]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple.c
tree-ssa.h: New.
[thirdparty/gcc.git] / gcc / gimple.c
CommitLineData
726a989a
RB
1/* Gimple IR support functions.
2
d1e082c2 3 Copyright (C) 2007-2013 Free Software Foundation, Inc.
726a989a
RB
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
d7f09764 26#include "target.h"
726a989a
RB
27#include "tree.h"
28#include "ggc.h"
726a989a
RB
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
32#include "diagnostic.h"
7a300452 33#include "tree-ssa.h"
726a989a
RB
34#include "value-prof.h"
35#include "flags.h"
d7f09764 36#include "alias.h"
4537ec0c 37#include "demangle.h"
0f443ad0 38#include "langhooks.h"
726a989a 39
b8f4e58f 40/* Global canonical type table. */
4490cae6
RG
41static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
42 htab_t gimple_canonical_types;
a844a60b
RG
43static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
44 htab_t canonical_type_hash_cache;
d7f09764 45
f2c4a81c 46/* All the tuples have their operand vector (if present) at the very bottom
726a989a
RB
47 of the structure. Therefore, the offset required to find the
48 operands vector the size of the structure minus the size of the 1
49 element tree array at the end (see gimple_ops). */
f2c4a81c
RH
50#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
51 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
6bc7bc14 52EXPORTED_CONST size_t gimple_ops_offset_[] = {
f2c4a81c
RH
53#include "gsstruct.def"
54};
55#undef DEFGSSTRUCT
56
57#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
58static const size_t gsstruct_code_size[] = {
59#include "gsstruct.def"
60};
61#undef DEFGSSTRUCT
62
63#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
64const char *const gimple_code_name[] = {
65#include "gimple.def"
66};
67#undef DEFGSCODE
68
69#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
70EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
726a989a
RB
71#include "gimple.def"
72};
73#undef DEFGSCODE
74
726a989a
RB
75/* Gimple stats. */
76
77int gimple_alloc_counts[(int) gimple_alloc_kind_all];
78int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
79
80/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
81static const char * const gimple_alloc_kind_names[] = {
82 "assignments",
83 "phi nodes",
84 "conditionals",
726a989a
RB
85 "everything else"
86};
87
726a989a
RB
88/* Private API manipulation functions shared only with some
89 other files. */
90extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
91extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
92
93/* Gimple tuple constructors.
94 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
95 be passed a NULL to start with an empty sequence. */
96
97/* Set the code for statement G to CODE. */
98
99static inline void
100gimple_set_code (gimple g, enum gimple_code code)
101{
102 g->gsbase.code = code;
103}
104
726a989a
RB
105/* Return the number of bytes needed to hold a GIMPLE statement with
106 code CODE. */
107
f2c4a81c 108static inline size_t
726a989a
RB
109gimple_size (enum gimple_code code)
110{
f2c4a81c 111 return gsstruct_code_size[gss_for_code (code)];
726a989a
RB
112}
113
726a989a
RB
114/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
115 operands. */
116
d7f09764 117gimple
726a989a
RB
118gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
119{
120 size_t size;
121 gimple stmt;
122
123 size = gimple_size (code);
124 if (num_ops > 0)
125 size += sizeof (tree) * (num_ops - 1);
126
7aa6d18a
SB
127 if (GATHER_STATISTICS)
128 {
129 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
130 gimple_alloc_counts[(int) kind]++;
131 gimple_alloc_sizes[(int) kind] += size;
132 }
726a989a 133
a9429e29 134 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
726a989a
RB
135 gimple_set_code (stmt, code);
136 gimple_set_num_ops (stmt, num_ops);
137
138 /* Do not call gimple_set_modified here as it has other side
139 effects and this tuple is still not completely built. */
140 stmt->gsbase.modified = 1;
355a7673 141 gimple_init_singleton (stmt);
726a989a
RB
142
143 return stmt;
144}
145
146/* Set SUBCODE to be the code of the expression computed by statement G. */
147
148static inline void
149gimple_set_subcode (gimple g, unsigned subcode)
150{
151 /* We only have 16 bits for the RHS code. Assert that we are not
152 overflowing it. */
153 gcc_assert (subcode < (1 << 16));
154 g->gsbase.subcode = subcode;
155}
156
157
158
159/* Build a tuple with operands. CODE is the statement to build (which
160 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
b8698a0f 161 for the new tuple. NUM_OPS is the number of operands to allocate. */
726a989a
RB
162
163#define gimple_build_with_ops(c, s, n) \
164 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
165
166static gimple
b5b8b0ac 167gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
726a989a
RB
168 unsigned num_ops MEM_STAT_DECL)
169{
170 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
171 gimple_set_subcode (s, subcode);
172
173 return s;
174}
175
176
177/* Build a GIMPLE_RETURN statement returning RETVAL. */
178
179gimple
180gimple_build_return (tree retval)
181{
bbbbb16a 182 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
726a989a
RB
183 if (retval)
184 gimple_return_set_retval (s, retval);
185 return s;
186}
187
d086d311
RG
188/* Reset alias information on call S. */
189
190void
191gimple_call_reset_alias_info (gimple s)
192{
193 if (gimple_call_flags (s) & ECF_CONST)
194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
195 else
196 pt_solution_reset (gimple_call_use_set (s));
197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
199 else
200 pt_solution_reset (gimple_call_clobber_set (s));
201}
202
21860814
JJ
203/* Helper for gimple_build_call, gimple_build_call_valist,
204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
205 components of a GIMPLE_CALL statement to function FN with NARGS
206 arguments. */
726a989a
RB
207
208static inline gimple
209gimple_build_call_1 (tree fn, unsigned nargs)
210{
bbbbb16a 211 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
7c9577be
RG
212 if (TREE_CODE (fn) == FUNCTION_DECL)
213 fn = build_fold_addr_expr (fn);
726a989a 214 gimple_set_op (s, 1, fn);
f20ca725 215 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
d086d311 216 gimple_call_reset_alias_info (s);
726a989a
RB
217 return s;
218}
219
220
221/* Build a GIMPLE_CALL statement to function FN with the arguments
222 specified in vector ARGS. */
223
224gimple
9771b263 225gimple_build_call_vec (tree fn, vec<tree> args)
726a989a
RB
226{
227 unsigned i;
9771b263 228 unsigned nargs = args.length ();
726a989a
RB
229 gimple call = gimple_build_call_1 (fn, nargs);
230
231 for (i = 0; i < nargs; i++)
9771b263 232 gimple_call_set_arg (call, i, args[i]);
726a989a
RB
233
234 return call;
235}
236
237
238/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
239 arguments. The ... are the arguments. */
240
241gimple
242gimple_build_call (tree fn, unsigned nargs, ...)
243{
244 va_list ap;
245 gimple call;
246 unsigned i;
247
248 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
249
250 call = gimple_build_call_1 (fn, nargs);
251
252 va_start (ap, nargs);
253 for (i = 0; i < nargs; i++)
254 gimple_call_set_arg (call, i, va_arg (ap, tree));
255 va_end (ap);
256
257 return call;
258}
259
260
21860814
JJ
261/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
262 arguments. AP contains the arguments. */
263
264gimple
265gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
266{
267 gimple call;
268 unsigned i;
269
270 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
271
272 call = gimple_build_call_1 (fn, nargs);
273
274 for (i = 0; i < nargs; i++)
275 gimple_call_set_arg (call, i, va_arg (ap, tree));
276
277 return call;
278}
279
280
25583c4f
RS
281/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
282 Build the basic components of a GIMPLE_CALL statement to internal
283 function FN with NARGS arguments. */
284
285static inline gimple
286gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
287{
288 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
289 s->gsbase.subcode |= GF_CALL_INTERNAL;
290 gimple_call_set_internal_fn (s, fn);
291 gimple_call_reset_alias_info (s);
292 return s;
293}
294
295
296/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
297 the number of arguments. The ... are the arguments. */
298
299gimple
300gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
301{
302 va_list ap;
303 gimple call;
304 unsigned i;
305
306 call = gimple_build_call_internal_1 (fn, nargs);
307 va_start (ap, nargs);
308 for (i = 0; i < nargs; i++)
309 gimple_call_set_arg (call, i, va_arg (ap, tree));
310 va_end (ap);
311
312 return call;
313}
314
315
316/* Build a GIMPLE_CALL statement to internal function FN with the arguments
317 specified in vector ARGS. */
318
319gimple
9771b263 320gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
25583c4f
RS
321{
322 unsigned i, nargs;
323 gimple call;
324
9771b263 325 nargs = args.length ();
25583c4f
RS
326 call = gimple_build_call_internal_1 (fn, nargs);
327 for (i = 0; i < nargs; i++)
9771b263 328 gimple_call_set_arg (call, i, args[i]);
25583c4f
RS
329
330 return call;
331}
332
333
726a989a
RB
334/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
335 assumed to be in GIMPLE form already. Minimal checking is done of
336 this fact. */
337
338gimple
339gimple_build_call_from_tree (tree t)
340{
341 unsigned i, nargs;
342 gimple call;
343 tree fndecl = get_callee_fndecl (t);
344
345 gcc_assert (TREE_CODE (t) == CALL_EXPR);
346
347 nargs = call_expr_nargs (t);
348 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
349
350 for (i = 0; i < nargs; i++)
351 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
352
353 gimple_set_block (call, TREE_BLOCK (t));
354
355 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
356 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
357 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
726a989a 358 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
63d2a353
MM
359 if (fndecl
360 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
13e49da9
TV
361 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
362 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
63d2a353
MM
363 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
364 else
365 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
726a989a 366 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
9bb1a81b 367 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
d665b6e5 368 gimple_set_no_warning (call, TREE_NO_WARNING (t));
726a989a
RB
369
370 return call;
371}
372
373
374/* Extract the operands and code for expression EXPR into *SUBCODE_P,
0354c0c7 375 *OP1_P, *OP2_P and *OP3_P respectively. */
726a989a
RB
376
377void
0354c0c7
BS
378extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
379 tree *op2_p, tree *op3_p)
726a989a 380{
82d6e6fc 381 enum gimple_rhs_class grhs_class;
726a989a
RB
382
383 *subcode_p = TREE_CODE (expr);
82d6e6fc 384 grhs_class = get_gimple_rhs_class (*subcode_p);
726a989a 385
0354c0c7 386 if (grhs_class == GIMPLE_TERNARY_RHS)
726a989a
RB
387 {
388 *op1_p = TREE_OPERAND (expr, 0);
389 *op2_p = TREE_OPERAND (expr, 1);
0354c0c7
BS
390 *op3_p = TREE_OPERAND (expr, 2);
391 }
392 else if (grhs_class == GIMPLE_BINARY_RHS)
393 {
394 *op1_p = TREE_OPERAND (expr, 0);
395 *op2_p = TREE_OPERAND (expr, 1);
396 *op3_p = NULL_TREE;
726a989a 397 }
82d6e6fc 398 else if (grhs_class == GIMPLE_UNARY_RHS)
726a989a
RB
399 {
400 *op1_p = TREE_OPERAND (expr, 0);
401 *op2_p = NULL_TREE;
0354c0c7 402 *op3_p = NULL_TREE;
726a989a 403 }
82d6e6fc 404 else if (grhs_class == GIMPLE_SINGLE_RHS)
726a989a
RB
405 {
406 *op1_p = expr;
407 *op2_p = NULL_TREE;
0354c0c7 408 *op3_p = NULL_TREE;
726a989a
RB
409 }
410 else
411 gcc_unreachable ();
412}
413
414
415/* Build a GIMPLE_ASSIGN statement.
416
417 LHS of the assignment.
418 RHS of the assignment which can be unary or binary. */
419
420gimple
421gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
422{
423 enum tree_code subcode;
0354c0c7 424 tree op1, op2, op3;
726a989a 425
0354c0c7 426 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
73804b12
RG
427 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3
428 PASS_MEM_STAT);
726a989a
RB
429}
430
431
432/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
433 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
434 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
435
436gimple
73804b12
RG
437gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
438 tree op2, tree op3 MEM_STAT_DECL)
726a989a
RB
439{
440 unsigned num_ops;
441 gimple p;
442
443 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
444 code). */
445 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
b8698a0f 446
b5b8b0ac 447 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
726a989a
RB
448 PASS_MEM_STAT);
449 gimple_assign_set_lhs (p, lhs);
450 gimple_assign_set_rhs1 (p, op1);
451 if (op2)
452 {
453 gcc_assert (num_ops > 2);
454 gimple_assign_set_rhs2 (p, op2);
455 }
456
0354c0c7
BS
457 if (op3)
458 {
459 gcc_assert (num_ops > 3);
460 gimple_assign_set_rhs3 (p, op3);
461 }
462
726a989a
RB
463 return p;
464}
465
73804b12
RG
466gimple
467gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1,
468 tree op2 MEM_STAT_DECL)
469{
470 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE
471 PASS_MEM_STAT);
472}
473
726a989a
RB
474
475/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
476
477 DST/SRC are the destination and source respectively. You can pass
478 ungimplified trees in DST or SRC, in which case they will be
479 converted to a gimple operand if necessary.
480
481 This function returns the newly created GIMPLE_ASSIGN tuple. */
482
5fd8300b 483gimple
726a989a 484gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
b8698a0f 485{
726a989a
RB
486 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
487 gimplify_and_add (t, seq_p);
488 ggc_free (t);
489 return gimple_seq_last_stmt (*seq_p);
490}
491
492
493/* Build a GIMPLE_COND statement.
494
495 PRED is the condition used to compare LHS and the RHS.
496 T_LABEL is the label to jump to if the condition is true.
497 F_LABEL is the label to jump to otherwise. */
498
499gimple
500gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
501 tree t_label, tree f_label)
502{
503 gimple p;
504
505 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
506 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
507 gimple_cond_set_lhs (p, lhs);
508 gimple_cond_set_rhs (p, rhs);
509 gimple_cond_set_true_label (p, t_label);
510 gimple_cond_set_false_label (p, f_label);
511 return p;
512}
513
514
515/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
516
517void
518gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
519 tree *lhs_p, tree *rhs_p)
520{
521 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
522 || TREE_CODE (cond) == TRUTH_NOT_EXPR
523 || is_gimple_min_invariant (cond)
524 || SSA_VAR_P (cond));
525
526 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
527
528 /* Canonicalize conditionals of the form 'if (!VAL)'. */
529 if (*code_p == TRUTH_NOT_EXPR)
530 {
531 *code_p = EQ_EXPR;
532 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
e8160c9a 533 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
726a989a
RB
534 }
535 /* Canonicalize conditionals of the form 'if (VAL)' */
536 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
537 {
538 *code_p = NE_EXPR;
539 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
e8160c9a 540 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
726a989a
RB
541 }
542}
543
544
545/* Build a GIMPLE_COND statement from the conditional expression tree
546 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
547
548gimple
549gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
550{
551 enum tree_code code;
552 tree lhs, rhs;
553
554 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
555 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
556}
557
558/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
559 boolean expression tree COND. */
560
561void
562gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
563{
564 enum tree_code code;
565 tree lhs, rhs;
566
567 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
568 gimple_cond_set_condition (stmt, code, lhs, rhs);
569}
570
571/* Build a GIMPLE_LABEL statement for LABEL. */
572
573gimple
574gimple_build_label (tree label)
575{
bbbbb16a 576 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
726a989a
RB
577 gimple_label_set_label (p, label);
578 return p;
579}
580
581/* Build a GIMPLE_GOTO statement to label DEST. */
582
583gimple
584gimple_build_goto (tree dest)
585{
bbbbb16a 586 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
726a989a
RB
587 gimple_goto_set_dest (p, dest);
588 return p;
589}
590
591
592/* Build a GIMPLE_NOP statement. */
593
b8698a0f 594gimple
726a989a
RB
595gimple_build_nop (void)
596{
597 return gimple_alloc (GIMPLE_NOP, 0);
598}
599
600
601/* Build a GIMPLE_BIND statement.
602 VARS are the variables in BODY.
603 BLOCK is the containing block. */
604
605gimple
606gimple_build_bind (tree vars, gimple_seq body, tree block)
607{
608 gimple p = gimple_alloc (GIMPLE_BIND, 0);
609 gimple_bind_set_vars (p, vars);
610 if (body)
611 gimple_bind_set_body (p, body);
612 if (block)
613 gimple_bind_set_block (p, block);
614 return p;
615}
616
617/* Helper function to set the simple fields of a asm stmt.
618
619 STRING is a pointer to a string that is the asm blocks assembly code.
620 NINPUT is the number of register inputs.
621 NOUTPUT is the number of register outputs.
622 NCLOBBERS is the number of clobbered registers.
623 */
624
625static inline gimple
b8698a0f 626gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
1c384bf1 627 unsigned nclobbers, unsigned nlabels)
726a989a
RB
628{
629 gimple p;
630 int size = strlen (string);
631
1c384bf1
RH
632 /* ASMs with labels cannot have outputs. This should have been
633 enforced by the front end. */
634 gcc_assert (nlabels == 0 || noutputs == 0);
635
bbbbb16a 636 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
1c384bf1 637 ninputs + noutputs + nclobbers + nlabels);
726a989a
RB
638
639 p->gimple_asm.ni = ninputs;
640 p->gimple_asm.no = noutputs;
641 p->gimple_asm.nc = nclobbers;
1c384bf1 642 p->gimple_asm.nl = nlabels;
726a989a
RB
643 p->gimple_asm.string = ggc_alloc_string (string, size);
644
7aa6d18a
SB
645 if (GATHER_STATISTICS)
646 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
b8698a0f 647
726a989a
RB
648 return p;
649}
650
651/* Build a GIMPLE_ASM statement.
