]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple.c
2009-11-19 Rafael Avila de Espindola <espindola@google.com>
[thirdparty/gcc.git] / gcc / gimple.c
CommitLineData
75a70cf9 1/* Gimple IR support functions.
2
b9c74b4d 3 Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
75a70cf9 4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
7bfefa9d 26#include "target.h"
75a70cf9 27#include "tree.h"
28#include "ggc.h"
75a70cf9 29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
86931af8 32#include "toplev.h"
75a70cf9 33#include "diagnostic.h"
34#include "tree-flow.h"
35#include "value-prof.h"
36#include "flags.h"
7bfefa9d 37#include "alias.h"
34e5cced 38#include "demangle.h"
75a70cf9 39
7bfefa9d 40/* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44static htab_t gimple_types;
45static struct pointer_map_t *type_hash_cache;
46
47/* Global type comparison cache. */
48static htab_t gtc_visited;
1fc0af12 49static struct obstack gtc_ob;
75a70cf9 50
1fed3255 51/* All the tuples have their operand vector (if present) at the very bottom
75a70cf9 52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
1fed3255 55#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
cd819d2f 57EXPORTED_CONST size_t gimple_ops_offset_[] = {
1fed3255 58#include "gsstruct.def"
59};
60#undef DEFGSSTRUCT
61
62#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63static const size_t gsstruct_code_size[] = {
64#include "gsstruct.def"
65};
66#undef DEFGSSTRUCT
67
68#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69const char *const gimple_code_name[] = {
70#include "gimple.def"
71};
72#undef DEFGSCODE
73
74#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75a70cf9 76#include "gimple.def"
77};
78#undef DEFGSCODE
79
80#ifdef GATHER_STATISTICS
81/* Gimple stats. */
82
83int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
93};
94
95#endif /* GATHER_STATISTICS */
96
97/* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
100
101/* Private API manipulation functions shared only with some
102 other files. */
103extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
105
106/* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
109
110/* Set the code for statement G to CODE. */
111
112static inline void
113gimple_set_code (gimple g, enum gimple_code code)
114{
115 g->gsbase.code = code;
116}
117
75a70cf9 118/* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
120
1fed3255 121static inline size_t
75a70cf9 122gimple_size (enum gimple_code code)
123{
1fed3255 124 return gsstruct_code_size[gss_for_code (code)];
75a70cf9 125}
126
75a70cf9 127/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
129
7bfefa9d 130gimple
75a70cf9 131gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
132{
133 size_t size;
134 gimple stmt;
135
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
139
140#ifdef GATHER_STATISTICS
141 {
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
145 }
146#endif
147
148 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
151
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
155
156 return stmt;
157}
158
159/* Set SUBCODE to be the code of the expression computed by statement G. */
160
161static inline void
162gimple_set_subcode (gimple g, unsigned subcode)
163{
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
168}
169
170
171
172/* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
175
176#define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
178
179static gimple
9845d120 180gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
75a70cf9 181 unsigned num_ops MEM_STAT_DECL)
182{
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
185
186 return s;
187}
188
189
190/* Build a GIMPLE_RETURN statement returning RETVAL. */
191
192gimple
193gimple_build_return (tree retval)
194{
b9c74b4d 195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
75a70cf9 196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
199}
200
201/* Helper for gimple_build_call, gimple_build_call_vec and
202 gimple_build_call_from_tree. Build the basic components of a
203 GIMPLE_CALL statement to function FN with NARGS arguments. */
204
205static inline gimple
206gimple_build_call_1 (tree fn, unsigned nargs)
207{
b9c74b4d 208 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
0acacf9e 209 if (TREE_CODE (fn) == FUNCTION_DECL)
210 fn = build_fold_addr_expr (fn);
75a70cf9 211 gimple_set_op (s, 1, fn);
212 return s;
213}
214
215
216/* Build a GIMPLE_CALL statement to function FN with the arguments
217 specified in vector ARGS. */
218
219gimple
220gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
221{
222 unsigned i;
223 unsigned nargs = VEC_length (tree, args);
224 gimple call = gimple_build_call_1 (fn, nargs);
225
226 for (i = 0; i < nargs; i++)
227 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
228
229 return call;
230}
231
232
233/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
234 arguments. The ... are the arguments. */
235
236gimple
237gimple_build_call (tree fn, unsigned nargs, ...)
238{
239 va_list ap;
240 gimple call;
241 unsigned i;
242
243 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
244
245 call = gimple_build_call_1 (fn, nargs);
246
247 va_start (ap, nargs);
248 for (i = 0; i < nargs; i++)
249 gimple_call_set_arg (call, i, va_arg (ap, tree));
250 va_end (ap);
251
252 return call;
253}
254
255
256/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
257 assumed to be in GIMPLE form already. Minimal checking is done of
258 this fact. */
259
260gimple
261gimple_build_call_from_tree (tree t)
262{
263 unsigned i, nargs;
264 gimple call;
265 tree fndecl = get_callee_fndecl (t);
266
267 gcc_assert (TREE_CODE (t) == CALL_EXPR);
268
269 nargs = call_expr_nargs (t);
270 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
271
272 for (i = 0; i < nargs; i++)
273 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
274
275 gimple_set_block (call, TREE_BLOCK (t));
276
277 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
278 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
279 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
280 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
281 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
282 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
283 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
e627cda1 284 gimple_set_no_warning (call, TREE_NO_WARNING (t));
75a70cf9 285
286 return call;
287}
288
289
290/* Extract the operands and code for expression EXPR into *SUBCODE_P,
291 *OP1_P and *OP2_P respectively. */
292
293void
294extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
295 tree *op2_p)
296{
f4e36c33 297 enum gimple_rhs_class grhs_class;
75a70cf9 298
299 *subcode_p = TREE_CODE (expr);
f4e36c33 300 grhs_class = get_gimple_rhs_class (*subcode_p);
75a70cf9 301
f4e36c33 302 if (grhs_class == GIMPLE_BINARY_RHS)
75a70cf9 303 {
304 *op1_p = TREE_OPERAND (expr, 0);
305 *op2_p = TREE_OPERAND (expr, 1);
306 }
f4e36c33 307 else if (grhs_class == GIMPLE_UNARY_RHS)
75a70cf9 308 {
309 *op1_p = TREE_OPERAND (expr, 0);
310 *op2_p = NULL_TREE;
311 }
f4e36c33 312 else if (grhs_class == GIMPLE_SINGLE_RHS)
75a70cf9 313 {
314 *op1_p = expr;
315 *op2_p = NULL_TREE;
316 }
317 else
318 gcc_unreachable ();
319}
320
321
322/* Build a GIMPLE_ASSIGN statement.
323
324 LHS of the assignment.
325 RHS of the assignment which can be unary or binary. */
326
327gimple
328gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
329{
330 enum tree_code subcode;
331 tree op1, op2;
332
333 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
334 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
335 PASS_MEM_STAT);
336}
337
338
339/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
340 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
341 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
342
343gimple
344gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
345 tree op2 MEM_STAT_DECL)
346{
347 unsigned num_ops;
348 gimple p;
349
350 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
351 code). */
352 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
353
9845d120 354 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
75a70cf9 355 PASS_MEM_STAT);
356 gimple_assign_set_lhs (p, lhs);
357 gimple_assign_set_rhs1 (p, op1);
358 if (op2)
359 {
360 gcc_assert (num_ops > 2);
361 gimple_assign_set_rhs2 (p, op2);
362 }
363
364 return p;
365}
366
367
368/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
369
370 DST/SRC are the destination and source respectively. You can pass
371 ungimplified trees in DST or SRC, in which case they will be
372 converted to a gimple operand if necessary.
373
374 This function returns the newly created GIMPLE_ASSIGN tuple. */
375
c623bf22 376gimple
75a70cf9 377gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
378{
379 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
380 gimplify_and_add (t, seq_p);
381 ggc_free (t);
382 return gimple_seq_last_stmt (*seq_p);
383}
384
385
386/* Build a GIMPLE_COND statement.
387
388 PRED is the condition used to compare LHS and the RHS.
389 T_LABEL is the label to jump to if the condition is true.
390 F_LABEL is the label to jump to otherwise. */
391
392gimple
393gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
394 tree t_label, tree f_label)
395{
396 gimple p;
397
398 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
399 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
400 gimple_cond_set_lhs (p, lhs);
401 gimple_cond_set_rhs (p, rhs);
402 gimple_cond_set_true_label (p, t_label);
403 gimple_cond_set_false_label (p, f_label);
404 return p;
405}
406
407
408/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
409
410void
411gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
412 tree *lhs_p, tree *rhs_p)
413{
389dd41b 414 location_t loc = EXPR_LOCATION (cond);
75a70cf9 415 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
416 || TREE_CODE (cond) == TRUTH_NOT_EXPR
417 || is_gimple_min_invariant (cond)
418 || SSA_VAR_P (cond));
419
420 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
421
422 /* Canonicalize conditionals of the form 'if (!VAL)'. */
423 if (*code_p == TRUTH_NOT_EXPR)
424 {
425 *code_p = EQ_EXPR;
426 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
389dd41b 427 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
75a70cf9 428 }
429 /* Canonicalize conditionals of the form 'if (VAL)' */
430 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
431 {
432 *code_p = NE_EXPR;
433 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
389dd41b 434 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
75a70cf9 435 }
436}
437
438
439/* Build a GIMPLE_COND statement from the conditional expression tree
440 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
441
442gimple
443gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
444{
445 enum tree_code code;
446 tree lhs, rhs;
447
448 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
449 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
450}
451
452/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
453 boolean expression tree COND. */
454
455void
456gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
457{
458 enum tree_code code;
459 tree lhs, rhs;
460
461 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
462 gimple_cond_set_condition (stmt, code, lhs, rhs);
463}
464
465/* Build a GIMPLE_LABEL statement for LABEL. */
466
467gimple
468gimple_build_label (tree label)
469{
b9c74b4d 470 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
75a70cf9 471 gimple_label_set_label (p, label);
472 return p;
473}
474
475/* Build a GIMPLE_GOTO statement to label DEST. */
476
477gimple
478gimple_build_goto (tree dest)
479{
b9c74b4d 480 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
75a70cf9 481 gimple_goto_set_dest (p, dest);
482 return p;
483}
484
485
486/* Build a GIMPLE_NOP statement. */
487
488gimple
489gimple_build_nop (void)
490{
491 return gimple_alloc (GIMPLE_NOP, 0);
492}
493
494
495/* Build a GIMPLE_BIND statement.
496 VARS are the variables in BODY.
497 BLOCK is the containing block. */
498
499gimple
500gimple_build_bind (tree vars, gimple_seq body, tree block)
501{
502 gimple p = gimple_alloc (GIMPLE_BIND, 0);
503 gimple_bind_set_vars (p, vars);
504 if (body)
505 gimple_bind_set_body (p, body);
506 if (block)
507 gimple_bind_set_block (p, block);
508 return p;
509}
510
511/* Helper function to set the simple fields of a asm stmt.
512
513 STRING is a pointer to a string that is the asm blocks assembly code.
514 NINPUT is the number of register inputs.
515 NOUTPUT is the number of register outputs.
516 NCLOBBERS is the number of clobbered registers.
517 */
518
519static inline gimple
520gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
78f55ca8 521 unsigned nclobbers, unsigned nlabels)
75a70cf9 522{
523 gimple p;
524 int size = strlen (string);
525
78f55ca8 526 /* ASMs with labels cannot have outputs. This should have been
527 enforced by the front end. */
528 gcc_assert (nlabels == 0 || noutputs == 0);
529
b9c74b4d 530 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
78f55ca8 531 ninputs + noutputs + nclobbers + nlabels);
75a70cf9 532
533 p->gimple_asm.ni = ninputs;
534 p->gimple_asm.no = noutputs;
535 p->gimple_asm.nc = nclobbers;
78f55ca8 536 p->gimple_asm.nl = nlabels;
75a70cf9 537 p->gimple_asm.string = ggc_alloc_string (string, size);
538
539#ifdef GATHER_STATISTICS
540 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
541#endif
542
543 return p;
544}
545
546/* Build a GIMPLE_ASM statement.
547
548 STRING is the assembly code.
549 NINPUT is the number of register inputs.
550 NOUTPUT is the number of register outputs.
551 NCLOBBERS is the number of clobbered registers.
552 INPUTS is a vector of the input register parameters.
553 OUTPUTS is a vector of the output register parameters.
78f55ca8 554 CLOBBERS is a vector of the clobbered register parameters.
555 LABELS is a vector of destination labels. */
75a70cf9 556
557gimple
558gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
78f55ca8 559 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
560 VEC(tree,gc)* labels)
75a70cf9 561{
562 gimple p;
563 unsigned i;
564
565 p = gimple_build_asm_1 (string,
566 VEC_length (tree, inputs),
567 VEC_length (tree, outputs),
78f55ca8 568 VEC_length (tree, clobbers),
569 VEC_length (tree, labels));
75a70cf9 570
571 for (i = 0; i < VEC_length (tree, inputs); i++)
572 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
573
574 for (i = 0; i < VEC_length (tree, outputs); i++)
575 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
576
577 for (i = 0; i < VEC_length (tree, clobbers); i++)
578 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
579
78f55ca8 580 for (i = 0; i < VEC_length (tree, labels); i++)
581 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
75a70cf9 582
583 return p;
584}
585
586/* Build a GIMPLE_CATCH statement.
587
588 TYPES are the catch types.
589 HANDLER is the exception handler. */
590
591gimple
592gimple_build_catch (tree types, gimple_seq handler)
593{
594 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
595 gimple_catch_set_types (p, types);
596 if (handler)
597 gimple_catch_set_handler (p, handler);
598
599 return p;
600}
601
602/* Build a GIMPLE_EH_FILTER statement.
603
604 TYPES are the filter's types.
605 FAILURE is the filter's failure action. */
606
607gimple
608gimple_build_eh_filter (tree types, gimple_seq failure)
609{
610 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
611 gimple_eh_filter_set_types (p, types);
612 if (failure)
613 gimple_eh_filter_set_failure (p, failure);
614
615 return p;
616}
617
e38def9c 618/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
619
620gimple
621gimple_build_eh_must_not_throw (tree decl)
622{
623 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 1);
624
625 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
626 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
7bfefa9d 627 gimple_eh_must_not_throw_set_fndecl (p, decl);
e38def9c 628
629 return p;
630}
631
75a70cf9 632/* Build a GIMPLE_TRY statement.
633
634 EVAL is the expression to evaluate.
635 CLEANUP is the cleanup expression.
636 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
637 whether this is a try/catch or a try/finally respectively. */
638
639gimple
640gimple_build_try (gimple_seq eval, gimple_seq cleanup,
641 enum gimple_try_flags kind)
642{
643 gimple p;
644
645 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
646 p = gimple_alloc (GIMPLE_TRY, 0);
647 gimple_set_subcode (p, kind);
648 if (eval)
649 gimple_try_set_eval (p, eval);
650 if (cleanup)
651 gimple_try_set_cleanup (p, cleanup);
652
653 return p;
654}
655
656/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
657
658 CLEANUP is the cleanup expression. */
659
660gimple
661gimple_build_wce (gimple_seq cleanup)
662{
663 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
664 if (cleanup)
665 gimple_wce_set_cleanup (p, cleanup);
666
667 return p;
668}
669
670
e38def9c 671/* Build a GIMPLE_RESX statement. */
75a70cf9 672
673gimple
674gimple_build_resx (int region)
675{
e38def9c 676 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
677 p->gimple_eh_ctrl.region = region;
75a70cf9 678 return p;
679}
680
681
682/* The helper for constructing a gimple switch statement.
683 INDEX is the switch's index.
684 NLABELS is the number of labels in the switch excluding the default.
685 DEFAULT_LABEL is the default label for the switch statement. */
686
e38def9c 687gimple
688gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
75a70cf9 689{
690 /* nlabels + 1 default label + 1 index. */
b9c74b4d 691 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
e38def9c 692 1 + (default_label != NULL) + nlabels);
75a70cf9 693 gimple_switch_set_index (p, index);
e38def9c 694 if (default_label)
695 gimple_switch_set_default_label (p, default_label);
75a70cf9 696 return p;
697}
698
699
700/* Build a GIMPLE_SWITCH statement.
701
702 INDEX is the switch's index.
703 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
704 ... are the labels excluding the default. */
705
706gimple
707gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
708{
709 va_list al;
e38def9c 710 unsigned i, offset;
711 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
75a70cf9 712
713 /* Store the rest of the labels. */
714 va_start (al, default_label);
e38def9c 715 offset = (default_label != NULL);
716 for (i = 0; i < nlabels; i++)
717 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
75a70cf9 718 va_end (al);
719
720 return p;
721}
722
723
724/* Build a GIMPLE_SWITCH statement.
