
88ca9ea1
BS
3786 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3787 gsi_replace (&gsi, cast_stmt, false);
d71dc990 3788 while (cc)
9fbbba71 3789 {
9fbbba71 3790 cc->cand_stmt = cast_stmt;
98aaa1a6 3791 cc = lookup_cand (cc->next_interp);
9fbbba71 3792 }
88ca9ea1
BS
3793
3794 if (dump_file && (dump_flags & TDF_DETAILS))
3795 stmt_to_print = cast_stmt;
3796 }
3797 }
3798 else
3799 gcc_unreachable ();
3800
3801 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3802 {
3803 fputs ("With: ", dump_file);
ef6cb4c7 3804 print_gimple_stmt (dump_file, stmt_to_print, 0);
88ca9ea1
BS
3805 fputs ("\n", dump_file);
3806 }
3807}
3808
3809/* For each candidate in the tree rooted at C, replace it with
3810 an increment if such has been shown to be profitable. */
3811
3812static void
3813replace_profitable_candidates (slsr_cand_t c)
3814{
3815 if (!cand_already_replaced (c))
3816 {
807e902e 3817 widest_int increment = cand_abs_increment (c);
88ca9ea1 3818 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
7bf55a70 3819 int i;
88ca9ea1
BS
3820
3821 i = incr_vec_index (increment);
3822
3823 /* Only process profitable increments. Nothing useful can be done
3824 to a cast or copy. */
7bf55a70
BS
3825 if (i >= 0
3826 && profitable_increment_p (i)
fbcdc43e 3827 && orig_code != SSA_NAME
d822570f 3828 && !CONVERT_EXPR_CODE_P (orig_code))
88ca9ea1 3829 {
9b92d12b
BS
3830 if (phi_dependent_cand_p (c))
3831 {
c34923c4 3832 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
9b92d12b
BS
3833
3834 if (all_phi_incrs_profitable (c, phi))
3835 {
3836 /* Look up the LHS SSA name from C's basis. This will be
3837 the RHS1 of the adds we will introduce to create new
3838 phi arguments. */
3839 slsr_cand_t basis = lookup_cand (c->basis);
3840 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3841
3842 /* Create a new phi statement that will represent C's true
3843 basis after the transformation is complete. */
3844 location_t loc = gimple_location (c->cand_stmt);
3845 tree name = create_phi_basis (c, phi, basis_name,
3846 loc, UNKNOWN_STRIDE);
3847
3848 /* Replace C with an add of the new basis phi and the
3849 increment. */
a7a7d10e 3850 replace_one_candidate (c, i, name);
9b92d12b
BS
3851 }
3852 }
3853 else
3854 {
3855 slsr_cand_t basis = lookup_cand (c->basis);
3856 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
a7a7d10e 3857 replace_one_candidate (c, i, basis_name);
9b92d12b 3858 }
88ca9ea1
BS
3859 }
3860 }
3861
3862 if (c->sibling)
3863 replace_profitable_candidates (lookup_cand (c->sibling));
3864
3865 if (c->dependent)
3866 replace_profitable_candidates (lookup_cand (c->dependent));
3867}
3868\f
f9453c07
BS
3869/* Analyze costs of related candidates in the candidate vector,
3870 and make beneficial replacements. */
3871
3872static void
3873analyze_candidates_and_replace (void)
3874{
3875 unsigned i;
3876 slsr_cand_t c;
3877
3878 /* Each candidate that has a null basis and a non-null
3879 dependent is the root of a tree of related statements.
3880 Analyze each tree to determine a subset of those
98aaa1a6
BC
3881 statements that can be replaced with maximum benefit.
3882
3883 Note the first NULL element is skipped. */
3884 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
f9453c07
BS
3885 {
3886 slsr_cand_t first_dep;
3887
3888 if (c->basis != 0 || c->dependent == 0)
3889 continue;
3890
3891 if (dump_file && (dump_flags & TDF_DETAILS))
3892 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3893 c->cand_num);
3894
3895 first_dep = lookup_cand (c->dependent);
3896
2749c8f6
BS
3897 /* If this is a chain of CAND_REFs, unconditionally replace
3898 each of them with a strength-reduced data reference. */
3899 if (c->kind == CAND_REF)
3900 replace_refs (c);
3901
9b92d12b
BS
3902 /* If the common stride of all related candidates is a known
3903 constant, each candidate without a phi-dependence can be
3904 profitably replaced. Each replaces a multiply by a single
3905 add, with the possibility that a feeding add also goes dead.