652
653 STRING is the assembly code.
654 NINPUT is the number of register inputs.
655 NOUTPUT is the number of register outputs.
656 NCLOBBERS is the number of clobbered registers.
657 INPUTS is a vector of the input register parameters.
658 OUTPUTS is a vector of the output register parameters.
1c384bf1
RH
659 CLOBBERS is a vector of the clobbered register parameters.
660 LABELS is a vector of destination labels. */
726a989a
RB
661
662gimple
9771b263
DN
663gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
664 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
665 vec<tree, va_gc> *labels)
726a989a
RB
666{
667 gimple p;
668 unsigned i;
669
670 p = gimple_build_asm_1 (string,
9771b263
DN
671 vec_safe_length (inputs),
672 vec_safe_length (outputs),
673 vec_safe_length (clobbers),
674 vec_safe_length (labels));
b8698a0f 675
9771b263
DN
676 for (i = 0; i < vec_safe_length (inputs); i++)
677 gimple_asm_set_input_op (p, i, (*inputs)[i]);
726a989a 678
9771b263
DN
679 for (i = 0; i < vec_safe_length (outputs); i++)
680 gimple_asm_set_output_op (p, i, (*outputs)[i]);
726a989a 681
9771b263
DN
682 for (i = 0; i < vec_safe_length (clobbers); i++)
683 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
b8698a0f 684
9771b263
DN
685 for (i = 0; i < vec_safe_length (labels); i++)
686 gimple_asm_set_label_op (p, i, (*labels)[i]);
b8698a0f 687
726a989a
RB
688 return p;
689}
690
691/* Build a GIMPLE_CATCH statement.
692
693 TYPES are the catch types.
694 HANDLER is the exception handler. */
695
696gimple
697gimple_build_catch (tree types, gimple_seq handler)
698{
699 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
700 gimple_catch_set_types (p, types);
701 if (handler)
702 gimple_catch_set_handler (p, handler);
703
704 return p;
705}
706
707/* Build a GIMPLE_EH_FILTER statement.
708
709 TYPES are the filter's types.
710 FAILURE is the filter's failure action. */
711
712gimple
713gimple_build_eh_filter (tree types, gimple_seq failure)
714{
715 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
716 gimple_eh_filter_set_types (p, types);
717 if (failure)
718 gimple_eh_filter_set_failure (p, failure);
719
720 return p;
721}
722
1d65f45c
RH
723/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
724
725gimple
726gimple_build_eh_must_not_throw (tree decl)
727{
786f715d 728 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
1d65f45c
RH
729
730 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
731 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
d7f09764 732 gimple_eh_must_not_throw_set_fndecl (p, decl);
1d65f45c
RH
733
734 return p;
735}
736
0a35513e
AH
737/* Build a GIMPLE_EH_ELSE statement. */
738
739gimple
740gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
741{
742 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
743 gimple_eh_else_set_n_body (p, n_body);
744 gimple_eh_else_set_e_body (p, e_body);
745 return p;
746}
747
726a989a
RB
748/* Build a GIMPLE_TRY statement.
749
750 EVAL is the expression to evaluate.
751 CLEANUP is the cleanup expression.
752 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
753 whether this is a try/catch or a try/finally respectively. */
754
755gimple
756gimple_build_try (gimple_seq eval, gimple_seq cleanup,
757 enum gimple_try_flags kind)
758{
759 gimple p;
760
761 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
762 p = gimple_alloc (GIMPLE_TRY, 0);
763 gimple_set_subcode (p, kind);
764 if (eval)
765 gimple_try_set_eval (p, eval);
766 if (cleanup)
767 gimple_try_set_cleanup (p, cleanup);
768
769 return p;
770}
771
772/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
773
774 CLEANUP is the cleanup expression. */
775
776gimple
777gimple_build_wce (gimple_seq cleanup)
778{
779 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
780 if (cleanup)
781 gimple_wce_set_cleanup (p, cleanup);
782
783 return p;
784}
785
786
1d65f45c 787/* Build a GIMPLE_RESX statement. */
726a989a
RB
788
789gimple
790gimple_build_resx (int region)
791{
1d65f45c
RH
792 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
793 p->gimple_eh_ctrl.region = region;
726a989a
RB
794 return p;
795}
796
797
798/* The helper for constructing a gimple switch statement.
799 INDEX is the switch's index.
800 NLABELS is the number of labels in the switch excluding the default.
801 DEFAULT_LABEL is the default label for the switch statement. */
802
b8698a0f 803gimple
1d65f45c 804gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
726a989a
RB
805{
806 /* nlabels + 1 default label + 1 index. */
fd8d363e 807 gcc_checking_assert (default_label);
bbbbb16a 808 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
fd8d363e 809 1 + 1 + nlabels);
726a989a 810 gimple_switch_set_index (p, index);
fd8d363e 811 gimple_switch_set_default_label (p, default_label);
726a989a
RB
812 return p;
813}
814
726a989a
RB
815/* Build a GIMPLE_SWITCH statement.
816
817 INDEX is the switch's index.
818 DEFAULT_LABEL is the default label
819 ARGS is a vector of labels excluding the default. */
820
821gimple
9771b263 822gimple_build_switch (tree index, tree default_label, vec<tree> args)
726a989a 823{
9771b263 824 unsigned i, nlabels = args.length ();
fd8d363e 825
1d65f45c 826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
726a989a 827
1d65f45c 828 /* Copy the labels from the vector to the switch statement. */
1d65f45c 829 for (i = 0; i < nlabels; i++)
9771b263 830 gimple_switch_set_label (p, i + 1, args[i]);
726a989a
RB
831
832 return p;
833}
834
1d65f45c
RH
835/* Build a GIMPLE_EH_DISPATCH statement. */
836
837gimple
838gimple_build_eh_dispatch (int region)
839{
840 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
841 p->gimple_eh_ctrl.region = region;
842 return p;
843}
726a989a 844
b5b8b0ac
AO
845/* Build a new GIMPLE_DEBUG_BIND statement.
846
847 VAR is bound to VALUE; block and location are taken from STMT. */
848
849gimple
850gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
851{
852 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
853 (unsigned)GIMPLE_DEBUG_BIND, 2
854 PASS_MEM_STAT);
855
856 gimple_debug_bind_set_var (p, var);
857 gimple_debug_bind_set_value (p, value);
858 if (stmt)
5368224f 859 gimple_set_location (p, gimple_location (stmt));
b5b8b0ac
AO
860
861 return p;
862}
863
864
ddb555ed
JJ
865/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
866
867 VAR is bound to VALUE; block and location are taken from STMT. */
868
869gimple
870gimple_build_debug_source_bind_stat (tree var, tree value,
871 gimple stmt MEM_STAT_DECL)
872{
873 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
874 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
875 PASS_MEM_STAT);
876
877 gimple_debug_source_bind_set_var (p, var);
878 gimple_debug_source_bind_set_value (p, value);
879 if (stmt)
5368224f 880 gimple_set_location (p, gimple_location (stmt));
ddb555ed
JJ
881
882 return p;
883}
884
885
726a989a
RB
886/* Build a GIMPLE_OMP_CRITICAL statement.
887
888 BODY is the sequence of statements for which only one thread can execute.
889 NAME is optional identifier for this critical block. */
890
b8698a0f 891gimple
726a989a
RB
892gimple_build_omp_critical (gimple_seq body, tree name)
893{
894 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
895 gimple_omp_critical_set_name (p, name);
896 if (body)
897 gimple_omp_set_body (p, body);
898
899 return p;
900}
901
902/* Build a GIMPLE_OMP_FOR statement.
903
904 BODY is sequence of statements inside the for loop.
74bf76ed 905 KIND is the `for' variant.
b8698a0f 906 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
726a989a
RB
907 lastprivate, reductions, ordered, schedule, and nowait.
908 COLLAPSE is the collapse count.
909 PRE_BODY is the sequence of statements that are loop invariant. */
910
911gimple
74bf76ed 912gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
726a989a
RB
913 gimple_seq pre_body)
914{
915 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
916 if (body)
917 gimple_omp_set_body (p, body);
918 gimple_omp_for_set_clauses (p, clauses);
74bf76ed 919 gimple_omp_for_set_kind (p, kind);
726a989a 920 p->gimple_omp_for.collapse = collapse;
a9429e29
LB
921 p->gimple_omp_for.iter
922 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
726a989a
RB
923 if (pre_body)
924 gimple_omp_for_set_pre_body (p, pre_body);
925
926 return p;
927}
928
929
930/* Build a GIMPLE_OMP_PARALLEL statement.
931
932 BODY is sequence of statements which are executed in parallel.
933 CLAUSES, are the OMP parallel construct's clauses.
934 CHILD_FN is the function created for the parallel threads to execute.
935 DATA_ARG are the shared data argument(s). */
936
b8698a0f
L
937gimple
938gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
726a989a
RB
939 tree data_arg)
940{
941 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
942 if (body)
943 gimple_omp_set_body (p, body);
944 gimple_omp_parallel_set_clauses (p, clauses);
945 gimple_omp_parallel_set_child_fn (p, child_fn);
946 gimple_omp_parallel_set_data_arg (p, data_arg);
947
948 return p;
949}
950
951
952/* Build a GIMPLE_OMP_TASK statement.
953
954 BODY is sequence of statements which are executed by the explicit task.
955 CLAUSES, are the OMP parallel construct's clauses.
956 CHILD_FN is the function created for the parallel threads to execute.
957 DATA_ARG are the shared data argument(s).
958 COPY_FN is the optional function for firstprivate initialization.
959 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
960
b8698a0f 961gimple
726a989a
RB
962gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
963 tree data_arg, tree copy_fn, tree arg_size,
964 tree arg_align)
965{
966 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
967 if (body)
968 gimple_omp_set_body (p, body);
969 gimple_omp_task_set_clauses (p, clauses);
970 gimple_omp_task_set_child_fn (p, child_fn);
971 gimple_omp_task_set_data_arg (p, data_arg);
972 gimple_omp_task_set_copy_fn (p, copy_fn);
973 gimple_omp_task_set_arg_size (p, arg_size);
974 gimple_omp_task_set_arg_align (p, arg_align);
975
976 return p;
977}
978
979
980/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
981
982 BODY is the sequence of statements in the section. */
983
984gimple
985gimple_build_omp_section (gimple_seq body)
986{
987 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
988 if (body)
989 gimple_omp_set_body (p, body);
990
991 return p;
992}
993
994
995/* Build a GIMPLE_OMP_MASTER statement.
996
997 BODY is the sequence of statements to be executed by just the master. */
998
b8698a0f 999gimple
726a989a
RB
1000gimple_build_omp_master (gimple_seq body)
1001{
1002 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1003 if (body)
1004 gimple_omp_set_body (p, body);
1005
1006 return p;
1007}
1008
1009
1010/* Build a GIMPLE_OMP_CONTINUE statement.
1011
1012 CONTROL_DEF is the definition of the control variable.
1013 CONTROL_USE is the use of the control variable. */
1014
b8698a0f 1015gimple
726a989a
RB
1016gimple_build_omp_continue (tree control_def, tree control_use)
1017{
1018 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1019 gimple_omp_continue_set_control_def (p, control_def);
1020 gimple_omp_continue_set_control_use (p, control_use);
1021 return p;
1022}
1023
1024/* Build a GIMPLE_OMP_ORDERED statement.
1025
1026 BODY is the sequence of statements inside a loop that will executed in
1027 sequence. */
1028
b8698a0f 1029gimple
726a989a
RB
1030gimple_build_omp_ordered (gimple_seq body)
1031{
1032 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1033 if (body)
1034 gimple_omp_set_body (p, body);
1035
1036 return p;
1037}
1038
1039
1040/* Build a GIMPLE_OMP_RETURN statement.
1041 WAIT_P is true if this is a non-waiting return. */
1042
b8698a0f 1043gimple
726a989a
RB
1044gimple_build_omp_return (bool wait_p)
1045{
1046 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1047 if (wait_p)
1048 gimple_omp_return_set_nowait (p);
1049
1050 return p;
1051}
1052
1053
1054/* Build a GIMPLE_OMP_SECTIONS statement.
1055
1056 BODY is a sequence of section statements.
1057 CLAUSES are any of the OMP sections contsruct's clauses: private,
1058 firstprivate, lastprivate, reduction, and nowait. */
1059
b8698a0f 1060gimple
726a989a
RB
1061gimple_build_omp_sections (gimple_seq body, tree clauses)
1062{
1063 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1064 if (body)
1065 gimple_omp_set_body (p, body);
1066 gimple_omp_sections_set_clauses (p, clauses);
1067
1068 return p;
1069}
1070
1071
1072/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1073
1074gimple
1075gimple_build_omp_sections_switch (void)
1076{
1077 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1078}
1079
1080
1081/* Build a GIMPLE_OMP_SINGLE statement.
1082
1083 BODY is the sequence of statements that will be executed once.
1084 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1085 copyprivate, nowait. */
1086
b8698a0f 1087gimple
726a989a
RB
1088gimple_build_omp_single (gimple_seq body, tree clauses)
1089{
1090 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1091 if (body)
1092 gimple_omp_set_body (p, body);
1093 gimple_omp_single_set_clauses (p, clauses);
1094
1095 return p;
1096}
1097
1098
726a989a
RB
1099/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1100
1101gimple
1102gimple_build_omp_atomic_load (tree lhs, tree rhs)
1103{
1104 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1105 gimple_omp_atomic_load_set_lhs (p, lhs);
1106 gimple_omp_atomic_load_set_rhs (p, rhs);
1107 return p;
1108}
1109
1110/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1111
1112 VAL is the value we are storing. */
1113
1114gimple
1115gimple_build_omp_atomic_store (tree val)
1116{
1117 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1118 gimple_omp_atomic_store_set_val (p, val);
1119 return p;
1120}
1121
0a35513e
AH
1122/* Build a GIMPLE_TRANSACTION statement. */
1123
1124gimple
1125gimple_build_transaction (gimple_seq body, tree label)
1126{
1127 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
1128 gimple_transaction_set_body (p, body);
1129 gimple_transaction_set_label (p, label);
1130 return p;
1131}
1132
726a989a
RB
1133/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1134 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1135
1136gimple
1137gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1138{
1139 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1140 /* Ensure all the predictors fit into the lower bits of the subcode. */
e0c68ce9 1141 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
726a989a
RB
1142 gimple_predict_set_predictor (p, predictor);
1143 gimple_predict_set_outcome (p, outcome);
1144 return p;
1145}
1146
cea094ed 1147#if defined ENABLE_GIMPLE_CHECKING
726a989a
RB
1148/* Complain of a gimple type mismatch and die. */
1149
1150void
1151gimple_check_failed (const_gimple gs, const char *file, int line,
1152 const char *function, enum gimple_code code,
1153 enum tree_code subcode)
1154{
1155 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1156 gimple_code_name[code],
1157 tree_code_name[subcode],
1158 gimple_code_name[gimple_code (gs)],
1159 gs->gsbase.subcode > 0
1160 ? tree_code_name[gs->gsbase.subcode]
1161 : "",
1162 function, trim_filename (file), line);
1163}
726a989a
RB
1164#endif /* ENABLE_GIMPLE_CHECKING */
1165
1166
726a989a
RB
1167/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1168 *SEQ_P is NULL, a new sequence is allocated. */
1169
1170void
1171gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1172{
1173 gimple_stmt_iterator si;
726a989a
RB
1174 if (gs == NULL)
1175 return;
1176
726a989a
RB
1177 si = gsi_last (*seq_p);
1178 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1179}
1180
1181
1182/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1183 NULL, a new sequence is allocated. */
1184
1185void
1186gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1187{
1188 gimple_stmt_iterator si;
726a989a
RB
1189 if (src == NULL)
1190 return;
1191
726a989a
RB
1192 si = gsi_last (*dst_p);
1193 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1194}
1195
1196
1197/* Helper function of empty_body_p. Return true if STMT is an empty
1198 statement. */
1199
1200static bool
1201empty_stmt_p (gimple stmt)
1202{
1203 if (gimple_code (stmt) == GIMPLE_NOP)
1204 return true;
1205 if (gimple_code (stmt) == GIMPLE_BIND)
1206 return empty_body_p (gimple_bind_body (stmt));
1207 return false;
1208}
1209
1210
1211/* Return true if BODY contains nothing but empty statements. */
1212
1213bool
1214empty_body_p (gimple_seq body)
1215{
1216 gimple_stmt_iterator i;
1217
726a989a
RB
1218 if (gimple_seq_empty_p (body))
1219 return true;
1220 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
b5b8b0ac
AO
1221 if (!empty_stmt_p (gsi_stmt (i))
1222 && !is_gimple_debug (gsi_stmt (i)))
726a989a
RB
1223 return false;
1224
1225 return true;
1226}
1227
1228
1229/* Perform a deep copy of sequence SRC and return the result. */
1230
1231gimple_seq
1232gimple_seq_copy (gimple_seq src)
1233{
1234 gimple_stmt_iterator gsi;
355a7673 1235 gimple_seq new_seq = NULL;
726a989a
RB
1236 gimple stmt;
1237
1238 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1239 {
1240 stmt = gimple_copy (gsi_stmt (gsi));
82d6e6fc 1241 gimple_seq_add_stmt (&new_seq, stmt);
726a989a
RB
1242 }
1243
82d6e6fc 1244 return new_seq;
726a989a
RB
1245}
1246
1247
355a7673 1248/* Walk all the statements in the sequence *PSEQ calling walk_gimple_stmt
726a989a 1249 on each one. WI is as in walk_gimple_stmt.
b8698a0f 1250
0a35513e
AH
1251 If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
1252 value is stored in WI->CALLBACK_RESULT. Also, the statement that
1253 produced the value is returned if this statement has not been
1254 removed by a callback (wi->removed_stmt). If the statement has
1255 been removed, NULL is returned.
