]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gimple.c
* doc/invoke.texi (ARM Options): Document -mtls-dialect option.
[thirdparty/gcc.git] / gcc / gimple.c
CommitLineData
75a70cf9 1/* Gimple IR support functions.
2
1eb1b33f 3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
75a70cf9 4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
7bfefa9d 26#include "target.h"
75a70cf9 27#include "tree.h"
28#include "ggc.h"
75a70cf9 29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
32#include "diagnostic.h"
33#include "tree-flow.h"
34#include "value-prof.h"
35#include "flags.h"
7bfefa9d 36#include "alias.h"
34e5cced 37#include "demangle.h"
7a52b640 38#include "langhooks.h"
75a70cf9 39
7bfefa9d 40/* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
7a52b640 44static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
45 htab_t gimple_types;
7a3ccc3b 46static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
47 htab_t gimple_canonical_types;
7a52b640 48static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
49 htab_t type_hash_cache;
d1fb5d85 50static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
51 htab_t canonical_type_hash_cache;
7bfefa9d 52
1fed3255 53/* All the tuples have their operand vector (if present) at the very bottom
75a70cf9 54 of the structure. Therefore, the offset required to find the
55 operands vector the size of the structure minus the size of the 1
56 element tree array at the end (see gimple_ops). */
1fed3255 57#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
58 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
cd819d2f 59EXPORTED_CONST size_t gimple_ops_offset_[] = {
1fed3255 60#include "gsstruct.def"
61};
62#undef DEFGSSTRUCT
63
64#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
65static const size_t gsstruct_code_size[] = {
66#include "gsstruct.def"
67};
68#undef DEFGSSTRUCT
69
70#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
71const char *const gimple_code_name[] = {
72#include "gimple.def"
73};
74#undef DEFGSCODE
75
76#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
77EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75a70cf9 78#include "gimple.def"
79};
80#undef DEFGSCODE
81
82#ifdef GATHER_STATISTICS
83/* Gimple stats. */
84
85int gimple_alloc_counts[(int) gimple_alloc_kind_all];
86int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
87
88/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
89static const char * const gimple_alloc_kind_names[] = {
90 "assignments",
91 "phi nodes",
92 "conditionals",
93 "sequences",
94 "everything else"
95};
96
97#endif /* GATHER_STATISTICS */
98
99/* A cache of gimple_seq objects. Sequences are created and destroyed
100 fairly often during gimplification. */
101static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
102
103/* Private API manipulation functions shared only with some
104 other files. */
105extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
106extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
107
108/* Gimple tuple constructors.
109 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
110 be passed a NULL to start with an empty sequence. */
111
112/* Set the code for statement G to CODE. */
113
114static inline void
115gimple_set_code (gimple g, enum gimple_code code)
116{
117 g->gsbase.code = code;
118}
119
75a70cf9 120/* Return the number of bytes needed to hold a GIMPLE statement with
121 code CODE. */
122
1fed3255 123static inline size_t
75a70cf9 124gimple_size (enum gimple_code code)
125{
1fed3255 126 return gsstruct_code_size[gss_for_code (code)];
75a70cf9 127}
128
75a70cf9 129/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
130 operands. */
131
7bfefa9d 132gimple
75a70cf9 133gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
134{
135 size_t size;
136 gimple stmt;
137
138 size = gimple_size (code);
139 if (num_ops > 0)
140 size += sizeof (tree) * (num_ops - 1);
141
142#ifdef GATHER_STATISTICS
143 {
144 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
145 gimple_alloc_counts[(int) kind]++;
146 gimple_alloc_sizes[(int) kind] += size;
147 }
148#endif
149
ba72912a 150 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
75a70cf9 151 gimple_set_code (stmt, code);
152 gimple_set_num_ops (stmt, num_ops);
153
154 /* Do not call gimple_set_modified here as it has other side
155 effects and this tuple is still not completely built. */
156 stmt->gsbase.modified = 1;
157
158 return stmt;
159}
160
161/* Set SUBCODE to be the code of the expression computed by statement G. */
162
163static inline void
164gimple_set_subcode (gimple g, unsigned subcode)
165{
166 /* We only have 16 bits for the RHS code. Assert that we are not
167 overflowing it. */
168 gcc_assert (subcode < (1 << 16));
169 g->gsbase.subcode = subcode;
170}
171
172
173
174/* Build a tuple with operands. CODE is the statement to build (which
175 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
48e1416a 176 for the new tuple. NUM_OPS is the number of operands to allocate. */
75a70cf9 177
178#define gimple_build_with_ops(c, s, n) \
179 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
180
181static gimple
9845d120 182gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
75a70cf9 183 unsigned num_ops MEM_STAT_DECL)
184{
185 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
186 gimple_set_subcode (s, subcode);
187
188 return s;
189}
190
191
192/* Build a GIMPLE_RETURN statement returning RETVAL. */
193
194gimple
195gimple_build_return (tree retval)
196{
b9c74b4d 197 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
75a70cf9 198 if (retval)
199 gimple_return_set_retval (s, retval);
200 return s;
201}
202
cb245216 203/* Reset alias information on call S. */
204
205void
206gimple_call_reset_alias_info (gimple s)
207{
208 if (gimple_call_flags (s) & ECF_CONST)
209 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
210 else
211 pt_solution_reset (gimple_call_use_set (s));
212 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
213 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
214 else
215 pt_solution_reset (gimple_call_clobber_set (s));
216}
217
75a70cf9 218/* Helper for gimple_build_call, gimple_build_call_vec and
219 gimple_build_call_from_tree. Build the basic components of a
220 GIMPLE_CALL statement to function FN with NARGS arguments. */
221
222static inline gimple
223gimple_build_call_1 (tree fn, unsigned nargs)
224{
b9c74b4d 225 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
0acacf9e 226 if (TREE_CODE (fn) == FUNCTION_DECL)
227 fn = build_fold_addr_expr (fn);
75a70cf9 228 gimple_set_op (s, 1, fn);
39f59e65 229 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
cb245216 230 gimple_call_reset_alias_info (s);
75a70cf9 231 return s;
232}
233
234
235/* Build a GIMPLE_CALL statement to function FN with the arguments
236 specified in vector ARGS. */
237
238gimple
239gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
240{
241 unsigned i;
242 unsigned nargs = VEC_length (tree, args);
243 gimple call = gimple_build_call_1 (fn, nargs);
244
245 for (i = 0; i < nargs; i++)
246 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
247
248 return call;
249}
250
251
252/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
253 arguments. The ... are the arguments. */
254
255gimple
256gimple_build_call (tree fn, unsigned nargs, ...)
257{
258 va_list ap;
259 gimple call;
260 unsigned i;
261
262 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
263
264 call = gimple_build_call_1 (fn, nargs);
265
266 va_start (ap, nargs);
267 for (i = 0; i < nargs; i++)
268 gimple_call_set_arg (call, i, va_arg (ap, tree));
269 va_end (ap);
270
271 return call;
272}
273
274
fb049fba 275/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
276 Build the basic components of a GIMPLE_CALL statement to internal
277 function FN with NARGS arguments. */
278
279static inline gimple
280gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
281{
282 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
283 s->gsbase.subcode |= GF_CALL_INTERNAL;
284 gimple_call_set_internal_fn (s, fn);
285 gimple_call_reset_alias_info (s);
286 return s;
287}
288
289
290/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
291 the number of arguments. The ... are the arguments. */
292
293gimple
294gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
295{
296 va_list ap;
297 gimple call;
298 unsigned i;
299
300 call = gimple_build_call_internal_1 (fn, nargs);
301 va_start (ap, nargs);
302 for (i = 0; i < nargs; i++)
303 gimple_call_set_arg (call, i, va_arg (ap, tree));
304 va_end (ap);
305
306 return call;
307}
308
309
310/* Build a GIMPLE_CALL statement to internal function FN with the arguments
311 specified in vector ARGS. */
312
313gimple
314gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
315{
316 unsigned i, nargs;
317 gimple call;
318
319 nargs = VEC_length (tree, args);
320 call = gimple_build_call_internal_1 (fn, nargs);
321 for (i = 0; i < nargs; i++)
322 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
323
324 return call;
325}
326
327
75a70cf9 328/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
329 assumed to be in GIMPLE form already. Minimal checking is done of
330 this fact. */
331
332gimple
333gimple_build_call_from_tree (tree t)
334{
335 unsigned i, nargs;
336 gimple call;
337 tree fndecl = get_callee_fndecl (t);
338
339 gcc_assert (TREE_CODE (t) == CALL_EXPR);
340
341 nargs = call_expr_nargs (t);
342 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
343
344 for (i = 0; i < nargs; i++)
345 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
346
347 gimple_set_block (call, TREE_BLOCK (t));
348
349 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
350 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
351 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
352 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
353 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
a882d754 354 if (fndecl
355 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
356 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
357 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
358 else
359 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
75a70cf9 360 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
1d3f675f 361 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
e627cda1 362 gimple_set_no_warning (call, TREE_NO_WARNING (t));
75a70cf9 363
364 return call;
365}
366
367
368/* Extract the operands and code for expression EXPR into *SUBCODE_P,
00f4f705 369 *OP1_P, *OP2_P and *OP3_P respectively. */
75a70cf9 370
371void
00f4f705 372extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p, tree *op3_p)
75a70cf9 374{
f4e36c33 375 enum gimple_rhs_class grhs_class;
75a70cf9 376
377 *subcode_p = TREE_CODE (expr);
f4e36c33 378 grhs_class = get_gimple_rhs_class (*subcode_p);
75a70cf9 379
00f4f705 380 if (grhs_class == GIMPLE_TERNARY_RHS)
75a70cf9 381 {
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
00f4f705 384 *op3_p = TREE_OPERAND (expr, 2);
385 }
386 else if (grhs_class == GIMPLE_BINARY_RHS)
387 {
388 *op1_p = TREE_OPERAND (expr, 0);
389 *op2_p = TREE_OPERAND (expr, 1);
390 *op3_p = NULL_TREE;
75a70cf9 391 }
f4e36c33 392 else if (grhs_class == GIMPLE_UNARY_RHS)
75a70cf9 393 {
394 *op1_p = TREE_OPERAND (expr, 0);
395 *op2_p = NULL_TREE;
00f4f705 396 *op3_p = NULL_TREE;
75a70cf9 397 }
f4e36c33 398 else if (grhs_class == GIMPLE_SINGLE_RHS)
75a70cf9 399 {
400 *op1_p = expr;
401 *op2_p = NULL_TREE;
00f4f705 402 *op3_p = NULL_TREE;
75a70cf9 403 }
404 else
405 gcc_unreachable ();
406}
407
408
409/* Build a GIMPLE_ASSIGN statement.
410
411 LHS of the assignment.
412 RHS of the assignment which can be unary or binary. */
413
414gimple
415gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
416{
417 enum tree_code subcode;
00f4f705 418 tree op1, op2, op3;
75a70cf9 419
00f4f705 420 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
421 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
75a70cf9 422 PASS_MEM_STAT);
423}
424
425
426/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
427 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
428 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
429
430gimple
431gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
00f4f705 432 tree op2, tree op3 MEM_STAT_DECL)
75a70cf9 433{
434 unsigned num_ops;
435 gimple p;
436
437 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
438 code). */
439 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
48e1416a 440
9845d120 441 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
75a70cf9 442 PASS_MEM_STAT);
443 gimple_assign_set_lhs (p, lhs);
444 gimple_assign_set_rhs1 (p, op1);
445 if (op2)
446 {
447 gcc_assert (num_ops > 2);
448 gimple_assign_set_rhs2 (p, op2);
449 }
450
00f4f705 451 if (op3)
452 {
453 gcc_assert (num_ops > 3);
454 gimple_assign_set_rhs3 (p, op3);
455 }
456
75a70cf9 457 return p;
458}
459
460
461/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
462
463 DST/SRC are the destination and source respectively. You can pass
464 ungimplified trees in DST or SRC, in which case they will be
465 converted to a gimple operand if necessary.
466
467 This function returns the newly created GIMPLE_ASSIGN tuple. */
468
c623bf22 469gimple
75a70cf9 470gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
48e1416a 471{
75a70cf9 472 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
473 gimplify_and_add (t, seq_p);
474 ggc_free (t);
475 return gimple_seq_last_stmt (*seq_p);
476}
477
478
479/* Build a GIMPLE_COND statement.
480
481 PRED is the condition used to compare LHS and the RHS.
482 T_LABEL is the label to jump to if the condition is true.
483 F_LABEL is the label to jump to otherwise. */
484
485gimple
486gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
487 tree t_label, tree f_label)
488{
489 gimple p;
490
491 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
492 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
493 gimple_cond_set_lhs (p, lhs);
494 gimple_cond_set_rhs (p, rhs);
495 gimple_cond_set_true_label (p, t_label);
496 gimple_cond_set_false_label (p, f_label);
497 return p;
498}
499
500
501/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
502
503void
504gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
505 tree *lhs_p, tree *rhs_p)
506{
507 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
508 || TREE_CODE (cond) == TRUTH_NOT_EXPR
509 || is_gimple_min_invariant (cond)
510 || SSA_VAR_P (cond));
511
512 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
513
514 /* Canonicalize conditionals of the form 'if (!VAL)'. */
515 if (*code_p == TRUTH_NOT_EXPR)
516 {
517 *code_p = EQ_EXPR;
518 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
385f3f36 519 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
75a70cf9 520 }
521 /* Canonicalize conditionals of the form 'if (VAL)' */
522 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
523 {
524 *code_p = NE_EXPR;
525 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
385f3f36 526 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
75a70cf9 527 }
528}
529
530
531/* Build a GIMPLE_COND statement from the conditional expression tree
532 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
533
534gimple
535gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
536{
537 enum tree_code code;
538 tree lhs, rhs;
539
540 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
541 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
542}
543
544/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
545 boolean expression tree COND. */
546
547void
548gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
549{
550 enum tree_code code;
551 tree lhs, rhs;
552
553 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
554 gimple_cond_set_condition (stmt, code, lhs, rhs);
555}
556
557/* Build a GIMPLE_LABEL statement for LABEL. */
558
559gimple
560gimple_build_label (tree label)
561{
b9c74b4d 562 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
75a70cf9 563 gimple_label_set_label (p, label);
564 return p;
565}
566
567/* Build a GIMPLE_GOTO statement to label DEST. */
568
569gimple
570gimple_build_goto (tree dest)
571{
b9c74b4d 572 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
75a70cf9 573 gimple_goto_set_dest (p, dest);
574 return p;
575}
576
577
578/* Build a GIMPLE_NOP statement. */
579
48e1416a 580gimple
75a70cf9 581gimple_build_nop (void)
582{
583 return gimple_alloc (GIMPLE_NOP, 0);
584}
585
586
587/* Build a GIMPLE_BIND statement.
588 VARS are the variables in BODY.
589 BLOCK is the containing block. */
590
591gimple
592gimple_build_bind (tree vars, gimple_seq body, tree block)
593{
594 gimple p = gimple_alloc (GIMPLE_BIND, 0);
595 gimple_bind_set_vars (p, vars);
596 if (body)
597 gimple_bind_set_body (p, body);
598 if (block)
599 gimple_bind_set_block (p, block);
600 return p;
601}
602
603/* Helper function to set the simple fields of a asm stmt.
604
605 STRING is a pointer to a string that is the asm blocks assembly code.
606 NINPUT is the number of register inputs.
607 NOUTPUT is the number of register outputs.
608 NCLOBBERS is the number of clobbered registers.
609 */
610
611static inline gimple
48e1416a 612gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
78f55ca8 613 unsigned nclobbers, unsigned nlabels)
75a70cf9 614{
615 gimple p;
616 int size = strlen (string);
617
78f55ca8 618 /* ASMs with labels cannot have outputs. This should have been
619 enforced by the front end. */
620 gcc_assert (nlabels == 0 || noutputs == 0);
621
b9c74b4d 622 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
78f55ca8 623 ninputs + noutputs + nclobbers + nlabels);
75a70cf9 624
625 p->gimple_asm.ni = ninputs;
626 p->gimple_asm.no = noutputs;
627 p->gimple_asm.nc = nclobbers;
78f55ca8 628 p->gimple_asm.nl = nlabels;
75a70cf9 629 p->gimple_asm.string = ggc_alloc_string (string, size);
630
631#ifdef GATHER_STATISTICS
632 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
633#endif
48e1416a 634
75a70cf9 635 return p;
636}
637
638/* Build a GIMPLE_ASM statement.
639
640 STRING is the assembly code.
641 NINPUT is the number of register inputs.
642 NOUTPUT is the number of register outputs.
643 NCLOBBERS is the number of clobbered registers.
644 INPUTS is a vector of the input register parameters.
645 OUTPUTS is a vector of the output register parameters.
78f55ca8 646 CLOBBERS is a vector of the clobbered register parameters.
647 LABELS is a vector of destination labels. */
75a70cf9 648
649gimple
48e1416a 650gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
78f55ca8 651 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
652 VEC(tree,gc)* labels)
75a70cf9 653{
654 gimple p;
655 unsigned i;
656
657 p = gimple_build_asm_1 (string,
658 VEC_length (tree, inputs),
48e1416a 659 VEC_length (tree, outputs),
78f55ca8 660 VEC_length (tree, clobbers),
661 VEC_length (tree, labels));
48e1416a 662
75a70cf9 663 for (i = 0; i < VEC_length (tree, inputs); i++)
664 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
665
666 for (i = 0; i < VEC_length (tree, outputs); i++)
667 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
668
669 for (i = 0; i < VEC_length (tree, clobbers); i++)
670 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
48e1416a 671
78f55ca8 672 for (i = 0; i < VEC_length (tree, labels); i++)
673 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
48e1416a 674
75a70cf9 675 return p;
676}
677
678/* Build a GIMPLE_CATCH statement.
679
680 TYPES are the catch types.
681 HANDLER is the exception handler. */
682
683gimple
684gimple_build_catch (tree types, gimple_seq handler)
685{
686 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
687 gimple_catch_set_types (p, types);
688 if (handler)
689 gimple_catch_set_handler (p, handler);
690
691 return p;
692}
693
694/* Build a GIMPLE_EH_FILTER statement.
695
696 TYPES are the filter's types.
697 FAILURE is the filter's failure action. */
698
699gimple
700gimple_build_eh_filter (tree types, gimple_seq failure)
701{
702 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
703 gimple_eh_filter_set_types (p, types);
704 if (failure)
705 gimple_eh_filter_set_failure (p, failure);
706
707 return p;
708}
709
e38def9c 710/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
711
712gimple
713gimple_build_eh_must_not_throw (tree decl)
714{
73bb17ce 715 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
e38def9c 716
717 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
718 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
7bfefa9d 719 gimple_eh_must_not_throw_set_fndecl (p, decl);
e38def9c 720
721 return p;
722}
723
75a70cf9 724/* Build a GIMPLE_TRY statement.
725
726 EVAL is the expression to evaluate.
727 CLEANUP is the cleanup expression.
728 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
729 whether this is a try/catch or a try/finally respectively. */
730
731gimple
732gimple_build_try (gimple_seq eval, gimple_seq cleanup,
733 enum gimple_try_flags kind)
734{
735 gimple p;
736
737 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
738 p = gimple_alloc (GIMPLE_TRY, 0);
739 gimple_set_subcode (p, kind);
740 if (eval)
741 gimple_try_set_eval (p, eval);
742 if (cleanup)
743 gimple_try_set_cleanup (p, cleanup);
744
745 return p;
746}
747
748/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
749
750 CLEANUP is the cleanup expression. */
751
752gimple
753gimple_build_wce (gimple_seq cleanup)
754{
755 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
756 if (cleanup)
757 gimple_wce_set_cleanup (p, cleanup);
758
759 return p;
760}
761
762
e38def9c 763/* Build a GIMPLE_RESX statement. */
75a70cf9 764
765gimple
766gimple_build_resx (int region)
767{
e38def9c 768 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
769 p->gimple_eh_ctrl.region = region;
75a70cf9 770 return p;
771}
772
773
774/* The helper for constructing a gimple switch statement.
775 INDEX is the switch's index.
776 NLABELS is the number of labels in the switch excluding the default.
777 DEFAULT_LABEL is the default label for the switch statement. */
778
48e1416a 779gimple
e38def9c 780gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
75a70cf9 781{
782 /* nlabels + 1 default label + 1 index. */
b9c74b4d 783 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
e38def9c 784 1 + (default_label != NULL) + nlabels);
75a70cf9 785 gimple_switch_set_index (p, index);
e38def9c 786 if (default_label)
787 gimple_switch_set_default_label (p, default_label);
75a70cf9 788 return p;
789}
790
791
792/* Build a GIMPLE_SWITCH statement.
793
794 INDEX is the switch's index.
48e1416a 795 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
75a70cf9 796 ... are the labels excluding the default. */
797
48e1416a 798gimple
75a70cf9 799gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
800{
801 va_list al;
e38def9c 802 unsigned i, offset;
803 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
75a70cf9 804
805 /* Store the rest of the labels. */
806 va_start (al, default_label);
e38def9c 807 offset = (default_label != NULL);
808 for (i = 0; i < nlabels; i++)
809 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
75a70cf9 810 va_end (al);
811
812 return p;
813}
814
815
816/* Build a GIMPLE_SWITCH statement.
