]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple.c
re PR c++/42697 (ice-on-legal-code: template class template function local objects)
[thirdparty/gcc.git] / gcc / gimple.c
CommitLineData
726a989a
RB
1/* Gimple IR support functions.
2
6a4d4e8a 3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
726a989a
RB
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
d7f09764 26#include "target.h"
726a989a
RB
27#include "tree.h"
28#include "ggc.h"
726a989a
RB
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
38d2336a 32#include "toplev.h"
726a989a
RB
33#include "diagnostic.h"
34#include "tree-flow.h"
35#include "value-prof.h"
36#include "flags.h"
d7f09764 37#include "alias.h"
4537ec0c 38#include "demangle.h"
726a989a 39
d7f09764
DN
40/* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44static htab_t gimple_types;
45static struct pointer_map_t *type_hash_cache;
46
47/* Global type comparison cache. */
48static htab_t gtc_visited;
88ca1146 49static struct obstack gtc_ob;
726a989a 50
f2c4a81c 51/* All the tuples have their operand vector (if present) at the very bottom
726a989a
RB
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
f2c4a81c
RH
55#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
6bc7bc14 57EXPORTED_CONST size_t gimple_ops_offset_[] = {
f2c4a81c
RH
58#include "gsstruct.def"
59};
60#undef DEFGSSTRUCT
61
62#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63static const size_t gsstruct_code_size[] = {
64#include "gsstruct.def"
65};
66#undef DEFGSSTRUCT
67
68#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69const char *const gimple_code_name[] = {
70#include "gimple.def"
71};
72#undef DEFGSCODE
73
74#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
726a989a
RB
76#include "gimple.def"
77};
78#undef DEFGSCODE
79
80#ifdef GATHER_STATISTICS
81/* Gimple stats. */
82
83int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
93};
94
95#endif /* GATHER_STATISTICS */
96
97/* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
100
101/* Private API manipulation functions shared only with some
102 other files. */
103extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
105
106/* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
109
110/* Set the code for statement G to CODE. */
111
112static inline void
113gimple_set_code (gimple g, enum gimple_code code)
114{
115 g->gsbase.code = code;
116}
117
726a989a
RB
118/* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
120
f2c4a81c 121static inline size_t
726a989a
RB
122gimple_size (enum gimple_code code)
123{
f2c4a81c 124 return gsstruct_code_size[gss_for_code (code)];
726a989a
RB
125}
126
726a989a
RB
127/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
129
d7f09764 130gimple
726a989a
RB
131gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
132{
133 size_t size;
134 gimple stmt;
135
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
139
140#ifdef GATHER_STATISTICS
141 {
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
145 }
146#endif
147
148 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
151
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
155
156 return stmt;
157}
158
159/* Set SUBCODE to be the code of the expression computed by statement G. */
160
161static inline void
162gimple_set_subcode (gimple g, unsigned subcode)
163{
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
168}
169
170
171
172/* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
b8698a0f 174 for the new tuple. NUM_OPS is the number of operands to allocate. */
726a989a
RB
175
176#define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
178
179static gimple
b5b8b0ac 180gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
726a989a
RB
181 unsigned num_ops MEM_STAT_DECL)
182{
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
185
186 return s;
187}
188
189
190/* Build a GIMPLE_RETURN statement returning RETVAL. */
191
192gimple
193gimple_build_return (tree retval)
194{
bbbbb16a 195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
726a989a
RB
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
199}
200
201/* Helper for gimple_build_call, gimple_build_call_vec and
202 gimple_build_call_from_tree. Build the basic components of a
203 GIMPLE_CALL statement to function FN with NARGS arguments. */
204
205static inline gimple
206gimple_build_call_1 (tree fn, unsigned nargs)
207{
bbbbb16a 208 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
7c9577be
RG
209 if (TREE_CODE (fn) == FUNCTION_DECL)
210 fn = build_fold_addr_expr (fn);
726a989a
RB
211 gimple_set_op (s, 1, fn);
212 return s;
213}
214
215
216/* Build a GIMPLE_CALL statement to function FN with the arguments
217 specified in vector ARGS. */
218
219gimple
220gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
221{
222 unsigned i;
223 unsigned nargs = VEC_length (tree, args);
224 gimple call = gimple_build_call_1 (fn, nargs);
225
226 for (i = 0; i < nargs; i++)
227 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
228
229 return call;
230}
231
232
233/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
234 arguments. The ... are the arguments. */
235
236gimple
237gimple_build_call (tree fn, unsigned nargs, ...)
238{
239 va_list ap;
240 gimple call;
241 unsigned i;
242
243 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
244
245 call = gimple_build_call_1 (fn, nargs);
246
247 va_start (ap, nargs);
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, va_arg (ap, tree));
250 va_end (ap);
251
252 return call;
253}
254
255
256/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
257 assumed to be in GIMPLE form already. Minimal checking is done of
258 this fact. */
259
260gimple
261gimple_build_call_from_tree (tree t)
262{
263 unsigned i, nargs;
264 gimple call;
265 tree fndecl = get_callee_fndecl (t);
266
267 gcc_assert (TREE_CODE (t) == CALL_EXPR);
268
269 nargs = call_expr_nargs (t);
270 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
271
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
274
275 gimple_set_block (call, TREE_BLOCK (t));
276
277 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
278 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
279 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
280 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
281 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
282 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
283 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
d665b6e5 284 gimple_set_no_warning (call, TREE_NO_WARNING (t));
726a989a
RB
285
286 return call;
287}
288
289
290/* Extract the operands and code for expression EXPR into *SUBCODE_P,
291 *OP1_P and *OP2_P respectively. */
292
293void
294extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
295 tree *op2_p)
296{
82d6e6fc 297 enum gimple_rhs_class grhs_class;
726a989a
RB
298
299 *subcode_p = TREE_CODE (expr);
82d6e6fc 300 grhs_class = get_gimple_rhs_class (*subcode_p);
726a989a 301
82d6e6fc 302 if (grhs_class == GIMPLE_BINARY_RHS)
726a989a
RB
303 {
304 *op1_p = TREE_OPERAND (expr, 0);
305 *op2_p = TREE_OPERAND (expr, 1);
306 }
82d6e6fc 307 else if (grhs_class == GIMPLE_UNARY_RHS)
726a989a
RB
308 {
309 *op1_p = TREE_OPERAND (expr, 0);
310 *op2_p = NULL_TREE;
311 }
82d6e6fc 312 else if (grhs_class == GIMPLE_SINGLE_RHS)
726a989a
RB
313 {
314 *op1_p = expr;
315 *op2_p = NULL_TREE;
316 }
317 else
318 gcc_unreachable ();
319}
320
321
322/* Build a GIMPLE_ASSIGN statement.
323
324 LHS of the assignment.
325 RHS of the assignment which can be unary or binary. */
326
327gimple
328gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
329{
330 enum tree_code subcode;
331 tree op1, op2;
332
333 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
334 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
335 PASS_MEM_STAT);
336}
337
338
339/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
340 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
341 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
342
343gimple
344gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
345 tree op2 MEM_STAT_DECL)
346{
347 unsigned num_ops;
348 gimple p;
349
350 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
351 code). */
352 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
b8698a0f 353
b5b8b0ac 354 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
726a989a
RB
355 PASS_MEM_STAT);
356 gimple_assign_set_lhs (p, lhs);
357 gimple_assign_set_rhs1 (p, op1);
358 if (op2)
359 {
360 gcc_assert (num_ops > 2);
361 gimple_assign_set_rhs2 (p, op2);
362 }
363
364 return p;
365}
366
367
368/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
369
370 DST/SRC are the destination and source respectively. You can pass
371 ungimplified trees in DST or SRC, in which case they will be
372 converted to a gimple operand if necessary.
373
374 This function returns the newly created GIMPLE_ASSIGN tuple. */
375
5fd8300b 376gimple
726a989a 377gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
b8698a0f 378{
726a989a
RB
379 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
380 gimplify_and_add (t, seq_p);
381 ggc_free (t);
382 return gimple_seq_last_stmt (*seq_p);
383}
384
385
386/* Build a GIMPLE_COND statement.
387
388 PRED is the condition used to compare LHS and the RHS.
389 T_LABEL is the label to jump to if the condition is true.
390 F_LABEL is the label to jump to otherwise. */
391
392gimple
393gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
394 tree t_label, tree f_label)
395{
396 gimple p;
397
398 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
399 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
400 gimple_cond_set_lhs (p, lhs);
401 gimple_cond_set_rhs (p, rhs);
402 gimple_cond_set_true_label (p, t_label);
403 gimple_cond_set_false_label (p, f_label);
404 return p;
405}
406
407
408/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
409
410void
411gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
412 tree *lhs_p, tree *rhs_p)
413{
db3927fb 414 location_t loc = EXPR_LOCATION (cond);
726a989a
RB
415 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
416 || TREE_CODE (cond) == TRUTH_NOT_EXPR
417 || is_gimple_min_invariant (cond)
418 || SSA_VAR_P (cond));
419
420 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
421
422 /* Canonicalize conditionals of the form 'if (!VAL)'. */
423 if (*code_p == TRUTH_NOT_EXPR)
424 {
425 *code_p = EQ_EXPR;
426 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
db3927fb 427 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
726a989a
RB
428 }
429 /* Canonicalize conditionals of the form 'if (VAL)' */
430 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
431 {
432 *code_p = NE_EXPR;
433 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
db3927fb 434 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
726a989a
RB
435 }
436}
437
438
439/* Build a GIMPLE_COND statement from the conditional expression tree
440 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
441
442gimple
443gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
444{
445 enum tree_code code;
446 tree lhs, rhs;
447
448 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
449 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
450}
451
452/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
453 boolean expression tree COND. */
454
455void
456gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
457{
458 enum tree_code code;
459 tree lhs, rhs;
460
461 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
462 gimple_cond_set_condition (stmt, code, lhs, rhs);
463}
464
465/* Build a GIMPLE_LABEL statement for LABEL. */
466
467gimple
468gimple_build_label (tree label)
469{
bbbbb16a 470 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
726a989a
RB
471 gimple_label_set_label (p, label);
472 return p;
473}
474
475/* Build a GIMPLE_GOTO statement to label DEST. */
476
477gimple
478gimple_build_goto (tree dest)
479{
bbbbb16a 480 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
726a989a
RB
481 gimple_goto_set_dest (p, dest);
482 return p;
483}
484
485
486/* Build a GIMPLE_NOP statement. */
487
b8698a0f 488gimple
726a989a
RB
489gimple_build_nop (void)
490{
491 return gimple_alloc (GIMPLE_NOP, 0);
492}
493
494
495/* Build a GIMPLE_BIND statement.
496 VARS are the variables in BODY.
497 BLOCK is the containing block. */
498
499gimple
500gimple_build_bind (tree vars, gimple_seq body, tree block)
501{
502 gimple p = gimple_alloc (GIMPLE_BIND, 0);
503 gimple_bind_set_vars (p, vars);
504 if (body)
505 gimple_bind_set_body (p, body);
506 if (block)
507 gimple_bind_set_block (p, block);
508 return p;
509}
510
511/* Helper function to set the simple fields of a asm stmt.
512
513 STRING is a pointer to a string that is the asm blocks assembly code.
514 NINPUT is the number of register inputs.
515 NOUTPUT is the number of register outputs.
516 NCLOBBERS is the number of clobbered registers.
517 */
518
519static inline gimple
b8698a0f 520gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
1c384bf1 521 unsigned nclobbers, unsigned nlabels)
726a989a
RB
522{
523 gimple p;
524 int size = strlen (string);
525
1c384bf1
RH
526 /* ASMs with labels cannot have outputs. This should have been
527 enforced by the front end. */
528 gcc_assert (nlabels == 0 || noutputs == 0);
529
bbbbb16a 530 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
1c384bf1 531 ninputs + noutputs + nclobbers + nlabels);
726a989a
RB
532
533 p->gimple_asm.ni = ninputs;
534 p->gimple_asm.no = noutputs;
535 p->gimple_asm.nc = nclobbers;
1c384bf1 536 p->gimple_asm.nl = nlabels;
726a989a
RB
537 p->gimple_asm.string = ggc_alloc_string (string, size);
538
539#ifdef GATHER_STATISTICS
540 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
541#endif
b8698a0f 542
726a989a
RB
543 return p;
544}
545
546/* Build a GIMPLE_ASM statement.
547
548 STRING is the assembly code.
549 NINPUT is the number of register inputs.
550 NOUTPUT is the number of register outputs.
551 NCLOBBERS is the number of clobbered registers.
552 INPUTS is a vector of the input register parameters.
553 OUTPUTS is a vector of the output register parameters.
1c384bf1
RH
554 CLOBBERS is a vector of the clobbered register parameters.
555 LABELS is a vector of destination labels. */
726a989a
RB
556
557gimple
b8698a0f 558gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
1c384bf1
RH
559 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
560 VEC(tree,gc)* labels)
726a989a
RB
561{
562 gimple p;
563 unsigned i;
564
565 p = gimple_build_asm_1 (string,
566 VEC_length (tree, inputs),
b8698a0f 567 VEC_length (tree, outputs),
1c384bf1
RH
568 VEC_length (tree, clobbers),
569 VEC_length (tree, labels));
b8698a0f 570
726a989a
RB
571 for (i = 0; i < VEC_length (tree, inputs); i++)
572 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
573
574 for (i = 0; i < VEC_length (tree, outputs); i++)
575 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
576
577 for (i = 0; i < VEC_length (tree, clobbers); i++)
578 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
b8698a0f 579
1c384bf1
RH
580 for (i = 0; i < VEC_length (tree, labels); i++)
581 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
b8698a0f 582
726a989a
RB
583 return p;
584}
585
586/* Build a GIMPLE_CATCH statement.
587
588 TYPES are the catch types.
589 HANDLER is the exception handler. */
590
591gimple
592gimple_build_catch (tree types, gimple_seq handler)
593{
594 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
595 gimple_catch_set_types (p, types);
596 if (handler)
597 gimple_catch_set_handler (p, handler);
598
599 return p;
600}
601
602/* Build a GIMPLE_EH_FILTER statement.
603
604 TYPES are the filter's types.
605 FAILURE is the filter's failure action. */
606
607gimple
608gimple_build_eh_filter (tree types, gimple_seq failure)
609{
610 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
611 gimple_eh_filter_set_types (p, types);
612 if (failure)
613 gimple_eh_filter_set_failure (p, failure);
614
615 return p;
616}
617
1d65f45c
RH
618/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
619
620gimple
621gimple_build_eh_must_not_throw (tree decl)
622{
623 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 1);
624
625 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
626 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
d7f09764 627 gimple_eh_must_not_throw_set_fndecl (p, decl);
1d65f45c
RH
628
629 return p;
630}
631
726a989a
RB
632/* Build a GIMPLE_TRY statement.
633
634 EVAL is the expression to evaluate.
635 CLEANUP is the cleanup expression.
636 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
637 whether this is a try/catch or a try/finally respectively. */
638
639gimple
640gimple_build_try (gimple_seq eval, gimple_seq cleanup,
641 enum gimple_try_flags kind)
642{
643 gimple p;
644
645 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
646 p = gimple_alloc (GIMPLE_TRY, 0);
647 gimple_set_subcode (p, kind);
648 if (eval)
649 gimple_try_set_eval (p, eval);
650 if (cleanup)
651 gimple_try_set_cleanup (p, cleanup);
652
653 return p;
654}
655
656/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
657
658 CLEANUP is the cleanup expression. */
659
660gimple
661gimple_build_wce (gimple_seq cleanup)
662{
663 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
664 if (cleanup)
665 gimple_wce_set_cleanup (p, cleanup);
666
667 return p;
668}
669
670
1d65f45c 671/* Build a GIMPLE_RESX statement. */
726a989a
RB
672
673gimple
674gimple_build_resx (int region)
675{
1d65f45c
RH
676 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
677 p->gimple_eh_ctrl.region = region;
726a989a
RB
678 return p;
679}
680
681
682/* The helper for constructing a gimple switch statement.
683 INDEX is the switch's index.
684 NLABELS is the number of labels in the switch excluding the default.
685 DEFAULT_LABEL is the default label for the switch statement. */
686
b8698a0f 687gimple
1d65f45c 688gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
726a989a
RB
689{
690 /* nlabels + 1 default label + 1 index. */
bbbbb16a 691 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
1d65f45c 692 1 + (default_label != NULL) + nlabels);
726a989a 693 gimple_switch_set_index (p, index);
1d65f45c
RH
694 if (default_label)
695 gimple_switch_set_default_label (p, default_label);
726a989a
RB
696 return p;
697}
698
699
700/* Build a GIMPLE_SWITCH statement.
701
702 INDEX is the switch's index.
b8698a0f 703 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
726a989a
RB
704 ... are the labels excluding the default. */
705
b8698a0f 706gimple
726a989a
RB
707gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
708{
709 va_list al;
1d65f45c
RH
710 unsigned i, offset;
711 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
726a989a
RB
712
713 /* Store the rest of the labels. */
714 va_start (al, default_label);
1d65f45c
RH
715 offset = (default_label != NULL);
716 for (i = 0; i < nlabels; i++)
717 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
726a989a
RB
718 va_end (al);
719
720 return p;
721}
722
723
724/* Build a GIMPLE_SWITCH statement.