726a989a
RB
1256
1257 Otherwise, all the statements are walked and NULL returned. */
1258
1259gimple
355a7673
MM
1260walk_gimple_seq_mod (gimple_seq *pseq, walk_stmt_fn callback_stmt,
1261 walk_tree_fn callback_op, struct walk_stmt_info *wi)
726a989a
RB
1262{
1263 gimple_stmt_iterator gsi;
1264
355a7673 1265 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi); )
726a989a
RB
1266 {
1267 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1268 if (ret)
1269 {
1270 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1271 to hold it. */
1272 gcc_assert (wi);
1273 wi->callback_result = ret;
0a35513e
AH
1274
1275 return wi->removed_stmt ? NULL : gsi_stmt (gsi);
726a989a 1276 }
0a35513e
AH
1277
1278 if (!wi->removed_stmt)
1279 gsi_next (&gsi);
726a989a
RB
1280 }
1281
1282 if (wi)
1283 wi->callback_result = NULL_TREE;
1284
1285 return NULL;
1286}
1287
1288
355a7673
MM
1289/* Like walk_gimple_seq_mod, but ensure that the head of SEQ isn't
1290 changed by the callbacks. */
1291
1292gimple
1293walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1294 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1295{
1296 gimple_seq seq2 = seq;
1297 gimple ret = walk_gimple_seq_mod (&seq2, callback_stmt, callback_op, wi);
1298 gcc_assert (seq2 == seq);
1299 return ret;
1300}
1301
1302
726a989a
RB
1303/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1304
1305static tree
1306walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1307 struct walk_stmt_info *wi)
1308{
1c384bf1 1309 tree ret, op;
726a989a
RB
1310 unsigned noutputs;
1311 const char **oconstraints;
1c384bf1 1312 unsigned i, n;
726a989a
RB
1313 const char *constraint;
1314 bool allows_mem, allows_reg, is_inout;
1315
1316 noutputs = gimple_asm_noutputs (stmt);
1317 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1318
1319 if (wi)
1320 wi->is_lhs = true;
1321
1322 for (i = 0; i < noutputs; i++)
1323 {
1c384bf1 1324 op = gimple_asm_output_op (stmt, i);
726a989a
RB
1325 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1326 oconstraints[i] = constraint;
1327 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1328 &is_inout);
1329 if (wi)
1330 wi->val_only = (allows_reg || !allows_mem);
1331 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1332 if (ret)
1333 return ret;
1334 }
1335
1c384bf1
RH
1336 n = gimple_asm_ninputs (stmt);
1337 for (i = 0; i < n; i++)
726a989a 1338 {
1c384bf1 1339 op = gimple_asm_input_op (stmt, i);
726a989a
RB
1340 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1341 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1342 oconstraints, &allows_mem, &allows_reg);
1343 if (wi)
1c384bf1
RH
1344 {
1345 wi->val_only = (allows_reg || !allows_mem);
1346 /* Although input "m" is not really a LHS, we need a lvalue. */
1347 wi->is_lhs = !wi->val_only;
1348 }
726a989a
RB
1349 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1350 if (ret)
1351 return ret;
1352 }
1353
1354 if (wi)
1355 {
1356 wi->is_lhs = false;
1357 wi->val_only = true;
1358 }
1359
1c384bf1
RH
1360 n = gimple_asm_nlabels (stmt);
1361 for (i = 0; i < n; i++)
1362 {
1363 op = gimple_asm_label_op (stmt, i);
1364 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1365 if (ret)
1366 return ret;
1367 }
1368
726a989a
RB
1369 return NULL_TREE;
1370}
1371
1372
1373/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1374 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1375
1376 CALLBACK_OP is called on each operand of STMT via walk_tree.
1377 Additional parameters to walk_tree must be stored in WI. For each operand
1378 OP, walk_tree is called as:
1379
1380 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1381
1382 If CALLBACK_OP returns non-NULL for an operand, the remaining
1383 operands are not scanned.
1384
1385 The return value is that returned by the last call to walk_tree, or
1386 NULL_TREE if no CALLBACK_OP is specified. */
1387
6a4d4e8a 1388tree
726a989a
RB
1389walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1390 struct walk_stmt_info *wi)
1391{
1392 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1393 unsigned i;
1394 tree ret = NULL_TREE;
1395
1396 switch (gimple_code (stmt))
1397 {
1398 case GIMPLE_ASSIGN:
cb3d597d
EB
1399 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1400 is a register variable, we may use a COMPONENT_REF on the RHS. */
726a989a 1401 if (wi)
cb3d597d
EB
1402 {
1403 tree lhs = gimple_assign_lhs (stmt);
1404 wi->val_only
1405 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
b9af73fc 1406 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
cb3d597d 1407 }
726a989a
RB
1408
1409 for (i = 1; i < gimple_num_ops (stmt); i++)
1410 {
1411 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1412 pset);
1413 if (ret)
1414 return ret;
1415 }
1416
1417 /* Walk the LHS. If the RHS is appropriate for a memory, we
1418 may use a COMPONENT_REF on the LHS. */
1419 if (wi)
1420 {
216820a4
RG
1421 /* If the RHS is of a non-renamable type or is a register variable,
1422 we may use a COMPONENT_REF on the LHS. */
b9af73fc 1423 tree rhs1 = gimple_assign_rhs1 (stmt);
216820a4
RG
1424 wi->val_only
1425 = (is_gimple_reg_type (TREE_TYPE (rhs1)) && !is_gimple_reg (rhs1))
1426 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
726a989a
RB
1427 wi->is_lhs = true;
1428 }
1429
1430 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1431 if (ret)
1432 return ret;
1433
1434 if (wi)
1435 {
1436 wi->val_only = true;
1437 wi->is_lhs = false;
1438 }
1439 break;
1440
1441 case GIMPLE_CALL:
1442 if (wi)
523968bf
RG
1443 {
1444 wi->is_lhs = false;
1445 wi->val_only = true;
1446 }
726a989a
RB
1447
1448 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1449 if (ret)
1450 return ret;
1451
1452 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1453 if (ret)
1454 return ret;
1455
1456 for (i = 0; i < gimple_call_num_args (stmt); i++)
1457 {
523968bf 1458 if (wi)
4d931f41
EB
1459 wi->val_only
1460 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
726a989a
RB
1461 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1462 pset);
1463 if (ret)
1464 return ret;
1465 }
1466
523968bf
RG
1467 if (gimple_call_lhs (stmt))
1468 {
1469 if (wi)
1470 {
1471 wi->is_lhs = true;
4d931f41
EB
1472 wi->val_only
1473 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
523968bf 1474 }
726a989a 1475
523968bf
RG
1476 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1477 if (ret)
1478 return ret;
1479 }
726a989a
RB
1480
1481 if (wi)
523968bf
RG
1482 {
1483 wi->is_lhs = false;
1484 wi->val_only = true;
1485 }
726a989a
RB
1486 break;
1487
1488 case GIMPLE_CATCH:
1489 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1490 pset);
1491 if (ret)
1492 return ret;
1493 break;
1494
1495 case GIMPLE_EH_FILTER:
1496 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1497 pset);
1498 if (ret)
1499 return ret;
1500 break;
1501
726a989a
RB
1502 case GIMPLE_ASM:
1503 ret = walk_gimple_asm (stmt, callback_op, wi);
1504 if (ret)
1505 return ret;
1506 break;
1507
1508 case GIMPLE_OMP_CONTINUE:
1509 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1510 callback_op, wi, pset);
1511 if (ret)
1512 return ret;
1513
1514 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1515 callback_op, wi, pset);
1516 if (ret)
1517 return ret;
1518 break;
1519
1520 case GIMPLE_OMP_CRITICAL:
1521 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1522 pset);
1523 if (ret)
1524 return ret;
1525 break;
1526
1527 case GIMPLE_OMP_FOR:
1528 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1529 pset);
1530 if (ret)
1531 return ret;
1532 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1533 {
1534 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1535 wi, pset);
1536 if (ret)
1537 return ret;
1538 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1539 wi, pset);
1540 if (ret)
1541 return ret;
1542 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1547 wi, pset);
1548 }
1549 if (ret)
1550 return ret;
1551 break;
1552
1553 case GIMPLE_OMP_PARALLEL:
1554 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1555 wi, pset);
1556 if (ret)
1557 return ret;
1558 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1559 wi, pset);
1560 if (ret)
1561 return ret;
1562 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1563 wi, pset);
1564 if (ret)
1565 return ret;
1566 break;
1567
1568 case GIMPLE_OMP_TASK:
1569 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1570 wi, pset);
1571 if (ret)
1572 return ret;
1573 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1574 wi, pset);
1575 if (ret)
1576 return ret;
1577 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1578 wi, pset);
1579 if (ret)
1580 return ret;
1581 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1582 wi, pset);
1583 if (ret)
1584 return ret;
1585 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1586 wi, pset);
1587 if (ret)
1588 return ret;
1589 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1590 wi, pset);
1591 if (ret)
1592 return ret;
1593 break;
1594
1595 case GIMPLE_OMP_SECTIONS:
1596 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1597 wi, pset);
1598 if (ret)
1599 return ret;
1600
1601 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1602 wi, pset);
1603 if (ret)
1604 return ret;
1605
1606 break;
1607
1608 case GIMPLE_OMP_SINGLE:
1609 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1610 pset);
1611 if (ret)
1612 return ret;
1613 break;
1614
1615 case GIMPLE_OMP_ATOMIC_LOAD:
1616 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1617 pset);
1618 if (ret)
1619 return ret;
1620
1621 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1622 pset);
1623 if (ret)
1624 return ret;
1625 break;
1626
1627 case GIMPLE_OMP_ATOMIC_STORE:
1628 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1629 wi, pset);
1630 if (ret)
1631 return ret;
1632 break;
1633
0a35513e
AH
1634 case GIMPLE_TRANSACTION:
1635 ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op,
1636 wi, pset);
1637 if (ret)
1638 return ret;
1639 break;
1640
726a989a
RB
1641 /* Tuples that do not have operands. */
1642 case GIMPLE_NOP:
1643 case GIMPLE_RESX:
1644 case GIMPLE_OMP_RETURN:
1645 case GIMPLE_PREDICT:
1646 break;
1647
1648 default:
1649 {
1650 enum gimple_statement_structure_enum gss;
1651 gss = gimple_statement_structure (stmt);
1652 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1653 for (i = 0; i < gimple_num_ops (stmt); i++)
1654 {
1655 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1656 if (ret)
1657 return ret;
1658 }
1659 }
1660 break;
1661 }
1662
1663 return NULL_TREE;
1664}
1665
1666
1667/* Walk the current statement in GSI (optionally using traversal state
1668 stored in WI). If WI is NULL, no state is kept during traversal.
1669 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1670 that it has handled all the operands of the statement, its return
1671 value is returned. Otherwise, the return value from CALLBACK_STMT
1672 is discarded and its operands are scanned.
1673
1674 If CALLBACK_STMT is NULL or it didn't handle the operands,
1675 CALLBACK_OP is called on each operand of the statement via
1676 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1677 operand, the remaining operands are not scanned. In this case, the
1678 return value from CALLBACK_OP is returned.
1679
1680 In any other case, NULL_TREE is returned. */
1681
1682tree
1683walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1684 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1685{
1686 gimple ret;
1687 tree tree_ret;
1688 gimple stmt = gsi_stmt (*gsi);
1689
1690 if (wi)
0a35513e
AH
1691 {
1692 wi->gsi = *gsi;
1693 wi->removed_stmt = false;
726a989a 1694
0a35513e
AH
1695 if (wi->want_locations && gimple_has_location (stmt))
1696 input_location = gimple_location (stmt);
1697 }
726a989a
RB
1698
1699 ret = NULL;
1700
1701 /* Invoke the statement callback. Return if the callback handled
1702 all of STMT operands by itself. */
1703 if (callback_stmt)
1704 {
1705 bool handled_ops = false;
1706 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1707 if (handled_ops)
1708 return tree_ret;
1709
1710 /* If CALLBACK_STMT did not handle operands, it should not have
1711 a value to return. */
1712 gcc_assert (tree_ret == NULL);
1713
0a35513e
AH
1714 if (wi && wi->removed_stmt)
1715 return NULL;
1716
726a989a
RB
1717 /* Re-read stmt in case the callback changed it. */
1718 stmt = gsi_stmt (*gsi);
1719 }
1720
1721 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1722 if (callback_op)
1723 {
1724 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1725 if (tree_ret)
1726 return tree_ret;
1727 }
1728
1729 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1730 switch (gimple_code (stmt))
1731 {
1732 case GIMPLE_BIND:
355a7673
MM
1733 ret = walk_gimple_seq_mod (gimple_bind_body_ptr (stmt), callback_stmt,
1734 callback_op, wi);
726a989a
RB
1735 if (ret)
1736 return wi->callback_result;
1737 break;
1738
1739 case GIMPLE_CATCH:
355a7673
MM
1740 ret = walk_gimple_seq_mod (gimple_catch_handler_ptr (stmt), callback_stmt,
1741 callback_op, wi);
726a989a
RB
1742 if (ret)
1743 return wi->callback_result;
1744 break;
1745
1746 case GIMPLE_EH_FILTER:
355a7673 1747 ret = walk_gimple_seq_mod (gimple_eh_filter_failure_ptr (stmt), callback_stmt,
726a989a
RB
1748 callback_op, wi);
1749 if (ret)
1750 return wi->callback_result;
1751 break;
1752
0a35513e 1753 case GIMPLE_EH_ELSE:
355a7673 1754 ret = walk_gimple_seq_mod (gimple_eh_else_n_body_ptr (stmt),
0a35513e
AH
1755 callback_stmt, callback_op, wi);
1756 if (ret)
1757 return wi->callback_result;
355a7673 1758 ret = walk_gimple_seq_mod (gimple_eh_else_e_body_ptr (stmt),
0a35513e
AH
1759 callback_stmt, callback_op, wi);
1760 if (ret)
1761 return wi->callback_result;
1762 break;
1763
726a989a 1764 case GIMPLE_TRY:
355a7673 1765 ret = walk_gimple_seq_mod (gimple_try_eval_ptr (stmt), callback_stmt, callback_op,
726a989a
RB
1766 wi);
1767 if (ret)
1768 return wi->callback_result;
1769
355a7673 1770 ret = walk_gimple_seq_mod (gimple_try_cleanup_ptr (stmt), callback_stmt,
726a989a
RB
1771 callback_op, wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1775
1776 case GIMPLE_OMP_FOR:
355a7673 1777 ret = walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt), callback_stmt,
726a989a
RB
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781
1782 /* FALL THROUGH. */
1783 case GIMPLE_OMP_CRITICAL:
1784 case GIMPLE_OMP_MASTER:
1785 case GIMPLE_OMP_ORDERED:
1786 case GIMPLE_OMP_SECTION:
1787 case GIMPLE_OMP_PARALLEL:
1788 case GIMPLE_OMP_TASK:
1789 case GIMPLE_OMP_SECTIONS:
1790 case GIMPLE_OMP_SINGLE:
355a7673 1791 ret = walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), callback_stmt,
0a35513e 1792 callback_op, wi);
726a989a
RB
1793 if (ret)
1794 return wi->callback_result;
1795 break;
1796
1797 case GIMPLE_WITH_CLEANUP_EXPR:
355a7673 1798 ret = walk_gimple_seq_mod (gimple_wce_cleanup_ptr (stmt), callback_stmt,
726a989a
RB
1799 callback_op, wi);
1800 if (ret)
1801 return wi->callback_result;
1802 break;
1803
0a35513e 1804 case GIMPLE_TRANSACTION:
355a7673 1805 ret = walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
0a35513e
AH
1806 callback_stmt, callback_op, wi);
1807 if (ret)
1808 return wi->callback_result;
1809 break;
1810
726a989a
RB
1811 default:
1812 gcc_assert (!gimple_has_substatements (stmt));
1813 break;
1814 }
1815
1816 return NULL;
1817}
1818
1819
1820/* Set sequence SEQ to be the GIMPLE body for function FN. */
1821
1822void
1823gimple_set_body (tree fndecl, gimple_seq seq)
1824{
1825 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1826 if (fn == NULL)
1827 {
1828 /* If FNDECL still does not have a function structure associated
1829 with it, then it does not make sense for it to receive a
1830 GIMPLE body. */
1831 gcc_assert (seq == NULL);
1832 }
1833 else
1834 fn->gimple_body = seq;
1835}
1836
1837
abbd64b9
JS
1838/* Return the body of GIMPLE statements for function FN. After the
1839 CFG pass, the function body doesn't exist anymore because it has
1840 been split up into basic blocks. In this case, it returns
1841 NULL. */
726a989a
RB
1842
1843gimple_seq
1844gimple_body (tree fndecl)
1845{
1846 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1847 return fn ? fn->gimple_body : NULL;
1848}
1849
39ecc018
JH
1850/* Return true when FNDECL has Gimple body either in unlowered
1851 or CFG form. */
1852bool
1853gimple_has_body_p (tree fndecl)
1854{
1855 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1856 return (gimple_body (fndecl) || (fn && fn->cfg));
1857}
726a989a 1858
25583c4f
RS
1859/* Return true if calls C1 and C2 are known to go to the same function. */
1860
1861bool
1862gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1863{
1864 if (gimple_call_internal_p (c1))
1865 return (gimple_call_internal_p (c2)
1866 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1867 else
1868 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1869 || (gimple_call_fndecl (c1)
1870 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1871}
1872
726a989a
RB
1873/* Detect flags from a GIMPLE_CALL. This is just like
1874 call_expr_flags, but for gimple tuples. */
1875
1876int
1877gimple_call_flags (const_gimple stmt)
1878{
1879 int flags;
1880 tree decl = gimple_call_fndecl (stmt);
726a989a
RB
1881
1882 if (decl)
1883 flags = flags_from_decl_or_type (decl);
25583c4f
RS
1884 else if (gimple_call_internal_p (stmt))
1885 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
726a989a 1886 else
97e03fa1 1887 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
726a989a 1888
9bb1a81b
JM
1889 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1890 flags |= ECF_NOTHROW;
1891
726a989a
RB
1892 return flags;
1893}
1894
25583c4f
RS
1895/* Return the "fn spec" string for call STMT. */
1896
1897static tree
1898gimple_call_fnspec (const_gimple stmt)
1899{
1900 tree type, attr;
1901
1902 type = gimple_call_fntype (stmt);
1903 if (!type)
1904 return NULL_TREE;
1905
1906 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1907 if (!attr)
1908 return NULL_TREE;
1909
1910 return TREE_VALUE (TREE_VALUE (attr));
1911}
1912
0b7b376d
RG
1913/* Detects argument flags for argument number ARG on call STMT. */
1914
1915int
1916gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1917{
25583c4f 1918 tree attr = gimple_call_fnspec (stmt);
0b7b376d 1919
25583c4f 1920 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
0b7b376d
RG
1921 return 0;
1922
1923 switch (TREE_STRING_POINTER (attr)[1 + arg])
1924 {
1925 case 'x':
1926 case 'X':
1927 return EAF_UNUSED;
1928
1929 case 'R':
1930 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1931
1932 case 'r':
1933 return EAF_NOCLOBBER | EAF_NOESCAPE;
1934
1935 case 'W':
1936 return EAF_DIRECT | EAF_NOESCAPE;
1937
1938 case 'w':
1939 return EAF_NOESCAPE;
1940
1941 case '.':
1942 default:
1943 return 0;
1944 }
1945}
1946
1947/* Detects return flags for the call STMT. */
1948
1949int
1950gimple_call_return_flags (const_gimple stmt)
1951{
25583c4f 1952 tree attr;
0b7b376d
RG
1953
1954 if (gimple_call_flags (stmt) & ECF_MALLOC)
1955 return ERF_NOALIAS;
1956
25583c4f
RS
1957 attr = gimple_call_fnspec (stmt);
1958 if (!attr || TREE_STRING_LENGTH (attr) < 1)
0b7b376d
RG
1959 return 0;
1960
1961 switch (TREE_STRING_POINTER (attr)[0])
1962 {
1963 case '1':
1964 case '2':
1965 case '3':
1966 case '4':
1967 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1968
1969 case 'm':
1970 return ERF_NOALIAS;
1971
1972 case '.':
1973 default:
1974 return 0;
1975 }
1976}
726a989a 1977
3dbe9454 1978
726a989a
RB
1979/* Return true if GS is a copy assignment. */
1980
1981bool
1982gimple_assign_copy_p (gimple gs)
1983{
3dbe9454
RG
1984 return (gimple_assign_single_p (gs)
1985 && is_gimple_val (gimple_op (gs, 1)));
726a989a
RB
1986}
1987
1988
1989/* Return true if GS is a SSA_NAME copy assignment. */
1990
1991bool
1992gimple_assign_ssa_name_copy_p (gimple gs)
1993{
3dbe9454 1994 return (gimple_assign_single_p (gs)
726a989a
RB
1995 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1996 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1997}
1998
1999
726a989a
RB
2000/* Return true if GS is an assignment with a unary RHS, but the
2001 operator has no effect on the assigned value. The logic is adapted
2002 from STRIP_NOPS. This predicate is intended to be used in tuplifying
2003 instances in which STRIP_NOPS was previously applied to the RHS of
2004 an assignment.
