]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
* doc/tm.texi.in (US_SOFTWARE_GOFAST): Don't document.
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
e440a328 24
25#ifndef ENABLE_BUILD_WITH_CXX
26}
27#endif
28
29#include "go-c.h"
30#include "gogo.h"
31#include "types.h"
32#include "export.h"
33#include "import.h"
34#include "statements.h"
35#include "lex.h"
36#include "expressions.h"
37
38// Class Expression.
39
40Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43{
44}
45
46Expression::~Expression()
47{
48}
49
50// If this expression has a constant integer value, return it.
51
52bool
53Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55{
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58}
59
60// If this expression has a constant floating point value, return it.
61
62bool
63Expression::float_constant_value(mpfr_t val, Type** ptype) const
64{
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81}
82
83// If this expression has a constant complex value, return it.
84
85bool
86Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88{
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99}
100
101// Traverse the expressions.
102
103int
104Expression::traverse(Expression** pexpr, Traverse* traverse)
105{
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116}
117
118// Traverse subexpressions of this expression.
119
120int
121Expression::traverse_subexpressions(Traverse* traverse)
122{
123 return this->do_traverse(traverse);
124}
125
126// Default implementation for do_traverse for child classes.
127
128int
129Expression::do_traverse(Traverse*)
130{
131 return TRAVERSE_CONTINUE;
132}
133
134// This virtual function is called by the parser if the value of this
135// expression is being discarded. By default, we warn. Expressions
136// with side effects override.
137
138void
139Expression::do_discarding_value()
140{
141 this->warn_about_unused_value();
142}
143
144// This virtual function is called to export expressions. This will
145// only be used by expressions which may be constant.
146
147void
148Expression::do_export(Export*) const
149{
150 gcc_unreachable();
151}
152
153// Warn that the value of the expression is not used.
154
155void
156Expression::warn_about_unused_value()
157{
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159}
160
161// Note that this expression is an error. This is called by children
162// when they discover an error.
163
164void
165Expression::set_is_error()
166{
167 this->classification_ = EXPRESSION_ERROR;
168}
169
170// For children to call to report an error conveniently.
171
172void
173Expression::report_error(const char* msg)
174{
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177}
178
179// Set types of variables and constants. This is implemented by the
180// child class.
181
182void
183Expression::determine_type(const Type_context* context)
184{
185 this->do_determine_type(context);
186}
187
188// Set types when there is no context.
189
190void
191Expression::determine_type_no_context()
192{
193 Type_context context;
194 this->do_determine_type(&context);
195}
196
197// Return a tree handling any conversions which must be done during
198// assignment.
199
200tree
201Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204{
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308}
309
310// Return a tree for a conversion from a non-interface type to an
311// interface type.
312
313tree
314Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317{
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409}
410
411// Return a tree for the type descriptor of RHS_TREE, which has
412// interface type RHS_TYPE. If RHS_TREE is nil the result will be
413// NULL.
414
415tree
416Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419{
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449}
450
451// Return a tree for the conversion of an interface type to an
452// interface type.
453
454tree
455Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459{
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 // This will panic if the interface conversion fails.
509 TREE_NOTHROW(assert_interface_decl) = 0;
510 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
511 }
512 else if (lhs_is_empty)
513 {
514 // A convertion to an empty interface always succeeds, and the
515 // first field is just the type descriptor of the object.
516 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
517 "__type_descriptor") == 0);
518 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
519 elt->value = rhs_type_descriptor;
520 }
521 else
522 {
523 // A conversion to a non-empty interface may fail, but unlike a
524 // type assertion converting nil will always succeed.
525 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
526 == 0);
527 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
528 static tree convert_interface_decl;
529 tree call = Gogo::call_builtin(&convert_interface_decl,
530 location,
531 "__go_convert_interface",
532 2,
533 ptr_type_node,
534 TREE_TYPE(lhs_type_descriptor),
535 lhs_type_descriptor,
536 TREE_TYPE(rhs_type_descriptor),
537 rhs_type_descriptor);
538 // This will panic if the interface conversion fails.
539 TREE_NOTHROW(convert_interface_decl) = 0;
540 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
541 }
542
543 // The second field is simply the object pointer.
544
545 elt = VEC_quick_push(constructor_elt, init, NULL);
546 field = DECL_CHAIN(field);
547 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
548 elt->index = field;
549
550 tree rhs_type_tree = TREE_TYPE(rhs_tree);
551 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
552 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
554 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
555 NULL_TREE);
556
557 return build_constructor(lhs_type_tree, init);
558}
559
560// Return a tree for the conversion of an interface type to a
561// non-interface type.
562
563tree
564Expression::convert_interface_to_type(Translate_context* context,
565 Type *lhs_type, Type* rhs_type,
566 tree rhs_tree, source_location location)
567{
568 Gogo* gogo = context->gogo();
569 tree rhs_type_tree = TREE_TYPE(rhs_tree);
570
571 tree lhs_type_tree = lhs_type->get_tree(gogo);
572 if (lhs_type_tree == error_mark_node)
573 return error_mark_node;
574
575 // Call a function to check that the type is valid. The function
576 // will panic with an appropriate runtime type error if the type is
577 // not valid.
578
579 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
580
581 if (!DECL_P(rhs_tree))
582 rhs_tree = save_expr(rhs_tree);
583
584 tree rhs_type_descriptor =
585 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
586 location);
587
588 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
589
590 static tree check_interface_type_decl;
591 tree call = Gogo::call_builtin(&check_interface_type_decl,
592 location,
593 "__go_check_interface_type",
594 3,
595 void_type_node,
596 TREE_TYPE(lhs_type_descriptor),
597 lhs_type_descriptor,
598 TREE_TYPE(rhs_type_descriptor),
599 rhs_type_descriptor,
600 TREE_TYPE(rhs_inter_descriptor),
601 rhs_inter_descriptor);
602 // This call will panic if the conversion is invalid.
603 TREE_NOTHROW(check_interface_type_decl) = 0;
604
605 // If the call succeeds, pull out the value.
606 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
607 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
608 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
609 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
610 NULL_TREE);
611
612 // If the value is a pointer, then it is the value we want.
613 // Otherwise it points to the value.
614 if (lhs_type->points_to() == NULL)
615 {
616 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
617 val = build_fold_indirect_ref_loc(location, val);
618 }
619
620 return build2(COMPOUND_EXPR, lhs_type_tree, call,
621 fold_convert_loc(location, lhs_type_tree, val));
622}
623
624// Convert an expression to a tree. This is implemented by the child
625// class. Not that it is not in general safe to call this multiple
626// times for a single expression, but that we don't catch such errors.
627
628tree
629Expression::get_tree(Translate_context* context)
630{
631 // The child may have marked this expression as having an error.
632 if (this->classification_ == EXPRESSION_ERROR)
633 return error_mark_node;
634
635 return this->do_get_tree(context);
636}
637
638// Return a tree for VAL in TYPE.
639
640tree
641Expression::integer_constant_tree(mpz_t val, tree type)
642{
643 if (type == error_mark_node)
644 return error_mark_node;
645 else if (TREE_CODE(type) == INTEGER_TYPE)
646 return double_int_to_tree(type,
647 mpz_get_double_int(type, val, true));
648 else if (TREE_CODE(type) == REAL_TYPE)
649 {
650 mpfr_t fval;
651 mpfr_init_set_z(fval, val, GMP_RNDN);
652 tree ret = Expression::float_constant_tree(fval, type);
653 mpfr_clear(fval);
654 return ret;
655 }
656 else if (TREE_CODE(type) == COMPLEX_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
661 mpfr_clear(fval);
662 tree imag = build_real_from_int_cst(TREE_TYPE(type),
663 integer_zero_node);
664 return build_complex(type, real, imag);
665 }
666 else
667 gcc_unreachable();
668}
669
670// Return a tree for VAL in TYPE.
671
672tree
673Expression::float_constant_tree(mpfr_t val, tree type)
674{
675 if (type == error_mark_node)
676 return error_mark_node;
677 else if (TREE_CODE(type) == INTEGER_TYPE)
678 {
679 mpz_t ival;
680 mpz_init(ival);
681 mpfr_get_z(ival, val, GMP_RNDN);
682 tree ret = Expression::integer_constant_tree(ival, type);
683 mpz_clear(ival);
684 return ret;
685 }
686 else if (TREE_CODE(type) == REAL_TYPE)
687 {
688 REAL_VALUE_TYPE r1;
689 real_from_mpfr(&r1, val, type, GMP_RNDN);
690 REAL_VALUE_TYPE r2;
691 real_convert(&r2, TYPE_MODE(type), &r1);
692 return build_real(type, r2);
693 }
694 else if (TREE_CODE(type) == COMPLEX_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
700 tree imag = build_real_from_int_cst(TREE_TYPE(type),
701 integer_zero_node);
702 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
703 }
704 else
705 gcc_unreachable();
706}
707
708// Return a tree for REAL/IMAG in TYPE.
709
710tree
711Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
712{
713 if (TREE_CODE(type) == COMPLEX_TYPE)
714 {
715 REAL_VALUE_TYPE r1;
716 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
717 REAL_VALUE_TYPE r2;
718 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
719
720 REAL_VALUE_TYPE r3;
721 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
722 REAL_VALUE_TYPE r4;
723 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
724
725 return build_complex(type, build_real(TREE_TYPE(type), r2),
726 build_real(TREE_TYPE(type), r4));
727 }
728 else
729 gcc_unreachable();
730}
731
732// Return a tree which evaluates to true if VAL, of arbitrary integer
733// type, is negative or is more than the maximum value of BOUND_TYPE.
734// If SOFAR is not NULL, it is or'red into the result. The return
735// value may be NULL if SOFAR is NULL.
736
737tree
738Expression::check_bounds(tree val, tree bound_type, tree sofar,
739 source_location loc)
740{
741 tree val_type = TREE_TYPE(val);
742 tree ret = NULL_TREE;
743
744 if (!TYPE_UNSIGNED(val_type))
745 {
746 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
747 build_int_cst(val_type, 0));
748 if (ret == boolean_false_node)
749 ret = NULL_TREE;
750 }
751
752 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
753 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
754 {
755 tree max = TYPE_MAX_VALUE(bound_type);
756 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
757 fold_convert_loc(loc, val_type, max));
758 if (big == boolean_false_node)
759 ;
760 else if (ret == NULL_TREE)
761 ret = big;
762 else
763 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
764 ret, big);
765 }
766
767 if (ret == NULL_TREE)
768 return sofar;
769 else if (sofar == NULL_TREE)
770 return ret;
771 else
772 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
773 sofar, ret);
774}
775
776// Error expressions. This are used to avoid cascading errors.
777
778class Error_expression : public Expression
779{
780 public:
781 Error_expression(source_location location)
782 : Expression(EXPRESSION_ERROR, location)
783 { }
784
785 protected:
786 bool
787 do_is_constant() const
788 { return true; }
789
790 bool
791 do_integer_constant_value(bool, mpz_t val, Type**) const
792 {
793 mpz_set_ui(val, 0);
794 return true;
795 }
796
797 bool
798 do_float_constant_value(mpfr_t val, Type**) const
799 {
800 mpfr_set_ui(val, 0, GMP_RNDN);
801 return true;
802 }
803
804 bool
805 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
806 {
807 mpfr_set_ui(real, 0, GMP_RNDN);
808 mpfr_set_ui(imag, 0, GMP_RNDN);
809 return true;
810 }
811
812 void
813 do_discarding_value()
814 { }
815
816 Type*
817 do_type()
818 { return Type::make_error_type(); }
819
820 void
821 do_determine_type(const Type_context*)
822 { }
823
824 Expression*
825 do_copy()
826 { return this; }
827
828 bool
829 do_is_addressable() const
830 { return true; }
831
832 tree
833 do_get_tree(Translate_context*)
834 { return error_mark_node; }
835};
836
837Expression*
838Expression::make_error(source_location location)
839{
840 return new Error_expression(location);
841}
842
843// An expression which is really a type. This is used during parsing.
844// It is an error if these survive after lowering.
845
846class
847Type_expression : public Expression
848{
849 public:
850 Type_expression(Type* type, source_location location)
851 : Expression(EXPRESSION_TYPE, location),
852 type_(type)
853 { }
854
855 protected:
856 int
857 do_traverse(Traverse* traverse)
858 { return Type::traverse(this->type_, traverse); }
859
860 Type*
861 do_type()
862 { return this->type_; }
863
864 void
865 do_determine_type(const Type_context*)
866 { }
867
868 void
869 do_check_types(Gogo*)
870 { this->report_error(_("invalid use of type")); }
871
872 Expression*
873 do_copy()
874 { return this; }
875
876 tree
877 do_get_tree(Translate_context*)
878 { gcc_unreachable(); }
879
880 private:
881 // The type which we are representing as an expression.
882 Type* type_;
883};
884
885Expression*
886Expression::make_type(Type* type, source_location location)
887{
888 return new Type_expression(type, location);
889}
890
891// Class Var_expression.
892
893// Lower a variable expression. Here we just make sure that the
894// initialization expression of the variable has been lowered. This
895// ensures that we will be able to determine the type of the variable
896// if necessary.
897
898Expression*
899Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
900{
901 if (this->variable_->is_variable())
902 {
903 Variable* var = this->variable_->var_value();
904 // This is either a local variable or a global variable. A
905 // reference to a variable which is local to an enclosing
906 // function will be a reference to a field in a closure.
907 if (var->is_global())
908 function = NULL;
909 var->lower_init_expression(gogo, function);
910 }
911 return this;
912}
913
914// Return the name of the variable.
915
916const std::string&
917Var_expression::name() const
918{
919 return this->variable_->name();
920}
921
922// Return the type of a reference to a variable.
923
924Type*
925Var_expression::do_type()
926{
927 if (this->variable_->is_variable())
928 return this->variable_->var_value()->type();
929 else if (this->variable_->is_result_variable())
930 return this->variable_->result_var_value()->type();
931 else
932 gcc_unreachable();
933}
934
935// Something takes the address of this variable. This means that we
936// may want to move the variable onto the heap.
937
938void
939Var_expression::do_address_taken(bool escapes)
940{
941 if (!escapes)
942 ;
943 else if (this->variable_->is_variable())
944 this->variable_->var_value()->set_address_taken();
945 else if (this->variable_->is_result_variable())
946 this->variable_->result_var_value()->set_address_taken();
947 else
948 gcc_unreachable();
949}
950
951// Get the tree for a reference to a variable.
952
953tree
954Var_expression::do_get_tree(Translate_context* context)
955{
956 return this->variable_->get_tree(context->gogo(), context->function());
957}
958
959// Make a reference to a variable in an expression.
960
961Expression*
962Expression::make_var_reference(Named_object* var, source_location location)
963{
964 if (var->is_sink())
965 return Expression::make_sink(location);
966
967 // FIXME: Creating a new object for each reference to a variable is
968 // wasteful.