817
818 INDEX is the switch's index.
819 DEFAULT_LABEL is the default label
820 ARGS is a vector of labels excluding the default. */
821
822gimple
823gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
824{
e38def9c 825 unsigned i, offset, nlabels = VEC_length (tree, args);
826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
75a70cf9 827
e38def9c 828 /* Copy the labels from the vector to the switch statement. */
829 offset = (default_label != NULL);
830 for (i = 0; i < nlabels; i++)
831 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
75a70cf9 832
833 return p;
834}
835
e38def9c 836/* Build a GIMPLE_EH_DISPATCH statement. */
837
838gimple
839gimple_build_eh_dispatch (int region)
840{
841 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
842 p->gimple_eh_ctrl.region = region;
843 return p;
844}
75a70cf9 845
9845d120 846/* Build a new GIMPLE_DEBUG_BIND statement.
847
848 VAR is bound to VALUE; block and location are taken from STMT. */
849
850gimple
851gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
852{
853 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
854 (unsigned)GIMPLE_DEBUG_BIND, 2
855 PASS_MEM_STAT);
856
857 gimple_debug_bind_set_var (p, var);
858 gimple_debug_bind_set_value (p, value);
859 if (stmt)
860 {
861 gimple_set_block (p, gimple_block (stmt));
862 gimple_set_location (p, gimple_location (stmt));
863 }
864
865 return p;
866}
867
868
75a70cf9 869/* Build a GIMPLE_OMP_CRITICAL statement.
870
871 BODY is the sequence of statements for which only one thread can execute.
872 NAME is optional identifier for this critical block. */
873
48e1416a 874gimple
75a70cf9 875gimple_build_omp_critical (gimple_seq body, tree name)
876{
877 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
878 gimple_omp_critical_set_name (p, name);
879 if (body)
880 gimple_omp_set_body (p, body);
881
882 return p;
883}
884
885/* Build a GIMPLE_OMP_FOR statement.
886
887 BODY is sequence of statements inside the for loop.
48e1416a 888 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
75a70cf9 889 lastprivate, reductions, ordered, schedule, and nowait.
890 COLLAPSE is the collapse count.
891 PRE_BODY is the sequence of statements that are loop invariant. */
892
893gimple
894gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
895 gimple_seq pre_body)
896{
897 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
898 if (body)
899 gimple_omp_set_body (p, body);
900 gimple_omp_for_set_clauses (p, clauses);
901 p->gimple_omp_for.collapse = collapse;
ba72912a 902 p->gimple_omp_for.iter
903 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
75a70cf9 904 if (pre_body)
905 gimple_omp_for_set_pre_body (p, pre_body);
906
907 return p;
908}
909
910
911/* Build a GIMPLE_OMP_PARALLEL statement.
912
913 BODY is sequence of statements which are executed in parallel.
914 CLAUSES, are the OMP parallel construct's clauses.
915 CHILD_FN is the function created for the parallel threads to execute.
916 DATA_ARG are the shared data argument(s). */
917
48e1416a 918gimple
919gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
75a70cf9 920 tree data_arg)
921{
922 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
923 if (body)
924 gimple_omp_set_body (p, body);
925 gimple_omp_parallel_set_clauses (p, clauses);
926 gimple_omp_parallel_set_child_fn (p, child_fn);
927 gimple_omp_parallel_set_data_arg (p, data_arg);
928
929 return p;
930}
931
932
933/* Build a GIMPLE_OMP_TASK statement.
934
935 BODY is sequence of statements which are executed by the explicit task.
936 CLAUSES, are the OMP parallel construct's clauses.
937 CHILD_FN is the function created for the parallel threads to execute.
938 DATA_ARG are the shared data argument(s).
939 COPY_FN is the optional function for firstprivate initialization.
940 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
941
48e1416a 942gimple
75a70cf9 943gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
944 tree data_arg, tree copy_fn, tree arg_size,
945 tree arg_align)
946{
947 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
948 if (body)
949 gimple_omp_set_body (p, body);
950 gimple_omp_task_set_clauses (p, clauses);
951 gimple_omp_task_set_child_fn (p, child_fn);
952 gimple_omp_task_set_data_arg (p, data_arg);
953 gimple_omp_task_set_copy_fn (p, copy_fn);
954 gimple_omp_task_set_arg_size (p, arg_size);
955 gimple_omp_task_set_arg_align (p, arg_align);
956
957 return p;
958}
959
960
961/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
962
963 BODY is the sequence of statements in the section. */
964
965gimple
966gimple_build_omp_section (gimple_seq body)
967{
968 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
969 if (body)
970 gimple_omp_set_body (p, body);
971
972 return p;
973}
974
975
976/* Build a GIMPLE_OMP_MASTER statement.
977
978 BODY is the sequence of statements to be executed by just the master. */
979
48e1416a 980gimple
75a70cf9 981gimple_build_omp_master (gimple_seq body)
982{
983 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
984 if (body)
985 gimple_omp_set_body (p, body);
986
987 return p;
988}
989
990
991/* Build a GIMPLE_OMP_CONTINUE statement.
992
993 CONTROL_DEF is the definition of the control variable.
994 CONTROL_USE is the use of the control variable. */
995
48e1416a 996gimple
75a70cf9 997gimple_build_omp_continue (tree control_def, tree control_use)
998{
999 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
1000 gimple_omp_continue_set_control_def (p, control_def);
1001 gimple_omp_continue_set_control_use (p, control_use);
1002 return p;
1003}
1004
1005/* Build a GIMPLE_OMP_ORDERED statement.
1006
1007 BODY is the sequence of statements inside a loop that will executed in
1008 sequence. */
1009
48e1416a 1010gimple
75a70cf9 1011gimple_build_omp_ordered (gimple_seq body)
1012{
1013 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1014 if (body)
1015 gimple_omp_set_body (p, body);
1016
1017 return p;
1018}
1019
1020
1021/* Build a GIMPLE_OMP_RETURN statement.
1022 WAIT_P is true if this is a non-waiting return. */
1023
48e1416a 1024gimple
75a70cf9 1025gimple_build_omp_return (bool wait_p)
1026{
1027 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1028 if (wait_p)
1029 gimple_omp_return_set_nowait (p);
1030
1031 return p;
1032}
1033
1034
1035/* Build a GIMPLE_OMP_SECTIONS statement.
1036
1037 BODY is a sequence of section statements.
1038 CLAUSES are any of the OMP sections contsruct's clauses: private,
1039 firstprivate, lastprivate, reduction, and nowait. */
1040
48e1416a 1041gimple
75a70cf9 1042gimple_build_omp_sections (gimple_seq body, tree clauses)
1043{
1044 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1045 if (body)
1046 gimple_omp_set_body (p, body);
1047 gimple_omp_sections_set_clauses (p, clauses);
1048
1049 return p;
1050}
1051
1052
1053/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1054
1055gimple
1056gimple_build_omp_sections_switch (void)
1057{
1058 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1059}
1060
1061
1062/* Build a GIMPLE_OMP_SINGLE statement.
1063
1064 BODY is the sequence of statements that will be executed once.
1065 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1066 copyprivate, nowait. */
1067
48e1416a 1068gimple
75a70cf9 1069gimple_build_omp_single (gimple_seq body, tree clauses)
1070{
1071 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1072 if (body)
1073 gimple_omp_set_body (p, body);
1074 gimple_omp_single_set_clauses (p, clauses);
1075
1076 return p;
1077}
1078
1079
75a70cf9 1080/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1081
1082gimple
1083gimple_build_omp_atomic_load (tree lhs, tree rhs)
1084{
1085 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1086 gimple_omp_atomic_load_set_lhs (p, lhs);
1087 gimple_omp_atomic_load_set_rhs (p, rhs);
1088 return p;
1089}
1090
1091/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1092
1093 VAL is the value we are storing. */
1094
1095gimple
1096gimple_build_omp_atomic_store (tree val)
1097{
1098 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1099 gimple_omp_atomic_store_set_val (p, val);
1100 return p;
1101}
1102
1103/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1104 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1105
1106gimple
1107gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1108{
1109 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1110 /* Ensure all the predictors fit into the lower bits of the subcode. */
590c3166 1111 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
75a70cf9 1112 gimple_predict_set_predictor (p, predictor);
1113 gimple_predict_set_outcome (p, outcome);
1114 return p;
1115}
1116
384dcddb 1117#if defined ENABLE_GIMPLE_CHECKING
75a70cf9 1118/* Complain of a gimple type mismatch and die. */
1119
1120void
1121gimple_check_failed (const_gimple gs, const char *file, int line,
1122 const char *function, enum gimple_code code,
1123 enum tree_code subcode)
1124{
1125 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1126 gimple_code_name[code],
1127 tree_code_name[subcode],
1128 gimple_code_name[gimple_code (gs)],
1129 gs->gsbase.subcode > 0
1130 ? tree_code_name[gs->gsbase.subcode]
1131 : "",
1132 function, trim_filename (file), line);
1133}
75a70cf9 1134#endif /* ENABLE_GIMPLE_CHECKING */
1135
1136
1137/* Allocate a new GIMPLE sequence in GC memory and return it. If
1138 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1139 instead. */
1140
1141gimple_seq
1142gimple_seq_alloc (void)
1143{
1144 gimple_seq seq = gimple_seq_cache;
1145 if (seq)
1146 {
1147 gimple_seq_cache = gimple_seq_cache->next_free;
1148 gcc_assert (gimple_seq_cache != seq);
1149 memset (seq, 0, sizeof (*seq));
1150 }
1151 else
1152 {
ba72912a 1153 seq = ggc_alloc_cleared_gimple_seq_d ();
75a70cf9 1154#ifdef GATHER_STATISTICS
1155 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1156 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1157#endif
1158 }
1159
1160 return seq;
1161}
1162
1163/* Return SEQ to the free pool of GIMPLE sequences. */
1164
1165void
1166gimple_seq_free (gimple_seq seq)
1167{
1168 if (seq == NULL)
1169 return;
1170
1171 gcc_assert (gimple_seq_first (seq) == NULL);
1172 gcc_assert (gimple_seq_last (seq) == NULL);
1173
1174 /* If this triggers, it's a sign that the same list is being freed
1175 twice. */
1176 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
48e1416a 1177
75a70cf9 1178 /* Add SEQ to the pool of free sequences. */
1179 seq->next_free = gimple_seq_cache;
1180 gimple_seq_cache = seq;
1181}
1182
1183
1184/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1185 *SEQ_P is NULL, a new sequence is allocated. */
1186
1187void
1188gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1189{
1190 gimple_stmt_iterator si;
1191
1192 if (gs == NULL)
1193 return;
1194
1195 if (*seq_p == NULL)
1196 *seq_p = gimple_seq_alloc ();
1197
1198 si = gsi_last (*seq_p);
1199 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1200}
1201
1202
1203/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1204 NULL, a new sequence is allocated. */
1205
1206void
1207gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1208{
1209 gimple_stmt_iterator si;
1210
1211 if (src == NULL)
1212 return;
1213
1214 if (*dst_p == NULL)
1215 *dst_p = gimple_seq_alloc ();
1216
1217 si = gsi_last (*dst_p);
1218 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1219}
1220
1221
1222/* Helper function of empty_body_p. Return true if STMT is an empty
1223 statement. */
1224
1225static bool
1226empty_stmt_p (gimple stmt)
1227{
1228 if (gimple_code (stmt) == GIMPLE_NOP)
1229 return true;
1230 if (gimple_code (stmt) == GIMPLE_BIND)
1231 return empty_body_p (gimple_bind_body (stmt));
1232 return false;
1233}
1234
1235
1236/* Return true if BODY contains nothing but empty statements. */
1237
1238bool
1239empty_body_p (gimple_seq body)
1240{
1241 gimple_stmt_iterator i;
1242
75a70cf9 1243 if (gimple_seq_empty_p (body))
1244 return true;
1245 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
9845d120 1246 if (!empty_stmt_p (gsi_stmt (i))
1247 && !is_gimple_debug (gsi_stmt (i)))
75a70cf9 1248 return false;
1249
1250 return true;
1251}
1252
1253
1254/* Perform a deep copy of sequence SRC and return the result. */
1255
1256gimple_seq
1257gimple_seq_copy (gimple_seq src)
1258{
1259 gimple_stmt_iterator gsi;
f4e36c33 1260 gimple_seq new_seq = gimple_seq_alloc ();
75a70cf9 1261 gimple stmt;
1262
1263 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1264 {
1265 stmt = gimple_copy (gsi_stmt (gsi));
f4e36c33 1266 gimple_seq_add_stmt (&new_seq, stmt);
75a70cf9 1267 }
1268
f4e36c33 1269 return new_seq;
75a70cf9 1270}
1271
1272
1273/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1274 on each one. WI is as in walk_gimple_stmt.
48e1416a 1275
75a70cf9 1276 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1277 value is stored in WI->CALLBACK_RESULT and the statement that
1278 produced the value is returned.
1279
1280 Otherwise, all the statements are walked and NULL returned. */
1281
1282gimple
1283walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1284 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1285{
1286 gimple_stmt_iterator gsi;
1287
1288 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1289 {
1290 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1291 if (ret)
1292 {
1293 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1294 to hold it. */
1295 gcc_assert (wi);
1296 wi->callback_result = ret;
1297 return gsi_stmt (gsi);
1298 }
1299 }
1300
1301 if (wi)
1302 wi->callback_result = NULL_TREE;
1303
1304 return NULL;
1305}
1306
1307
1308/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1309
1310static tree
1311walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1312 struct walk_stmt_info *wi)
1313{
78f55ca8 1314 tree ret, op;
75a70cf9 1315 unsigned noutputs;
1316 const char **oconstraints;
78f55ca8 1317 unsigned i, n;
75a70cf9 1318 const char *constraint;
1319 bool allows_mem, allows_reg, is_inout;
1320
1321 noutputs = gimple_asm_noutputs (stmt);
1322 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1323
1324 if (wi)
1325 wi->is_lhs = true;
1326
1327 for (i = 0; i < noutputs; i++)
1328 {
78f55ca8 1329 op = gimple_asm_output_op (stmt, i);
75a70cf9 1330 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1331 oconstraints[i] = constraint;
1332 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1333 &is_inout);
1334 if (wi)
1335 wi->val_only = (allows_reg || !allows_mem);
1336 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1337 if (ret)
1338 return ret;
1339 }
1340
78f55ca8 1341 n = gimple_asm_ninputs (stmt);
1342 for (i = 0; i < n; i++)
75a70cf9 1343 {
78f55ca8 1344 op = gimple_asm_input_op (stmt, i);
75a70cf9 1345 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1346 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1347 oconstraints, &allows_mem, &allows_reg);
1348 if (wi)
78f55ca8 1349 {
1350 wi->val_only = (allows_reg || !allows_mem);
1351 /* Although input "m" is not really a LHS, we need a lvalue. */
1352 wi->is_lhs = !wi->val_only;
1353 }
75a70cf9 1354 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1355 if (ret)
1356 return ret;
1357 }
1358
1359 if (wi)
1360 {
1361 wi->is_lhs = false;
1362 wi->val_only = true;
1363 }
1364
78f55ca8 1365 n = gimple_asm_nlabels (stmt);
1366 for (i = 0; i < n; i++)
1367 {
1368 op = gimple_asm_label_op (stmt, i);
1369 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1370 if (ret)
1371 return ret;
1372 }
1373
75a70cf9 1374 return NULL_TREE;
1375}
1376
1377
1378/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1379 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1380
1381 CALLBACK_OP is called on each operand of STMT via walk_tree.
1382 Additional parameters to walk_tree must be stored in WI. For each operand
1383 OP, walk_tree is called as:
1384
1385 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1386
1387 If CALLBACK_OP returns non-NULL for an operand, the remaining
1388 operands are not scanned.
1389
1390 The return value is that returned by the last call to walk_tree, or
1391 NULL_TREE if no CALLBACK_OP is specified. */
1392
1eb1b33f 1393tree
75a70cf9 1394walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1395 struct walk_stmt_info *wi)
1396{
1397 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1398 unsigned i;
1399 tree ret = NULL_TREE;
1400
1401 switch (gimple_code (stmt))
1402 {
1403 case GIMPLE_ASSIGN:
e568189f 1404 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1405 is a register variable, we may use a COMPONENT_REF on the RHS. */
75a70cf9 1406 if (wi)
e568189f 1407 {
1408 tree lhs = gimple_assign_lhs (stmt);
1409 wi->val_only
1410 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1411 || !gimple_assign_single_p (stmt);
1412 }
75a70cf9 1413
1414 for (i = 1; i < gimple_num_ops (stmt); i++)
1415 {
1416 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1417 pset);
1418 if (ret)
1419 return ret;
1420 }
1421
1422 /* Walk the LHS. If the RHS is appropriate for a memory, we
1423 may use a COMPONENT_REF on the LHS. */
1424 if (wi)
1425 {
1426 /* If the RHS has more than 1 operand, it is not appropriate
1427 for the memory. */
1428 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1429 || !gimple_assign_single_p (stmt);
1430 wi->is_lhs = true;
1431 }
1432
1433 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1434 if (ret)
1435 return ret;
1436
1437 if (wi)
1438 {
1439 wi->val_only = true;
1440 wi->is_lhs = false;
1441 }
1442 break;
1443
1444 case GIMPLE_CALL:
1445 if (wi)
251e7603 1446 {
1447 wi->is_lhs = false;
1448 wi->val_only = true;
1449 }
75a70cf9 1450
1451 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1452 if (ret)
1453 return ret;
1454
1455 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1456 if (ret)
1457 return ret;
1458
1459 for (i = 0; i < gimple_call_num_args (stmt); i++)
1460 {
251e7603 1461 if (wi)
d5c50c6d 1462 wi->val_only
1463 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
75a70cf9 1464 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1468 }
1469
251e7603 1470 if (gimple_call_lhs (stmt))
1471 {
1472 if (wi)
1473 {
1474 wi->is_lhs = true;
d5c50c6d 1475 wi->val_only
1476 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
251e7603 1477 }
75a70cf9 1478
251e7603 1479 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1480 if (ret)
1481 return ret;
1482 }
75a70cf9 1483
1484 if (wi)
251e7603 1485 {
1486 wi->is_lhs = false;
1487 wi->val_only = true;
1488 }
75a70cf9 1489 break;
1490
1491 case GIMPLE_CATCH:
1492 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1493 pset);
1494 if (ret)
1495 return ret;
1496 break;
1497
1498 case GIMPLE_EH_FILTER:
1499 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1500 pset);
1501 if (ret)
1502 return ret;
1503 break;
1504
75a70cf9 1505 case GIMPLE_ASM:
1506 ret = walk_gimple_asm (stmt, callback_op, wi);
1507 if (ret)
1508 return ret;
1509 break;
1510
1511 case GIMPLE_OMP_CONTINUE:
1512 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1516
1517 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521 break;
1522
1523 case GIMPLE_OMP_CRITICAL:
1524 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1525 pset);
1526 if (ret)
1527 return ret;
1528 break;
1529
1530 case GIMPLE_OMP_FOR:
1531 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1536 {
1537 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1546 wi, pset);
1547 if (ret)
1548 return ret;
1549 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1550 wi, pset);
1551 }
1552 if (ret)
1553 return ret;
1554 break;
1555
1556 case GIMPLE_OMP_PARALLEL:
1557 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1558 wi, pset);
1559 if (ret)
1560 return ret;
1561 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1562 wi, pset);
1563 if (ret)
1564 return ret;
1565 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569 break;
1570
1571 case GIMPLE_OMP_TASK:
1572 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1573 wi, pset);
1574 if (ret)
1575 return ret;
1576 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1577 wi, pset);
1578 if (ret)
1579 return ret;
1580 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1581 wi, pset);
1582 if (ret)
1583 return ret;
1584 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1585 wi, pset);
1586 if (ret)
1587 return ret;
1588 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1589 wi, pset);
1590 if (ret)
1591 return ret;
1592 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1593 wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1597
1598 case GIMPLE_OMP_SECTIONS:
1599 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1603
1604 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1608
1609 break;
1610
1611 case GIMPLE_OMP_SINGLE:
1612 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1613 pset);
1614 if (ret)
1615 return ret;
1616 break;
1617
1618 case GIMPLE_OMP_ATOMIC_LOAD:
1619 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1623
1624 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628 break;
1629
1630 case GIMPLE_OMP_ATOMIC_STORE:
1631 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1632 wi, pset);
1633 if (ret)
1634 return ret;
1635 break;
1636
1637 /* Tuples that do not have operands. */
1638 case GIMPLE_NOP:
1639 case GIMPLE_RESX:
1640 case GIMPLE_OMP_RETURN:
1641 case GIMPLE_PREDICT:
1642 break;
1643
1644 default:
1645 {
1646 enum gimple_statement_structure_enum gss;
1647 gss = gimple_statement_structure (stmt);
1648 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1649 for (i = 0; i < gimple_num_ops (stmt); i++)
1650 {
1651 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1652 if (ret)
1653 return ret;
1654 }
1655 }
1656 break;
1657 }
1658
1659 return NULL_TREE;
1660}
1661
1662
1663/* Walk the current statement in GSI (optionally using traversal state
1664 stored in WI). If WI is NULL, no state is kept during traversal.
1665 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1666 that it has handled all the operands of the statement, its return
1667 value is returned. Otherwise, the return value from CALLBACK_STMT
1668 is discarded and its operands are scanned.