725
726 INDEX is the switch's index.
727 DEFAULT_LABEL is the default label
728 ARGS is a vector of labels excluding the default. */
729
730gimple
731gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
732{
1d65f45c
RH
733 unsigned i, offset, nlabels = VEC_length (tree, args);
734 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
726a989a 735
1d65f45c
RH
736 /* Copy the labels from the vector to the switch statement. */
737 offset = (default_label != NULL);
738 for (i = 0; i < nlabels; i++)
739 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
726a989a
RB
740
741 return p;
742}
743
1d65f45c
RH
744/* Build a GIMPLE_EH_DISPATCH statement. */
745
746gimple
747gimple_build_eh_dispatch (int region)
748{
749 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
750 p->gimple_eh_ctrl.region = region;
751 return p;
752}
726a989a 753
b5b8b0ac
AO
754/* Build a new GIMPLE_DEBUG_BIND statement.
755
756 VAR is bound to VALUE; block and location are taken from STMT. */
757
758gimple
759gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
760{
761 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
762 (unsigned)GIMPLE_DEBUG_BIND, 2
763 PASS_MEM_STAT);
764
765 gimple_debug_bind_set_var (p, var);
766 gimple_debug_bind_set_value (p, value);
767 if (stmt)
768 {
769 gimple_set_block (p, gimple_block (stmt));
770 gimple_set_location (p, gimple_location (stmt));
771 }
772
773 return p;
774}
775
776
726a989a
RB
777/* Build a GIMPLE_OMP_CRITICAL statement.
778
779 BODY is the sequence of statements for which only one thread can execute.
780 NAME is optional identifier for this critical block. */
781
b8698a0f 782gimple
726a989a
RB
783gimple_build_omp_critical (gimple_seq body, tree name)
784{
785 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
786 gimple_omp_critical_set_name (p, name);
787 if (body)
788 gimple_omp_set_body (p, body);
789
790 return p;
791}
792
793/* Build a GIMPLE_OMP_FOR statement.
794
795 BODY is sequence of statements inside the for loop.
b8698a0f 796 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
726a989a
RB
797 lastprivate, reductions, ordered, schedule, and nowait.
798 COLLAPSE is the collapse count.
799 PRE_BODY is the sequence of statements that are loop invariant. */
800
801gimple
802gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
803 gimple_seq pre_body)
804{
805 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
806 if (body)
807 gimple_omp_set_body (p, body);
808 gimple_omp_for_set_clauses (p, clauses);
809 p->gimple_omp_for.collapse = collapse;
810 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
811 if (pre_body)
812 gimple_omp_for_set_pre_body (p, pre_body);
813
814 return p;
815}
816
817
818/* Build a GIMPLE_OMP_PARALLEL statement.
819
820 BODY is sequence of statements which are executed in parallel.
821 CLAUSES, are the OMP parallel construct's clauses.
822 CHILD_FN is the function created for the parallel threads to execute.
823 DATA_ARG are the shared data argument(s). */
824
b8698a0f
L
825gimple
826gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
726a989a
RB
827 tree data_arg)
828{
829 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
830 if (body)
831 gimple_omp_set_body (p, body);
832 gimple_omp_parallel_set_clauses (p, clauses);
833 gimple_omp_parallel_set_child_fn (p, child_fn);
834 gimple_omp_parallel_set_data_arg (p, data_arg);
835
836 return p;
837}
838
839
840/* Build a GIMPLE_OMP_TASK statement.
841
842 BODY is sequence of statements which are executed by the explicit task.
843 CLAUSES, are the OMP parallel construct's clauses.
844 CHILD_FN is the function created for the parallel threads to execute.
845 DATA_ARG are the shared data argument(s).
846 COPY_FN is the optional function for firstprivate initialization.
847 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
848
b8698a0f 849gimple
726a989a
RB
850gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
851 tree data_arg, tree copy_fn, tree arg_size,
852 tree arg_align)
853{
854 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
855 if (body)
856 gimple_omp_set_body (p, body);
857 gimple_omp_task_set_clauses (p, clauses);
858 gimple_omp_task_set_child_fn (p, child_fn);
859 gimple_omp_task_set_data_arg (p, data_arg);
860 gimple_omp_task_set_copy_fn (p, copy_fn);
861 gimple_omp_task_set_arg_size (p, arg_size);
862 gimple_omp_task_set_arg_align (p, arg_align);
863
864 return p;
865}
866
867
868/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
869
870 BODY is the sequence of statements in the section. */
871
872gimple
873gimple_build_omp_section (gimple_seq body)
874{
875 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
876 if (body)
877 gimple_omp_set_body (p, body);
878
879 return p;
880}
881
882
883/* Build a GIMPLE_OMP_MASTER statement.
884
885 BODY is the sequence of statements to be executed by just the master. */
886
b8698a0f 887gimple
726a989a
RB
888gimple_build_omp_master (gimple_seq body)
889{
890 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
891 if (body)
892 gimple_omp_set_body (p, body);
893
894 return p;
895}
896
897
898/* Build a GIMPLE_OMP_CONTINUE statement.
899
900 CONTROL_DEF is the definition of the control variable.
901 CONTROL_USE is the use of the control variable. */
902
b8698a0f 903gimple
726a989a
RB
904gimple_build_omp_continue (tree control_def, tree control_use)
905{
906 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
907 gimple_omp_continue_set_control_def (p, control_def);
908 gimple_omp_continue_set_control_use (p, control_use);
909 return p;
910}
911
912/* Build a GIMPLE_OMP_ORDERED statement.
913
914 BODY is the sequence of statements inside a loop that will executed in
915 sequence. */
916
b8698a0f 917gimple
726a989a
RB
918gimple_build_omp_ordered (gimple_seq body)
919{
920 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
921 if (body)
922 gimple_omp_set_body (p, body);
923
924 return p;
925}
926
927
928/* Build a GIMPLE_OMP_RETURN statement.
929 WAIT_P is true if this is a non-waiting return. */
930
b8698a0f 931gimple
726a989a
RB
932gimple_build_omp_return (bool wait_p)
933{
934 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
935 if (wait_p)
936 gimple_omp_return_set_nowait (p);
937
938 return p;
939}
940
941
942/* Build a GIMPLE_OMP_SECTIONS statement.
943
944 BODY is a sequence of section statements.
945 CLAUSES are any of the OMP sections contsruct's clauses: private,
946 firstprivate, lastprivate, reduction, and nowait. */
947
b8698a0f 948gimple
726a989a
RB
949gimple_build_omp_sections (gimple_seq body, tree clauses)
950{
951 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
952 if (body)
953 gimple_omp_set_body (p, body);
954 gimple_omp_sections_set_clauses (p, clauses);
955
956 return p;
957}
958
959
960/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
961
962gimple
963gimple_build_omp_sections_switch (void)
964{
965 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
966}
967
968
969/* Build a GIMPLE_OMP_SINGLE statement.
970
971 BODY is the sequence of statements that will be executed once.
972 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
973 copyprivate, nowait. */
974
b8698a0f 975gimple
726a989a
RB
976gimple_build_omp_single (gimple_seq body, tree clauses)
977{
978 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
979 if (body)
980 gimple_omp_set_body (p, body);
981 gimple_omp_single_set_clauses (p, clauses);
982
983 return p;
984}
985
986
726a989a
RB
987/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
988
989gimple
990gimple_build_omp_atomic_load (tree lhs, tree rhs)
991{
992 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
993 gimple_omp_atomic_load_set_lhs (p, lhs);
994 gimple_omp_atomic_load_set_rhs (p, rhs);
995 return p;
996}
997
998/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
999
1000 VAL is the value we are storing. */
1001
1002gimple
1003gimple_build_omp_atomic_store (tree val)
1004{
1005 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1006 gimple_omp_atomic_store_set_val (p, val);
1007 return p;
1008}
1009
1010/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1011 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1012
1013gimple
1014gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1015{
1016 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1017 /* Ensure all the predictors fit into the lower bits of the subcode. */
e0c68ce9 1018 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
726a989a
RB
1019 gimple_predict_set_predictor (p, predictor);
1020 gimple_predict_set_outcome (p, outcome);
1021 return p;
1022}
1023
cea094ed 1024#if defined ENABLE_GIMPLE_CHECKING
726a989a
RB
1025/* Complain of a gimple type mismatch and die. */
1026
1027void
1028gimple_check_failed (const_gimple gs, const char *file, int line,
1029 const char *function, enum gimple_code code,
1030 enum tree_code subcode)
1031{
1032 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1033 gimple_code_name[code],
1034 tree_code_name[subcode],
1035 gimple_code_name[gimple_code (gs)],
1036 gs->gsbase.subcode > 0
1037 ? tree_code_name[gs->gsbase.subcode]
1038 : "",
1039 function, trim_filename (file), line);
1040}
726a989a
RB
1041#endif /* ENABLE_GIMPLE_CHECKING */
1042
1043
1044/* Allocate a new GIMPLE sequence in GC memory and return it. If
1045 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1046 instead. */
1047
1048gimple_seq
1049gimple_seq_alloc (void)
1050{
1051 gimple_seq seq = gimple_seq_cache;
1052 if (seq)
1053 {
1054 gimple_seq_cache = gimple_seq_cache->next_free;
1055 gcc_assert (gimple_seq_cache != seq);
1056 memset (seq, 0, sizeof (*seq));
1057 }
1058 else
1059 {
1060 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1061#ifdef GATHER_STATISTICS
1062 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1063 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1064#endif
1065 }
1066
1067 return seq;
1068}
1069
1070/* Return SEQ to the free pool of GIMPLE sequences. */
1071
1072void
1073gimple_seq_free (gimple_seq seq)
1074{
1075 if (seq == NULL)
1076 return;
1077
1078 gcc_assert (gimple_seq_first (seq) == NULL);
1079 gcc_assert (gimple_seq_last (seq) == NULL);
1080
1081 /* If this triggers, it's a sign that the same list is being freed
1082 twice. */
1083 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
b8698a0f 1084
726a989a
RB
1085 /* Add SEQ to the pool of free sequences. */
1086 seq->next_free = gimple_seq_cache;
1087 gimple_seq_cache = seq;
1088}
1089
1090
1091/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1092 *SEQ_P is NULL, a new sequence is allocated. */
1093
1094void
1095gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1096{
1097 gimple_stmt_iterator si;
1098
1099 if (gs == NULL)
1100 return;
1101
1102 if (*seq_p == NULL)
1103 *seq_p = gimple_seq_alloc ();
1104
1105 si = gsi_last (*seq_p);
1106 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1107}
1108
1109
1110/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1111 NULL, a new sequence is allocated. */
1112
1113void
1114gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1115{
1116 gimple_stmt_iterator si;
1117
1118 if (src == NULL)
1119 return;
1120
1121 if (*dst_p == NULL)
1122 *dst_p = gimple_seq_alloc ();
1123
1124 si = gsi_last (*dst_p);
1125 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1126}
1127
1128
1129/* Helper function of empty_body_p. Return true if STMT is an empty
1130 statement. */
1131
1132static bool
1133empty_stmt_p (gimple stmt)
1134{
1135 if (gimple_code (stmt) == GIMPLE_NOP)
1136 return true;
1137 if (gimple_code (stmt) == GIMPLE_BIND)
1138 return empty_body_p (gimple_bind_body (stmt));
1139 return false;
1140}
1141
1142
1143/* Return true if BODY contains nothing but empty statements. */
1144
1145bool
1146empty_body_p (gimple_seq body)
1147{
1148 gimple_stmt_iterator i;
1149
726a989a
RB
1150 if (gimple_seq_empty_p (body))
1151 return true;
1152 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
b5b8b0ac
AO
1153 if (!empty_stmt_p (gsi_stmt (i))
1154 && !is_gimple_debug (gsi_stmt (i)))
726a989a
RB
1155 return false;
1156
1157 return true;
1158}
1159
1160
1161/* Perform a deep copy of sequence SRC and return the result. */
1162
1163gimple_seq
1164gimple_seq_copy (gimple_seq src)
1165{
1166 gimple_stmt_iterator gsi;
82d6e6fc 1167 gimple_seq new_seq = gimple_seq_alloc ();
726a989a
RB
1168 gimple stmt;
1169
1170 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1171 {
1172 stmt = gimple_copy (gsi_stmt (gsi));
82d6e6fc 1173 gimple_seq_add_stmt (&new_seq, stmt);
726a989a
RB
1174 }
1175
82d6e6fc 1176 return new_seq;
726a989a
RB
1177}
1178
1179
1180/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1181 on each one. WI is as in walk_gimple_stmt.
b8698a0f 1182
726a989a
RB
1183 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1184 value is stored in WI->CALLBACK_RESULT and the statement that
1185 produced the value is returned.
1186
1187 Otherwise, all the statements are walked and NULL returned. */
1188
1189gimple
1190walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1191 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1192{
1193 gimple_stmt_iterator gsi;
1194
1195 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1196 {
1197 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1198 if (ret)
1199 {
1200 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1201 to hold it. */
1202 gcc_assert (wi);
1203 wi->callback_result = ret;
1204 return gsi_stmt (gsi);
1205 }
1206 }
1207
1208 if (wi)
1209 wi->callback_result = NULL_TREE;
1210
1211 return NULL;
1212}
1213
1214
1215/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1216
1217static tree
1218walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1219 struct walk_stmt_info *wi)
1220{
1c384bf1 1221 tree ret, op;
726a989a
RB
1222 unsigned noutputs;
1223 const char **oconstraints;
1c384bf1 1224 unsigned i, n;
726a989a
RB
1225 const char *constraint;
1226 bool allows_mem, allows_reg, is_inout;
1227
1228 noutputs = gimple_asm_noutputs (stmt);
1229 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1230
1231 if (wi)
1232 wi->is_lhs = true;
1233
1234 for (i = 0; i < noutputs; i++)
1235 {
1c384bf1 1236 op = gimple_asm_output_op (stmt, i);
726a989a
RB
1237 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1238 oconstraints[i] = constraint;
1239 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1240 &is_inout);
1241 if (wi)
1242 wi->val_only = (allows_reg || !allows_mem);
1243 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1244 if (ret)
1245 return ret;
1246 }
1247
1c384bf1
RH
1248 n = gimple_asm_ninputs (stmt);
1249 for (i = 0; i < n; i++)
726a989a 1250 {
1c384bf1 1251 op = gimple_asm_input_op (stmt, i);
726a989a
RB
1252 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1253 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1254 oconstraints, &allows_mem, &allows_reg);
1255 if (wi)
1c384bf1
RH
1256 {
1257 wi->val_only = (allows_reg || !allows_mem);
1258 /* Although input "m" is not really a LHS, we need a lvalue. */
1259 wi->is_lhs = !wi->val_only;
1260 }
726a989a
RB
1261 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1262 if (ret)
1263 return ret;
1264 }
1265
1266 if (wi)
1267 {
1268 wi->is_lhs = false;
1269 wi->val_only = true;
1270 }
1271
1c384bf1
RH
1272 n = gimple_asm_nlabels (stmt);
1273 for (i = 0; i < n; i++)
1274 {
1275 op = gimple_asm_label_op (stmt, i);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1279 }
1280
726a989a
RB
1281 return NULL_TREE;
1282}
1283
1284
1285/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1286 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1287
1288 CALLBACK_OP is called on each operand of STMT via walk_tree.
1289 Additional parameters to walk_tree must be stored in WI. For each operand
1290 OP, walk_tree is called as:
1291
1292 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1293
1294 If CALLBACK_OP returns non-NULL for an operand, the remaining
1295 operands are not scanned.