969 return new Var_expression(var, location);
970}
971
972// Class Temporary_reference_expression.
973
974// The type.
975
976Type*
977Temporary_reference_expression::do_type()
978{
979 return this->statement_->type();
980}
981
982// Called if something takes the address of this temporary variable.
983// We never have to move temporary variables to the heap, but we do
984// need to know that they must live in the stack rather than in a
985// register.
986
987void
988Temporary_reference_expression::do_address_taken(bool)
989{
990 this->statement_->set_is_address_taken();
991}
992
993// Get a tree referring to the variable.
994
995tree
996Temporary_reference_expression::do_get_tree(Translate_context*)
997{
998 return this->statement_->get_decl();
999}
1000
1001// Make a reference to a temporary variable.
1002
1003Expression*
1004Expression::make_temporary_reference(Temporary_statement* statement,
1005 source_location location)
1006{
1007 return new Temporary_reference_expression(statement, location);
1008}
1009
1010// A sink expression--a use of the blank identifier _.
1011
1012class Sink_expression : public Expression
1013{
1014 public:
1015 Sink_expression(source_location location)
1016 : Expression(EXPRESSION_SINK, location),
1017 type_(NULL), var_(NULL_TREE)
1018 { }
1019
1020 protected:
1021 void
1022 do_discarding_value()
1023 { }
1024
1025 Type*
1026 do_type();
1027
1028 void
1029 do_determine_type(const Type_context*);
1030
1031 Expression*
1032 do_copy()
1033 { return new Sink_expression(this->location()); }
1034
1035 tree
1036 do_get_tree(Translate_context*);
1037
1038 private:
1039 // The type of this sink variable.
1040 Type* type_;
1041 // The temporary variable we generate.
1042 tree var_;
1043};
1044
1045// Return the type of a sink expression.
1046
1047Type*
1048Sink_expression::do_type()
1049{
1050 if (this->type_ == NULL)
1051 return Type::make_sink_type();
1052 return this->type_;
1053}
1054
1055// Determine the type of a sink expression.
1056
1057void
1058Sink_expression::do_determine_type(const Type_context* context)
1059{
1060 if (context->type != NULL)
1061 this->type_ = context->type;
1062}
1063
1064// Return a temporary variable for a sink expression. This will
1065// presumably be a write-only variable which the middle-end will drop.
1066
1067tree
1068Sink_expression::do_get_tree(Translate_context* context)
1069{
1070 if (this->var_ == NULL_TREE)
1071 {
1072 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1073 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1074 "blank");
1075 }
1076 return this->var_;
1077}
1078
1079// Make a sink expression.
1080
1081Expression*
1082Expression::make_sink(source_location location)
1083{
1084 return new Sink_expression(location);
1085}
1086
1087// Class Func_expression.
1088
1089// FIXME: Can a function expression appear in a constant expression?
1090// The value is unchanging. Initializing a constant to the address of
1091// a function seems like it could work, though there might be little
1092// point to it.
1093
1094// Return the name of the function.
1095
1096const std::string&
1097Func_expression::name() const
1098{
1099 return this->function_->name();
1100}
1101
1102// Traversal.
1103
1104int
1105Func_expression::do_traverse(Traverse* traverse)
1106{
1107 return (this->closure_ == NULL
1108 ? TRAVERSE_CONTINUE
1109 : Expression::traverse(&this->closure_, traverse));
1110}
1111
1112// Return the type of a function expression.
1113
1114Type*
1115Func_expression::do_type()
1116{
1117 if (this->function_->is_function())
1118 return this->function_->func_value()->type();
1119 else if (this->function_->is_function_declaration())
1120 return this->function_->func_declaration_value()->type();
1121 else
1122 gcc_unreachable();
1123}
1124
1125// Get the tree for a function expression without evaluating the
1126// closure.
1127
1128tree
1129Func_expression::get_tree_without_closure(Gogo* gogo)
1130{
1131 Function_type* fntype;
1132 if (this->function_->is_function())
1133 fntype = this->function_->func_value()->type();
1134 else if (this->function_->is_function_declaration())
1135 fntype = this->function_->func_declaration_value()->type();
1136 else
1137 gcc_unreachable();
1138
1139 // Builtin functions are handled specially by Call_expression. We
1140 // can't take their address.
1141 if (fntype->is_builtin())
1142 {
1143 error_at(this->location(), "invalid use of special builtin function %qs",
1144 this->function_->name().c_str());
1145 return error_mark_node;
1146 }
1147
1148 Named_object* no = this->function_;
9d6f3721 1149
1150 tree id = no->get_id(gogo);
1151 if (id == error_mark_node)
1152 return error_mark_node;
1153
e440a328 1154 tree fndecl;
1155 if (no->is_function())
1156 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1157 else if (no->is_function_declaration())
1158 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1159 else
1160 gcc_unreachable();
1161
9d6f3721 1162 if (fndecl == error_mark_node)
1163 return error_mark_node;
1164
e440a328 1165 return build_fold_addr_expr_loc(this->location(), fndecl);
1166}
1167
1168// Get the tree for a function expression. This is used when we take
1169// the address of a function rather than simply calling it. If the
1170// function has a closure, we must use a trampoline.
1171
1172tree
1173Func_expression::do_get_tree(Translate_context* context)
1174{
1175 Gogo* gogo = context->gogo();
1176
1177 tree fnaddr = this->get_tree_without_closure(gogo);
1178 if (fnaddr == error_mark_node)
1179 return error_mark_node;
1180
1181 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1182 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1183 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1184
1185 // For a normal non-nested function call, that is all we have to do.
1186 if (!this->function_->is_function()
1187 || this->function_->func_value()->enclosing() == NULL)
1188 {
1189 gcc_assert(this->closure_ == NULL);
1190 return fnaddr;
1191 }
1192
1193 // For a nested function call, we have to always allocate a
1194 // trampoline. If we don't always allocate, then closures will not
1195 // be reliably distinct.
1196 Expression* closure = this->closure_;
1197 tree closure_tree;
1198 if (closure == NULL)
1199 closure_tree = null_pointer_node;
1200 else
1201 {
1202 // Get the value of the closure. This will be a pointer to
1203 // space allocated on the heap.
1204 closure_tree = closure->get_tree(context);
1205 if (closure_tree == error_mark_node)
1206 return error_mark_node;
1207 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1208 }
1209
1210 // Now we need to build some code on the heap. This code will load
1211 // the static chain pointer with the closure and then jump to the
1212 // body of the function. The normal gcc approach is to build the
1213 // code on the stack. Unfortunately we can not do that, as Go
1214 // permits us to return the function pointer.
1215
1216 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1217}
1218
1219// Make a reference to a function in an expression.
1220
1221Expression*
1222Expression::make_func_reference(Named_object* function, Expression* closure,
1223 source_location location)
1224{
1225 return new Func_expression(function, closure, location);
1226}
1227
1228// Class Unknown_expression.
1229
1230// Return the name of an unknown expression.
1231
1232const std::string&
1233Unknown_expression::name() const
1234{
1235 return this->named_object_->name();
1236}
1237
1238// Lower a reference to an unknown name.
1239
1240Expression*
1241Unknown_expression::do_lower(Gogo*, Named_object*, int)
1242{
1243 source_location location = this->location();
1244 Named_object* no = this->named_object_;
1245 Named_object* real = no->unknown_value()->real_named_object();
1246 if (real == NULL)
1247 {
1248 if (this->is_composite_literal_key_)
1249 return this;
1250 error_at(location, "reference to undefined name %qs",
1251 this->named_object_->message_name().c_str());
1252 return Expression::make_error(location);
1253 }
1254 switch (real->classification())
1255 {
1256 case Named_object::NAMED_OBJECT_CONST:
1257 return Expression::make_const_reference(real, location);
1258 case Named_object::NAMED_OBJECT_TYPE:
1259 return Expression::make_type(real->type_value(), location);
1260 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1261 if (this->is_composite_literal_key_)
1262 return this;
1263 error_at(location, "reference to undefined type %qs",
1264 real->message_name().c_str());
1265 return Expression::make_error(location);
1266 case Named_object::NAMED_OBJECT_VAR:
1267 return Expression::make_var_reference(real, location);
1268 case Named_object::NAMED_OBJECT_FUNC:
1269 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1270 return Expression::make_func_reference(real, NULL, location);
1271 case Named_object::NAMED_OBJECT_PACKAGE:
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "unexpected reference to package");
1275 return Expression::make_error(location);
1276 default:
1277 gcc_unreachable();
1278 }
1279}
1280
1281// Make a reference to an unknown name.
1282
1283Expression*
1284Expression::make_unknown_reference(Named_object* no, source_location location)
1285{
1286 gcc_assert(no->resolve()->is_unknown());
1287 return new Unknown_expression(no, location);
1288}
1289
1290// A boolean expression.
1291
1292class Boolean_expression : public Expression
1293{
1294 public:
1295 Boolean_expression(bool val, source_location location)
1296 : Expression(EXPRESSION_BOOLEAN, location),
1297 val_(val), type_(NULL)
1298 { }
1299
1300 static Expression*
1301 do_import(Import*);
1302
1303 protected:
1304 bool
1305 do_is_constant() const
1306 { return true; }
1307
1308 Type*
1309 do_type();
1310
1311 void
1312 do_determine_type(const Type_context*);
1313
1314 Expression*
1315 do_copy()
1316 { return this; }
1317
1318 tree
1319 do_get_tree(Translate_context*)
1320 { return this->val_ ? boolean_true_node : boolean_false_node; }
1321
1322 void
1323 do_export(Export* exp) const
1324 { exp->write_c_string(this->val_ ? "true" : "false"); }
1325
1326 private:
1327 // The constant.
1328 bool val_;
1329 // The type as determined by context.
1330 Type* type_;
1331};
1332
1333// Get the type.
1334
1335Type*
1336Boolean_expression::do_type()
1337{
1338 if (this->type_ == NULL)
1339 this->type_ = Type::make_boolean_type();
1340 return this->type_;
1341}
1342
1343// Set the type from the context.
1344
1345void
1346Boolean_expression::do_determine_type(const Type_context* context)
1347{
1348 if (this->type_ != NULL && !this->type_->is_abstract())
1349 ;
1350 else if (context->type != NULL && context->type->is_boolean_type())
1351 this->type_ = context->type;
1352 else if (!context->may_be_abstract)
1353 this->type_ = Type::lookup_bool_type();
1354}
1355
1356// Import a boolean constant.
1357
1358Expression*
1359Boolean_expression::do_import(Import* imp)
1360{
1361 if (imp->peek_char() == 't')
1362 {
1363 imp->require_c_string("true");
1364 return Expression::make_boolean(true, imp->location());
1365 }
1366 else
1367 {
1368 imp->require_c_string("false");
1369 return Expression::make_boolean(false, imp->location());
1370 }
1371}
1372
1373// Make a boolean expression.
1374
1375Expression*
1376Expression::make_boolean(bool val, source_location location)
1377{
1378 return new Boolean_expression(val, location);
1379}
1380
1381// Class String_expression.
1382
1383// Get the type.
1384
1385Type*
1386String_expression::do_type()
1387{
1388 if (this->type_ == NULL)
1389 this->type_ = Type::make_string_type();
1390 return this->type_;
1391}
1392
1393// Set the type from the context.
1394
1395void
1396String_expression::do_determine_type(const Type_context* context)
1397{
1398 if (this->type_ != NULL && !this->type_->is_abstract())
1399 ;
1400 else if (context->type != NULL && context->type->is_string_type())
1401 this->type_ = context->type;
1402 else if (!context->may_be_abstract)
1403 this->type_ = Type::lookup_string_type();
1404}
1405
1406// Build a string constant.
1407
1408tree
1409String_expression::do_get_tree(Translate_context* context)
1410{
1411 return context->gogo()->go_string_constant_tree(this->val_);
1412}
1413
1414// Export a string expression.
1415
1416void
1417String_expression::do_export(Export* exp) const
1418{
1419 std::string s;
1420 s.reserve(this->val_.length() * 4 + 2);
1421 s += '"';
1422 for (std::string::const_iterator p = this->val_.begin();
1423 p != this->val_.end();
1424 ++p)
1425 {
1426 if (*p == '\\' || *p == '"')
1427 {
1428 s += '\\';
1429 s += *p;
1430 }
1431 else if (*p >= 0x20 && *p < 0x7f)
1432 s += *p;
1433 else if (*p == '\n')
1434 s += "\\n";
1435 else if (*p == '\t')
1436 s += "\\t";
1437 else
1438 {
1439 s += "\\x";
1440 unsigned char c = *p;
1441 unsigned int dig = c >> 4;
1442 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1443 dig = c & 0xf;
1444 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1445 }
1446 }
1447 s += '"';
1448 exp->write_string(s);
1449}
1450
1451// Import a string expression.
1452
1453Expression*
1454String_expression::do_import(Import* imp)
1455{
1456 imp->require_c_string("\"");
1457 std::string val;
1458 while (true)
1459 {
1460 int c = imp->get_char();
1461 if (c == '"' || c == -1)
1462 break;
1463 if (c != '\\')
1464 val += static_cast<char>(c);
1465 else
1466 {
1467 c = imp->get_char();
1468 if (c == '\\' || c == '"')
1469 val += static_cast<char>(c);
1470 else if (c == 'n')
1471 val += '\n';
1472 else if (c == 't')
1473 val += '\t';
1474 else if (c == 'x')
1475 {
1476 c = imp->get_char();
1477 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1478 c = imp->get_char();
1479 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1480 char v = (vh << 4) | vl;
1481 val += v;
1482 }
1483 else
1484 {
1485 error_at(imp->location(), "bad string constant");
1486 return Expression::make_error(imp->location());
1487 }
1488 }
1489 }
1490 return Expression::make_string(val, imp->location());
1491}
1492
1493// Make a string expression.
1494
1495Expression*
1496Expression::make_string(const std::string& val, source_location location)
1497{
1498 return new String_expression(val, location);
1499}
1500
1501// Make an integer expression.
1502
1503class Integer_expression : public Expression
1504{
1505 public:
1506 Integer_expression(const mpz_t* val, Type* type, source_location location)
1507 : Expression(EXPRESSION_INTEGER, location),
1508 type_(type)
1509 { mpz_init_set(this->val_, *val); }
1510
1511 static Expression*
1512 do_import(Import*);
1513
1514 // Return whether VAL fits in the type.
1515 static bool
1516 check_constant(mpz_t val, Type*, source_location);
1517
1518 // Write VAL to export data.
1519 static void
1520 export_integer(Export* exp, const mpz_t val);
1521
1522 protected:
1523 bool
1524 do_is_constant() const
1525 { return true; }
1526
1527 bool
1528 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1529
1530 Type*
1531 do_type();
1532
1533 void
1534 do_determine_type(const Type_context* context);
1535
1536 void
1537 do_check_types(Gogo*);
1538
1539 tree
1540 do_get_tree(Translate_context*);
1541
1542 Expression*
1543 do_copy()
1544 { return Expression::make_integer(&this->val_, this->type_,
1545 this->location()); }
1546
1547 void
1548 do_export(Export*) const;
1549
1550 private:
1551 // The integer value.