1669
1670 If CALLBACK_STMT is NULL or it didn't handle the operands,
1671 CALLBACK_OP is called on each operand of the statement via
1672 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1673 operand, the remaining operands are not scanned. In this case, the
1674 return value from CALLBACK_OP is returned.
1675
1676 In any other case, NULL_TREE is returned. */
1677
1678tree
1679walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1680 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1681{
1682 gimple ret;
1683 tree tree_ret;
1684 gimple stmt = gsi_stmt (*gsi);
1685
1686 if (wi)
1687 wi->gsi = *gsi;
1688
1689 if (wi && wi->want_locations && gimple_has_location (stmt))
1690 input_location = gimple_location (stmt);
1691
1692 ret = NULL;
1693
1694 /* Invoke the statement callback. Return if the callback handled
1695 all of STMT operands by itself. */
1696 if (callback_stmt)
1697 {
1698 bool handled_ops = false;
1699 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1700 if (handled_ops)
1701 return tree_ret;
1702
1703 /* If CALLBACK_STMT did not handle operands, it should not have
1704 a value to return. */
1705 gcc_assert (tree_ret == NULL);
1706
1707 /* Re-read stmt in case the callback changed it. */
1708 stmt = gsi_stmt (*gsi);
1709 }
1710
1711 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1712 if (callback_op)
1713 {
1714 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1715 if (tree_ret)
1716 return tree_ret;
1717 }
1718
1719 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1720 switch (gimple_code (stmt))
1721 {
1722 case GIMPLE_BIND:
1723 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1724 callback_op, wi);
1725 if (ret)
1726 return wi->callback_result;
1727 break;
1728
1729 case GIMPLE_CATCH:
1730 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1731 callback_op, wi);
1732 if (ret)
1733 return wi->callback_result;
1734 break;
1735
1736 case GIMPLE_EH_FILTER:
1737 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1738 callback_op, wi);
1739 if (ret)
1740 return wi->callback_result;
1741 break;
1742
1743 case GIMPLE_TRY:
1744 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1745 wi);
1746 if (ret)
1747 return wi->callback_result;
1748
1749 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1750 callback_op, wi);
1751 if (ret)
1752 return wi->callback_result;
1753 break;
1754
1755 case GIMPLE_OMP_FOR:
1756 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1757 callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1760
1761 /* FALL THROUGH. */
1762 case GIMPLE_OMP_CRITICAL:
1763 case GIMPLE_OMP_MASTER:
1764 case GIMPLE_OMP_ORDERED:
1765 case GIMPLE_OMP_SECTION:
1766 case GIMPLE_OMP_PARALLEL:
1767 case GIMPLE_OMP_TASK:
1768 case GIMPLE_OMP_SECTIONS:
1769 case GIMPLE_OMP_SINGLE:
1770 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1771 wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1775
1776 case GIMPLE_WITH_CLEANUP_EXPR:
1777 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781 break;
1782
1783 default:
1784 gcc_assert (!gimple_has_substatements (stmt));
1785 break;
1786 }
1787
1788 return NULL;
1789}
1790
1791
1792/* Set sequence SEQ to be the GIMPLE body for function FN. */
1793
1794void
1795gimple_set_body (tree fndecl, gimple_seq seq)
1796{
1797 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1798 if (fn == NULL)
1799 {
1800 /* If FNDECL still does not have a function structure associated
1801 with it, then it does not make sense for it to receive a
1802 GIMPLE body. */
1803 gcc_assert (seq == NULL);
1804 }
1805 else
1806 fn->gimple_body = seq;
1807}
1808
1809
0874e443 1810/* Return the body of GIMPLE statements for function FN. After the
1811 CFG pass, the function body doesn't exist anymore because it has
1812 been split up into basic blocks. In this case, it returns
1813 NULL. */
75a70cf9 1814
1815gimple_seq
1816gimple_body (tree fndecl)
1817{
1818 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1819 return fn ? fn->gimple_body : NULL;
1820}
1821
1a1a827a 1822/* Return true when FNDECL has Gimple body either in unlowered
1823 or CFG form. */
1824bool
1825gimple_has_body_p (tree fndecl)
1826{
1827 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1828 return (gimple_body (fndecl) || (fn && fn->cfg));
1829}
75a70cf9 1830
fb049fba 1831/* Return true if calls C1 and C2 are known to go to the same function. */
1832
1833bool
1834gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1835{
1836 if (gimple_call_internal_p (c1))
1837 return (gimple_call_internal_p (c2)
1838 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1839 else
1840 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1841 || (gimple_call_fndecl (c1)
1842 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1843}
1844
75a70cf9 1845/* Detect flags from a GIMPLE_CALL. This is just like
1846 call_expr_flags, but for gimple tuples. */
1847
1848int
1849gimple_call_flags (const_gimple stmt)
1850{
1851 int flags;
1852 tree decl = gimple_call_fndecl (stmt);
75a70cf9 1853
1854 if (decl)
1855 flags = flags_from_decl_or_type (decl);
fb049fba 1856 else if (gimple_call_internal_p (stmt))
1857 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
75a70cf9 1858 else
d71dc717 1859 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
75a70cf9 1860
1d3f675f 1861 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1862 flags |= ECF_NOTHROW;
1863
75a70cf9 1864 return flags;
1865}
1866
fb049fba 1867/* Return the "fn spec" string for call STMT. */
1868
1869static tree
1870gimple_call_fnspec (const_gimple stmt)
1871{
1872 tree type, attr;
1873
1874 type = gimple_call_fntype (stmt);
1875 if (!type)
1876 return NULL_TREE;
1877
1878 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1879 if (!attr)
1880 return NULL_TREE;
1881
1882 return TREE_VALUE (TREE_VALUE (attr));
1883}
1884
8ce86007 1885/* Detects argument flags for argument number ARG on call STMT. */
1886
1887int
1888gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1889{
fb049fba 1890 tree attr = gimple_call_fnspec (stmt);
8ce86007 1891
fb049fba 1892 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
8ce86007 1893 return 0;
1894
1895 switch (TREE_STRING_POINTER (attr)[1 + arg])
1896 {
1897 case 'x':
1898 case 'X':
1899 return EAF_UNUSED;
1900
1901 case 'R':
1902 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1903
1904 case 'r':
1905 return EAF_NOCLOBBER | EAF_NOESCAPE;
1906
1907 case 'W':
1908 return EAF_DIRECT | EAF_NOESCAPE;
1909
1910 case 'w':
1911 return EAF_NOESCAPE;
1912
1913 case '.':
1914 default:
1915 return 0;
1916 }
1917}
1918
1919/* Detects return flags for the call STMT. */
1920
1921int
1922gimple_call_return_flags (const_gimple stmt)
1923{
fb049fba 1924 tree attr;
8ce86007 1925
1926 if (gimple_call_flags (stmt) & ECF_MALLOC)
1927 return ERF_NOALIAS;
1928
fb049fba 1929 attr = gimple_call_fnspec (stmt);
1930 if (!attr || TREE_STRING_LENGTH (attr) < 1)
8ce86007 1931 return 0;
1932
1933 switch (TREE_STRING_POINTER (attr)[0])
1934 {
1935 case '1':
1936 case '2':
1937 case '3':
1938 case '4':
1939 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1940
1941 case 'm':
1942 return ERF_NOALIAS;
1943
1944 case '.':
1945 default:
1946 return 0;
1947 }
1948}
75a70cf9 1949
09937c79 1950
75a70cf9 1951/* Return true if GS is a copy assignment. */
1952
1953bool
1954gimple_assign_copy_p (gimple gs)
1955{
09937c79 1956 return (gimple_assign_single_p (gs)
1957 && is_gimple_val (gimple_op (gs, 1)));
75a70cf9 1958}
1959
1960
1961/* Return true if GS is a SSA_NAME copy assignment. */
1962
1963bool
1964gimple_assign_ssa_name_copy_p (gimple gs)
1965{
09937c79 1966 return (gimple_assign_single_p (gs)
75a70cf9 1967 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1968 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1969}
1970
1971
75a70cf9 1972/* Return true if GS is an assignment with a unary RHS, but the
1973 operator has no effect on the assigned value. The logic is adapted
1974 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1975 instances in which STRIP_NOPS was previously applied to the RHS of
1976 an assignment.
1977
1978 NOTE: In the use cases that led to the creation of this function
1979 and of gimple_assign_single_p, it is typical to test for either
1980 condition and to proceed in the same manner. In each case, the
1981 assigned value is represented by the single RHS operand of the
1982 assignment. I suspect there may be cases where gimple_assign_copy_p,
1983 gimple_assign_single_p, or equivalent logic is used where a similar
1984 treatment of unary NOPs is appropriate. */
48e1416a 1985
75a70cf9 1986bool
1987gimple_assign_unary_nop_p (gimple gs)
1988{
09937c79 1989 return (is_gimple_assign (gs)
d9659041 1990 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
75a70cf9 1991 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1992 && gimple_assign_rhs1 (gs) != error_mark_node
1993 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1994 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1995}
1996
1997/* Set BB to be the basic block holding G. */
1998
1999void
2000gimple_set_bb (gimple stmt, basic_block bb)
2001{
2002 stmt->gsbase.bb = bb;
2003
2004 /* If the statement is a label, add the label to block-to-labels map
2005 so that we can speed up edge creation for GIMPLE_GOTOs. */
2006 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
2007 {
2008 tree t;
2009 int uid;
2010
2011 t = gimple_label_label (stmt);
2012 uid = LABEL_DECL_UID (t);
2013 if (uid == -1)
2014 {
2015 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2016 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
2017 if (old_len <= (unsigned) uid)
2018 {
dd277d48 2019 unsigned new_len = 3 * uid / 2 + 1;
75a70cf9 2020
2021 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2022 new_len);
2023 }
2024 }
2025
2026 VEC_replace (basic_block, label_to_block_map, uid, bb);
2027 }
2028}
2029
2030
75a70cf9 2031/* Modify the RHS of the assignment pointed-to by GSI using the
2032 operands in the expression tree EXPR.
2033
2034 NOTE: The statement pointed-to by GSI may be reallocated if it
2035 did not have enough operand slots.
2036
2037 This function is useful to convert an existing tree expression into
2038 the flat representation used for the RHS of a GIMPLE assignment.
2039 It will reallocate memory as needed to expand or shrink the number
2040 of operand slots needed to represent EXPR.
2041
2042 NOTE: If you find yourself building a tree and then calling this
2043 function, you are most certainly doing it the slow way. It is much
2044 better to build a new assignment or to use the function
2045 gimple_assign_set_rhs_with_ops, which does not require an
2046 expression tree to be built. */
2047
2048void
2049gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2050{
2051 enum tree_code subcode;
00f4f705 2052 tree op1, op2, op3;
75a70cf9 2053
00f4f705 2054 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
2055 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
75a70cf9 2056}
2057
2058
2059/* Set the RHS of assignment statement pointed-to by GSI to CODE with
00f4f705 2060 operands OP1, OP2 and OP3.
75a70cf9 2061
2062 NOTE: The statement pointed-to by GSI may be reallocated if it
2063 did not have enough operand slots. */
2064
2065void
00f4f705 2066gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2067 tree op1, tree op2, tree op3)
75a70cf9 2068{
2069 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2070 gimple stmt = gsi_stmt (*gsi);
2071
2072 /* If the new CODE needs more operands, allocate a new statement. */
2073 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2074 {
2075 tree lhs = gimple_assign_lhs (stmt);
2076 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2077 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2078 gsi_replace (gsi, new_stmt, true);
2079 stmt = new_stmt;
2080
2081 /* The LHS needs to be reset as this also changes the SSA name
2082 on the LHS. */
2083 gimple_assign_set_lhs (stmt, lhs);
2084 }
2085
2086 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2087 gimple_set_subcode (stmt, code);
2088 gimple_assign_set_rhs1 (stmt, op1);
2089 if (new_rhs_ops > 1)
2090 gimple_assign_set_rhs2 (stmt, op2);
00f4f705 2091 if (new_rhs_ops > 2)
2092 gimple_assign_set_rhs3 (stmt, op3);
75a70cf9 2093}
2094
2095
2096/* Return the LHS of a statement that performs an assignment,
2097 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2098 for a call to a function that returns no value, or for a
2099 statement other than an assignment or a call. */
2100
2101tree
2102gimple_get_lhs (const_gimple stmt)
2103{
590c3166 2104 enum gimple_code code = gimple_code (stmt);
75a70cf9 2105
2106 if (code == GIMPLE_ASSIGN)
2107 return gimple_assign_lhs (stmt);
2108 else if (code == GIMPLE_CALL)
2109 return gimple_call_lhs (stmt);
2110 else
2111 return NULL_TREE;
2112}
2113
2114
2115/* Set the LHS of a statement that performs an assignment,
2116 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2117
2118void
2119gimple_set_lhs (gimple stmt, tree lhs)
2120{
590c3166 2121 enum gimple_code code = gimple_code (stmt);
75a70cf9 2122
2123 if (code == GIMPLE_ASSIGN)
2124 gimple_assign_set_lhs (stmt, lhs);
2125 else if (code == GIMPLE_CALL)
2126 gimple_call_set_lhs (stmt, lhs);
2127 else
2128 gcc_unreachable();
2129}
2130
5fb3d93f 2131/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2132 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2133 expression with a different value.
2134
2135 This will update any annotations (say debug bind stmts) referring
2136 to the original LHS, so that they use the RHS instead. This is
2137 done even if NLHS and LHS are the same, for it is understood that
2138 the RHS will be modified afterwards, and NLHS will not be assigned
2139 an equivalent value.
2140
2141 Adjusting any non-annotation uses of the LHS, if needed, is a
2142 responsibility of the caller.
2143
2144 The effect of this call should be pretty much the same as that of
2145 inserting a copy of STMT before STMT, and then removing the
2146 original stmt, at which time gsi_remove() would have update
2147 annotations, but using this function saves all the inserting,
2148 copying and removing. */
2149
2150void
2151gimple_replace_lhs (gimple stmt, tree nlhs)
2152{
2153 if (MAY_HAVE_DEBUG_STMTS)
2154 {
2155 tree lhs = gimple_get_lhs (stmt);
2156
2157 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2158
2159 insert_debug_temp_for_var_def (NULL, lhs);
2160 }
2161
2162 gimple_set_lhs (stmt, nlhs);
2163}
75a70cf9 2164
2165/* Return a deep copy of statement STMT. All the operands from STMT
2166 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2167 and VUSE operand arrays are set to empty in the new copy. */
2168
2169gimple
2170gimple_copy (gimple stmt)
2171{
2172 enum gimple_code code = gimple_code (stmt);
2173 unsigned num_ops = gimple_num_ops (stmt);
2174 gimple copy = gimple_alloc (code, num_ops);
2175 unsigned i;
2176
2177 /* Shallow copy all the fields from STMT. */
2178 memcpy (copy, stmt, gimple_size (code));
2179
2180 /* If STMT has sub-statements, deep-copy them as well. */
2181 if (gimple_has_substatements (stmt))
2182 {
2183 gimple_seq new_seq;
2184 tree t;
2185
2186 switch (gimple_code (stmt))
2187 {
2188 case GIMPLE_BIND:
2189 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2190 gimple_bind_set_body (copy, new_seq);
2191 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2192 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2193 break;
2194
2195 case GIMPLE_CATCH:
2196 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2197 gimple_catch_set_handler (copy, new_seq);
2198 t = unshare_expr (gimple_catch_types (stmt));
2199 gimple_catch_set_types (copy, t);
2200 break;
2201
2202 case GIMPLE_EH_FILTER:
2203 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2204 gimple_eh_filter_set_failure (copy, new_seq);
2205 t = unshare_expr (gimple_eh_filter_types (stmt));
2206 gimple_eh_filter_set_types (copy, t);
2207 break;
2208
2209 case GIMPLE_TRY:
2210 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2211 gimple_try_set_eval (copy, new_seq);
2212 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2213 gimple_try_set_cleanup (copy, new_seq);
2214 break;
2215
2216 case GIMPLE_OMP_FOR:
2217 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2218 gimple_omp_for_set_pre_body (copy, new_seq);
2219 t = unshare_expr (gimple_omp_for_clauses (stmt));
2220 gimple_omp_for_set_clauses (copy, t);
2221 copy->gimple_omp_for.iter
ba72912a 2222 = ggc_alloc_vec_gimple_omp_for_iter
2223 (gimple_omp_for_collapse (stmt));
75a70cf9 2224 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2225 {
2226 gimple_omp_for_set_cond (copy, i,
2227 gimple_omp_for_cond (stmt, i));
2228 gimple_omp_for_set_index (copy, i,
2229 gimple_omp_for_index (stmt, i));
2230 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2231 gimple_omp_for_set_initial (copy, i, t);
2232 t = unshare_expr (gimple_omp_for_final (stmt, i));
2233 gimple_omp_for_set_final (copy, i, t);
2234 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2235 gimple_omp_for_set_incr (copy, i, t);
2236 }
2237 goto copy_omp_body;
2238
2239 case GIMPLE_OMP_PARALLEL:
2240 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2241 gimple_omp_parallel_set_clauses (copy, t);
2242 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2243 gimple_omp_parallel_set_child_fn (copy, t);
2244 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2245 gimple_omp_parallel_set_data_arg (copy, t);
2246 goto copy_omp_body;
2247
2248 case GIMPLE_OMP_TASK:
2249 t = unshare_expr (gimple_omp_task_clauses (stmt));
2250 gimple_omp_task_set_clauses (copy, t);
2251 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2252 gimple_omp_task_set_child_fn (copy, t);
2253 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2254 gimple_omp_task_set_data_arg (copy, t);
2255 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2256 gimple_omp_task_set_copy_fn (copy, t);
2257 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2258 gimple_omp_task_set_arg_size (copy, t);
2259 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2260 gimple_omp_task_set_arg_align (copy, t);
2261 goto copy_omp_body;
2262
2263 case GIMPLE_OMP_CRITICAL:
2264 t = unshare_expr (gimple_omp_critical_name (stmt));
2265 gimple_omp_critical_set_name (copy, t);
2266 goto copy_omp_body;
2267
2268 case GIMPLE_OMP_SECTIONS:
2269 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2270 gimple_omp_sections_set_clauses (copy, t);
2271 t = unshare_expr (gimple_omp_sections_control (stmt));
2272 gimple_omp_sections_set_control (copy, t);
2273 /* FALLTHRU */
2274
2275 case GIMPLE_OMP_SINGLE:
2276 case GIMPLE_OMP_SECTION:
2277 case GIMPLE_OMP_MASTER:
2278 case GIMPLE_OMP_ORDERED:
2279 copy_omp_body:
2280 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2281 gimple_omp_set_body (copy, new_seq);
2282 break;
2283
2284 case GIMPLE_WITH_CLEANUP_EXPR:
2285 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2286 gimple_wce_set_cleanup (copy, new_seq);
2287 break;
2288
2289 default:
2290 gcc_unreachable ();
2291 }
2292 }
2293
2294 /* Make copy of operands. */
2295 if (num_ops > 0)
2296 {
2297 for (i = 0; i < num_ops; i++)
2298 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2299
6d5ec6f8 2300 /* Clear out SSA operand vectors on COPY. */
75a70cf9 2301 if (gimple_has_ops (stmt))
2302 {
2303 gimple_set_def_ops (copy, NULL);
2304 gimple_set_use_ops (copy, NULL);
75a70cf9 2305 }
2306
2307 if (gimple_has_mem_ops (stmt))
2308 {
dd277d48 2309 gimple_set_vdef (copy, gimple_vdef (stmt));
2310 gimple_set_vuse (copy, gimple_vuse (stmt));
75a70cf9 2311 }
2312
dd277d48 2313 /* SSA operands need to be updated. */
2314 gimple_set_modified (copy, true);
75a70cf9 2315 }
2316
2317 return copy;
2318}
2319
2320
2321/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2322 a MODIFIED field. */
2323
2324void
2325gimple_set_modified (gimple s, bool modifiedp)
2326{
2327 if (gimple_has_ops (s))
e1f47fd3 2328 s->gsbase.modified = (unsigned) modifiedp;
75a70cf9 2329}
2330
2331
2332/* Return true if statement S has side-effects. We consider a
2333 statement to have side effects if:
2334
2335 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2336 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2337
2338bool
2339gimple_has_side_effects (const_gimple s)
2340{
2341 unsigned i;
2342
9845d120 2343 if (is_gimple_debug (s))
2344 return false;
2345
75a70cf9 2346 /* We don't have to scan the arguments to check for
2347 volatile arguments, though, at present, we still
2348 do a scan to check for TREE_SIDE_EFFECTS. */
2349 if (gimple_has_volatile_ops (s))
2350 return true;
2351
b523dd6d 2352 if (gimple_code (s) == GIMPLE_ASM
2353 && gimple_asm_volatile_p (s))
2354 return true;
2355
75a70cf9 2356 if (is_gimple_call (s))
2357 {
2358 unsigned nargs = gimple_call_num_args (s);
fb049fba 2359 tree fn;
75a70cf9 2360
2361 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2362 return true;
2363 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2364 /* An infinite loop is considered a side effect. */
2365 return true;
2366
2367 if (gimple_call_lhs (s)
2368 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2369 {
b523dd6d 2370 gcc_checking_assert (gimple_has_volatile_ops (s));
75a70cf9 2371 return true;
2372 }
2373
fb049fba 2374 fn = gimple_call_fn (s);
2375 if (fn && TREE_SIDE_EFFECTS (fn))
75a70cf9 2376 return true;
2377
2378 for (i = 0; i < nargs; i++)
2379 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2380 {
b523dd6d 2381 gcc_checking_assert (gimple_has_volatile_ops (s));
75a70cf9 2382 return true;
2383 }
2384
2385 return false;
2386 }
2387 else
2388 {
2389 for (i = 0; i < gimple_num_ops (s); i++)
b523dd6d 2390 {
2391 tree op = gimple_op (s, i);
2392 if (op && TREE_SIDE_EFFECTS (op))
2393 {
2394 gcc_checking_assert (gimple_has_volatile_ops (s));
2395 return true;
2396 }
2397 }
75a70cf9 2398 }
2399
2400 return false;
2401}
2402
2403/* Return true if the RHS of statement S has side effects.