3906 A candidate with a phi-dependence is replaced only if the
3907 compensation code it requires is offset by the strength
3908 reduction savings. */
3909 else if (TREE_CODE (c->stride) == INTEGER_CST)
3910 replace_uncond_cands_and_profitable_phis (first_dep);
f9453c07 3911
88ca9ea1
BS
3912 /* When the stride is an SSA name, it may still be profitable
3913 to replace some or all of the dependent candidates, depending
3914 on whether the introduced increments can be reused, or are
3915 less expensive to calculate than the replaced statements. */
3916 else
3917 {
ef4bddc2 3918 machine_mode mode;
88ca9ea1
BS
3919 bool speed;
3920
3921 /* Determine whether we'll be generating pointer arithmetic
3922 when replacing candidates. */
3923 address_arithmetic_p = (c->kind == CAND_ADD
99cababb 3924 && POINTER_TYPE_P (c->cand_type));
88ca9ea1
BS
3925
3926 /* If all candidates have already been replaced under other
3927 interpretations, nothing remains to be done. */
4b847da9 3928 if (!count_candidates (c))
88ca9ea1
BS
3929 continue;
3930
3931 /* Construct an array of increments for this candidate chain. */
4b847da9 3932 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
88ca9ea1
BS
3933 incr_vec_len = 0;
3934 record_increments (c);
3935
3936 /* Determine which increments are profitable to replace. */
3937 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3938 speed = optimize_cands_for_speed_p (c);
3939 analyze_increments (first_dep, mode, speed);
3940
3941 /* Insert initializers of the form T_0 = stride * increment
3942 for use in profitable replacements. */
3943 insert_initializers (first_dep);
3944 dump_incr_vec ();
3945
3946 /* Perform the replacements. */
3947 replace_profitable_candidates (first_dep);
3948 free (incr_vec);
3949 }
f9453c07 3950 }
b115e803
BS
3951
3952 /* For conditional candidates, we may have uncommitted insertions
3953 on edges to clean up. */
3954 gsi_commit_edge_inserts ();
f9453c07
BS
3955}
3956
17795822
TS
3957namespace {
3958
3959const pass_data pass_data_strength_reduction =
be55bfe6
TS
3960{
3961 GIMPLE_PASS, /* type */
3962 "slsr", /* name */
3963 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3964 TV_GIMPLE_SLSR, /* tv_id */
3965 ( PROP_cfg | PROP_ssa ), /* properties_required */
3966 0, /* properties_provided */
3967 0, /* properties_destroyed */
3968 0, /* todo_flags_start */
3bea341f 3969 0, /* todo_flags_finish */
be55bfe6
TS
3970};
3971
17795822 3972class pass_strength_reduction : public gimple_opt_pass
be55bfe6
TS
3973{
3974public:
3975 pass_strength_reduction (gcc::context *ctxt)
3976 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3977 {}
3978
3979 /* opt_pass methods: */
3980 virtual bool gate (function *) { return flag_tree_slsr; }
3981 virtual unsigned int execute (function *);
3982
3983}; // class pass_strength_reduction
3984
3985unsigned
3986pass_strength_reduction::execute (function *fun)
f9453c07 3987{
f9453c07
BS
3988 /* Create the obstack where candidates will reside. */
3989 gcc_obstack_init (&cand_obstack);
3990
98aaa1a6 3991 /* Allocate the candidate vector and initialize the first NULL element. */
9771b263 3992 cand_vec.create (128);
98aaa1a6 3993 cand_vec.safe_push (NULL);
f9453c07
BS
3994
3995 /* Allocate the mapping from statements to candidate indices. */
355fe088 3996 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
f9453c07
BS
3997
3998 /* Create the obstack where candidate chains will reside. */
3999 gcc_obstack_init (&chain_obstack);
4000
3cfd4469 4001 /* Allocate the mapping from base expressions to candidate chains. */
c203e8a7 4002 base_cand_map = new hash_table<cand_chain_hasher> (500);
f9453c07 4003
96d75a2c 4004 /* Allocate the mapping from bases to alternative bases. */
b787e7a2 4005 alt_base_map = new hash_map<tree, tree>;
96d75a2c 4006
f9453c07
BS
4007 /* Initialize the loop optimizer. We need to detect flow across
4008 back edges, and this gives us dominator information as well. */
4009 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4010
f9453c07
BS
4011 /* Walk the CFG in predominator order looking for strength reduction
4012 candidates. */
4d9192b5 4013 find_candidates_dom_walker (CDI_DOMINATORS)
be55bfe6 4014 .walk (fun->cfg->x_entry_block_ptr);
f9453c07
BS
4015
4016 if (dump_file && (dump_flags & TDF_DETAILS))
4017 {
4018 dump_cand_vec ();
4019 dump_cand_chains ();
4020 }
4021
b787e7a2 4022 delete alt_base_map;
96d75a2c
YZ
4023 free_affine_expand_cache (&name_expansions);
4024
f9453c07
BS
4025 /* Analyze costs and make appropriate replacements. */
4026 analyze_candidates_and_replace ();
4027
f9453c07 4028 loop_optimizer_finalize ();
c203e8a7
TS
4029 delete base_cand_map;
4030 base_cand_map = NULL;
f9453c07 4031 obstack_free (&chain_obstack, NULL);
b787e7a2 4032 delete stmt_cand_map;
9771b263 4033 cand_vec.release ();
f9453c07 4034 obstack_free (&cand_obstack, NULL);
f9453c07
BS
4035
4036 return 0;
4037}
4038
17795822
TS
4039} // anon namespace
4040
27a4cd48
DM
4041gimple_opt_pass *
4042make_pass_strength_reduction (gcc::context *ctxt)
4043{
4044 return new pass_strength_reduction (ctxt);
4045}