1296
1297 The return value is that returned by the last call to walk_tree, or
1298 NULL_TREE if no CALLBACK_OP is specified. */
1299
6a4d4e8a 1300tree
726a989a
RB
1301walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1302 struct walk_stmt_info *wi)
1303{
1304 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1305 unsigned i;
1306 tree ret = NULL_TREE;
1307
1308 switch (gimple_code (stmt))
1309 {
1310 case GIMPLE_ASSIGN:
1311 /* Walk the RHS operands. A formal temporary LHS may use a
1312 COMPONENT_REF RHS. */
1313 if (wi)
ba4d8f9d
RG
1314 wi->val_only = !is_gimple_reg (gimple_assign_lhs (stmt))
1315 || !gimple_assign_single_p (stmt);
726a989a
RB
1316
1317 for (i = 1; i < gimple_num_ops (stmt); i++)
1318 {
1319 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1320 pset);
1321 if (ret)
1322 return ret;
1323 }
1324
1325 /* Walk the LHS. If the RHS is appropriate for a memory, we
1326 may use a COMPONENT_REF on the LHS. */
1327 if (wi)
1328 {
1329 /* If the RHS has more than 1 operand, it is not appropriate
1330 for the memory. */
1331 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1332 || !gimple_assign_single_p (stmt);
1333 wi->is_lhs = true;
1334 }
1335
1336 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1337 if (ret)
1338 return ret;
1339
1340 if (wi)
1341 {
1342 wi->val_only = true;
1343 wi->is_lhs = false;
1344 }
1345 break;
1346
1347 case GIMPLE_CALL:
1348 if (wi)
1349 wi->is_lhs = false;
1350
1351 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1352 if (ret)
1353 return ret;
1354
1355 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1356 if (ret)
1357 return ret;
1358
1359 for (i = 0; i < gimple_call_num_args (stmt); i++)
1360 {
1361 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 if (wi)
1368 wi->is_lhs = true;
1369
1370 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1371 if (ret)
1372 return ret;
1373
1374 if (wi)
1375 wi->is_lhs = false;
1376 break;
1377
1378 case GIMPLE_CATCH:
1379 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1380 pset);
1381 if (ret)
1382 return ret;
1383 break;
1384
1385 case GIMPLE_EH_FILTER:
1386 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1387 pset);
1388 if (ret)
1389 return ret;
1390 break;
1391
726a989a
RB
1392 case GIMPLE_ASM:
1393 ret = walk_gimple_asm (stmt, callback_op, wi);
1394 if (ret)
1395 return ret;
1396 break;
1397
1398 case GIMPLE_OMP_CONTINUE:
1399 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1400 callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1403
1404 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1405 callback_op, wi, pset);
1406 if (ret)
1407 return ret;
1408 break;
1409
1410 case GIMPLE_OMP_CRITICAL:
1411 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1412 pset);
1413 if (ret)
1414 return ret;
1415 break;
1416
1417 case GIMPLE_OMP_FOR:
1418 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1419 pset);
1420 if (ret)
1421 return ret;
1422 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1423 {
1424 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1425 wi, pset);
1426 if (ret)
1427 return ret;
1428 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1429 wi, pset);
1430 if (ret)
1431 return ret;
1432 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1433 wi, pset);
1434 if (ret)
1435 return ret;
1436 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1437 wi, pset);
1438 }
1439 if (ret)
1440 return ret;
1441 break;
1442
1443 case GIMPLE_OMP_PARALLEL:
1444 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1445 wi, pset);
1446 if (ret)
1447 return ret;
1448 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1449 wi, pset);
1450 if (ret)
1451 return ret;
1452 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1453 wi, pset);
1454 if (ret)
1455 return ret;
1456 break;
1457
1458 case GIMPLE_OMP_TASK:
1459 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1460 wi, pset);
1461 if (ret)
1462 return ret;
1463 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1464 wi, pset);
1465 if (ret)
1466 return ret;
1467 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1468 wi, pset);
1469 if (ret)
1470 return ret;
1471 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1472 wi, pset);
1473 if (ret)
1474 return ret;
1475 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1476 wi, pset);
1477 if (ret)
1478 return ret;
1479 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 break;
1484
1485 case GIMPLE_OMP_SECTIONS:
1486 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1487 wi, pset);
1488 if (ret)
1489 return ret;
1490
1491 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1492 wi, pset);
1493 if (ret)
1494 return ret;
1495
1496 break;
1497
1498 case GIMPLE_OMP_SINGLE:
1499 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_OMP_ATOMIC_LOAD:
1506 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1507 pset);
1508 if (ret)
1509 return ret;
1510
1511 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1512 pset);
1513 if (ret)
1514 return ret;
1515 break;
1516
1517 case GIMPLE_OMP_ATOMIC_STORE:
1518 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 break;
1523
1524 /* Tuples that do not have operands. */
1525 case GIMPLE_NOP:
1526 case GIMPLE_RESX:
1527 case GIMPLE_OMP_RETURN:
1528 case GIMPLE_PREDICT:
1529 break;
1530
1531 default:
1532 {
1533 enum gimple_statement_structure_enum gss;
1534 gss = gimple_statement_structure (stmt);
1535 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1536 for (i = 0; i < gimple_num_ops (stmt); i++)
1537 {
1538 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1539 if (ret)
1540 return ret;
1541 }
1542 }
1543 break;
1544 }
1545
1546 return NULL_TREE;
1547}
1548
1549
1550/* Walk the current statement in GSI (optionally using traversal state
1551 stored in WI). If WI is NULL, no state is kept during traversal.
1552 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1553 that it has handled all the operands of the statement, its return
1554 value is returned. Otherwise, the return value from CALLBACK_STMT
1555 is discarded and its operands are scanned.
1556
1557 If CALLBACK_STMT is NULL or it didn't handle the operands,
1558 CALLBACK_OP is called on each operand of the statement via
1559 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1560 operand, the remaining operands are not scanned. In this case, the
1561 return value from CALLBACK_OP is returned.
1562
1563 In any other case, NULL_TREE is returned. */
1564
1565tree
1566walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1567 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1568{
1569 gimple ret;
1570 tree tree_ret;
1571 gimple stmt = gsi_stmt (*gsi);
1572
1573 if (wi)
1574 wi->gsi = *gsi;
1575
1576 if (wi && wi->want_locations && gimple_has_location (stmt))
1577 input_location = gimple_location (stmt);
1578
1579 ret = NULL;
1580
1581 /* Invoke the statement callback. Return if the callback handled
1582 all of STMT operands by itself. */
1583 if (callback_stmt)
1584 {
1585 bool handled_ops = false;
1586 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1587 if (handled_ops)
1588 return tree_ret;
1589
1590 /* If CALLBACK_STMT did not handle operands, it should not have
1591 a value to return. */
1592 gcc_assert (tree_ret == NULL);
1593
1594 /* Re-read stmt in case the callback changed it. */
1595 stmt = gsi_stmt (*gsi);
1596 }
1597
1598 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1599 if (callback_op)
1600 {
1601 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1602 if (tree_ret)
1603 return tree_ret;
1604 }
1605
1606 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1607 switch (gimple_code (stmt))
1608 {
1609 case GIMPLE_BIND:
1610 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1611 callback_op, wi);
1612 if (ret)
1613 return wi->callback_result;
1614 break;
1615
1616 case GIMPLE_CATCH:
1617 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1618 callback_op, wi);
1619 if (ret)
1620 return wi->callback_result;
1621 break;
1622
1623 case GIMPLE_EH_FILTER:
1624 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1625 callback_op, wi);
1626 if (ret)
1627 return wi->callback_result;
1628 break;
1629
1630 case GIMPLE_TRY:
1631 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1632 wi);
1633 if (ret)
1634 return wi->callback_result;
1635
1636 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1637 callback_op, wi);
1638 if (ret)
1639 return wi->callback_result;
1640 break;
1641
1642 case GIMPLE_OMP_FOR:
1643 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1644 callback_op, wi);
1645 if (ret)
1646 return wi->callback_result;
1647
1648 /* FALL THROUGH. */
1649 case GIMPLE_OMP_CRITICAL:
1650 case GIMPLE_OMP_MASTER:
1651 case GIMPLE_OMP_ORDERED:
1652 case GIMPLE_OMP_SECTION:
1653 case GIMPLE_OMP_PARALLEL:
1654 case GIMPLE_OMP_TASK:
1655 case GIMPLE_OMP_SECTIONS:
1656 case GIMPLE_OMP_SINGLE:
1657 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1658 wi);
1659 if (ret)
1660 return wi->callback_result;
1661 break;
1662
1663 case GIMPLE_WITH_CLEANUP_EXPR:
1664 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1665 callback_op, wi);
1666 if (ret)
1667 return wi->callback_result;
1668 break;
1669
1670 default:
1671 gcc_assert (!gimple_has_substatements (stmt));
1672 break;
1673 }
1674
1675 return NULL;
1676}
1677
1678
1679/* Set sequence SEQ to be the GIMPLE body for function FN. */
1680
1681void
1682gimple_set_body (tree fndecl, gimple_seq seq)
1683{
1684 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1685 if (fn == NULL)
1686 {
1687 /* If FNDECL still does not have a function structure associated
1688 with it, then it does not make sense for it to receive a
1689 GIMPLE body. */
1690 gcc_assert (seq == NULL);
1691 }
1692 else
1693 fn->gimple_body = seq;
1694}
1695
1696
1697/* Return the body of GIMPLE statements for function FN. */
1698
1699gimple_seq
1700gimple_body (tree fndecl)
1701{
1702 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1703 return fn ? fn->gimple_body : NULL;
1704}
1705
39ecc018
JH
1706/* Return true when FNDECL has Gimple body either in unlowered
1707 or CFG form. */
1708bool
1709gimple_has_body_p (tree fndecl)
1710{
1711 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1712 return (gimple_body (fndecl) || (fn && fn->cfg));
1713}
726a989a
RB
1714
1715/* Detect flags from a GIMPLE_CALL. This is just like
1716 call_expr_flags, but for gimple tuples. */
1717
1718int
1719gimple_call_flags (const_gimple stmt)
1720{
1721 int flags;
1722 tree decl = gimple_call_fndecl (stmt);
1723 tree t;
1724
1725 if (decl)
1726 flags = flags_from_decl_or_type (decl);
1727 else
1728 {
1729 t = TREE_TYPE (gimple_call_fn (stmt));
1730 if (t && TREE_CODE (t) == POINTER_TYPE)
1731 flags = flags_from_decl_or_type (TREE_TYPE (t));
1732 else
1733 flags = 0;
1734 }
1735
1736 return flags;
1737}
1738
1739
1740/* Return true if GS is a copy assignment. */
1741
1742bool
1743gimple_assign_copy_p (gimple gs)
1744{
1745 return gimple_code (gs) == GIMPLE_ASSIGN
1746 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1747 == GIMPLE_SINGLE_RHS
1748 && is_gimple_val (gimple_op (gs, 1));
1749}
1750
1751
1752/* Return true if GS is a SSA_NAME copy assignment. */
1753
1754bool
1755gimple_assign_ssa_name_copy_p (gimple gs)
1756{
1757 return (gimple_code (gs) == GIMPLE_ASSIGN
1758 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1759 == GIMPLE_SINGLE_RHS)
1760 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1761 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1762}
1763
1764
1765/* Return true if GS is an assignment with a singleton RHS, i.e.,
1766 there is no operator associated with the assignment itself.
1767 Unlike gimple_assign_copy_p, this predicate returns true for
1768 any RHS operand, including those that perform an operation
1769 and do not have the semantics of a copy, such as COND_EXPR. */
1770
1771bool
1772gimple_assign_single_p (gimple gs)
1773{
1774 return (gimple_code (gs) == GIMPLE_ASSIGN
1775 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1776 == GIMPLE_SINGLE_RHS);
1777}
1778
1779/* Return true if GS is an assignment with a unary RHS, but the
1780 operator has no effect on the assigned value. The logic is adapted
1781 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1782 instances in which STRIP_NOPS was previously applied to the RHS of
1783 an assignment.
1784
1785 NOTE: In the use cases that led to the creation of this function
1786 and of gimple_assign_single_p, it is typical to test for either
1787 condition and to proceed in the same manner. In each case, the
1788 assigned value is represented by the single RHS operand of the
1789 assignment. I suspect there may be cases where gimple_assign_copy_p,
1790 gimple_assign_single_p, or equivalent logic is used where a similar
1791 treatment of unary NOPs is appropriate. */
b8698a0f 1792
726a989a
RB
1793bool
1794gimple_assign_unary_nop_p (gimple gs)
1795{
1796 return (gimple_code (gs) == GIMPLE_ASSIGN
1a87cf0c 1797 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
726a989a
RB
1798 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1799 && gimple_assign_rhs1 (gs) != error_mark_node
1800 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1801 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1802}
1803
1804/* Set BB to be the basic block holding G. */
1805
1806void
1807gimple_set_bb (gimple stmt, basic_block bb)
1808{
1809 stmt->gsbase.bb = bb;
1810
1811 /* If the statement is a label, add the label to block-to-labels map
1812 so that we can speed up edge creation for GIMPLE_GOTOs. */
1813 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1814 {
1815 tree t;
1816 int uid;
1817
1818 t = gimple_label_label (stmt);
1819 uid = LABEL_DECL_UID (t);
1820 if (uid == -1)
1821 {
1822 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1823 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1824 if (old_len <= (unsigned) uid)
1825 {
5006671f 1826 unsigned new_len = 3 * uid / 2 + 1;
726a989a
RB
1827
1828 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1829 new_len);
1830 }
1831 }
1832
1833 VEC_replace (basic_block, label_to_block_map, uid, bb);
1834 }
1835}
1836
1837
726a989a
RB
1838/* Modify the RHS of the assignment pointed-to by GSI using the
1839 operands in the expression tree EXPR.
1840
1841 NOTE: The statement pointed-to by GSI may be reallocated if it
1842 did not have enough operand slots.
1843
1844 This function is useful to convert an existing tree expression into
1845 the flat representation used for the RHS of a GIMPLE assignment.
1846 It will reallocate memory as needed to expand or shrink the number
1847 of operand slots needed to represent EXPR.
1848
1849 NOTE: If you find yourself building a tree and then calling this
1850 function, you are most certainly doing it the slow way. It is much
1851 better to build a new assignment or to use the function
1852 gimple_assign_set_rhs_with_ops, which does not require an
1853 expression tree to be built. */
1854
1855void
1856gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1857{
1858 enum tree_code subcode;
1859 tree op1, op2;
1860
1861 extract_ops_from_tree (expr, &subcode, &op1, &op2);
1862 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
1863}
1864
1865
1866/* Set the RHS of assignment statement pointed-to by GSI to CODE with
1867 operands OP1 and OP2.
1868
1869 NOTE: The statement pointed-to by GSI may be reallocated if it
1870 did not have enough operand slots. */
1871
1872void
1873gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1874 tree op1, tree op2)
1875{
1876 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1877 gimple stmt = gsi_stmt (*gsi);
1878
1879 /* If the new CODE needs more operands, allocate a new statement. */
1880 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1881 {
1882 tree lhs = gimple_assign_lhs (stmt);
1883 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1884 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1885 gsi_replace (gsi, new_stmt, true);
1886 stmt = new_stmt;
1887
1888 /* The LHS needs to be reset as this also changes the SSA name
1889 on the LHS. */
1890 gimple_assign_set_lhs (stmt, lhs);
1891 }
1892
1893 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1894 gimple_set_subcode (stmt, code);
1895 gimple_assign_set_rhs1 (stmt, op1);
1896 if (new_rhs_ops > 1)
1897 gimple_assign_set_rhs2 (stmt, op2);
1898}
1899
1900
1901/* Return the LHS of a statement that performs an assignment,
1902 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1903 for a call to a function that returns no value, or for a
1904 statement other than an assignment or a call. */
1905
1906tree
1907gimple_get_lhs (const_gimple stmt)
1908{
e0c68ce9 1909 enum gimple_code code = gimple_code (stmt);
726a989a
RB
1910
1911 if (code == GIMPLE_ASSIGN)
1912 return gimple_assign_lhs (stmt);
1913 else if (code == GIMPLE_CALL)
1914 return gimple_call_lhs (stmt);
1915 else
1916 return NULL_TREE;
1917}
1918
1919
1920/* Set the LHS of a statement that performs an assignment,
1921 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1922
1923void
1924gimple_set_lhs (gimple stmt, tree lhs)
1925{
e0c68ce9 1926 enum gimple_code code = gimple_code (stmt);
726a989a
RB
1927
1928 if (code == GIMPLE_ASSIGN)
1929 gimple_assign_set_lhs (stmt, lhs);
1930 else if (code == GIMPLE_CALL)
1931 gimple_call_set_lhs (stmt, lhs);
1932 else
1933 gcc_unreachable();
1934}
1935
21cf7180
AO
1936/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
1937 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
1938 expression with a different value.
1939
1940 This will update any annotations (say debug bind stmts) referring
1941 to the original LHS, so that they use the RHS instead. This is
1942 done even if NLHS and LHS are the same, for it is understood that
1943 the RHS will be modified afterwards, and NLHS will not be assigned
1944 an equivalent value.
1945
1946 Adjusting any non-annotation uses of the LHS, if needed, is a
1947 responsibility of the caller.