2404 We may use it to determine if it is admissable to replace
2405 an assignment or call with a copy of a previously-computed
851d9296 2406 value. In such cases, side-effects due to the LHS are
75a70cf9 2407 preserved. */
2408
2409bool
2410gimple_rhs_has_side_effects (const_gimple s)
2411{
2412 unsigned i;
2413
2414 if (is_gimple_call (s))
2415 {
2416 unsigned nargs = gimple_call_num_args (s);
fb049fba 2417 tree fn;
75a70cf9 2418
2419 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2420 return true;
2421
2422 /* We cannot use gimple_has_volatile_ops here,
2423 because we must ignore a volatile LHS. */
fb049fba 2424 fn = gimple_call_fn (s);
2425 if (fn && (TREE_SIDE_EFFECTS (fn) || TREE_THIS_VOLATILE (fn)))
75a70cf9 2426 {
2427 gcc_assert (gimple_has_volatile_ops (s));
2428 return true;
2429 }
2430
2431 for (i = 0; i < nargs; i++)
2432 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2433 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2434 return true;
2435
2436 return false;
2437 }
2438 else if (is_gimple_assign (s))
2439 {
2440 /* Skip the first operand, the LHS. */
2441 for (i = 1; i < gimple_num_ops (s); i++)
2442 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2443 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2444 {
2445 gcc_assert (gimple_has_volatile_ops (s));
2446 return true;
2447 }
2448 }
9845d120 2449 else if (is_gimple_debug (s))
2450 return false;
75a70cf9 2451 else
2452 {
2453 /* For statements without an LHS, examine all arguments. */
2454 for (i = 0; i < gimple_num_ops (s); i++)
2455 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2456 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2457 {
2458 gcc_assert (gimple_has_volatile_ops (s));
2459 return true;
2460 }
2461 }
2462
2463 return false;
2464}
2465
75a70cf9 2466/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
e1cc68bd 2467 Return true if S can trap. When INCLUDE_MEM is true, check whether
2468 the memory operations could trap. When INCLUDE_STORES is true and
2469 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
75a70cf9 2470
e1cc68bd 2471bool
2472gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
75a70cf9 2473{
75a70cf9 2474 tree t, div = NULL_TREE;
2475 enum tree_code op;
2476
e1cc68bd 2477 if (include_mem)
2478 {
2479 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
75a70cf9 2480
e1cc68bd 2481 for (i = start; i < gimple_num_ops (s); i++)
2482 if (tree_could_trap_p (gimple_op (s, i)))
2483 return true;
2484 }
75a70cf9 2485
2486 switch (gimple_code (s))
2487 {
2488 case GIMPLE_ASM:
2489 return gimple_asm_volatile_p (s);
2490
2491 case GIMPLE_CALL:
2492 t = gimple_call_fndecl (s);
2493 /* Assume that calls to weak functions may trap. */
2494 if (!t || !DECL_P (t) || DECL_WEAK (t))
2495 return true;
2496 return false;
2497
2498 case GIMPLE_ASSIGN:
2499 t = gimple_expr_type (s);
2500 op = gimple_assign_rhs_code (s);
2501 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2502 div = gimple_assign_rhs2 (s);
2503 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2504 (INTEGRAL_TYPE_P (t)
2505 && TYPE_OVERFLOW_TRAPS (t)),
2506 div));
2507
2508 default:
2509 break;
2510 }
2511
2512 return false;
75a70cf9 2513}
2514
75a70cf9 2515/* Return true if statement S can trap. */
2516
2517bool
2518gimple_could_trap_p (gimple s)
2519{
e1cc68bd 2520 return gimple_could_trap_p_1 (s, true, true);
75a70cf9 2521}
2522
75a70cf9 2523/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2524
2525bool
2526gimple_assign_rhs_could_trap_p (gimple s)
2527{
2528 gcc_assert (is_gimple_assign (s));
e1cc68bd 2529 return gimple_could_trap_p_1 (s, true, false);
75a70cf9 2530}
2531
2532
2533/* Print debugging information for gimple stmts generated. */
2534
2535void
2536dump_gimple_statistics (void)
2537{
2538#ifdef GATHER_STATISTICS
2539 int i, total_tuples = 0, total_bytes = 0;
2540
2541 fprintf (stderr, "\nGIMPLE statements\n");
2542 fprintf (stderr, "Kind Stmts Bytes\n");
2543 fprintf (stderr, "---------------------------------------\n");
2544 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2545 {
2546 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2547 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2548 total_tuples += gimple_alloc_counts[i];
2549 total_bytes += gimple_alloc_sizes[i];
2550 }
2551 fprintf (stderr, "---------------------------------------\n");
2552 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2553 fprintf (stderr, "---------------------------------------\n");
2554#else
2555 fprintf (stderr, "No gimple statistics\n");
2556#endif
2557}
2558
2559
75a70cf9 2560/* Return the number of operands needed on the RHS of a GIMPLE
2561 assignment for an expression with tree code CODE. */
2562
2563unsigned
2564get_gimple_rhs_num_ops (enum tree_code code)
2565{
2566 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2567
2568 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2569 return 1;
2570 else if (rhs_class == GIMPLE_BINARY_RHS)
2571 return 2;
00f4f705 2572 else if (rhs_class == GIMPLE_TERNARY_RHS)
2573 return 3;
75a70cf9 2574 else
2575 gcc_unreachable ();
2576}
2577
2578#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2579 (unsigned char) \
2580 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2581 : ((TYPE) == tcc_binary \
2582 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2583 : ((TYPE) == tcc_constant \
2584 || (TYPE) == tcc_declaration \
2585 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2586 : ((SYM) == TRUTH_AND_EXPR \
2587 || (SYM) == TRUTH_OR_EXPR \
2588 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2589 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
00f4f705 2590 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
b9be572e 2591 || (SYM) == WIDEN_MULT_MINUS_EXPR \
c86930b0 2592 || (SYM) == DOT_PROD_EXPR \
2593 || (SYM) == REALIGN_LOAD_EXPR \
b9be572e 2594 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
75a70cf9 2595 : ((SYM) == COND_EXPR \
2596 || (SYM) == CONSTRUCTOR \
2597 || (SYM) == OBJ_TYPE_REF \
2598 || (SYM) == ASSERT_EXPR \
2599 || (SYM) == ADDR_EXPR \
2600 || (SYM) == WITH_SIZE_EXPR \
75a70cf9 2601 || (SYM) == SSA_NAME \
c86930b0 2602 || (SYM) == VEC_COND_EXPR) ? GIMPLE_SINGLE_RHS \
75a70cf9 2603 : GIMPLE_INVALID_RHS),
2604#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2605
2606const unsigned char gimple_rhs_class_table[] = {
2607#include "all-tree.def"
2608};
2609
2610#undef DEFTREECODE
2611#undef END_OF_BASE_TREE_CODES
2612
2613/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2614
2615/* Validation of GIMPLE expressions. */
2616
75a70cf9 2617/* Returns true iff T is a valid RHS for an assignment to a renamed
2618 user -- or front-end generated artificial -- variable. */
2619
2620bool
2621is_gimple_reg_rhs (tree t)
2622{
47f11e84 2623 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
75a70cf9 2624}
2625
2626/* Returns true iff T is a valid RHS for an assignment to an un-renamed
2627 LHS, or for a call argument. */
2628
2629bool
2630is_gimple_mem_rhs (tree t)
2631{
2632 /* If we're dealing with a renamable type, either source or dest must be
2633 a renamed variable. */
2634 if (is_gimple_reg_type (TREE_TYPE (t)))
2635 return is_gimple_val (t);
2636 else
47f11e84 2637 return is_gimple_val (t) || is_gimple_lvalue (t);
75a70cf9 2638}
2639
2640/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2641
2642bool
2643is_gimple_lvalue (tree t)
2644{
2645 return (is_gimple_addressable (t)
2646 || TREE_CODE (t) == WITH_SIZE_EXPR
2647 /* These are complex lvalues, but don't have addresses, so they
2648 go here. */
2649 || TREE_CODE (t) == BIT_FIELD_REF);
2650}
2651
2652/* Return true if T is a GIMPLE condition. */
2653
2654bool
2655is_gimple_condexpr (tree t)
2656{
2657 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
4c76cf91 2658 && !tree_could_throw_p (t)
75a70cf9 2659 && is_gimple_val (TREE_OPERAND (t, 0))
2660 && is_gimple_val (TREE_OPERAND (t, 1))));
2661}
2662
2663/* Return true if T is something whose address can be taken. */
2664
2665bool
2666is_gimple_addressable (tree t)
2667{
182cf5a9 2668 return (is_gimple_id (t) || handled_component_p (t)
2669 || TREE_CODE (t) == MEM_REF);
75a70cf9 2670}
2671
2672/* Return true if T is a valid gimple constant. */
2673
2674bool
2675is_gimple_constant (const_tree t)
2676{
2677 switch (TREE_CODE (t))
2678 {
2679 case INTEGER_CST:
2680 case REAL_CST:
2681 case FIXED_CST:
2682 case STRING_CST:
2683 case COMPLEX_CST:
2684 case VECTOR_CST:
2685 return true;
2686
2687 /* Vector constant constructors are gimple invariant. */
2688 case CONSTRUCTOR:
2689 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2690 return TREE_CONSTANT (t);
2691 else
2692 return false;
2693
2694 default:
2695 return false;
2696 }
2697}
2698
2699/* Return true if T is a gimple address. */
2700
2701bool
2702is_gimple_address (const_tree t)
2703{
2704 tree op;
2705
2706 if (TREE_CODE (t) != ADDR_EXPR)
2707 return false;
2708
2709 op = TREE_OPERAND (t, 0);
2710 while (handled_component_p (op))
2711 {
2712 if ((TREE_CODE (op) == ARRAY_REF
2713 || TREE_CODE (op) == ARRAY_RANGE_REF)
2714 && !is_gimple_val (TREE_OPERAND (op, 1)))
2715 return false;
2716
2717 op = TREE_OPERAND (op, 0);
2718 }
2719
182cf5a9 2720 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
75a70cf9 2721 return true;
2722
2723 switch (TREE_CODE (op))
2724 {
2725 case PARM_DECL:
2726 case RESULT_DECL:
2727 case LABEL_DECL:
2728 case FUNCTION_DECL:
2729 case VAR_DECL:
2730 case CONST_DECL:
2731 return true;
2732
2733 default:
2734 return false;
2735 }
2736}
2737
b9c94ed7 2738/* Strip out all handled components that produce invariant
2739 offsets. */
75a70cf9 2740
b9c94ed7 2741static const_tree
2742strip_invariant_refs (const_tree op)
75a70cf9 2743{
75a70cf9 2744 while (handled_component_p (op))
2745 {
2746 switch (TREE_CODE (op))
2747 {
2748 case ARRAY_REF:
2749 case ARRAY_RANGE_REF:
2750 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2751 || TREE_OPERAND (op, 2) != NULL_TREE
2752 || TREE_OPERAND (op, 3) != NULL_TREE)
b9c94ed7 2753 return NULL;
75a70cf9 2754 break;
2755
2756 case COMPONENT_REF:
2757 if (TREE_OPERAND (op, 2) != NULL_TREE)
b9c94ed7 2758 return NULL;
75a70cf9 2759 break;
2760
2761 default:;
2762 }
2763 op = TREE_OPERAND (op, 0);
2764 }
2765
b9c94ed7 2766 return op;
2767}
2768
2769/* Return true if T is a gimple invariant address. */
2770
2771bool
2772is_gimple_invariant_address (const_tree t)
2773{
2774 const_tree op;
2775
2776 if (TREE_CODE (t) != ADDR_EXPR)
2777 return false;
2778
2779 op = strip_invariant_refs (TREE_OPERAND (t, 0));
182cf5a9 2780 if (!op)
2781 return false;
b9c94ed7 2782
182cf5a9 2783 if (TREE_CODE (op) == MEM_REF)
2784 {
2785 const_tree op0 = TREE_OPERAND (op, 0);
2786 return (TREE_CODE (op0) == ADDR_EXPR
2787 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2788 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2789 }
2790
2791 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
b9c94ed7 2792}
2793
2794/* Return true if T is a gimple invariant address at IPA level
2795 (so addresses of variables on stack are not allowed). */
2796
2797bool
2798is_gimple_ip_invariant_address (const_tree t)
2799{
2800 const_tree op;
2801
2802 if (TREE_CODE (t) != ADDR_EXPR)
2803 return false;
2804
2805 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2806
2807 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
75a70cf9 2808}
2809
2810/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2811 form of function invariant. */
2812
2813bool
2814is_gimple_min_invariant (const_tree t)
2815{
2816 if (TREE_CODE (t) == ADDR_EXPR)
2817 return is_gimple_invariant_address (t);
2818
2819 return is_gimple_constant (t);
2820}
2821
b9c94ed7 2822/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2823 form of gimple minimal invariant. */
2824
2825bool
2826is_gimple_ip_invariant (const_tree t)
2827{
2828 if (TREE_CODE (t) == ADDR_EXPR)
2829 return is_gimple_ip_invariant_address (t);
2830
2831 return is_gimple_constant (t);
2832}
2833
75a70cf9 2834/* Return true if T looks like a valid GIMPLE statement. */
2835
2836bool
2837is_gimple_stmt (tree t)
2838{
2839 const enum tree_code code = TREE_CODE (t);
2840
2841 switch (code)
2842 {
2843 case NOP_EXPR:
2844 /* The only valid NOP_EXPR is the empty statement. */
2845 return IS_EMPTY_STMT (t);
2846
2847 case BIND_EXPR:
2848 case COND_EXPR:
2849 /* These are only valid if they're void. */
2850 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2851
2852 case SWITCH_EXPR:
2853 case GOTO_EXPR:
2854 case RETURN_EXPR:
2855 case LABEL_EXPR:
2856 case CASE_LABEL_EXPR:
2857 case TRY_CATCH_EXPR:
2858 case TRY_FINALLY_EXPR:
2859 case EH_FILTER_EXPR:
2860 case CATCH_EXPR:
75a70cf9 2861 case ASM_EXPR:
75a70cf9 2862 case STATEMENT_LIST:
2863 case OMP_PARALLEL:
2864 case OMP_FOR:
2865 case OMP_SECTIONS:
2866 case OMP_SECTION:
2867 case OMP_SINGLE:
2868 case OMP_MASTER:
2869 case OMP_ORDERED:
2870 case OMP_CRITICAL:
2871 case OMP_TASK:
2872 /* These are always void. */
2873 return true;
2874
2875 case CALL_EXPR:
2876 case MODIFY_EXPR:
2877 case PREDICT_EXPR:
2878 /* These are valid regardless of their type. */
2879 return true;
2880
2881 default:
2882 return false;
2883 }
2884}
2885
2886/* Return true if T is a variable. */
2887
2888bool
2889is_gimple_variable (tree t)
2890{
2891 return (TREE_CODE (t) == VAR_DECL
2892 || TREE_CODE (t) == PARM_DECL
2893 || TREE_CODE (t) == RESULT_DECL
2894 || TREE_CODE (t) == SSA_NAME);
2895}
2896
2897/* Return true if T is a GIMPLE identifier (something with an address). */
2898
2899bool
2900is_gimple_id (tree t)
2901{
2902 return (is_gimple_variable (t)
2903 || TREE_CODE (t) == FUNCTION_DECL
2904 || TREE_CODE (t) == LABEL_DECL
2905 || TREE_CODE (t) == CONST_DECL
2906 /* Allow string constants, since they are addressable. */
2907 || TREE_CODE (t) == STRING_CST);
2908}
2909
2910/* Return true if TYPE is a suitable type for a scalar register variable. */
2911
2912bool
2913is_gimple_reg_type (tree type)
2914{
f09f132b 2915 return !AGGREGATE_TYPE_P (type);
75a70cf9 2916}
2917
2918/* Return true if T is a non-aggregate register variable. */
2919
2920bool
2921is_gimple_reg (tree t)
2922{
2923 if (TREE_CODE (t) == SSA_NAME)
2924 t = SSA_NAME_VAR (t);
2925
75a70cf9 2926 if (!is_gimple_variable (t))
2927 return false;
2928
2929 if (!is_gimple_reg_type (TREE_TYPE (t)))
2930 return false;
2931
2932 /* A volatile decl is not acceptable because we can't reuse it as
2933 needed. We need to copy it into a temp first. */
2934 if (TREE_THIS_VOLATILE (t))
2935 return false;
2936
2937 /* We define "registers" as things that can be renamed as needed,
2938 which with our infrastructure does not apply to memory. */
2939 if (needs_to_live_in_memory (t))
2940 return false;
2941
2942 /* Hard register variables are an interesting case. For those that
2943 are call-clobbered, we don't know where all the calls are, since
2944 we don't (want to) take into account which operations will turn
2945 into libcalls at the rtl level. For those that are call-saved,
2946 we don't currently model the fact that calls may in fact change
2947 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2948 level, and so miss variable changes that might imply. All around,
2949 it seems safest to not do too much optimization with these at the
2950 tree level at all. We'll have to rely on the rtl optimizers to
2951 clean this up, as there we've got all the appropriate bits exposed. */
2952 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2953 return false;
2954
f09f132b 2955 /* Complex and vector values must have been put into SSA-like form.
2956 That is, no assignments to the individual components. */
2957 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2958 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2959 return DECL_GIMPLE_REG_P (t);
2960
75a70cf9 2961 return true;
2962}
2963
2964
75a70cf9 2965/* Return true if T is a GIMPLE variable whose address is not needed. */
2966
2967bool
2968is_gimple_non_addressable (tree t)
2969{
2970 if (TREE_CODE (t) == SSA_NAME)
2971 t = SSA_NAME_VAR (t);
2972
2973 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2974}
2975
2976/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2977
2978bool
2979is_gimple_val (tree t)
2980{
2981 /* Make loads from volatiles and memory vars explicit. */
2982 if (is_gimple_variable (t)
2983 && is_gimple_reg_type (TREE_TYPE (t))
2984 && !is_gimple_reg (t))
2985 return false;
2986
75a70cf9 2987 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2988}
2989
2990/* Similarly, but accept hard registers as inputs to asm statements. */
2991
2992bool
2993is_gimple_asm_val (tree t)
2994{
2995 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2996 return true;
2997
2998 return is_gimple_val (t);
2999}
3000
3001/* Return true if T is a GIMPLE minimal lvalue. */
3002
3003bool
3004is_gimple_min_lval (tree t)
3005{
47f11e84 3006 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
3007 return false;
182cf5a9 3008 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
75a70cf9 3009}
3010
75a70cf9 3011/* Return true if T is a valid function operand of a CALL_EXPR. */
3012
3013bool
3014is_gimple_call_addr (tree t)
3015{
3016 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3017}
3018
182cf5a9 3019/* Return true if T is a valid address operand of a MEM_REF. */
3020
3021bool
3022is_gimple_mem_ref_addr (tree t)
3023{
3024 return (is_gimple_reg (t)
3025 || TREE_CODE (t) == INTEGER_CST
3026 || (TREE_CODE (t) == ADDR_EXPR
3027 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
3028 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
3029}
3030
75a70cf9 3031/* If T makes a function call, return the corresponding CALL_EXPR operand.
3032 Otherwise, return NULL_TREE. */
3033
3034tree
3035get_call_expr_in (tree t)
3036{
3037 if (TREE_CODE (t) == MODIFY_EXPR)
3038 t = TREE_OPERAND (t, 1);
3039 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3040 t = TREE_OPERAND (t, 0);
3041 if (TREE_CODE (t) == CALL_EXPR)
3042 return t;
3043 return NULL_TREE;
3044}
3045
3046
3047/* Given a memory reference expression T, return its base address.
3048 The base address of a memory reference expression is the main
3049 object being referenced. For instance, the base address for
3050 'array[i].fld[j]' is 'array'. You can think of this as stripping
3051 away the offset part from a memory address.