2005
2006 NOTE: In the use cases that led to the creation of this function
2007 and of gimple_assign_single_p, it is typical to test for either
2008 condition and to proceed in the same manner. In each case, the
2009 assigned value is represented by the single RHS operand of the
2010 assignment. I suspect there may be cases where gimple_assign_copy_p,
2011 gimple_assign_single_p, or equivalent logic is used where a similar
2012 treatment of unary NOPs is appropriate. */
b8698a0f 2013
726a989a
RB
2014bool
2015gimple_assign_unary_nop_p (gimple gs)
2016{
3dbe9454 2017 return (is_gimple_assign (gs)
1a87cf0c 2018 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
726a989a
RB
2019 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
2020 && gimple_assign_rhs1 (gs) != error_mark_node
2021 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
2022 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
2023}
2024
2025/* Set BB to be the basic block holding G. */
2026
2027void
2028gimple_set_bb (gimple stmt, basic_block bb)
2029{
2030 stmt->gsbase.bb = bb;
2031
2032 /* If the statement is a label, add the label to block-to-labels map
2033 so that we can speed up edge creation for GIMPLE_GOTOs. */
2034 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2035 {
2036 tree t;
2037 int uid;
2038
2039 t = gimple_label_label (stmt);
2040 uid = LABEL_DECL_UID (t);
2041 if (uid == -1)
2042 {
9771b263 2043 unsigned old_len = vec_safe_length (label_to_block_map);
726a989a
RB
2044 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2045 if (old_len <= (unsigned) uid)
2046 {
5006671f 2047 unsigned new_len = 3 * uid / 2 + 1;
726a989a 2048
9771b263 2049 vec_safe_grow_cleared (label_to_block_map, new_len);
726a989a
RB
2050 }
2051 }
2052
9771b263 2053 (*label_to_block_map)[uid] = bb;
726a989a
RB
2054 }
2055}
2056
2057
726a989a
RB
2058/* Modify the RHS of the assignment pointed-to by GSI using the
2059 operands in the expression tree EXPR.
2060
2061 NOTE: The statement pointed-to by GSI may be reallocated if it
2062 did not have enough operand slots.
2063
2064 This function is useful to convert an existing tree expression into
2065 the flat representation used for the RHS of a GIMPLE assignment.
2066 It will reallocate memory as needed to expand or shrink the number
2067 of operand slots needed to represent EXPR.
2068
2069 NOTE: If you find yourself building a tree and then calling this
2070 function, you are most certainly doing it the slow way. It is much
2071 better to build a new assignment or to use the function
2072 gimple_assign_set_rhs_with_ops, which does not require an
2073 expression tree to be built. */
2074
2075void
2076gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2077{
2078 enum tree_code subcode;
0354c0c7 2079 tree op1, op2, op3;
726a989a 2080
0354c0c7
BS
2081 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2082 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
726a989a
RB
2083}
2084
2085
2086/* Set the RHS of assignment statement pointed-to by GSI to CODE with
0354c0c7 2087 operands OP1, OP2 and OP3.
726a989a
RB
2088
2089 NOTE: The statement pointed-to by GSI may be reallocated if it
2090 did not have enough operand slots. */
2091
2092void
0354c0c7
BS
2093gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2094 tree op1, tree op2, tree op3)
726a989a
RB
2095{
2096 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2097 gimple stmt = gsi_stmt (*gsi);
2098
2099 /* If the new CODE needs more operands, allocate a new statement. */
2100 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2101 {
2102 tree lhs = gimple_assign_lhs (stmt);
2103 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2104 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
355a7673 2105 gimple_init_singleton (new_stmt);
726a989a
RB
2106 gsi_replace (gsi, new_stmt, true);
2107 stmt = new_stmt;
2108
2109 /* The LHS needs to be reset as this also changes the SSA name
2110 on the LHS. */
2111 gimple_assign_set_lhs (stmt, lhs);
2112 }
2113
2114 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2115 gimple_set_subcode (stmt, code);
2116 gimple_assign_set_rhs1 (stmt, op1);
2117 if (new_rhs_ops > 1)
2118 gimple_assign_set_rhs2 (stmt, op2);
0354c0c7
BS
2119 if (new_rhs_ops > 2)
2120 gimple_assign_set_rhs3 (stmt, op3);
726a989a
RB
2121}
2122
2123
2124/* Return the LHS of a statement that performs an assignment,
2125 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2126 for a call to a function that returns no value, or for a
2127 statement other than an assignment or a call. */
2128
2129tree
2130gimple_get_lhs (const_gimple stmt)
2131{
e0c68ce9 2132 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2133
2134 if (code == GIMPLE_ASSIGN)
2135 return gimple_assign_lhs (stmt);
2136 else if (code == GIMPLE_CALL)
2137 return gimple_call_lhs (stmt);
2138 else
2139 return NULL_TREE;
2140}
2141
2142
2143/* Set the LHS of a statement that performs an assignment,
2144 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2145
2146void
2147gimple_set_lhs (gimple stmt, tree lhs)
2148{
e0c68ce9 2149 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2150
2151 if (code == GIMPLE_ASSIGN)
2152 gimple_assign_set_lhs (stmt, lhs);
2153 else if (code == GIMPLE_CALL)
2154 gimple_call_set_lhs (stmt, lhs);
2155 else
2156 gcc_unreachable();
2157}
2158
21cf7180
AO
2159/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2160 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2161 expression with a different value.
2162
2163 This will update any annotations (say debug bind stmts) referring
2164 to the original LHS, so that they use the RHS instead. This is
2165 done even if NLHS and LHS are the same, for it is understood that
2166 the RHS will be modified afterwards, and NLHS will not be assigned
2167 an equivalent value.
2168
2169 Adjusting any non-annotation uses of the LHS, if needed, is a
2170 responsibility of the caller.
2171
2172 The effect of this call should be pretty much the same as that of
2173 inserting a copy of STMT before STMT, and then removing the
2174 original stmt, at which time gsi_remove() would have update
2175 annotations, but using this function saves all the inserting,
2176 copying and removing. */
2177
2178void
2179gimple_replace_lhs (gimple stmt, tree nlhs)
2180{
2181 if (MAY_HAVE_DEBUG_STMTS)
2182 {
2183 tree lhs = gimple_get_lhs (stmt);
2184
2185 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2186
2187 insert_debug_temp_for_var_def (NULL, lhs);
2188 }
2189
2190 gimple_set_lhs (stmt, nlhs);
2191}
726a989a
RB
2192
2193/* Return a deep copy of statement STMT. All the operands from STMT
2194 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
355a7673
MM
2195 and VUSE operand arrays are set to empty in the new copy. The new
2196 copy isn't part of any sequence. */
726a989a
RB
2197
2198gimple
2199gimple_copy (gimple stmt)
2200{
2201 enum gimple_code code = gimple_code (stmt);
2202 unsigned num_ops = gimple_num_ops (stmt);
2203 gimple copy = gimple_alloc (code, num_ops);
2204 unsigned i;
2205
2206 /* Shallow copy all the fields from STMT. */
2207 memcpy (copy, stmt, gimple_size (code));
355a7673 2208 gimple_init_singleton (copy);
726a989a
RB
2209
2210 /* If STMT has sub-statements, deep-copy them as well. */
2211 if (gimple_has_substatements (stmt))
2212 {
2213 gimple_seq new_seq;
2214 tree t;
2215
2216 switch (gimple_code (stmt))
2217 {
2218 case GIMPLE_BIND:
2219 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2220 gimple_bind_set_body (copy, new_seq);
2221 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2222 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2223 break;
2224
2225 case GIMPLE_CATCH:
2226 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2227 gimple_catch_set_handler (copy, new_seq);
2228 t = unshare_expr (gimple_catch_types (stmt));
2229 gimple_catch_set_types (copy, t);
2230 break;
2231
2232 case GIMPLE_EH_FILTER:
2233 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2234 gimple_eh_filter_set_failure (copy, new_seq);
2235 t = unshare_expr (gimple_eh_filter_types (stmt));
2236 gimple_eh_filter_set_types (copy, t);
2237 break;
2238
0a35513e
AH
2239 case GIMPLE_EH_ELSE:
2240 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
2241 gimple_eh_else_set_n_body (copy, new_seq);
2242 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
2243 gimple_eh_else_set_e_body (copy, new_seq);
2244 break;
2245
726a989a
RB
2246 case GIMPLE_TRY:
2247 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2248 gimple_try_set_eval (copy, new_seq);
2249 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2250 gimple_try_set_cleanup (copy, new_seq);
2251 break;
2252
2253 case GIMPLE_OMP_FOR:
2254 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2255 gimple_omp_for_set_pre_body (copy, new_seq);
2256 t = unshare_expr (gimple_omp_for_clauses (stmt));
2257 gimple_omp_for_set_clauses (copy, t);
2258 copy->gimple_omp_for.iter
a9429e29
LB
2259 = ggc_alloc_vec_gimple_omp_for_iter
2260 (gimple_omp_for_collapse (stmt));
726a989a
RB
2261 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2262 {
2263 gimple_omp_for_set_cond (copy, i,
2264 gimple_omp_for_cond (stmt, i));
2265 gimple_omp_for_set_index (copy, i,
2266 gimple_omp_for_index (stmt, i));
2267 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2268 gimple_omp_for_set_initial (copy, i, t);
2269 t = unshare_expr (gimple_omp_for_final (stmt, i));
2270 gimple_omp_for_set_final (copy, i, t);
2271 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2272 gimple_omp_for_set_incr (copy, i, t);
2273 }
2274 goto copy_omp_body;
2275
2276 case GIMPLE_OMP_PARALLEL:
2277 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2278 gimple_omp_parallel_set_clauses (copy, t);
2279 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2280 gimple_omp_parallel_set_child_fn (copy, t);
2281 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2282 gimple_omp_parallel_set_data_arg (copy, t);
2283 goto copy_omp_body;
2284
2285 case GIMPLE_OMP_TASK:
2286 t = unshare_expr (gimple_omp_task_clauses (stmt));
2287 gimple_omp_task_set_clauses (copy, t);
2288 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2289 gimple_omp_task_set_child_fn (copy, t);
2290 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2291 gimple_omp_task_set_data_arg (copy, t);
2292 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2293 gimple_omp_task_set_copy_fn (copy, t);
2294 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2295 gimple_omp_task_set_arg_size (copy, t);
2296 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2297 gimple_omp_task_set_arg_align (copy, t);
2298 goto copy_omp_body;
2299
2300 case GIMPLE_OMP_CRITICAL:
2301 t = unshare_expr (gimple_omp_critical_name (stmt));
2302 gimple_omp_critical_set_name (copy, t);
2303 goto copy_omp_body;
2304
2305 case GIMPLE_OMP_SECTIONS:
2306 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2307 gimple_omp_sections_set_clauses (copy, t);
2308 t = unshare_expr (gimple_omp_sections_control (stmt));
2309 gimple_omp_sections_set_control (copy, t);
2310 /* FALLTHRU */
2311
2312 case GIMPLE_OMP_SINGLE:
2313 case GIMPLE_OMP_SECTION:
2314 case GIMPLE_OMP_MASTER:
2315 case GIMPLE_OMP_ORDERED:
2316 copy_omp_body:
2317 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2318 gimple_omp_set_body (copy, new_seq);
2319 break;
2320
0a35513e
AH
2321 case GIMPLE_TRANSACTION:
2322 new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
2323 gimple_transaction_set_body (copy, new_seq);
2324 break;
2325
726a989a
RB
2326 case GIMPLE_WITH_CLEANUP_EXPR:
2327 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2328 gimple_wce_set_cleanup (copy, new_seq);
2329 break;
2330
2331 default:
2332 gcc_unreachable ();
2333 }
2334 }
2335
2336 /* Make copy of operands. */
483ef49f
RG
2337 for (i = 0; i < num_ops; i++)
2338 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
726a989a 2339
483ef49f
RG
2340 if (gimple_has_mem_ops (stmt))
2341 {
2342 gimple_set_vdef (copy, gimple_vdef (stmt));
2343 gimple_set_vuse (copy, gimple_vuse (stmt));
2344 }
726a989a 2345
483ef49f
RG
2346 /* Clear out SSA operand vectors on COPY. */
2347 if (gimple_has_ops (stmt))
2348 {
483ef49f 2349 gimple_set_use_ops (copy, NULL);
726a989a 2350
5006671f
RG
2351 /* SSA operands need to be updated. */
2352 gimple_set_modified (copy, true);
726a989a
RB
2353 }
2354
2355 return copy;
2356}
2357
2358
726a989a
RB
2359/* Return true if statement S has side-effects. We consider a
2360 statement to have side effects if:
2361
2362 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2363 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2364
2365bool
2366gimple_has_side_effects (const_gimple s)
2367{
b5b8b0ac
AO
2368 if (is_gimple_debug (s))
2369 return false;
2370
726a989a
RB
2371 /* We don't have to scan the arguments to check for
2372 volatile arguments, though, at present, we still
2373 do a scan to check for TREE_SIDE_EFFECTS. */
2374 if (gimple_has_volatile_ops (s))
2375 return true;
2376
179184e3
RG
2377 if (gimple_code (s) == GIMPLE_ASM
2378 && gimple_asm_volatile_p (s))
2379 return true;
2380
726a989a
RB
2381 if (is_gimple_call (s))
2382 {
723afc44 2383 int flags = gimple_call_flags (s);
726a989a 2384
723afc44
RG
2385 /* An infinite loop is considered a side effect. */
2386 if (!(flags & (ECF_CONST | ECF_PURE))
2387 || (flags & ECF_LOOPING_CONST_OR_PURE))
726a989a
RB
2388 return true;
2389
726a989a
RB
2390 return false;
2391 }
726a989a
RB
2392
2393 return false;
2394}
2395
726a989a 2396/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
e1fd038a
SP
2397 Return true if S can trap. When INCLUDE_MEM is true, check whether
2398 the memory operations could trap. When INCLUDE_STORES is true and
2399 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
726a989a 2400
e1fd038a
SP
2401bool
2402gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
726a989a 2403{
726a989a
RB
2404 tree t, div = NULL_TREE;
2405 enum tree_code op;
2406
e1fd038a
SP
2407 if (include_mem)
2408 {
2409 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
726a989a 2410
e1fd038a
SP
2411 for (i = start; i < gimple_num_ops (s); i++)
2412 if (tree_could_trap_p (gimple_op (s, i)))
2413 return true;
2414 }
726a989a
RB
2415
2416 switch (gimple_code (s))
2417 {
2418 case GIMPLE_ASM:
2419 return gimple_asm_volatile_p (s);
2420
2421 case GIMPLE_CALL:
2422 t = gimple_call_fndecl (s);
2423 /* Assume that calls to weak functions may trap. */
2424 if (!t || !DECL_P (t) || DECL_WEAK (t))
2425 return true;
2426 return false;
2427
2428 case GIMPLE_ASSIGN:
2429 t = gimple_expr_type (s);
2430 op = gimple_assign_rhs_code (s);
2431 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2432 div = gimple_assign_rhs2 (s);
2433 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2434 (INTEGRAL_TYPE_P (t)
2435 && TYPE_OVERFLOW_TRAPS (t)),
2436 div));
2437
2438 default:
2439 break;
2440 }
2441
2442 return false;
726a989a
RB
2443}
2444
726a989a
RB
2445/* Return true if statement S can trap. */
2446
2447bool
2448gimple_could_trap_p (gimple s)
2449{
e1fd038a 2450 return gimple_could_trap_p_1 (s, true, true);
726a989a
RB
2451}
2452
726a989a
RB
2453/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2454
2455bool
2456gimple_assign_rhs_could_trap_p (gimple s)
2457{
2458 gcc_assert (is_gimple_assign (s));
e1fd038a 2459 return gimple_could_trap_p_1 (s, true, false);
726a989a
RB
2460}
2461
2462
2463/* Print debugging information for gimple stmts generated. */
2464
2465void
2466dump_gimple_statistics (void)
2467{
726a989a
RB
2468 int i, total_tuples = 0, total_bytes = 0;
2469
7aa6d18a
SB
2470 if (! GATHER_STATISTICS)
2471 {
2472 fprintf (stderr, "No gimple statistics\n");
2473 return;
2474 }
2475
726a989a
RB
2476 fprintf (stderr, "\nGIMPLE statements\n");
2477 fprintf (stderr, "Kind Stmts Bytes\n");
2478 fprintf (stderr, "---------------------------------------\n");
2479 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2480 {