1948
1949 The effect of this call should be pretty much the same as that of
1950 inserting a copy of STMT before STMT, and then removing the
1951 original stmt, at which time gsi_remove() would have update
1952 annotations, but using this function saves all the inserting,
1953 copying and removing. */
1954
1955void
1956gimple_replace_lhs (gimple stmt, tree nlhs)
1957{
1958 if (MAY_HAVE_DEBUG_STMTS)
1959 {
1960 tree lhs = gimple_get_lhs (stmt);
1961
1962 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
1963
1964 insert_debug_temp_for_var_def (NULL, lhs);
1965 }
1966
1967 gimple_set_lhs (stmt, nlhs);
1968}
726a989a
RB
1969
1970/* Return a deep copy of statement STMT. All the operands from STMT
1971 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1972 and VUSE operand arrays are set to empty in the new copy. */
1973
1974gimple
1975gimple_copy (gimple stmt)
1976{
1977 enum gimple_code code = gimple_code (stmt);
1978 unsigned num_ops = gimple_num_ops (stmt);
1979 gimple copy = gimple_alloc (code, num_ops);
1980 unsigned i;
1981
1982 /* Shallow copy all the fields from STMT. */
1983 memcpy (copy, stmt, gimple_size (code));
1984
1985 /* If STMT has sub-statements, deep-copy them as well. */
1986 if (gimple_has_substatements (stmt))
1987 {
1988 gimple_seq new_seq;
1989 tree t;
1990
1991 switch (gimple_code (stmt))
1992 {
1993 case GIMPLE_BIND:
1994 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
1995 gimple_bind_set_body (copy, new_seq);
1996 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
1997 gimple_bind_set_block (copy, gimple_bind_block (stmt));
1998 break;
1999
2000 case GIMPLE_CATCH:
2001 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2002 gimple_catch_set_handler (copy, new_seq);
2003 t = unshare_expr (gimple_catch_types (stmt));
2004 gimple_catch_set_types (copy, t);
2005 break;
2006
2007 case GIMPLE_EH_FILTER:
2008 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2009 gimple_eh_filter_set_failure (copy, new_seq);
2010 t = unshare_expr (gimple_eh_filter_types (stmt));
2011 gimple_eh_filter_set_types (copy, t);
2012 break;
2013
2014 case GIMPLE_TRY:
2015 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2016 gimple_try_set_eval (copy, new_seq);
2017 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2018 gimple_try_set_cleanup (copy, new_seq);
2019 break;
2020
2021 case GIMPLE_OMP_FOR:
2022 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2023 gimple_omp_for_set_pre_body (copy, new_seq);
2024 t = unshare_expr (gimple_omp_for_clauses (stmt));
2025 gimple_omp_for_set_clauses (copy, t);
2026 copy->gimple_omp_for.iter
2027 = GGC_NEWVEC (struct gimple_omp_for_iter,
2028 gimple_omp_for_collapse (stmt));
2029 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2030 {
2031 gimple_omp_for_set_cond (copy, i,
2032 gimple_omp_for_cond (stmt, i));
2033 gimple_omp_for_set_index (copy, i,
2034 gimple_omp_for_index (stmt, i));
2035 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2036 gimple_omp_for_set_initial (copy, i, t);
2037 t = unshare_expr (gimple_omp_for_final (stmt, i));
2038 gimple_omp_for_set_final (copy, i, t);
2039 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2040 gimple_omp_for_set_incr (copy, i, t);
2041 }
2042 goto copy_omp_body;
2043
2044 case GIMPLE_OMP_PARALLEL:
2045 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2046 gimple_omp_parallel_set_clauses (copy, t);
2047 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2048 gimple_omp_parallel_set_child_fn (copy, t);
2049 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2050 gimple_omp_parallel_set_data_arg (copy, t);
2051 goto copy_omp_body;
2052
2053 case GIMPLE_OMP_TASK:
2054 t = unshare_expr (gimple_omp_task_clauses (stmt));
2055 gimple_omp_task_set_clauses (copy, t);
2056 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2057 gimple_omp_task_set_child_fn (copy, t);
2058 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2059 gimple_omp_task_set_data_arg (copy, t);
2060 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2061 gimple_omp_task_set_copy_fn (copy, t);
2062 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2063 gimple_omp_task_set_arg_size (copy, t);
2064 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2065 gimple_omp_task_set_arg_align (copy, t);
2066 goto copy_omp_body;
2067
2068 case GIMPLE_OMP_CRITICAL:
2069 t = unshare_expr (gimple_omp_critical_name (stmt));
2070 gimple_omp_critical_set_name (copy, t);
2071 goto copy_omp_body;
2072
2073 case GIMPLE_OMP_SECTIONS:
2074 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2075 gimple_omp_sections_set_clauses (copy, t);
2076 t = unshare_expr (gimple_omp_sections_control (stmt));
2077 gimple_omp_sections_set_control (copy, t);
2078 /* FALLTHRU */
2079
2080 case GIMPLE_OMP_SINGLE:
2081 case GIMPLE_OMP_SECTION:
2082 case GIMPLE_OMP_MASTER:
2083 case GIMPLE_OMP_ORDERED:
2084 copy_omp_body:
2085 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2086 gimple_omp_set_body (copy, new_seq);
2087 break;
2088
2089 case GIMPLE_WITH_CLEANUP_EXPR:
2090 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2091 gimple_wce_set_cleanup (copy, new_seq);
2092 break;
2093
2094 default:
2095 gcc_unreachable ();
2096 }
2097 }
2098
2099 /* Make copy of operands. */
2100 if (num_ops > 0)
2101 {
2102 for (i = 0; i < num_ops; i++)
2103 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2104
ccacdf06 2105 /* Clear out SSA operand vectors on COPY. */
726a989a
RB
2106 if (gimple_has_ops (stmt))
2107 {
2108 gimple_set_def_ops (copy, NULL);
2109 gimple_set_use_ops (copy, NULL);
726a989a
RB
2110 }
2111
2112 if (gimple_has_mem_ops (stmt))
2113 {
5006671f
RG
2114 gimple_set_vdef (copy, gimple_vdef (stmt));
2115 gimple_set_vuse (copy, gimple_vuse (stmt));
726a989a
RB
2116 }
2117
5006671f
RG
2118 /* SSA operands need to be updated. */
2119 gimple_set_modified (copy, true);
726a989a
RB
2120 }
2121
2122 return copy;
2123}
2124
2125
2126/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2127 a MODIFIED field. */
2128
2129void
2130gimple_set_modified (gimple s, bool modifiedp)
2131{
2132 if (gimple_has_ops (s))
2133 {
2134 s->gsbase.modified = (unsigned) modifiedp;
2135
2136 if (modifiedp
2137 && cfun->gimple_df
2138 && is_gimple_call (s)
2139 && gimple_call_noreturn_p (s))
2140 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2141 }
2142}
2143
2144
2145/* Return true if statement S has side-effects. We consider a
2146 statement to have side effects if:
2147
2148 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2149 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2150
2151bool
2152gimple_has_side_effects (const_gimple s)
2153{
2154 unsigned i;
2155
b5b8b0ac
AO
2156 if (is_gimple_debug (s))
2157 return false;
2158
726a989a
RB
2159 /* We don't have to scan the arguments to check for
2160 volatile arguments, though, at present, we still
2161 do a scan to check for TREE_SIDE_EFFECTS. */
2162 if (gimple_has_volatile_ops (s))
2163 return true;
2164
2165 if (is_gimple_call (s))
2166 {
2167 unsigned nargs = gimple_call_num_args (s);
2168
2169 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2170 return true;
2171 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2172 /* An infinite loop is considered a side effect. */
2173 return true;
2174
2175 if (gimple_call_lhs (s)
2176 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2177 {
2178 gcc_assert (gimple_has_volatile_ops (s));
2179 return true;
2180 }
2181
2182 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2183 return true;
2184
2185 for (i = 0; i < nargs; i++)
2186 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2187 {
2188 gcc_assert (gimple_has_volatile_ops (s));
2189 return true;
2190 }
2191
2192 return false;
2193 }
2194 else
2195 {
2196 for (i = 0; i < gimple_num_ops (s); i++)
2197 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2198 {
2199 gcc_assert (gimple_has_volatile_ops (s));
2200 return true;
2201 }
2202 }
2203
2204 return false;
2205}
2206
2207/* Return true if the RHS of statement S has side effects.
2208 We may use it to determine if it is admissable to replace
2209 an assignment or call with a copy of a previously-computed
2210 value. In such cases, side-effects due the the LHS are
2211 preserved. */
2212
2213bool
2214gimple_rhs_has_side_effects (const_gimple s)
2215{
2216 unsigned i;
2217
2218 if (is_gimple_call (s))
2219 {
2220 unsigned nargs = gimple_call_num_args (s);
2221
2222 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2223 return true;
2224
2225 /* We cannot use gimple_has_volatile_ops here,
2226 because we must ignore a volatile LHS. */
2227 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2228 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2229 {
2230 gcc_assert (gimple_has_volatile_ops (s));
2231 return true;
2232 }
2233
2234 for (i = 0; i < nargs; i++)
2235 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2236 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2237 return true;
2238
2239 return false;
2240 }
2241 else if (is_gimple_assign (s))
2242 {
2243 /* Skip the first operand, the LHS. */
2244 for (i = 1; i < gimple_num_ops (s); i++)
2245 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2246 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2247 {
2248 gcc_assert (gimple_has_volatile_ops (s));
2249 return true;
2250 }
2251 }
b5b8b0ac
AO
2252 else if (is_gimple_debug (s))
2253 return false;
726a989a
RB
2254 else
2255 {
2256 /* For statements without an LHS, examine all arguments. */
2257 for (i = 0; i < gimple_num_ops (s); i++)
2258 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2259 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2260 {
2261 gcc_assert (gimple_has_volatile_ops (s));
2262 return true;
2263 }
2264 }
2265
2266 return false;
2267}
2268
2269
2270/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2271 Return true if S can trap. If INCLUDE_LHS is true and S is a
2272 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2273 Otherwise, only the RHS of the assignment is checked. */
2274
2275static bool
2276gimple_could_trap_p_1 (gimple s, bool include_lhs)
2277{
2278 unsigned i, start;
2279 tree t, div = NULL_TREE;
2280 enum tree_code op;
2281
2282 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2283
2284 for (i = start; i < gimple_num_ops (s); i++)
2285 if (tree_could_trap_p (gimple_op (s, i)))
2286 return true;
2287
2288 switch (gimple_code (s))
2289 {
2290 case GIMPLE_ASM:
2291 return gimple_asm_volatile_p (s);
2292
2293 case GIMPLE_CALL:
2294 t = gimple_call_fndecl (s);
2295 /* Assume that calls to weak functions may trap. */
2296 if (!t || !DECL_P (t) || DECL_WEAK (t))
2297 return true;
2298 return false;
2299
2300 case GIMPLE_ASSIGN:
2301 t = gimple_expr_type (s);
2302 op = gimple_assign_rhs_code (s);
2303 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2304 div = gimple_assign_rhs2 (s);
2305 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2306 (INTEGRAL_TYPE_P (t)
2307 && TYPE_OVERFLOW_TRAPS (t)),
2308 div));
2309
2310 default:
2311 break;
2312 }
2313
2314 return false;
2315
2316}
2317
2318
2319/* Return true if statement S can trap. */
2320
2321bool
2322gimple_could_trap_p (gimple s)
2323{
2324 return gimple_could_trap_p_1 (s, true);
2325}
2326
2327
2328/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2329
2330bool
2331gimple_assign_rhs_could_trap_p (gimple s)
2332{
2333 gcc_assert (is_gimple_assign (s));
2334 return gimple_could_trap_p_1 (s, false);
2335}
2336
2337
2338/* Print debugging information for gimple stmts generated. */
2339
2340void
2341dump_gimple_statistics (void)
2342{
2343#ifdef GATHER_STATISTICS
2344 int i, total_tuples = 0, total_bytes = 0;
2345
2346 fprintf (stderr, "\nGIMPLE statements\n");
2347 fprintf (stderr, "Kind Stmts Bytes\n");
2348 fprintf (stderr, "---------------------------------------\n");
2349 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2350 {
2351 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2352 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2353 total_tuples += gimple_alloc_counts[i];
2354 total_bytes += gimple_alloc_sizes[i];
2355 }
2356 fprintf (stderr, "---------------------------------------\n");
2357 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2358 fprintf (stderr, "---------------------------------------\n");
2359#else
2360 fprintf (stderr, "No gimple statistics\n");
2361#endif
2362}
2363
2364
726a989a
RB
2365/* Return the number of operands needed on the RHS of a GIMPLE
2366 assignment for an expression with tree code CODE. */
2367
2368unsigned
2369get_gimple_rhs_num_ops (enum tree_code code)
2370{
2371 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2372
2373 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2374 return 1;
2375 else if (rhs_class == GIMPLE_BINARY_RHS)
2376 return 2;
2377 else
2378 gcc_unreachable ();
2379}
2380
2381#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2382 (unsigned char) \
2383 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2384 : ((TYPE) == tcc_binary \
2385 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2386 : ((TYPE) == tcc_constant \
2387 || (TYPE) == tcc_declaration \
2388 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2389 : ((SYM) == TRUTH_AND_EXPR \
2390 || (SYM) == TRUTH_OR_EXPR \
2391 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2392 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2393 : ((SYM) == COND_EXPR \
2394 || (SYM) == CONSTRUCTOR \
2395 || (SYM) == OBJ_TYPE_REF \
2396 || (SYM) == ASSERT_EXPR \
2397 || (SYM) == ADDR_EXPR \
2398 || (SYM) == WITH_SIZE_EXPR \
726a989a 2399 || (SYM) == SSA_NAME \
726a989a
RB
2400 || (SYM) == POLYNOMIAL_CHREC \
2401 || (SYM) == DOT_PROD_EXPR \
2402 || (SYM) == VEC_COND_EXPR \
2403 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2404 : GIMPLE_INVALID_RHS),
2405#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2406
2407const unsigned char gimple_rhs_class_table[] = {
2408#include "all-tree.def"
2409};
2410
2411#undef DEFTREECODE
2412#undef END_OF_BASE_TREE_CODES
2413
2414/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2415
2416/* Validation of GIMPLE expressions. */
2417
2418/* Return true if OP is an acceptable tree node to be used as a GIMPLE
2419 operand. */
2420
2421bool
2422is_gimple_operand (const_tree op)
2423{
2424 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2425}
2426
726a989a
RB
2427/* Returns true iff T is a valid RHS for an assignment to a renamed
2428 user -- or front-end generated artificial -- variable. */
2429
2430bool
2431is_gimple_reg_rhs (tree t)
2432{
ba4d8f9d 2433 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
726a989a
RB
2434}
2435
2436/* Returns true iff T is a valid RHS for an assignment to an un-renamed
2437 LHS, or for a call argument. */
2438
2439bool
2440is_gimple_mem_rhs (tree t)
2441{
2442 /* If we're dealing with a renamable type, either source or dest must be
2443 a renamed variable. */
2444 if (is_gimple_reg_type (TREE_TYPE (t)))
2445 return is_gimple_val (t);
2446 else
ba4d8f9d 2447 return is_gimple_val (t) || is_gimple_lvalue (t);
726a989a
RB
2448}
2449
2450/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2451
2452bool
2453is_gimple_lvalue (tree t)
2454{
2455 return (is_gimple_addressable (t)
2456 || TREE_CODE (t) == WITH_SIZE_EXPR
2457 /* These are complex lvalues, but don't have addresses, so they
2458 go here. */
2459 || TREE_CODE (t) == BIT_FIELD_REF);
2460}
2461
2462/* Return true if T is a GIMPLE condition. */
2463
2464bool
2465is_gimple_condexpr (tree t)
2466{
2467 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2468 && !tree_could_trap_p (t)
2469 && is_gimple_val (TREE_OPERAND (t, 0))
2470 && is_gimple_val (TREE_OPERAND (t, 1))));
2471}
2472
2473/* Return true if T is something whose address can be taken. */
2474
2475bool
2476is_gimple_addressable (tree t)
2477{
2478 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2479}
2480
2481/* Return true if T is a valid gimple constant. */
2482
2483bool
2484is_gimple_constant (const_tree t)
2485{
2486 switch (TREE_CODE (t))
2487 {
2488 case INTEGER_CST:
2489 case REAL_CST:
2490 case FIXED_CST:
2491 case STRING_CST:
2492 case COMPLEX_CST:
2493 case VECTOR_CST:
2494 return true;
2495
2496 /* Vector constant constructors are gimple invariant. */
2497 case CONSTRUCTOR:
2498 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2499 return TREE_CONSTANT (t);
2500 else
2501 return false;
2502
2503 default:
2504 return false;
2505 }
2506}
2507
2508/* Return true if T is a gimple address. */
2509
2510bool
2511is_gimple_address (const_tree t)
2512{
2513 tree op;
2514
2515 if (TREE_CODE (t) != ADDR_EXPR)
2516 return false;
2517
2518 op = TREE_OPERAND (t, 0);
2519 while (handled_component_p (op))
2520 {
2521 if ((TREE_CODE (op) == ARRAY_REF
2522 || TREE_CODE (op) == ARRAY_RANGE_REF)
2523 && !is_gimple_val (TREE_OPERAND (op, 1)))
2524 return false;
2525
2526 op = TREE_OPERAND (op, 0);
2527 }
2528
2529 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2530 return true;
2531
2532 switch (TREE_CODE (op))
2533 {
2534 case PARM_DECL:
2535 case RESULT_DECL:
2536 case LABEL_DECL:
2537 case FUNCTION_DECL:
2538 case VAR_DECL:
2539 case CONST_DECL:
2540 return true;
2541
2542 default:
2543 return false;
2544 }
2545}
2546
00fc2333
JH
2547/* Strip out all handled components that produce invariant
2548 offsets. */
726a989a 2549
00fc2333
JH
2550static const_tree
2551strip_invariant_refs (const_tree op)
726a989a 2552{
726a989a
RB
2553 while (handled_component_p (op))
2554 {
2555 switch (TREE_CODE (op))
2556 {
2557 case ARRAY_REF:
2558 case ARRAY_RANGE_REF:
2559 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2560 || TREE_OPERAND (op, 2) != NULL_TREE