1552 mpz_t val_;
1553 // The type so far.
1554 Type* type_;
1555};
1556
1557// Return an integer constant value.
1558
1559bool
1560Integer_expression::do_integer_constant_value(bool, mpz_t val,
1561 Type** ptype) const
1562{
1563 if (this->type_ != NULL)
1564 *ptype = this->type_;
1565 mpz_set(val, this->val_);
1566 return true;
1567}
1568
1569// Return the current type. If we haven't set the type yet, we return
1570// an abstract integer type.
1571
1572Type*
1573Integer_expression::do_type()
1574{
1575 if (this->type_ == NULL)
1576 this->type_ = Type::make_abstract_integer_type();
1577 return this->type_;
1578}
1579
1580// Set the type of the integer value. Here we may switch from an
1581// abstract type to a real type.
1582
1583void
1584Integer_expression::do_determine_type(const Type_context* context)
1585{
1586 if (this->type_ != NULL && !this->type_->is_abstract())
1587 ;
1588 else if (context->type != NULL
1589 && (context->type->integer_type() != NULL
1590 || context->type->float_type() != NULL
1591 || context->type->complex_type() != NULL))
1592 this->type_ = context->type;
1593 else if (!context->may_be_abstract)
1594 this->type_ = Type::lookup_integer_type("int");
1595}
1596
1597// Return true if the integer VAL fits in the range of the type TYPE.
1598// Otherwise give an error and return false. TYPE may be NULL.
1599
1600bool
1601Integer_expression::check_constant(mpz_t val, Type* type,
1602 source_location location)
1603{
1604 if (type == NULL)
1605 return true;
1606 Integer_type* itype = type->integer_type();
1607 if (itype == NULL || itype->is_abstract())
1608 return true;
1609
1610 int bits = mpz_sizeinbase(val, 2);
1611
1612 if (itype->is_unsigned())
1613 {
1614 // For an unsigned type we can only accept a nonnegative number,
1615 // and we must be able to represent at least BITS.
1616 if (mpz_sgn(val) >= 0
1617 && bits <= itype->bits())
1618 return true;
1619 }
1620 else
1621 {
1622 // For a signed type we need an extra bit to indicate the sign.
1623 // We have to handle the most negative integer specially.
1624 if (bits + 1 <= itype->bits()
1625 || (bits <= itype->bits()
1626 && mpz_sgn(val) < 0
1627 && (mpz_scan1(val, 0)
1628 == static_cast<unsigned long>(itype->bits() - 1))
1629 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1630 return true;
1631 }
1632
1633 error_at(location, "integer constant overflow");
1634 return false;
1635}
1636
1637// Check the type of an integer constant.
1638
1639void
1640Integer_expression::do_check_types(Gogo*)
1641{
1642 if (this->type_ == NULL)
1643 return;
1644 if (!Integer_expression::check_constant(this->val_, this->type_,
1645 this->location()))
1646 this->set_is_error();
1647}
1648
1649// Get a tree for an integer constant.
1650
1651tree
1652Integer_expression::do_get_tree(Translate_context* context)
1653{
1654 Gogo* gogo = context->gogo();
1655 tree type;
1656 if (this->type_ != NULL && !this->type_->is_abstract())
1657 type = this->type_->get_tree(gogo);
1658 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1659 {
1660 // We are converting to an abstract floating point type.
1661 type = Type::lookup_float_type("float64")->get_tree(gogo);
1662 }
1663 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1664 {
1665 // We are converting to an abstract complex type.
1666 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1667 }
1668 else
1669 {
1670 // If we still have an abstract type here, then this is being
1671 // used in a constant expression which didn't get reduced for
1672 // some reason. Use a type which will fit the value. We use <,
1673 // not <=, because we need an extra bit for the sign bit.
1674 int bits = mpz_sizeinbase(this->val_, 2);
1675 if (bits < INT_TYPE_SIZE)
1676 type = Type::lookup_integer_type("int")->get_tree(gogo);
1677 else if (bits < 64)
1678 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1679 else
1680 type = long_long_integer_type_node;
1681 }
1682 return Expression::integer_constant_tree(this->val_, type);
1683}
1684
1685// Write VAL to export data.
1686
1687void
1688Integer_expression::export_integer(Export* exp, const mpz_t val)
1689{
1690 char* s = mpz_get_str(NULL, 10, val);
1691 exp->write_c_string(s);
1692 free(s);
1693}
1694
1695// Export an integer in a constant expression.
1696
1697void
1698Integer_expression::do_export(Export* exp) const
1699{
1700 Integer_expression::export_integer(exp, this->val_);
1701 // A trailing space lets us reliably identify the end of the number.
1702 exp->write_c_string(" ");
1703}
1704
1705// Import an integer, floating point, or complex value. This handles
1706// all these types because they all start with digits.
1707
1708Expression*
1709Integer_expression::do_import(Import* imp)
1710{
1711 std::string num = imp->read_identifier();
1712 imp->require_c_string(" ");
1713 if (!num.empty() && num[num.length() - 1] == 'i')
1714 {
1715 mpfr_t real;
1716 size_t plus_pos = num.find('+', 1);
1717 size_t minus_pos = num.find('-', 1);
1718 size_t pos;
1719 if (plus_pos == std::string::npos)
1720 pos = minus_pos;
1721 else if (minus_pos == std::string::npos)
1722 pos = plus_pos;
1723 else
1724 {
1725 error_at(imp->location(), "bad number in import data: %qs",
1726 num.c_str());
1727 return Expression::make_error(imp->location());
1728 }
1729 if (pos == std::string::npos)
1730 mpfr_set_ui(real, 0, GMP_RNDN);
1731 else
1732 {
1733 std::string real_str = num.substr(0, pos);
1734 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1735 {
1736 error_at(imp->location(), "bad number in import data: %qs",
1737 real_str.c_str());
1738 return Expression::make_error(imp->location());
1739 }
1740 }
1741
1742 std::string imag_str;
1743 if (pos == std::string::npos)
1744 imag_str = num;
1745 else
1746 imag_str = num.substr(pos);
1747 imag_str = imag_str.substr(0, imag_str.size() - 1);
1748 mpfr_t imag;
1749 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1750 {
1751 error_at(imp->location(), "bad number in import data: %qs",
1752 imag_str.c_str());
1753 return Expression::make_error(imp->location());
1754 }
1755 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1756 imp->location());
1757 mpfr_clear(real);
1758 mpfr_clear(imag);
1759 return ret;
1760 }
1761 else if (num.find('.') == std::string::npos
1762 && num.find('E') == std::string::npos)
1763 {
1764 mpz_t val;
1765 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1766 {
1767 error_at(imp->location(), "bad number in import data: %qs",
1768 num.c_str());
1769 return Expression::make_error(imp->location());
1770 }
1771 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1772 mpz_clear(val);
1773 return ret;
1774 }
1775 else
1776 {
1777 mpfr_t val;
1778 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 num.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1785 mpfr_clear(val);
1786 return ret;
1787 }
1788}
1789
1790// Build a new integer value.
1791
1792Expression*
1793Expression::make_integer(const mpz_t* val, Type* type,
1794 source_location location)
1795{
1796 return new Integer_expression(val, type, location);
1797}
1798
1799// Floats.
1800
1801class Float_expression : public Expression
1802{
1803 public:
1804 Float_expression(const mpfr_t* val, Type* type, source_location location)
1805 : Expression(EXPRESSION_FLOAT, location),
1806 type_(type)
1807 {
1808 mpfr_init_set(this->val_, *val, GMP_RNDN);
1809 }
1810
1811 // Constrain VAL to fit into TYPE.
1812 static void
1813 constrain_float(mpfr_t val, Type* type);
1814
1815 // Return whether VAL fits in the type.
1816 static bool
1817 check_constant(mpfr_t val, Type*, source_location);
1818
1819 // Write VAL to export data.
1820 static void
1821 export_float(Export* exp, const mpfr_t val);
1822
1823 protected:
1824 bool
1825 do_is_constant() const
1826 { return true; }
1827
1828 bool
1829 do_float_constant_value(mpfr_t val, Type**) const;
1830
1831 Type*
1832 do_type();
1833
1834 void
1835 do_determine_type(const Type_context*);
1836
1837 void
1838 do_check_types(Gogo*);
1839
1840 Expression*
1841 do_copy()
1842 { return Expression::make_float(&this->val_, this->type_,
1843 this->location()); }
1844
1845 tree
1846 do_get_tree(Translate_context*);
1847
1848 void
1849 do_export(Export*) const;
1850
1851 private:
1852 // The floating point value.
1853 mpfr_t val_;
1854 // The type so far.
1855 Type* type_;
1856};
1857
1858// Constrain VAL to fit into TYPE.
1859
1860void
1861Float_expression::constrain_float(mpfr_t val, Type* type)
1862{
1863 Float_type* ftype = type->float_type();
1864 if (ftype != NULL && !ftype->is_abstract())
1865 {
1866 tree type_tree = ftype->type_tree();
1867 REAL_VALUE_TYPE rvt;
1868 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1869 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1870 mpfr_from_real(val, &rvt, GMP_RNDN);
1871 }
1872}
1873
1874// Return a floating point constant value.
1875
1876bool
1877Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1878{
1879 if (this->type_ != NULL)
1880 *ptype = this->type_;
1881 mpfr_set(val, this->val_, GMP_RNDN);
1882 return true;
1883}
1884
1885// Return the current type. If we haven't set the type yet, we return
1886// an abstract float type.
1887
1888Type*
1889Float_expression::do_type()
1890{
1891 if (this->type_ == NULL)
1892 this->type_ = Type::make_abstract_float_type();
1893 return this->type_;
1894}
1895
1896// Set the type of the float value. Here we may switch from an
1897// abstract type to a real type.
1898
1899void
1900Float_expression::do_determine_type(const Type_context* context)
1901{
1902 if (this->type_ != NULL && !this->type_->is_abstract())
1903 ;
1904 else if (context->type != NULL
1905 && (context->type->integer_type() != NULL
1906 || context->type->float_type() != NULL
1907 || context->type->complex_type() != NULL))
1908 this->type_ = context->type;
1909 else if (!context->may_be_abstract)
1910 this->type_ = Type::lookup_float_type("float");
1911}
1912
1913// Return true if the floating point value VAL fits in the range of
1914// the type TYPE. Otherwise give an error and return false. TYPE may
1915// be NULL.
1916
1917bool
1918Float_expression::check_constant(mpfr_t val, Type* type,
1919 source_location location)
1920{
1921 if (type == NULL)
1922 return true;
1923 Float_type* ftype = type->float_type();
1924 if (ftype == NULL || ftype->is_abstract())
1925 return true;
1926
1927 // A NaN or Infinity always fits in the range of the type.
1928 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1929 return true;
1930
1931 mp_exp_t exp = mpfr_get_exp(val);
1932 mp_exp_t max_exp;
1933 switch (ftype->bits())
1934 {
1935 case 32:
1936 max_exp = 128;
1937 break;
1938 case 64:
1939 max_exp = 1024;
1940 break;
1941 default:
1942 gcc_unreachable();
1943 }
1944 if (exp > max_exp)
1945 {
1946 error_at(location, "floating point constant overflow");
1947 return false;
1948 }
1949 return true;
1950}
1951
1952// Check the type of a float value.
1953
1954void
1955Float_expression::do_check_types(Gogo*)
1956{
1957 if (this->type_ == NULL)
1958 return;
1959
1960 if (!Float_expression::check_constant(this->val_, this->type_,
1961 this->location()))
1962 this->set_is_error();
1963
1964 Integer_type* integer_type = this->type_->integer_type();
1965 if (integer_type != NULL)
1966 {
1967 if (!mpfr_integer_p(this->val_))
1968 this->report_error(_("floating point constant truncated to integer"));
1969 else
1970 {
1971 gcc_assert(!integer_type->is_abstract());
1972 mpz_t ival;
1973 mpz_init(ival);
1974 mpfr_get_z(ival, this->val_, GMP_RNDN);
1975 Integer_expression::check_constant(ival, integer_type,
1976 this->location());
1977 mpz_clear(ival);
1978 }
1979 }
1980}
1981
1982// Get a tree for a float constant.
1983
1984tree
1985Float_expression::do_get_tree(Translate_context* context)
1986{
1987 Gogo* gogo = context->gogo();
1988 tree type;
1989 if (this->type_ != NULL && !this->type_->is_abstract())
1990 type = this->type_->get_tree(gogo);
1991 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1992 {
1993 // We have an abstract integer type. We just hope for the best.
1994 type = Type::lookup_integer_type("int")->get_tree(gogo);
1995 }
1996 else
1997 {
1998 // If we still have an abstract type here, then this is being
1999 // used in a constant expression which didn't get reduced. We
2000 // just use float64 and hope for the best.
2001 type = Type::lookup_float_type("float64")->get_tree(gogo);
2002 }
2003 return Expression::float_constant_tree(this->val_, type);
2004}
2005
2006// Write a floating point number to export data.
2007
2008void
2009Float_expression::export_float(Export *exp, const mpfr_t val)
2010{
2011 mp_exp_t exponent;
2012 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2013 if (*s == '-')
2014 exp->write_c_string("-");
2015 exp->write_c_string("0.");
2016 exp->write_c_string(*s == '-' ? s + 1 : s);
2017 mpfr_free_str(s);
2018 char buf[30];
2019 snprintf(buf, sizeof buf, "E%ld", exponent);
2020 exp->write_c_string(buf);
2021}
2022
2023// Export a floating point number in a constant expression.
2024
2025void
2026Float_expression::do_export(Export* exp) const
2027{
2028 Float_expression::export_float(exp, this->val_);
2029 // A trailing space lets us reliably identify the end of the number.
2030 exp->write_c_string(" ");
2031}
2032
2033// Make a float expression.
2034
2035Expression*
2036Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2037{
2038 return new Float_expression(val, type, location);
2039}
2040
2041// Complex numbers.
2042
2043class Complex_expression : public Expression
2044{
2045 public:
2046 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2047 source_location location)
2048 : Expression(EXPRESSION_COMPLEX, location),
2049 type_(type)
2050 {
2051 mpfr_init_set(this->real_, *real, GMP_RNDN);
2052 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2053 }
2054
2055 // Constrain REAL/IMAG to fit into TYPE.
2056 static void
2057 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2058
2059 // Return whether REAL/IMAG fits in the type.
2060 static bool
2061 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2062
2063 // Write REAL/IMAG to export data.