3052
3053 This function calls handled_component_p to strip away all the inner
3054 parts of the memory reference until it reaches the base object. */
3055
3056tree
3057get_base_address (tree t)
3058{
3059 while (handled_component_p (t))
3060 t = TREE_OPERAND (t, 0);
48e1416a 3061
28daba6f 3062 if ((TREE_CODE (t) == MEM_REF
3063 || TREE_CODE (t) == TARGET_MEM_REF)
182cf5a9 3064 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3065 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3066
551732eb 3067 if (TREE_CODE (t) == SSA_NAME
3068 || DECL_P (t)
75a70cf9 3069 || TREE_CODE (t) == STRING_CST
3070 || TREE_CODE (t) == CONSTRUCTOR
182cf5a9 3071 || INDIRECT_REF_P (t)
28daba6f 3072 || TREE_CODE (t) == MEM_REF
3073 || TREE_CODE (t) == TARGET_MEM_REF)
75a70cf9 3074 return t;
3075 else
3076 return NULL_TREE;
3077}
3078
3079void
3080recalculate_side_effects (tree t)
3081{
3082 enum tree_code code = TREE_CODE (t);
3083 int len = TREE_OPERAND_LENGTH (t);
3084 int i;
3085
3086 switch (TREE_CODE_CLASS (code))
3087 {
3088 case tcc_expression:
3089 switch (code)
3090 {
3091 case INIT_EXPR:
3092 case MODIFY_EXPR:
3093 case VA_ARG_EXPR:
3094 case PREDECREMENT_EXPR:
3095 case PREINCREMENT_EXPR:
3096 case POSTDECREMENT_EXPR:
3097 case POSTINCREMENT_EXPR:
3098 /* All of these have side-effects, no matter what their
3099 operands are. */
3100 return;
3101
3102 default:
3103 break;
3104 }
3105 /* Fall through. */
3106
3107 case tcc_comparison: /* a comparison expression */
3108 case tcc_unary: /* a unary arithmetic expression */
3109 case tcc_binary: /* a binary arithmetic expression */
3110 case tcc_reference: /* a reference */
3111 case tcc_vl_exp: /* a function call */
3112 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3113 for (i = 0; i < len; ++i)
3114 {
3115 tree op = TREE_OPERAND (t, i);
3116 if (op && TREE_SIDE_EFFECTS (op))
3117 TREE_SIDE_EFFECTS (t) = 1;
3118 }
3119 break;
3120
d2305bfa 3121 case tcc_constant:
3122 /* No side-effects. */
3123 return;
3124
75a70cf9 3125 default:
75a70cf9 3126 gcc_unreachable ();
3127 }
3128}
3129
3130/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3131 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3132 we failed to create one. */
3133
3134tree
3135canonicalize_cond_expr_cond (tree t)
3136{
abd3c475 3137 /* Strip conversions around boolean operations. */
3138 if (CONVERT_EXPR_P (t)
3139 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3140 t = TREE_OPERAND (t, 0);
3141
75a70cf9 3142 /* For !x use x == 0. */
71b5c25e 3143 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
75a70cf9 3144 {
3145 tree top0 = TREE_OPERAND (t, 0);
3146 t = build2 (EQ_EXPR, TREE_TYPE (t),
3147 top0, build_int_cst (TREE_TYPE (top0), 0));
3148 }
3149 /* For cmp ? 1 : 0 use cmp. */
3150 else if (TREE_CODE (t) == COND_EXPR
3151 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3152 && integer_onep (TREE_OPERAND (t, 1))
3153 && integer_zerop (TREE_OPERAND (t, 2)))
3154 {
3155 tree top0 = TREE_OPERAND (t, 0);
3156 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3157 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3158 }
3159
3160 if (is_gimple_condexpr (t))
3161 return t;
3162
3163 return NULL_TREE;
3164}
3165
09c20c11 3166/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3167 the positions marked by the set ARGS_TO_SKIP. */
3168
5afe38fe 3169gimple
74140efd 3170gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
5afe38fe 3171{
3172 int i;
5afe38fe 3173 int nargs = gimple_call_num_args (stmt);
3174 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3175 gimple new_stmt;
3176
3177 for (i = 0; i < nargs; i++)
3178 if (!bitmap_bit_p (args_to_skip, i))
3179 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3180
fb049fba 3181 if (gimple_call_internal_p (stmt))
3182 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
3183 vargs);
3184 else
3185 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
5afe38fe 3186 VEC_free (tree, heap, vargs);
3187 if (gimple_call_lhs (stmt))
3188 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3189
dd277d48 3190 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3191 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3192
5afe38fe 3193 gimple_set_block (new_stmt, gimple_block (stmt));
3194 if (gimple_has_location (stmt))
3195 gimple_set_location (new_stmt, gimple_location (stmt));
91aba934 3196 gimple_call_copy_flags (new_stmt, stmt);
5afe38fe 3197 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
dd277d48 3198
3199 gimple_set_modified (new_stmt, true);
3200
5afe38fe 3201 return new_stmt;
3202}
3203
dd277d48 3204
79e191db 3205enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
3206
564cba5f 3207static hashval_t gimple_type_hash (const void *);
7bfefa9d 3208
3209/* Structure used to maintain a cache of some type pairs compared by
3210 gimple_types_compatible_p when comparing aggregate types. There are
a9b8ddbe 3211 three possible values for SAME_P:
7bfefa9d 3212
3213 -2: The pair (T1, T2) has just been inserted in the table.
7bfefa9d 3214 0: T1 and T2 are different types.
3215 1: T1 and T2 are the same type.
3216
a9b8ddbe 3217 The two elements in the SAME_P array are indexed by the comparison
3218 mode gtc_mode. */
3219
7bfefa9d 3220struct type_pair_d
3221{
1fc0af12 3222 unsigned int uid1;
3223 unsigned int uid2;
a9b8ddbe 3224 signed char same_p[2];
7bfefa9d 3225};
3226typedef struct type_pair_d *type_pair_t;
93f1467b 3227DEF_VEC_P(type_pair_t);
3228DEF_VEC_ALLOC_P(type_pair_t,heap);
3229
b2640e03 3230#define GIMPLE_TYPE_PAIR_SIZE 16381
3231struct type_pair_d *type_pair_cache;
7bfefa9d 3232
7bfefa9d 3233
3234/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3235 entry if none existed. */
3236
b2640e03 3237static inline type_pair_t
3238lookup_type_pair (tree t1, tree t2)
7bfefa9d 3239{
b2640e03 3240 unsigned int index;
3241 unsigned int uid1, uid2;
7bfefa9d 3242
b2640e03 3243 if (type_pair_cache == NULL)
3244 type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
7bfefa9d 3245
4075ce4a 3246 if (TYPE_UID (t1) < TYPE_UID (t2))
3247 {
b2640e03 3248 uid1 = TYPE_UID (t1);
3249 uid2 = TYPE_UID (t2);
4075ce4a 3250 }
3251 else
3252 {
b2640e03 3253 uid1 = TYPE_UID (t2);
3254 uid2 = TYPE_UID (t1);
4075ce4a 3255 }
b2640e03 3256 gcc_checking_assert (uid1 != uid2);
7bfefa9d 3257
b2640e03 3258 /* iterative_hash_hashval_t imply an function calls.
3259 We know that UIDS are in limited range. */
3260 index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
3261 % GIMPLE_TYPE_PAIR_SIZE);
3262 if (type_pair_cache [index].uid1 == uid1
3263 && type_pair_cache [index].uid2 == uid2)
3264 return &type_pair_cache[index];
7bfefa9d 3265
b2640e03 3266 type_pair_cache [index].uid1 = uid1;
3267 type_pair_cache [index].uid2 = uid2;
3268 type_pair_cache [index].same_p[0] = -2;
3269 type_pair_cache [index].same_p[1] = -2;
3270
3271 return &type_pair_cache[index];
7bfefa9d 3272}
3273
93f1467b 3274/* Per pointer state for the SCC finding. The on_sccstack flag
3275 is not strictly required, it is true when there is no hash value
3276 recorded for the type and false otherwise. But querying that
3277 is slower. */
3278
3279struct sccs
3280{
3281 unsigned int dfsnum;
3282 unsigned int low;
3283 bool on_sccstack;
3284 union {
3285 hashval_t hash;
a9b8ddbe 3286 signed char same_p;
93f1467b 3287 } u;
3288};
3289
3290static unsigned int next_dfs_num;
3291static unsigned int gtc_next_dfs_num;
7bfefa9d 3292
7a3ccc3b 3293
3294/* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
3295
3296typedef struct GTY(()) gimple_type_leader_entry_s {
3297 tree type;
3298 tree leader;
3299} gimple_type_leader_entry;
3300
3301#define GIMPLE_TYPE_LEADER_SIZE 16381
5cd33168 3302static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
3303 gimple_type_leader_entry *gimple_type_leader;
7a3ccc3b 3304
3305/* Lookup an existing leader for T and return it or NULL_TREE, if
3306 there is none in the cache. */
3307
4075ce4a 3308static inline tree
7a3ccc3b 3309gimple_lookup_type_leader (tree t)
3310{
3311 gimple_type_leader_entry *leader;
3312
3313 if (!gimple_type_leader)
3314 return NULL_TREE;
3315
3316 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
3317 if (leader->type != t)
3318 return NULL_TREE;
3319
3320 return leader->leader;
3321}
3322
a9a597e0 3323/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3324 true then if any type has no name return false, otherwise return
3325 true if both types have no names. */
7bfefa9d 3326
3327static bool
1ca0809c 3328compare_type_names_p (tree t1, tree t2)
7bfefa9d 3329{
3330 tree name1 = TYPE_NAME (t1);
3331 tree name2 = TYPE_NAME (t2);
3332
a9a597e0 3333 if (name1 && TREE_CODE (name1) == TYPE_DECL)
1ca0809c 3334 name1 = DECL_NAME (name1);
3335 gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
7bfefa9d 3336
a9a597e0 3337 if (name2 && TREE_CODE (name2) == TYPE_DECL)
1ca0809c 3338 name2 = DECL_NAME (name2);
3339 gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
7bfefa9d 3340
3341 /* Identifiers can be compared with pointer equality rather
3342 than a string comparison. */
3343 if (name1 == name2)
3344 return true;
3345
3346 return false;
3347}
3348
a1072234 3349/* Return true if the field decls F1 and F2 are at the same offset.
3350
e7e718d0 3351 This is intended to be used on GIMPLE types only. */
7bfefa9d 3352
67b18080 3353bool
a1072234 3354gimple_compare_field_offset (tree f1, tree f2)
7bfefa9d 3355{
3356 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
a1072234 3357 {
3358 tree offset1 = DECL_FIELD_OFFSET (f1);
3359 tree offset2 = DECL_FIELD_OFFSET (f2);
3360 return ((offset1 == offset2
3361 /* Once gimplification is done, self-referential offsets are
3362 instantiated as operand #2 of the COMPONENT_REF built for
3363 each access and reset. Therefore, they are not relevant
3364 anymore and fields are interchangeable provided that they
3365 represent the same access. */
3366 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3367 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3368 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3369 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3370 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3371 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3372 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3373 || operand_equal_p (offset1, offset2, 0))
3374 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3375 DECL_FIELD_BIT_OFFSET (f2)));
3376 }
7bfefa9d 3377
3378 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3379 should be, so handle differing ones specially by decomposing
3380 the offset into a byte and bit offset manually. */
3381 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3382 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3383 {
3384 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3385 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3386 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3387 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3388 + bit_offset1 / BITS_PER_UNIT);
3389 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3390 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3391 + bit_offset2 / BITS_PER_UNIT);
3392 if (byte_offset1 != byte_offset2)
3393 return false;
3394 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3395 }
3396
3397 return false;
3398}
3399
93f1467b 3400static bool
564cba5f 3401gimple_types_compatible_p_1 (tree, tree, type_pair_t,
a9b8ddbe 3402 VEC(type_pair_t, heap) **,
93f1467b 3403 struct pointer_map_t *, struct obstack *);
7bfefa9d 3404
93f1467b 3405/* DFS visit the edge from the callers type pair with state *STATE to
3406 the pair T1, T2 while operating in FOR_MERGING_P mode.
3407 Update the merging status if it is not part of the SCC containing the
3408 callers pair and return it.
3409 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3410
3411static bool
564cba5f 3412gtc_visit (tree t1, tree t2,
93f1467b 3413 struct sccs *state,
3414 VEC(type_pair_t, heap) **sccstack,
3415 struct pointer_map_t *sccstate,
3416 struct obstack *sccstate_obstack)
7bfefa9d 3417{
93f1467b 3418 struct sccs *cstate = NULL;
3419 type_pair_t p;
3420 void **slot;
564cba5f 3421 tree leader1, leader2;
7bfefa9d 3422
3423 /* Check first for the obvious case of pointer identity. */
3424 if (t1 == t2)
93f1467b 3425 return true;
7bfefa9d 3426
3427 /* Check that we have two types to compare. */
3428 if (t1 == NULL_TREE || t2 == NULL_TREE)
93f1467b 3429 return false;
7bfefa9d 3430
3431 /* Can't be the same type if the types don't have the same code. */
3432 if (TREE_CODE (t1) != TREE_CODE (t2))
93f1467b 3433 return false;
b612c537 3434
3435 /* Can't be the same type if they have different CV qualifiers. */
3436 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
93f1467b 3437 return false;
7bfefa9d 3438
488a4664 3439 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3440 return false;
3441
3442 /* Void types and nullptr types are always the same. */
3443 if (TREE_CODE (t1) == VOID_TYPE
3444 || TREE_CODE (t1) == NULLPTR_TYPE)
93f1467b 3445 return true;
7bfefa9d 3446
488a4664 3447 /* Can't be the same type if they have different alignment or mode. */
3448 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3449 || TYPE_MODE (t1) != TYPE_MODE (t2))
3450 return false;
3451
895241b4 3452 /* Do some simple checks before doing three hashtable queries. */
b612c537 3453 if (INTEGRAL_TYPE_P (t1)
3454 || SCALAR_FLOAT_TYPE_P (t1)
3455 || FIXED_POINT_TYPE_P (t1)
3456 || TREE_CODE (t1) == VECTOR_TYPE
bc9c6c8a 3457 || TREE_CODE (t1) == COMPLEX_TYPE
488a4664 3458 || TREE_CODE (t1) == OFFSET_TYPE
3459 || POINTER_TYPE_P (t1))
b612c537 3460 {
488a4664 3461 /* Can't be the same type if they have different sign or precision. */
3462 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
b612c537 3463 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
93f1467b 3464 return false;
b612c537 3465
3466 if (TREE_CODE (t1) == INTEGER_TYPE
3467 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3468 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
93f1467b 3469 return false;
b612c537 3470
3471 /* That's all we need to check for float and fixed-point types. */
3472 if (SCALAR_FLOAT_TYPE_P (t1)
3473 || FIXED_POINT_TYPE_P (t1))
93f1467b 3474 return true;
b612c537 3475
488a4664 3476 /* For other types fall thru to more complex checks. */
b612c537 3477 }
7bfefa9d 3478
488a4664 3479 /* If the types have been previously registered and found equal
3480 they still are. */
3481 leader1 = gimple_lookup_type_leader (t1);
3482 leader2 = gimple_lookup_type_leader (t2);
3483 if (leader1 == t2
3484 || t1 == leader2
3485 || (leader1 && leader1 == leader2))
3486 return true;
895241b4 3487
7bfefa9d 3488 /* If the hash values of t1 and t2 are different the types can't
3489 possibly be the same. This helps keeping the type-pair hashtable
3490 small, only tracking comparisons for hash collisions. */
564cba5f 3491 if (gimple_type_hash (t1) != gimple_type_hash (t2))
93f1467b 3492 return false;
7bfefa9d 3493
93f1467b 3494 /* Allocate a new cache entry for this comparison. */
b2640e03 3495 p = lookup_type_pair (t1, t2);
564cba5f 3496 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
7bfefa9d 3497 {
3498 /* We have already decided whether T1 and T2 are the
3499 same, return the cached result. */
564cba5f 3500 return p->same_p[GTC_MERGE] == 1;
7bfefa9d 3501 }
93f1467b 3502
93f1467b 3503 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3504 cstate = (struct sccs *)*slot;
1171c3e4 3505 /* Not yet visited. DFS recurse. */
93f1467b 3506 if (!cstate)
7bfefa9d 3507 {
564cba5f 3508 gimple_types_compatible_p_1 (t1, t2, p,
1171c3e4 3509 sccstack, sccstate, sccstate_obstack);
3510 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
93f1467b 3511 state->low = MIN (state->low, cstate->low);
7bfefa9d 3512 }
1171c3e4 3513 /* If the type is still on the SCC stack adjust the parents low. */
93f1467b 3514 if (cstate->dfsnum < state->dfsnum
3515 && cstate->on_sccstack)
3516 state->low = MIN (cstate->dfsnum, state->low);
7bfefa9d 3517
1171c3e4 3518 /* Return the current lattice value. We start with an equality
3519 assumption so types part of a SCC will be optimistically
3520 treated equal unless proven otherwise. */
3521 return cstate->u.same_p;
93f1467b 3522}
3523
3524/* Worker for gimple_types_compatible.
3525 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3526
3527static bool
564cba5f 3528gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
93f1467b 3529 VEC(type_pair_t, heap) **sccstack,
3530 struct pointer_map_t *sccstate,
3531 struct obstack *sccstate_obstack)
3532{
93f1467b 3533 struct sccs *state;
3534
564cba5f 3535 gcc_assert (p->same_p[GTC_MERGE] == -2);
7bfefa9d 3536
93f1467b 3537 state = XOBNEW (sccstate_obstack, struct sccs);
3538 *pointer_map_insert (sccstate, p) = state;
3539
3540 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3541 state->dfsnum = gtc_next_dfs_num++;
3542 state->low = state->dfsnum;
3543 state->on_sccstack = true;
1171c3e4 3544 /* Start with an equality assumption. As we DFS recurse into child
3545 SCCs this assumption may get revisited. */
3546 state->u.same_p = 1;
7bfefa9d 3547
9c759c0a 3548 /* The struct tags shall compare equal. */
1ca0809c 3549 if (!compare_type_names_p (t1, t2))
9c759c0a 3550 goto different_types;
3551
7bfefa9d 3552 /* If their attributes are not the same they can't be the same type. */
3553 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3554 goto different_types;
3555
7bfefa9d 3556 /* Do type-specific comparisons. */
3557 switch (TREE_CODE (t1))
3558 {
93f1467b 3559 case VECTOR_TYPE:
3560 case COMPLEX_TYPE:
564cba5f 3561 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
93f1467b 3562 state, sccstack, sccstate, sccstate_obstack))
3563 goto different_types;
3564 goto same_types;
3565
7bfefa9d 3566 case ARRAY_TYPE:
3567 /* Array types are the same if the element types are the same and
3568 the number of elements are the same. */
564cba5f 3569 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
93f1467b 3570 state, sccstack, sccstate, sccstate_obstack)
b612c537 3571 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3572 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
7bfefa9d 3573 goto different_types;
3574 else
3575 {
3576 tree i1 = TYPE_DOMAIN (t1);
3577 tree i2 = TYPE_DOMAIN (t2);
3578
3579 /* For an incomplete external array, the type domain can be
3580 NULL_TREE. Check this condition also. */
3581 if (i1 == NULL_TREE && i2 == NULL_TREE)
3582 goto same_types;
3583 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3584 goto different_types;
3585 /* If for a complete array type the possibly gimplified sizes
3586 are different the types are different. */
3587 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3588 || (TYPE_SIZE (i1)
3589 && TYPE_SIZE (i2)
3590 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3591 goto different_types;
3592 else
3593 {
3594 tree min1 = TYPE_MIN_VALUE (i1);
3595 tree min2 = TYPE_MIN_VALUE (i2);
3596 tree max1 = TYPE_MAX_VALUE (i1);
3597 tree max2 = TYPE_MAX_VALUE (i2);
3598
3599 /* The minimum/maximum values have to be the same. */
3600 if ((min1 == min2
c9d19f43 3601 || (min1 && min2
3602 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3603 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3604 || operand_equal_p (min1, min2, 0))))
7bfefa9d 3605 && (max1 == max2
c9d19f43 3606 || (max1 && max2
3607 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3608 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3609 || operand_equal_p (max1, max2, 0)))))
7bfefa9d 3610 goto same_types;
3611 else
3612 goto different_types;
3613 }
3614 }
3615
3616 case METHOD_TYPE:
3617 /* Method types should belong to the same class. */
93f1467b 3618 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
564cba5f 3619 state, sccstack, sccstate, sccstate_obstack))
7bfefa9d 3620 goto different_types;
3621
3622 /* Fallthru */
3623
3624 case FUNCTION_TYPE:
3625 /* Function types are the same if the return type and arguments types
3626 are the same. */
564cba5f 3627 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
3628 state, sccstack, sccstate, sccstate_obstack))
816ede17 3629 goto different_types;
3630
309303cf 3631 if (!comp_type_attributes (t1, t2))
7bfefa9d 3632 goto different_types;
816ede17 3633
3634 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3635 goto same_types;
7bfefa9d 3636 else
3637 {
816ede17 3638 tree parms1, parms2;
7bfefa9d 3639
816ede17 3640 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3641 parms1 && parms2;
3642 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
7bfefa9d 3643 {
564cba5f 3644 if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
3645 state, sccstack, sccstate, sccstate_obstack))
7bfefa9d 3646 goto different_types;
7bfefa9d 3647 }
816ede17 3648
3649 if (parms1 || parms2)
3650 goto different_types;
3651
3652 goto same_types;
7bfefa9d 3653 }
3654
bc9c6c8a 3655 case OFFSET_TYPE:
3656 {
564cba5f 3657 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
93f1467b 3658 state, sccstack, sccstate, sccstate_obstack)
3659 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
564cba5f 3660 TYPE_OFFSET_BASETYPE (t2),
93f1467b 3661 state, sccstack, sccstate, sccstate_obstack))
bc9c6c8a 3662 goto different_types;
3663
3664 goto same_types;
3665 }
3666
7bfefa9d 3667 case POINTER_TYPE:
3668 case REFERENCE_TYPE:
66bd377c 3669 {
3670 /* If the two pointers have different ref-all attributes,
3671 they can't be the same type. */
3672 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3673 goto different_types;
7bfefa9d 3674
66bd377c 3675 /* Otherwise, pointer and reference types are the same if the
3676 pointed-to types are the same. */
564cba5f 3677 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
93f1467b 3678 state, sccstack, sccstate, sccstate_obstack))
66bd377c 3679 goto same_types;
3680
3681 goto different_types;
3682 }
7bfefa9d 3683
b612c537 3684 case INTEGER_TYPE:
3685 case BOOLEAN_TYPE:
3686 {
3687 tree min1 = TYPE_MIN_VALUE (t1);
3688 tree max1 = TYPE_MAX_VALUE (t1);
3689 tree min2 = TYPE_MIN_VALUE (t2);
3690 tree max2 = TYPE_MAX_VALUE (t2);
3691 bool min_equal_p = false;
3692 bool max_equal_p = false;
3693
3694 /* If either type has a minimum value, the other type must
3695 have the same. */
3696 if (min1 == NULL_TREE && min2 == NULL_TREE)
3697 min_equal_p = true;
3698 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3699 min_equal_p = true;
3700
3701 /* Likewise, if either type has a maximum value, the other
3702 type must have the same. */
3703 if (max1 == NULL_TREE && max2 == NULL_TREE)
3704 max_equal_p = true;
3705 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3706 max_equal_p = true;
3707
3708 if (!min_equal_p || !max_equal_p)
3709 goto different_types;
3710
3711 goto same_types;
3712 }
3713
7bfefa9d 3714 case ENUMERAL_TYPE:
66bd377c 3715 {
b612c537 3716 /* FIXME lto, we cannot check bounds on enumeral types because
3717 different front ends will produce different values.