2561 || TREE_OPERAND (op, 3) != NULL_TREE)
00fc2333 2562 return NULL;
726a989a
RB
2563 break;
2564
2565 case COMPONENT_REF:
2566 if (TREE_OPERAND (op, 2) != NULL_TREE)
00fc2333 2567 return NULL;
726a989a
RB
2568 break;
2569
2570 default:;
2571 }
2572 op = TREE_OPERAND (op, 0);
2573 }
2574
00fc2333
JH
2575 return op;
2576}
2577
2578/* Return true if T is a gimple invariant address. */
2579
2580bool
2581is_gimple_invariant_address (const_tree t)
2582{
2583 const_tree op;
2584
2585 if (TREE_CODE (t) != ADDR_EXPR)
2586 return false;
2587
2588 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2589
2590 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2591}
2592
2593/* Return true if T is a gimple invariant address at IPA level
2594 (so addresses of variables on stack are not allowed). */
2595
2596bool
2597is_gimple_ip_invariant_address (const_tree t)
2598{
2599 const_tree op;
2600
2601 if (TREE_CODE (t) != ADDR_EXPR)
2602 return false;
2603
2604 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2605
2606 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
726a989a
RB
2607}
2608
2609/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2610 form of function invariant. */
2611
2612bool
2613is_gimple_min_invariant (const_tree t)
2614{
2615 if (TREE_CODE (t) == ADDR_EXPR)
2616 return is_gimple_invariant_address (t);
2617
2618 return is_gimple_constant (t);
2619}
2620
00fc2333
JH
2621/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2622 form of gimple minimal invariant. */
2623
2624bool
2625is_gimple_ip_invariant (const_tree t)
2626{
2627 if (TREE_CODE (t) == ADDR_EXPR)
2628 return is_gimple_ip_invariant_address (t);
2629
2630 return is_gimple_constant (t);
2631}
2632
726a989a
RB
2633/* Return true if T looks like a valid GIMPLE statement. */
2634
2635bool
2636is_gimple_stmt (tree t)
2637{
2638 const enum tree_code code = TREE_CODE (t);
2639
2640 switch (code)
2641 {
2642 case NOP_EXPR:
2643 /* The only valid NOP_EXPR is the empty statement. */
2644 return IS_EMPTY_STMT (t);
2645
2646 case BIND_EXPR:
2647 case COND_EXPR:
2648 /* These are only valid if they're void. */
2649 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2650
2651 case SWITCH_EXPR:
2652 case GOTO_EXPR:
2653 case RETURN_EXPR:
2654 case LABEL_EXPR:
2655 case CASE_LABEL_EXPR:
2656 case TRY_CATCH_EXPR:
2657 case TRY_FINALLY_EXPR:
2658 case EH_FILTER_EXPR:
2659 case CATCH_EXPR:
726a989a 2660 case ASM_EXPR:
726a989a
RB
2661 case STATEMENT_LIST:
2662 case OMP_PARALLEL:
2663 case OMP_FOR:
2664 case OMP_SECTIONS:
2665 case OMP_SECTION:
2666 case OMP_SINGLE:
2667 case OMP_MASTER:
2668 case OMP_ORDERED:
2669 case OMP_CRITICAL:
2670 case OMP_TASK:
2671 /* These are always void. */
2672 return true;
2673
2674 case CALL_EXPR:
2675 case MODIFY_EXPR:
2676 case PREDICT_EXPR:
2677 /* These are valid regardless of their type. */
2678 return true;
2679
2680 default:
2681 return false;
2682 }
2683}
2684
2685/* Return true if T is a variable. */
2686
2687bool
2688is_gimple_variable (tree t)
2689{
2690 return (TREE_CODE (t) == VAR_DECL
2691 || TREE_CODE (t) == PARM_DECL
2692 || TREE_CODE (t) == RESULT_DECL
2693 || TREE_CODE (t) == SSA_NAME);
2694}
2695
2696/* Return true if T is a GIMPLE identifier (something with an address). */
2697
2698bool
2699is_gimple_id (tree t)
2700{
2701 return (is_gimple_variable (t)
2702 || TREE_CODE (t) == FUNCTION_DECL
2703 || TREE_CODE (t) == LABEL_DECL
2704 || TREE_CODE (t) == CONST_DECL
2705 /* Allow string constants, since they are addressable. */
2706 || TREE_CODE (t) == STRING_CST);
2707}
2708
2709/* Return true if TYPE is a suitable type for a scalar register variable. */
2710
2711bool
2712is_gimple_reg_type (tree type)
2713{
4636b850 2714 return !AGGREGATE_TYPE_P (type);
726a989a
RB
2715}
2716
2717/* Return true if T is a non-aggregate register variable. */
2718
2719bool
2720is_gimple_reg (tree t)
2721{
2722 if (TREE_CODE (t) == SSA_NAME)
2723 t = SSA_NAME_VAR (t);
2724
726a989a
RB
2725 if (!is_gimple_variable (t))
2726 return false;
2727
2728 if (!is_gimple_reg_type (TREE_TYPE (t)))
2729 return false;
2730
2731 /* A volatile decl is not acceptable because we can't reuse it as
2732 needed. We need to copy it into a temp first. */
2733 if (TREE_THIS_VOLATILE (t))
2734 return false;
2735
2736 /* We define "registers" as things that can be renamed as needed,
2737 which with our infrastructure does not apply to memory. */
2738 if (needs_to_live_in_memory (t))
2739 return false;
2740
2741 /* Hard register variables are an interesting case. For those that
2742 are call-clobbered, we don't know where all the calls are, since
2743 we don't (want to) take into account which operations will turn
2744 into libcalls at the rtl level. For those that are call-saved,
2745 we don't currently model the fact that calls may in fact change
2746 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2747 level, and so miss variable changes that might imply. All around,
2748 it seems safest to not do too much optimization with these at the
2749 tree level at all. We'll have to rely on the rtl optimizers to
2750 clean this up, as there we've got all the appropriate bits exposed. */
2751 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2752 return false;
2753
4636b850
RG
2754 /* Complex and vector values must have been put into SSA-like form.
2755 That is, no assignments to the individual components. */
2756 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2757 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2758 return DECL_GIMPLE_REG_P (t);
2759
726a989a
RB
2760 return true;
2761}
2762
2763
726a989a
RB
2764/* Return true if T is a GIMPLE variable whose address is not needed. */
2765
2766bool
2767is_gimple_non_addressable (tree t)
2768{
2769 if (TREE_CODE (t) == SSA_NAME)
2770 t = SSA_NAME_VAR (t);
2771
2772 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2773}
2774
2775/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2776
2777bool
2778is_gimple_val (tree t)
2779{
2780 /* Make loads from volatiles and memory vars explicit. */
2781 if (is_gimple_variable (t)
2782 && is_gimple_reg_type (TREE_TYPE (t))
2783 && !is_gimple_reg (t))
2784 return false;
2785
726a989a
RB
2786 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2787}
2788
2789/* Similarly, but accept hard registers as inputs to asm statements. */
2790
2791bool
2792is_gimple_asm_val (tree t)
2793{
2794 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2795 return true;
2796
2797 return is_gimple_val (t);
2798}
2799
2800/* Return true if T is a GIMPLE minimal lvalue. */
2801
2802bool
2803is_gimple_min_lval (tree t)
2804{
ba4d8f9d
RG
2805 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2806 return false;
726a989a
RB
2807 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
2808}
2809
2810/* Return true if T is a typecast operation. */
2811
2812bool
2813is_gimple_cast (tree t)
2814{
2815 return (CONVERT_EXPR_P (t)
2816 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2817}
2818
2819/* Return true if T is a valid function operand of a CALL_EXPR. */
2820
2821bool
2822is_gimple_call_addr (tree t)
2823{
2824 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2825}
2826
2827/* If T makes a function call, return the corresponding CALL_EXPR operand.
2828 Otherwise, return NULL_TREE. */
2829
2830tree
2831get_call_expr_in (tree t)
2832{
2833 if (TREE_CODE (t) == MODIFY_EXPR)
2834 t = TREE_OPERAND (t, 1);
2835 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2836 t = TREE_OPERAND (t, 0);
2837 if (TREE_CODE (t) == CALL_EXPR)
2838 return t;
2839 return NULL_TREE;
2840}
2841
2842
2843/* Given a memory reference expression T, return its base address.
2844 The base address of a memory reference expression is the main
2845 object being referenced. For instance, the base address for
2846 'array[i].fld[j]' is 'array'. You can think of this as stripping
2847 away the offset part from a memory address.
2848
2849 This function calls handled_component_p to strip away all the inner
2850 parts of the memory reference until it reaches the base object. */
2851
2852tree
2853get_base_address (tree t)
2854{
2855 while (handled_component_p (t))
2856 t = TREE_OPERAND (t, 0);
b8698a0f 2857
726a989a
RB
2858 if (SSA_VAR_P (t)
2859 || TREE_CODE (t) == STRING_CST
2860 || TREE_CODE (t) == CONSTRUCTOR
2861 || INDIRECT_REF_P (t))
2862 return t;
2863 else
2864 return NULL_TREE;
2865}
2866
2867void
2868recalculate_side_effects (tree t)
2869{
2870 enum tree_code code = TREE_CODE (t);
2871 int len = TREE_OPERAND_LENGTH (t);
2872 int i;
2873
2874 switch (TREE_CODE_CLASS (code))
2875 {
2876 case tcc_expression:
2877 switch (code)
2878 {
2879 case INIT_EXPR:
2880 case MODIFY_EXPR:
2881 case VA_ARG_EXPR:
2882 case PREDECREMENT_EXPR:
2883 case PREINCREMENT_EXPR:
2884 case POSTDECREMENT_EXPR:
2885 case POSTINCREMENT_EXPR:
2886 /* All of these have side-effects, no matter what their
2887 operands are. */
2888 return;
2889
2890 default:
2891 break;
2892 }
2893 /* Fall through. */
2894
2895 case tcc_comparison: /* a comparison expression */
2896 case tcc_unary: /* a unary arithmetic expression */
2897 case tcc_binary: /* a binary arithmetic expression */
2898 case tcc_reference: /* a reference */
2899 case tcc_vl_exp: /* a function call */
2900 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2901 for (i = 0; i < len; ++i)
2902 {
2903 tree op = TREE_OPERAND (t, i);
2904 if (op && TREE_SIDE_EFFECTS (op))
2905 TREE_SIDE_EFFECTS (t) = 1;
2906 }
2907 break;
2908
13f95bdb
EB
2909 case tcc_constant:
2910 /* No side-effects. */
2911 return;
2912
726a989a 2913 default:
726a989a
RB
2914 gcc_unreachable ();
2915 }
2916}
2917
2918/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2919 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2920 we failed to create one. */
2921
2922tree
2923canonicalize_cond_expr_cond (tree t)
2924{
b66a1bac
RG
2925 /* Strip conversions around boolean operations. */
2926 if (CONVERT_EXPR_P (t)
2927 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
2928 t = TREE_OPERAND (t, 0);
2929
726a989a 2930 /* For (bool)x use x != 0. */
b66a1bac
RG
2931 if (CONVERT_EXPR_P (t)
2932 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
726a989a
RB
2933 {
2934 tree top0 = TREE_OPERAND (t, 0);
2935 t = build2 (NE_EXPR, TREE_TYPE (t),
2936 top0, build_int_cst (TREE_TYPE (top0), 0));
2937 }
2938 /* For !x use x == 0. */
2939 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2940 {
2941 tree top0 = TREE_OPERAND (t, 0);
2942 t = build2 (EQ_EXPR, TREE_TYPE (t),
2943 top0, build_int_cst (TREE_TYPE (top0), 0));
2944 }
2945 /* For cmp ? 1 : 0 use cmp. */
2946 else if (TREE_CODE (t) == COND_EXPR
2947 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2948 && integer_onep (TREE_OPERAND (t, 1))
2949 && integer_zerop (TREE_OPERAND (t, 2)))
2950 {
2951 tree top0 = TREE_OPERAND (t, 0);
2952 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2953 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2954 }
2955
2956 if (is_gimple_condexpr (t))
2957 return t;
2958
2959 return NULL_TREE;
2960}
2961
e6c99067
DN
2962/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2963 the positions marked by the set ARGS_TO_SKIP. */
2964
c6f7cfc1 2965gimple
5c0466b5 2966gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
c6f7cfc1
JH
2967{
2968 int i;
2969 tree fn = gimple_call_fn (stmt);
2970 int nargs = gimple_call_num_args (stmt);
2971 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
2972 gimple new_stmt;
2973
2974 for (i = 0; i < nargs; i++)
2975 if (!bitmap_bit_p (args_to_skip, i))
2976 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
2977
2978 new_stmt = gimple_build_call_vec (fn, vargs);
2979 VEC_free (tree, heap, vargs);
2980 if (gimple_call_lhs (stmt))
2981 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2982
5006671f
RG
2983 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2984 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2985
c6f7cfc1
JH
2986 gimple_set_block (new_stmt, gimple_block (stmt));
2987 if (gimple_has_location (stmt))
2988 gimple_set_location (new_stmt, gimple_location (stmt));
2989
2990 /* Carry all the flags to the new GIMPLE_CALL. */
2991 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2992 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
2993 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
2994 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
2995 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
2996 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
5006671f
RG
2997
2998 gimple_set_modified (new_stmt, true);
2999
c6f7cfc1
JH
3000 return new_stmt;
3001}
3002
5006671f 3003
d7f09764
DN
3004static hashval_t gimple_type_hash (const void *);
3005
3006/* Structure used to maintain a cache of some type pairs compared by
3007 gimple_types_compatible_p when comparing aggregate types. There are
3008 four possible values for SAME_P:
3009
3010 -2: The pair (T1, T2) has just been inserted in the table.
3011 -1: The pair (T1, T2) is currently being compared.
3012 0: T1 and T2 are different types.
3013 1: T1 and T2 are the same type.
3014
3015 This table is only used when comparing aggregate types to avoid
3016 infinite recursion due to self-referential types. */
3017struct type_pair_d
3018{
88ca1146
RG
3019 unsigned int uid1;
3020 unsigned int uid2;
d7f09764
DN
3021 int same_p;
3022};
3023typedef struct type_pair_d *type_pair_t;
3024
3025/* Return a hash value for the type pair pointed-to by P. */
3026
3027static hashval_t
3028type_pair_hash (const void *p)
3029{
3030 const struct type_pair_d *pair = (const struct type_pair_d *) p;
88ca1146
RG
3031 hashval_t val1 = pair->uid1;
3032 hashval_t val2 = pair->uid2;
d7f09764
DN
3033 return (iterative_hash_hashval_t (val2, val1)
3034 ^ iterative_hash_hashval_t (val1, val2));
3035}
3036
3037/* Compare two type pairs pointed-to by P1 and P2. */
3038
3039static int
3040type_pair_eq (const void *p1, const void *p2)
3041{
3042 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3043 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
88ca1146
RG
3044 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3045 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
d7f09764
DN
3046}
3047
3048/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3049 entry if none existed. */
3050
3051static type_pair_t
88ca1146 3052lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
d7f09764
DN
3053{
3054 struct type_pair_d pair;
3055 type_pair_t p;
3056 void **slot;
3057
3058 if (*visited_p == NULL)
88ca1146
RG
3059 {
3060 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3061 gcc_obstack_init (ob_p);
3062 }
d7f09764 3063
88ca1146
RG
3064 pair.uid1 = TYPE_UID (t1);
3065 pair.uid2 = TYPE_UID (t2);
d7f09764
DN
3066 slot = htab_find_slot (*visited_p, &pair, INSERT);
3067
3068 if (*slot)
3069 p = *((type_pair_t *) slot);
3070 else
3071 {
88ca1146
RG
3072 p = XOBNEW (ob_p, struct type_pair_d);
3073 p->uid1 = TYPE_UID (t1);
3074 p->uid2 = TYPE_UID (t2);
d7f09764
DN
3075 p->same_p = -2;
3076 *slot = (void *) p;
3077 }
3078
3079 return p;
3080}
3081
3082
77785f4f
RG
3083/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3084 true then if any type has no name return false, otherwise return
3085 true if both types have no names. */
d7f09764
DN
3086
3087static bool
77785f4f 3088compare_type_names_p (tree t1, tree t2, bool for_completion_p)
d7f09764
DN
3089{
3090 tree name1 = TYPE_NAME (t1);
3091 tree name2 = TYPE_NAME (t2);
3092
77785f4f
RG
3093 /* Consider anonymous types all unique for completion. */
3094 if (for_completion_p
3095 && (!name1 || !name2))
d7f09764
DN
3096 return false;
3097
77785f4f 3098 if (name1 && TREE_CODE (name1) == TYPE_DECL)
d7f09764
DN
3099 {
3100 name1 = DECL_NAME (name1);
77785f4f
RG
3101 if (for_completion_p
3102 && !name1)
d7f09764
DN
3103 return false;
3104 }
77785f4f 3105 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
d7f09764 3106
77785f4f 3107 if (name2 && TREE_CODE (name2) == TYPE_DECL)
d7f09764
DN
3108 {
3109 name2 = DECL_NAME (name2);
77785f4f
RG
3110 if (for_completion_p
3111 && !name2)
d7f09764
DN
3112 return false;
3113 }
77785f4f 3114 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
d7f09764
DN
3115
3116 /* Identifiers can be compared with pointer equality rather
3117 than a string comparison. */
3118 if (name1 == name2)
3119 return true;
3120
3121 return false;
3122}
3123
3124/* Return true if the field decls F1 and F2 are at the same offset. */
3125
1e4bc4eb 3126bool
d7f09764
DN
3127compare_field_offset (tree f1, tree f2)
3128{
3129 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3130 return (operand_equal_p (DECL_FIELD_OFFSET (f1),
3131 DECL_FIELD_OFFSET (f2), 0)
3132 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3133 DECL_FIELD_BIT_OFFSET (f2)));
3134
3135 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3136 should be, so handle differing ones specially by decomposing
3137 the offset into a byte and bit offset manually. */
3138 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3139 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3140 {
3141 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3142 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3143 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3144 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3145 + bit_offset1 / BITS_PER_UNIT);
3146 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3147 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3148 + bit_offset2 / BITS_PER_UNIT);
3149 if (byte_offset1 != byte_offset2)
3150 return false;
3151 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3152 }
3153
3154 return false;
3155}
3156
3157/* Return 1 iff T1 and T2 are structurally identical.