725
726 INDEX is the switch's index.
727 DEFAULT_LABEL is the default label
728 ARGS is a vector of labels excluding the default. */
729
730gimple
731gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
732{
e38def9c 733 unsigned i, offset, nlabels = VEC_length (tree, args);
734 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
75a70cf9 735
e38def9c 736 /* Copy the labels from the vector to the switch statement. */
737 offset = (default_label != NULL);
738 for (i = 0; i < nlabels; i++)
739 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
75a70cf9 740
741 return p;
742}
743
e38def9c 744/* Build a GIMPLE_EH_DISPATCH statement. */
745
746gimple
747gimple_build_eh_dispatch (int region)
748{
749 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
750 p->gimple_eh_ctrl.region = region;
751 return p;
752}
75a70cf9 753
9845d120 754/* Build a new GIMPLE_DEBUG_BIND statement.
755
756 VAR is bound to VALUE; block and location are taken from STMT. */
757
758gimple
759gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
760{
761 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
762 (unsigned)GIMPLE_DEBUG_BIND, 2
763 PASS_MEM_STAT);
764
765 gimple_debug_bind_set_var (p, var);
766 gimple_debug_bind_set_value (p, value);
767 if (stmt)
768 {
769 gimple_set_block (p, gimple_block (stmt));
770 gimple_set_location (p, gimple_location (stmt));
771 }
772
773 return p;
774}
775
776
75a70cf9 777/* Build a GIMPLE_OMP_CRITICAL statement.
778
779 BODY is the sequence of statements for which only one thread can execute.
780 NAME is optional identifier for this critical block. */
781
782gimple
783gimple_build_omp_critical (gimple_seq body, tree name)
784{
785 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
786 gimple_omp_critical_set_name (p, name);
787 if (body)
788 gimple_omp_set_body (p, body);
789
790 return p;
791}
792
793/* Build a GIMPLE_OMP_FOR statement.
794
795 BODY is sequence of statements inside the for loop.
796 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
797 lastprivate, reductions, ordered, schedule, and nowait.
798 COLLAPSE is the collapse count.
799 PRE_BODY is the sequence of statements that are loop invariant. */
800
801gimple
802gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
803 gimple_seq pre_body)
804{
805 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
806 if (body)
807 gimple_omp_set_body (p, body);
808 gimple_omp_for_set_clauses (p, clauses);
809 p->gimple_omp_for.collapse = collapse;
810 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
811 if (pre_body)
812 gimple_omp_for_set_pre_body (p, pre_body);
813
814 return p;
815}
816
817
818/* Build a GIMPLE_OMP_PARALLEL statement.
819
820 BODY is sequence of statements which are executed in parallel.
821 CLAUSES, are the OMP parallel construct's clauses.
822 CHILD_FN is the function created for the parallel threads to execute.
823 DATA_ARG are the shared data argument(s). */
824
825gimple
826gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
827 tree data_arg)
828{
829 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
830 if (body)
831 gimple_omp_set_body (p, body);
832 gimple_omp_parallel_set_clauses (p, clauses);
833 gimple_omp_parallel_set_child_fn (p, child_fn);
834 gimple_omp_parallel_set_data_arg (p, data_arg);
835
836 return p;
837}
838
839
840/* Build a GIMPLE_OMP_TASK statement.
841
842 BODY is sequence of statements which are executed by the explicit task.
843 CLAUSES, are the OMP parallel construct's clauses.
844 CHILD_FN is the function created for the parallel threads to execute.
845 DATA_ARG are the shared data argument(s).
846 COPY_FN is the optional function for firstprivate initialization.
847 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
848
849gimple
850gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
851 tree data_arg, tree copy_fn, tree arg_size,
852 tree arg_align)
853{
854 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
855 if (body)
856 gimple_omp_set_body (p, body);
857 gimple_omp_task_set_clauses (p, clauses);
858 gimple_omp_task_set_child_fn (p, child_fn);
859 gimple_omp_task_set_data_arg (p, data_arg);
860 gimple_omp_task_set_copy_fn (p, copy_fn);
861 gimple_omp_task_set_arg_size (p, arg_size);
862 gimple_omp_task_set_arg_align (p, arg_align);
863
864 return p;
865}
866
867
868/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
869
870 BODY is the sequence of statements in the section. */
871
872gimple
873gimple_build_omp_section (gimple_seq body)
874{
875 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
876 if (body)
877 gimple_omp_set_body (p, body);
878
879 return p;
880}
881
882
883/* Build a GIMPLE_OMP_MASTER statement.
884
885 BODY is the sequence of statements to be executed by just the master. */
886
887gimple
888gimple_build_omp_master (gimple_seq body)
889{
890 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
891 if (body)
892 gimple_omp_set_body (p, body);
893
894 return p;
895}
896
897
898/* Build a GIMPLE_OMP_CONTINUE statement.
899
900 CONTROL_DEF is the definition of the control variable.
901 CONTROL_USE is the use of the control variable. */
902
903gimple
904gimple_build_omp_continue (tree control_def, tree control_use)
905{
906 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
907 gimple_omp_continue_set_control_def (p, control_def);
908 gimple_omp_continue_set_control_use (p, control_use);
909 return p;
910}
911
912/* Build a GIMPLE_OMP_ORDERED statement.
913
914 BODY is the sequence of statements inside a loop that will executed in
915 sequence. */
916
917gimple
918gimple_build_omp_ordered (gimple_seq body)
919{
920 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
921 if (body)
922 gimple_omp_set_body (p, body);
923
924 return p;
925}
926
927
928/* Build a GIMPLE_OMP_RETURN statement.
929 WAIT_P is true if this is a non-waiting return. */
930
931gimple
932gimple_build_omp_return (bool wait_p)
933{
934 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
935 if (wait_p)
936 gimple_omp_return_set_nowait (p);
937
938 return p;
939}
940
941
942/* Build a GIMPLE_OMP_SECTIONS statement.
943
944 BODY is a sequence of section statements.
945 CLAUSES are any of the OMP sections contsruct's clauses: private,
946 firstprivate, lastprivate, reduction, and nowait. */
947
948gimple
949gimple_build_omp_sections (gimple_seq body, tree clauses)
950{
951 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
952 if (body)
953 gimple_omp_set_body (p, body);
954 gimple_omp_sections_set_clauses (p, clauses);
955
956 return p;
957}
958
959
960/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
961
962gimple
963gimple_build_omp_sections_switch (void)
964{
965 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
966}
967
968
969/* Build a GIMPLE_OMP_SINGLE statement.
970
971 BODY is the sequence of statements that will be executed once.
972 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
973 copyprivate, nowait. */
974
975gimple
976gimple_build_omp_single (gimple_seq body, tree clauses)
977{
978 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
979 if (body)
980 gimple_omp_set_body (p, body);
981 gimple_omp_single_set_clauses (p, clauses);
982
983 return p;
984}
985
986
75a70cf9 987/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
988
989gimple
990gimple_build_omp_atomic_load (tree lhs, tree rhs)
991{
992 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
993 gimple_omp_atomic_load_set_lhs (p, lhs);
994 gimple_omp_atomic_load_set_rhs (p, rhs);
995 return p;
996}
997
998/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
999
1000 VAL is the value we are storing. */
1001
1002gimple
1003gimple_build_omp_atomic_store (tree val)
1004{
1005 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1006 gimple_omp_atomic_store_set_val (p, val);
1007 return p;
1008}
1009
1010/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1011 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1012
1013gimple
1014gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1015{
1016 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1017 /* Ensure all the predictors fit into the lower bits of the subcode. */
590c3166 1018 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
75a70cf9 1019 gimple_predict_set_predictor (p, predictor);
1020 gimple_predict_set_outcome (p, outcome);
1021 return p;
1022}
1023
384dcddb 1024#if defined ENABLE_GIMPLE_CHECKING
75a70cf9 1025/* Complain of a gimple type mismatch and die. */
1026
1027void
1028gimple_check_failed (const_gimple gs, const char *file, int line,
1029 const char *function, enum gimple_code code,
1030 enum tree_code subcode)
1031{
1032 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1033 gimple_code_name[code],
1034 tree_code_name[subcode],
1035 gimple_code_name[gimple_code (gs)],
1036 gs->gsbase.subcode > 0
1037 ? tree_code_name[gs->gsbase.subcode]
1038 : "",
1039 function, trim_filename (file), line);
1040}
75a70cf9 1041#endif /* ENABLE_GIMPLE_CHECKING */
1042
1043
1044/* Allocate a new GIMPLE sequence in GC memory and return it. If
1045 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1046 instead. */
1047
1048gimple_seq
1049gimple_seq_alloc (void)
1050{
1051 gimple_seq seq = gimple_seq_cache;
1052 if (seq)
1053 {
1054 gimple_seq_cache = gimple_seq_cache->next_free;
1055 gcc_assert (gimple_seq_cache != seq);
1056 memset (seq, 0, sizeof (*seq));
1057 }
1058 else
1059 {
1060 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1061#ifdef GATHER_STATISTICS
1062 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1063 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1064#endif
1065 }
1066
1067 return seq;
1068}
1069
1070/* Return SEQ to the free pool of GIMPLE sequences. */
1071
1072void
1073gimple_seq_free (gimple_seq seq)
1074{
1075 if (seq == NULL)
1076 return;
1077
1078 gcc_assert (gimple_seq_first (seq) == NULL);
1079 gcc_assert (gimple_seq_last (seq) == NULL);
1080
1081 /* If this triggers, it's a sign that the same list is being freed
1082 twice. */
1083 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1084
1085 /* Add SEQ to the pool of free sequences. */
1086 seq->next_free = gimple_seq_cache;
1087 gimple_seq_cache = seq;
1088}
1089
1090
1091/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1092 *SEQ_P is NULL, a new sequence is allocated. */
1093
1094void
1095gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1096{
1097 gimple_stmt_iterator si;
1098
1099 if (gs == NULL)
1100 return;
1101
1102 if (*seq_p == NULL)
1103 *seq_p = gimple_seq_alloc ();
1104
1105 si = gsi_last (*seq_p);
1106 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1107}
1108
1109
1110/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1111 NULL, a new sequence is allocated. */
1112
1113void
1114gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1115{
1116 gimple_stmt_iterator si;
1117
1118 if (src == NULL)
1119 return;
1120
1121 if (*dst_p == NULL)
1122 *dst_p = gimple_seq_alloc ();
1123
1124 si = gsi_last (*dst_p);
1125 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1126}
1127
1128
1129/* Helper function of empty_body_p. Return true if STMT is an empty
1130 statement. */
1131
1132static bool
1133empty_stmt_p (gimple stmt)
1134{
1135 if (gimple_code (stmt) == GIMPLE_NOP)
1136 return true;
1137 if (gimple_code (stmt) == GIMPLE_BIND)
1138 return empty_body_p (gimple_bind_body (stmt));
1139 return false;
1140}
1141
1142
1143/* Return true if BODY contains nothing but empty statements. */
1144
1145bool
1146empty_body_p (gimple_seq body)
1147{
1148 gimple_stmt_iterator i;
1149
75a70cf9 1150 if (gimple_seq_empty_p (body))
1151 return true;
1152 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
9845d120 1153 if (!empty_stmt_p (gsi_stmt (i))
1154 && !is_gimple_debug (gsi_stmt (i)))
75a70cf9 1155 return false;
1156
1157 return true;
1158}
1159
1160
1161/* Perform a deep copy of sequence SRC and return the result. */
1162
1163gimple_seq
1164gimple_seq_copy (gimple_seq src)
1165{
1166 gimple_stmt_iterator gsi;
f4e36c33 1167 gimple_seq new_seq = gimple_seq_alloc ();
75a70cf9 1168 gimple stmt;
1169
1170 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1171 {
1172 stmt = gimple_copy (gsi_stmt (gsi));
f4e36c33 1173 gimple_seq_add_stmt (&new_seq, stmt);
75a70cf9 1174 }
1175
f4e36c33 1176 return new_seq;
75a70cf9 1177}
1178
1179
1180/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1181 on each one. WI is as in walk_gimple_stmt.
1182
1183 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1184 value is stored in WI->CALLBACK_RESULT and the statement that
1185 produced the value is returned.
1186
1187 Otherwise, all the statements are walked and NULL returned. */
1188
1189gimple
1190walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1191 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1192{
1193 gimple_stmt_iterator gsi;
1194
1195 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1196 {
1197 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1198 if (ret)
1199 {
1200 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1201 to hold it. */
1202 gcc_assert (wi);
1203 wi->callback_result = ret;
1204 return gsi_stmt (gsi);
1205 }
1206 }
1207
1208 if (wi)
1209 wi->callback_result = NULL_TREE;
1210
1211 return NULL;
1212}
1213
1214
1215/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1216
1217static tree
1218walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1219 struct walk_stmt_info *wi)
1220{
78f55ca8 1221 tree ret, op;
75a70cf9 1222 unsigned noutputs;
1223 const char **oconstraints;
78f55ca8 1224 unsigned i, n;
75a70cf9 1225 const char *constraint;
1226 bool allows_mem, allows_reg, is_inout;
1227
1228 noutputs = gimple_asm_noutputs (stmt);
1229 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1230
1231 if (wi)
1232 wi->is_lhs = true;
1233
1234 for (i = 0; i < noutputs; i++)
1235 {
78f55ca8 1236 op = gimple_asm_output_op (stmt, i);
75a70cf9 1237 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1238 oconstraints[i] = constraint;
1239 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1240 &is_inout);
1241 if (wi)
1242 wi->val_only = (allows_reg || !allows_mem);
1243 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1244 if (ret)
1245 return ret;
1246 }
1247
78f55ca8 1248 n = gimple_asm_ninputs (stmt);
1249 for (i = 0; i < n; i++)
75a70cf9 1250 {
78f55ca8 1251 op = gimple_asm_input_op (stmt, i);
75a70cf9 1252 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1253 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1254 oconstraints, &allows_mem, &allows_reg);
1255 if (wi)
78f55ca8 1256 {
1257 wi->val_only = (allows_reg || !allows_mem);
1258 /* Although input "m" is not really a LHS, we need a lvalue. */
1259 wi->is_lhs = !wi->val_only;
1260 }
75a70cf9 1261 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1262 if (ret)
1263 return ret;
1264 }
1265
1266 if (wi)
1267 {
1268 wi->is_lhs = false;
1269 wi->val_only = true;
1270 }
1271
78f55ca8 1272 n = gimple_asm_nlabels (stmt);
1273 for (i = 0; i < n; i++)
1274 {
1275 op = gimple_asm_label_op (stmt, i);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1279 }
1280
75a70cf9 1281 return NULL_TREE;
1282}
1283
1284
1285/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1286 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1287
1288 CALLBACK_OP is called on each operand of STMT via walk_tree.
1289 Additional parameters to walk_tree must be stored in WI. For each operand
1290 OP, walk_tree is called as:
1291
1292 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1293
1294 If CALLBACK_OP returns non-NULL for an operand, the remaining
1295 operands are not scanned.