2481 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2482 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2483 total_tuples += gimple_alloc_counts[i];
2484 total_bytes += gimple_alloc_sizes[i];
2485 }
2486 fprintf (stderr, "---------------------------------------\n");
2487 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2488 fprintf (stderr, "---------------------------------------\n");
726a989a
RB
2489}
2490
2491
726a989a
RB
2492/* Return the number of operands needed on the RHS of a GIMPLE
2493 assignment for an expression with tree code CODE. */
2494
2495unsigned
2496get_gimple_rhs_num_ops (enum tree_code code)
2497{
2498 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2499
2500 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2501 return 1;
2502 else if (rhs_class == GIMPLE_BINARY_RHS)
2503 return 2;
0354c0c7
BS
2504 else if (rhs_class == GIMPLE_TERNARY_RHS)
2505 return 3;
726a989a
RB
2506 else
2507 gcc_unreachable ();
2508}
2509
2510#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2511 (unsigned char) \
2512 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2513 : ((TYPE) == tcc_binary \
2514 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2515 : ((TYPE) == tcc_constant \
2516 || (TYPE) == tcc_declaration \
2517 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2518 : ((SYM) == TRUTH_AND_EXPR \
2519 || (SYM) == TRUTH_OR_EXPR \
2520 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2521 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
4e71066d
RG
2522 : ((SYM) == COND_EXPR \
2523 || (SYM) == WIDEN_MULT_PLUS_EXPR \
16949072 2524 || (SYM) == WIDEN_MULT_MINUS_EXPR \
f471fe72
RG
2525 || (SYM) == DOT_PROD_EXPR \
2526 || (SYM) == REALIGN_LOAD_EXPR \
4e71066d 2527 || (SYM) == VEC_COND_EXPR \
2205ed25 2528 || (SYM) == VEC_PERM_EXPR \
16949072 2529 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
4e71066d 2530 : ((SYM) == CONSTRUCTOR \
726a989a
RB
2531 || (SYM) == OBJ_TYPE_REF \
2532 || (SYM) == ASSERT_EXPR \
2533 || (SYM) == ADDR_EXPR \
2534 || (SYM) == WITH_SIZE_EXPR \
4e71066d 2535 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
726a989a
RB
2536 : GIMPLE_INVALID_RHS),
2537#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2538
2539const unsigned char gimple_rhs_class_table[] = {
2540#include "all-tree.def"
2541};
2542
2543#undef DEFTREECODE
2544#undef END_OF_BASE_TREE_CODES
2545
2546/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2547
2548/* Validation of GIMPLE expressions. */
2549
726a989a
RB
2550/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2551
2552bool
2553is_gimple_lvalue (tree t)
2554{
2555 return (is_gimple_addressable (t)
2556 || TREE_CODE (t) == WITH_SIZE_EXPR
2557 /* These are complex lvalues, but don't have addresses, so they
2558 go here. */
2559 || TREE_CODE (t) == BIT_FIELD_REF);
2560}
2561
2562/* Return true if T is a GIMPLE condition. */
2563
2564bool
2565is_gimple_condexpr (tree t)
2566{
2567 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
f9613c9a 2568 && !tree_could_throw_p (t)
726a989a
RB
2569 && is_gimple_val (TREE_OPERAND (t, 0))
2570 && is_gimple_val (TREE_OPERAND (t, 1))));
2571}
2572
2573/* Return true if T is something whose address can be taken. */
2574
2575bool
2576is_gimple_addressable (tree t)
2577{
70f34814
RG
2578 return (is_gimple_id (t) || handled_component_p (t)
2579 || TREE_CODE (t) == MEM_REF);
726a989a
RB
2580}
2581
2582/* Return true if T is a valid gimple constant. */
2583
2584bool
2585is_gimple_constant (const_tree t)
2586{
2587 switch (TREE_CODE (t))
2588 {
2589 case INTEGER_CST:
2590 case REAL_CST:
2591 case FIXED_CST:
2592 case STRING_CST:
2593 case COMPLEX_CST:
2594 case VECTOR_CST:
2595 return true;
2596
726a989a
RB
2597 default:
2598 return false;
2599 }
2600}
2601
2602/* Return true if T is a gimple address. */
2603
2604bool
2605is_gimple_address (const_tree t)
2606{
2607 tree op;
2608
2609 if (TREE_CODE (t) != ADDR_EXPR)
2610 return false;
2611
2612 op = TREE_OPERAND (t, 0);
2613 while (handled_component_p (op))
2614 {
2615 if ((TREE_CODE (op) == ARRAY_REF
2616 || TREE_CODE (op) == ARRAY_RANGE_REF)
2617 && !is_gimple_val (TREE_OPERAND (op, 1)))
2618 return false;
2619
2620 op = TREE_OPERAND (op, 0);
2621 }
2622
70f34814 2623 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
726a989a
RB
2624 return true;
2625
2626 switch (TREE_CODE (op))
2627 {
2628 case PARM_DECL:
2629 case RESULT_DECL:
2630 case LABEL_DECL:
2631 case FUNCTION_DECL:
2632 case VAR_DECL:
2633 case CONST_DECL:
2634 return true;
2635
2636 default:
2637 return false;
2638 }
2639}
2640
00fc2333
JH
2641/* Return true if T is a gimple invariant address. */
2642
2643bool
2644is_gimple_invariant_address (const_tree t)
2645{
2646 const_tree op;
2647
2648 if (TREE_CODE (t) != ADDR_EXPR)
2649 return false;
2650
2651 op = strip_invariant_refs (TREE_OPERAND (t, 0));
70f34814
RG
2652 if (!op)
2653 return false;
00fc2333 2654
70f34814
RG
2655 if (TREE_CODE (op) == MEM_REF)
2656 {
2657 const_tree op0 = TREE_OPERAND (op, 0);
2658 return (TREE_CODE (op0) == ADDR_EXPR
2659 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2660 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2661 }
2662
2663 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
00fc2333
JH
2664}
2665
2666/* Return true if T is a gimple invariant address at IPA level
2667 (so addresses of variables on stack are not allowed). */
2668
2669bool
2670is_gimple_ip_invariant_address (const_tree t)
2671{
2672 const_tree op;
2673
2674 if (TREE_CODE (t) != ADDR_EXPR)
2675 return false;
2676
2677 op = strip_invariant_refs (TREE_OPERAND (t, 0));
39cc8c3d
MJ
2678 if (!op)
2679 return false;
2680
2681 if (TREE_CODE (op) == MEM_REF)
2682 {
2683 const_tree op0 = TREE_OPERAND (op, 0);
2684 return (TREE_CODE (op0) == ADDR_EXPR
2685 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2686 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
2687 }
00fc2333 2688
39cc8c3d 2689 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
726a989a
RB
2690}
2691
2692/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2693 form of function invariant. */
2694
2695bool
2696is_gimple_min_invariant (const_tree t)
2697{
2698 if (TREE_CODE (t) == ADDR_EXPR)
2699 return is_gimple_invariant_address (t);
2700
2701 return is_gimple_constant (t);
2702}
2703
00fc2333
JH
2704/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2705 form of gimple minimal invariant. */
2706
2707bool
2708is_gimple_ip_invariant (const_tree t)
2709{
2710 if (TREE_CODE (t) == ADDR_EXPR)
2711 return is_gimple_ip_invariant_address (t);
2712
2713 return is_gimple_constant (t);
2714}
2715
726a989a
RB
2716/* Return true if T is a variable. */
2717
2718bool
2719is_gimple_variable (tree t)
2720{
2721 return (TREE_CODE (t) == VAR_DECL
2722 || TREE_CODE (t) == PARM_DECL
2723 || TREE_CODE (t) == RESULT_DECL
2724 || TREE_CODE (t) == SSA_NAME);
2725}
2726
2727/* Return true if T is a GIMPLE identifier (something with an address). */
2728
2729bool
2730is_gimple_id (tree t)
2731{
2732 return (is_gimple_variable (t)
2733 || TREE_CODE (t) == FUNCTION_DECL
2734 || TREE_CODE (t) == LABEL_DECL
2735 || TREE_CODE (t) == CONST_DECL
2736 /* Allow string constants, since they are addressable. */
2737 || TREE_CODE (t) == STRING_CST);
2738}
2739
726a989a
RB
2740/* Return true if T is a non-aggregate register variable. */
2741
2742bool
2743is_gimple_reg (tree t)
2744{
a471762f 2745 if (virtual_operand_p (t))
3828719a 2746 return false;
726a989a 2747
a471762f
RG
2748 if (TREE_CODE (t) == SSA_NAME)
2749 return true;
2750
726a989a
RB
2751 if (!is_gimple_variable (t))
2752 return false;
2753
2754 if (!is_gimple_reg_type (TREE_TYPE (t)))
2755 return false;
2756
2757 /* A volatile decl is not acceptable because we can't reuse it as
2758 needed. We need to copy it into a temp first. */
2759 if (TREE_THIS_VOLATILE (t))
2760 return false;
2761
2762 /* We define "registers" as things that can be renamed as needed,
2763 which with our infrastructure does not apply to memory. */
2764 if (needs_to_live_in_memory (t))
2765 return false;
2766
2767 /* Hard register variables are an interesting case. For those that
2768 are call-clobbered, we don't know where all the calls are, since
2769 we don't (want to) take into account which operations will turn
2770 into libcalls at the rtl level. For those that are call-saved,
2771 we don't currently model the fact that calls may in fact change
2772 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2773 level, and so miss variable changes that might imply. All around,
2774 it seems safest to not do too much optimization with these at the
2775 tree level at all. We'll have to rely on the rtl optimizers to
2776 clean this up, as there we've got all the appropriate bits exposed. */
2777 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2778 return false;
2779
4636b850
RG
2780 /* Complex and vector values must have been put into SSA-like form.
2781 That is, no assignments to the individual components. */
2782 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2783 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2784 return DECL_GIMPLE_REG_P (t);
2785
726a989a
RB
2786 return true;
2787}
2788
2789
726a989a
RB
2790/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2791
2792bool
2793is_gimple_val (tree t)
2794{
2795 /* Make loads from volatiles and memory vars explicit. */
2796 if (is_gimple_variable (t)
2797 && is_gimple_reg_type (TREE_TYPE (t))
2798 && !is_gimple_reg (t))
2799 return false;
2800
726a989a
RB
2801 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2802}
2803
2804/* Similarly, but accept hard registers as inputs to asm statements. */
2805
2806bool
2807is_gimple_asm_val (tree t)
2808{
2809 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2810 return true;
2811
2812 return is_gimple_val (t);
2813}
2814
2815/* Return true if T is a GIMPLE minimal lvalue. */
2816
2817bool
2818is_gimple_min_lval (tree t)
2819{
ba4d8f9d
RG
2820 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2821 return false;
70f34814 2822 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
726a989a
RB
2823}
2824
726a989a
RB
2825/* Return true if T is a valid function operand of a CALL_EXPR. */
2826
2827bool
2828is_gimple_call_addr (tree t)
2829{
2830 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2831}
2832
70f34814
RG
2833/* Return true if T is a valid address operand of a MEM_REF. */
2834
2835bool
2836is_gimple_mem_ref_addr (tree t)
2837{
2838 return (is_gimple_reg (t)
2839 || TREE_CODE (t) == INTEGER_CST
2840 || (TREE_CODE (t) == ADDR_EXPR
2841 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2842 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2843}
2844
726a989a
RB
2845
2846/* Given a memory reference expression T, return its base address.
2847 The base address of a memory reference expression is the main
2848 object being referenced. For instance, the base address for
2849 'array[i].fld[j]' is 'array'. You can think of this as stripping
2850 away the offset part from a memory address.
2851
2852 This function calls handled_component_p to strip away all the inner
2853 parts of the memory reference until it reaches the base object. */
2854
2855tree
2856get_base_address (tree t)
2857{
2858 while (handled_component_p (t))
2859 t = TREE_OPERAND (t, 0);
b8698a0f 2860
4d948885
RG
2861 if ((TREE_CODE (t) == MEM_REF
2862 || TREE_CODE (t) == TARGET_MEM_REF)
70f34814
RG
2863 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
2864 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
2865
5a27a197
RG
2866 /* ??? Either the alias oracle or all callers need to properly deal
2867 with WITH_SIZE_EXPRs before we can look through those. */
2868 if (TREE_CODE (t) == WITH_SIZE_EXPR)
726a989a 2869 return NULL_TREE;
5a27a197
RG
2870
2871 return t;
726a989a
RB
2872}
2873
2874void
2875recalculate_side_effects (tree t)
2876{
2877 enum tree_code code = TREE_CODE (t);
2878 int len = TREE_OPERAND_LENGTH (t);
2879 int i;
2880
2881 switch (TREE_CODE_CLASS (code))
2882 {
2883 case tcc_expression:
2884 switch (code)
2885 {
2886 case INIT_EXPR:
2887 case MODIFY_EXPR:
2888 case VA_ARG_EXPR:
2889 case PREDECREMENT_EXPR:
2890 case PREINCREMENT_EXPR:
2891 case POSTDECREMENT_EXPR:
2892 case POSTINCREMENT_EXPR:
2893 /* All of these have side-effects, no matter what their
2894 operands are. */
2895 return;
2896
2897 default:
2898 break;
2899 }
2900 /* Fall through. */
2901
2902 case tcc_comparison: /* a comparison expression */
2903 case tcc_unary: /* a unary arithmetic expression */
2904 case tcc_binary: /* a binary arithmetic expression */
2905 case tcc_reference: /* a reference */
2906 case tcc_vl_exp: /* a function call */
2907 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2908 for (i = 0; i < len; ++i)
2909 {
2910 tree op = TREE_OPERAND (t, i);
2911 if (op && TREE_SIDE_EFFECTS (op))
2912 TREE_SIDE_EFFECTS (t) = 1;
2913 }
2914 break;
2915
13f95bdb
EB
2916 case tcc_constant:
2917 /* No side-effects. */
2918 return;
2919
726a989a 2920 default:
726a989a
RB
2921 gcc_unreachable ();
2922 }
2923}
2924
2925/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2926 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2927 we failed to create one. */
2928
2929tree
2930canonicalize_cond_expr_cond (tree t)
2931{
b66a1bac
RG
2932 /* Strip conversions around boolean operations. */
2933 if (CONVERT_EXPR_P (t)
9b80d091
KT
2934 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2935 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2936 == BOOLEAN_TYPE))
b66a1bac
RG
2937 t = TREE_OPERAND (t, 0);
2938
726a989a 2939 /* For !x use x == 0. */
12430896 2940 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
726a989a
RB
2941 {
2942 tree top0 = TREE_OPERAND (t, 0);
2943 t = build2 (EQ_EXPR, TREE_TYPE (t),
2944 top0, build_int_cst (TREE_TYPE (top0), 0));
2945 }
2946 /* For cmp ? 1 : 0 use cmp. */
2947 else if (TREE_CODE (t) == COND_EXPR
2948 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2949 && integer_onep (TREE_OPERAND (t, 1))
2950 && integer_zerop (TREE_OPERAND (t, 2)))
2951 {
2952 tree top0 = TREE_OPERAND (t, 0);
2953 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2954 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2955 }
4481581f
JL
2956 /* For x ^ y use x != y. */
2957 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2958 t = build2 (NE_EXPR, TREE_TYPE (t),
2959 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2960
726a989a
RB
2961 if (is_gimple_condexpr (t))
2962 return t;
2963
2964 return NULL_TREE;
2965}
2966
e6c99067
DN
2967/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2968 the positions marked by the set ARGS_TO_SKIP. */
2969
c6f7cfc1 2970gimple
5c0466b5 2971gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
c6f7cfc1
JH
2972{
2973 int i;
c6f7cfc1 2974 int nargs = gimple_call_num_args (stmt);
9771b263
DN
2975 vec<tree> vargs;
2976 vargs.create (nargs);
c6f7cfc1
JH
2977 gimple new_stmt;
2978
2979 for (i = 0; i < nargs; i++)
2980 if (!bitmap_bit_p (args_to_skip, i))
9771b263 2981 vargs.quick_push (gimple_call_arg (stmt, i));
c6f7cfc1 2982
25583c4f
RS
2983 if (gimple_call_internal_p (stmt))
2984 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2985 vargs);
2986 else
2987 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
9771b263 2988 vargs.release ();
c6f7cfc1
JH
2989 if (gimple_call_lhs (stmt))
2990 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2991
5006671f
RG
2992 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2993 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2994
c6f7cfc1
JH
2995 if (gimple_has_location (stmt))
2996 gimple_set_location (new_stmt, gimple_location (stmt));
8d2adc24 2997 gimple_call_copy_flags (new_stmt, stmt);
c6f7cfc1 2998 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
5006671f
RG
2999
3000 gimple_set_modified (new_stmt, true);
3001
c6f7cfc1
JH
3002 return new_stmt;
3003}
3004
5006671f 3005
d7f09764 3006
d025732d
EB
3007/* Return true if the field decls F1 and F2 are at the same offset.