3718 In C, enumeral types are integers, while in C++ each element
3719 will have its own symbolic value. We should decide how enums
3720 are to be represented in GIMPLE and have each front end lower
3721 to that. */
66bd377c 3722 tree v1, v2;
7bfefa9d 3723
b612c537 3724 /* For enumeral types, all the values must be the same. */
66bd377c 3725 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3726 goto same_types;
7bfefa9d 3727
66bd377c 3728 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3729 v1 && v2;
3730 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3731 {
3732 tree c1 = TREE_VALUE (v1);
3733 tree c2 = TREE_VALUE (v2);
7bfefa9d 3734
66bd377c 3735 if (TREE_CODE (c1) == CONST_DECL)
3736 c1 = DECL_INITIAL (c1);
7bfefa9d 3737
66bd377c 3738 if (TREE_CODE (c2) == CONST_DECL)
3739 c2 = DECL_INITIAL (c2);
7bfefa9d 3740
66bd377c 3741 if (tree_int_cst_equal (c1, c2) != 1)
3742 goto different_types;
c693f407 3743
564cba5f 3744 if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
c693f407 3745 goto different_types;
66bd377c 3746 }
7bfefa9d 3747
66bd377c 3748 /* If one enumeration has more values than the other, they
3749 are not the same. */
3750 if (v1 || v2)
3751 goto different_types;
7bfefa9d 3752
66bd377c 3753 goto same_types;
3754 }
7bfefa9d 3755
3756 case RECORD_TYPE:
3757 case UNION_TYPE:
3758 case QUAL_UNION_TYPE:
66bd377c 3759 {
3760 tree f1, f2;
7bfefa9d 3761
66bd377c 3762 /* For aggregate types, all the fields must be the same. */
3763 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3764 f1 && f2;
3765 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3766 {
26256e53 3767 /* Different field kinds are not compatible. */
3768 if (TREE_CODE (f1) != TREE_CODE (f2))
3769 goto different_types;
3770 /* Field decls must have the same name and offset. */
3771 if (TREE_CODE (f1) == FIELD_DECL
3772 && (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3773 || !gimple_compare_field_offset (f1, f2)))
3774 goto different_types;
3775 /* All entities should have the same name and type. */
564cba5f 3776 if (DECL_NAME (f1) != DECL_NAME (f2)
564cba5f 3777 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
93f1467b 3778 state, sccstack, sccstate, sccstate_obstack))
66bd377c 3779 goto different_types;
3780 }
7bfefa9d 3781
66bd377c 3782 /* If one aggregate has more fields than the other, they
3783 are not the same. */
3784 if (f1 || f2)
3785 goto different_types;
7bfefa9d 3786
66bd377c 3787 goto same_types;
3788 }
7bfefa9d 3789
7bfefa9d 3790 default:
b612c537 3791 gcc_unreachable ();
7bfefa9d 3792 }
3793
3794 /* Common exit path for types that are not compatible. */
3795different_types:
93f1467b 3796 state->u.same_p = 0;
3797 goto pop;
7bfefa9d 3798
3799 /* Common exit path for types that are compatible. */
3800same_types:
1171c3e4 3801 gcc_assert (state->u.same_p == 1);
7bfefa9d 3802
93f1467b 3803pop:
3804 if (state->low == state->dfsnum)
3805 {
3806 type_pair_t x;
7bfefa9d 3807
1171c3e4 3808 /* Pop off the SCC and set its cache values to the final
3809 comparison result. */
93f1467b 3810 do
3811 {
3812 struct sccs *cstate;
3813 x = VEC_pop (type_pair_t, *sccstack);
3814 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3815 cstate->on_sccstack = false;
564cba5f 3816 x->same_p[GTC_MERGE] = state->u.same_p;
93f1467b 3817 }
3818 while (x != p);
3819 }
7bfefa9d 3820
93f1467b 3821 return state->u.same_p;
3822}
7bfefa9d 3823
93f1467b 3824/* Return true iff T1 and T2 are structurally identical. When
3825 FOR_MERGING_P is true the an incomplete type and a complete type
3826 are considered different, otherwise they are considered compatible. */
7bfefa9d 3827
79e191db 3828static bool
564cba5f 3829gimple_types_compatible_p (tree t1, tree t2)
7bfefa9d 3830{
93f1467b 3831 VEC(type_pair_t, heap) *sccstack = NULL;
3832 struct pointer_map_t *sccstate;
3833 struct obstack sccstate_obstack;
3834 type_pair_t p = NULL;
3835 bool res;
564cba5f 3836 tree leader1, leader2;
93f1467b 3837
3838 /* Before starting to set up the SCC machinery handle simple cases. */
3839
3840 /* Check first for the obvious case of pointer identity. */
3841 if (t1 == t2)
3842 return true;
3843
3844 /* Check that we have two types to compare. */
3845 if (t1 == NULL_TREE || t2 == NULL_TREE)
3846 return false;
3847
93f1467b 3848 /* Can't be the same type if the types don't have the same code. */
3849 if (TREE_CODE (t1) != TREE_CODE (t2))
3850 return false;
3851
3852 /* Can't be the same type if they have different CV qualifiers. */
3853 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3854 return false;
3855
488a4664 3856 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
3857 return false;
3858
3859 /* Void types and nullptr types are always the same. */
3860 if (TREE_CODE (t1) == VOID_TYPE
3861 || TREE_CODE (t1) == NULLPTR_TYPE)
93f1467b 3862 return true;
3863
488a4664 3864 /* Can't be the same type if they have different alignment or mode. */
3865 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3866 || TYPE_MODE (t1) != TYPE_MODE (t2))
3867 return false;
3868
93f1467b 3869 /* Do some simple checks before doing three hashtable queries. */
3870 if (INTEGRAL_TYPE_P (t1)
3871 || SCALAR_FLOAT_TYPE_P (t1)
3872 || FIXED_POINT_TYPE_P (t1)
3873 || TREE_CODE (t1) == VECTOR_TYPE
3874 || TREE_CODE (t1) == COMPLEX_TYPE
488a4664 3875 || TREE_CODE (t1) == OFFSET_TYPE
3876 || POINTER_TYPE_P (t1))
93f1467b 3877 {
488a4664 3878 /* Can't be the same type if they have different sign or precision. */
3879 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
93f1467b 3880 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3881 return false;
3882
3883 if (TREE_CODE (t1) == INTEGER_TYPE
3884 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3885 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3886 return false;
3887
3888 /* That's all we need to check for float and fixed-point types. */
3889 if (SCALAR_FLOAT_TYPE_P (t1)
3890 || FIXED_POINT_TYPE_P (t1))
3891 return true;
3892
488a4664 3893 /* For other types fall thru to more complex checks. */
93f1467b 3894 }
3895
488a4664 3896 /* If the types have been previously registered and found equal
3897 they still are. */
3898 leader1 = gimple_lookup_type_leader (t1);
3899 leader2 = gimple_lookup_type_leader (t2);
3900 if (leader1 == t2
3901 || t1 == leader2
3902 || (leader1 && leader1 == leader2))
3903 return true;
93f1467b 3904
3905 /* If the hash values of t1 and t2 are different the types can't
3906 possibly be the same. This helps keeping the type-pair hashtable
3907 small, only tracking comparisons for hash collisions. */
564cba5f 3908 if (gimple_type_hash (t1) != gimple_type_hash (t2))
93f1467b 3909 return false;
3910
3911 /* If we've visited this type pair before (in the case of aggregates
3912 with self-referential types), and we made a decision, return it. */
b2640e03 3913 p = lookup_type_pair (t1, t2);
564cba5f 3914 if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
93f1467b 3915 {
3916 /* We have already decided whether T1 and T2 are the
3917 same, return the cached result. */
564cba5f 3918 return p->same_p[GTC_MERGE] == 1;
93f1467b 3919 }
3920
3921 /* Now set up the SCC machinery for the comparison. */
3922 gtc_next_dfs_num = 1;
3923 sccstate = pointer_map_create ();
3924 gcc_obstack_init (&sccstate_obstack);
564cba5f 3925 res = gimple_types_compatible_p_1 (t1, t2, p,
93f1467b 3926 &sccstack, sccstate, &sccstate_obstack);
3927 VEC_free (type_pair_t, heap, sccstack);
3928 pointer_map_destroy (sccstate);
3929 obstack_free (&sccstate_obstack, NULL);
3930
3931 return res;
3932}
7bfefa9d 3933
7bfefa9d 3934
3935static hashval_t
3936iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
564cba5f 3937 struct pointer_map_t *, struct obstack *);
7bfefa9d 3938
3939/* DFS visit the edge from the callers type with state *STATE to T.
3940 Update the callers type hash V with the hash for T if it is not part
3941 of the SCC containing the callers type and return it.
3942 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3943
3944static hashval_t
3945visit (tree t, struct sccs *state, hashval_t v,
3946 VEC (tree, heap) **sccstack,
3947 struct pointer_map_t *sccstate,
564cba5f 3948 struct obstack *sccstate_obstack)
7bfefa9d 3949{
3950 struct sccs *cstate = NULL;
7a52b640 3951 struct tree_int_map m;
7bfefa9d 3952 void **slot;
3953
3954 /* If there is a hash value recorded for this type then it can't
3955 possibly be part of our parent SCC. Simply mix in its hash. */
7a52b640 3956 m.base.from = t;
564cba5f 3957 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
7a52b640 3958 && *slot)
3959 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
7bfefa9d 3960
3961 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3962 cstate = (struct sccs *)*slot;
3963 if (!cstate)
3964 {
3965 hashval_t tem;
3966 /* Not yet visited. DFS recurse. */
3967 tem = iterative_hash_gimple_type (t, v,
564cba5f 3968 sccstack, sccstate, sccstate_obstack);
7bfefa9d 3969 if (!cstate)
3970 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3971 state->low = MIN (state->low, cstate->low);
3972 /* If the type is no longer on the SCC stack and thus is not part
3973 of the parents SCC mix in its hash value. Otherwise we will
3974 ignore the type for hashing purposes and return the unaltered
3975 hash value. */
3976 if (!cstate->on_sccstack)
3977 return tem;
3978 }
3979 if (cstate->dfsnum < state->dfsnum
3980 && cstate->on_sccstack)
3981 state->low = MIN (cstate->dfsnum, state->low);
3982
3983 /* We are part of our parents SCC, skip this type during hashing
3984 and return the unaltered hash value. */
3985 return v;
3986}
3987
a9a597e0 3988/* Hash NAME with the previous hash value V and return it. */
7bfefa9d 3989
3990static hashval_t
a9a597e0 3991iterative_hash_name (tree name, hashval_t v)
7bfefa9d 3992{
7bfefa9d 3993 if (!name)
3994 return v;
3995 if (TREE_CODE (name) == TYPE_DECL)
3996 name = DECL_NAME (name);
3997 if (!name)
3998 return v;
3999 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
7bfefa9d 4000 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
4001}
4002
9532776c 4003/* A type, hashvalue pair for sorting SCC members. */
4004
4005struct type_hash_pair {
4006 tree type;
4007 hashval_t hash;
4008};
4009
4010/* Compare two type, hashvalue pairs. */
4011
4012static int
4013type_hash_pair_compare (const void *p1_, const void *p2_)
4014{
4015 const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
4016 const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
e8dcede0 4017 if (p1->hash < p2->hash)
4018 return -1;
4019 else if (p1->hash > p2->hash)
4020 return 1;
4021 return 0;
9532776c 4022}
4023
7bfefa9d 4024/* Returning a hash value for gimple type TYPE combined with VAL.
4025 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
4026
4027 To hash a type we end up hashing in types that are reachable.
4028 Through pointers we can end up with cycles which messes up the
4029 required property that we need to compute the same hash value
4030 for structurally equivalent types. To avoid this we have to
4031 hash all types in a cycle (the SCC) in a commutative way. The
4032 easiest way is to not mix in the hashes of the SCC members at
4033 all. To make this work we have to delay setting the hash
4034 values of the SCC until it is complete. */
4035
4036static hashval_t
4037iterative_hash_gimple_type (tree type, hashval_t val,
4038 VEC(tree, heap) **sccstack,
4039 struct pointer_map_t *sccstate,
564cba5f 4040 struct obstack *sccstate_obstack)
7bfefa9d 4041{
4042 hashval_t v;
4043 void **slot;
4044 struct sccs *state;
4045
7a52b640 4046 /* Not visited during this DFS walk. */
1b4345f7 4047 gcc_checking_assert (!pointer_map_contains (sccstate, type));
7bfefa9d 4048 state = XOBNEW (sccstate_obstack, struct sccs);
4049 *pointer_map_insert (sccstate, type) = state;
4050
4051 VEC_safe_push (tree, heap, *sccstack, type);
4052 state->dfsnum = next_dfs_num++;
4053 state->low = state->dfsnum;
4054 state->on_sccstack = true;
4055
4056 /* Combine a few common features of types so that types are grouped into
4057 smaller sets; when searching for existing matching types to merge,
4058 only existing types having the same features as the new type will be
4059 checked. */
9c759c0a 4060 v = iterative_hash_name (TYPE_NAME (type), 0);
4061 v = iterative_hash_hashval_t (TREE_CODE (type), v);
7bfefa9d 4062 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4063 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4064
4065 /* Do not hash the types size as this will cause differences in
4066 hash values for the complete vs. the incomplete type variant. */
4067
4068 /* Incorporate common features of numerical types. */
4069 if (INTEGRAL_TYPE_P (type)
4070 || SCALAR_FLOAT_TYPE_P (type)
4071 || FIXED_POINT_TYPE_P (type))
4072 {
4073 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4074 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4075 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4076 }
4077
4078 /* For pointer and reference types, fold in information about the type
dc9aeee0 4079 pointed to. */
7bfefa9d 4080 if (POINTER_TYPE_P (type))
dc9aeee0 4081 v = visit (TREE_TYPE (type), state, v,
4082 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4083
f9a5c96c 4084 /* For integer types hash the types min/max values and the string flag. */
4085 if (TREE_CODE (type) == INTEGER_TYPE)
4086 {
20b3ad9e 4087 /* OMP lowering can introduce error_mark_node in place of
4088 random local decls in types. */
4089 if (TYPE_MIN_VALUE (type) != error_mark_node)
4090 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4091 if (TYPE_MAX_VALUE (type) != error_mark_node)
4092 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
f9a5c96c 4093 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4094 }
4095
4096 /* For array types hash their domain and the string flag. */
4097 if (TREE_CODE (type) == ARRAY_TYPE
4098 && TYPE_DOMAIN (type))
4099 {
4100 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4101 v = visit (TYPE_DOMAIN (type), state, v,
564cba5f 4102 sccstack, sccstate, sccstate_obstack);
f9a5c96c 4103 }
4104
4105 /* Recurse for aggregates with a single element type. */
7bfefa9d 4106 if (TREE_CODE (type) == ARRAY_TYPE
4107 || TREE_CODE (type) == COMPLEX_TYPE
4108 || TREE_CODE (type) == VECTOR_TYPE)
4109 v = visit (TREE_TYPE (type), state, v,
564cba5f 4110 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4111
4112 /* Incorporate function return and argument types. */
4113 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4114 {
4115 unsigned na;
4116 tree p;
4117
4118 /* For method types also incorporate their parent class. */
4119 if (TREE_CODE (type) == METHOD_TYPE)
4120 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
564cba5f 4121 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4122
dc9aeee0 4123 /* Check result and argument types. */
4124 v = visit (TREE_TYPE (type), state, v,
4125 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4126 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4127 {
dc9aeee0 4128 v = visit (TREE_VALUE (p), state, v,
4129 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4130 na++;
4131 }
4132
4133 v = iterative_hash_hashval_t (na, v);
4134 }
4135
4136 if (TREE_CODE (type) == RECORD_TYPE
4137 || TREE_CODE (type) == UNION_TYPE
4138 || TREE_CODE (type) == QUAL_UNION_TYPE)
4139 {
4140 unsigned nf;
4141 tree f;
4142
7bfefa9d 4143 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4144 {
564cba5f 4145 v = iterative_hash_name (DECL_NAME (f), v);
7bfefa9d 4146 v = visit (TREE_TYPE (f), state, v,
564cba5f 4147 sccstack, sccstate, sccstate_obstack);
7bfefa9d 4148 nf++;
4149 }
4150
4151 v = iterative_hash_hashval_t (nf, v);
4152 }
4153
4154 /* Record hash for us. */
93f1467b 4155 state->u.hash = v;
7bfefa9d 4156
4157 /* See if we found an SCC. */
4158 if (state->low == state->dfsnum)
4159 {
4160 tree x;
9532776c 4161 struct tree_int_map *m;
7bfefa9d 4162
4163 /* Pop off the SCC and set its hash values. */
9532776c 4164 x = VEC_pop (tree, *sccstack);
9532776c 4165 /* Optimize SCC size one. */
4166 if (x == type)
7bfefa9d 4167 {
f5e139e8 4168 state->on_sccstack = false;
9532776c 4169 m = ggc_alloc_cleared_tree_int_map ();
7a52b640 4170 m->base.from = x;
f5e139e8 4171 m->to = v;
564cba5f 4172 slot = htab_find_slot (type_hash_cache, m, INSERT);
7a52b640 4173 gcc_assert (!*slot);
4174 *slot = (void *) m;
7bfefa9d 4175 }
9532776c 4176 else
4177 {
f5e139e8 4178 struct sccs *cstate;
9532776c 4179 unsigned first, i, size, j;
4180 struct type_hash_pair *pairs;
4181 /* Pop off the SCC and build an array of type, hash pairs. */
4182 first = VEC_length (tree, *sccstack) - 1;
4183 while (VEC_index (tree, *sccstack, first) != type)
4184 --first;
4185 size = VEC_length (tree, *sccstack) - first + 1;
4186 pairs = XALLOCAVEC (struct type_hash_pair, size);
4187 i = 0;
f5e139e8 4188 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4189 cstate->on_sccstack = false;
9532776c 4190 pairs[i].type = x;
4191 pairs[i].hash = cstate->u.hash;
4192 do
4193 {
4194 x = VEC_pop (tree, *sccstack);
4195 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4196 cstate->on_sccstack = false;
4197 ++i;
4198 pairs[i].type = x;
4199 pairs[i].hash = cstate->u.hash;
4200 }
4201 while (x != type);
4202 gcc_assert (i + 1 == size);
4203 /* Sort the arrays of type, hash pairs so that when we mix in
4204 all members of the SCC the hash value becomes independent on
4205 the order we visited the SCC. Disregard hashes equal to
4206 the hash of the type we mix into because we cannot guarantee
4207 a stable sort for those across different TUs. */
4208 qsort (pairs, size, sizeof (struct type_hash_pair),
4209 type_hash_pair_compare);
4210 for (i = 0; i < size; ++i)
4211 {
4212 hashval_t hash;
4213 m = ggc_alloc_cleared_tree_int_map ();
4214 m->base.from = pairs[i].type;
4215 hash = pairs[i].hash;
4216 /* Skip same hashes. */
4217 for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
4218 ;
4219 for (; j < size; ++j)
4220 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4221 for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
4222 hash = iterative_hash_hashval_t (pairs[j].hash, hash);
4223 m->to = hash;
f5e139e8 4224 if (pairs[i].type == type)
4225 v = hash;
9532776c 4226 slot = htab_find_slot (type_hash_cache, m, INSERT);
4227 gcc_assert (!*slot);
4228 *slot = (void *) m;
4229 }
4230 }
7bfefa9d 4231 }
4232
4233 return iterative_hash_hashval_t (v, val);
4234}
4235
4236
4237/* Returns a hash value for P (assumed to be a type). The hash value
4238 is computed using some distinguishing features of the type. Note
4239 that we cannot use pointer hashing here as we may be dealing with
4240 two distinct instances of the same type.