1296
1297 The return value is that returned by the last call to walk_tree, or
1298 NULL_TREE if no CALLBACK_OP is specified. */
1299
1300inline tree
1301walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1302 struct walk_stmt_info *wi)
1303{
1304 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1305 unsigned i;
1306 tree ret = NULL_TREE;
1307
1308 switch (gimple_code (stmt))
1309 {
1310 case GIMPLE_ASSIGN:
1311 /* Walk the RHS operands. A formal temporary LHS may use a
1312 COMPONENT_REF RHS. */
1313 if (wi)
47f11e84 1314 wi->val_only = !is_gimple_reg (gimple_assign_lhs (stmt))
1315 || !gimple_assign_single_p (stmt);
75a70cf9 1316
1317 for (i = 1; i < gimple_num_ops (stmt); i++)
1318 {
1319 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1320 pset);
1321 if (ret)
1322 return ret;
1323 }
1324
1325 /* Walk the LHS. If the RHS is appropriate for a memory, we
1326 may use a COMPONENT_REF on the LHS. */
1327 if (wi)
1328 {
1329 /* If the RHS has more than 1 operand, it is not appropriate
1330 for the memory. */
1331 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1332 || !gimple_assign_single_p (stmt);
1333 wi->is_lhs = true;
1334 }
1335
1336 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1337 if (ret)
1338 return ret;
1339
1340 if (wi)
1341 {
1342 wi->val_only = true;
1343 wi->is_lhs = false;
1344 }
1345 break;
1346
1347 case GIMPLE_CALL:
1348 if (wi)
1349 wi->is_lhs = false;
1350
1351 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1352 if (ret)
1353 return ret;
1354
1355 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1356 if (ret)
1357 return ret;
1358
1359 for (i = 0; i < gimple_call_num_args (stmt); i++)
1360 {
1361 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1362 pset);
1363 if (ret)
1364 return ret;
1365 }
1366
1367 if (wi)
1368 wi->is_lhs = true;
1369
1370 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1371 if (ret)
1372 return ret;
1373
1374 if (wi)
1375 wi->is_lhs = false;
1376 break;
1377
1378 case GIMPLE_CATCH:
1379 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1380 pset);
1381 if (ret)
1382 return ret;
1383 break;
1384
1385 case GIMPLE_EH_FILTER:
1386 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1387 pset);
1388 if (ret)
1389 return ret;
1390 break;
1391
75a70cf9 1392 case GIMPLE_ASM:
1393 ret = walk_gimple_asm (stmt, callback_op, wi);
1394 if (ret)
1395 return ret;
1396 break;
1397
1398 case GIMPLE_OMP_CONTINUE:
1399 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1400 callback_op, wi, pset);
1401 if (ret)
1402 return ret;
1403
1404 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1405 callback_op, wi, pset);
1406 if (ret)
1407 return ret;
1408 break;
1409
1410 case GIMPLE_OMP_CRITICAL:
1411 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1412 pset);
1413 if (ret)
1414 return ret;
1415 break;
1416
1417 case GIMPLE_OMP_FOR:
1418 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1419 pset);
1420 if (ret)
1421 return ret;
1422 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1423 {
1424 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1425 wi, pset);
1426 if (ret)
1427 return ret;
1428 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1429 wi, pset);
1430 if (ret)
1431 return ret;
1432 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1433 wi, pset);
1434 if (ret)
1435 return ret;
1436 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1437 wi, pset);
1438 }
1439 if (ret)
1440 return ret;
1441 break;
1442
1443 case GIMPLE_OMP_PARALLEL:
1444 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1445 wi, pset);
1446 if (ret)
1447 return ret;
1448 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1449 wi, pset);
1450 if (ret)
1451 return ret;
1452 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1453 wi, pset);
1454 if (ret)
1455 return ret;
1456 break;
1457
1458 case GIMPLE_OMP_TASK:
1459 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1460 wi, pset);
1461 if (ret)
1462 return ret;
1463 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1464 wi, pset);
1465 if (ret)
1466 return ret;
1467 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1468 wi, pset);
1469 if (ret)
1470 return ret;
1471 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1472 wi, pset);
1473 if (ret)
1474 return ret;
1475 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1476 wi, pset);
1477 if (ret)
1478 return ret;
1479 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 break;
1484
1485 case GIMPLE_OMP_SECTIONS:
1486 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1487 wi, pset);
1488 if (ret)
1489 return ret;
1490
1491 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1492 wi, pset);
1493 if (ret)
1494 return ret;
1495
1496 break;
1497
1498 case GIMPLE_OMP_SINGLE:
1499 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
1505 case GIMPLE_OMP_ATOMIC_LOAD:
1506 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1507 pset);
1508 if (ret)
1509 return ret;
1510
1511 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1512 pset);
1513 if (ret)
1514 return ret;
1515 break;
1516
1517 case GIMPLE_OMP_ATOMIC_STORE:
1518 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 break;
1523
1524 /* Tuples that do not have operands. */
1525 case GIMPLE_NOP:
1526 case GIMPLE_RESX:
1527 case GIMPLE_OMP_RETURN:
1528 case GIMPLE_PREDICT:
1529 break;
1530
1531 default:
1532 {
1533 enum gimple_statement_structure_enum gss;
1534 gss = gimple_statement_structure (stmt);
1535 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1536 for (i = 0; i < gimple_num_ops (stmt); i++)
1537 {
1538 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1539 if (ret)
1540 return ret;
1541 }
1542 }
1543 break;
1544 }
1545
1546 return NULL_TREE;
1547}
1548
1549
1550/* Walk the current statement in GSI (optionally using traversal state
1551 stored in WI). If WI is NULL, no state is kept during traversal.
1552 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1553 that it has handled all the operands of the statement, its return
1554 value is returned. Otherwise, the return value from CALLBACK_STMT
1555 is discarded and its operands are scanned.
1556
1557 If CALLBACK_STMT is NULL or it didn't handle the operands,
1558 CALLBACK_OP is called on each operand of the statement via
1559 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1560 operand, the remaining operands are not scanned. In this case, the
1561 return value from CALLBACK_OP is returned.
1562
1563 In any other case, NULL_TREE is returned. */
1564
1565tree
1566walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1567 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1568{
1569 gimple ret;
1570 tree tree_ret;
1571 gimple stmt = gsi_stmt (*gsi);
1572
1573 if (wi)
1574 wi->gsi = *gsi;
1575
1576 if (wi && wi->want_locations && gimple_has_location (stmt))
1577 input_location = gimple_location (stmt);
1578
1579 ret = NULL;
1580
1581 /* Invoke the statement callback. Return if the callback handled
1582 all of STMT operands by itself. */
1583 if (callback_stmt)
1584 {
1585 bool handled_ops = false;
1586 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1587 if (handled_ops)
1588 return tree_ret;
1589
1590 /* If CALLBACK_STMT did not handle operands, it should not have
1591 a value to return. */
1592 gcc_assert (tree_ret == NULL);
1593
1594 /* Re-read stmt in case the callback changed it. */
1595 stmt = gsi_stmt (*gsi);
1596 }
1597
1598 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1599 if (callback_op)
1600 {
1601 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1602 if (tree_ret)
1603 return tree_ret;
1604 }
1605
1606 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1607 switch (gimple_code (stmt))
1608 {
1609 case GIMPLE_BIND:
1610 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1611 callback_op, wi);
1612 if (ret)
1613 return wi->callback_result;
1614 break;
1615
1616 case GIMPLE_CATCH:
1617 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1618 callback_op, wi);
1619 if (ret)
1620 return wi->callback_result;
1621 break;
1622
1623 case GIMPLE_EH_FILTER:
1624 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1625 callback_op, wi);
1626 if (ret)
1627 return wi->callback_result;
1628 break;
1629
1630 case GIMPLE_TRY:
1631 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1632 wi);
1633 if (ret)
1634 return wi->callback_result;
1635
1636 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1637 callback_op, wi);
1638 if (ret)
1639 return wi->callback_result;
1640 break;
1641
1642 case GIMPLE_OMP_FOR:
1643 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1644 callback_op, wi);
1645 if (ret)
1646 return wi->callback_result;
1647
1648 /* FALL THROUGH. */
1649 case GIMPLE_OMP_CRITICAL:
1650 case GIMPLE_OMP_MASTER:
1651 case GIMPLE_OMP_ORDERED:
1652 case GIMPLE_OMP_SECTION:
1653 case GIMPLE_OMP_PARALLEL:
1654 case GIMPLE_OMP_TASK:
1655 case GIMPLE_OMP_SECTIONS:
1656 case GIMPLE_OMP_SINGLE:
1657 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1658 wi);
1659 if (ret)
1660 return wi->callback_result;
1661 break;
1662
1663 case GIMPLE_WITH_CLEANUP_EXPR:
1664 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1665 callback_op, wi);
1666 if (ret)
1667 return wi->callback_result;
1668 break;
1669
1670 default:
1671 gcc_assert (!gimple_has_substatements (stmt));
1672 break;
1673 }
1674
1675 return NULL;
1676}
1677
1678
1679/* Set sequence SEQ to be the GIMPLE body for function FN. */
1680
1681void
1682gimple_set_body (tree fndecl, gimple_seq seq)
1683{
1684 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1685 if (fn == NULL)
1686 {
1687 /* If FNDECL still does not have a function structure associated
1688 with it, then it does not make sense for it to receive a
1689 GIMPLE body. */
1690 gcc_assert (seq == NULL);
1691 }
1692 else
1693 fn->gimple_body = seq;
1694}
1695
1696
1697/* Return the body of GIMPLE statements for function FN. */
1698
1699gimple_seq
1700gimple_body (tree fndecl)
1701{
1702 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1703 return fn ? fn->gimple_body : NULL;
1704}
1705
1a1a827a 1706/* Return true when FNDECL has Gimple body either in unlowered
1707 or CFG form. */
1708bool
1709gimple_has_body_p (tree fndecl)
1710{
1711 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1712 return (gimple_body (fndecl) || (fn && fn->cfg));
1713}
75a70cf9 1714
1715/* Detect flags from a GIMPLE_CALL. This is just like
1716 call_expr_flags, but for gimple tuples. */
1717
1718int
1719gimple_call_flags (const_gimple stmt)
1720{
1721 int flags;
1722 tree decl = gimple_call_fndecl (stmt);
1723 tree t;
1724
1725 if (decl)
1726 flags = flags_from_decl_or_type (decl);
1727 else
1728 {
1729 t = TREE_TYPE (gimple_call_fn (stmt));
1730 if (t && TREE_CODE (t) == POINTER_TYPE)
1731 flags = flags_from_decl_or_type (TREE_TYPE (t));
1732 else
1733 flags = 0;
1734 }
1735
1736 return flags;
1737}
1738
1739
1740/* Return true if GS is a copy assignment. */
1741
1742bool
1743gimple_assign_copy_p (gimple gs)
1744{
1745 return gimple_code (gs) == GIMPLE_ASSIGN
1746 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1747 == GIMPLE_SINGLE_RHS
1748 && is_gimple_val (gimple_op (gs, 1));
1749}
1750
1751
1752/* Return true if GS is a SSA_NAME copy assignment. */
1753
1754bool
1755gimple_assign_ssa_name_copy_p (gimple gs)
1756{
1757 return (gimple_code (gs) == GIMPLE_ASSIGN
1758 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1759 == GIMPLE_SINGLE_RHS)
1760 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1761 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1762}
1763
1764
1765/* Return true if GS is an assignment with a singleton RHS, i.e.,
1766 there is no operator associated with the assignment itself.
1767 Unlike gimple_assign_copy_p, this predicate returns true for
1768 any RHS operand, including those that perform an operation
1769 and do not have the semantics of a copy, such as COND_EXPR. */
1770
1771bool
1772gimple_assign_single_p (gimple gs)
1773{
1774 return (gimple_code (gs) == GIMPLE_ASSIGN
1775 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1776 == GIMPLE_SINGLE_RHS);
1777}
1778
1779/* Return true if GS is an assignment with a unary RHS, but the
1780 operator has no effect on the assigned value. The logic is adapted
1781 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1782 instances in which STRIP_NOPS was previously applied to the RHS of
1783 an assignment.
1784
1785 NOTE: In the use cases that led to the creation of this function
1786 and of gimple_assign_single_p, it is typical to test for either
1787 condition and to proceed in the same manner. In each case, the
1788 assigned value is represented by the single RHS operand of the
1789 assignment. I suspect there may be cases where gimple_assign_copy_p,
1790 gimple_assign_single_p, or equivalent logic is used where a similar
1791 treatment of unary NOPs is appropriate. */
1792
1793bool
1794gimple_assign_unary_nop_p (gimple gs)
1795{
1796 return (gimple_code (gs) == GIMPLE_ASSIGN
d9659041 1797 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
75a70cf9 1798 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1799 && gimple_assign_rhs1 (gs) != error_mark_node
1800 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1801 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1802}
1803
1804/* Set BB to be the basic block holding G. */
1805
1806void
1807gimple_set_bb (gimple stmt, basic_block bb)
1808{
1809 stmt->gsbase.bb = bb;
1810
1811 /* If the statement is a label, add the label to block-to-labels map
1812 so that we can speed up edge creation for GIMPLE_GOTOs. */
1813 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1814 {
1815 tree t;
1816 int uid;
1817
1818 t = gimple_label_label (stmt);
1819 uid = LABEL_DECL_UID (t);
1820 if (uid == -1)
1821 {
1822 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1823 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1824 if (old_len <= (unsigned) uid)
1825 {
dd277d48 1826 unsigned new_len = 3 * uid / 2 + 1;
75a70cf9 1827
1828 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1829 new_len);
1830 }
1831 }
1832
1833 VEC_replace (basic_block, label_to_block_map, uid, bb);
1834 }
1835}
1836
1837
1838/* Fold the expression computed by STMT. If the expression can be
1839 folded, return the folded result, otherwise return NULL. STMT is
1840 not modified. */
1841
1842tree
1843gimple_fold (const_gimple stmt)
1844{
389dd41b 1845 location_t loc = gimple_location (stmt);
75a70cf9 1846 switch (gimple_code (stmt))
1847 {
1848 case GIMPLE_COND:
389dd41b 1849 return fold_binary_loc (loc, gimple_cond_code (stmt),
75a70cf9 1850 boolean_type_node,
1851 gimple_cond_lhs (stmt),
1852 gimple_cond_rhs (stmt));
1853
1854 case GIMPLE_ASSIGN:
1855 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
1856 {
1857 case GIMPLE_UNARY_RHS:
389dd41b 1858 return fold_unary_loc (loc, gimple_assign_rhs_code (stmt),
75a70cf9 1859 TREE_TYPE (gimple_assign_lhs (stmt)),
1860 gimple_assign_rhs1 (stmt));
1861 case GIMPLE_BINARY_RHS:
389dd41b 1862 return fold_binary_loc (loc, gimple_assign_rhs_code (stmt),
75a70cf9 1863 TREE_TYPE (gimple_assign_lhs (stmt)),
1864 gimple_assign_rhs1 (stmt),
1865 gimple_assign_rhs2 (stmt));
1866 case GIMPLE_SINGLE_RHS:
1867 return fold (gimple_assign_rhs1 (stmt));
1868 default:;
1869 }
1870 break;
1871
1872 case GIMPLE_SWITCH:
1873 return gimple_switch_index (stmt);
1874
1875 case GIMPLE_CALL:
1876 return NULL_TREE;
1877
1878 default:
1879 break;
1880 }
1881
1882 gcc_unreachable ();
1883}
1884
1885
1886/* Modify the RHS of the assignment pointed-to by GSI using the
1887 operands in the expression tree EXPR.
1888
1889 NOTE: The statement pointed-to by GSI may be reallocated if it
1890 did not have enough operand slots.
1891
1892 This function is useful to convert an existing tree expression into
1893 the flat representation used for the RHS of a GIMPLE assignment.
1894 It will reallocate memory as needed to expand or shrink the number
1895 of operand slots needed to represent EXPR.
1896
1897 NOTE: If you find yourself building a tree and then calling this
1898 function, you are most certainly doing it the slow way. It is much
1899 better to build a new assignment or to use the function
1900 gimple_assign_set_rhs_with_ops, which does not require an
1901 expression tree to be built. */
1902
1903void
1904gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1905{
1906 enum tree_code subcode;
1907 tree op1, op2;
1908
1909 extract_ops_from_tree (expr, &subcode, &op1, &op2);
1910 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
1911}
1912
1913
1914/* Set the RHS of assignment statement pointed-to by GSI to CODE with
1915 operands OP1 and OP2.