3158 Otherwise, return 0. */
3159
e575382e 3160static int
d7f09764
DN
3161gimple_types_compatible_p (tree t1, tree t2)
3162{
3163 type_pair_t p = NULL;
3164
3165 /* Check first for the obvious case of pointer identity. */
3166 if (t1 == t2)
b0cc341f 3167 return 1;
d7f09764
DN
3168
3169 /* Check that we have two types to compare. */
3170 if (t1 == NULL_TREE || t2 == NULL_TREE)
b0cc341f 3171 return 0;
d7f09764
DN
3172
3173 /* Can't be the same type if the types don't have the same code. */
3174 if (TREE_CODE (t1) != TREE_CODE (t2))
b0cc341f
RG
3175 return 0;
3176
3177 /* Can't be the same type if they have different CV qualifiers. */
3178 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3179 return 0;
d7f09764
DN
3180
3181 /* Void types are always the same. */
3182 if (TREE_CODE (t1) == VOID_TYPE)
b0cc341f 3183 return 1;
d7f09764 3184
b0cc341f
RG
3185 /* For numerical types do some simple checks before doing three
3186 hashtable queries. */
3187 if (INTEGRAL_TYPE_P (t1)
3188 || SCALAR_FLOAT_TYPE_P (t1)
3189 || FIXED_POINT_TYPE_P (t1)
3190 || TREE_CODE (t1) == VECTOR_TYPE
b23dc2c0
RG
3191 || TREE_CODE (t1) == COMPLEX_TYPE
3192 || TREE_CODE (t1) == OFFSET_TYPE)
b0cc341f
RG
3193 {
3194 /* Can't be the same type if they have different alignment,
3195 sign, precision or mode. */
3196 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3197 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3198 || TYPE_MODE (t1) != TYPE_MODE (t2)
3199 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3200 return 0;
3201
3202 if (TREE_CODE (t1) == INTEGER_TYPE
3203 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3204 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3205 return 0;
3206
3207 /* That's all we need to check for float and fixed-point types. */
3208 if (SCALAR_FLOAT_TYPE_P (t1)
3209 || FIXED_POINT_TYPE_P (t1))
3210 return 1;
3211
3212 /* Perform cheap tail-recursion for vector and complex types. */
3213 if (TREE_CODE (t1) == VECTOR_TYPE
3214 || TREE_CODE (t1) == COMPLEX_TYPE)
3215 return gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2));
3216
3217 /* For integral types fall thru to more complex checks. */
3218 }
d7f09764
DN
3219
3220 /* If the hash values of t1 and t2 are different the types can't
3221 possibly be the same. This helps keeping the type-pair hashtable
3222 small, only tracking comparisons for hash collisions. */
3223 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3224 return 0;
3225
3226 /* If we've visited this type pair before (in the case of aggregates
3227 with self-referential types), and we made a decision, return it. */
88ca1146 3228 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
d7f09764
DN
3229 if (p->same_p == 0 || p->same_p == 1)
3230 {
3231 /* We have already decided whether T1 and T2 are the
3232 same, return the cached result. */
3233 return p->same_p == 1;
3234 }
3235 else if (p->same_p == -1)
3236 {
3237 /* We are currently comparing this pair of types, assume
3238 that they are the same and let the caller decide. */
3239 return 1;
3240 }
3241
3242 gcc_assert (p->same_p == -2);
3243
3244 /* Mark the (T1, T2) comparison in progress. */
3245 p->same_p = -1;
3246
3247 /* If their attributes are not the same they can't be the same type. */
3248 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3249 goto different_types;
3250
d7f09764
DN
3251 /* Do type-specific comparisons. */
3252 switch (TREE_CODE (t1))
3253 {
3254 case ARRAY_TYPE:
3255 /* Array types are the same if the element types are the same and
3256 the number of elements are the same. */
3257 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
b0cc341f
RG
3258 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3259 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
d7f09764
DN
3260 goto different_types;
3261 else
3262 {
3263 tree i1 = TYPE_DOMAIN (t1);
3264 tree i2 = TYPE_DOMAIN (t2);
3265
3266 /* For an incomplete external array, the type domain can be
3267 NULL_TREE. Check this condition also. */
3268 if (i1 == NULL_TREE && i2 == NULL_TREE)
3269 goto same_types;
3270 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3271 goto different_types;
3272 /* If for a complete array type the possibly gimplified sizes
3273 are different the types are different. */
3274 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3275 || (TYPE_SIZE (i1)
3276 && TYPE_SIZE (i2)
3277 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3278 goto different_types;
3279 else
3280 {
3281 tree min1 = TYPE_MIN_VALUE (i1);
3282 tree min2 = TYPE_MIN_VALUE (i2);
3283 tree max1 = TYPE_MAX_VALUE (i1);
3284 tree max2 = TYPE_MAX_VALUE (i2);
3285
3286 /* The minimum/maximum values have to be the same. */
3287 if ((min1 == min2
3288 || (min1 && min2 && operand_equal_p (min1, min2, 0)))
3289 && (max1 == max2
3290 || (max1 && max2 && operand_equal_p (max1, max2, 0))))
3291 goto same_types;
3292 else
3293 goto different_types;
3294 }
3295 }
3296
3297 case METHOD_TYPE:
3298 /* Method types should belong to the same class. */
3299 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3300 TYPE_METHOD_BASETYPE (t2)))
3301 goto different_types;
3302
3303 /* Fallthru */
3304
3305 case FUNCTION_TYPE:
3306 /* Function types are the same if the return type and arguments types
3307 are the same. */
3308 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3309 goto different_types;
3310 else
3311 {
3312 if (!targetm.comp_type_attributes (t1, t2))
3313 goto different_types;
3314
3315 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3316 goto same_types;
3317 else
3318 {
3319 tree parms1, parms2;
3320
3321 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3322 parms1 && parms2;
3323 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3324 {
3325 if (!gimple_types_compatible_p (TREE_VALUE (parms1),
3326 TREE_VALUE (parms2)))
3327 goto different_types;
3328 }
3329
3330 if (parms1 || parms2)
3331 goto different_types;
3332
3333 goto same_types;
3334 }
3335 }
3336
b23dc2c0
RG
3337 case OFFSET_TYPE:
3338 {
3339 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3340 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1),
3341 TYPE_OFFSET_BASETYPE (t2)))
3342 goto different_types;
3343
3344 goto same_types;
3345 }
3346
d7f09764
DN
3347 case POINTER_TYPE:
3348 case REFERENCE_TYPE:
e575382e
RG
3349 {
3350 /* If the two pointers have different ref-all attributes,
3351 they can't be the same type. */
3352 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3353 goto different_types;
d7f09764 3354
e575382e
RG
3355 /* If one pointer points to an incomplete type variant of
3356 the other pointed-to type they are the same. */
3357 if (TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3358 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1))
3359 && (!COMPLETE_TYPE_P (TREE_TYPE (t1))
3360 || !COMPLETE_TYPE_P (TREE_TYPE (t2)))
cfee9aa4
RG
3361 && compare_type_names_p (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
3362 TYPE_MAIN_VARIANT (TREE_TYPE (t2)), true))
e575382e
RG
3363 {
3364 /* Replace the pointed-to incomplete type with the
3365 complete one. */
3366 if (COMPLETE_TYPE_P (TREE_TYPE (t2)))
3367 TREE_TYPE (t1) = TREE_TYPE (t2);
3368 else
3369 TREE_TYPE (t2) = TREE_TYPE (t1);
d7f09764 3370 goto same_types;
e575382e
RG
3371 }
3372
3373 /* Otherwise, pointer and reference types are the same if the
3374 pointed-to types are the same. */
3375 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3376 goto same_types;
3377
3378 goto different_types;
3379 }
d7f09764 3380
b0cc341f
RG
3381 case INTEGER_TYPE:
3382 case BOOLEAN_TYPE:
3383 {
3384 tree min1 = TYPE_MIN_VALUE (t1);
3385 tree max1 = TYPE_MAX_VALUE (t1);
3386 tree min2 = TYPE_MIN_VALUE (t2);
3387 tree max2 = TYPE_MAX_VALUE (t2);
3388 bool min_equal_p = false;
3389 bool max_equal_p = false;
3390
3391 /* If either type has a minimum value, the other type must
3392 have the same. */
3393 if (min1 == NULL_TREE && min2 == NULL_TREE)
3394 min_equal_p = true;
3395 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3396 min_equal_p = true;
3397
3398 /* Likewise, if either type has a maximum value, the other
3399 type must have the same. */
3400 if (max1 == NULL_TREE && max2 == NULL_TREE)
3401 max_equal_p = true;
3402 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3403 max_equal_p = true;
3404
3405 if (!min_equal_p || !max_equal_p)
3406 goto different_types;
3407
3408 goto same_types;
3409 }
3410
d7f09764 3411 case ENUMERAL_TYPE:
e575382e 3412 {
b0cc341f
RG
3413 /* FIXME lto, we cannot check bounds on enumeral types because
3414 different front ends will produce different values.
3415 In C, enumeral types are integers, while in C++ each element
3416 will have its own symbolic value. We should decide how enums
3417 are to be represented in GIMPLE and have each front end lower
3418 to that. */
e575382e 3419 tree v1, v2;
d7f09764 3420
b0cc341f 3421 /* For enumeral types, all the values must be the same. */
e575382e
RG
3422 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3423 goto same_types;
d7f09764 3424
e575382e
RG
3425 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3426 v1 && v2;
3427 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3428 {
3429 tree c1 = TREE_VALUE (v1);
3430 tree c2 = TREE_VALUE (v2);
d7f09764 3431
e575382e
RG
3432 if (TREE_CODE (c1) == CONST_DECL)
3433 c1 = DECL_INITIAL (c1);
d7f09764 3434
e575382e
RG
3435 if (TREE_CODE (c2) == CONST_DECL)
3436 c2 = DECL_INITIAL (c2);
d7f09764 3437
e575382e
RG
3438 if (tree_int_cst_equal (c1, c2) != 1)
3439 goto different_types;
3440 }
d7f09764 3441
e575382e
RG
3442 /* If one enumeration has more values than the other, they
3443 are not the same. */
3444 if (v1 || v2)
3445 goto different_types;
d7f09764 3446
e575382e
RG
3447 goto same_types;
3448 }
d7f09764
DN
3449
3450 case RECORD_TYPE:
3451 case UNION_TYPE:
3452 case QUAL_UNION_TYPE:
e575382e
RG
3453 {
3454 tree f1, f2;
d7f09764 3455
e575382e
RG
3456 /* If one type requires structural equality checks and the
3457 other doesn't, do not merge the types. */
3458 if (TYPE_STRUCTURAL_EQUALITY_P (t1)
3459 != TYPE_STRUCTURAL_EQUALITY_P (t2))
3460 goto different_types;
021ed367 3461
e575382e
RG
3462 /* The struct tags shall compare equal. */
3463 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3464 TYPE_MAIN_VARIANT (t2), false))
3465 goto different_types;
77785f4f 3466
e575382e
RG
3467 /* For aggregate types, all the fields must be the same. */
3468 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3469 f1 && f2;
3470 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3471 {
3472 /* The fields must have the same name, offset and type. */
3473 if (DECL_NAME (f1) != DECL_NAME (f2)
b0cc341f 3474 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
e575382e
RG
3475 || !compare_field_offset (f1, f2)
3476 || !gimple_types_compatible_p (TREE_TYPE (f1),
3477 TREE_TYPE (f2)))
3478 goto different_types;
3479 }
d7f09764 3480
e575382e
RG
3481 /* If one aggregate has more fields than the other, they
3482 are not the same. */
3483 if (f1 || f2)
3484 goto different_types;
d7f09764 3485
e575382e
RG
3486 goto same_types;
3487 }
d7f09764 3488
d7f09764 3489 default:
b0cc341f 3490 gcc_unreachable ();
d7f09764
DN
3491 }
3492
3493 /* Common exit path for types that are not compatible. */
3494different_types:
b0cc341f 3495 p->same_p = 0;
d7f09764
DN
3496 return 0;
3497
3498 /* Common exit path for types that are compatible. */
3499same_types:
b0cc341f 3500 p->same_p = 1;
d7f09764
DN
3501 return 1;
3502}
3503
3504
3505
3506
3507/* Per pointer state for the SCC finding. The on_sccstack flag
3508 is not strictly required, it is true when there is no hash value
3509 recorded for the type and false otherwise. But querying that
3510 is slower. */
3511
3512struct sccs
3513{
3514 unsigned int dfsnum;
3515 unsigned int low;
3516 bool on_sccstack;
3517 hashval_t hash;
3518};
3519
3520static unsigned int next_dfs_num;
3521
3522static hashval_t
3523iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3524 struct pointer_map_t *, struct obstack *);
3525
3526/* DFS visit the edge from the callers type with state *STATE to T.
3527 Update the callers type hash V with the hash for T if it is not part
3528 of the SCC containing the callers type and return it.
3529 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3530
3531static hashval_t
3532visit (tree t, struct sccs *state, hashval_t v,
3533 VEC (tree, heap) **sccstack,
3534 struct pointer_map_t *sccstate,
3535 struct obstack *sccstate_obstack)
3536{
3537 struct sccs *cstate = NULL;
3538 void **slot;
3539
3540 /* If there is a hash value recorded for this type then it can't
3541 possibly be part of our parent SCC. Simply mix in its hash. */
3542 if ((slot = pointer_map_contains (type_hash_cache, t)))
3543 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3544
3545 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3546 cstate = (struct sccs *)*slot;
3547 if (!cstate)
3548 {
3549 hashval_t tem;
3550 /* Not yet visited. DFS recurse. */
3551 tem = iterative_hash_gimple_type (t, v,
3552 sccstack, sccstate, sccstate_obstack);
3553 if (!cstate)
3554 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3555 state->low = MIN (state->low, cstate->low);
3556 /* If the type is no longer on the SCC stack and thus is not part
3557 of the parents SCC mix in its hash value. Otherwise we will
3558 ignore the type for hashing purposes and return the unaltered
3559 hash value. */
3560 if (!cstate->on_sccstack)
3561 return tem;
3562 }
3563 if (cstate->dfsnum < state->dfsnum
3564 && cstate->on_sccstack)
3565 state->low = MIN (cstate->dfsnum, state->low);
3566
3567 /* We are part of our parents SCC, skip this type during hashing
3568 and return the unaltered hash value. */
3569 return v;
3570}
3571
77785f4f 3572/* Hash NAME with the previous hash value V and return it. */
d7f09764
DN
3573
3574static hashval_t
77785f4f 3575iterative_hash_name (tree name, hashval_t v)
d7f09764 3576{
d7f09764
DN
3577 if (!name)
3578 return v;
3579 if (TREE_CODE (name) == TYPE_DECL)
3580 name = DECL_NAME (name);
3581 if (!name)
3582 return v;
3583 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
d7f09764
DN
3584 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3585}
3586
3587/* Returning a hash value for gimple type TYPE combined with VAL.