2064 static void
2065 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2066
2067 protected:
2068 bool
2069 do_is_constant() const
2070 { return true; }
2071
2072 bool
2073 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2074
2075 Type*
2076 do_type();
2077
2078 void
2079 do_determine_type(const Type_context*);
2080
2081 void
2082 do_check_types(Gogo*);
2083
2084 Expression*
2085 do_copy()
2086 {
2087 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2088 this->location());
2089 }
2090
2091 tree
2092 do_get_tree(Translate_context*);
2093
2094 void
2095 do_export(Export*) const;
2096
2097 private:
2098 // The real part.
2099 mpfr_t real_;
2100 // The imaginary part;
2101 mpfr_t imag_;
2102 // The type if known.
2103 Type* type_;
2104};
2105
2106// Constrain REAL/IMAG to fit into TYPE.
2107
2108void
2109Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2110{
2111 Complex_type* ctype = type->complex_type();
2112 if (ctype != NULL && !ctype->is_abstract())
2113 {
2114 tree type_tree = ctype->type_tree();
2115
2116 REAL_VALUE_TYPE rvt;
2117 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2118 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2119 mpfr_from_real(real, &rvt, GMP_RNDN);
2120
2121 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2122 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2123 mpfr_from_real(imag, &rvt, GMP_RNDN);
2124 }
2125}
2126
2127// Return a complex constant value.
2128
2129bool
2130Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2131 Type** ptype) const
2132{
2133 if (this->type_ != NULL)
2134 *ptype = this->type_;
2135 mpfr_set(real, this->real_, GMP_RNDN);
2136 mpfr_set(imag, this->imag_, GMP_RNDN);
2137 return true;
2138}
2139
2140// Return the current type. If we haven't set the type yet, we return
2141// an abstract complex type.
2142
2143Type*
2144Complex_expression::do_type()
2145{
2146 if (this->type_ == NULL)
2147 this->type_ = Type::make_abstract_complex_type();
2148 return this->type_;
2149}
2150
2151// Set the type of the complex value. Here we may switch from an
2152// abstract type to a real type.
2153
2154void
2155Complex_expression::do_determine_type(const Type_context* context)
2156{
2157 if (this->type_ != NULL && !this->type_->is_abstract())
2158 ;
2159 else if (context->type != NULL
2160 && context->type->complex_type() != NULL)
2161 this->type_ = context->type;
2162 else if (!context->may_be_abstract)
2163 this->type_ = Type::lookup_complex_type("complex");
2164}
2165
2166// Return true if the complex value REAL/IMAG fits in the range of the
2167// type TYPE. Otherwise give an error and return false. TYPE may be
2168// NULL.
2169
2170bool
2171Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2172 source_location location)
2173{
2174 if (type == NULL)
2175 return true;
2176 Complex_type* ctype = type->complex_type();
2177 if (ctype == NULL || ctype->is_abstract())
2178 return true;
2179
2180 mp_exp_t max_exp;
2181 switch (ctype->bits())
2182 {
2183 case 64:
2184 max_exp = 128;
2185 break;
2186 case 128:
2187 max_exp = 1024;
2188 break;
2189 default:
2190 gcc_unreachable();
2191 }
2192
2193 // A NaN or Infinity always fits in the range of the type.
2194 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2195 {
2196 if (mpfr_get_exp(real) > max_exp)
2197 {
2198 error_at(location, "complex real part constant overflow");
2199 return false;
2200 }
2201 }
2202
2203 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2204 {
2205 if (mpfr_get_exp(imag) > max_exp)
2206 {
2207 error_at(location, "complex imaginary part constant overflow");
2208 return false;
2209 }
2210 }
2211
2212 return true;
2213}
2214
2215// Check the type of a complex value.
2216
2217void
2218Complex_expression::do_check_types(Gogo*)
2219{
2220 if (this->type_ == NULL)
2221 return;
2222
2223 if (!Complex_expression::check_constant(this->real_, this->imag_,
2224 this->type_, this->location()))
2225 this->set_is_error();
2226}
2227
2228// Get a tree for a complex constant.
2229
2230tree
2231Complex_expression::do_get_tree(Translate_context* context)
2232{
2233 Gogo* gogo = context->gogo();
2234 tree type;
2235 if (this->type_ != NULL && !this->type_->is_abstract())
2236 type = this->type_->get_tree(gogo);
2237 else
2238 {
2239 // If we still have an abstract type here, this this is being
2240 // used in a constant expression which didn't get reduced. We
2241 // just use complex128 and hope for the best.
2242 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2243 }
2244 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2245}
2246
2247// Write REAL/IMAG to export data.
2248
2249void
2250Complex_expression::export_complex(Export* exp, const mpfr_t real,
2251 const mpfr_t imag)
2252{
2253 if (!mpfr_zero_p(real))
2254 {
2255 Float_expression::export_float(exp, real);
2256 if (mpfr_sgn(imag) > 0)
2257 exp->write_c_string("+");
2258 }
2259 Float_expression::export_float(exp, imag);
2260 exp->write_c_string("i");
2261}
2262
2263// Export a complex number in a constant expression.
2264
2265void
2266Complex_expression::do_export(Export* exp) const
2267{
2268 Complex_expression::export_complex(exp, this->real_, this->imag_);
2269 // A trailing space lets us reliably identify the end of the number.
2270 exp->write_c_string(" ");
2271}
2272
2273// Make a complex expression.
2274
2275Expression*
2276Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2277 source_location location)
2278{
2279 return new Complex_expression(real, imag, type, location);
2280}
2281
2282// A reference to a const in an expression.
2283
2284class Const_expression : public Expression
2285{
2286 public:
2287 Const_expression(Named_object* constant, source_location location)
2288 : Expression(EXPRESSION_CONST_REFERENCE, location),
2289 constant_(constant), type_(NULL)
2290 { }
2291
2292 const std::string&
2293 name() const
2294 { return this->constant_->name(); }
2295
2296 protected:
2297 Expression*
2298 do_lower(Gogo*, Named_object*, int);
2299
2300 bool
2301 do_is_constant() const
2302 { return true; }
2303
2304 bool
2305 do_integer_constant_value(bool, mpz_t val, Type**) const;
2306
2307 bool
2308 do_float_constant_value(mpfr_t val, Type**) const;
2309
2310 bool
2311 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2312
2313 bool
2314 do_string_constant_value(std::string* val) const
2315 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2316
2317 Type*
2318 do_type();
2319
2320 // The type of a const is set by the declaration, not the use.
2321 void
2322 do_determine_type(const Type_context*);
2323
2324 void
2325 do_check_types(Gogo*);
2326
2327 Expression*
2328 do_copy()
2329 { return this; }
2330
2331 tree
2332 do_get_tree(Translate_context* context);
2333
2334 // When exporting a reference to a const as part of a const
2335 // expression, we export the value. We ignore the fact that it has
2336 // a name.
2337 void
2338 do_export(Export* exp) const
2339 { this->constant_->const_value()->expr()->export_expression(exp); }
2340
2341 private:
2342 // The constant.
2343 Named_object* constant_;
2344 // The type of this reference. This is used if the constant has an
2345 // abstract type.
2346 Type* type_;
2347};
2348
2349// Lower a constant expression. This is where we convert the
2350// predeclared constant iota into an integer value.
2351
2352Expression*
2353Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2354{
2355 if (this->constant_->const_value()->expr()->classification()
2356 == EXPRESSION_IOTA)
2357 {
2358 if (iota_value == -1)
2359 {
2360 error_at(this->location(),
2361 "iota is only defined in const declarations");
2362 iota_value = 0;
2363 }
2364 mpz_t val;
2365 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2366 Expression* ret = Expression::make_integer(&val, NULL,
2367 this->location());
2368 mpz_clear(val);
2369 return ret;
2370 }
2371
2372 // Make sure that the constant itself has been lowered.
2373 gogo->lower_constant(this->constant_);
2374
2375 return this;
2376}
2377
2378// Return an integer constant value.
2379
2380bool
2381Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2382 Type** ptype) const
2383{
2384 Type* ctype;
2385 if (this->type_ != NULL)
2386 ctype = this->type_;
2387 else
2388 ctype = this->constant_->const_value()->type();
2389 if (ctype != NULL && ctype->integer_type() == NULL)
2390 return false;
2391
2392 Expression* e = this->constant_->const_value()->expr();
2393 Type* t;
2394 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2395
2396 if (r
2397 && ctype != NULL
2398 && !Integer_expression::check_constant(val, ctype, this->location()))
2399 return false;
2400
2401 *ptype = ctype != NULL ? ctype : t;
2402 return r;
2403}
2404
2405// Return a floating point constant value.
2406
2407bool
2408Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2409{
2410 Type* ctype;
2411 if (this->type_ != NULL)
2412 ctype = this->type_;
2413 else
2414 ctype = this->constant_->const_value()->type();
2415 if (ctype != NULL && ctype->float_type() == NULL)
2416 return false;
2417
2418 Type* t;
2419 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2420 &t);
2421 if (r && ctype != NULL)
2422 {
2423 if (!Float_expression::check_constant(val, ctype, this->location()))
2424 return false;
2425 Float_expression::constrain_float(val, ctype);
2426 }
2427 *ptype = ctype != NULL ? ctype : t;
2428 return r;
2429}
2430
2431// Return a complex constant value.
2432
2433bool
2434Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2435 Type **ptype) const
2436{
2437 Type* ctype;
2438 if (this->type_ != NULL)
2439 ctype = this->type_;
2440 else
2441 ctype = this->constant_->const_value()->type();
2442 if (ctype != NULL && ctype->complex_type() == NULL)
2443 return false;
2444
2445 Type *t;
2446 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2447 imag,
2448 &t);
2449 if (r && ctype != NULL)
2450 {
2451 if (!Complex_expression::check_constant(real, imag, ctype,
2452 this->location()))
2453 return false;
2454 Complex_expression::constrain_complex(real, imag, ctype);
2455 }
2456 *ptype = ctype != NULL ? ctype : t;
2457 return r;
2458}
2459
2460// Return the type of the const reference.
2461
2462Type*
2463Const_expression::do_type()
2464{
2465 if (this->type_ != NULL)
2466 return this->type_;
2467 Named_constant* nc = this->constant_->const_value();
2468 Type* ret = nc->type();
2469 if (ret != NULL)
2470 return ret;
2471 // During parsing, a named constant may have a NULL type, but we
2472 // must not return a NULL type here.
2473 return nc->expr()->type();
2474}
2475
2476// Set the type of the const reference.
2477
2478void
2479Const_expression::do_determine_type(const Type_context* context)
2480{
2481 Type* ctype = this->constant_->const_value()->type();
2482 Type* cetype = (ctype != NULL
2483 ? ctype
2484 : this->constant_->const_value()->expr()->type());
2485 if (ctype != NULL && !ctype->is_abstract())
2486 ;
2487 else if (context->type != NULL
2488 && (context->type->integer_type() != NULL
2489 || context->type->float_type() != NULL
2490 || context->type->complex_type() != NULL)
2491 && (cetype->integer_type() != NULL
2492 || cetype->float_type() != NULL
2493 || cetype->complex_type() != NULL))
2494 this->type_ = context->type;
2495 else if (context->type != NULL
2496 && context->type->is_string_type()
2497 && cetype->is_string_type())
2498 this->type_ = context->type;
2499 else if (context->type != NULL
2500 && context->type->is_boolean_type()
2501 && cetype->is_boolean_type())
2502 this->type_ = context->type;
2503 else if (!context->may_be_abstract)
2504 {
2505 if (cetype->is_abstract())
2506 cetype = cetype->make_non_abstract_type();
2507 this->type_ = cetype;
2508 }
2509}
2510
2511// Check types of a const reference.
2512
2513void
2514Const_expression::do_check_types(Gogo*)
2515{
2516 if (this->type_ == NULL || this->type_->is_abstract())
2517 return;
2518
2519 // Check for integer overflow.
2520 if (this->type_->integer_type() != NULL)
2521 {
2522 mpz_t ival;
2523 mpz_init(ival);
2524 Type* dummy;
2525 if (!this->integer_constant_value(true, ival, &dummy))
2526 {
2527 mpfr_t fval;
2528 mpfr_init(fval);
2529 Expression* cexpr = this->constant_->const_value()->expr();
2530 if (cexpr->float_constant_value(fval, &dummy))
2531 {
2532 if (!mpfr_integer_p(fval))
2533 this->report_error(_("floating point constant "
2534 "truncated to integer"));
2535 else
2536 {
2537 mpfr_get_z(ival, fval, GMP_RNDN);
2538 Integer_expression::check_constant(ival, this->type_,
2539 this->location());
2540 }
2541 }
2542 mpfr_clear(fval);
2543 }
2544 mpz_clear(ival);
2545 }
2546}
2547
2548// Return a tree for the const reference.
2549
2550tree
2551Const_expression::do_get_tree(Translate_context* context)
2552{
2553 Gogo* gogo = context->gogo();
2554 tree type_tree;
2555 if (this->type_ == NULL)
2556 type_tree = NULL_TREE;
2557 else
2558 {
2559 type_tree = this->type_->get_tree(gogo);
2560 if (type_tree == error_mark_node)
2561 return error_mark_node;
2562 }
2563
2564 // If the type has been set for this expression, but the underlying
2565 // object is an abstract int or float, we try to get the abstract
2566 // value. Otherwise we may lose something in the conversion.
2567 if (this->type_ != NULL
2568 && this->constant_->const_value()->type()->is_abstract())
2569 {
2570 Expression* expr = this->constant_->const_value()->expr();
2571 mpz_t ival;
2572 mpz_init(ival);
2573 Type* t;
2574 if (expr->integer_constant_value(true, ival, &t))
2575 {
2576 tree ret = Expression::integer_constant_tree(ival, type_tree);
2577 mpz_clear(ival);
2578 return ret;
2579 }
2580 mpz_clear(ival);
2581
2582 mpfr_t fval;
2583 mpfr_init(fval);
2584 if (expr->float_constant_value(fval, &t))
2585 {
2586 tree ret = Expression::float_constant_tree(fval, type_tree);
2587 mpfr_clear(fval);
2588 return ret;
2589 }
2590
2591 mpfr_t imag;
2592 mpfr_init(imag);
2593 if (expr->complex_constant_value(fval, imag, &t))
2594 {
2595 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2596 mpfr_clear(fval);
2597 mpfr_clear(imag);
2598 return ret;
2599 }
2600 mpfr_clear(imag);
2601 mpfr_clear(fval);
2602 }
2603
2604 tree const_tree = this->constant_->get_tree(gogo, context->function());
2605 if (this->type_ == NULL
2606 || const_tree == error_mark_node
2607 || TREE_TYPE(const_tree) == error_mark_node)
2608 return const_tree;
2609
2610 tree ret;
2611 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2612 ret = fold_convert(type_tree, const_tree);
2613 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2614 ret = fold(convert_to_integer(type_tree, const_tree));
2615 else if (TREE_CODE(type_tree) == REAL_TYPE)
2616 ret = fold(convert_to_real(type_tree, const_tree));
2617 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2618 ret = fold(convert_to_complex(type_tree, const_tree));
2619 else
2620 gcc_unreachable();
2621 return ret;
2622}
2623
2624// Make a reference to a constant in an expression.