4241
4242 This function should produce the same hash value for two compatible
4243 types according to gimple_types_compatible_p. */
4244
4245static hashval_t
564cba5f 4246gimple_type_hash (const void *p)
7bfefa9d 4247{
90e70538 4248 const_tree t = (const_tree) p;
7bfefa9d 4249 VEC(tree, heap) *sccstack = NULL;
4250 struct pointer_map_t *sccstate;
4251 struct obstack sccstate_obstack;
4252 hashval_t val;
4253 void **slot;
7a52b640 4254 struct tree_int_map m;
7bfefa9d 4255
564cba5f 4256 if (type_hash_cache == NULL)
7a52b640 4257 type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4258 tree_int_map_eq, NULL);
7bfefa9d 4259
7a52b640 4260 m.base.from = CONST_CAST_TREE (t);
564cba5f 4261 if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
7a52b640 4262 && *slot)
4263 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
7bfefa9d 4264
4265 /* Perform a DFS walk and pre-hash all reachable types. */
4266 next_dfs_num = 1;
4267 sccstate = pointer_map_create ();
4268 gcc_obstack_init (&sccstate_obstack);
90e70538 4269 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
564cba5f 4270 &sccstack, sccstate, &sccstate_obstack);
7bfefa9d 4271 VEC_free (tree, heap, sccstack);
4272 pointer_map_destroy (sccstate);
4273 obstack_free (&sccstate_obstack, NULL);
4274
4275 return val;
4276}
4277
e27d9de9 4278/* Returning a hash value for gimple type TYPE combined with VAL.
4279
4280 The hash value returned is equal for types considered compatible
4281 by gimple_canonical_types_compatible_p. */
4282
4283static hashval_t
4284iterative_hash_canonical_type (tree type, hashval_t val)
4285{
4286 hashval_t v;
4287 void **slot;
4288 struct tree_int_map *mp, m;
4289
4290 m.base.from = type;
4291 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
4292 && *slot)
4088c72c 4293 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
e27d9de9 4294
4295 /* Combine a few common features of types so that types are grouped into
4296 smaller sets; when searching for existing matching types to merge,
4297 only existing types having the same features as the new type will be
4298 checked. */
4299 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
e27d9de9 4300 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
488a4664 4301 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
4302 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
e27d9de9 4303
4304 /* Incorporate common features of numerical types. */
4305 if (INTEGRAL_TYPE_P (type)
4306 || SCALAR_FLOAT_TYPE_P (type)
488a4664 4307 || FIXED_POINT_TYPE_P (type)
4308 || TREE_CODE (type) == VECTOR_TYPE
4309 || TREE_CODE (type) == COMPLEX_TYPE
4310 || TREE_CODE (type) == OFFSET_TYPE
4311 || POINTER_TYPE_P (type))
e27d9de9 4312 {
4313 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
e27d9de9 4314 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4315 }
4316
4317 /* For pointer and reference types, fold in information about the type
4318 pointed to but do not recurse to the pointed-to type. */
4319 if (POINTER_TYPE_P (type))
4320 {
4321 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
488a4664 4322 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
4323 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
e27d9de9 4324 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4325 }
4326
4327 /* For integer types hash the types min/max values and the string flag. */
4328 if (TREE_CODE (type) == INTEGER_TYPE)
4329 {
e27d9de9 4330 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
488a4664 4331 v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
e27d9de9 4332 }
4333
4334 /* For array types hash their domain and the string flag. */
4335 if (TREE_CODE (type) == ARRAY_TYPE
4336 && TYPE_DOMAIN (type))
4337 {
4338 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4339 v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
4340 }
4341
4342 /* Recurse for aggregates with a single element type. */
4343 if (TREE_CODE (type) == ARRAY_TYPE
4344 || TREE_CODE (type) == COMPLEX_TYPE
4345 || TREE_CODE (type) == VECTOR_TYPE)
4346 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
4347
4348 /* Incorporate function return and argument types. */
4349 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4350 {
4351 unsigned na;
4352 tree p;
4353
4354 /* For method types also incorporate their parent class. */
4355 if (TREE_CODE (type) == METHOD_TYPE)
4356 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
4357
1ca0809c 4358 v = iterative_hash_canonical_type (TREE_TYPE (type), v);
e27d9de9 4359
4360 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4361 {
1ca0809c 4362 v = iterative_hash_canonical_type (TREE_VALUE (p), v);
e27d9de9 4363 na++;
4364 }
4365
4366 v = iterative_hash_hashval_t (na, v);
4367 }
4368
4369 if (TREE_CODE (type) == RECORD_TYPE
4370 || TREE_CODE (type) == UNION_TYPE
4371 || TREE_CODE (type) == QUAL_UNION_TYPE)
4372 {
4373 unsigned nf;
4374 tree f;
4375
4376 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
ebb9e48b 4377 if (TREE_CODE (f) == FIELD_DECL)
4378 {
4379 v = iterative_hash_canonical_type (TREE_TYPE (f), v);
4380 nf++;
4381 }
e27d9de9 4382
4383 v = iterative_hash_hashval_t (nf, v);
4384 }
4385
4386 /* Cache the just computed hash value. */
4387 mp = ggc_alloc_cleared_tree_int_map ();
4388 mp->base.from = type;
4389 mp->to = v;
4390 *slot = (void *) mp;
4391
4392 return iterative_hash_hashval_t (v, val);
4393}
4394
d1fb5d85 4395static hashval_t
4396gimple_canonical_type_hash (const void *p)
4397{
e27d9de9 4398 if (canonical_type_hash_cache == NULL)
4399 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
4400 tree_int_map_eq, NULL);
4401
4402 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
d1fb5d85 4403}
4404
7bfefa9d 4405
4406/* Returns nonzero if P1 and P2 are equal. */
4407
4408static int
4409gimple_type_eq (const void *p1, const void *p2)
4410{
4411 const_tree t1 = (const_tree) p1;
4412 const_tree t2 = (const_tree) p2;
003c7ce5 4413 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
564cba5f 4414 CONST_CAST_TREE (t2));
7bfefa9d 4415}
4416
4417
ce89f696 4418/* Worker for gimple_register_type.
4419 Register type T in the global type table gimple_types.
4420 When REGISTERING_MV is false first recurse for the main variant of T. */
7bfefa9d 4421
ce89f696 4422static tree
4423gimple_register_type_1 (tree t, bool registering_mv)
7bfefa9d 4424{
4425 void **slot;
7a3ccc3b 4426 gimple_type_leader_entry *leader;
7bfefa9d 4427
7a3ccc3b 4428 /* If we registered this type before return the cached result. */
4429 leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
4430 if (leader->type == t)
4431 return leader->leader;
09eb10ed 4432
b816f77f 4433 /* Always register the main variant first. This is important so we
4434 pick up the non-typedef variants as canonical, otherwise we'll end
ce89f696 4435 up taking typedef ids for structure tags during comparison.
4436 It also makes sure that main variants will be merged to main variants.
4437 As we are operating on a possibly partially fixed up type graph
4438 do not bother to recurse more than once, otherwise we may end up
bddb3763 4439 walking in circles.
4440 If we are registering a main variant it will either remain its
4441 own main variant or it will be merged to something else in which
4442 case we do not care for the main variant leader. */
ce89f696 4443 if (!registering_mv
4444 && TYPE_MAIN_VARIANT (t) != t)
4d83607a 4445 gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
7bfefa9d 4446
4d83607a 4447 /* See if we already have an equivalent type registered. */
7bfefa9d 4448 slot = htab_find_slot (gimple_types, t, INSERT);
4449 if (*slot
4450 && *(tree *)slot != t)
4451 {
4452 tree new_type = (tree) *((tree *) slot);
7a3ccc3b 4453 leader->type = t;
4454 leader->leader = new_type;
4d83607a 4455 return new_type;
7a3ccc3b 4456 }
4457
4d83607a 4458 /* If not, insert it to the cache and the hash. */
4459 leader->type = t;
4460 leader->leader = t;
4461 *slot = (void *) t;
7a3ccc3b 4462 return t;
4463}
4464
ce89f696 4465/* Register type T in the global type table gimple_types.
4466 If another type T', compatible with T, already existed in
4467 gimple_types then return T', otherwise return T. This is used by
4468 LTO to merge identical types read from different TUs. */
4469
4470tree
4471gimple_register_type (tree t)
4472{
4473 gcc_assert (TYPE_P (t));
4474
4475 if (!gimple_type_leader)
4476 gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
4477 (GIMPLE_TYPE_LEADER_SIZE);
4478
4479 if (gimple_types == NULL)
4480 gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
4481
4482 return gimple_register_type_1 (t, false);
4483}
7a3ccc3b 4484
e27d9de9 4485/* The TYPE_CANONICAL merging machinery. It should closely resemble
4486 the middle-end types_compatible_p function. It needs to avoid
4487 claiming types are different for types that should be treated
4488 the same with respect to TBAA. Canonical types are also used
4489 for IL consistency checks via the useless_type_conversion_p
4490 predicate which does not handle all type kinds itself but falls
4491 back to pointer-comparison of TYPE_CANONICAL for aggregates
4492 for example. */
4493
4494/* Return true iff T1 and T2 are structurally identical for what
4495 TBAA is concerned. */
4496
4497static bool
4498gimple_canonical_types_compatible_p (tree t1, tree t2)
4499{
e27d9de9 4500 /* Before starting to set up the SCC machinery handle simple cases. */
4501
4502 /* Check first for the obvious case of pointer identity. */
4503 if (t1 == t2)
4504 return true;
4505
4506 /* Check that we have two types to compare. */
4507 if (t1 == NULL_TREE || t2 == NULL_TREE)
4508 return false;
4509
4510 /* If the types have been previously registered and found equal
4511 they still are. */
4512 if (TYPE_CANONICAL (t1)
4513 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
4514 return true;
4515
4516 /* Can't be the same type if the types don't have the same code. */
4517 if (TREE_CODE (t1) != TREE_CODE (t2))
4518 return false;
4519
488a4664 4520 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
e27d9de9 4521 return false;
4522
488a4664 4523 /* Qualifiers do not matter for canonical type comparison purposes. */
4524
4525 /* Void types and nullptr types are always the same. */
4526 if (TREE_CODE (t1) == VOID_TYPE
4527 || TREE_CODE (t1) == NULLPTR_TYPE)
e27d9de9 4528 return true;
4529
488a4664 4530 /* Can't be the same type if they have different alignment, or mode. */
4531 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
4532 || TYPE_MODE (t1) != TYPE_MODE (t2))
4533 return false;
4534
4535 /* Non-aggregate types can be handled cheaply. */
e27d9de9 4536 if (INTEGRAL_TYPE_P (t1)
4537 || SCALAR_FLOAT_TYPE_P (t1)
4538 || FIXED_POINT_TYPE_P (t1)
4539 || TREE_CODE (t1) == VECTOR_TYPE
4540 || TREE_CODE (t1) == COMPLEX_TYPE
488a4664 4541 || TREE_CODE (t1) == OFFSET_TYPE
4542 || POINTER_TYPE_P (t1))
e27d9de9 4543 {
488a4664 4544 /* Can't be the same type if they have different sign or precision. */
4545 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
e27d9de9 4546 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
4547 return false;
4548
4549 if (TREE_CODE (t1) == INTEGER_TYPE
4550 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
4551 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
4552 return false;
4553
488a4664 4554 /* For canonical type comparisons we do not want to build SCCs
4555 so we cannot compare pointed-to types. But we can, for now,
4556 require the same pointed-to type kind and match what
4557 useless_type_conversion_p would do. */
4558 if (POINTER_TYPE_P (t1))
4559 {
4560 /* If the two pointers have different ref-all attributes,
4561 they can't be the same type. */
4562 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
4563 return false;
e27d9de9 4564
488a4664 4565 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
4566 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
4567 return false;
e27d9de9 4568
488a4664 4569 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
4570 return false;
4571
4572 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
4573 return false;
4574 }
4575
4576 /* Tail-recurse to components. */
4577 if (TREE_CODE (t1) == VECTOR_TYPE
4578 || TREE_CODE (t1) == COMPLEX_TYPE)
4579 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
4580 TREE_TYPE (t2));
4581
4582 return true;
e27d9de9 4583 }
4584
e27d9de9 4585 /* If their attributes are not the same they can't be the same type. */
4586 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
8b55830c 4587 return false;
e27d9de9 4588
4589 /* Do type-specific comparisons. */
4590 switch (TREE_CODE (t1))
4591 {
e27d9de9 4592 case ARRAY_TYPE:
4593 /* Array types are the same if the element types are the same and
4594 the number of elements are the same. */
4595 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
4596 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
4597 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
8b55830c 4598 return false;
e27d9de9 4599 else
4600 {
4601 tree i1 = TYPE_DOMAIN (t1);
4602 tree i2 = TYPE_DOMAIN (t2);
4603
4604 /* For an incomplete external array, the type domain can be
4605 NULL_TREE. Check this condition also. */
4606 if (i1 == NULL_TREE && i2 == NULL_TREE)
8b55830c 4607 return true;
e27d9de9 4608 else if (i1 == NULL_TREE || i2 == NULL_TREE)
8b55830c 4609 return false;
e27d9de9 4610 /* If for a complete array type the possibly gimplified sizes
4611 are different the types are different. */
4612 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
4613 || (TYPE_SIZE (i1)
4614 && TYPE_SIZE (i2)
4615 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
8b55830c 4616 return false;
e27d9de9 4617 else
4618 {
4619 tree min1 = TYPE_MIN_VALUE (i1);
4620 tree min2 = TYPE_MIN_VALUE (i2);
4621 tree max1 = TYPE_MAX_VALUE (i1);
4622 tree max2 = TYPE_MAX_VALUE (i2);
4623
4624 /* The minimum/maximum values have to be the same. */
4625 if ((min1 == min2
4626 || (min1 && min2
4627 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
4628 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
4629 || operand_equal_p (min1, min2, 0))))
4630 && (max1 == max2
4631 || (max1 && max2
4632 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
4633 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
4634 || operand_equal_p (max1, max2, 0)))))
8b55830c 4635 return true;
e27d9de9 4636 else
8b55830c 4637 return false;
e27d9de9 4638 }
4639 }
4640
4641 case METHOD_TYPE:
4642 /* Method types should belong to the same class. */
4643 if (!gimple_canonical_types_compatible_p
4644 (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
8b55830c 4645 return false;
e27d9de9 4646
4647 /* Fallthru */
4648
4649 case FUNCTION_TYPE:
4650 /* Function types are the same if the return type and arguments types
4651 are the same. */
1ca0809c 4652 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
8b55830c 4653 return false;
e27d9de9 4654
4655 if (!comp_type_attributes (t1, t2))
8b55830c 4656 return false;
e27d9de9 4657
4658 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
8b55830c 4659 return true;
e27d9de9 4660 else
4661 {
4662 tree parms1, parms2;
4663
4664 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
4665 parms1 && parms2;
4666 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
4667 {
1ca0809c 4668 if (!gimple_canonical_types_compatible_p
4669 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
8b55830c 4670 return false;
e27d9de9 4671 }
4672
4673 if (parms1 || parms2)
8b55830c 4674 return false;
e27d9de9 4675
8b55830c 4676 return true;
e27d9de9 4677 }
4678
e27d9de9 4679 case RECORD_TYPE:
4680 case UNION_TYPE:
4681 case QUAL_UNION_TYPE:
4682 {
4683 tree f1, f2;
4684
4685 /* For aggregate types, all the fields must be the same. */
4686 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
4687 f1 && f2;
4688 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
4689 {
ebb9e48b 4690 /* Skip non-fields. */
4691 while (f1 && TREE_CODE (f1) != FIELD_DECL)
4692 f1 = TREE_CHAIN (f1);
4693 while (f2 && TREE_CODE (f2) != FIELD_DECL)
4694 f2 = TREE_CHAIN (f2);
4695 if (!f1 || !f2)
4696 break;
e27d9de9 4697 /* The fields must have the same name, offset and type. */
4698 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
4699 || !gimple_compare_field_offset (f1, f2)
4700 || !gimple_canonical_types_compatible_p
4701 (TREE_TYPE (f1), TREE_TYPE (f2)))
8b55830c 4702 return false;
e27d9de9 4703 }
4704
4705 /* If one aggregate has more fields than the other, they
4706 are not the same. */
4707 if (f1 || f2)
8b55830c 4708 return false;
e27d9de9 4709
8b55830c 4710 return true;
e27d9de9 4711 }
4712
4713 default:
4714 gcc_unreachable ();
4715 }
e27d9de9 4716}
4717
4718
7a3ccc3b 4719/* Returns nonzero if P1 and P2 are equal. */
4720
4721static int
4722gimple_canonical_type_eq (const void *p1, const void *p2)
4723{
4724 const_tree t1 = (const_tree) p1;
4725 const_tree t2 = (const_tree) p2;
e27d9de9 4726 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
4727 CONST_CAST_TREE (t2));
7a3ccc3b 4728}
4729
4730/* Register type T in the global type table gimple_types.
4731 If another type T', compatible with T, already existed in
4732 gimple_types then return T', otherwise return T. This is used by
45014c84 4733 LTO to merge identical types read from different TUs.