1916
1917 NOTE: The statement pointed-to by GSI may be reallocated if it
1918 did not have enough operand slots. */
1919
1920void
1921gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1922 tree op1, tree op2)
1923{
1924 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1925 gimple stmt = gsi_stmt (*gsi);
1926
1927 /* If the new CODE needs more operands, allocate a new statement. */
1928 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1929 {
1930 tree lhs = gimple_assign_lhs (stmt);
1931 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1932 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1933 gsi_replace (gsi, new_stmt, true);
1934 stmt = new_stmt;
1935
1936 /* The LHS needs to be reset as this also changes the SSA name
1937 on the LHS. */
1938 gimple_assign_set_lhs (stmt, lhs);
1939 }
1940
1941 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1942 gimple_set_subcode (stmt, code);
1943 gimple_assign_set_rhs1 (stmt, op1);
1944 if (new_rhs_ops > 1)
1945 gimple_assign_set_rhs2 (stmt, op2);
1946}
1947
1948
1949/* Return the LHS of a statement that performs an assignment,
1950 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1951 for a call to a function that returns no value, or for a
1952 statement other than an assignment or a call. */
1953
1954tree
1955gimple_get_lhs (const_gimple stmt)
1956{
590c3166 1957 enum gimple_code code = gimple_code (stmt);
75a70cf9 1958
1959 if (code == GIMPLE_ASSIGN)
1960 return gimple_assign_lhs (stmt);
1961 else if (code == GIMPLE_CALL)
1962 return gimple_call_lhs (stmt);
1963 else
1964 return NULL_TREE;
1965}
1966
1967
1968/* Set the LHS of a statement that performs an assignment,
1969 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1970
1971void
1972gimple_set_lhs (gimple stmt, tree lhs)
1973{
590c3166 1974 enum gimple_code code = gimple_code (stmt);
75a70cf9 1975
1976 if (code == GIMPLE_ASSIGN)
1977 gimple_assign_set_lhs (stmt, lhs);
1978 else if (code == GIMPLE_CALL)
1979 gimple_call_set_lhs (stmt, lhs);
1980 else
1981 gcc_unreachable();
1982}
1983
1984
1985/* Return a deep copy of statement STMT. All the operands from STMT
1986 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1987 and VUSE operand arrays are set to empty in the new copy. */
1988
1989gimple
1990gimple_copy (gimple stmt)
1991{
1992 enum gimple_code code = gimple_code (stmt);
1993 unsigned num_ops = gimple_num_ops (stmt);
1994 gimple copy = gimple_alloc (code, num_ops);
1995 unsigned i;
1996
1997 /* Shallow copy all the fields from STMT. */
1998 memcpy (copy, stmt, gimple_size (code));
1999
2000 /* If STMT has sub-statements, deep-copy them as well. */
2001 if (gimple_has_substatements (stmt))
2002 {
2003 gimple_seq new_seq;
2004 tree t;
2005
2006 switch (gimple_code (stmt))
2007 {
2008 case GIMPLE_BIND:
2009 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2010 gimple_bind_set_body (copy, new_seq);
2011 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2012 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2013 break;
2014
2015 case GIMPLE_CATCH:
2016 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2017 gimple_catch_set_handler (copy, new_seq);
2018 t = unshare_expr (gimple_catch_types (stmt));
2019 gimple_catch_set_types (copy, t);
2020 break;
2021
2022 case GIMPLE_EH_FILTER:
2023 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2024 gimple_eh_filter_set_failure (copy, new_seq);
2025 t = unshare_expr (gimple_eh_filter_types (stmt));
2026 gimple_eh_filter_set_types (copy, t);
2027 break;
2028
2029 case GIMPLE_TRY:
2030 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2031 gimple_try_set_eval (copy, new_seq);
2032 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2033 gimple_try_set_cleanup (copy, new_seq);
2034 break;
2035
2036 case GIMPLE_OMP_FOR:
2037 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2038 gimple_omp_for_set_pre_body (copy, new_seq);
2039 t = unshare_expr (gimple_omp_for_clauses (stmt));
2040 gimple_omp_for_set_clauses (copy, t);
2041 copy->gimple_omp_for.iter
2042 = GGC_NEWVEC (struct gimple_omp_for_iter,
2043 gimple_omp_for_collapse (stmt));
2044 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2045 {
2046 gimple_omp_for_set_cond (copy, i,
2047 gimple_omp_for_cond (stmt, i));
2048 gimple_omp_for_set_index (copy, i,
2049 gimple_omp_for_index (stmt, i));
2050 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2051 gimple_omp_for_set_initial (copy, i, t);
2052 t = unshare_expr (gimple_omp_for_final (stmt, i));
2053 gimple_omp_for_set_final (copy, i, t);
2054 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2055 gimple_omp_for_set_incr (copy, i, t);
2056 }
2057 goto copy_omp_body;
2058
2059 case GIMPLE_OMP_PARALLEL:
2060 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2061 gimple_omp_parallel_set_clauses (copy, t);
2062 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2063 gimple_omp_parallel_set_child_fn (copy, t);
2064 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2065 gimple_omp_parallel_set_data_arg (copy, t);
2066 goto copy_omp_body;
2067
2068 case GIMPLE_OMP_TASK:
2069 t = unshare_expr (gimple_omp_task_clauses (stmt));
2070 gimple_omp_task_set_clauses (copy, t);
2071 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2072 gimple_omp_task_set_child_fn (copy, t);
2073 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2074 gimple_omp_task_set_data_arg (copy, t);
2075 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2076 gimple_omp_task_set_copy_fn (copy, t);
2077 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2078 gimple_omp_task_set_arg_size (copy, t);
2079 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2080 gimple_omp_task_set_arg_align (copy, t);
2081 goto copy_omp_body;
2082
2083 case GIMPLE_OMP_CRITICAL:
2084 t = unshare_expr (gimple_omp_critical_name (stmt));
2085 gimple_omp_critical_set_name (copy, t);
2086 goto copy_omp_body;
2087
2088 case GIMPLE_OMP_SECTIONS:
2089 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2090 gimple_omp_sections_set_clauses (copy, t);
2091 t = unshare_expr (gimple_omp_sections_control (stmt));
2092 gimple_omp_sections_set_control (copy, t);
2093 /* FALLTHRU */
2094
2095 case GIMPLE_OMP_SINGLE:
2096 case GIMPLE_OMP_SECTION:
2097 case GIMPLE_OMP_MASTER:
2098 case GIMPLE_OMP_ORDERED:
2099 copy_omp_body:
2100 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2101 gimple_omp_set_body (copy, new_seq);
2102 break;
2103
2104 case GIMPLE_WITH_CLEANUP_EXPR:
2105 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2106 gimple_wce_set_cleanup (copy, new_seq);
2107 break;
2108
2109 default:
2110 gcc_unreachable ();
2111 }
2112 }
2113
2114 /* Make copy of operands. */
2115 if (num_ops > 0)
2116 {
2117 for (i = 0; i < num_ops; i++)
2118 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2119
6d5ec6f8 2120 /* Clear out SSA operand vectors on COPY. */
75a70cf9 2121 if (gimple_has_ops (stmt))
2122 {
2123 gimple_set_def_ops (copy, NULL);
2124 gimple_set_use_ops (copy, NULL);
75a70cf9 2125 }
2126
2127 if (gimple_has_mem_ops (stmt))
2128 {
dd277d48 2129 gimple_set_vdef (copy, gimple_vdef (stmt));
2130 gimple_set_vuse (copy, gimple_vuse (stmt));
75a70cf9 2131 }
2132
dd277d48 2133 /* SSA operands need to be updated. */
2134 gimple_set_modified (copy, true);
75a70cf9 2135 }
2136
2137 return copy;
2138}
2139
2140
2141/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2142 a MODIFIED field. */
2143
2144void
2145gimple_set_modified (gimple s, bool modifiedp)
2146{
2147 if (gimple_has_ops (s))
2148 {
2149 s->gsbase.modified = (unsigned) modifiedp;
2150
2151 if (modifiedp
2152 && cfun->gimple_df
2153 && is_gimple_call (s)
2154 && gimple_call_noreturn_p (s))
2155 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2156 }
2157}
2158
2159
2160/* Return true if statement S has side-effects. We consider a
2161 statement to have side effects if:
2162
2163 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2164 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2165
2166bool
2167gimple_has_side_effects (const_gimple s)
2168{
2169 unsigned i;
2170
9845d120 2171 if (is_gimple_debug (s))
2172 return false;
2173
75a70cf9 2174 /* We don't have to scan the arguments to check for
2175 volatile arguments, though, at present, we still
2176 do a scan to check for TREE_SIDE_EFFECTS. */
2177 if (gimple_has_volatile_ops (s))
2178 return true;
2179
2180 if (is_gimple_call (s))
2181 {
2182 unsigned nargs = gimple_call_num_args (s);
2183
2184 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2185 return true;
2186 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2187 /* An infinite loop is considered a side effect. */
2188 return true;
2189
2190 if (gimple_call_lhs (s)
2191 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2192 {
2193 gcc_assert (gimple_has_volatile_ops (s));
2194 return true;
2195 }
2196
2197 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2198 return true;
2199
2200 for (i = 0; i < nargs; i++)
2201 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2202 {
2203 gcc_assert (gimple_has_volatile_ops (s));
2204 return true;
2205 }
2206
2207 return false;
2208 }
2209 else
2210 {
2211 for (i = 0; i < gimple_num_ops (s); i++)
2212 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2213 {
2214 gcc_assert (gimple_has_volatile_ops (s));
2215 return true;
2216 }
2217 }
2218
2219 return false;
2220}
2221
2222/* Return true if the RHS of statement S has side effects.
2223 We may use it to determine if it is admissable to replace
2224 an assignment or call with a copy of a previously-computed
2225 value. In such cases, side-effects due the the LHS are
2226 preserved. */
2227
2228bool
2229gimple_rhs_has_side_effects (const_gimple s)
2230{
2231 unsigned i;
2232
2233 if (is_gimple_call (s))
2234 {
2235 unsigned nargs = gimple_call_num_args (s);
2236
2237 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2238 return true;
2239
2240 /* We cannot use gimple_has_volatile_ops here,
2241 because we must ignore a volatile LHS. */
2242 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2243 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2244 {
2245 gcc_assert (gimple_has_volatile_ops (s));
2246 return true;
2247 }
2248
2249 for (i = 0; i < nargs; i++)
2250 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2251 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2252 return true;
2253
2254 return false;
2255 }
2256 else if (is_gimple_assign (s))
2257 {
2258 /* Skip the first operand, the LHS. */
2259 for (i = 1; i < gimple_num_ops (s); i++)
2260 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2261 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2262 {
2263 gcc_assert (gimple_has_volatile_ops (s));
2264 return true;
2265 }
2266 }
9845d120 2267 else if (is_gimple_debug (s))
2268 return false;
75a70cf9 2269 else
2270 {
2271 /* For statements without an LHS, examine all arguments. */
2272 for (i = 0; i < gimple_num_ops (s); i++)
2273 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2274 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2275 {
2276 gcc_assert (gimple_has_volatile_ops (s));
2277 return true;
2278 }
2279 }
2280
2281 return false;
2282}
2283
2284
2285/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2286 Return true if S can trap. If INCLUDE_LHS is true and S is a
2287 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2288 Otherwise, only the RHS of the assignment is checked. */
2289
2290static bool
2291gimple_could_trap_p_1 (gimple s, bool include_lhs)
2292{
2293 unsigned i, start;
2294 tree t, div = NULL_TREE;
2295 enum tree_code op;
2296
2297 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2298
2299 for (i = start; i < gimple_num_ops (s); i++)
2300 if (tree_could_trap_p (gimple_op (s, i)))
2301 return true;
2302
2303 switch (gimple_code (s))
2304 {
2305 case GIMPLE_ASM:
2306 return gimple_asm_volatile_p (s);
2307
2308 case GIMPLE_CALL:
2309 t = gimple_call_fndecl (s);
2310 /* Assume that calls to weak functions may trap. */
2311 if (!t || !DECL_P (t) || DECL_WEAK (t))
2312 return true;
2313 return false;
2314
2315 case GIMPLE_ASSIGN:
2316 t = gimple_expr_type (s);
2317 op = gimple_assign_rhs_code (s);
2318 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2319 div = gimple_assign_rhs2 (s);
2320 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2321 (INTEGRAL_TYPE_P (t)
2322 && TYPE_OVERFLOW_TRAPS (t)),
2323 div));
2324
2325 default:
2326 break;
2327 }
2328
2329 return false;
2330
2331}
2332
2333
2334/* Return true if statement S can trap. */
2335
2336bool
2337gimple_could_trap_p (gimple s)
2338{
2339 return gimple_could_trap_p_1 (s, true);
2340}
2341
2342
2343/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2344
2345bool
2346gimple_assign_rhs_could_trap_p (gimple s)
2347{
2348 gcc_assert (is_gimple_assign (s));
2349 return gimple_could_trap_p_1 (s, false);
2350}
2351
2352
2353/* Print debugging information for gimple stmts generated. */
2354
2355void
2356dump_gimple_statistics (void)
2357{
2358#ifdef GATHER_STATISTICS
2359 int i, total_tuples = 0, total_bytes = 0;
2360
2361 fprintf (stderr, "\nGIMPLE statements\n");
2362 fprintf (stderr, "Kind Stmts Bytes\n");
2363 fprintf (stderr, "---------------------------------------\n");
2364 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2365 {
2366 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2367 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2368 total_tuples += gimple_alloc_counts[i];
2369 total_bytes += gimple_alloc_sizes[i];
2370 }
2371 fprintf (stderr, "---------------------------------------\n");
2372 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2373 fprintf (stderr, "---------------------------------------\n");
2374#else
2375 fprintf (stderr, "No gimple statistics\n");
2376#endif
2377}
2378
2379
75a70cf9 2380/* Return the number of operands needed on the RHS of a GIMPLE
2381 assignment for an expression with tree code CODE. */
2382
2383unsigned
2384get_gimple_rhs_num_ops (enum tree_code code)
2385{
2386 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2387
2388 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2389 return 1;
2390 else if (rhs_class == GIMPLE_BINARY_RHS)
2391 return 2;
2392 else
2393 gcc_unreachable ();
2394}
2395
2396#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2397 (unsigned char) \
2398 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2399 : ((TYPE) == tcc_binary \
2400 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2401 : ((TYPE) == tcc_constant \
2402 || (TYPE) == tcc_declaration \
2403 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2404 : ((SYM) == TRUTH_AND_EXPR \
2405 || (SYM) == TRUTH_OR_EXPR \
2406 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2407 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2408 : ((SYM) == COND_EXPR \
2409 || (SYM) == CONSTRUCTOR \
2410 || (SYM) == OBJ_TYPE_REF \
2411 || (SYM) == ASSERT_EXPR \
2412 || (SYM) == ADDR_EXPR \
2413 || (SYM) == WITH_SIZE_EXPR \
75a70cf9 2414 || (SYM) == SSA_NAME \
75a70cf9 2415 || (SYM) == POLYNOMIAL_CHREC \
2416 || (SYM) == DOT_PROD_EXPR \
2417 || (SYM) == VEC_COND_EXPR \
2418 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2419 : GIMPLE_INVALID_RHS),
2420#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2421
2422const unsigned char gimple_rhs_class_table[] = {
2423#include "all-tree.def"
2424};
2425
2426#undef DEFTREECODE
2427#undef END_OF_BASE_TREE_CODES
2428
2429/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2430
2431/* Validation of GIMPLE expressions. */
2432
2433/* Return true if OP is an acceptable tree node to be used as a GIMPLE
2434 operand. */
2435
2436bool
2437is_gimple_operand (const_tree op)
2438{
2439 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2440}
2441
75a70cf9 2442/* Returns true iff T is a valid RHS for an assignment to a renamed
2443 user -- or front-end generated artificial -- variable. */
2444
2445bool
2446is_gimple_reg_rhs (tree t)
2447{
47f11e84 2448 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
75a70cf9 2449}
2450
2451/* Returns true iff T is a valid RHS for an assignment to an un-renamed
2452 LHS, or for a call argument. */
2453
2454bool
2455is_gimple_mem_rhs (tree t)
2456{
2457 /* If we're dealing with a renamable type, either source or dest must be
2458 a renamed variable. */
2459 if (is_gimple_reg_type (TREE_TYPE (t)))
2460 return is_gimple_val (t);
2461 else
47f11e84 2462 return is_gimple_val (t) || is_gimple_lvalue (t);
75a70cf9 2463}
2464
2465/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2466
2467bool
2468is_gimple_lvalue (tree t)
2469{
2470 return (is_gimple_addressable (t)
2471 || TREE_CODE (t) == WITH_SIZE_EXPR
2472 /* These are complex lvalues, but don't have addresses, so they
2473 go here. */
2474 || TREE_CODE (t) == BIT_FIELD_REF);
2475}
2476
2477/* Return true if T is a GIMPLE condition. */
2478
2479bool
2480is_gimple_condexpr (tree t)
2481{
2482 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2483 && !tree_could_trap_p (t)
2484 && is_gimple_val (TREE_OPERAND (t, 0))
2485 && is_gimple_val (TREE_OPERAND (t, 1))));
2486}
2487
2488/* Return true if T is something whose address can be taken. */
2489
2490bool
2491is_gimple_addressable (tree t)
2492{
2493 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2494}
2495
2496/* Return true if T is a valid gimple constant. */
2497
2498bool
2499is_gimple_constant (const_tree t)
2500{
2501 switch (TREE_CODE (t))
2502 {
2503 case INTEGER_CST:
2504 case REAL_CST:
2505 case FIXED_CST:
2506 case STRING_CST:
2507 case COMPLEX_CST:
2508 case VECTOR_CST:
2509 return true;
2510
2511 /* Vector constant constructors are gimple invariant. */
2512 case CONSTRUCTOR:
2513 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2514 return TREE_CONSTANT (t);
2515 else
2516 return false;
2517
2518 default:
2519 return false;
2520 }
2521}
2522
2523/* Return true if T is a gimple address. */
2524
2525bool
2526is_gimple_address (const_tree t)
2527{
2528 tree op;
2529
2530 if (TREE_CODE (t) != ADDR_EXPR)
2531 return false;
2532
2533 op = TREE_OPERAND (t, 0);
2534 while (handled_component_p (op))
2535 {
2536 if ((TREE_CODE (op) == ARRAY_REF
2537 || TREE_CODE (op) == ARRAY_RANGE_REF)