2625
2626Expression*
2627Expression::make_const_reference(Named_object* constant,
2628 source_location location)
2629{
2630 return new Const_expression(constant, location);
2631}
2632
2633// The nil value.
2634
2635class Nil_expression : public Expression
2636{
2637 public:
2638 Nil_expression(source_location location)
2639 : Expression(EXPRESSION_NIL, location)
2640 { }
2641
2642 static Expression*
2643 do_import(Import*);
2644
2645 protected:
2646 bool
2647 do_is_constant() const
2648 { return true; }
2649
2650 Type*
2651 do_type()
2652 { return Type::make_nil_type(); }
2653
2654 void
2655 do_determine_type(const Type_context*)
2656 { }
2657
2658 Expression*
2659 do_copy()
2660 { return this; }
2661
2662 tree
2663 do_get_tree(Translate_context*)
2664 { return null_pointer_node; }
2665
2666 void
2667 do_export(Export* exp) const
2668 { exp->write_c_string("nil"); }
2669};
2670
2671// Import a nil expression.
2672
2673Expression*
2674Nil_expression::do_import(Import* imp)
2675{
2676 imp->require_c_string("nil");
2677 return Expression::make_nil(imp->location());
2678}
2679
2680// Make a nil expression.
2681
2682Expression*
2683Expression::make_nil(source_location location)
2684{
2685 return new Nil_expression(location);
2686}
2687
2688// The value of the predeclared constant iota. This is little more
2689// than a marker. This will be lowered to an integer in
2690// Const_expression::do_lower, which is where we know the value that
2691// it should have.
2692
2693class Iota_expression : public Parser_expression
2694{
2695 public:
2696 Iota_expression(source_location location)
2697 : Parser_expression(EXPRESSION_IOTA, location)
2698 { }
2699
2700 protected:
2701 Expression*
2702 do_lower(Gogo*, Named_object*, int)
2703 { gcc_unreachable(); }
2704
2705 // There should only ever be one of these.
2706 Expression*
2707 do_copy()
2708 { gcc_unreachable(); }
2709};
2710
2711// Make an iota expression. This is only called for one case: the
2712// value of the predeclared constant iota.
2713
2714Expression*
2715Expression::make_iota()
2716{
2717 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2718 return &iota_expression;
2719}
2720
2721// A type conversion expression.
2722
2723class Type_conversion_expression : public Expression
2724{
2725 public:
2726 Type_conversion_expression(Type* type, Expression* expr,
2727 source_location location)
2728 : Expression(EXPRESSION_CONVERSION, location),
2729 type_(type), expr_(expr), may_convert_function_types_(false)
2730 { }
2731
2732 // Return the type to which we are converting.
2733 Type*
2734 type() const
2735 { return this->type_; }
2736
2737 // Return the expression which we are converting.
2738 Expression*
2739 expr() const
2740 { return this->expr_; }
2741
2742 // Permit converting from one function type to another. This is
2743 // used internally for method expressions.
2744 void
2745 set_may_convert_function_types()
2746 {
2747 this->may_convert_function_types_ = true;
2748 }
2749
2750 // Import a type conversion expression.
2751 static Expression*
2752 do_import(Import*);
2753
2754 protected:
2755 int
2756 do_traverse(Traverse* traverse);
2757
2758 Expression*
2759 do_lower(Gogo*, Named_object*, int);
2760
2761 bool
2762 do_is_constant() const
2763 { return this->expr_->is_constant(); }
2764
2765 bool
2766 do_integer_constant_value(bool, mpz_t, Type**) const;
2767
2768 bool
2769 do_float_constant_value(mpfr_t, Type**) const;
2770
2771 bool
2772 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2773
2774 bool
2775 do_string_constant_value(std::string*) const;
2776
2777 Type*
2778 do_type()
2779 { return this->type_; }
2780
2781 void
2782 do_determine_type(const Type_context*)
2783 {
2784 Type_context subcontext(this->type_, false);
2785 this->expr_->determine_type(&subcontext);
2786 }
2787
2788 void
2789 do_check_types(Gogo*);
2790
2791 Expression*
2792 do_copy()
2793 {
2794 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2795 this->location());
2796 }
2797
2798 tree
2799 do_get_tree(Translate_context* context);
2800
2801 void
2802 do_export(Export*) const;
2803
2804 private:
2805 // The type to convert to.
2806 Type* type_;
2807 // The expression to convert.
2808 Expression* expr_;
2809 // True if this is permitted to convert function types. This is
2810 // used internally for method expressions.
2811 bool may_convert_function_types_;
2812};
2813
2814// Traversal.
2815
2816int
2817Type_conversion_expression::do_traverse(Traverse* traverse)
2818{
2819 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2820 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2821 return TRAVERSE_EXIT;
2822 return TRAVERSE_CONTINUE;
2823}
2824
2825// Convert to a constant at lowering time.
2826
2827Expression*
2828Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2829{
2830 Type* type = this->type_;
2831 Expression* val = this->expr_;
2832 source_location location = this->location();
2833
2834 if (type->integer_type() != NULL)
2835 {
2836 mpz_t ival;
2837 mpz_init(ival);
2838 Type* dummy;
2839 if (val->integer_constant_value(false, ival, &dummy))
2840 {
2841 if (!Integer_expression::check_constant(ival, type, location))
2842 mpz_set_ui(ival, 0);
2843 Expression* ret = Expression::make_integer(&ival, type, location);
2844 mpz_clear(ival);
2845 return ret;
2846 }
2847
2848 mpfr_t fval;
2849 mpfr_init(fval);
2850 if (val->float_constant_value(fval, &dummy))
2851 {
2852 if (!mpfr_integer_p(fval))
2853 {
2854 error_at(location,
2855 "floating point constant truncated to integer");
2856 return Expression::make_error(location);
2857 }
2858 mpfr_get_z(ival, fval, GMP_RNDN);
2859 if (!Integer_expression::check_constant(ival, type, location))
2860 mpz_set_ui(ival, 0);
2861 Expression* ret = Expression::make_integer(&ival, type, location);
2862 mpfr_clear(fval);
2863 mpz_clear(ival);
2864 return ret;
2865 }
2866 mpfr_clear(fval);
2867 mpz_clear(ival);
2868 }
2869
2870 if (type->float_type() != NULL)
2871 {
2872 mpfr_t fval;
2873 mpfr_init(fval);
2874 Type* dummy;
2875 if (val->float_constant_value(fval, &dummy))
2876 {
2877 if (!Float_expression::check_constant(fval, type, location))
2878 mpfr_set_ui(fval, 0, GMP_RNDN);
2879 Float_expression::constrain_float(fval, type);
2880 Expression *ret = Expression::make_float(&fval, type, location);
2881 mpfr_clear(fval);
2882 return ret;
2883 }
2884 mpfr_clear(fval);
2885 }
2886
2887 if (type->complex_type() != NULL)
2888 {
2889 mpfr_t real;
2890 mpfr_t imag;
2891 mpfr_init(real);
2892 mpfr_init(imag);
2893 Type* dummy;
2894 if (val->complex_constant_value(real, imag, &dummy))
2895 {
2896 if (!Complex_expression::check_constant(real, imag, type, location))
2897 {
2898 mpfr_set_ui(real, 0, GMP_RNDN);
2899 mpfr_set_ui(imag, 0, GMP_RNDN);
2900 }
2901 Complex_expression::constrain_complex(real, imag, type);
2902 Expression* ret = Expression::make_complex(&real, &imag, type,
2903 location);
2904 mpfr_clear(real);
2905 mpfr_clear(imag);
2906 return ret;
2907 }
2908 mpfr_clear(real);
2909 mpfr_clear(imag);
2910 }
2911
2912 if (type->is_open_array_type() && type->named_type() == NULL)
2913 {
2914 Type* element_type = type->array_type()->element_type()->forwarded();
2915 bool is_byte = element_type == Type::lookup_integer_type("uint8");
2916 bool is_int = element_type == Type::lookup_integer_type("int");
2917 if (is_byte || is_int)
2918 {
2919 std::string s;
2920 if (val->string_constant_value(&s))
2921 {
2922 Expression_list* vals = new Expression_list();
2923 if (is_byte)
2924 {
2925 for (std::string::const_iterator p = s.begin();
2926 p != s.end();
2927 p++)
2928 {
2929 mpz_t val;
2930 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
2931 Expression* v = Expression::make_integer(&val,
2932 element_type,
2933 location);
2934 vals->push_back(v);
2935 mpz_clear(val);
2936 }
2937 }
2938 else
2939 {
2940 const char *p = s.data();
2941 const char *pend = s.data() + s.length();
2942 while (p < pend)
2943 {
2944 unsigned int c;
2945 int adv = Lex::fetch_char(p, &c);
2946 if (adv == 0)
2947 {
2948 warning_at(this->location(), 0,
2949 "invalid UTF-8 encoding");
2950 adv = 1;
2951 }
2952 p += adv;
2953 mpz_t val;
2954 mpz_init_set_ui(val, c);
2955 Expression* v = Expression::make_integer(&val,
2956 element_type,
2957 location);
2958 vals->push_back(v);
2959 mpz_clear(val);
2960 }
2961 }
2962
2963 return Expression::make_slice_composite_literal(type, vals,
2964 location);
2965 }
2966 }
2967 }
2968
2969 return this;
2970}
2971
2972// Return the constant integer value if there is one.
2973
2974bool
2975Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
2976 mpz_t val,
2977 Type** ptype) const
2978{
2979 if (this->type_->integer_type() == NULL)
2980 return false;
2981
2982 mpz_t ival;
2983 mpz_init(ival);
2984 Type* dummy;
2985 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
2986 {
2987 if (!Integer_expression::check_constant(ival, this->type_,
2988 this->location()))
2989 {
2990 mpz_clear(ival);
2991 return false;
2992 }
2993 mpz_set(val, ival);
2994 mpz_clear(ival);
2995 *ptype = this->type_;
2996 return true;
2997 }
2998 mpz_clear(ival);
2999
3000 mpfr_t fval;
3001 mpfr_init(fval);
3002 if (this->expr_->float_constant_value(fval, &dummy))
3003 {
3004 mpfr_get_z(val, fval, GMP_RNDN);
3005 mpfr_clear(fval);
3006 if (!Integer_expression::check_constant(val, this->type_,
3007 this->location()))
3008 return false;
3009 *ptype = this->type_;
3010 return true;
3011 }
3012 mpfr_clear(fval);
3013
3014 return false;
3015}
3016
3017// Return the constant floating point value if there is one.
3018
3019bool
3020Type_conversion_expression::do_float_constant_value(mpfr_t val,
3021 Type** ptype) const
3022{
3023 if (this->type_->float_type() == NULL)
3024 return false;
3025
3026 mpfr_t fval;
3027 mpfr_init(fval);
3028 Type* dummy;
3029 if (this->expr_->float_constant_value(fval, &dummy))
3030 {
3031 if (!Float_expression::check_constant(fval, this->type_,
3032 this->location()))
3033 {
3034 mpfr_clear(fval);
3035 return false;
3036 }
3037 mpfr_set(val, fval, GMP_RNDN);
3038 mpfr_clear(fval);
3039 Float_expression::constrain_float(val, this->type_);
3040 *ptype = this->type_;
3041 return true;
3042 }
3043 mpfr_clear(fval);
3044
3045 return false;
3046}
3047
3048// Return the constant complex value if there is one.
3049
3050bool
3051Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3052 mpfr_t imag,
3053 Type **ptype) const
3054{
3055 if (this->type_->complex_type() == NULL)
3056 return false;
3057
3058 mpfr_t rval;
3059 mpfr_t ival;
3060 mpfr_init(rval);
3061 mpfr_init(ival);
3062 Type* dummy;
3063 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3064 {
3065 if (!Complex_expression::check_constant(rval, ival, this->type_,
3066 this->location()))
3067 {
3068 mpfr_clear(rval);
3069 mpfr_clear(ival);
3070 return false;
3071 }
3072 mpfr_set(real, rval, GMP_RNDN);
3073 mpfr_set(imag, ival, GMP_RNDN);
3074 mpfr_clear(rval);
3075 mpfr_clear(ival);
3076 Complex_expression::constrain_complex(real, imag, this->type_);
3077 *ptype = this->type_;
3078 return true;
3079 }
3080 mpfr_clear(rval);
3081 mpfr_clear(ival);
3082
3083 return false;
3084}
3085
3086// Return the constant string value if there is one.
3087
3088bool
3089Type_conversion_expression::do_string_constant_value(std::string* val) const
3090{
3091 if (this->type_->is_string_type()
3092 && this->expr_->type()->integer_type() != NULL)
3093 {
3094 mpz_t ival;
3095 mpz_init(ival);
3096 Type* dummy;
3097 if (this->expr_->integer_constant_value(false, ival, &dummy))
3098 {
3099 unsigned long ulval = mpz_get_ui(ival);
3100 if (mpz_cmp_ui(ival, ulval) == 0)
3101 {
3102 Lex::append_char(ulval, true, val, this->location());
3103 mpz_clear(ival);
3104 return true;
3105 }
3106 }
3107 mpz_clear(ival);
3108 }
3109
3110 // FIXME: Could handle conversion from const []int here.
3111
3112 return false;
3113}
3114
3115// Check that types are convertible.
3116
3117void
3118Type_conversion_expression::do_check_types(Gogo*)
3119{
3120 Type* type = this->type_;
3121 Type* expr_type = this->expr_->type();
3122 std::string reason;
3123
3124 if (this->may_convert_function_types_
3125 && type->function_type() != NULL
3126 && expr_type->function_type() != NULL)
3127 return;
3128
3129 if (Type::are_convertible(type, expr_type, &reason))
3130 return;
3131
3132 error_at(this->location(), "%s", reason.c_str());
3133 this->set_is_error();
3134}
3135
3136// Get a tree for a type conversion.