3008
91f2fae8 3009 This is intended to be used on GIMPLE types only. */
d7f09764 3010
1e4bc4eb 3011bool
d025732d 3012gimple_compare_field_offset (tree f1, tree f2)
d7f09764
DN
3013{
3014 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
d025732d
EB
3015 {
3016 tree offset1 = DECL_FIELD_OFFSET (f1);
3017 tree offset2 = DECL_FIELD_OFFSET (f2);
3018 return ((offset1 == offset2
3019 /* Once gimplification is done, self-referential offsets are
3020 instantiated as operand #2 of the COMPONENT_REF built for
3021 each access and reset. Therefore, they are not relevant
3022 anymore and fields are interchangeable provided that they
3023 represent the same access. */
3024 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3025 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3026 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3027 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3028 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3029 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3030 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3031 || operand_equal_p (offset1, offset2, 0))
3032 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3033 DECL_FIELD_BIT_OFFSET (f2)));
3034 }
d7f09764
DN
3035
3036 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3037 should be, so handle differing ones specially by decomposing
3038 the offset into a byte and bit offset manually. */
3039 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3040 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3041 {
3042 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3043 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3044 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3045 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3046 + bit_offset1 / BITS_PER_UNIT);
3047 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3048 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3049 + bit_offset2 / BITS_PER_UNIT);
3050 if (byte_offset1 != byte_offset2)
3051 return false;
3052 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3053 }
3054
3055 return false;
3056}
3057
825b27de
RG
3058/* Returning a hash value for gimple type TYPE combined with VAL.
3059
3060 The hash value returned is equal for types considered compatible
3061 by gimple_canonical_types_compatible_p. */
3062
3063static hashval_t
3064iterative_hash_canonical_type (tree type, hashval_t val)
3065{
3066 hashval_t v;
3067 void **slot;
3068 struct tree_int_map *mp, m;
3069
3070 m.base.from = type;
3071 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
3072 && *slot)
d0340959 3073 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
825b27de
RG
3074
3075 /* Combine a few common features of types so that types are grouped into
3076 smaller sets; when searching for existing matching types to merge,
3077 only existing types having the same features as the new type will be
3078 checked. */
3079 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
825b27de 3080 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
61332f77
RG
3081 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
3082 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
825b27de
RG
3083
3084 /* Incorporate common features of numerical types. */
3085 if (INTEGRAL_TYPE_P (type)
3086 || SCALAR_FLOAT_TYPE_P (type)
61332f77 3087 || FIXED_POINT_TYPE_P (type)
61332f77
RG
3088 || TREE_CODE (type) == OFFSET_TYPE
3089 || POINTER_TYPE_P (type))
825b27de
RG
3090 {
3091 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
825b27de
RG
3092 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3093 }
3094
a5e0cd1d
MG
3095 if (VECTOR_TYPE_P (type))
3096 {
3097 v = iterative_hash_hashval_t (TYPE_VECTOR_SUBPARTS (type), v);
3098 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3099 }
3100
3101 if (TREE_CODE (type) == COMPLEX_TYPE)
3102 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3103
825b27de
RG
3104 /* For pointer and reference types, fold in information about the type
3105 pointed to but do not recurse to the pointed-to type. */
3106 if (POINTER_TYPE_P (type))
3107 {
3108 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
61332f77
RG
3109 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
3110 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
825b27de
RG
3111 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
3112 }
3113
2e745103 3114 /* For integer types hash only the string flag. */
825b27de 3115 if (TREE_CODE (type) == INTEGER_TYPE)
3ac8781c 3116 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
825b27de 3117
2e745103
EB
3118 /* For array types hash the domain bounds and the string flag. */
3119 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
825b27de
RG
3120 {
3121 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
2e745103
EB
3122 /* OMP lowering can introduce error_mark_node in place of
3123 random local decls in types. */
3124 if (TYPE_MIN_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
3125 v = iterative_hash_expr (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), v);
3126 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != error_mark_node)
3127 v = iterative_hash_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), v);
825b27de
RG
3128 }
3129
3130 /* Recurse for aggregates with a single element type. */
3131 if (TREE_CODE (type) == ARRAY_TYPE
3132 || TREE_CODE (type) == COMPLEX_TYPE
3133 || TREE_CODE (type) == VECTOR_TYPE)
3134 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
3135
3136 /* Incorporate function return and argument types. */
3137 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3138 {
3139 unsigned na;
3140 tree p;
3141
3142 /* For method types also incorporate their parent class. */
3143 if (TREE_CODE (type) == METHOD_TYPE)
3144 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
3145
6a20ce76 3146 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
825b27de
RG
3147
3148 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3149 {
6a20ce76 3150 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
825b27de
RG
3151 na++;
3152 }
3153
3154 v = iterative_hash_hashval_t (na, v);
3155 }
3156
aa47290b 3157 if (RECORD_OR_UNION_TYPE_P (type))
825b27de
RG
3158 {
3159 unsigned nf;
3160 tree f;
3161
3162 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
e7cfe241
RG
3163 if (TREE_CODE (f) == FIELD_DECL)
3164 {
3165 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
3166 nf++;
3167 }
825b27de
RG
3168
3169 v = iterative_hash_hashval_t (nf, v);
3170 }
3171
3172 /* Cache the just computed hash value. */
3173 mp = ggc_alloc_cleared_tree_int_map ();
3174 mp->base.from = type;
3175 mp->to = v;
3176 *slot = (void *) mp;
3177
3178 return iterative_hash_hashval_t (v, val);
3179}
3180
a844a60b
RG
3181static hashval_t
3182gimple_canonical_type_hash (const void *p)
3183{
825b27de
RG
3184 if (canonical_type_hash_cache == NULL)
3185 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
3186 tree_int_map_eq, NULL);
3187
3188 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
a844a60b
RG
3189}
3190
d7f09764 3191
93b2a207 3192
4490cae6 3193
825b27de
RG
3194/* The TYPE_CANONICAL merging machinery. It should closely resemble
3195 the middle-end types_compatible_p function. It needs to avoid
3196 claiming types are different for types that should be treated
3197 the same with respect to TBAA. Canonical types are also used
3198 for IL consistency checks via the useless_type_conversion_p
3199 predicate which does not handle all type kinds itself but falls
3200 back to pointer-comparison of TYPE_CANONICAL for aggregates
3201 for example. */
3202
3203/* Return true iff T1 and T2 are structurally identical for what
3204 TBAA is concerned. */
3205
3206static bool
3207gimple_canonical_types_compatible_p (tree t1, tree t2)
3208{
825b27de
RG
3209 /* Before starting to set up the SCC machinery handle simple cases. */
3210
3211 /* Check first for the obvious case of pointer identity. */
3212 if (t1 == t2)
3213 return true;
3214
3215 /* Check that we have two types to compare. */
3216 if (t1 == NULL_TREE || t2 == NULL_TREE)
3217 return false;
3218
3219 /* If the types have been previously registered and found equal
3220 they still are. */
3221 if (TYPE_CANONICAL (t1)
3222 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3223 return true;
3224
3225 /* Can't be the same type if the types don't have the same code. */
3226 if (TREE_CODE (t1) != TREE_CODE (t2))
3227 return false;
3228
61332f77 3229 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
825b27de
RG
3230 return false;
3231
61332f77
RG
3232 /* Qualifiers do not matter for canonical type comparison purposes. */
3233
3234 /* Void types and nullptr types are always the same. */
3235 if (TREE_CODE (t1) == VOID_TYPE
3236 || TREE_CODE (t1) == NULLPTR_TYPE)
825b27de
RG
3237 return true;
3238
61332f77
RG
3239 /* Can't be the same type if they have different alignment, or mode. */
3240 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3241 || TYPE_MODE (t1) != TYPE_MODE (t2))
3242 return false;
3243
3244 /* Non-aggregate types can be handled cheaply. */
825b27de
RG
3245 if (INTEGRAL_TYPE_P (t1)
3246 || SCALAR_FLOAT_TYPE_P (t1)
3247 || FIXED_POINT_TYPE_P (t1)
3248 || TREE_CODE (t1) == VECTOR_TYPE
3249 || TREE_CODE (t1) == COMPLEX_TYPE
61332f77
RG
3250 || TREE_CODE (t1) == OFFSET_TYPE
3251 || POINTER_TYPE_P (t1))
825b27de 3252 {
61332f77
RG
3253 /* Can't be the same type if they have different sign or precision. */
3254 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
825b27de
RG
3255 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3256 return false;
3257
3258 if (TREE_CODE (t1) == INTEGER_TYPE
3ac8781c 3259 && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2))
825b27de
RG
3260 return false;
3261
61332f77
RG
3262 /* For canonical type comparisons we do not want to build SCCs
3263 so we cannot compare pointed-to types. But we can, for now,
3264 require the same pointed-to type kind and match what
3265 useless_type_conversion_p would do. */
3266 if (POINTER_TYPE_P (t1))
3267 {
3268 /* If the two pointers have different ref-all attributes,
3269 they can't be the same type. */
3270 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3271 return false;
825b27de 3272
61332f77
RG
3273 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
3274 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
3275 return false;
825b27de 3276
61332f77
RG
3277 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
3278 return false;
3279
3280 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
3281 return false;
3282 }
3283
3284 /* Tail-recurse to components. */
3285 if (TREE_CODE (t1) == VECTOR_TYPE
3286 || TREE_CODE (t1) == COMPLEX_TYPE)
3287 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
3288 TREE_TYPE (t2));
3289
3290 return true;
825b27de
RG
3291 }
3292
825b27de
RG
3293 /* Do type-specific comparisons. */
3294 switch (TREE_CODE (t1))
3295 {
825b27de
RG
3296 case ARRAY_TYPE:
3297 /* Array types are the same if the element types are the same and
3298 the number of elements are the same. */
3299 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3300 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3301 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
b8a71aed 3302 return false;
825b27de
RG
3303 else
3304 {
3305 tree i1 = TYPE_DOMAIN (t1);
3306 tree i2 = TYPE_DOMAIN (t2);
3307
3308 /* For an incomplete external array, the type domain can be
3309 NULL_TREE. Check this condition also. */
3310 if (i1 == NULL_TREE && i2 == NULL_TREE)
b8a71aed 3311 return true;
825b27de 3312 else if (i1 == NULL_TREE || i2 == NULL_TREE)
b8a71aed 3313 return false;
825b27de
RG
3314 else
3315 {
3316 tree min1 = TYPE_MIN_VALUE (i1);
3317 tree min2 = TYPE_MIN_VALUE (i2);
3318 tree max1 = TYPE_MAX_VALUE (i1);
3319 tree max2 = TYPE_MAX_VALUE (i2);
3320
3321 /* The minimum/maximum values have to be the same. */
3322 if ((min1 == min2
3323 || (min1 && min2
3324 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3325 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3326 || operand_equal_p (min1, min2, 0))))
3327 && (max1 == max2
3328 || (max1 && max2
3329 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3330 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3331 || operand_equal_p (max1, max2, 0)))))
b8a71aed 3332 return true;
825b27de 3333 else
b8a71aed 3334 return false;
825b27de
RG
3335 }
3336 }
3337
3338 case METHOD_TYPE:
825b27de
RG
3339 case FUNCTION_TYPE:
3340 /* Function types are the same if the return type and arguments types
3341 are the same. */
6a20ce76 3342 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
b8a71aed 3343 return false;
825b27de
RG
3344
3345 if (!comp_type_attributes (t1, t2))
b8a71aed 3346 return false;
825b27de
RG
3347
3348 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
b8a71aed 3349 return true;
825b27de
RG
3350 else
3351 {
3352 tree parms1, parms2;
3353
3354 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3355 parms1 && parms2;
3356 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3357 {
6a20ce76
RG
3358 if (!gimple_canonical_types_compatible_p
3359 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
b8a71aed 3360 return false;
825b27de
RG
3361 }
3362
3363 if (parms1 || parms2)
b8a71aed 3364 return false;
825b27de 3365
b8a71aed 3366 return true;
825b27de
RG
3367 }
3368
825b27de
RG
3369 case RECORD_TYPE:
3370 case UNION_TYPE:
3371 case QUAL_UNION_TYPE:
3372 {
3373 tree f1, f2;
3374
3375 /* For aggregate types, all the fields must be the same. */
3376 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4acd1c84 3377 f1 || f2;
825b27de
RG
3378 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3379 {
e7cfe241
RG
3380 /* Skip non-fields. */
3381 while (f1 && TREE_CODE (f1) != FIELD_DECL)
3382 f1 = TREE_CHAIN (f1);
3383 while (f2 && TREE_CODE (f2) != FIELD_DECL)
3384 f2 = TREE_CHAIN (f2);
3385 if (!f1 || !f2)
3386 break;
825b27de
RG
3387 /* The fields must have the same name, offset and type. */
3388 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3389 || !gimple_compare_field_offset (f1, f2)
3390 || !gimple_canonical_types_compatible_p
3391 (TREE_TYPE (f1), TREE_TYPE (f2)))
b8a71aed 3392 return false;
825b27de
RG
3393 }
3394
3395 /* If one aggregate has more fields than the other, they
3396 are not the same. */
3397 if (f1 || f2)
b8a71aed 3398 return false;
825b27de 3399
b8a71aed 3400 return true;
825b27de
RG
3401 }
3402
3403 default:
3404 gcc_unreachable ();
3405 }
825b27de
RG
3406}
3407
3408
4490cae6
RG
3409/* Returns nonzero if P1 and P2 are equal. */
3410
3411static int
3412gimple_canonical_type_eq (const void *p1, const void *p2)
3413{
3414 const_tree t1 = (const_tree) p1;
3415 const_tree t2 = (const_tree) p2;
825b27de
RG
3416 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
3417 CONST_CAST_TREE (t2));
4490cae6
RG
3418}
3419
3420/* Register type T in the global type table gimple_types.