2538 && !is_gimple_val (TREE_OPERAND (op, 1)))
2539 return false;
2540
2541 op = TREE_OPERAND (op, 0);
2542 }
2543
2544 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2545 return true;
2546
2547 switch (TREE_CODE (op))
2548 {
2549 case PARM_DECL:
2550 case RESULT_DECL:
2551 case LABEL_DECL:
2552 case FUNCTION_DECL:
2553 case VAR_DECL:
2554 case CONST_DECL:
2555 return true;
2556
2557 default:
2558 return false;
2559 }
2560}
2561
b9c94ed7 2562/* Strip out all handled components that produce invariant
2563 offsets. */
75a70cf9 2564
b9c94ed7 2565static const_tree
2566strip_invariant_refs (const_tree op)
75a70cf9 2567{
75a70cf9 2568 while (handled_component_p (op))
2569 {
2570 switch (TREE_CODE (op))
2571 {
2572 case ARRAY_REF:
2573 case ARRAY_RANGE_REF:
2574 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2575 || TREE_OPERAND (op, 2) != NULL_TREE
2576 || TREE_OPERAND (op, 3) != NULL_TREE)
b9c94ed7 2577 return NULL;
75a70cf9 2578 break;
2579
2580 case COMPONENT_REF:
2581 if (TREE_OPERAND (op, 2) != NULL_TREE)
b9c94ed7 2582 return NULL;
75a70cf9 2583 break;
2584
2585 default:;
2586 }
2587 op = TREE_OPERAND (op, 0);
2588 }
2589
b9c94ed7 2590 return op;
2591}
2592
2593/* Return true if T is a gimple invariant address. */
2594
2595bool
2596is_gimple_invariant_address (const_tree t)
2597{
2598 const_tree op;
2599
2600 if (TREE_CODE (t) != ADDR_EXPR)
2601 return false;
2602
2603 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2604
2605 return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op));
2606}
2607
2608/* Return true if T is a gimple invariant address at IPA level
2609 (so addresses of variables on stack are not allowed). */
2610
2611bool
2612is_gimple_ip_invariant_address (const_tree t)
2613{
2614 const_tree op;
2615
2616 if (TREE_CODE (t) != ADDR_EXPR)
2617 return false;
2618
2619 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2620
2621 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
75a70cf9 2622}
2623
2624/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2625 form of function invariant. */
2626
2627bool
2628is_gimple_min_invariant (const_tree t)
2629{
2630 if (TREE_CODE (t) == ADDR_EXPR)
2631 return is_gimple_invariant_address (t);
2632
2633 return is_gimple_constant (t);
2634}
2635
b9c94ed7 2636/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2637 form of gimple minimal invariant. */
2638
2639bool
2640is_gimple_ip_invariant (const_tree t)
2641{
2642 if (TREE_CODE (t) == ADDR_EXPR)
2643 return is_gimple_ip_invariant_address (t);
2644
2645 return is_gimple_constant (t);
2646}
2647
75a70cf9 2648/* Return true if T looks like a valid GIMPLE statement. */
2649
2650bool
2651is_gimple_stmt (tree t)
2652{
2653 const enum tree_code code = TREE_CODE (t);
2654
2655 switch (code)
2656 {
2657 case NOP_EXPR:
2658 /* The only valid NOP_EXPR is the empty statement. */
2659 return IS_EMPTY_STMT (t);
2660
2661 case BIND_EXPR:
2662 case COND_EXPR:
2663 /* These are only valid if they're void. */
2664 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2665
2666 case SWITCH_EXPR:
2667 case GOTO_EXPR:
2668 case RETURN_EXPR:
2669 case LABEL_EXPR:
2670 case CASE_LABEL_EXPR:
2671 case TRY_CATCH_EXPR:
2672 case TRY_FINALLY_EXPR:
2673 case EH_FILTER_EXPR:
2674 case CATCH_EXPR:
75a70cf9 2675 case ASM_EXPR:
75a70cf9 2676 case STATEMENT_LIST:
2677 case OMP_PARALLEL:
2678 case OMP_FOR:
2679 case OMP_SECTIONS:
2680 case OMP_SECTION:
2681 case OMP_SINGLE:
2682 case OMP_MASTER:
2683 case OMP_ORDERED:
2684 case OMP_CRITICAL:
2685 case OMP_TASK:
2686 /* These are always void. */
2687 return true;
2688
2689 case CALL_EXPR:
2690 case MODIFY_EXPR:
2691 case PREDICT_EXPR:
2692 /* These are valid regardless of their type. */
2693 return true;
2694
2695 default:
2696 return false;
2697 }
2698}
2699
2700/* Return true if T is a variable. */
2701
2702bool
2703is_gimple_variable (tree t)
2704{
2705 return (TREE_CODE (t) == VAR_DECL
2706 || TREE_CODE (t) == PARM_DECL
2707 || TREE_CODE (t) == RESULT_DECL
2708 || TREE_CODE (t) == SSA_NAME);
2709}
2710
2711/* Return true if T is a GIMPLE identifier (something with an address). */
2712
2713bool
2714is_gimple_id (tree t)
2715{
2716 return (is_gimple_variable (t)
2717 || TREE_CODE (t) == FUNCTION_DECL
2718 || TREE_CODE (t) == LABEL_DECL
2719 || TREE_CODE (t) == CONST_DECL
2720 /* Allow string constants, since they are addressable. */
2721 || TREE_CODE (t) == STRING_CST);
2722}
2723
2724/* Return true if TYPE is a suitable type for a scalar register variable. */
2725
2726bool
2727is_gimple_reg_type (tree type)
2728{
f09f132b 2729 return !AGGREGATE_TYPE_P (type);
75a70cf9 2730}
2731
2732/* Return true if T is a non-aggregate register variable. */
2733
2734bool
2735is_gimple_reg (tree t)
2736{
2737 if (TREE_CODE (t) == SSA_NAME)
2738 t = SSA_NAME_VAR (t);
2739
75a70cf9 2740 if (!is_gimple_variable (t))
2741 return false;
2742
2743 if (!is_gimple_reg_type (TREE_TYPE (t)))
2744 return false;
2745
2746 /* A volatile decl is not acceptable because we can't reuse it as
2747 needed. We need to copy it into a temp first. */
2748 if (TREE_THIS_VOLATILE (t))
2749 return false;
2750
2751 /* We define "registers" as things that can be renamed as needed,
2752 which with our infrastructure does not apply to memory. */
2753 if (needs_to_live_in_memory (t))
2754 return false;
2755
2756 /* Hard register variables are an interesting case. For those that
2757 are call-clobbered, we don't know where all the calls are, since
2758 we don't (want to) take into account which operations will turn
2759 into libcalls at the rtl level. For those that are call-saved,
2760 we don't currently model the fact that calls may in fact change
2761 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2762 level, and so miss variable changes that might imply. All around,
2763 it seems safest to not do too much optimization with these at the
2764 tree level at all. We'll have to rely on the rtl optimizers to
2765 clean this up, as there we've got all the appropriate bits exposed. */
2766 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2767 return false;
2768
f09f132b 2769 /* Complex and vector values must have been put into SSA-like form.
2770 That is, no assignments to the individual components. */
2771 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2772 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2773 return DECL_GIMPLE_REG_P (t);
2774
75a70cf9 2775 return true;
2776}
2777
2778
75a70cf9 2779/* Return true if T is a GIMPLE variable whose address is not needed. */
2780
2781bool
2782is_gimple_non_addressable (tree t)
2783{
2784 if (TREE_CODE (t) == SSA_NAME)
2785 t = SSA_NAME_VAR (t);
2786
2787 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2788}
2789
2790/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2791
2792bool
2793is_gimple_val (tree t)
2794{
2795 /* Make loads from volatiles and memory vars explicit. */
2796 if (is_gimple_variable (t)
2797 && is_gimple_reg_type (TREE_TYPE (t))
2798 && !is_gimple_reg (t))
2799 return false;
2800
75a70cf9 2801 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2802}
2803
2804/* Similarly, but accept hard registers as inputs to asm statements. */
2805
2806bool
2807is_gimple_asm_val (tree t)
2808{
2809 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2810 return true;
2811
2812 return is_gimple_val (t);
2813}
2814
2815/* Return true if T is a GIMPLE minimal lvalue. */
2816
2817bool
2818is_gimple_min_lval (tree t)
2819{
47f11e84 2820 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2821 return false;
75a70cf9 2822 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
2823}
2824
2825/* Return true if T is a typecast operation. */
2826
2827bool
2828is_gimple_cast (tree t)
2829{
2830 return (CONVERT_EXPR_P (t)
2831 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2832}
2833
2834/* Return true if T is a valid function operand of a CALL_EXPR. */
2835
2836bool
2837is_gimple_call_addr (tree t)
2838{
2839 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2840}
2841
2842/* If T makes a function call, return the corresponding CALL_EXPR operand.
2843 Otherwise, return NULL_TREE. */
2844
2845tree
2846get_call_expr_in (tree t)
2847{
2848 if (TREE_CODE (t) == MODIFY_EXPR)
2849 t = TREE_OPERAND (t, 1);
2850 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2851 t = TREE_OPERAND (t, 0);
2852 if (TREE_CODE (t) == CALL_EXPR)
2853 return t;
2854 return NULL_TREE;
2855}
2856
2857
2858/* Given a memory reference expression T, return its base address.
2859 The base address of a memory reference expression is the main
2860 object being referenced. For instance, the base address for
2861 'array[i].fld[j]' is 'array'. You can think of this as stripping
2862 away the offset part from a memory address.
2863
2864 This function calls handled_component_p to strip away all the inner
2865 parts of the memory reference until it reaches the base object. */
2866
2867tree
2868get_base_address (tree t)
2869{
2870 while (handled_component_p (t))
2871 t = TREE_OPERAND (t, 0);
2872
2873 if (SSA_VAR_P (t)
2874 || TREE_CODE (t) == STRING_CST
2875 || TREE_CODE (t) == CONSTRUCTOR
2876 || INDIRECT_REF_P (t))
2877 return t;
2878 else
2879 return NULL_TREE;
2880}
2881
2882void
2883recalculate_side_effects (tree t)
2884{
2885 enum tree_code code = TREE_CODE (t);
2886 int len = TREE_OPERAND_LENGTH (t);
2887 int i;
2888
2889 switch (TREE_CODE_CLASS (code))
2890 {
2891 case tcc_expression:
2892 switch (code)
2893 {
2894 case INIT_EXPR:
2895 case MODIFY_EXPR:
2896 case VA_ARG_EXPR:
2897 case PREDECREMENT_EXPR:
2898 case PREINCREMENT_EXPR:
2899 case POSTDECREMENT_EXPR:
2900 case POSTINCREMENT_EXPR:
2901 /* All of these have side-effects, no matter what their
2902 operands are. */
2903 return;
2904
2905 default:
2906 break;
2907 }
2908 /* Fall through. */
2909
2910 case tcc_comparison: /* a comparison expression */
2911 case tcc_unary: /* a unary arithmetic expression */
2912 case tcc_binary: /* a binary arithmetic expression */
2913 case tcc_reference: /* a reference */
2914 case tcc_vl_exp: /* a function call */
2915 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
2916 for (i = 0; i < len; ++i)
2917 {
2918 tree op = TREE_OPERAND (t, i);
2919 if (op && TREE_SIDE_EFFECTS (op))
2920 TREE_SIDE_EFFECTS (t) = 1;
2921 }
2922 break;
2923
d2305bfa 2924 case tcc_constant:
2925 /* No side-effects. */
2926 return;
2927
75a70cf9 2928 default:
75a70cf9 2929 gcc_unreachable ();
2930 }
2931}
2932
2933/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2934 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2935 we failed to create one. */
2936
2937tree
2938canonicalize_cond_expr_cond (tree t)
2939{
2940 /* For (bool)x use x != 0. */
2941 if (TREE_CODE (t) == NOP_EXPR
2942 && TREE_TYPE (t) == boolean_type_node)
2943 {
2944 tree top0 = TREE_OPERAND (t, 0);
2945 t = build2 (NE_EXPR, TREE_TYPE (t),
2946 top0, build_int_cst (TREE_TYPE (top0), 0));
2947 }
2948 /* For !x use x == 0. */
2949 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2950 {
2951 tree top0 = TREE_OPERAND (t, 0);
2952 t = build2 (EQ_EXPR, TREE_TYPE (t),
2953 top0, build_int_cst (TREE_TYPE (top0), 0));
2954 }
2955 /* For cmp ? 1 : 0 use cmp. */
2956 else if (TREE_CODE (t) == COND_EXPR
2957 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2958 && integer_onep (TREE_OPERAND (t, 1))
2959 && integer_zerop (TREE_OPERAND (t, 2)))
2960 {
2961 tree top0 = TREE_OPERAND (t, 0);
2962 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2963 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2964 }
2965
2966 if (is_gimple_condexpr (t))
2967 return t;
2968
2969 return NULL_TREE;
2970}
2971
09c20c11 2972/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2973 the positions marked by the set ARGS_TO_SKIP. */
2974
5afe38fe 2975gimple
74140efd 2976gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
5afe38fe 2977{
2978 int i;
2979 tree fn = gimple_call_fn (stmt);
2980 int nargs = gimple_call_num_args (stmt);
2981 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
2982 gimple new_stmt;
2983
2984 for (i = 0; i < nargs; i++)
2985 if (!bitmap_bit_p (args_to_skip, i))
2986 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
2987
2988 new_stmt = gimple_build_call_vec (fn, vargs);
2989 VEC_free (tree, heap, vargs);
2990 if (gimple_call_lhs (stmt))
2991 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2992
dd277d48 2993 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2994 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2995
5afe38fe 2996 gimple_set_block (new_stmt, gimple_block (stmt));
2997 if (gimple_has_location (stmt))
2998 gimple_set_location (new_stmt, gimple_location (stmt));
2999
3000 /* Carry all the flags to the new GIMPLE_CALL. */
3001 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3002 gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt));
3003 gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt));
3004 gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt));
3005 gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt));
3006 gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt));
dd277d48 3007
3008 gimple_set_modified (new_stmt, true);
3009
5afe38fe 3010 return new_stmt;
3011}
3012
dd277d48 3013
7bfefa9d 3014static hashval_t gimple_type_hash (const void *);
3015
3016/* Structure used to maintain a cache of some type pairs compared by
3017 gimple_types_compatible_p when comparing aggregate types. There are
3018 four possible values for SAME_P:
3019
3020 -2: The pair (T1, T2) has just been inserted in the table.
3021 -1: The pair (T1, T2) is currently being compared.
3022 0: T1 and T2 are different types.
3023 1: T1 and T2 are the same type.
3024
3025 This table is only used when comparing aggregate types to avoid
3026 infinite recursion due to self-referential types. */
3027struct type_pair_d
3028{
1fc0af12 3029 unsigned int uid1;
3030 unsigned int uid2;
7bfefa9d 3031 int same_p;
3032};
3033typedef struct type_pair_d *type_pair_t;
3034
3035/* Return a hash value for the type pair pointed-to by P. */
3036
3037static hashval_t
3038type_pair_hash (const void *p)
3039{
3040 const struct type_pair_d *pair = (const struct type_pair_d *) p;
1fc0af12 3041 hashval_t val1 = pair->uid1;
3042 hashval_t val2 = pair->uid2;
7bfefa9d 3043 return (iterative_hash_hashval_t (val2, val1)
3044 ^ iterative_hash_hashval_t (val1, val2));
3045}
3046
3047/* Compare two type pairs pointed-to by P1 and P2. */
3048
3049static int
3050type_pair_eq (const void *p1, const void *p2)
3051{
3052 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3053 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
1fc0af12 3054 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3055 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
7bfefa9d 3056}
3057
3058/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3059 entry if none existed. */
3060
3061static type_pair_t
1fc0af12 3062lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
7bfefa9d 3063{
3064 struct type_pair_d pair;
3065 type_pair_t p;
3066 void **slot;
3067
3068 if (*visited_p == NULL)
1fc0af12 3069 {
3070 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3071 gcc_obstack_init (ob_p);
3072 }
7bfefa9d 3073
1fc0af12 3074 pair.uid1 = TYPE_UID (t1);
3075 pair.uid2 = TYPE_UID (t2);
7bfefa9d 3076 slot = htab_find_slot (*visited_p, &pair, INSERT);
3077
3078 if (*slot)
3079 p = *((type_pair_t *) slot);
3080 else
3081 {
1fc0af12 3082 p = XOBNEW (ob_p, struct type_pair_d);
3083 p->uid1 = TYPE_UID (t1);
3084 p->uid2 = TYPE_UID (t2);
7bfefa9d 3085 p->same_p = -2;
3086 *slot = (void *) p;
3087 }
3088
3089 return p;
3090}
3091
3092
a9a597e0 3093/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3094 true then if any type has no name return false, otherwise return
3095 true if both types have no names. */
7bfefa9d 3096
3097static bool
a9a597e0 3098compare_type_names_p (tree t1, tree t2, bool for_completion_p)
7bfefa9d 3099{
3100 tree name1 = TYPE_NAME (t1);
3101 tree name2 = TYPE_NAME (t2);
3102
a9a597e0 3103 /* Consider anonymous types all unique for completion. */
3104 if (for_completion_p
3105 && (!name1 || !name2))
7bfefa9d 3106 return false;
3107
a9a597e0 3108 if (name1 && TREE_CODE (name1) == TYPE_DECL)
7bfefa9d 3109 {
3110 name1 = DECL_NAME (name1);
a9a597e0 3111 if (for_completion_p
3112 && !name1)
7bfefa9d 3113 return false;
3114 }
a9a597e0 3115 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
7bfefa9d 3116
a9a597e0 3117 if (name2 && TREE_CODE (name2) == TYPE_DECL)
7bfefa9d 3118 {
3119 name2 = DECL_NAME (name2);
a9a597e0 3120 if (for_completion_p
3121 && !name2)
7bfefa9d 3122 return false;
3123 }
a9a597e0 3124 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
7bfefa9d 3125
3126 /* Identifiers can be compared with pointer equality rather
3127 than a string comparison. */
3128 if (name1 == name2)
3129 return true;
3130
3131 return false;
3132}
3133
3134/* Return true if the field decls F1 and F2 are at the same offset. */
3135
3136static bool
3137compare_field_offset (tree f1, tree f2)
3138{
3139 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3140 return (operand_equal_p (DECL_FIELD_OFFSET (f1),
3141 DECL_FIELD_OFFSET (f2), 0)
3142 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3143 DECL_FIELD_BIT_OFFSET (f2)));
3144
3145 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3146 should be, so handle differing ones specially by decomposing
3147 the offset into a byte and bit offset manually. */
3148 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3149 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3150 {
3151 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3152 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3153 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3154 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3155 + bit_offset1 / BITS_PER_UNIT);
3156 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3157 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3158 + bit_offset2 / BITS_PER_UNIT);
3159 if (byte_offset1 != byte_offset2)
3160 return false;
3161 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3162 }
3163
3164 return false;
3165}
3166
3167/* Return 1 iff T1 and T2 are structurally identical.