3137
3138tree
3139Type_conversion_expression::do_get_tree(Translate_context* context)
3140{
3141 Gogo* gogo = context->gogo();
3142 tree type_tree = this->type_->get_tree(gogo);
3143 tree expr_tree = this->expr_->get_tree(context);
3144
3145 if (type_tree == error_mark_node
3146 || expr_tree == error_mark_node
3147 || TREE_TYPE(expr_tree) == error_mark_node)
3148 return error_mark_node;
3149
3150 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3151 return fold_convert(type_tree, expr_tree);
3152
3153 Type* type = this->type_;
3154 Type* expr_type = this->expr_->type();
3155 tree ret;
3156 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3157 ret = Expression::convert_for_assignment(context, type, expr_type,
3158 expr_tree, this->location());
3159 else if (type->integer_type() != NULL)
3160 {
3161 if (expr_type->integer_type() != NULL
3162 || expr_type->float_type() != NULL
3163 || expr_type->is_unsafe_pointer_type())
3164 ret = fold(convert_to_integer(type_tree, expr_tree));
3165 else
3166 gcc_unreachable();
3167 }
3168 else if (type->float_type() != NULL)
3169 {
3170 if (expr_type->integer_type() != NULL
3171 || expr_type->float_type() != NULL)
3172 ret = fold(convert_to_real(type_tree, expr_tree));
3173 else
3174 gcc_unreachable();
3175 }
3176 else if (type->complex_type() != NULL)
3177 {
3178 if (expr_type->complex_type() != NULL)
3179 ret = fold(convert_to_complex(type_tree, expr_tree));
3180 else
3181 gcc_unreachable();
3182 }
3183 else if (type->is_string_type()
3184 && expr_type->integer_type() != NULL)
3185 {
3186 expr_tree = fold_convert(integer_type_node, expr_tree);
3187 if (host_integerp(expr_tree, 0))
3188 {
3189 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3190 std::string s;
3191 Lex::append_char(intval, true, &s, this->location());
3192 Expression* se = Expression::make_string(s, this->location());
3193 return se->get_tree(context);
3194 }
3195
3196 static tree int_to_string_fndecl;
3197 ret = Gogo::call_builtin(&int_to_string_fndecl,
3198 this->location(),
3199 "__go_int_to_string",
3200 1,
3201 type_tree,
3202 integer_type_node,
3203 fold_convert(integer_type_node, expr_tree));
3204 }
3205 else if (type->is_string_type()
3206 && (expr_type->array_type() != NULL
3207 || (expr_type->points_to() != NULL
3208 && expr_type->points_to()->array_type() != NULL)))
3209 {
3210 Type* t = expr_type;
3211 if (t->points_to() != NULL)
3212 {
3213 t = t->points_to();
3214 expr_tree = build_fold_indirect_ref(expr_tree);
3215 }
3216 if (!DECL_P(expr_tree))
3217 expr_tree = save_expr(expr_tree);
3218 Array_type* a = t->array_type();
3219 Type* e = a->element_type()->forwarded();
3220 gcc_assert(e->integer_type() != NULL);
3221 tree valptr = fold_convert(const_ptr_type_node,
3222 a->value_pointer_tree(gogo, expr_tree));
3223 tree len = a->length_tree(gogo, expr_tree);
3224 len = fold_convert_loc(this->location(), size_type_node, len);
3225 if (e->integer_type()->is_unsigned()
3226 && e->integer_type()->bits() == 8)
3227 {
3228 static tree byte_array_to_string_fndecl;
3229 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3230 this->location(),
3231 "__go_byte_array_to_string",
3232 2,
3233 type_tree,
3234 const_ptr_type_node,
3235 valptr,
3236 size_type_node,
3237 len);
3238 }
3239 else
3240 {
3241 gcc_assert(e == Type::lookup_integer_type("int"));
3242 static tree int_array_to_string_fndecl;
3243 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3244 this->location(),
3245 "__go_int_array_to_string",
3246 2,
3247 type_tree,
3248 const_ptr_type_node,
3249 valptr,
3250 size_type_node,
3251 len);
3252 }
3253 }
3254 else if (type->is_open_array_type() && expr_type->is_string_type())
3255 {
3256 Type* e = type->array_type()->element_type()->forwarded();
3257 gcc_assert(e->integer_type() != NULL);
3258 if (e->integer_type()->is_unsigned()
3259 && e->integer_type()->bits() == 8)
3260 {
3261 static tree string_to_byte_array_fndecl;
3262 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3263 this->location(),
3264 "__go_string_to_byte_array",
3265 1,
3266 type_tree,
3267 TREE_TYPE(expr_tree),
3268 expr_tree);
3269 }
3270 else
3271 {
3272 gcc_assert(e == Type::lookup_integer_type("int"));
3273 static tree string_to_int_array_fndecl;
3274 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3275 this->location(),
3276 "__go_string_to_int_array",
3277 1,
3278 type_tree,
3279 TREE_TYPE(expr_tree),
3280 expr_tree);
3281 }
3282 }
3283 else if ((type->is_unsafe_pointer_type()
3284 && expr_type->points_to() != NULL)
3285 || (expr_type->is_unsafe_pointer_type()
3286 && type->points_to() != NULL))
3287 ret = fold_convert(type_tree, expr_tree);
3288 else if (type->is_unsafe_pointer_type()
3289 && expr_type->integer_type() != NULL)
3290 ret = convert_to_pointer(type_tree, expr_tree);
3291 else if (this->may_convert_function_types_
3292 && type->function_type() != NULL
3293 && expr_type->function_type() != NULL)
3294 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3295 else
3296 ret = Expression::convert_for_assignment(context, type, expr_type,
3297 expr_tree, this->location());
3298
3299 return ret;
3300}
3301
3302// Output a type conversion in a constant expression.
3303
3304void
3305Type_conversion_expression::do_export(Export* exp) const
3306{
3307 exp->write_c_string("convert(");
3308 exp->write_type(this->type_);
3309 exp->write_c_string(", ");
3310 this->expr_->export_expression(exp);
3311 exp->write_c_string(")");
3312}
3313
3314// Import a type conversion or a struct construction.
3315
3316Expression*
3317Type_conversion_expression::do_import(Import* imp)
3318{
3319 imp->require_c_string("convert(");
3320 Type* type = imp->read_type();
3321 imp->require_c_string(", ");
3322 Expression* val = Expression::import_expression(imp);
3323 imp->require_c_string(")");
3324 return Expression::make_cast(type, val, imp->location());
3325}
3326
3327// Make a type cast expression.
3328
3329Expression*
3330Expression::make_cast(Type* type, Expression* val, source_location location)
3331{
3332 if (type->is_error_type() || val->is_error_expression())
3333 return Expression::make_error(location);
3334 return new Type_conversion_expression(type, val, location);
3335}
3336
3337// Unary expressions.
3338
3339class Unary_expression : public Expression
3340{
3341 public:
3342 Unary_expression(Operator op, Expression* expr, source_location location)
3343 : Expression(EXPRESSION_UNARY, location),
3344 op_(op), escapes_(true), expr_(expr)
3345 { }
3346
3347 // Return the operator.
3348 Operator
3349 op() const
3350 { return this->op_; }
3351
3352 // Return the operand.
3353 Expression*
3354 operand() const
3355 { return this->expr_; }
3356
3357 // Record that an address expression does not escape.
3358 void
3359 set_does_not_escape()
3360 {
3361 gcc_assert(this->op_ == OPERATOR_AND);
3362 this->escapes_ = false;
3363 }
3364
3365 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3366 // could be done, false if not.
3367 static bool
3368 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3369 source_location);
3370
3371 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3372 // could be done, false if not.
3373 static bool
3374 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3375
3376 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3377 // true if this could be done, false if not.
3378 static bool
3379 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3380 mpfr_t imag);
3381
3382 static Expression*
3383 do_import(Import*);
3384
3385 protected:
3386 int
3387 do_traverse(Traverse* traverse)
3388 { return Expression::traverse(&this->expr_, traverse); }
3389
3390 Expression*
3391 do_lower(Gogo*, Named_object*, int);
3392
3393 bool
3394 do_is_constant() const;
3395
3396 bool
3397 do_integer_constant_value(bool, mpz_t, Type**) const;
3398
3399 bool
3400 do_float_constant_value(mpfr_t, Type**) const;
3401
3402 bool
3403 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3404
3405 Type*
3406 do_type();
3407
3408 void
3409 do_determine_type(const Type_context*);
3410
3411 void
3412 do_check_types(Gogo*);
3413
3414 Expression*
3415 do_copy()
3416 {
3417 return Expression::make_unary(this->op_, this->expr_->copy(),
3418 this->location());
3419 }
3420
3421 bool
3422 do_is_addressable() const
3423 { return this->op_ == OPERATOR_MULT; }
3424
3425 tree
3426 do_get_tree(Translate_context*);
3427
3428 void
3429 do_export(Export*) const;
3430
3431 private:
3432 // The unary operator to apply.
3433 Operator op_;
3434 // Normally true. False if this is an address expression which does
3435 // not escape the current function.
3436 bool escapes_;
3437 // The operand.
3438 Expression* expr_;
3439};
3440
3441// If we are taking the address of a composite literal, and the
3442// contents are not constant, then we want to make a heap composite
3443// instead.
3444
3445Expression*
3446Unary_expression::do_lower(Gogo*, Named_object*, int)
3447{
3448 source_location loc = this->location();
3449 Operator op = this->op_;
3450 Expression* expr = this->expr_;
3451
3452 if (op == OPERATOR_MULT && expr->is_type_expression())
3453 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3454
3455 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3456 // moving x to the heap. FIXME: Is it worth doing a real escape
3457 // analysis here? This case is found in math/unsafe.go and is
3458 // therefore worth special casing.
3459 if (op == OPERATOR_MULT)
3460 {
3461 Expression* e = expr;
3462 while (e->classification() == EXPRESSION_CONVERSION)
3463 {
3464 Type_conversion_expression* te
3465 = static_cast<Type_conversion_expression*>(e);
3466 e = te->expr();
3467 }
3468
3469 if (e->classification() == EXPRESSION_UNARY)
3470 {
3471 Unary_expression* ue = static_cast<Unary_expression*>(e);
3472 if (ue->op_ == OPERATOR_AND)
3473 {
3474 if (e == expr)
3475 {
3476 // *&x == x.
3477 return ue->expr_;
3478 }
3479 ue->set_does_not_escape();
3480 }
3481 }
3482 }
3483
3484 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3485 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3486 {
3487 Expression* ret = NULL;
3488
3489 mpz_t eval;
3490 mpz_init(eval);
3491 Type* etype;
3492 if (expr->integer_constant_value(false, eval, &etype))
3493 {
3494 mpz_t val;
3495 mpz_init(val);
3496 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3497 ret = Expression::make_integer(&val, etype, loc);
3498 mpz_clear(val);
3499 }
3500 mpz_clear(eval);
3501 if (ret != NULL)
3502 return ret;
3503
3504 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3505 {
3506 mpfr_t fval;
3507 mpfr_init(fval);
3508 Type* ftype;
3509 if (expr->float_constant_value(fval, &ftype))
3510 {
3511 mpfr_t val;
3512 mpfr_init(val);
3513 if (Unary_expression::eval_float(op, fval, val))
3514 ret = Expression::make_float(&val, ftype, loc);
3515 mpfr_clear(val);
3516 }
3517 if (ret != NULL)
3518 {
3519 mpfr_clear(fval);
3520 return ret;
3521 }
3522
3523 mpfr_t ival;
3524 mpfr_init(ival);
3525 if (expr->complex_constant_value(fval, ival, &ftype))
3526 {
3527 mpfr_t real;
3528 mpfr_t imag;
3529 mpfr_init(real);
3530 mpfr_init(imag);
3531 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3532 ret = Expression::make_complex(&real, &imag, ftype, loc);
3533 mpfr_clear(real);
3534 mpfr_clear(imag);
3535 }
3536 mpfr_clear(ival);
3537 mpfr_clear(fval);
3538 if (ret != NULL)
3539 return ret;
3540 }
3541 }
3542
3543 return this;
3544}
3545
3546// Return whether a unary expression is a constant.
3547
3548bool
3549Unary_expression::do_is_constant() const
3550{
3551 if (this->op_ == OPERATOR_MULT)
3552 {
3553 // Indirecting through a pointer is only constant if the object
3554 // to which the expression points is constant, but we currently
3555 // have no way to determine that.
3556 return false;
3557 }
3558 else if (this->op_ == OPERATOR_AND)
3559 {
3560 // Taking the address of a variable is constant if it is a
3561 // global variable, not constant otherwise. In other cases
3562 // taking the address is probably not a constant.
3563 Var_expression* ve = this->expr_->var_expression();
3564 if (ve != NULL)
3565 {
3566 Named_object* no = ve->named_object();
3567 return no->is_variable() && no->var_value()->is_global();
3568 }
3569 return false;
3570 }
3571 else
3572 return this->expr_->is_constant();
3573}
3574
3575// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3576// UVAL, if known; it may be NULL. Return true if this could be done,
3577// false if not.
3578
3579bool
3580Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3581 source_location location)
3582{
3583 switch (op)
3584 {
3585 case OPERATOR_PLUS:
3586 mpz_set(val, uval);
3587 return true;
3588 case OPERATOR_MINUS:
3589 mpz_neg(val, uval);
3590 return Integer_expression::check_constant(val, utype, location);
3591 case OPERATOR_NOT:
3592 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3593 return true;
3594 case OPERATOR_XOR:
3595 if (utype == NULL
3596 || utype->integer_type() == NULL
3597 || utype->integer_type()->is_abstract())
3598 mpz_com(val, uval);
3599 else
3600 {
3601 // The number of HOST_WIDE_INTs that it takes to represent
3602 // UVAL.
3603 size_t count = ((mpz_sizeinbase(uval, 2)
3604 + HOST_BITS_PER_WIDE_INT
3605 - 1)
3606 / HOST_BITS_PER_WIDE_INT);
3607
3608 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3609 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3610
3611 size_t ecount;
3612 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3613 gcc_assert(ecount <= count);
3614
3615 // Trim down to the number of words required by the type.
3616 size_t obits = utype->integer_type()->bits();
3617 if (!utype->integer_type()->is_unsigned())
3618 ++obits;
3619 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3620 / HOST_BITS_PER_WIDE_INT);
3621 gcc_assert(ocount <= ocount);
3622
3623 for (size_t i = 0; i < ocount; ++i)
3624 phwi[i] = ~phwi[i];
3625
3626 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3627 if (clearbits != 0)
3628 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3629 >> clearbits);
3630
3631 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3632
3633 delete[] phwi;
3634 }
3635 return Integer_expression::check_constant(val, utype, location);
3636 case OPERATOR_AND:
3637 case OPERATOR_MULT:
3638 return false;
3639 default:
3640 gcc_unreachable();
3641 }
3642}
3643
3644// Apply unary opcode OP to UVAL, setting VAL. Return true if this
3645// could be done, false if not.
3646
3647bool
3648Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3649{
3650 switch (op)
3651 {
3652 case OPERATOR_PLUS:
3653 mpfr_set(val, uval, GMP_RNDN);
3654 return true;
3655 case OPERATOR_MINUS:
3656 mpfr_neg(val, uval, GMP_RNDN);
3657 return true;
3658 case OPERATOR_NOT:
3659 case OPERATOR_XOR:
3660 case OPERATOR_AND:
3661 case OPERATOR_MULT:
3662 return false;
3663 default:
3664 gcc_unreachable();
3665 }
3666}
3667
3668// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3669// if this could be done, false if not.