3421 If another type T', compatible with T, already existed in
3422 gimple_types then return T', otherwise return T. This is used by
96d91dcf
RG
3423 LTO to merge identical types read from different TUs.
3424
3425 ??? This merging does not exactly match how the tree.c middle-end
3426 functions will assign TYPE_CANONICAL when new types are created
3427 during optimization (which at least happens for pointer and array
3428 types). */
4490cae6
RG
3429
3430tree
3431gimple_register_canonical_type (tree t)
3432{
3433 void **slot;
3434
3435 gcc_assert (TYPE_P (t));
3436
61332f77
RG
3437 if (TYPE_CANONICAL (t))
3438 return TYPE_CANONICAL (t);
3439
4490cae6 3440 if (gimple_canonical_types == NULL)
a844a60b 3441 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
4490cae6
RG
3442 gimple_canonical_type_eq, 0);
3443
3444 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
3445 if (*slot
3446 && *(tree *)slot != t)
3447 {
3448 tree new_type = (tree) *((tree *) slot);
3449
3450 TYPE_CANONICAL (t) = new_type;
3451 t = new_type;
3452 }
3453 else
3454 {
3455 TYPE_CANONICAL (t) = t;
4a2ac96f
RG
3456 *slot = (void *) t;
3457 }
d7f09764
DN
3458
3459 return t;
3460}
3461
3462
3463/* Show statistics on references to the global type table gimple_types. */
3464
3465void
b8f4e58f 3466print_gimple_types_stats (const char *pfx)
d7f09764 3467{
4490cae6 3468 if (gimple_canonical_types)
b8f4e58f
RG
3469 fprintf (stderr, "[%s] GIMPLE canonical type table: size %ld, "
3470 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
4490cae6
RG
3471 (long) htab_size (gimple_canonical_types),
3472 (long) htab_elements (gimple_canonical_types),
3473 (long) gimple_canonical_types->searches,
3474 (long) gimple_canonical_types->collisions,
3475 htab_collisions (gimple_canonical_types));
3476 else
b8f4e58f 3477 fprintf (stderr, "[%s] GIMPLE canonical type table is empty\n", pfx);
a844a60b 3478 if (canonical_type_hash_cache)
b8f4e58f
RG
3479 fprintf (stderr, "[%s] GIMPLE canonical type hash table: size %ld, "
3480 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx,
a844a60b
RG
3481 (long) htab_size (canonical_type_hash_cache),
3482 (long) htab_elements (canonical_type_hash_cache),
3483 (long) canonical_type_hash_cache->searches,
3484 (long) canonical_type_hash_cache->collisions,
3485 htab_collisions (canonical_type_hash_cache));
0f443ad0 3486 else
b8f4e58f 3487 fprintf (stderr, "[%s] GIMPLE canonical type hash table is empty\n", pfx);
d7f09764
DN
3488}
3489
0d0bfe17
RG
3490/* Free the gimple type hashtables used for LTO type merging. */
3491
3492void
3493free_gimple_type_tables (void)
3494{
4490cae6
RG
3495 if (gimple_canonical_types)
3496 {
3497 htab_delete (gimple_canonical_types);
3498 gimple_canonical_types = NULL;
3499 }
a844a60b
RG
3500 if (canonical_type_hash_cache)
3501 {
3502 htab_delete (canonical_type_hash_cache);
3503 canonical_type_hash_cache = NULL;
3504 }
0d0bfe17
RG
3505}
3506
d7f09764
DN
3507
3508/* Return a type the same as TYPE except unsigned or
3509 signed according to UNSIGNEDP. */
3510
3511static tree
3512gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3513{
3514 tree type1;
3515
3516 type1 = TYPE_MAIN_VARIANT (type);
3517 if (type1 == signed_char_type_node
3518 || type1 == char_type_node
3519 || type1 == unsigned_char_type_node)
3520 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3521 if (type1 == integer_type_node || type1 == unsigned_type_node)
3522 return unsignedp ? unsigned_type_node : integer_type_node;
3523 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3524 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3525 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3526 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3527 if (type1 == long_long_integer_type_node
3528 || type1 == long_long_unsigned_type_node)
3529 return unsignedp
3530 ? long_long_unsigned_type_node
3531 : long_long_integer_type_node;
a6766312
KT
3532 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
3533 return unsignedp
3534 ? int128_unsigned_type_node
3535 : int128_integer_type_node;
d7f09764
DN
3536#if HOST_BITS_PER_WIDE_INT >= 64
3537 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3538 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3539#endif
3540 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3541 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3542 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3543 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3544 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3545 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3546 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
3547 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3548
3549#define GIMPLE_FIXED_TYPES(NAME) \
3550 if (type1 == short_ ## NAME ## _type_node \
3551 || type1 == unsigned_short_ ## NAME ## _type_node) \
3552 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3553 : short_ ## NAME ## _type_node; \
3554 if (type1 == NAME ## _type_node \
3555 || type1 == unsigned_ ## NAME ## _type_node) \
3556 return unsignedp ? unsigned_ ## NAME ## _type_node \
3557 : NAME ## _type_node; \
3558 if (type1 == long_ ## NAME ## _type_node \
3559 || type1 == unsigned_long_ ## NAME ## _type_node) \
3560 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
3561 : long_ ## NAME ## _type_node; \
3562 if (type1 == long_long_ ## NAME ## _type_node \
3563 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
3564 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
3565 : long_long_ ## NAME ## _type_node;
3566
3567#define GIMPLE_FIXED_MODE_TYPES(NAME) \
3568 if (type1 == NAME ## _type_node \
3569 || type1 == u ## NAME ## _type_node) \
3570 return unsignedp ? u ## NAME ## _type_node \
3571 : NAME ## _type_node;
3572
3573#define GIMPLE_FIXED_TYPES_SAT(NAME) \
3574 if (type1 == sat_ ## short_ ## NAME ## _type_node \
3575 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
3576 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
3577 : sat_ ## short_ ## NAME ## _type_node; \
3578 if (type1 == sat_ ## NAME ## _type_node \
3579 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
3580 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
3581 : sat_ ## NAME ## _type_node; \
3582 if (type1 == sat_ ## long_ ## NAME ## _type_node \
3583 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
3584 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
3585 : sat_ ## long_ ## NAME ## _type_node; \
3586 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
3587 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
3588 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
3589 : sat_ ## long_long_ ## NAME ## _type_node;
3590
3591#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
3592 if (type1 == sat_ ## NAME ## _type_node \
3593 || type1 == sat_ ## u ## NAME ## _type_node) \
3594 return unsignedp ? sat_ ## u ## NAME ## _type_node \
3595 : sat_ ## NAME ## _type_node;
3596
3597 GIMPLE_FIXED_TYPES (fract);
3598 GIMPLE_FIXED_TYPES_SAT (fract);
3599 GIMPLE_FIXED_TYPES (accum);
3600 GIMPLE_FIXED_TYPES_SAT (accum);
3601
3602 GIMPLE_FIXED_MODE_TYPES (qq);
3603 GIMPLE_FIXED_MODE_TYPES (hq);
3604 GIMPLE_FIXED_MODE_TYPES (sq);
3605 GIMPLE_FIXED_MODE_TYPES (dq);
3606 GIMPLE_FIXED_MODE_TYPES (tq);
3607 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
3608 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
3609 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
3610 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
3611 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
3612 GIMPLE_FIXED_MODE_TYPES (ha);
3613 GIMPLE_FIXED_MODE_TYPES (sa);
3614 GIMPLE_FIXED_MODE_TYPES (da);
3615 GIMPLE_FIXED_MODE_TYPES (ta);
3616 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
3617 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
3618 GIMPLE_FIXED_MODE_TYPES_SAT (da);
3619 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
3620
3621 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
3622 the precision; they have precision set to match their range, but
3623 may use a wider mode to match an ABI. If we change modes, we may
3624 wind up with bad conversions. For INTEGER_TYPEs in C, must check
3625 the precision as well, so as to yield correct results for
3626 bit-field types. C++ does not have these separate bit-field
3627 types, and producing a signed or unsigned variant of an
3628 ENUMERAL_TYPE may cause other problems as well. */
3629 if (!INTEGRAL_TYPE_P (type)
3630 || TYPE_UNSIGNED (type) == unsignedp)
3631 return type;
3632
3633#define TYPE_OK(node) \
3634 (TYPE_MODE (type) == TYPE_MODE (node) \
3635 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
3636 if (TYPE_OK (signed_char_type_node))
3637 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3638 if (TYPE_OK (integer_type_node))
3639 return unsignedp ? unsigned_type_node : integer_type_node;
3640 if (TYPE_OK (short_integer_type_node))
3641 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3642 if (TYPE_OK (long_integer_type_node))
3643 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3644 if (TYPE_OK (long_long_integer_type_node))
3645 return (unsignedp
3646 ? long_long_unsigned_type_node
3647 : long_long_integer_type_node);
a6766312
KT
3648 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
3649 return (unsignedp
3650 ? int128_unsigned_type_node
3651 : int128_integer_type_node);
d7f09764
DN
3652
3653#if HOST_BITS_PER_WIDE_INT >= 64
3654 if (TYPE_OK (intTI_type_node))
3655 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3656#endif
3657 if (TYPE_OK (intDI_type_node))
3658 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3659 if (TYPE_OK (intSI_type_node))
3660 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3661 if (TYPE_OK (intHI_type_node))
3662 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3663 if (TYPE_OK (intQI_type_node))
3664 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3665
3666#undef GIMPLE_FIXED_TYPES
3667#undef GIMPLE_FIXED_MODE_TYPES
3668#undef GIMPLE_FIXED_TYPES_SAT
3669#undef GIMPLE_FIXED_MODE_TYPES_SAT
3670#undef TYPE_OK
3671
3672 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
3673}
3674
3675
3676/* Return an unsigned type the same as TYPE in other respects. */
3677
3678tree
3679gimple_unsigned_type (tree type)
3680{
3681 return gimple_signed_or_unsigned_type (true, type);
3682}
3683
3684
3685/* Return a signed type the same as TYPE in other respects. */
3686
3687tree
3688gimple_signed_type (tree type)
3689{
3690 return gimple_signed_or_unsigned_type (false, type);
3691}
3692
3693
3694/* Return the typed-based alias set for T, which may be an expression
3695 or a type. Return -1 if we don't do anything special. */
3696
3697alias_set_type
3698gimple_get_alias_set (tree t)
3699{
3700 tree u;
3701
3702 /* Permit type-punning when accessing a union, provided the access
3703 is directly through the union. For example, this code does not
3704 permit taking the address of a union member and then storing
3705 through it. Even the type-punning allowed here is a GCC
3706 extension, albeit a common and useful one; the C standard says
3707 that such accesses have implementation-defined behavior. */
3708 for (u = t;
3709 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3710 u = TREE_OPERAND (u, 0))
3711 if (TREE_CODE (u) == COMPONENT_REF
3712 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3713 return 0;
3714
3715 /* That's all the expressions we handle specially. */
3716 if (!TYPE_P (t))
3717 return -1;
3718
3719 /* For convenience, follow the C standard when dealing with
3720 character types. Any object may be accessed via an lvalue that
3721 has character type. */
3722 if (t == char_type_node
3723 || t == signed_char_type_node
3724 || t == unsigned_char_type_node)
3725 return 0;
3726
3727 /* Allow aliasing between signed and unsigned variants of the same
3728 type. We treat the signed variant as canonical. */
3729 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
3730 {
3731 tree t1 = gimple_signed_type (t);
3732
3733 /* t1 == t can happen for boolean nodes which are always unsigned. */
3734 if (t1 != t)
3735 return get_alias_set (t1);
3736 }
d7f09764
DN
3737
3738 return -1;
3739}
3740
3741
5006671f
RG
3742/* Data structure used to count the number of dereferences to PTR
3743 inside an expression. */
3744struct count_ptr_d
3745{
3746 tree ptr;
3747 unsigned num_stores;
3748 unsigned num_loads;
3749};
3750
3751/* Helper for count_uses_and_derefs. Called by walk_tree to look for
3752 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
3753
3754static tree
3755count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
3756{
3757 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
3758 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
3759
3760 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
3761 pointer 'ptr' is *not* dereferenced, it is simply used to compute
3762 the address of 'fld' as 'ptr + offsetof(fld)'. */
3763 if (TREE_CODE (*tp) == ADDR_EXPR)
3764 {
3765 *walk_subtrees = 0;
3766 return NULL_TREE;
3767 }
3768
70f34814 3769 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5006671f
RG
3770 {
3771 if (wi_p->is_lhs)
3772 count_p->num_stores++;
3773 else
3774 count_p->num_loads++;
3775 }
3776
3777 return NULL_TREE;
3778}
3779
3780/* Count the number of direct and indirect uses for pointer PTR in
3781 statement STMT. The number of direct uses is stored in
3782 *NUM_USES_P. Indirect references are counted separately depending
3783 on whether they are store or load operations. The counts are
3784 stored in *NUM_STORES_P and *NUM_LOADS_P. */
3785
3786void
3787count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
3788 unsigned *num_loads_p, unsigned *num_stores_p)
3789{
3790 ssa_op_iter i;
3791 tree use;
3792
3793 *num_uses_p = 0;
3794 *num_loads_p = 0;
3795 *num_stores_p = 0;
3796
3797 /* Find out the total number of uses of PTR in STMT. */
3798 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3799 if (use == ptr)
3800 (*num_uses_p)++;
3801
3802 /* Now count the number of indirect references to PTR. This is
3803 truly awful, but we don't have much choice. There are no parent
3804 pointers inside INDIRECT_REFs, so an expression like
3805 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
3806 find all the indirect and direct uses of x_1 inside. The only
3807 shortcut we can take is the fact that GIMPLE only allows
3808 INDIRECT_REFs inside the expressions below. */
3809 if (is_gimple_assign (stmt)
3810 || gimple_code (stmt) == GIMPLE_RETURN
3811 || gimple_code (stmt) == GIMPLE_ASM
3812 || is_gimple_call (stmt))
3813 {
3814 struct walk_stmt_info wi;
3815 struct count_ptr_d count;
3816
3817 count.ptr = ptr;
3818 count.num_stores = 0;
3819 count.num_loads = 0;
3820
3821 memset (&wi, 0, sizeof (wi));
3822 wi.info = &count;
3823 walk_gimple_op (stmt, count_ptr_derefs, &wi);
3824
3825 *num_stores_p = count.num_stores;
3826 *num_loads_p = count.num_loads;
3827 }
3828
3829 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
3830}
3831
346ef3fa
RG
3832/* From a tree operand OP return the base of a load or store operation
3833 or NULL_TREE if OP is not a load or a store. */
3834
3835static tree
3836get_base_loadstore (tree op)
3837{
3838 while (handled_component_p (op))
3839 op = TREE_OPERAND (op, 0);
3840 if (DECL_P (op)
3841 || INDIRECT_REF_P (op)
70f34814 3842 || TREE_CODE (op) == MEM_REF
346ef3fa
RG
3843 || TREE_CODE (op) == TARGET_MEM_REF)
3844 return op;
3845 return NULL_TREE;
3846}
3847
3848/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
3849 VISIT_ADDR if non-NULL on loads, store and address-taken operands
3850 passing the STMT, the base of the operand and DATA to it. The base
3851 will be either a decl, an indirect reference (including TARGET_MEM_REF)
3852 or the argument of an address expression.
3853 Returns the results of these callbacks or'ed. */
3854
3855bool
3856walk_stmt_load_store_addr_ops (gimple stmt, void *data,
3857 bool (*visit_load)(gimple, tree, void *),
3858 bool (*visit_store)(gimple, tree, void *),
3859 bool (*visit_addr)(gimple, tree, void *))
3860{
3861 bool ret = false;
3862 unsigned i;
3863 if (gimple_assign_single_p (stmt))
3864 {
3865 tree lhs, rhs;
3866 if (visit_store)
3867 {
3868 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
3869 if (lhs)
3870 ret |= visit_store (stmt, lhs, data);
3871 }
3872 rhs = gimple_assign_rhs1 (stmt);
ad8a1ac0
RG
3873 while (handled_component_p (rhs))
3874 rhs = TREE_OPERAND (rhs, 0);
346ef3fa
RG
3875 if (visit_addr)
3876 {
3877 if (TREE_CODE (rhs) == ADDR_EXPR)
3878 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
3879 else if (TREE_CODE (rhs) == TARGET_MEM_REF
3880 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
3881 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
3882 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
3883 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
3884 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
3885 0), data);
cb3d2e33
JJ
3886 else if (TREE_CODE (rhs) == CONSTRUCTOR)
3887 {
3888 unsigned int ix;
3889 tree val;
3890
3891 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
3892 if (TREE_CODE (val) == ADDR_EXPR)
3893 ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data);
3894 else if (TREE_CODE (val) == OBJ_TYPE_REF
3895 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
3896 ret |= visit_addr (stmt,
3897 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
3898 0), data);
3899 }
fff1894c
AB
3900 lhs = gimple_assign_lhs (stmt);
3901 if (TREE_CODE (lhs) == TARGET_MEM_REF
fff1894c
AB
3902 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
3903 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
346ef3fa
RG
3904 }
3905 if (visit_load)
3906 {
3907 rhs = get_base_loadstore (rhs);
3908 if (rhs)
3909 ret |= visit_load (stmt, rhs, data);
3910 }
3911 }
3912 else if (visit_addr
3913 && (is_gimple_assign (stmt)
4d7a65ea 3914 || gimple_code (stmt) == GIMPLE_COND))
346ef3fa
RG
3915 {
3916 for (i = 0; i < gimple_num_ops (stmt); ++i)
9dd58aa4
JJ
3917 {
3918 tree op = gimple_op (stmt, i);
3919 if (op == NULL_TREE)
3920 ;
3921 else if (TREE_CODE (op) == ADDR_EXPR)
3922 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
3923 /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
3924 tree with two operands. */
3925 else if (i == 1 && COMPARISON_CLASS_P (op))
3926 {
3927 if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR)
3928 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0),
3929 0), data);
3930 if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR)
3931 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1),
3932 0), data);
3933 }
3934 }
346ef3fa
RG
3935 }
3936 else if (is_gimple_call (stmt))
3937 {
3938 if (visit_store)
3939 {
3940 tree lhs = gimple_call_lhs (stmt);
3941 if (lhs)
3942 {
3943 lhs = get_base_loadstore (lhs);
3944 if (lhs)
3945 ret |= visit_store (stmt, lhs, data);
3946 }
3947 }
3948 if (visit_load || visit_addr)
3949 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3950 {
3951 tree rhs = gimple_call_arg (stmt, i);
3952 if (visit_addr
3953 && TREE_CODE (rhs) == ADDR_EXPR)
3954 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
3955 else if (visit_load)
3956 {
3957 rhs = get_base_loadstore (rhs);
3958 if (rhs)
3959 ret |= visit_load (stmt, rhs, data);
3960 }
3961 }
3962 if (visit_addr
3963 && gimple_call_chain (stmt)
3964 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
3965 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
3966 data);
1d24fdd9
RG
3967 if (visit_addr
3968 && gimple_call_return_slot_opt_p (stmt)
3969 && gimple_call_lhs (stmt) != NULL_TREE
4d61856d 3970 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
1d24fdd9 3971 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
346ef3fa
RG
3972 }
3973 else if (gimple_code (stmt) == GIMPLE_ASM)
3974 {
3975 unsigned noutputs;
3976 const char *constraint;
3977 const char **oconstraints;
3978 bool allows_mem, allows_reg, is_inout;
3979 noutputs = gimple_asm_noutputs (stmt);