4734
4735 ??? This merging does not exactly match how the tree.c middle-end
4736 functions will assign TYPE_CANONICAL when new types are created
4737 during optimization (which at least happens for pointer and array
4738 types). */
7a3ccc3b 4739
4740tree
4741gimple_register_canonical_type (tree t)
4742{
4743 void **slot;
4744
4745 gcc_assert (TYPE_P (t));
4746
488a4664 4747 if (TYPE_CANONICAL (t))
4748 return TYPE_CANONICAL (t);
4749
7a3ccc3b 4750 if (gimple_canonical_types == NULL)
d1fb5d85 4751 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
7a3ccc3b 4752 gimple_canonical_type_eq, 0);
4753
4754 slot = htab_find_slot (gimple_canonical_types, t, INSERT);
4755 if (*slot
4756 && *(tree *)slot != t)
4757 {
4758 tree new_type = (tree) *((tree *) slot);
4759
4760 TYPE_CANONICAL (t) = new_type;
4761 t = new_type;
4762 }
4763 else
4764 {
4765 TYPE_CANONICAL (t) = t;
09eb10ed 4766 *slot = (void *) t;
4767 }
7bfefa9d 4768
4769 return t;
4770}
4771
4772
4773/* Show statistics on references to the global type table gimple_types. */
4774
4775void
4776print_gimple_types_stats (void)
4777{
4778 if (gimple_types)
4779 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4780 "%ld searches, %ld collisions (ratio: %f)\n",
4781 (long) htab_size (gimple_types),
4782 (long) htab_elements (gimple_types),
4783 (long) gimple_types->searches,
4784 (long) gimple_types->collisions,
4785 htab_collisions (gimple_types));
4786 else
4787 fprintf (stderr, "GIMPLE type table is empty\n");
d1fb5d85 4788 if (type_hash_cache)
4789 fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
4790 "%ld searches, %ld collisions (ratio: %f)\n",
4791 (long) htab_size (type_hash_cache),
4792 (long) htab_elements (type_hash_cache),
4793 (long) type_hash_cache->searches,
4794 (long) type_hash_cache->collisions,
4795 htab_collisions (type_hash_cache));
4796 else
4797 fprintf (stderr, "GIMPLE type hash table is empty\n");
7a3ccc3b 4798 if (gimple_canonical_types)
4799 fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
4800 "%ld searches, %ld collisions (ratio: %f)\n",
4801 (long) htab_size (gimple_canonical_types),
4802 (long) htab_elements (gimple_canonical_types),
4803 (long) gimple_canonical_types->searches,
4804 (long) gimple_canonical_types->collisions,
4805 htab_collisions (gimple_canonical_types));
4806 else
4807 fprintf (stderr, "GIMPLE canonical type table is empty\n");
d1fb5d85 4808 if (canonical_type_hash_cache)
4809 fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
7a52b640 4810 "%ld searches, %ld collisions (ratio: %f)\n",
d1fb5d85 4811 (long) htab_size (canonical_type_hash_cache),
4812 (long) htab_elements (canonical_type_hash_cache),
4813 (long) canonical_type_hash_cache->searches,
4814 (long) canonical_type_hash_cache->collisions,
4815 htab_collisions (canonical_type_hash_cache));
7a52b640 4816 else
d1fb5d85 4817 fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
7bfefa9d 4818}
4819
7366cbe7 4820/* Free the gimple type hashtables used for LTO type merging. */
4821
4822void
4823free_gimple_type_tables (void)
4824{
4825 /* Last chance to print stats for the tables. */
4826 if (flag_lto_report)
4827 print_gimple_types_stats ();
4828
4829 if (gimple_types)
4830 {
4831 htab_delete (gimple_types);
4832 gimple_types = NULL;
4833 }
7a3ccc3b 4834 if (gimple_canonical_types)
4835 {
4836 htab_delete (gimple_canonical_types);
4837 gimple_canonical_types = NULL;
4838 }
7366cbe7 4839 if (type_hash_cache)
4840 {
7a52b640 4841 htab_delete (type_hash_cache);
7366cbe7 4842 type_hash_cache = NULL;
4843 }
d1fb5d85 4844 if (canonical_type_hash_cache)
4845 {
4846 htab_delete (canonical_type_hash_cache);
4847 canonical_type_hash_cache = NULL;
4848 }
b2640e03 4849 if (type_pair_cache)
7366cbe7 4850 {
b2640e03 4851 free (type_pair_cache);
4852 type_pair_cache = NULL;
7366cbe7 4853 }
7a3ccc3b 4854 gimple_type_leader = NULL;
7366cbe7 4855}
4856
7bfefa9d 4857
4858/* Return a type the same as TYPE except unsigned or
4859 signed according to UNSIGNEDP. */
4860
4861static tree
4862gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4863{
4864 tree type1;
4865
4866 type1 = TYPE_MAIN_VARIANT (type);
4867 if (type1 == signed_char_type_node
4868 || type1 == char_type_node
4869 || type1 == unsigned_char_type_node)
4870 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4871 if (type1 == integer_type_node || type1 == unsigned_type_node)
4872 return unsignedp ? unsigned_type_node : integer_type_node;
4873 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4874 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4875 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4876 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4877 if (type1 == long_long_integer_type_node
4878 || type1 == long_long_unsigned_type_node)
4879 return unsignedp
4880 ? long_long_unsigned_type_node
4881 : long_long_integer_type_node;
6388cfe2 4882 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4883 return unsignedp
4884 ? int128_unsigned_type_node
4885 : int128_integer_type_node;
7bfefa9d 4886#if HOST_BITS_PER_WIDE_INT >= 64
4887 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4888 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4889#endif
4890 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4891 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4892 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4893 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4894 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4895 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4896 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4897 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4898
4899#define GIMPLE_FIXED_TYPES(NAME) \
4900 if (type1 == short_ ## NAME ## _type_node \
4901 || type1 == unsigned_short_ ## NAME ## _type_node) \
4902 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4903 : short_ ## NAME ## _type_node; \
4904 if (type1 == NAME ## _type_node \
4905 || type1 == unsigned_ ## NAME ## _type_node) \
4906 return unsignedp ? unsigned_ ## NAME ## _type_node \
4907 : NAME ## _type_node; \
4908 if (type1 == long_ ## NAME ## _type_node \
4909 || type1 == unsigned_long_ ## NAME ## _type_node) \
4910 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4911 : long_ ## NAME ## _type_node; \
4912 if (type1 == long_long_ ## NAME ## _type_node \
4913 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4914 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4915 : long_long_ ## NAME ## _type_node;
4916
4917#define GIMPLE_FIXED_MODE_TYPES(NAME) \
4918 if (type1 == NAME ## _type_node \
4919 || type1 == u ## NAME ## _type_node) \
4920 return unsignedp ? u ## NAME ## _type_node \
4921 : NAME ## _type_node;
4922
4923#define GIMPLE_FIXED_TYPES_SAT(NAME) \
4924 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4925 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4926 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4927 : sat_ ## short_ ## NAME ## _type_node; \
4928 if (type1 == sat_ ## NAME ## _type_node \
4929 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4930 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4931 : sat_ ## NAME ## _type_node; \
4932 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4933 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4934 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4935 : sat_ ## long_ ## NAME ## _type_node; \
4936 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4937 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4938 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4939 : sat_ ## long_long_ ## NAME ## _type_node;
4940
4941#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4942 if (type1 == sat_ ## NAME ## _type_node \
4943 || type1 == sat_ ## u ## NAME ## _type_node) \
4944 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4945 : sat_ ## NAME ## _type_node;
4946
4947 GIMPLE_FIXED_TYPES (fract);
4948 GIMPLE_FIXED_TYPES_SAT (fract);
4949 GIMPLE_FIXED_TYPES (accum);
4950 GIMPLE_FIXED_TYPES_SAT (accum);
4951
4952 GIMPLE_FIXED_MODE_TYPES (qq);
4953 GIMPLE_FIXED_MODE_TYPES (hq);
4954 GIMPLE_FIXED_MODE_TYPES (sq);
4955 GIMPLE_FIXED_MODE_TYPES (dq);
4956 GIMPLE_FIXED_MODE_TYPES (tq);
4957 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4958 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4959 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4960 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4961 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4962 GIMPLE_FIXED_MODE_TYPES (ha);
4963 GIMPLE_FIXED_MODE_TYPES (sa);
4964 GIMPLE_FIXED_MODE_TYPES (da);
4965 GIMPLE_FIXED_MODE_TYPES (ta);
4966 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4967 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4968 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4969 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4970
4971 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4972 the precision; they have precision set to match their range, but
4973 may use a wider mode to match an ABI. If we change modes, we may
4974 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4975 the precision as well, so as to yield correct results for
4976 bit-field types. C++ does not have these separate bit-field
4977 types, and producing a signed or unsigned variant of an
4978 ENUMERAL_TYPE may cause other problems as well. */
4979 if (!INTEGRAL_TYPE_P (type)
4980 || TYPE_UNSIGNED (type) == unsignedp)
4981 return type;
4982
4983#define TYPE_OK(node) \
4984 (TYPE_MODE (type) == TYPE_MODE (node) \
4985 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4986 if (TYPE_OK (signed_char_type_node))
4987 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4988 if (TYPE_OK (integer_type_node))
4989 return unsignedp ? unsigned_type_node : integer_type_node;
4990 if (TYPE_OK (short_integer_type_node))
4991 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4992 if (TYPE_OK (long_integer_type_node))
4993 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4994 if (TYPE_OK (long_long_integer_type_node))
4995 return (unsignedp
4996 ? long_long_unsigned_type_node
4997 : long_long_integer_type_node);
6388cfe2 4998 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4999 return (unsignedp
5000 ? int128_unsigned_type_node
5001 : int128_integer_type_node);
7bfefa9d 5002
5003#if HOST_BITS_PER_WIDE_INT >= 64
5004 if (TYPE_OK (intTI_type_node))
5005 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
5006#endif
5007 if (TYPE_OK (intDI_type_node))
5008 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
5009 if (TYPE_OK (intSI_type_node))
5010 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
5011 if (TYPE_OK (intHI_type_node))
5012 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
5013 if (TYPE_OK (intQI_type_node))
5014 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
5015
5016#undef GIMPLE_FIXED_TYPES
5017#undef GIMPLE_FIXED_MODE_TYPES
5018#undef GIMPLE_FIXED_TYPES_SAT
5019#undef GIMPLE_FIXED_MODE_TYPES_SAT
5020#undef TYPE_OK
5021
5022 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
5023}
5024
5025
5026/* Return an unsigned type the same as TYPE in other respects. */
5027
5028tree
5029gimple_unsigned_type (tree type)
5030{
5031 return gimple_signed_or_unsigned_type (true, type);
5032}
5033
5034
5035/* Return a signed type the same as TYPE in other respects. */
5036
5037tree
5038gimple_signed_type (tree type)
5039{
5040 return gimple_signed_or_unsigned_type (false, type);
5041}
5042
5043
5044/* Return the typed-based alias set for T, which may be an expression
5045 or a type. Return -1 if we don't do anything special. */
5046
5047alias_set_type
5048gimple_get_alias_set (tree t)
5049{
5050 tree u;
5051
5052 /* Permit type-punning when accessing a union, provided the access
5053 is directly through the union. For example, this code does not
5054 permit taking the address of a union member and then storing
5055 through it. Even the type-punning allowed here is a GCC
5056 extension, albeit a common and useful one; the C standard says
5057 that such accesses have implementation-defined behavior. */
5058 for (u = t;
5059 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
5060 u = TREE_OPERAND (u, 0))
5061 if (TREE_CODE (u) == COMPONENT_REF
5062 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
5063 return 0;
5064
5065 /* That's all the expressions we handle specially. */
5066 if (!TYPE_P (t))
5067 return -1;
5068
5069 /* For convenience, follow the C standard when dealing with
5070 character types. Any object may be accessed via an lvalue that
5071 has character type. */
5072 if (t == char_type_node
5073 || t == signed_char_type_node
5074 || t == unsigned_char_type_node)
5075 return 0;
5076
5077 /* Allow aliasing between signed and unsigned variants of the same
5078 type. We treat the signed variant as canonical. */
5079 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
5080 {
5081 tree t1 = gimple_signed_type (t);
5082
5083 /* t1 == t can happen for boolean nodes which are always unsigned. */
5084 if (t1 != t)
5085 return get_alias_set (t1);
5086 }
7bfefa9d 5087
5088 return -1;
5089}
5090
5091
dd277d48 5092/* Data structure used to count the number of dereferences to PTR
5093 inside an expression. */
5094struct count_ptr_d
5095{
5096 tree ptr;
5097 unsigned num_stores;
5098 unsigned num_loads;
5099};
5100
5101/* Helper for count_uses_and_derefs. Called by walk_tree to look for
5102 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
5103
5104static tree
5105count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
5106{
5107 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
5108 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
5109
5110 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
5111 pointer 'ptr' is *not* dereferenced, it is simply used to compute
5112 the address of 'fld' as 'ptr + offsetof(fld)'. */
5113 if (TREE_CODE (*tp) == ADDR_EXPR)
5114 {
5115 *walk_subtrees = 0;
5116 return NULL_TREE;
5117 }
5118
182cf5a9 5119 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
dd277d48 5120 {
5121 if (wi_p->is_lhs)
5122 count_p->num_stores++;
5123 else
5124 count_p->num_loads++;
5125 }
5126
5127 return NULL_TREE;
5128}
5129
5130/* Count the number of direct and indirect uses for pointer PTR in
5131 statement STMT. The number of direct uses is stored in
5132 *NUM_USES_P. Indirect references are counted separately depending
5133 on whether they are store or load operations. The counts are
5134 stored in *NUM_STORES_P and *NUM_LOADS_P. */
5135
5136void
5137count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
5138 unsigned *num_loads_p, unsigned *num_stores_p)
5139{
5140 ssa_op_iter i;
5141 tree use;
5142
5143 *num_uses_p = 0;
5144 *num_loads_p = 0;
5145 *num_stores_p = 0;
5146
5147 /* Find out the total number of uses of PTR in STMT. */
5148 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5149 if (use == ptr)
5150 (*num_uses_p)++;
5151
5152 /* Now count the number of indirect references to PTR. This is
5153 truly awful, but we don't have much choice. There are no parent
5154 pointers inside INDIRECT_REFs, so an expression like
5155 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
5156 find all the indirect and direct uses of x_1 inside. The only
5157 shortcut we can take is the fact that GIMPLE only allows
5158 INDIRECT_REFs inside the expressions below. */
5159 if (is_gimple_assign (stmt)
5160 || gimple_code (stmt) == GIMPLE_RETURN
5161 || gimple_code (stmt) == GIMPLE_ASM
5162 || is_gimple_call (stmt))
5163 {
5164 struct walk_stmt_info wi;
5165 struct count_ptr_d count;
5166
5167 count.ptr = ptr;
5168 count.num_stores = 0;
5169 count.num_loads = 0;
5170
5171 memset (&wi, 0, sizeof (wi));
5172 wi.info = &count;
5173 walk_gimple_op (stmt, count_ptr_derefs, &wi);
5174
5175 *num_stores_p = count.num_stores;
5176 *num_loads_p = count.num_loads;
5177 }
5178
5179 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
5180}
5181
5ed0b345 5182/* From a tree operand OP return the base of a load or store operation
5183 or NULL_TREE if OP is not a load or a store. */
5184
5185static tree
5186get_base_loadstore (tree op)
5187{
5188 while (handled_component_p (op))
5189 op = TREE_OPERAND (op, 0);
5190 if (DECL_P (op)
5191 || INDIRECT_REF_P (op)
182cf5a9 5192 || TREE_CODE (op) == MEM_REF
5ed0b345 5193 || TREE_CODE (op) == TARGET_MEM_REF)
5194 return op;
5195 return NULL_TREE;
5196}
5197
5198/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
5199 VISIT_ADDR if non-NULL on loads, store and address-taken operands
5200 passing the STMT, the base of the operand and DATA to it. The base
5201 will be either a decl, an indirect reference (including TARGET_MEM_REF)
5202 or the argument of an address expression.
5203 Returns the results of these callbacks or'ed. */
5204
5205bool
5206walk_stmt_load_store_addr_ops (gimple stmt, void *data,
5207 bool (*visit_load)(gimple, tree, void *),
5208 bool (*visit_store)(gimple, tree, void *),
5209 bool (*visit_addr)(gimple, tree, void *))
5210{
5211 bool ret = false;
5212 unsigned i;
5213 if (gimple_assign_single_p (stmt))
5214 {
5215 tree lhs, rhs;
5216 if (visit_store)
5217 {
5218 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
5219 if (lhs)
5220 ret |= visit_store (stmt, lhs, data);
5221 }
5222 rhs = gimple_assign_rhs1 (stmt);
be1b4133 5223 while (handled_component_p (rhs))
5224 rhs = TREE_OPERAND (rhs, 0);
5ed0b345 5225 if (visit_addr)
5226 {
5227 if (TREE_CODE (rhs) == ADDR_EXPR)
5228 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5229 else if (TREE_CODE (rhs) == TARGET_MEM_REF
5230 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
5231 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
5232 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
5233 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
5234 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
5235 0), data);
d29f7fa8 5236 lhs = gimple_assign_lhs (stmt);
5237 if (TREE_CODE (lhs) == TARGET_MEM_REF
d29f7fa8 5238 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
5239 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
5ed0b345 5240 }
5241 if (visit_load)
5242 {
5243 rhs = get_base_loadstore (rhs);
5244 if (rhs)
5245 ret |= visit_load (stmt, rhs, data);
5246 }
5247 }
5248 else if (visit_addr
5249 && (is_gimple_assign (stmt)
2a3ebafa 5250 || gimple_code (stmt) == GIMPLE_COND))
5ed0b345 5251 {
5252 for (i = 0; i < gimple_num_ops (stmt); ++i)
5253 if (gimple_op (stmt, i)
5254 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
5255 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
5256 }
5257 else if (is_gimple_call (stmt))
5258 {
5259 if (visit_store)
5260 {
5261 tree lhs = gimple_call_lhs (stmt);
5262 if (lhs)
5263 {
5264 lhs = get_base_loadstore (lhs);
5265 if (lhs)
5266 ret |= visit_store (stmt, lhs, data);
5267 }
5268 }
5269 if (visit_load || visit_addr)
5270 for (i = 0; i < gimple_call_num_args (stmt); ++i)
5271 {
5272 tree rhs = gimple_call_arg (stmt, i);
5273 if (visit_addr
5274 && TREE_CODE (rhs) == ADDR_EXPR)
5275 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
5276 else if (visit_load)
5277 {
5278 rhs = get_base_loadstore (rhs);
5279 if (rhs)
5280 ret |= visit_load (stmt, rhs, data);
5281 }
5282 }
5283 if (visit_addr
5284 && gimple_call_chain (stmt)
5285 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
5286 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
5287 data);
60b9b3ae 5288 if (visit_addr
5289 && gimple_call_return_slot_opt_p (stmt)
5290 && gimple_call_lhs (stmt) != NULL_TREE
c7e30df8 5291 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
60b9b3ae 5292 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
5ed0b345 5293 }
5294 else if (gimple_code (stmt) == GIMPLE_ASM)
5295 {
5296 unsigned noutputs;
5297 const char *constraint;
5298 const char **oconstraints;
5299 bool allows_mem, allows_reg, is_inout;
5300 noutputs = gimple_asm_noutputs (stmt);
5301 oconstraints = XALLOCAVEC (const char *, noutputs);
5302 if (visit_store || visit_addr)
5303 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
5304 {
5305 tree link = gimple_asm_output_op (stmt, i);
5306 tree op = get_base_loadstore (TREE_VALUE (link));
5307 if (op && visit_store)
5308 ret |= visit_store (stmt, op, data);
5309 if (visit_addr)
5310 {
5311 constraint = TREE_STRING_POINTER
5312 (TREE_VALUE (TREE_PURPOSE (link)));
5313 oconstraints[i] = constraint;
5314 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
5315 &allows_reg, &is_inout);
5316 if (op && !allows_reg && allows_mem)
5317 ret |= visit_addr (stmt, op, data);
5318 }
5319 }
5320 if (visit_load || visit_addr)
5321 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
5322 {
5323 tree link = gimple_asm_input_op (stmt, i);
5324 tree op = TREE_VALUE (link);
5325 if (visit_addr
5326 && TREE_CODE (op) == ADDR_EXPR)
5327 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5328 else if (visit_load || visit_addr)
5329 {
5330 op = get_base_loadstore (op);
5331 if (op)
5332 {
5333 if (visit_load)
5334 ret |= visit_load (stmt, op, data);
5335 if (visit_addr)
5336 {
5337 constraint = TREE_STRING_POINTER
5338 (TREE_VALUE (TREE_PURPOSE (link)));
5339 parse_input_constraint (&constraint, 0, 0, noutputs,
5340 0, oconstraints,
5341 &allows_mem, &allows_reg);
5342 if (!allows_reg && allows_mem)
5343 ret |= visit_addr (stmt, op, data);
5344 }
5345 }
5346 }
5347 }
5348 }
5349 else if (gimple_code (stmt) == GIMPLE_RETURN)
5350 {
5351 tree op = gimple_return_retval (stmt);
5352 if (op)
5353 {
5354 if (visit_addr
5355 && TREE_CODE (op) == ADDR_EXPR)
5356 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5357 else if (visit_load)
5358 {
5359 op = get_base_loadstore (op);
5360 if (op)
5361 ret |= visit_load (stmt, op, data);
5362 }
5363 }
5364 }
5365 else if (visit_addr
5366 && gimple_code (stmt) == GIMPLE_PHI)
5367 {
5368 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
5369 {
5370 tree op = PHI_ARG_DEF (stmt, i);
5371 if (TREE_CODE (op) == ADDR_EXPR)
5372 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
5373 }
5374 }
5375
5376 return ret;
5377}
5378
5379/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
5380 should make a faster clone for this case. */
5381
5382bool
5383walk_stmt_load_store_ops (gimple stmt, void *data,
5384 bool (*visit_load)(gimple, tree, void *),
5385 bool (*visit_store)(gimple, tree, void *))
5386{
5387 return walk_stmt_load_store_addr_ops (stmt, data,
5388 visit_load, visit_store, NULL);
5389}
5390
6d5ec6f8 5391/* Helper for gimple_ior_addresses_taken_1. */
5392
5393static bool
5394gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
5395 tree addr, void *data)
5396{
5397 bitmap addresses_taken = (bitmap)data;
7f2d9047 5398 addr = get_base_address (addr);
5399 if (addr
5400 && DECL_P (addr))
6d5ec6f8 5401 {
5402 bitmap_set_bit (addresses_taken, DECL_UID (addr));
5403 return true;
5404 }
5405 return false;
5406}
5407
5408/* Set the bit for the uid of all decls that have their address taken
5409 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
5410 were any in this stmt. */
5411
5412bool
5413gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
5414{
5415 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
5416 gimple_ior_addresses_taken_1);
5417}
5418
34e5cced 5419
5420/* Return a printable name for symbol DECL. */
5421
5422const char *
5423gimple_decl_printable_name (tree decl, int verbosity)
5424{
60d62ca4 5425 if (!DECL_NAME (decl))
5426 return NULL;
34e5cced 5427
5428 if (DECL_ASSEMBLER_NAME_SET_P (decl))
5429 {
5430 const char *str, *mangled_str;
5431 int dmgl_opts = DMGL_NO_OPTS;
5432
5433 if (verbosity >= 2)
5434 {
5435 dmgl_opts = DMGL_VERBOSE
34e5cced 5436 | DMGL_ANSI
5437 | DMGL_GNU_V3
5438 | DMGL_RET_POSTFIX;
5439 if (TREE_CODE (decl) == FUNCTION_DECL)
5440 dmgl_opts |= DMGL_PARAMS;
5441 }
5442
5443 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5444 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5445 return (str) ? str : mangled_str;
5446 }
5447
5448 return IDENTIFIER_POINTER (DECL_NAME (decl));
5449}
5450
3ea38c1f 5451/* Return true when STMT is builtins call to CODE. */
5452
5453bool
5454gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5455{
5456 tree fndecl;
5457 return (is_gimple_call (stmt)
5458 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5459 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5460 && DECL_FUNCTION_CODE (fndecl) == code);
5461}
5462
97cf41ec 5463/* Return true if STMT clobbers memory. STMT is required to be a
5464 GIMPLE_ASM. */
5465
5466bool
5467gimple_asm_clobbers_memory_p (const_gimple stmt)
5468{
5469 unsigned i;
5470
5471 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
5472 {
5473 tree op = gimple_asm_clobber_op (stmt, i);
5474 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
5475 return true;
5476 }
5477
5478 return false;
5479}
75a70cf9 5480#include "gt-gimple.h"