3168 Otherwise, return 0. */
3169
66bd377c 3170static int
7bfefa9d 3171gimple_types_compatible_p (tree t1, tree t2)
3172{
3173 type_pair_t p = NULL;
3174
3175 /* Check first for the obvious case of pointer identity. */
3176 if (t1 == t2)
b612c537 3177 return 1;
7bfefa9d 3178
3179 /* Check that we have two types to compare. */
3180 if (t1 == NULL_TREE || t2 == NULL_TREE)
b612c537 3181 return 0;
7bfefa9d 3182
3183 /* Can't be the same type if the types don't have the same code. */
3184 if (TREE_CODE (t1) != TREE_CODE (t2))
b612c537 3185 return 0;
3186
3187 /* Can't be the same type if they have different CV qualifiers. */
3188 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3189 return 0;
7bfefa9d 3190
3191 /* Void types are always the same. */
3192 if (TREE_CODE (t1) == VOID_TYPE)
b612c537 3193 return 1;
7bfefa9d 3194
b612c537 3195 /* For numerical types do some simple checks before doing three
3196 hashtable queries. */
3197 if (INTEGRAL_TYPE_P (t1)
3198 || SCALAR_FLOAT_TYPE_P (t1)
3199 || FIXED_POINT_TYPE_P (t1)
3200 || TREE_CODE (t1) == VECTOR_TYPE
bc9c6c8a 3201 || TREE_CODE (t1) == COMPLEX_TYPE
3202 || TREE_CODE (t1) == OFFSET_TYPE)
b612c537 3203 {
3204 /* Can't be the same type if they have different alignment,
3205 sign, precision or mode. */
3206 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3207 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3208 || TYPE_MODE (t1) != TYPE_MODE (t2)
3209 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3210 return 0;
3211
3212 if (TREE_CODE (t1) == INTEGER_TYPE
3213 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3214 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3215 return 0;
3216
3217 /* That's all we need to check for float and fixed-point types. */
3218 if (SCALAR_FLOAT_TYPE_P (t1)
3219 || FIXED_POINT_TYPE_P (t1))
3220 return 1;
3221
3222 /* Perform cheap tail-recursion for vector and complex types. */
3223 if (TREE_CODE (t1) == VECTOR_TYPE
3224 || TREE_CODE (t1) == COMPLEX_TYPE)
3225 return gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2));
3226
3227 /* For integral types fall thru to more complex checks. */
3228 }
7bfefa9d 3229
3230 /* If the hash values of t1 and t2 are different the types can't
3231 possibly be the same. This helps keeping the type-pair hashtable
3232 small, only tracking comparisons for hash collisions. */
3233 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3234 return 0;
3235
3236 /* If we've visited this type pair before (in the case of aggregates
3237 with self-referential types), and we made a decision, return it. */
1fc0af12 3238 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
7bfefa9d 3239 if (p->same_p == 0 || p->same_p == 1)
3240 {
3241 /* We have already decided whether T1 and T2 are the
3242 same, return the cached result. */
3243 return p->same_p == 1;
3244 }
3245 else if (p->same_p == -1)
3246 {
3247 /* We are currently comparing this pair of types, assume
3248 that they are the same and let the caller decide. */
3249 return 1;
3250 }
3251
3252 gcc_assert (p->same_p == -2);
3253
3254 /* Mark the (T1, T2) comparison in progress. */
3255 p->same_p = -1;
3256
3257 /* If their attributes are not the same they can't be the same type. */
3258 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3259 goto different_types;
3260
7bfefa9d 3261 /* Do type-specific comparisons. */
3262 switch (TREE_CODE (t1))
3263 {
3264 case ARRAY_TYPE:
3265 /* Array types are the same if the element types are the same and
3266 the number of elements are the same. */
3267 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
b612c537 3268 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3269 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
7bfefa9d 3270 goto different_types;
3271 else
3272 {
3273 tree i1 = TYPE_DOMAIN (t1);
3274 tree i2 = TYPE_DOMAIN (t2);
3275
3276 /* For an incomplete external array, the type domain can be
3277 NULL_TREE. Check this condition also. */
3278 if (i1 == NULL_TREE && i2 == NULL_TREE)
3279 goto same_types;
3280 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3281 goto different_types;
3282 /* If for a complete array type the possibly gimplified sizes
3283 are different the types are different. */
3284 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3285 || (TYPE_SIZE (i1)
3286 && TYPE_SIZE (i2)
3287 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3288 goto different_types;
3289 else
3290 {
3291 tree min1 = TYPE_MIN_VALUE (i1);
3292 tree min2 = TYPE_MIN_VALUE (i2);
3293 tree max1 = TYPE_MAX_VALUE (i1);
3294 tree max2 = TYPE_MAX_VALUE (i2);
3295
3296 /* The minimum/maximum values have to be the same. */
3297 if ((min1 == min2
3298 || (min1 && min2 && operand_equal_p (min1, min2, 0)))
3299 && (max1 == max2
3300 || (max1 && max2 && operand_equal_p (max1, max2, 0))))
3301 goto same_types;
3302 else
3303 goto different_types;
3304 }
3305 }
3306
3307 case METHOD_TYPE:
3308 /* Method types should belong to the same class. */
3309 if (!gimple_types_compatible_p (TYPE_METHOD_BASETYPE (t1),
3310 TYPE_METHOD_BASETYPE (t2)))
3311 goto different_types;
3312
3313 /* Fallthru */
3314
3315 case FUNCTION_TYPE:
3316 /* Function types are the same if the return type and arguments types
3317 are the same. */
3318 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3319 goto different_types;
3320 else
3321 {
3322 if (!targetm.comp_type_attributes (t1, t2))
3323 goto different_types;
3324
3325 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3326 goto same_types;
3327 else
3328 {
3329 tree parms1, parms2;
3330
3331 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3332 parms1 && parms2;
3333 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3334 {
3335 if (!gimple_types_compatible_p (TREE_VALUE (parms1),
3336 TREE_VALUE (parms2)))
3337 goto different_types;
3338 }
3339
3340 if (parms1 || parms2)
3341 goto different_types;
3342
3343 goto same_types;
3344 }
3345 }
3346
bc9c6c8a 3347 case OFFSET_TYPE:
3348 {
3349 if (!gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
3350 || !gimple_types_compatible_p (TYPE_OFFSET_BASETYPE (t1),
3351 TYPE_OFFSET_BASETYPE (t2)))
3352 goto different_types;
3353
3354 goto same_types;
3355 }
3356
7bfefa9d 3357 case POINTER_TYPE:
3358 case REFERENCE_TYPE:
66bd377c 3359 {
3360 /* If the two pointers have different ref-all attributes,
3361 they can't be the same type. */
3362 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3363 goto different_types;
7bfefa9d 3364
66bd377c 3365 /* If one pointer points to an incomplete type variant of
3366 the other pointed-to type they are the same. */
3367 if (TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3368 && RECORD_OR_UNION_TYPE_P (TREE_TYPE (t1))
3369 && (!COMPLETE_TYPE_P (TREE_TYPE (t1))
3370 || !COMPLETE_TYPE_P (TREE_TYPE (t2)))
d508766f 3371 && compare_type_names_p (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
3372 TYPE_MAIN_VARIANT (TREE_TYPE (t2)), true))
66bd377c 3373 {
3374 /* Replace the pointed-to incomplete type with the
3375 complete one. */
3376 if (COMPLETE_TYPE_P (TREE_TYPE (t2)))
3377 TREE_TYPE (t1) = TREE_TYPE (t2);
3378 else
3379 TREE_TYPE (t2) = TREE_TYPE (t1);
7bfefa9d 3380 goto same_types;
66bd377c 3381 }
3382
3383 /* Otherwise, pointer and reference types are the same if the
3384 pointed-to types are the same. */
3385 if (gimple_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3386 goto same_types;
3387
3388 goto different_types;
3389 }
7bfefa9d 3390
b612c537 3391 case INTEGER_TYPE:
3392 case BOOLEAN_TYPE:
3393 {
3394 tree min1 = TYPE_MIN_VALUE (t1);
3395 tree max1 = TYPE_MAX_VALUE (t1);
3396 tree min2 = TYPE_MIN_VALUE (t2);
3397 tree max2 = TYPE_MAX_VALUE (t2);
3398 bool min_equal_p = false;
3399 bool max_equal_p = false;
3400
3401 /* If either type has a minimum value, the other type must
3402 have the same. */
3403 if (min1 == NULL_TREE && min2 == NULL_TREE)
3404 min_equal_p = true;
3405 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3406 min_equal_p = true;
3407
3408 /* Likewise, if either type has a maximum value, the other
3409 type must have the same. */
3410 if (max1 == NULL_TREE && max2 == NULL_TREE)
3411 max_equal_p = true;
3412 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3413 max_equal_p = true;
3414
3415 if (!min_equal_p || !max_equal_p)
3416 goto different_types;
3417
3418 goto same_types;
3419 }
3420
7bfefa9d 3421 case ENUMERAL_TYPE:
66bd377c 3422 {
b612c537 3423 /* FIXME lto, we cannot check bounds on enumeral types because
3424 different front ends will produce different values.
3425 In C, enumeral types are integers, while in C++ each element
3426 will have its own symbolic value. We should decide how enums
3427 are to be represented in GIMPLE and have each front end lower
3428 to that. */
66bd377c 3429 tree v1, v2;
7bfefa9d 3430
b612c537 3431 /* For enumeral types, all the values must be the same. */
66bd377c 3432 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3433 goto same_types;
7bfefa9d 3434
66bd377c 3435 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3436 v1 && v2;
3437 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3438 {
3439 tree c1 = TREE_VALUE (v1);
3440 tree c2 = TREE_VALUE (v2);
7bfefa9d 3441
66bd377c 3442 if (TREE_CODE (c1) == CONST_DECL)
3443 c1 = DECL_INITIAL (c1);
7bfefa9d 3444
66bd377c 3445 if (TREE_CODE (c2) == CONST_DECL)
3446 c2 = DECL_INITIAL (c2);
7bfefa9d 3447
66bd377c 3448 if (tree_int_cst_equal (c1, c2) != 1)
3449 goto different_types;
3450 }
7bfefa9d 3451
66bd377c 3452 /* If one enumeration has more values than the other, they
3453 are not the same. */
3454 if (v1 || v2)
3455 goto different_types;
7bfefa9d 3456
66bd377c 3457 goto same_types;
3458 }
7bfefa9d 3459
3460 case RECORD_TYPE:
3461 case UNION_TYPE:
3462 case QUAL_UNION_TYPE:
66bd377c 3463 {
3464 tree f1, f2;
7bfefa9d 3465
66bd377c 3466 /* If one type requires structural equality checks and the
3467 other doesn't, do not merge the types. */
3468 if (TYPE_STRUCTURAL_EQUALITY_P (t1)
3469 != TYPE_STRUCTURAL_EQUALITY_P (t2))
3470 goto different_types;
65162f7e 3471
66bd377c 3472 /* The struct tags shall compare equal. */
3473 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3474 TYPE_MAIN_VARIANT (t2), false))
3475 goto different_types;
a9a597e0 3476
66bd377c 3477 /* For aggregate types, all the fields must be the same. */
3478 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3479 f1 && f2;
3480 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3481 {
3482 /* The fields must have the same name, offset and type. */
3483 if (DECL_NAME (f1) != DECL_NAME (f2)
b612c537 3484 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
66bd377c 3485 || !compare_field_offset (f1, f2)
3486 || !gimple_types_compatible_p (TREE_TYPE (f1),
3487 TREE_TYPE (f2)))
3488 goto different_types;
3489 }
7bfefa9d 3490
66bd377c 3491 /* If one aggregate has more fields than the other, they
3492 are not the same. */
3493 if (f1 || f2)
3494 goto different_types;
7bfefa9d 3495
66bd377c 3496 goto same_types;
3497 }
7bfefa9d 3498
7bfefa9d 3499 default:
b612c537 3500 gcc_unreachable ();
7bfefa9d 3501 }
3502
3503 /* Common exit path for types that are not compatible. */
3504different_types:
b612c537 3505 p->same_p = 0;
7bfefa9d 3506 return 0;
3507
3508 /* Common exit path for types that are compatible. */
3509same_types:
b612c537 3510 p->same_p = 1;
7bfefa9d 3511 return 1;
3512}
3513
3514
3515
3516
3517/* Per pointer state for the SCC finding. The on_sccstack flag
3518 is not strictly required, it is true when there is no hash value
3519 recorded for the type and false otherwise. But querying that
3520 is slower. */
3521
3522struct sccs
3523{
3524 unsigned int dfsnum;
3525 unsigned int low;
3526 bool on_sccstack;
3527 hashval_t hash;
3528};
3529
3530static unsigned int next_dfs_num;
3531
3532static hashval_t
3533iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3534 struct pointer_map_t *, struct obstack *);
3535
3536/* DFS visit the edge from the callers type with state *STATE to T.
3537 Update the callers type hash V with the hash for T if it is not part
3538 of the SCC containing the callers type and return it.
3539 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3540
3541static hashval_t
3542visit (tree t, struct sccs *state, hashval_t v,
3543 VEC (tree, heap) **sccstack,
3544 struct pointer_map_t *sccstate,
3545 struct obstack *sccstate_obstack)
3546{
3547 struct sccs *cstate = NULL;
3548 void **slot;
3549
3550 /* If there is a hash value recorded for this type then it can't
3551 possibly be part of our parent SCC. Simply mix in its hash. */
3552 if ((slot = pointer_map_contains (type_hash_cache, t)))
3553 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3554
3555 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3556 cstate = (struct sccs *)*slot;
3557 if (!cstate)
3558 {
3559 hashval_t tem;
3560 /* Not yet visited. DFS recurse. */
3561 tem = iterative_hash_gimple_type (t, v,
3562 sccstack, sccstate, sccstate_obstack);
3563 if (!cstate)
3564 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3565 state->low = MIN (state->low, cstate->low);
3566 /* If the type is no longer on the SCC stack and thus is not part
3567 of the parents SCC mix in its hash value. Otherwise we will
3568 ignore the type for hashing purposes and return the unaltered
3569 hash value. */
3570 if (!cstate->on_sccstack)
3571 return tem;
3572 }
3573 if (cstate->dfsnum < state->dfsnum
3574 && cstate->on_sccstack)
3575 state->low = MIN (cstate->dfsnum, state->low);
3576
3577 /* We are part of our parents SCC, skip this type during hashing
3578 and return the unaltered hash value. */
3579 return v;
3580}
3581
a9a597e0 3582/* Hash NAME with the previous hash value V and return it. */
7bfefa9d 3583
3584static hashval_t
a9a597e0 3585iterative_hash_name (tree name, hashval_t v)
7bfefa9d 3586{
7bfefa9d 3587 if (!name)
3588 return v;
3589 if (TREE_CODE (name) == TYPE_DECL)
3590 name = DECL_NAME (name);
3591 if (!name)
3592 return v;
3593 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
7bfefa9d 3594 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3595}
3596
3597/* Returning a hash value for gimple type TYPE combined with VAL.