3980 oconstraints = XALLOCAVEC (const char *, noutputs);
3981 if (visit_store || visit_addr)
3982 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
3983 {
3984 tree link = gimple_asm_output_op (stmt, i);
3985 tree op = get_base_loadstore (TREE_VALUE (link));
3986 if (op && visit_store)
3987 ret |= visit_store (stmt, op, data);
3988 if (visit_addr)
3989 {
3990 constraint = TREE_STRING_POINTER
3991 (TREE_VALUE (TREE_PURPOSE (link)));
3992 oconstraints[i] = constraint;
3993 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
3994 &allows_reg, &is_inout);
3995 if (op && !allows_reg && allows_mem)
3996 ret |= visit_addr (stmt, op, data);
3997 }
3998 }
3999 if (visit_load || visit_addr)
4000 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4001 {
4002 tree link = gimple_asm_input_op (stmt, i);
4003 tree op = TREE_VALUE (link);
4004 if (visit_addr
4005 && TREE_CODE (op) == ADDR_EXPR)
4006 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4007 else if (visit_load || visit_addr)
4008 {
4009 op = get_base_loadstore (op);
4010 if (op)
4011 {
4012 if (visit_load)
4013 ret |= visit_load (stmt, op, data);
4014 if (visit_addr)
4015 {
4016 constraint = TREE_STRING_POINTER
4017 (TREE_VALUE (TREE_PURPOSE (link)));
4018 parse_input_constraint (&constraint, 0, 0, noutputs,
4019 0, oconstraints,
4020 &allows_mem, &allows_reg);
4021 if (!allows_reg && allows_mem)
4022 ret |= visit_addr (stmt, op, data);
4023 }
4024 }
4025 }
4026 }
4027 }
4028 else if (gimple_code (stmt) == GIMPLE_RETURN)
4029 {
4030 tree op = gimple_return_retval (stmt);
4031 if (op)
4032 {
4033 if (visit_addr
4034 && TREE_CODE (op) == ADDR_EXPR)
4035 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4036 else if (visit_load)
4037 {
4038 op = get_base_loadstore (op);
4039 if (op)
4040 ret |= visit_load (stmt, op, data);
4041 }
4042 }
4043 }
4044 else if (visit_addr
4045 && gimple_code (stmt) == GIMPLE_PHI)
4046 {
4047 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4048 {
4049 tree op = PHI_ARG_DEF (stmt, i);
4050 if (TREE_CODE (op) == ADDR_EXPR)
4051 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4052 }
4053 }
639dc669
JJ
4054 else if (visit_addr
4055 && gimple_code (stmt) == GIMPLE_GOTO)
4056 {
4057 tree op = gimple_goto_dest (stmt);
4058 if (TREE_CODE (op) == ADDR_EXPR)
4059 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4060 }
346ef3fa
RG
4061
4062 return ret;
4063}
4064
4065/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4066 should make a faster clone for this case. */
4067
4068bool
4069walk_stmt_load_store_ops (gimple stmt, void *data,
4070 bool (*visit_load)(gimple, tree, void *),
4071 bool (*visit_store)(gimple, tree, void *))
4072{
4073 return walk_stmt_load_store_addr_ops (stmt, data,
4074 visit_load, visit_store, NULL);
4075}
4076
ccacdf06
RG
4077/* Helper for gimple_ior_addresses_taken_1. */
4078
4079static bool
4080gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4081 tree addr, void *data)
4082{
4083 bitmap addresses_taken = (bitmap)data;
2ea9dc64
RG
4084 addr = get_base_address (addr);
4085 if (addr
4086 && DECL_P (addr))
ccacdf06
RG
4087 {
4088 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4089 return true;
4090 }
4091 return false;
4092}
4093
4094/* Set the bit for the uid of all decls that have their address taken
4095 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4096 were any in this stmt. */
4097
4098bool
4099gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4100{
4101 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4102 gimple_ior_addresses_taken_1);
4103}
4104
4537ec0c
DN
4105
4106/* Return a printable name for symbol DECL. */
4107
4108const char *
4109gimple_decl_printable_name (tree decl, int verbosity)
4110{
98b2dfbb
RG
4111 if (!DECL_NAME (decl))
4112 return NULL;
4537ec0c
DN
4113
4114 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4115 {
4116 const char *str, *mangled_str;
4117 int dmgl_opts = DMGL_NO_OPTS;
4118
4119 if (verbosity >= 2)
4120 {
4121 dmgl_opts = DMGL_VERBOSE
4537ec0c
DN
4122 | DMGL_ANSI
4123 | DMGL_GNU_V3
4124 | DMGL_RET_POSTFIX;
4125 if (TREE_CODE (decl) == FUNCTION_DECL)
4126 dmgl_opts |= DMGL_PARAMS;
4127 }
4128
4129 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4130 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4131 return (str) ? str : mangled_str;
4132 }
4133
4134 return IDENTIFIER_POINTER (DECL_NAME (decl));
4135}
4136
25ae5027
DS
4137/* Return TRUE iff stmt is a call to a built-in function. */
4138
4139bool
4140is_gimple_builtin_call (gimple stmt)
4141{
4142 tree callee;
4143
4144 if (is_gimple_call (stmt)
4145 && (callee = gimple_call_fndecl (stmt))
4146 && is_builtin_fn (callee)
4147 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
4148 return true;
4149
4150 return false;
4151}
4152
3626621a
RB
4153/* Return true when STMTs arguments match those of FNDECL. */
4154
4155static bool
4156validate_call (gimple stmt, tree fndecl)
4157{
4158 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
4159 unsigned nargs = gimple_call_num_args (stmt);
4160 for (unsigned i = 0; i < nargs; ++i)
4161 {
4162 /* Variadic args follow. */
4163 if (!targs)
4164 return true;
4165 tree arg = gimple_call_arg (stmt, i);
4166 if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
4167 && INTEGRAL_TYPE_P (TREE_VALUE (targs)))
4168 ;
4169 else if (POINTER_TYPE_P (TREE_TYPE (arg))
4170 && POINTER_TYPE_P (TREE_VALUE (targs)))
4171 ;
4172 else if (TREE_CODE (TREE_TYPE (arg))
4173 != TREE_CODE (TREE_VALUE (targs)))
4174 return false;
4175 targs = TREE_CHAIN (targs);
4176 }
4177 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
4178 return false;
4179 return true;
4180}
4181
4182/* Return true when STMT is builtins call to CLASS. */
4183
4184bool
4185gimple_call_builtin_p (gimple stmt, enum built_in_class klass)
4186{
4187 tree fndecl;
4188 if (is_gimple_call (stmt)
4189 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
4190 && DECL_BUILT_IN_CLASS (fndecl) == klass)
4191 return validate_call (stmt, fndecl);
4192 return false;
4193}
4194
4195/* Return true when STMT is builtins call to CODE of CLASS. */
c54c785d
JH
4196
4197bool
4198gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4199{
4200 tree fndecl;
3626621a
RB
4201 if (is_gimple_call (stmt)
4202 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
4203 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4204 && DECL_FUNCTION_CODE (fndecl) == code)
4205 return validate_call (stmt, fndecl);
4206 return false;
c54c785d
JH
4207}
4208
edcdea5b
NF
4209/* Return true if STMT clobbers memory. STMT is required to be a
4210 GIMPLE_ASM. */
4211
4212bool
4213gimple_asm_clobbers_memory_p (const_gimple stmt)
4214{
4215 unsigned i;
4216
4217 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
4218 {
4219 tree op = gimple_asm_clobber_op (stmt, i);
4220 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
4221 return true;
4222 }
4223
4224 return false;
4225}
475b8f37
DN
4226
4227
4228/* Create and return an unnamed temporary. MODE indicates whether
4229 this should be an SSA or NORMAL temporary. TYPE is the type to use
4230 for the new temporary. */
4231
4232tree
4233create_gimple_tmp (tree type, enum ssa_mode mode)
4234{
4235 return (mode == M_SSA)
4236 ? make_ssa_name (type, NULL)
4237 : create_tmp_var (type, NULL);
4238}
4239
4240
4241/* Return the expression type to use based on the CODE and type of
4242 the given operand OP. If the expression CODE is a comparison,
4243 the returned type is boolean_type_node. Otherwise, it returns
4244 the type of OP. */
4245
4246static tree
4247get_expr_type (enum tree_code code, tree op)
4248{
4249 return (TREE_CODE_CLASS (code) == tcc_comparison)
4250 ? boolean_type_node
4251 : TREE_TYPE (op);
4252}
4253
4254
4255/* Build a new gimple assignment. The LHS of the assignment is a new
4256 temporary whose type matches the given expression. MODE indicates
4257 whether the LHS should be an SSA or a normal temporary. CODE is
4258 the expression code for the RHS. OP1 is the first operand and VAL
4259 is an integer value to be used as the second operand. */
4260
4261gimple
4262build_assign (enum tree_code code, tree op1, int val, enum ssa_mode mode)
4263{
4264 tree op2 = build_int_cst (TREE_TYPE (op1), val);
4265 tree lhs = create_gimple_tmp (get_expr_type (code, op1), mode);
4266 return gimple_build_assign_with_ops (code, lhs, op1, op2);
4267}
4268
4269gimple
4270build_assign (enum tree_code code, gimple g, int val, enum ssa_mode mode)
4271{
4272 return build_assign (code, gimple_assign_lhs (g), val, mode);
4273}
4274
4275
4276/* Build and return a new GIMPLE assignment. The new assignment will
4277 have the opcode CODE and operands OP1 and OP2. The type of the
4278 expression on the RHS is inferred to be the type of OP1.
4279
4280 The LHS of the statement will be an SSA name or a GIMPLE temporary
4281 in normal form depending on the type of builder invoking this
4282 function. */
4283
4284gimple
4285build_assign (enum tree_code code, tree op1, tree op2, enum ssa_mode mode)
4286{
4287 tree lhs = create_gimple_tmp (get_expr_type (code, op1), mode);
4288 return gimple_build_assign_with_ops (code, lhs, op1, op2);
4289}
4290
4291gimple
4292build_assign (enum tree_code code, gimple op1, tree op2, enum ssa_mode mode)
4293{
4294 return build_assign (code, gimple_assign_lhs (op1), op2, mode);
4295}
4296
4297gimple
4298build_assign (enum tree_code code, tree op1, gimple op2, enum ssa_mode mode)
4299{
4300 return build_assign (code, op1, gimple_assign_lhs (op2), mode);
4301}
4302
4303gimple
4304build_assign (enum tree_code code, gimple op1, gimple op2, enum ssa_mode mode)
4305{
4306 return build_assign (code, gimple_assign_lhs (op1), gimple_assign_lhs (op2),
4307 mode);
4308}
4309
4310
4311/* Create and return a type cast assignment. This creates a NOP_EXPR
4312 that converts OP to TO_TYPE. */
4313
4314gimple
4315build_type_cast (tree to_type, tree op, enum ssa_mode mode)
4316{
4317 tree lhs = create_gimple_tmp (to_type, mode);
4318 return gimple_build_assign_with_ops (NOP_EXPR, lhs, op, NULL_TREE);
4319}
4320
4321gimple
4322build_type_cast (tree to_type, gimple op, enum ssa_mode mode)
4323{
4324 return build_type_cast (to_type, gimple_assign_lhs (op), mode);
4325}
4326
7a300452
AM
4327
4328/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
4329 useless type conversion, otherwise return false.
4330
4331 This function implicitly defines the middle-end type system. With
4332 the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
4333 holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
4334 the following invariants shall be fulfilled:
4335
4336 1) useless_type_conversion_p is transitive.
4337 If a < b and b < c then a < c.
4338
4339 2) useless_type_conversion_p is not symmetric.
4340 From a < b does not follow a > b.
4341
4342 3) Types define the available set of operations applicable to values.
4343 A type conversion is useless if the operations for the target type
4344 is a subset of the operations for the source type. For example
4345 casts to void* are useless, casts from void* are not (void* can't
4346 be dereferenced or offsetted, but copied, hence its set of operations
4347 is a strict subset of that of all other data pointer types). Casts
4348 to const T* are useless (can't be written to), casts from const T*
4349 to T* are not. */
4350
4351bool
4352useless_type_conversion_p (tree outer_type, tree inner_type)
4353{
4354 /* Do the following before stripping toplevel qualifiers. */
4355 if (POINTER_TYPE_P (inner_type)
4356 && POINTER_TYPE_P (outer_type))
4357 {
4358 /* Do not lose casts between pointers to different address spaces. */
4359 if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
4360 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
4361 return false;
4362 }
4363
4364 /* From now on qualifiers on value types do not matter. */
4365 inner_type = TYPE_MAIN_VARIANT (inner_type);
4366 outer_type = TYPE_MAIN_VARIANT (outer_type);
4367
4368 if (inner_type == outer_type)
4369 return true;
4370
4371 /* If we know the canonical types, compare them. */
4372 if (TYPE_CANONICAL (inner_type)
4373 && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
4374 return true;
4375
4376 /* Changes in machine mode are never useless conversions unless we
4377 deal with aggregate types in which case we defer to later checks. */
4378 if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
4379 && !AGGREGATE_TYPE_P (inner_type))
4380 return false;
4381
4382 /* If both the inner and outer types are integral types, then the
4383 conversion is not necessary if they have the same mode and
4384 signedness and precision, and both or neither are boolean. */
4385 if (INTEGRAL_TYPE_P (inner_type)
4386 && INTEGRAL_TYPE_P (outer_type))
4387 {
4388 /* Preserve changes in signedness or precision. */
4389 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
4390 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
4391 return false;
4392
4393 /* Preserve conversions to/from BOOLEAN_TYPE if types are not
4394 of precision one. */
4395 if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
4396 != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
4397 && TYPE_PRECISION (outer_type) != 1)
4398 return false;
4399
4400 /* We don't need to preserve changes in the types minimum or
4401 maximum value in general as these do not generate code
4402 unless the types precisions are different. */
4403 return true;
4404 }
4405
4406 /* Scalar floating point types with the same mode are compatible. */
4407 else if (SCALAR_FLOAT_TYPE_P (inner_type)
4408 && SCALAR_FLOAT_TYPE_P (outer_type))
4409 return true;
4410
4411 /* Fixed point types with the same mode are compatible. */
4412 else if (FIXED_POINT_TYPE_P (inner_type)
4413 && FIXED_POINT_TYPE_P (outer_type))
4414 return true;
4415
4416 /* We need to take special care recursing to pointed-to types. */
4417 else if (POINTER_TYPE_P (inner_type)
4418 && POINTER_TYPE_P (outer_type))
4419 {
4420 /* Do not lose casts to function pointer types. */
4421 if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
4422 || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
4423 && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
4424 || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
4425 return false;
4426
4427 /* We do not care for const qualification of the pointed-to types
4428 as const qualification has no semantic value to the middle-end. */
4429
4430 /* Otherwise pointers/references are equivalent. */
4431 return true;
4432 }
4433
4434 /* Recurse for complex types. */
4435 else if (TREE_CODE (inner_type) == COMPLEX_TYPE
4436 && TREE_CODE (outer_type) == COMPLEX_TYPE)
4437 return useless_type_conversion_p (TREE_TYPE (outer_type),
4438 TREE_TYPE (inner_type));
4439
4440 /* Recurse for vector types with the same number of subparts. */
4441 else if (TREE_CODE (inner_type) == VECTOR_TYPE
4442 && TREE_CODE (outer_type) == VECTOR_TYPE
4443 && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
4444 return useless_type_conversion_p (TREE_TYPE (outer_type),
4445 TREE_TYPE (inner_type));
4446
4447 else if (TREE_CODE (inner_type) == ARRAY_TYPE
4448 && TREE_CODE (outer_type) == ARRAY_TYPE)
4449 {
4450 /* Preserve string attributes. */
4451 if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
4452 return false;
4453
4454 /* Conversions from array types with unknown extent to
4455 array types with known extent are not useless. */
4456 if (!TYPE_DOMAIN (inner_type)
4457 && TYPE_DOMAIN (outer_type))
4458 return false;
4459
4460 /* Nor are conversions from array types with non-constant size to
4461 array types with constant size or to different size. */
4462 if (TYPE_SIZE (outer_type)
4463 && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
4464 && (!TYPE_SIZE (inner_type)
4465 || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
4466 || !tree_int_cst_equal (TYPE_SIZE (outer_type),
4467 TYPE_SIZE (inner_type))))
4468 return false;
4469
4470 /* Check conversions between arrays with partially known extents.
4471 If the array min/max values are constant they have to match.
4472 Otherwise allow conversions to unknown and variable extents.
4473 In particular this declares conversions that may change the
4474 mode to BLKmode as useless. */
4475 if (TYPE_DOMAIN (inner_type)
4476 && TYPE_DOMAIN (outer_type)
4477 && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
4478 {
4479 tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
4480 tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
4481 tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
4482 tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
4483
4484 /* After gimplification a variable min/max value carries no
4485 additional information compared to a NULL value. All that
4486 matters has been lowered to be part of the IL. */
4487 if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
4488 inner_min = NULL_TREE;
4489 if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
4490 outer_min = NULL_TREE;
4491 if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
4492 inner_max = NULL_TREE;
4493 if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
4494 outer_max = NULL_TREE;
4495
4496 /* Conversions NULL / variable <- cst are useless, but not
4497 the other way around. */
4498 if (outer_min
4499 && (!inner_min
4500 || !tree_int_cst_equal (inner_min, outer_min)))
4501 return false;
4502 if (outer_max
4503 && (!inner_max
4504 || !tree_int_cst_equal (inner_max, outer_max)))
4505 return false;
4506 }
4507
4508 /* Recurse on the element check. */
4509 return useless_type_conversion_p (TREE_TYPE (outer_type),
4510 TREE_TYPE (inner_type));
4511 }
4512
4513 else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
4514 || TREE_CODE (inner_type) == METHOD_TYPE)
4515 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
4516 {
4517 tree outer_parm, inner_parm;
4518
4519 /* If the return types are not compatible bail out. */
4520 if (!useless_type_conversion_p (TREE_TYPE (outer_type),
4521 TREE_TYPE (inner_type)))
4522 return false;
4523
4524 /* Method types should belong to a compatible base class. */
4525 if (TREE_CODE (inner_type) == METHOD_TYPE
4526 && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
4527 TYPE_METHOD_BASETYPE (inner_type)))
4528 return false;
4529
4530 /* A conversion to an unprototyped argument list is ok. */
4531 if (!prototype_p (outer_type))
4532 return true;
4533
4534 /* If the unqualified argument types are compatible the conversion
4535 is useless. */
4536 if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
4537 return true;
4538
4539 for (outer_parm = TYPE_ARG_TYPES (outer_type),
4540 inner_parm = TYPE_ARG_TYPES (inner_type);
4541 outer_parm && inner_parm;
4542 outer_parm = TREE_CHAIN (outer_parm),
4543 inner_parm = TREE_CHAIN (inner_parm))
4544 if (!useless_type_conversion_p
4545 (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
4546 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
4547 return false;
4548
4549 /* If there is a mismatch in the number of arguments the functions
4550 are not compatible. */
4551 if (outer_parm || inner_parm)
4552 return false;
4553
4554 /* Defer to the target if necessary. */
4555 if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
4556 return comp_type_attributes (outer_type, inner_type) != 0;
4557
4558 return true;
4559 }
4560
4561 /* For aggregates we rely on TYPE_CANONICAL exclusively and require
4562 explicit conversions for types involving to be structurally
4563 compared types. */
4564 else if (AGGREGATE_TYPE_P (inner_type)
4565 && TREE_CODE (inner_type) == TREE_CODE (outer_type))
4566 return false;
4567
4568 return false;
4569}
4570
4571/* Return true if a conversion from either type of TYPE1 and TYPE2
4572 to the other is not required. Otherwise return false. */
4573
4574bool
4575types_compatible_p (tree type1, tree type2)
4576{
4577 return (type1 == type2
4578 || (useless_type_conversion_p (type1, type2)
4579 && useless_type_conversion_p (type2, type1)));
4580}
4581
4582
726a989a 4583#include "gt-gimple.h"