3670
3671bool
3672Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3673 mpfr_t real, mpfr_t imag)
3674{
3675 switch (op)
3676 {
3677 case OPERATOR_PLUS:
3678 mpfr_set(real, rval, GMP_RNDN);
3679 mpfr_set(imag, ival, GMP_RNDN);
3680 return true;
3681 case OPERATOR_MINUS:
3682 mpfr_neg(real, rval, GMP_RNDN);
3683 mpfr_neg(imag, ival, GMP_RNDN);
3684 return true;
3685 case OPERATOR_NOT:
3686 case OPERATOR_XOR:
3687 case OPERATOR_AND:
3688 case OPERATOR_MULT:
3689 return false;
3690 default:
3691 gcc_unreachable();
3692 }
3693}
3694
3695// Return the integral constant value of a unary expression, if it has one.
3696
3697bool
3698Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3699 Type** ptype) const
3700{
3701 mpz_t uval;
3702 mpz_init(uval);
3703 bool ret;
3704 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3705 ret = false;
3706 else
3707 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3708 this->location());
3709 mpz_clear(uval);
3710 return ret;
3711}
3712
3713// Return the floating point constant value of a unary expression, if
3714// it has one.
3715
3716bool
3717Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3718{
3719 mpfr_t uval;
3720 mpfr_init(uval);
3721 bool ret;
3722 if (!this->expr_->float_constant_value(uval, ptype))
3723 ret = false;
3724 else
3725 ret = Unary_expression::eval_float(this->op_, uval, val);
3726 mpfr_clear(uval);
3727 return ret;
3728}
3729
3730// Return the complex constant value of a unary expression, if it has
3731// one.
3732
3733bool
3734Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3735 Type** ptype) const
3736{
3737 mpfr_t rval;
3738 mpfr_t ival;
3739 mpfr_init(rval);
3740 mpfr_init(ival);
3741 bool ret;
3742 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3743 ret = false;
3744 else
3745 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3746 mpfr_clear(rval);
3747 mpfr_clear(ival);
3748 return ret;
3749}
3750
3751// Return the type of a unary expression.
3752
3753Type*
3754Unary_expression::do_type()
3755{
3756 switch (this->op_)
3757 {
3758 case OPERATOR_PLUS:
3759 case OPERATOR_MINUS:
3760 case OPERATOR_NOT:
3761 case OPERATOR_XOR:
3762 return this->expr_->type();
3763
3764 case OPERATOR_AND:
3765 return Type::make_pointer_type(this->expr_->type());
3766
3767 case OPERATOR_MULT:
3768 {
3769 Type* subtype = this->expr_->type();
3770 Type* points_to = subtype->points_to();
3771 if (points_to == NULL)
3772 return Type::make_error_type();
3773 return points_to;
3774 }
3775
3776 default:
3777 gcc_unreachable();
3778 }
3779}
3780
3781// Determine abstract types for a unary expression.
3782
3783void
3784Unary_expression::do_determine_type(const Type_context* context)
3785{
3786 switch (this->op_)
3787 {
3788 case OPERATOR_PLUS:
3789 case OPERATOR_MINUS:
3790 case OPERATOR_NOT:
3791 case OPERATOR_XOR:
3792 this->expr_->determine_type(context);
3793 break;
3794
3795 case OPERATOR_AND:
3796 // Taking the address of something.
3797 {
3798 Type* subtype = (context->type == NULL
3799 ? NULL
3800 : context->type->points_to());
3801 Type_context subcontext(subtype, false);
3802 this->expr_->determine_type(&subcontext);
3803 }
3804 break;
3805
3806 case OPERATOR_MULT:
3807 // Indirecting through a pointer.
3808 {
3809 Type* subtype = (context->type == NULL
3810 ? NULL
3811 : Type::make_pointer_type(context->type));
3812 Type_context subcontext(subtype, false);
3813 this->expr_->determine_type(&subcontext);
3814 }
3815 break;
3816
3817 default:
3818 gcc_unreachable();
3819 }
3820}
3821
3822// Check types for a unary expression.
3823
3824void
3825Unary_expression::do_check_types(Gogo*)
3826{
9fe897ef 3827 Type* type = this->expr_->type();
3828 if (type->is_error_type())
3829 {
3830 this->set_is_error();
3831 return;
3832 }
3833
e440a328 3834 switch (this->op_)
3835 {
3836 case OPERATOR_PLUS:
3837 case OPERATOR_MINUS:
9fe897ef 3838 if (type->integer_type() == NULL
3839 && type->float_type() == NULL
3840 && type->complex_type() == NULL)
3841 this->report_error(_("expected numeric type"));
e440a328 3842 break;
3843
3844 case OPERATOR_NOT:
3845 case OPERATOR_XOR:
9fe897ef 3846 if (type->integer_type() == NULL
3847 && !type->is_boolean_type())
3848 this->report_error(_("expected integer or boolean type"));
e440a328 3849 break;
3850
3851 case OPERATOR_AND:
3852 if (!this->expr_->is_addressable())
3853 this->report_error(_("invalid operand for unary %<&%>"));
3854 else
3855 this->expr_->address_taken(this->escapes_);
3856 break;
3857
3858 case OPERATOR_MULT:
3859 // Indirecting through a pointer.
9fe897ef 3860 if (type->points_to() == NULL)
3861 this->report_error(_("expected pointer"));
e440a328 3862 break;
3863
3864 default:
3865 gcc_unreachable();
3866 }
3867}
3868
3869// Get a tree for a unary expression.
3870
3871tree
3872Unary_expression::do_get_tree(Translate_context* context)
3873{
3874 tree expr = this->expr_->get_tree(context);
3875 if (expr == error_mark_node)
3876 return error_mark_node;
3877
3878 source_location loc = this->location();
3879 switch (this->op_)
3880 {
3881 case OPERATOR_PLUS:
3882 return expr;
3883
3884 case OPERATOR_MINUS:
3885 {
3886 tree type = TREE_TYPE(expr);
3887 tree compute_type = excess_precision_type(type);
3888 if (compute_type != NULL_TREE)
3889 expr = ::convert(compute_type, expr);
3890 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
3891 (compute_type != NULL_TREE
3892 ? compute_type
3893 : type),
3894 expr);
3895 if (compute_type != NULL_TREE)
3896 ret = ::convert(type, ret);
3897 return ret;
3898 }
3899
3900 case OPERATOR_NOT:
3901 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
3902 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
3903 else
3904 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
3905 build_int_cst(TREE_TYPE(expr), 0));
3906
3907 case OPERATOR_XOR:
3908 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
3909
3910 case OPERATOR_AND:
3911 // We should not see a non-constant constructor here; cases
3912 // where we would see one should have been moved onto the heap
3913 // at parse time. Taking the address of a nonconstant
3914 // constructor will not do what the programmer expects.
3915 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
3916 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
3917
3918 // Build a decl for a constant constructor.
3919 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
3920 {
3921 tree decl = build_decl(this->location(), VAR_DECL,
3922 create_tmp_var_name("C"), TREE_TYPE(expr));
3923 DECL_EXTERNAL(decl) = 0;
3924 TREE_PUBLIC(decl) = 0;
3925 TREE_READONLY(decl) = 1;
3926 TREE_CONSTANT(decl) = 1;
3927 TREE_STATIC(decl) = 1;
3928 TREE_ADDRESSABLE(decl) = 1;
3929 DECL_ARTIFICIAL(decl) = 1;
3930 DECL_INITIAL(decl) = expr;
3931 rest_of_decl_compilation(decl, 1, 0);
3932 expr = decl;
3933 }
3934
3935 return build_fold_addr_expr_loc(loc, expr);
3936
3937 case OPERATOR_MULT:
3938 {
3939 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
3940
3941 // If we are dereferencing the pointer to a large struct, we
3942 // need to check for nil. We don't bother to check for small
3943 // structs because we expect the system to crash on a nil
3944 // pointer dereference.
3945 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
3946 if (s == -1 || s >= 4096)
3947 {
3948 if (!DECL_P(expr))
3949 expr = save_expr(expr);
3950 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
3951 expr,
3952 fold_convert(TREE_TYPE(expr),
3953 null_pointer_node));
3954 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
3955 loc);
3956 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
3957 build3(COND_EXPR, void_type_node,
3958 compare, crash, NULL_TREE),
3959 expr);
3960 }
3961
3962 // If the type of EXPR is a recursive pointer type, then we
3963 // need to insert a cast before indirecting.
3964 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
3965 {
3966 Type* pt = this->expr_->type()->points_to();
3967 tree ind = pt->get_tree(context->gogo());
3968 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
3969 }
3970
3971 return build_fold_indirect_ref_loc(loc, expr);
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977}
3978
3979// Export a unary expression.
3980
3981void
3982Unary_expression::do_export(Export* exp) const
3983{
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 exp->write_c_string("+ ");
3988 break;
3989 case OPERATOR_MINUS:
3990 exp->write_c_string("- ");
3991 break;
3992 case OPERATOR_NOT:
3993 exp->write_c_string("! ");
3994 break;
3995 case OPERATOR_XOR:
3996 exp->write_c_string("^ ");
3997 break;
3998 case OPERATOR_AND:
3999 case OPERATOR_MULT:
4000 default:
4001 gcc_unreachable();
4002 }
4003 this->expr_->export_expression(exp);
4004}
4005
4006// Import a unary expression.
4007
4008Expression*
4009Unary_expression::do_import(Import* imp)
4010{
4011 Operator op;
4012 switch (imp->get_char())
4013 {
4014 case '+':
4015 op = OPERATOR_PLUS;
4016 break;
4017 case '-':
4018 op = OPERATOR_MINUS;
4019 break;
4020 case '!':
4021 op = OPERATOR_NOT;
4022 break;
4023 case '^':
4024 op = OPERATOR_XOR;
4025 break;
4026 default:
4027 gcc_unreachable();
4028 }
4029 imp->require_c_string(" ");
4030 Expression* expr = Expression::import_expression(imp);
4031 return Expression::make_unary(op, expr, imp->location());
4032}
4033
4034// Make a unary expression.
4035
4036Expression*
4037Expression::make_unary(Operator op, Expression* expr, source_location location)
4038{
4039 return new Unary_expression(op, expr, location);
4040}
4041
4042// If this is an indirection through a pointer, return the expression
4043// being pointed through. Otherwise return this.
4044
4045Expression*
4046Expression::deref()
4047{
4048 if (this->classification_ == EXPRESSION_UNARY)
4049 {
4050 Unary_expression* ue = static_cast<Unary_expression*>(this);
4051 if (ue->op() == OPERATOR_MULT)
4052 return ue->operand();
4053 }
4054 return this;
4055}
4056
4057// Class Binary_expression.
4058
4059// Traversal.
4060
4061int
4062Binary_expression::do_traverse(Traverse* traverse)
4063{
4064 int t = Expression::traverse(&this->left_, traverse);
4065 if (t == TRAVERSE_EXIT)
4066 return TRAVERSE_EXIT;
4067 return Expression::traverse(&this->right_, traverse);
4068}
4069
4070// Compare integer constants according to OP.
4071
4072bool
4073Binary_expression::compare_integer(Operator op, mpz_t left_val,
4074 mpz_t right_val)
4075{
4076 int i = mpz_cmp(left_val, right_val);
4077 switch (op)
4078 {
4079 case OPERATOR_EQEQ:
4080 return i == 0;
4081 case OPERATOR_NOTEQ:
4082 return i != 0;
4083 case OPERATOR_LT:
4084 return i < 0;
4085 case OPERATOR_LE:
4086 return i <= 0;
4087 case OPERATOR_GT:
4088 return i > 0;
4089 case OPERATOR_GE:
4090 return i >= 0;
4091 default:
4092 gcc_unreachable();
4093 }
4094}
4095
4096// Compare floating point constants according to OP.
4097
4098bool
4099Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4100 mpfr_t right_val)
4101{
4102 int i;
4103 if (type == NULL)
4104 i = mpfr_cmp(left_val, right_val);
4105 else
4106 {
4107 mpfr_t lv;
4108 mpfr_init_set(lv, left_val, GMP_RNDN);
4109 mpfr_t rv;
4110 mpfr_init_set(rv, right_val, GMP_RNDN);
4111 Float_expression::constrain_float(lv, type);
4112 Float_expression::constrain_float(rv, type);
4113 i = mpfr_cmp(lv, rv);
4114 mpfr_clear(lv);
4115 mpfr_clear(rv);
4116 }
4117 switch (op)
4118 {
4119 case OPERATOR_EQEQ:
4120 return i == 0;
4121 case OPERATOR_NOTEQ:
4122 return i != 0;
4123 case OPERATOR_LT:
4124 return i < 0;
4125 case OPERATOR_LE:
4126 return i <= 0;
4127 case OPERATOR_GT:
4128 return i > 0;
4129 case OPERATOR_GE:
4130 return i >= 0;
4131 default:
4132 gcc_unreachable();
4133 }
4134}
4135
4136// Compare complex constants according to OP. Complex numbers may
4137// only be compared for equality.
4138
4139bool
4140Binary_expression::compare_complex(Operator op, Type* type,
4141 mpfr_t left_real, mpfr_t left_imag,
4142 mpfr_t right_real, mpfr_t right_imag)
4143{
4144 bool is_equal;
4145 if (type == NULL)
4146 is_equal = (mpfr_cmp(left_real, right_real) == 0
4147 && mpfr_cmp(left_imag, right_imag) == 0);
4148 else
4149 {
4150 mpfr_t lr;
4151 mpfr_t li;
4152 mpfr_init_set(lr, left_real, GMP_RNDN);
4153 mpfr_init_set(li, left_imag, GMP_RNDN);
4154 mpfr_t rr;
4155 mpfr_t ri;
4156 mpfr_init_set(rr, right_real, GMP_RNDN);
4157 mpfr_init_set(ri, right_imag, GMP_RNDN);
4158 Complex_expression::constrain_complex(lr, li, type);
4159 Complex_expression::constrain_complex(rr, ri, type);
4160 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4161 mpfr_clear(lr);
4162 mpfr_clear(li);
4163 mpfr_clear(rr);
4164 mpfr_clear(ri);
4165 }
4166 switch (op)
4167 {
4168 case OPERATOR_EQEQ:
4169 return is_equal;
4170 case OPERATOR_NOTEQ:
4171 return !is_equal;
4172 default:
4173 gcc_unreachable();
4174 }
4175}
4176
4177// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4178// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4179// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4180// this could be done, false if not.
4181
4182bool
4183Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4184 Type* right_type, mpz_t right_val,
4185 source_location location, mpz_t val)
4186{
4187 bool is_shift_op = false;
4188 switch (op)
4189 {
4190 case OPERATOR_OROR:
4191 case OPERATOR_ANDAND:
4192 case OPERATOR_EQEQ:
4193 case OPERATOR_NOTEQ:
4194 case OPERATOR_LT:
4195 case OPERATOR_LE:
4196 case OPERATOR_GT:
4197 case OPERATOR_GE:
4198 // These return boolean values. We should probably handle them
4199 // anyhow in case a type conversion is used on the result.