3598 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3599
3600 To hash a type we end up hashing in types that are reachable.
3601 Through pointers we can end up with cycles which messes up the
3602 required property that we need to compute the same hash value
3603 for structurally equivalent types. To avoid this we have to
3604 hash all types in a cycle (the SCC) in a commutative way. The
3605 easiest way is to not mix in the hashes of the SCC members at
3606 all. To make this work we have to delay setting the hash
3607 values of the SCC until it is complete. */
3608
3609static hashval_t
3610iterative_hash_gimple_type (tree type, hashval_t val,
3611 VEC(tree, heap) **sccstack,
3612 struct pointer_map_t *sccstate,
3613 struct obstack *sccstate_obstack)
3614{
3615 hashval_t v;
3616 void **slot;
3617 struct sccs *state;
3618
3619#ifdef ENABLE_CHECKING
3620 /* Not visited during this DFS walk nor during previous walks. */
3621 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3622 && !pointer_map_contains (sccstate, type));
3623#endif
3624 state = XOBNEW (sccstate_obstack, struct sccs);
3625 *pointer_map_insert (sccstate, type) = state;
3626
3627 VEC_safe_push (tree, heap, *sccstack, type);
3628 state->dfsnum = next_dfs_num++;
3629 state->low = state->dfsnum;
3630 state->on_sccstack = true;
3631
3632 /* Combine a few common features of types so that types are grouped into
3633 smaller sets; when searching for existing matching types to merge,
3634 only existing types having the same features as the new type will be
3635 checked. */
3636 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
3637 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
3638 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
3639
3640 /* Do not hash the types size as this will cause differences in
3641 hash values for the complete vs. the incomplete type variant. */
3642
3643 /* Incorporate common features of numerical types. */
3644 if (INTEGRAL_TYPE_P (type)
3645 || SCALAR_FLOAT_TYPE_P (type)
3646 || FIXED_POINT_TYPE_P (type))
3647 {
3648 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
3649 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
3650 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
3651 }
3652
3653 /* For pointer and reference types, fold in information about the type
3654 pointed to but do not recurse into possibly incomplete types to
3655 avoid hash differences for complete vs. incomplete types. */
3656 if (POINTER_TYPE_P (type))
3657 {
65162f7e 3658 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
7bfefa9d 3659 {
3660 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
a9a597e0 3661 v = iterative_hash_name
3662 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
7bfefa9d 3663 }
3664 else
3665 v = visit (TREE_TYPE (type), state, v,
3666 sccstack, sccstate, sccstate_obstack);
3667 }
3668
f9a5c96c 3669 /* For integer types hash the types min/max values and the string flag. */
3670 if (TREE_CODE (type) == INTEGER_TYPE)
3671 {
3672 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
3673 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
3674 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3675 }
3676
3677 /* For array types hash their domain and the string flag. */
3678 if (TREE_CODE (type) == ARRAY_TYPE
3679 && TYPE_DOMAIN (type))
3680 {
3681 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
3682 v = visit (TYPE_DOMAIN (type), state, v,
3683 sccstack, sccstate, sccstate_obstack);
3684 }
3685
3686 /* Recurse for aggregates with a single element type. */
7bfefa9d 3687 if (TREE_CODE (type) == ARRAY_TYPE
3688 || TREE_CODE (type) == COMPLEX_TYPE
3689 || TREE_CODE (type) == VECTOR_TYPE)
3690 v = visit (TREE_TYPE (type), state, v,
3691 sccstack, sccstate, sccstate_obstack);
3692
3693 /* Incorporate function return and argument types. */
3694 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
3695 {
3696 unsigned na;
3697 tree p;
3698
3699 /* For method types also incorporate their parent class. */
3700 if (TREE_CODE (type) == METHOD_TYPE)
3701 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
3702 sccstack, sccstate, sccstate_obstack);
3703
3704 v = visit (TREE_TYPE (type), state, v,
3705 sccstack, sccstate, sccstate_obstack);
3706
3707 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
3708 {
3709 v = visit (TREE_VALUE (p), state, v,
3710 sccstack, sccstate, sccstate_obstack);
3711 na++;
3712 }
3713
3714 v = iterative_hash_hashval_t (na, v);
3715 }
3716
3717 if (TREE_CODE (type) == RECORD_TYPE
3718 || TREE_CODE (type) == UNION_TYPE
3719 || TREE_CODE (type) == QUAL_UNION_TYPE)
3720 {
3721 unsigned nf;
3722 tree f;
3723
a9a597e0 3724 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
7bfefa9d 3725
3726 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
3727 {
a9a597e0 3728 v = iterative_hash_name (DECL_NAME (f), v);
7bfefa9d 3729 v = visit (TREE_TYPE (f), state, v,
3730 sccstack, sccstate, sccstate_obstack);
3731 nf++;
3732 }
3733
3734 v = iterative_hash_hashval_t (nf, v);
3735 }
3736
3737 /* Record hash for us. */
3738 state->hash = v;
3739
3740 /* See if we found an SCC. */
3741 if (state->low == state->dfsnum)
3742 {
3743 tree x;
3744
3745 /* Pop off the SCC and set its hash values. */
3746 do
3747 {
3748 struct sccs *cstate;
3749 x = VEC_pop (tree, *sccstack);
3750 gcc_assert (!pointer_map_contains (type_hash_cache, x));
3751 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3752 cstate->on_sccstack = false;
3753 slot = pointer_map_insert (type_hash_cache, x);
3754 *slot = (void *) (size_t) cstate->hash;
3755 }
3756 while (x != type);
3757 }
3758
3759 return iterative_hash_hashval_t (v, val);
3760}
3761
3762
3763/* Returns a hash value for P (assumed to be a type). The hash value
3764 is computed using some distinguishing features of the type. Note
3765 that we cannot use pointer hashing here as we may be dealing with
3766 two distinct instances of the same type.
3767
3768 This function should produce the same hash value for two compatible
3769 types according to gimple_types_compatible_p. */
3770
3771static hashval_t
3772gimple_type_hash (const void *p)
3773{
90e70538 3774 const_tree t = (const_tree) p;
7bfefa9d 3775 VEC(tree, heap) *sccstack = NULL;
3776 struct pointer_map_t *sccstate;
3777 struct obstack sccstate_obstack;
3778 hashval_t val;
3779 void **slot;
3780
3781 if (type_hash_cache == NULL)
3782 type_hash_cache = pointer_map_create ();
3783
3784 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
3785 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
3786
3787 /* Perform a DFS walk and pre-hash all reachable types. */
3788 next_dfs_num = 1;
3789 sccstate = pointer_map_create ();
3790 gcc_obstack_init (&sccstate_obstack);
90e70538 3791 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
7bfefa9d 3792 &sccstack, sccstate, &sccstate_obstack);
3793 VEC_free (tree, heap, sccstack);
3794 pointer_map_destroy (sccstate);
3795 obstack_free (&sccstate_obstack, NULL);
3796
3797 return val;
3798}
3799
3800
3801/* Returns nonzero if P1 and P2 are equal. */
3802
3803static int
3804gimple_type_eq (const void *p1, const void *p2)
3805{
3806 const_tree t1 = (const_tree) p1;
3807 const_tree t2 = (const_tree) p2;
3808 return gimple_types_compatible_p (CONST_CAST_TREE (t1), CONST_CAST_TREE (t2));
3809}
3810
3811
3812/* Register type T in the global type table gimple_types.
3813 If another type T', compatible with T, already existed in
3814 gimple_types then return T', otherwise return T. This is used by
3815 LTO to merge identical types read from different TUs. */
3816
3817tree
3818gimple_register_type (tree t)
3819{
3820 void **slot;
3821
3822 gcc_assert (TYPE_P (t));
3823
b816f77f 3824 /* Always register the main variant first. This is important so we
3825 pick up the non-typedef variants as canonical, otherwise we'll end
3826 up taking typedef ids for structure tags during comparison. */
3827 if (TYPE_MAIN_VARIANT (t) != t)
3828 gimple_register_type (TYPE_MAIN_VARIANT (t));
3829
7bfefa9d 3830 if (gimple_types == NULL)
3831 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
3832
3833 slot = htab_find_slot (gimple_types, t, INSERT);
3834 if (*slot
3835 && *(tree *)slot != t)
3836 {
3837 tree new_type = (tree) *((tree *) slot);
3838
3839 /* Do not merge types with different addressability. */
3840 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
3841
3842 /* If t is not its main variant then make t unreachable from its
3843 main variant list. Otherwise we'd queue up a lot of duplicates
3844 there. */
3845 if (t != TYPE_MAIN_VARIANT (t))
3846 {
3847 tree tem = TYPE_MAIN_VARIANT (t);
3848 while (tem && TYPE_NEXT_VARIANT (tem) != t)
3849 tem = TYPE_NEXT_VARIANT (tem);
3850 if (tem)
3851 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
3852 TYPE_NEXT_VARIANT (t) = NULL_TREE;
3853 }
3854
3855 /* If we are a pointer then remove us from the pointer-to or
3856 reference-to chain. Otherwise we'd queue up a lot of duplicates
3857 there. */
3858 if (TREE_CODE (t) == POINTER_TYPE)
3859 {
3860 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
3861 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
3862 else
3863 {
3864 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
3865 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
3866 tem = TYPE_NEXT_PTR_TO (tem);
3867 if (tem)
3868 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
3869 }
3870 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
3871 }
3872 else if (TREE_CODE (t) == REFERENCE_TYPE)
3873 {
3874 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
3875 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
3876 else
3877 {
3878 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
3879 while (tem && TYPE_NEXT_REF_TO (tem) != t)
3880 tem = TYPE_NEXT_REF_TO (tem);
3881 if (tem)
3882 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
3883 }
3884 TYPE_NEXT_REF_TO (t) = NULL_TREE;
3885 }
3886
3887 t = new_type;
3888 }
3889 else
3890 *slot = (void *) t;
3891
3892 return t;
3893}
3894
3895
3896/* Show statistics on references to the global type table gimple_types. */
3897
3898void
3899print_gimple_types_stats (void)
3900{
3901 if (gimple_types)
3902 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
3903 "%ld searches, %ld collisions (ratio: %f)\n",
3904 (long) htab_size (gimple_types),
3905 (long) htab_elements (gimple_types),
3906 (long) gimple_types->searches,
3907 (long) gimple_types->collisions,
3908 htab_collisions (gimple_types));
3909 else
3910 fprintf (stderr, "GIMPLE type table is empty\n");
3911 if (gtc_visited)
7366cbe7 3912 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
3913 "elements, %ld searches, %ld collisions (ratio: %f)\n",
7bfefa9d 3914 (long) htab_size (gtc_visited),
3915 (long) htab_elements (gtc_visited),
3916 (long) gtc_visited->searches,
3917 (long) gtc_visited->collisions,
3918 htab_collisions (gtc_visited));
3919 else
3920 fprintf (stderr, "GIMPLE type comparison table is empty\n");
3921}
3922
7366cbe7 3923/* Free the gimple type hashtables used for LTO type merging. */
3924
3925void
3926free_gimple_type_tables (void)
3927{
3928 /* Last chance to print stats for the tables. */
3929 if (flag_lto_report)
3930 print_gimple_types_stats ();
3931
3932 if (gimple_types)
3933 {
3934 htab_delete (gimple_types);
3935 gimple_types = NULL;
3936 }
3937 if (type_hash_cache)
3938 {
3939 pointer_map_destroy (type_hash_cache);
3940 type_hash_cache = NULL;
3941 }
3942 if (gtc_visited)
3943 {
3944 htab_delete (gtc_visited);
1fc0af12 3945 obstack_free (&gtc_ob, NULL);
7366cbe7 3946 gtc_visited = NULL;
3947 }
3948}
3949
7bfefa9d 3950
3951/* Return a type the same as TYPE except unsigned or
3952 signed according to UNSIGNEDP. */
3953
3954static tree
3955gimple_signed_or_unsigned_type (bool unsignedp, tree type)
3956{
3957 tree type1;
3958
3959 type1 = TYPE_MAIN_VARIANT (type);
3960 if (type1 == signed_char_type_node
3961 || type1 == char_type_node
3962 || type1 == unsigned_char_type_node)
3963 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3964 if (type1 == integer_type_node || type1 == unsigned_type_node)
3965 return unsignedp ? unsigned_type_node : integer_type_node;
3966 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
3967 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
3968 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
3969 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
3970 if (type1 == long_long_integer_type_node
3971 || type1 == long_long_unsigned_type_node)
3972 return unsignedp
3973 ? long_long_unsigned_type_node
3974 : long_long_integer_type_node;
3975#if HOST_BITS_PER_WIDE_INT >= 64
3976 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
3977 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
3978#endif
3979 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
3980 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
3981 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
3982 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
3983 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
3984 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
3985 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
3986 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
3987
3988#define GIMPLE_FIXED_TYPES(NAME) \
3989 if (type1 == short_ ## NAME ## _type_node \
3990 || type1 == unsigned_short_ ## NAME ## _type_node) \
3991 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
3992 : short_ ## NAME ## _type_node; \
3993 if (type1 == NAME ## _type_node \
3994 || type1 == unsigned_ ## NAME ## _type_node) \
3995 return unsignedp ? unsigned_ ## NAME ## _type_node \
3996 : NAME ## _type_node; \
3997 if (type1 == long_ ## NAME ## _type_node \
3998 || type1 == unsigned_long_ ## NAME ## _type_node) \
3999 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4000 : long_ ## NAME ## _type_node; \
4001 if (type1 == long_long_ ## NAME ## _type_node \
4002 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4003 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4004 : long_long_ ## NAME ## _type_node;
4005
4006#define GIMPLE_FIXED_MODE_TYPES(NAME) \
4007 if (type1 == NAME ## _type_node \
4008 || type1 == u ## NAME ## _type_node) \
4009 return unsignedp ? u ## NAME ## _type_node \
4010 : NAME ## _type_node;
4011
4012#define GIMPLE_FIXED_TYPES_SAT(NAME) \
4013 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4014 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4015 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4016 : sat_ ## short_ ## NAME ## _type_node; \
4017 if (type1 == sat_ ## NAME ## _type_node \
4018 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4019 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4020 : sat_ ## NAME ## _type_node; \
4021 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4022 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4023 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4024 : sat_ ## long_ ## NAME ## _type_node; \
4025 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4026 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4027 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4028 : sat_ ## long_long_ ## NAME ## _type_node;
4029
4030#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4031 if (type1 == sat_ ## NAME ## _type_node \
4032 || type1 == sat_ ## u ## NAME ## _type_node) \
4033 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4034 : sat_ ## NAME ## _type_node;
4035
4036 GIMPLE_FIXED_TYPES (fract);
4037 GIMPLE_FIXED_TYPES_SAT (fract);
4038 GIMPLE_FIXED_TYPES (accum);
4039 GIMPLE_FIXED_TYPES_SAT (accum);
4040
4041 GIMPLE_FIXED_MODE_TYPES (qq);
4042 GIMPLE_FIXED_MODE_TYPES (hq);
4043 GIMPLE_FIXED_MODE_TYPES (sq);
4044 GIMPLE_FIXED_MODE_TYPES (dq);
4045 GIMPLE_FIXED_MODE_TYPES (tq);
4046 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4047 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4048 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4049 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4050 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4051 GIMPLE_FIXED_MODE_TYPES (ha);
4052 GIMPLE_FIXED_MODE_TYPES (sa);
4053 GIMPLE_FIXED_MODE_TYPES (da);
4054 GIMPLE_FIXED_MODE_TYPES (ta);
4055 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4056 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4057 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4058 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4059
4060 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4061 the precision; they have precision set to match their range, but
4062 may use a wider mode to match an ABI. If we change modes, we may
4063 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4064 the precision as well, so as to yield correct results for
4065 bit-field types. C++ does not have these separate bit-field
4066 types, and producing a signed or unsigned variant of an
4067 ENUMERAL_TYPE may cause other problems as well. */
4068 if (!INTEGRAL_TYPE_P (type)
4069 || TYPE_UNSIGNED (type) == unsignedp)
4070 return type;
4071
4072#define TYPE_OK(node) \
4073 (TYPE_MODE (type) == TYPE_MODE (node) \
4074 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4075 if (TYPE_OK (signed_char_type_node))
4076 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4077 if (TYPE_OK (integer_type_node))
4078 return unsignedp ? unsigned_type_node : integer_type_node;
4079 if (TYPE_OK (short_integer_type_node))
4080 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4081 if (TYPE_OK (long_integer_type_node))
4082 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4083 if (TYPE_OK (long_long_integer_type_node))
4084 return (unsignedp
4085 ? long_long_unsigned_type_node
4086 : long_long_integer_type_node);
4087
4088#if HOST_BITS_PER_WIDE_INT >= 64
4089 if (TYPE_OK (intTI_type_node))
4090 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4091#endif
4092 if (TYPE_OK (intDI_type_node))
4093 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4094 if (TYPE_OK (intSI_type_node))
4095 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4096 if (TYPE_OK (intHI_type_node))
4097 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4098 if (TYPE_OK (intQI_type_node))
4099 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4100
4101#undef GIMPLE_FIXED_TYPES
4102#undef GIMPLE_FIXED_MODE_TYPES
4103#undef GIMPLE_FIXED_TYPES_SAT
4104#undef GIMPLE_FIXED_MODE_TYPES_SAT
4105#undef TYPE_OK
4106
4107 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4108}
4109
4110
4111/* Return an unsigned type the same as TYPE in other respects. */
4112
4113tree
4114gimple_unsigned_type (tree type)
4115{
4116 return gimple_signed_or_unsigned_type (true, type);
4117}
4118
4119
4120/* Return a signed type the same as TYPE in other respects. */
4121
4122tree
4123gimple_signed_type (tree type)
4124{
4125 return gimple_signed_or_unsigned_type (false, type);
4126}
4127
4128
4129/* Return the typed-based alias set for T, which may be an expression
4130 or a type. Return -1 if we don't do anything special. */
4131
4132alias_set_type
4133gimple_get_alias_set (tree t)
4134{
4135 tree u;
4136
4137 /* Permit type-punning when accessing a union, provided the access
4138 is directly through the union. For example, this code does not
4139 permit taking the address of a union member and then storing
4140 through it. Even the type-punning allowed here is a GCC
4141 extension, albeit a common and useful one; the C standard says
4142 that such accesses have implementation-defined behavior. */
4143 for (u = t;
4144 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4145 u = TREE_OPERAND (u, 0))
4146 if (TREE_CODE (u) == COMPONENT_REF
4147 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4148 return 0;
4149
4150 /* That's all the expressions we handle specially. */
4151 if (!TYPE_P (t))
4152 return -1;
4153
4154 /* For convenience, follow the C standard when dealing with
4155 character types. Any object may be accessed via an lvalue that
4156 has character type. */
4157 if (t == char_type_node
4158 || t == signed_char_type_node
4159 || t == unsigned_char_type_node)
4160 return 0;
4161
4162 /* Allow aliasing between signed and unsigned variants of the same
4163 type. We treat the signed variant as canonical. */
4164 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4165 {
4166 tree t1 = gimple_signed_type (t);
4167
4168 /* t1 == t can happen for boolean nodes which are always unsigned. */
4169 if (t1 != t)
4170 return get_alias_set (t1);
4171 }
4172 else if (POINTER_TYPE_P (t))
4173 {
7b7fcfe1 4174 /* From the common C and C++ langhook implementation:
7bfefa9d 4175
7b7fcfe1 4176 Unfortunately, there is no canonical form of a pointer type.