3588 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3589
3590 To hash a type we end up hashing in types that are reachable.
3591 Through pointers we can end up with cycles which messes up the
3592 required property that we need to compute the same hash value
3593 for structurally equivalent types. To avoid this we have to
3594 hash all types in a cycle (the SCC) in a commutative way. The
3595 easiest way is to not mix in the hashes of the SCC members at
3596 all. To make this work we have to delay setting the hash
3597 values of the SCC until it is complete. */
3598
3599static hashval_t
3600iterative_hash_gimple_type (tree type, hashval_t val,
3601 VEC(tree, heap) **sccstack,
3602 struct pointer_map_t *sccstate,
3603 struct obstack *sccstate_obstack)
3604{
3605 hashval_t v;
3606 void **slot;
3607 struct sccs *state;
3608
3609#ifdef ENABLE_CHECKING
3610 /* Not visited during this DFS walk nor during previous walks. */
3611 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3612 && !pointer_map_contains (sccstate, type));
3613#endif
3614 state = XOBNEW (sccstate_obstack, struct sccs);
3615 *pointer_map_insert (sccstate, type) = state;
3616
3617 VEC_safe_push (tree, heap, *sccstack, type);
3618 state->dfsnum = next_dfs_num++;
3619 state->low = state->dfsnum;
3620 state->on_sccstack = true;
3621
3622 /* Combine a few common features of types so that types are grouped into
3623 smaller sets; when searching for existing matching types to merge,
3624 only existing types having the same features as the new type will be
3625 checked. */
3626 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3627 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3628 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3629
3630 /* Do not hash the types size as this will cause differences in
3631 hash values for the complete vs. the incomplete type variant. */
3632
3633 /* Incorporate common features of numerical types. */
3634 if (INTEGRAL_TYPE_P (type)
3635 || SCALAR_FLOAT_TYPE_P (type)
3636 || FIXED_POINT_TYPE_P (type))
3637 {
3638 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3639 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3640 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3641 }
3642
3643 /* For pointer and reference types, fold in information about the type
3644 pointed to but do not recurse into possibly incomplete types to
3645 avoid hash differences for complete vs. incomplete types. */
3646 if (POINTER_TYPE_P (type))
3647 {
021ed367 3648 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
d7f09764
DN
3649 {
3650 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
77785f4f
RG
3651 v = iterative_hash_name
3652 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
d7f09764
DN
3653 }
3654 else
3655 v = visit (TREE_TYPE (type), state, v,
3656 sccstack, sccstate, sccstate_obstack);
3657 }
3658
f798226d
RG
3659 /* For integer types hash the types min/max values and the string flag. */
3660 if (TREE_CODE (type) == INTEGER_TYPE)
3661 {
429c98c9
RG
3662 /* OMP lowering can introduce error_mark_node in place of
3663 random local decls in types. */
3664 if (TYPE_MIN_VALUE (type) != error_mark_node)
3665 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3666 if (TYPE_MAX_VALUE (type) != error_mark_node)
3667 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
f798226d
RG
3668 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3669 }
3670
3671 /* For array types hash their domain and the string flag. */
3672 if (TREE_CODE (type) == ARRAY_TYPE
3673 && TYPE_DOMAIN (type))
3674 {
3675 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3676 v = visit (TYPE_DOMAIN (type), state, v,
3677 sccstack, sccstate, sccstate_obstack);
3678 }
3679
3680 /* Recurse for aggregates with a single element type. */
d7f09764
DN
3681 if (TREE_CODE (type) == ARRAY_TYPE
3682 || TREE_CODE (type) == COMPLEX_TYPE
3683 || TREE_CODE (type) == VECTOR_TYPE)
3684 v = visit (TREE_TYPE (type), state, v,
3685 sccstack, sccstate, sccstate_obstack);
3686
3687 /* Incorporate function return and argument types. */
3688 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3689 {
3690 unsigned na;
3691 tree p;
3692
3693 /* For method types also incorporate their parent class. */
3694 if (TREE_CODE (type) == METHOD_TYPE)
3695 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3696 sccstack, sccstate, sccstate_obstack);
3697
3698 v = visit (TREE_TYPE (type), state, v,
3699 sccstack, sccstate, sccstate_obstack);
3700
3701 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3702 {
3703 v = visit (TREE_VALUE (p), state, v,
3704 sccstack, sccstate, sccstate_obstack);
3705 na++;
3706 }
3707
3708 v = iterative_hash_hashval_t (na, v);
3709 }
3710
3711 if (TREE_CODE (type) == RECORD_TYPE
3712 || TREE_CODE (type) == UNION_TYPE
3713 || TREE_CODE (type) == QUAL_UNION_TYPE)
3714 {
3715 unsigned nf;
3716 tree f;
3717
77785f4f 3718 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
d7f09764
DN
3719
3720 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3721 {
77785f4f 3722 v = iterative_hash_name (DECL_NAME (f), v);
d7f09764
DN
3723 v = visit (TREE_TYPE (f), state, v,
3724 sccstack, sccstate, sccstate_obstack);
3725 nf++;
3726 }
3727
3728 v = iterative_hash_hashval_t (nf, v);
3729 }
3730
3731 /* Record hash for us. */
3732 state->hash = v;
3733
3734 /* See if we found an SCC. */
3735 if (state->low == state->dfsnum)
3736 {
3737 tree x;
3738
3739 /* Pop off the SCC and set its hash values. */
3740 do
3741 {
3742 struct sccs *cstate;
3743 x = VEC_pop (tree, *sccstack);
3744 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3745 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3746 cstate->on_sccstack = false;
3747 slot = pointer_map_insert (type_hash_cache, x);
3748 *slot = (void *) (size_t) cstate->hash;
3749 }
3750 while (x != type);
3751 }
3752
3753 return iterative_hash_hashval_t (v, val);
3754}
3755
3756
3757/* Returns a hash value for P (assumed to be a type). The hash value
3758 is computed using some distinguishing features of the type. Note
3759 that we cannot use pointer hashing here as we may be dealing with
3760 two distinct instances of the same type.
3761
3762 This function should produce the same hash value for two compatible
3763 types according to gimple_types_compatible_p. */
3764
3765static hashval_t
3766gimple_type_hash (const void *p)
3767{
ddd4d0e1 3768 const_tree t = (const_tree) p;
d7f09764
DN
3769 VEC(tree, heap) *sccstack = NULL;
3770 struct pointer_map_t *sccstate;
3771 struct obstack sccstate_obstack;
3772 hashval_t val;
3773 void **slot;
3774
3775 if (type_hash_cache == NULL)
3776 type_hash_cache = pointer_map_create ();
3777
3778 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
3779 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
3780
3781 /* Perform a DFS walk and pre-hash all reachable types. */
3782 next_dfs_num = 1;
3783 sccstate = pointer_map_create ();
3784 gcc_obstack_init (&sccstate_obstack);
ddd4d0e1 3785 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
d7f09764
DN
3786 &sccstack, sccstate, &sccstate_obstack);
3787 VEC_free (tree, heap, sccstack);
3788 pointer_map_destroy (sccstate);
3789 obstack_free (&sccstate_obstack, NULL);
3790
3791 return val;
3792}
3793
3794
3795/* Returns nonzero if P1 and P2 are equal. */
3796
3797static int
3798gimple_type_eq (const void *p1, const void *p2)
3799{
3800 const_tree t1 = (const_tree) p1;
3801 const_tree t2 = (const_tree) p2;
3802 return gimple_types_compatible_p (CONST_CAST_TREE (t1), CONST_CAST_TREE (t2));
3803}
3804
3805
3806/* Register type T in the global type table gimple_types.
3807 If another type T', compatible with T, already existed in
3808 gimple_types then return T', otherwise return T. This is used by
3809 LTO to merge identical types read from different TUs. */
3810
3811tree
3812gimple_register_type (tree t)
3813{
3814 void **slot;
3815
3816 gcc_assert (TYPE_P (t));
3817
20d36f0e
RG
3818 /* Always register the main variant first. This is important so we
3819 pick up the non-typedef variants as canonical, otherwise we'll end
3820 up taking typedef ids for structure tags during comparison. */
3821 if (TYPE_MAIN_VARIANT (t) != t)
3822 gimple_register_type (TYPE_MAIN_VARIANT (t));
3823
d7f09764
DN
3824 if (gimple_types == NULL)
3825 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
3826
3827 slot = htab_find_slot (gimple_types, t, INSERT);
3828 if (*slot
3829 && *(tree *)slot != t)
3830 {
3831 tree new_type = (tree) *((tree *) slot);
3832
3833 /* Do not merge types with different addressability. */
3834 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
3835
3836 /* If t is not its main variant then make t unreachable from its
3837 main variant list. Otherwise we'd queue up a lot of duplicates
3838 there. */
3839 if (t != TYPE_MAIN_VARIANT (t))
3840 {
3841 tree tem = TYPE_MAIN_VARIANT (t);
3842 while (tem && TYPE_NEXT_VARIANT (tem) != t)
3843 tem = TYPE_NEXT_VARIANT (tem);
3844 if (tem)
3845 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
3846 TYPE_NEXT_VARIANT (t) = NULL_TREE;
3847 }
3848
3849 /* If we are a pointer then remove us from the pointer-to or
3850 reference-to chain. Otherwise we'd queue up a lot of duplicates
3851 there. */
3852 if (TREE_CODE (t) == POINTER_TYPE)
3853 {
3854 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
3855 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
3856 else
3857 {
3858 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
3859 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
3860 tem = TYPE_NEXT_PTR_TO (tem);
3861 if (tem)
3862 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
3863 }
3864 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
3865 }
3866 else if (TREE_CODE (t) == REFERENCE_TYPE)
3867 {
3868 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
3869 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
3870 else
3871 {
3872 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
3873 while (tem && TYPE_NEXT_REF_TO (tem) != t)
3874 tem = TYPE_NEXT_REF_TO (tem);
3875 if (tem)
3876 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
3877 }
3878 TYPE_NEXT_REF_TO (t) = NULL_TREE;
3879 }
3880
3881 t = new_type;
3882 }
3883 else
3884 *slot = (void *) t;
3885
3886 return t;
3887}
3888
3889
3890/* Show statistics on references to the global type table gimple_types. */
3891
3892void
3893print_gimple_types_stats (void)
3894{
3895 if (gimple_types)
3896 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
3897 "%ld searches, %ld collisions (ratio: %f)\n",
3898 (long) htab_size (gimple_types),
3899 (long) htab_elements (gimple_types),
3900 (long) gimple_types->searches,
3901 (long) gimple_types->collisions,
3902 htab_collisions (gimple_types));
3903 else
3904 fprintf (stderr, "GIMPLE type table is empty\n");
3905 if (gtc_visited)
0d0bfe17
RG
3906 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
3907 "elements, %ld searches, %ld collisions (ratio: %f)\n",
d7f09764
DN
3908 (long) htab_size (gtc_visited),
3909 (long) htab_elements (gtc_visited),
3910 (long) gtc_visited->searches,
3911 (long) gtc_visited->collisions,
3912 htab_collisions (gtc_visited));
3913 else
3914 fprintf (stderr, "GIMPLE type comparison table is empty\n");
3915}
3916
0d0bfe17
RG
3917/* Free the gimple type hashtables used for LTO type merging. */
3918
3919void
3920free_gimple_type_tables (void)
3921{
3922 /* Last chance to print stats for the tables. */
3923 if (flag_lto_report)
3924 print_gimple_types_stats ();
3925
3926 if (gimple_types)
3927 {
3928 htab_delete (gimple_types);
3929 gimple_types = NULL;
3930 }
3931 if (type_hash_cache)
3932 {
3933 pointer_map_destroy (type_hash_cache);
3934 type_hash_cache = NULL;
3935 }
3936 if (gtc_visited)
3937 {
3938 htab_delete (gtc_visited);
88ca1146 3939 obstack_free (&gtc_ob, NULL);
0d0bfe17
RG
3940 gtc_visited = NULL;
3941 }
3942}
3943
d7f09764
DN
3944
3945/* Return a type the same as TYPE except unsigned or
3946 signed according to UNSIGNEDP. */
3947
3948static tree
3949gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3950{
3951 tree type1;
3952
3953 type1 = TYPE_MAIN_VARIANT (type);
3954 if (type1 == signed_char_type_node
3955 || type1 == char_type_node
3956 || type1 == unsigned_char_type_node)
3957 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3958 if (type1 == integer_type_node || type1 == unsigned_type_node)
3959 return unsignedp ? unsigned_type_node : integer_type_node;
3960 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3961 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3962 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3963 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3964 if (type1 == long_long_integer_type_node
3965 || type1 == long_long_unsigned_type_node)
3966 return unsignedp
3967 ? long_long_unsigned_type_node
3968 : long_long_integer_type_node;
3969#if HOST_BITS_PER_WIDE_INT >= 64
3970 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3971 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3972#endif
3973 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3974 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3975 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3976 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3977 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3978 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3979 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
3980 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3981
3982#define GIMPLE_FIXED_TYPES(NAME) \
3983 if (type1 == short_ ## NAME ## _type_node \
3984 || type1 == unsigned_short_ ## NAME ## _type_node) \
3985 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3986 : short_ ## NAME ## _type_node; \
3987 if (type1 == NAME ## _type_node \
3988 || type1 == unsigned_ ## NAME ## _type_node) \
3989 return unsignedp ? unsigned_ ## NAME ## _type_node \
3990 : NAME ## _type_node; \
3991 if (type1 == long_ ## NAME ## _type_node \
3992 || type1 == unsigned_long_ ## NAME ## _type_node) \
3993 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
3994 : long_ ## NAME ## _type_node; \
3995 if (type1 == long_long_ ## NAME ## _type_node \
3996 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
3997 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
3998 : long_long_ ## NAME ## _type_node;
3999
4000#define GIMPLE_FIXED_MODE_TYPES(NAME) \
4001 if (type1 == NAME ## _type_node \
4002 || type1 == u ## NAME ## _type_node) \
4003 return unsignedp ? u ## NAME ## _type_node \
4004 : NAME ## _type_node;
4005
4006#define GIMPLE_FIXED_TYPES_SAT(NAME) \
4007 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4008 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4009 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4010 : sat_ ## short_ ## NAME ## _type_node; \
4011 if (type1 == sat_ ## NAME ## _type_node \
4012 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4013 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4014 : sat_ ## NAME ## _type_node; \
4015 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4016 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4017 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4018 : sat_ ## long_ ## NAME ## _type_node; \
4019 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4020 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4021 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4022 : sat_ ## long_long_ ## NAME ## _type_node;
4023
4024#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4025 if (type1 == sat_ ## NAME ## _type_node \
4026 || type1 == sat_ ## u ## NAME ## _type_node) \
4027 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4028 : sat_ ## NAME ## _type_node;
4029
4030 GIMPLE_FIXED_TYPES (fract);
4031 GIMPLE_FIXED_TYPES_SAT (fract);
4032 GIMPLE_FIXED_TYPES (accum);
4033 GIMPLE_FIXED_TYPES_SAT (accum);
4034
4035 GIMPLE_FIXED_MODE_TYPES (qq);
4036 GIMPLE_FIXED_MODE_TYPES (hq);
4037 GIMPLE_FIXED_MODE_TYPES (sq);
4038 GIMPLE_FIXED_MODE_TYPES (dq);
4039 GIMPLE_FIXED_MODE_TYPES (tq);
4040 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4041 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4042 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4043 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4044 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4045 GIMPLE_FIXED_MODE_TYPES (ha);
4046 GIMPLE_FIXED_MODE_TYPES (sa);
4047 GIMPLE_FIXED_MODE_TYPES (da);
4048 GIMPLE_FIXED_MODE_TYPES (ta);
4049 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4050 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4051 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4052 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4053
4054 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4055 the precision; they have precision set to match their range, but
4056 may use a wider mode to match an ABI. If we change modes, we may
4057 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4058 the precision as well, so as to yield correct results for
4059 bit-field types. C++ does not have these separate bit-field
4060 types, and producing a signed or unsigned variant of an
4061 ENUMERAL_TYPE may cause other problems as well. */
4062 if (!INTEGRAL_TYPE_P (type)
4063 || TYPE_UNSIGNED (type) == unsignedp)
4064 return type;
4065
4066#define TYPE_OK(node) \
4067 (TYPE_MODE (type) == TYPE_MODE (node) \
4068 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4069 if (TYPE_OK (signed_char_type_node))
4070 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4071 if (TYPE_OK (integer_type_node))
4072 return unsignedp ? unsigned_type_node : integer_type_node;
4073 if (TYPE_OK (short_integer_type_node))
4074 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4075 if (TYPE_OK (long_integer_type_node))
4076 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4077 if (TYPE_OK (long_long_integer_type_node))
4078 return (unsignedp
4079 ? long_long_unsigned_type_node
4080 : long_long_integer_type_node);
4081
4082#if HOST_BITS_PER_WIDE_INT >= 64
4083 if (TYPE_OK (intTI_type_node))
4084 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4085#endif
4086 if (TYPE_OK (intDI_type_node))
4087 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4088 if (TYPE_OK (intSI_type_node))
4089 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4090 if (TYPE_OK (intHI_type_node))
4091 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4092 if (TYPE_OK (intQI_type_node))
4093 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4094
4095#undef GIMPLE_FIXED_TYPES
4096#undef GIMPLE_FIXED_MODE_TYPES
4097#undef GIMPLE_FIXED_TYPES_SAT
4098#undef GIMPLE_FIXED_MODE_TYPES_SAT
4099#undef TYPE_OK
4100
4101 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4102}
4103
4104
4105/* Return an unsigned type the same as TYPE in other respects. */
4106
4107tree
4108gimple_unsigned_type (tree type)
4109{
4110 return gimple_signed_or_unsigned_type (true, type);
4111}
4112
4113
4114/* Return a signed type the same as TYPE in other respects. */
4115
4116tree
4117gimple_signed_type (tree type)
4118{
4119 return gimple_signed_or_unsigned_type (false, type);
4120}
4121
4122
4123/* Return the typed-based alias set for T, which may be an expression
4124 or a type. Return -1 if we don't do anything special. */
4125
4126alias_set_type
4127gimple_get_alias_set (tree t)
4128{
4129 tree u;
4130
4131 /* Permit type-punning when accessing a union, provided the access
4132 is directly through the union. For example, this code does not
4133 permit taking the address of a union member and then storing
4134 through it. Even the type-punning allowed here is a GCC
4135 extension, albeit a common and useful one; the C standard says
4136 that such accesses have implementation-defined behavior. */
4137 for (u = t;
4138 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4139 u = TREE_OPERAND (u, 0))
4140 if (TREE_CODE (u) == COMPONENT_REF
4141 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4142 return 0;
4143
4144 /* That's all the expressions we handle specially. */
4145 if (!TYPE_P (t))
4146 return -1;
4147
4148 /* For convenience, follow the C standard when dealing with
4149 character types. Any object may be accessed via an lvalue that
4150 has character type. */
4151 if (t == char_type_node
4152 || t == signed_char_type_node
4153 || t == unsigned_char_type_node)
4154 return 0;
4155
4156 /* Allow aliasing between signed and unsigned variants of the same
4157 type. We treat the signed variant as canonical. */
4158 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4159 {
4160 tree t1 = gimple_signed_type (t);
4161
4162 /* t1 == t can happen for boolean nodes which are always unsigned. */
4163 if (t1 != t)
4164 return get_alias_set (t1);
4165 }
4166 else if (POINTER_TYPE_P (t))
4167 {
14cf68d9 4168 /* From the common C and C++ langhook implementation:
d7f09764 4169
14cf68d9 4170 Unfortunately, there is no canonical form of a pointer type.