7bfefa9d 4177 In particular, if we have `typedef int I', then `int *', and
4178 `I *' are different types. So, we have to pick a canonical
4179 representative. We do this below.
4180
4181 Technically, this approach is actually more conservative that
4182 it needs to be. In particular, `const int *' and `int *'
4183 should be in different alias sets, according to the C and C++
4184 standard, since their types are not the same, and so,
4185 technically, an `int **' and `const int **' cannot point at
4186 the same thing.
4187
4188 But, the standard is wrong. In particular, this code is
4189 legal C++:
4190
4191 int *ip;
4192 int **ipp = &ip;
4193 const int* const* cipp = ipp;
4194 And, it doesn't make sense for that to be legal unless you
4195 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4196 the pointed-to types. This issue has been reported to the
4197 C++ committee. */
7b7fcfe1 4198
4199 /* In addition to the above canonicalization issue with LTO
4200 we should also canonicalize `T (*)[]' to `T *' avoiding
4201 alias issues with pointer-to element types and pointer-to
4202 array types.
4203
4204 Likewise we need to deal with the situation of incomplete
4205 pointed-to types and make `*(struct X **)&a' and
4206 `*(struct X {} **)&a' alias. Otherwise we will have to
4207 guarantee that all pointer-to incomplete type variants
4208 will be replaced by pointer-to complete type variants if
4209 they are available.
4210
4211 With LTO the convenient situation of using `void *' to
4212 access and store any pointer type will also become
5ae73b5a 4213 more apparent (and `void *' is just another pointer-to
7b7fcfe1 4214 incomplete type). Assigning alias-set zero to `void *'
4215 and all pointer-to incomplete types is a not appealing
4216 solution. Assigning an effective alias-set zero only
4217 affecting pointers might be - by recording proper subset
4218 relationships of all pointer alias-sets.
4219
4220 Pointer-to function types are another grey area which
4221 needs caution. Globbing them all into one alias-set
4222 or the above effective zero set would work. */
4223
4224 /* For now just assign the same alias-set to all pointers.
4225 That's simple and avoids all the above problems. */
4226 if (t != ptr_type_node)
4227 return get_alias_set (ptr_type_node);
7bfefa9d 4228 }
4229
4230 return -1;
4231}
4232
4233
dd277d48 4234/* Data structure used to count the number of dereferences to PTR
4235 inside an expression. */
4236struct count_ptr_d
4237{
4238 tree ptr;
4239 unsigned num_stores;
4240 unsigned num_loads;
4241};
4242
4243/* Helper for count_uses_and_derefs. Called by walk_tree to look for
4244 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4245
4246static tree
4247count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4248{
4249 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4250 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4251
4252 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4253 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4254 the address of 'fld' as 'ptr + offsetof(fld)'. */
4255 if (TREE_CODE (*tp) == ADDR_EXPR)
4256 {
4257 *walk_subtrees = 0;
4258 return NULL_TREE;
4259 }
4260
4261 if (INDIRECT_REF_P (*tp) && TREE_OPERAND (*tp, 0) == count_p->ptr)
4262 {
4263 if (wi_p->is_lhs)
4264 count_p->num_stores++;
4265 else
4266 count_p->num_loads++;
4267 }
4268
4269 return NULL_TREE;
4270}
4271
4272/* Count the number of direct and indirect uses for pointer PTR in
4273 statement STMT. The number of direct uses is stored in
4274 *NUM_USES_P. Indirect references are counted separately depending
4275 on whether they are store or load operations. The counts are
4276 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4277
4278void
4279count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4280 unsigned *num_loads_p, unsigned *num_stores_p)
4281{
4282 ssa_op_iter i;
4283 tree use;
4284
4285 *num_uses_p = 0;
4286 *num_loads_p = 0;
4287 *num_stores_p = 0;
4288
4289 /* Find out the total number of uses of PTR in STMT. */
4290 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4291 if (use == ptr)
4292 (*num_uses_p)++;
4293
4294 /* Now count the number of indirect references to PTR. This is
4295 truly awful, but we don't have much choice. There are no parent
4296 pointers inside INDIRECT_REFs, so an expression like
4297 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4298 find all the indirect and direct uses of x_1 inside. The only
4299 shortcut we can take is the fact that GIMPLE only allows
4300 INDIRECT_REFs inside the expressions below. */
4301 if (is_gimple_assign (stmt)
4302 || gimple_code (stmt) == GIMPLE_RETURN
4303 || gimple_code (stmt) == GIMPLE_ASM
4304 || is_gimple_call (stmt))
4305 {
4306 struct walk_stmt_info wi;
4307 struct count_ptr_d count;
4308
4309 count.ptr = ptr;
4310 count.num_stores = 0;
4311 count.num_loads = 0;
4312
4313 memset (&wi, 0, sizeof (wi));
4314 wi.info = &count;
4315 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4316
4317 *num_stores_p = count.num_stores;
4318 *num_loads_p = count.num_loads;
4319 }
4320
4321 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4322}
4323
5ed0b345 4324/* From a tree operand OP return the base of a load or store operation
4325 or NULL_TREE if OP is not a load or a store. */
4326
4327static tree
4328get_base_loadstore (tree op)
4329{
4330 while (handled_component_p (op))
4331 op = TREE_OPERAND (op, 0);
4332 if (DECL_P (op)
4333 || INDIRECT_REF_P (op)
4334 || TREE_CODE (op) == TARGET_MEM_REF)
4335 return op;
4336 return NULL_TREE;
4337}
4338
4339/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4340 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4341 passing the STMT, the base of the operand and DATA to it. The base
4342 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4343 or the argument of an address expression.
4344 Returns the results of these callbacks or'ed. */
4345
4346bool
4347walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4348 bool (*visit_load)(gimple, tree, void *),
4349 bool (*visit_store)(gimple, tree, void *),
4350 bool (*visit_addr)(gimple, tree, void *))
4351{
4352 bool ret = false;
4353 unsigned i;
4354 if (gimple_assign_single_p (stmt))
4355 {
4356 tree lhs, rhs;
4357 if (visit_store)
4358 {
4359 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4360 if (lhs)
4361 ret |= visit_store (stmt, lhs, data);
4362 }
4363 rhs = gimple_assign_rhs1 (stmt);
be1b4133 4364 while (handled_component_p (rhs))
4365 rhs = TREE_OPERAND (rhs, 0);
5ed0b345 4366 if (visit_addr)
4367 {
4368 if (TREE_CODE (rhs) == ADDR_EXPR)
4369 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4370 else if (TREE_CODE (rhs) == TARGET_MEM_REF
d29f7fa8 4371 && TMR_BASE (rhs) != NULL_TREE
5ed0b345 4372 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4373 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4374 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4375 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4376 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4377 0), data);
d29f7fa8 4378 lhs = gimple_assign_lhs (stmt);
4379 if (TREE_CODE (lhs) == TARGET_MEM_REF
4380 && TMR_BASE (lhs) != NULL_TREE
4381 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4382 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5ed0b345 4383 }
4384 if (visit_load)
4385 {
4386 rhs = get_base_loadstore (rhs);
4387 if (rhs)
4388 ret |= visit_load (stmt, rhs, data);
4389 }
4390 }
4391 else if (visit_addr
4392 && (is_gimple_assign (stmt)
2a3ebafa 4393 || gimple_code (stmt) == GIMPLE_COND))
5ed0b345 4394 {
4395 for (i = 0; i < gimple_num_ops (stmt); ++i)
4396 if (gimple_op (stmt, i)
4397 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4398 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4399 }
4400 else if (is_gimple_call (stmt))
4401 {
4402 if (visit_store)
4403 {
4404 tree lhs = gimple_call_lhs (stmt);
4405 if (lhs)
4406 {
4407 lhs = get_base_loadstore (lhs);
4408 if (lhs)
4409 ret |= visit_store (stmt, lhs, data);
4410 }
4411 }
4412 if (visit_load || visit_addr)
4413 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4414 {
4415 tree rhs = gimple_call_arg (stmt, i);
4416 if (visit_addr
4417 && TREE_CODE (rhs) == ADDR_EXPR)
4418 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4419 else if (visit_load)
4420 {
4421 rhs = get_base_loadstore (rhs);
4422 if (rhs)
4423 ret |= visit_load (stmt, rhs, data);
4424 }
4425 }
4426 if (visit_addr
4427 && gimple_call_chain (stmt)
4428 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4429 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4430 data);
60b9b3ae 4431 if (visit_addr
4432 && gimple_call_return_slot_opt_p (stmt)
4433 && gimple_call_lhs (stmt) != NULL_TREE
c7e30df8 4434 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
60b9b3ae 4435 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5ed0b345 4436 }
4437 else if (gimple_code (stmt) == GIMPLE_ASM)
4438 {
4439 unsigned noutputs;
4440 const char *constraint;
4441 const char **oconstraints;
4442 bool allows_mem, allows_reg, is_inout;
4443 noutputs = gimple_asm_noutputs (stmt);
4444 oconstraints = XALLOCAVEC (const char *, noutputs);
4445 if (visit_store || visit_addr)
4446 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4447 {
4448 tree link = gimple_asm_output_op (stmt, i);
4449 tree op = get_base_loadstore (TREE_VALUE (link));
4450 if (op && visit_store)
4451 ret |= visit_store (stmt, op, data);
4452 if (visit_addr)
4453 {
4454 constraint = TREE_STRING_POINTER
4455 (TREE_VALUE (TREE_PURPOSE (link)));
4456 oconstraints[i] = constraint;
4457 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4458 &allows_reg, &is_inout);
4459 if (op && !allows_reg && allows_mem)
4460 ret |= visit_addr (stmt, op, data);
4461 }
4462 }
4463 if (visit_load || visit_addr)
4464 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4465 {
4466 tree link = gimple_asm_input_op (stmt, i);
4467 tree op = TREE_VALUE (link);
4468 if (visit_addr
4469 && TREE_CODE (op) == ADDR_EXPR)
4470 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4471 else if (visit_load || visit_addr)
4472 {
4473 op = get_base_loadstore (op);
4474 if (op)
4475 {
4476 if (visit_load)
4477 ret |= visit_load (stmt, op, data);
4478 if (visit_addr)
4479 {
4480 constraint = TREE_STRING_POINTER
4481 (TREE_VALUE (TREE_PURPOSE (link)));
4482 parse_input_constraint (&constraint, 0, 0, noutputs,
4483 0, oconstraints,
4484 &allows_mem, &allows_reg);
4485 if (!allows_reg && allows_mem)
4486 ret |= visit_addr (stmt, op, data);
4487 }
4488 }
4489 }
4490 }
4491 }
4492 else if (gimple_code (stmt) == GIMPLE_RETURN)
4493 {
4494 tree op = gimple_return_retval (stmt);
4495 if (op)
4496 {
4497 if (visit_addr
4498 && TREE_CODE (op) == ADDR_EXPR)
4499 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4500 else if (visit_load)
4501 {
4502 op = get_base_loadstore (op);
4503 if (op)
4504 ret |= visit_load (stmt, op, data);
4505 }
4506 }
4507 }
4508 else if (visit_addr
4509 && gimple_code (stmt) == GIMPLE_PHI)
4510 {
4511 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4512 {
4513 tree op = PHI_ARG_DEF (stmt, i);
4514 if (TREE_CODE (op) == ADDR_EXPR)
4515 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4516 }
4517 }
4518
4519 return ret;
4520}
4521
4522/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4523 should make a faster clone for this case. */
4524
4525bool
4526walk_stmt_load_store_ops (gimple stmt, void *data,
4527 bool (*visit_load)(gimple, tree, void *),
4528 bool (*visit_store)(gimple, tree, void *))
4529{
4530 return walk_stmt_load_store_addr_ops (stmt, data,
4531 visit_load, visit_store, NULL);
4532}
4533
6d5ec6f8 4534/* Helper for gimple_ior_addresses_taken_1. */
4535
4536static bool
4537gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4538 tree addr, void *data)
4539{
4540 bitmap addresses_taken = (bitmap)data;
4541 while (handled_component_p (addr))
4542 addr = TREE_OPERAND (addr, 0);
4543 if (DECL_P (addr))
4544 {
4545 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4546 return true;
4547 }
4548 return false;
4549}
4550
4551/* Set the bit for the uid of all decls that have their address taken
4552 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4553 were any in this stmt. */
4554
4555bool
4556gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4557{
4558 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4559 gimple_ior_addresses_taken_1);
4560}
4561
34e5cced 4562
4563/* Return a printable name for symbol DECL. */
4564
4565const char *
4566gimple_decl_printable_name (tree decl, int verbosity)
4567{
4568 gcc_assert (decl && DECL_NAME (decl));
4569
4570 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4571 {
4572 const char *str, *mangled_str;
4573 int dmgl_opts = DMGL_NO_OPTS;
4574
4575 if (verbosity >= 2)
4576 {
4577 dmgl_opts = DMGL_VERBOSE
34e5cced 4578 | DMGL_ANSI
4579 | DMGL_GNU_V3
4580 | DMGL_RET_POSTFIX;
4581 if (TREE_CODE (decl) == FUNCTION_DECL)
4582 dmgl_opts |= DMGL_PARAMS;
4583 }
4584
4585 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4586 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4587 return (str) ? str : mangled_str;
4588 }
4589
4590 return IDENTIFIER_POINTER (DECL_NAME (decl));
4591}
4592
4593
4594/* Fold a OBJ_TYPE_REF expression to the address of a function.
4595 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). Adapted
4596 from cp_fold_obj_type_ref, but it tolerates types with no binfo
4597 data. */
4598
4599tree
4600gimple_fold_obj_type_ref (tree ref, tree known_type)
4601{
4602 HOST_WIDE_INT index;
4603 HOST_WIDE_INT i;
4604 tree v;
4605 tree fndecl;
4606
4607 if (TYPE_BINFO (known_type) == NULL_TREE)
4608 return NULL_TREE;
4609
4610 v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
4611 index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
4612 i = 0;
4613 while (i != index)
4614 {
4615 i += (TARGET_VTABLE_USES_DESCRIPTORS
4616 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
4617 v = TREE_CHAIN (v);
4618 }
4619
4620 fndecl = TREE_VALUE (v);
4621
4622#ifdef ENABLE_CHECKING
4623 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
4624 DECL_VINDEX (fndecl)));
4625#endif
4626
4627 cgraph_node (fndecl)->local.vtable_method = true;
4628
4629 return build_fold_addr_expr (fndecl);
4630}
4631
75a70cf9 4632#include "gt-gimple.h"