d7f09764
DN
4171 In particular, if we have `typedef int I', then `int *', and
4172 `I *' are different types. So, we have to pick a canonical
4173 representative. We do this below.
4174
4175 Technically, this approach is actually more conservative that
4176 it needs to be. In particular, `const int *' and `int *'
4177 should be in different alias sets, according to the C and C++
4178 standard, since their types are not the same, and so,
4179 technically, an `int **' and `const int **' cannot point at
4180 the same thing.
4181
4182 But, the standard is wrong. In particular, this code is
4183 legal C++:
4184
4185 int *ip;
4186 int **ipp = &ip;
4187 const int* const* cipp = ipp;
4188 And, it doesn't make sense for that to be legal unless you
4189 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4190 the pointed-to types. This issue has been reported to the
4191 C++ committee. */
14cf68d9
RG
4192
4193 /* In addition to the above canonicalization issue with LTO
4194 we should also canonicalize `T (*)[]' to `T *' avoiding
4195 alias issues with pointer-to element types and pointer-to
4196 array types.
4197
4198 Likewise we need to deal with the situation of incomplete
4199 pointed-to types and make `*(struct X **)&a' and
4200 `*(struct X {} **)&a' alias. Otherwise we will have to
4201 guarantee that all pointer-to incomplete type variants
4202 will be replaced by pointer-to complete type variants if
4203 they are available.
4204
4205 With LTO the convenient situation of using `void *' to
4206 access and store any pointer type will also become
f883d997 4207 more apparent (and `void *' is just another pointer-to
14cf68d9
RG
4208 incomplete type). Assigning alias-set zero to `void *'
4209 and all pointer-to incomplete types is a not appealing
4210 solution. Assigning an effective alias-set zero only
4211 affecting pointers might be - by recording proper subset
4212 relationships of all pointer alias-sets.
4213
4214 Pointer-to function types are another grey area which
4215 needs caution. Globbing them all into one alias-set
4216 or the above effective zero set would work. */
4217
4218 /* For now just assign the same alias-set to all pointers.
4219 That's simple and avoids all the above problems. */
4220 if (t != ptr_type_node)
4221 return get_alias_set (ptr_type_node);
d7f09764
DN
4222 }
4223
4224 return -1;
4225}
4226
4227
5006671f
RG
4228/* Data structure used to count the number of dereferences to PTR
4229 inside an expression. */
4230struct count_ptr_d
4231{
4232 tree ptr;
4233 unsigned num_stores;
4234 unsigned num_loads;
4235};
4236
4237/* Helper for count_uses_and_derefs. Called by walk_tree to look for
4238 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4239
4240static tree
4241count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4242{
4243 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4244 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4245
4246 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4247 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4248 the address of 'fld' as 'ptr + offsetof(fld)'. */
4249 if (TREE_CODE (*tp) == ADDR_EXPR)
4250 {
4251 *walk_subtrees = 0;
4252 return NULL_TREE;
4253 }
4254
4255 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
4256 {
4257 if (wi_p->is_lhs)
4258 count_p->num_stores++;
4259 else
4260 count_p->num_loads++;
4261 }
4262
4263 return NULL_TREE;
4264}
4265
4266/* Count the number of direct and indirect uses for pointer PTR in
4267 statement STMT. The number of direct uses is stored in
4268 *NUM_USES_P. Indirect references are counted separately depending
4269 on whether they are store or load operations. The counts are
4270 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4271
4272void
4273count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4274 unsigned *num_loads_p, unsigned *num_stores_p)
4275{
4276 ssa_op_iter i;
4277 tree use;
4278
4279 *num_uses_p = 0;
4280 *num_loads_p = 0;
4281 *num_stores_p = 0;
4282
4283 /* Find out the total number of uses of PTR in STMT. */
4284 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4285 if (use == ptr)
4286 (*num_uses_p)++;
4287
4288 /* Now count the number of indirect references to PTR. This is
4289 truly awful, but we don't have much choice. There are no parent
4290 pointers inside INDIRECT_REFs, so an expression like
4291 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4292 find all the indirect and direct uses of x_1 inside. The only
4293 shortcut we can take is the fact that GIMPLE only allows
4294 INDIRECT_REFs inside the expressions below. */
4295 if (is_gimple_assign (stmt)
4296 || gimple_code (stmt) == GIMPLE_RETURN
4297 || gimple_code (stmt) == GIMPLE_ASM
4298 || is_gimple_call (stmt))
4299 {
4300 struct walk_stmt_info wi;
4301 struct count_ptr_d count;
4302
4303 count.ptr = ptr;
4304 count.num_stores = 0;
4305 count.num_loads = 0;
4306
4307 memset (&wi, 0, sizeof (wi));
4308 wi.info = &count;
4309 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4310
4311 *num_stores_p = count.num_stores;
4312 *num_loads_p = count.num_loads;
4313 }
4314
4315 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4316}
4317
346ef3fa
RG
4318/* From a tree operand OP return the base of a load or store operation
4319 or NULL_TREE if OP is not a load or a store. */
4320
4321static tree
4322get_base_loadstore (tree op)
4323{
4324 while (handled_component_p (op))
4325 op = TREE_OPERAND (op, 0);
4326 if (DECL_P (op)
4327 || INDIRECT_REF_P (op)
4328 || TREE_CODE (op) == TARGET_MEM_REF)
4329 return op;
4330 return NULL_TREE;
4331}
4332
4333/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4334 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4335 passing the STMT, the base of the operand and DATA to it. The base
4336 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4337 or the argument of an address expression.
4338 Returns the results of these callbacks or'ed. */
4339
4340bool
4341walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4342 bool (*visit_load)(gimple, tree, void *),
4343 bool (*visit_store)(gimple, tree, void *),
4344 bool (*visit_addr)(gimple, tree, void *))
4345{
4346 bool ret = false;
4347 unsigned i;
4348 if (gimple_assign_single_p (stmt))
4349 {
4350 tree lhs, rhs;
4351 if (visit_store)
4352 {
4353 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4354 if (lhs)
4355 ret |= visit_store (stmt, lhs, data);
4356 }
4357 rhs = gimple_assign_rhs1 (stmt);
ad8a1ac0
RG
4358 while (handled_component_p (rhs))
4359 rhs = TREE_OPERAND (rhs, 0);
346ef3fa
RG
4360 if (visit_addr)
4361 {
4362 if (TREE_CODE (rhs) == ADDR_EXPR)
4363 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4364 else if (TREE_CODE (rhs) == TARGET_MEM_REF
fff1894c 4365 && TMR_BASE (rhs) != NULL_TREE
346ef3fa
RG
4366 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4367 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4368 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4369 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4370 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4371 0), data);
fff1894c
AB
4372 lhs = gimple_assign_lhs (stmt);
4373 if (TREE_CODE (lhs) == TARGET_MEM_REF
4374 && TMR_BASE (lhs) != NULL_TREE
4375 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4376 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
346ef3fa
RG
4377 }
4378 if (visit_load)
4379 {
4380 rhs = get_base_loadstore (rhs);
4381 if (rhs)
4382 ret |= visit_load (stmt, rhs, data);
4383 }
4384 }
4385 else if (visit_addr
4386 && (is_gimple_assign (stmt)
4d7a65ea 4387 || gimple_code (stmt) == GIMPLE_COND))
346ef3fa
RG
4388 {
4389 for (i = 0; i < gimple_num_ops (stmt); ++i)
4390 if (gimple_op (stmt, i)
4391 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4392 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4393 }
4394 else if (is_gimple_call (stmt))
4395 {
4396 if (visit_store)
4397 {
4398 tree lhs = gimple_call_lhs (stmt);
4399 if (lhs)
4400 {
4401 lhs = get_base_loadstore (lhs);
4402 if (lhs)
4403 ret |= visit_store (stmt, lhs, data);
4404 }
4405 }
4406 if (visit_load || visit_addr)
4407 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4408 {
4409 tree rhs = gimple_call_arg (stmt, i);
4410 if (visit_addr
4411 && TREE_CODE (rhs) == ADDR_EXPR)
4412 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4413 else if (visit_load)
4414 {
4415 rhs = get_base_loadstore (rhs);
4416 if (rhs)
4417 ret |= visit_load (stmt, rhs, data);
4418 }
4419 }
4420 if (visit_addr
4421 && gimple_call_chain (stmt)
4422 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4423 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4424 data);
1d24fdd9
RG
4425 if (visit_addr
4426 && gimple_call_return_slot_opt_p (stmt)
4427 && gimple_call_lhs (stmt) != NULL_TREE
4d61856d 4428 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
1d24fdd9 4429 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
346ef3fa
RG
4430 }
4431 else if (gimple_code (stmt) == GIMPLE_ASM)
4432 {
4433 unsigned noutputs;
4434 const char *constraint;
4435 const char **oconstraints;
4436 bool allows_mem, allows_reg, is_inout;
4437 noutputs = gimple_asm_noutputs (stmt);
4438 oconstraints = XALLOCAVEC (const char *, noutputs);
4439 if (visit_store || visit_addr)
4440 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4441 {
4442 tree link = gimple_asm_output_op (stmt, i);
4443 tree op = get_base_loadstore (TREE_VALUE (link));
4444 if (op && visit_store)
4445 ret |= visit_store (stmt, op, data);
4446 if (visit_addr)
4447 {
4448 constraint = TREE_STRING_POINTER
4449 (TREE_VALUE (TREE_PURPOSE (link)));
4450 oconstraints[i] = constraint;
4451 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4452 &allows_reg, &is_inout);
4453 if (op && !allows_reg && allows_mem)
4454 ret |= visit_addr (stmt, op, data);
4455 }
4456 }
4457 if (visit_load || visit_addr)
4458 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4459 {
4460 tree link = gimple_asm_input_op (stmt, i);
4461 tree op = TREE_VALUE (link);
4462 if (visit_addr
4463 && TREE_CODE (op) == ADDR_EXPR)
4464 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4465 else if (visit_load || visit_addr)
4466 {
4467 op = get_base_loadstore (op);
4468 if (op)
4469 {
4470 if (visit_load)
4471 ret |= visit_load (stmt, op, data);
4472 if (visit_addr)
4473 {
4474 constraint = TREE_STRING_POINTER
4475 (TREE_VALUE (TREE_PURPOSE (link)));
4476 parse_input_constraint (&constraint, 0, 0, noutputs,
4477 0, oconstraints,
4478 &allows_mem, &allows_reg);
4479 if (!allows_reg && allows_mem)
4480 ret |= visit_addr (stmt, op, data);
4481 }
4482 }
4483 }
4484 }
4485 }
4486 else if (gimple_code (stmt) == GIMPLE_RETURN)
4487 {
4488 tree op = gimple_return_retval (stmt);
4489 if (op)
4490 {
4491 if (visit_addr
4492 && TREE_CODE (op) == ADDR_EXPR)
4493 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4494 else if (visit_load)
4495 {
4496 op = get_base_loadstore (op);
4497 if (op)
4498 ret |= visit_load (stmt, op, data);
4499 }
4500 }
4501 }
4502 else if (visit_addr
4503 && gimple_code (stmt) == GIMPLE_PHI)
4504 {
4505 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4506 {
4507 tree op = PHI_ARG_DEF (stmt, i);
4508 if (TREE_CODE (op) == ADDR_EXPR)
4509 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4510 }
4511 }
4512
4513 return ret;
4514}
4515
4516/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4517 should make a faster clone for this case. */
4518
4519bool
4520walk_stmt_load_store_ops (gimple stmt, void *data,
4521 bool (*visit_load)(gimple, tree, void *),
4522 bool (*visit_store)(gimple, tree, void *))
4523{
4524 return walk_stmt_load_store_addr_ops (stmt, data,
4525 visit_load, visit_store, NULL);
4526}
4527
ccacdf06
RG
4528/* Helper for gimple_ior_addresses_taken_1. */
4529
4530static bool
4531gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4532 tree addr, void *data)
4533{
4534 bitmap addresses_taken = (bitmap)data;
4535 while (handled_component_p (addr))
4536 addr = TREE_OPERAND (addr, 0);
4537 if (DECL_P (addr))
4538 {
4539 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4540 return true;
4541 }
4542 return false;
4543}
4544
4545/* Set the bit for the uid of all decls that have their address taken
4546 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4547 were any in this stmt. */
4548
4549bool
4550gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4551{
4552 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4553 gimple_ior_addresses_taken_1);
4554}
4555
4537ec0c
DN
4556
4557/* Return a printable name for symbol DECL. */
4558
4559const char *
4560gimple_decl_printable_name (tree decl, int verbosity)
4561{
4562 gcc_assert (decl && DECL_NAME (decl));
4563
4564 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4565 {
4566 const char *str, *mangled_str;
4567 int dmgl_opts = DMGL_NO_OPTS;
4568
4569 if (verbosity >= 2)
4570 {
4571 dmgl_opts = DMGL_VERBOSE
4537ec0c
DN
4572 | DMGL_ANSI
4573 | DMGL_GNU_V3
4574 | DMGL_RET_POSTFIX;
4575 if (TREE_CODE (decl) == FUNCTION_DECL)
4576 dmgl_opts |= DMGL_PARAMS;
4577 }
4578
4579 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4580 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4581 return (str) ? str : mangled_str;
4582 }
4583
4584 return IDENTIFIER_POINTER (DECL_NAME (decl));
4585}
4586
4587
4588/* Fold a OBJ_TYPE_REF expression to the address of a function.
4589 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). Adapted
4590 from cp_fold_obj_type_ref, but it tolerates types with no binfo
4591 data. */
4592
4593tree
4594gimple_fold_obj_type_ref (tree ref, tree known_type)
4595{
4596 HOST_WIDE_INT index;
4597 HOST_WIDE_INT i;
4598 tree v;
4599 tree fndecl;
4600
4601 if (TYPE_BINFO (known_type) == NULL_TREE)
4602 return NULL_TREE;
4603
4604 v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
4605 index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
4606 i = 0;
4607 while (i != index)
4608 {
4609 i += (TARGET_VTABLE_USES_DESCRIPTORS
4610 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
4611 v = TREE_CHAIN (v);
4612 }
4613
4614 fndecl = TREE_VALUE (v);
4615
4616#ifdef ENABLE_CHECKING
4617 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
4618 DECL_VINDEX (fndecl)));
4619#endif
4620
4621 cgraph_node (fndecl)->local.vtable_method = true;
4622
4623 return build_fold_addr_expr (fndecl);
4624}
4625
726a989a 4626#include "gt-gimple.h"