4200 return false;
4201 case OPERATOR_PLUS:
4202 mpz_add(val, left_val, right_val);
4203 break;
4204 case OPERATOR_MINUS:
4205 mpz_sub(val, left_val, right_val);
4206 break;
4207 case OPERATOR_OR:
4208 mpz_ior(val, left_val, right_val);
4209 break;
4210 case OPERATOR_XOR:
4211 mpz_xor(val, left_val, right_val);
4212 break;
4213 case OPERATOR_MULT:
4214 mpz_mul(val, left_val, right_val);
4215 break;
4216 case OPERATOR_DIV:
4217 if (mpz_sgn(right_val) != 0)
4218 mpz_tdiv_q(val, left_val, right_val);
4219 else
4220 {
4221 error_at(location, "division by zero");
4222 mpz_set_ui(val, 0);
4223 return true;
4224 }
4225 break;
4226 case OPERATOR_MOD:
4227 if (mpz_sgn(right_val) != 0)
4228 mpz_tdiv_r(val, left_val, right_val);
4229 else
4230 {
4231 error_at(location, "division by zero");
4232 mpz_set_ui(val, 0);
4233 return true;
4234 }
4235 break;
4236 case OPERATOR_LSHIFT:
4237 {
4238 unsigned long shift = mpz_get_ui(right_val);
4239 if (mpz_cmp_ui(right_val, shift) != 0)
4240 {
4241 error_at(location, "shift count overflow");
4242 mpz_set_ui(val, 0);
4243 return true;
4244 }
4245 mpz_mul_2exp(val, left_val, shift);
4246 is_shift_op = true;
4247 break;
4248 }
4249 break;
4250 case OPERATOR_RSHIFT:
4251 {
4252 unsigned long shift = mpz_get_ui(right_val);
4253 if (mpz_cmp_ui(right_val, shift) != 0)
4254 {
4255 error_at(location, "shift count overflow");
4256 mpz_set_ui(val, 0);
4257 return true;
4258 }
4259 if (mpz_cmp_ui(left_val, 0) >= 0)
4260 mpz_tdiv_q_2exp(val, left_val, shift);
4261 else
4262 mpz_fdiv_q_2exp(val, left_val, shift);
4263 is_shift_op = true;
4264 break;
4265 }
4266 break;
4267 case OPERATOR_AND:
4268 mpz_and(val, left_val, right_val);
4269 break;
4270 case OPERATOR_BITCLEAR:
4271 {
4272 mpz_t tval;
4273 mpz_init(tval);
4274 mpz_com(tval, right_val);
4275 mpz_and(val, left_val, tval);
4276 mpz_clear(tval);
4277 }
4278 break;
4279 default:
4280 gcc_unreachable();
4281 }
4282
4283 Type* type = left_type;
4284 if (!is_shift_op)
4285 {
4286 if (type == NULL)
4287 type = right_type;
4288 else if (type != right_type && right_type != NULL)
4289 {
4290 if (type->is_abstract())
4291 type = right_type;
4292 else if (!right_type->is_abstract())
4293 {
4294 // This look like a type error which should be diagnosed
4295 // elsewhere. Don't do anything here, to avoid an
4296 // unhelpful chain of error messages.
4297 return true;
4298 }
4299 }
4300 }
4301
4302 if (type != NULL && !type->is_abstract())
4303 {
4304 // We have to check the operands too, as we have implicitly
4305 // coerced them to TYPE.
4306 if ((type != left_type
4307 && !Integer_expression::check_constant(left_val, type, location))
4308 || (!is_shift_op
4309 && type != right_type
4310 && !Integer_expression::check_constant(right_val, type,
4311 location))
4312 || !Integer_expression::check_constant(val, type, location))
4313 mpz_set_ui(val, 0);
4314 }
4315
4316 return true;
4317}
4318
4319// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4320// Return true if this could be done, false if not.
4321
4322bool
4323Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4324 Type* right_type, mpfr_t right_val,
4325 mpfr_t val, source_location location)
4326{
4327 switch (op)
4328 {
4329 case OPERATOR_OROR:
4330 case OPERATOR_ANDAND:
4331 case OPERATOR_EQEQ:
4332 case OPERATOR_NOTEQ:
4333 case OPERATOR_LT:
4334 case OPERATOR_LE:
4335 case OPERATOR_GT:
4336 case OPERATOR_GE:
4337 // These return boolean values. We should probably handle them
4338 // anyhow in case a type conversion is used on the result.
4339 return false;
4340 case OPERATOR_PLUS:
4341 mpfr_add(val, left_val, right_val, GMP_RNDN);
4342 break;
4343 case OPERATOR_MINUS:
4344 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4345 break;
4346 case OPERATOR_OR:
4347 case OPERATOR_XOR:
4348 case OPERATOR_AND:
4349 case OPERATOR_BITCLEAR:
4350 return false;
4351 case OPERATOR_MULT:
4352 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4353 break;
4354 case OPERATOR_DIV:
4355 if (mpfr_zero_p(right_val))
4356 error_at(location, "division by zero");
4357 mpfr_div(val, left_val, right_val, GMP_RNDN);
4358 break;
4359 case OPERATOR_MOD:
4360 return false;
4361 case OPERATOR_LSHIFT:
4362 case OPERATOR_RSHIFT:
4363 return false;
4364 default:
4365 gcc_unreachable();
4366 }
4367
4368 Type* type = left_type;
4369 if (type == NULL)
4370 type = right_type;
4371 else if (type != right_type && right_type != NULL)
4372 {
4373 if (type->is_abstract())
4374 type = right_type;
4375 else if (!right_type->is_abstract())
4376 {
4377 // This looks like a type error which should be diagnosed
4378 // elsewhere. Don't do anything here, to avoid an unhelpful
4379 // chain of error messages.
4380 return true;
4381 }
4382 }
4383
4384 if (type != NULL && !type->is_abstract())
4385 {
4386 if ((type != left_type
4387 && !Float_expression::check_constant(left_val, type, location))
4388 || (type != right_type
4389 && !Float_expression::check_constant(right_val, type,
4390 location))
4391 || !Float_expression::check_constant(val, type, location))
4392 mpfr_set_ui(val, 0, GMP_RNDN);
4393 }
4394
4395 return true;
4396}
4397
4398// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4399// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4400// could be done, false if not.
4401
4402bool
4403Binary_expression::eval_complex(Operator op, Type* left_type,
4404 mpfr_t left_real, mpfr_t left_imag,
4405 Type *right_type,
4406 mpfr_t right_real, mpfr_t right_imag,
4407 mpfr_t real, mpfr_t imag,
4408 source_location location)
4409{
4410 switch (op)
4411 {
4412 case OPERATOR_OROR:
4413 case OPERATOR_ANDAND:
4414 case OPERATOR_EQEQ:
4415 case OPERATOR_NOTEQ:
4416 case OPERATOR_LT:
4417 case OPERATOR_LE:
4418 case OPERATOR_GT:
4419 case OPERATOR_GE:
4420 // These return boolean values and must be handled differently.
4421 return false;
4422 case OPERATOR_PLUS:
4423 mpfr_add(real, left_real, right_real, GMP_RNDN);
4424 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4425 break;
4426 case OPERATOR_MINUS:
4427 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4428 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4429 break;
4430 case OPERATOR_OR:
4431 case OPERATOR_XOR:
4432 case OPERATOR_AND:
4433 case OPERATOR_BITCLEAR:
4434 return false;
4435 case OPERATOR_MULT:
4436 {
4437 // You might think that multiplying two complex numbers would
4438 // be simple, and you would be right, until you start to think
4439 // about getting the right answer for infinity. If one
4440 // operand here is infinity and the other is anything other
4441 // than zero or NaN, then we are going to wind up subtracting
4442 // two infinity values. That will give us a NaN, but the
4443 // correct answer is infinity.
4444
4445 mpfr_t lrrr;
4446 mpfr_init(lrrr);
4447 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4448
4449 mpfr_t lrri;
4450 mpfr_init(lrri);
4451 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4452
4453 mpfr_t lirr;
4454 mpfr_init(lirr);
4455 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4456
4457 mpfr_t liri;
4458 mpfr_init(liri);
4459 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4460
4461 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4462 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4463
4464 // If we get NaN on both sides, check whether it should really
4465 // be infinity. The rule is that if either side of the
4466 // complex number is infinity, then the whole value is
4467 // infinity, even if the other side is NaN. So the only case
4468 // we have to fix is the one in which both sides are NaN.
4469 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4470 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4471 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4472 {
4473 bool is_infinity = false;
4474
4475 mpfr_t lr;
4476 mpfr_t li;
4477 mpfr_init_set(lr, left_real, GMP_RNDN);
4478 mpfr_init_set(li, left_imag, GMP_RNDN);
4479
4480 mpfr_t rr;
4481 mpfr_t ri;
4482 mpfr_init_set(rr, right_real, GMP_RNDN);
4483 mpfr_init_set(ri, right_imag, GMP_RNDN);
4484
4485 // If the left side is infinity, then the result is
4486 // infinity.
4487 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4488 {
4489 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4490 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4491 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4492 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4493 if (mpfr_nan_p(rr))
4494 {
4495 mpfr_set_ui(rr, 0, GMP_RNDN);
4496 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4497 }
4498 if (mpfr_nan_p(ri))
4499 {
4500 mpfr_set_ui(ri, 0, GMP_RNDN);
4501 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4502 }
4503 is_infinity = true;
4504 }
4505
4506 // If the right side is infinity, then the result is
4507 // infinity.
4508 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4509 {
4510 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4511 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4512 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4513 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4514 if (mpfr_nan_p(lr))
4515 {
4516 mpfr_set_ui(lr, 0, GMP_RNDN);
4517 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4518 }
4519 if (mpfr_nan_p(li))
4520 {
4521 mpfr_set_ui(li, 0, GMP_RNDN);
4522 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4523 }
4524 is_infinity = true;
4525 }
4526
4527 // If we got an overflow in the intermediate computations,
4528 // then the result is infinity.
4529 if (!is_infinity
4530 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4531 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4532 {
4533 if (mpfr_nan_p(lr))
4534 {
4535 mpfr_set_ui(lr, 0, GMP_RNDN);
4536 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4537 }
4538 if (mpfr_nan_p(li))
4539 {
4540 mpfr_set_ui(li, 0, GMP_RNDN);
4541 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4542 }
4543 if (mpfr_nan_p(rr))
4544 {
4545 mpfr_set_ui(rr, 0, GMP_RNDN);
4546 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4547 }
4548 if (mpfr_nan_p(ri))
4549 {
4550 mpfr_set_ui(ri, 0, GMP_RNDN);
4551 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4552 }
4553 is_infinity = true;
4554 }
4555
4556 if (is_infinity)
4557 {
4558 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4559 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4560 mpfr_mul(lirr, li, rr, GMP_RNDN);
4561 mpfr_mul(liri, li, ri, GMP_RNDN);
4562 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4563 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4564 mpfr_set_inf(real, mpfr_sgn(real));
4565 mpfr_set_inf(imag, mpfr_sgn(imag));
4566 }
4567
4568 mpfr_clear(lr);
4569 mpfr_clear(li);
4570 mpfr_clear(rr);
4571 mpfr_clear(ri);
4572 }
4573
4574 mpfr_clear(lrrr);
4575 mpfr_clear(lrri);
4576 mpfr_clear(lirr);
4577 mpfr_clear(liri);
4578 }
4579 break;
4580 case OPERATOR_DIV:
4581 {
4582 // For complex division we want to avoid having an
4583 // intermediate overflow turn the whole result in a NaN. We
4584 // scale the values to try to avoid this.
4585
4586 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4587 error_at(location, "division by zero");
4588
4589 mpfr_t rra;
4590 mpfr_t ria;
4591 mpfr_init(rra);
4592 mpfr_init(ria);
4593 mpfr_abs(rra, right_real, GMP_RNDN);
4594 mpfr_abs(ria, right_imag, GMP_RNDN);
4595 mpfr_t t;
4596 mpfr_init(t);
4597 mpfr_max(t, rra, ria, GMP_RNDN);
4598
4599 mpfr_t rr;
4600 mpfr_t ri;
4601 mpfr_init_set(rr, right_real, GMP_RNDN);
4602 mpfr_init_set(ri, right_imag, GMP_RNDN);
4603 long ilogbw = 0;
4604 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4605 {
4606 ilogbw = mpfr_get_exp(t);
4607 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4608 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4609 }
4610
4611 mpfr_t denom;
4612 mpfr_init(denom);
4613 mpfr_mul(denom, rr, rr, GMP_RNDN);
4614 mpfr_mul(t, ri, ri, GMP_RNDN);
4615 mpfr_add(denom, denom, t, GMP_RNDN);
4616
4617 mpfr_mul(real, left_real, rr, GMP_RNDN);
4618 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4619 mpfr_add(real, real, t, GMP_RNDN);
4620 mpfr_div(real, real, denom, GMP_RNDN);
4621 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4622
4623 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4624 mpfr_mul(t, left_real, ri, GMP_RNDN);
4625 mpfr_sub(imag, imag, t, GMP_RNDN);
4626 mpfr_div(imag, imag, denom, GMP_RNDN);
4627 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4628
4629 // If we wind up with NaN on both sides, check whether we
4630 // should really have infinity. The rule is that if either
4631 // side of the complex number is infinity, then the whole
4632 // value is infinity, even if the other side is NaN. So the
4633 // only case we have to fix is the one in which both sides are
4634 // NaN.
4635 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4636 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4637 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4638 {
4639 if (mpfr_zero_p(denom))
4640 {
4641 mpfr_set_inf(real, mpfr_sgn(rr));
4642 mpfr_mul(real, real, left_real, GMP_RNDN);
4643 mpfr_set_inf(imag, mpfr_sgn(rr));
4644 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4645 }
4646 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4647 && mpfr_number_p(rr) && mpfr_number_p(ri))
4648 {
4649 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4650 mpfr_copysign(t, t, left_real, GMP_RNDN);
4651
4652 mpfr_t t2;
4653 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4654 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4655
4656 mpfr_t t3;
4657 mpfr_init(t3);
4658 mpfr_mul(t3, t, rr, GMP_RNDN);
4659
4660 mpfr_t t4;
4661 mpfr_init(t4);
4662 mpfr_mul(t4, t2, ri, GMP_RNDN);
4663
4664 mpfr_add(t3, t3, t4, GMP_RNDN);
4665 mpfr_set_inf(real, mpfr_sgn(t3));
4666
4667 mpfr_mul(t3, t2, rr, GMP_RNDN);
4668 mpfr_mul(t4, t, ri, GMP_RNDN);
4669 mpfr_sub(t3, t3, t4, GMP_RNDN);
4670 mpfr_set_inf(imag, mpfr_sgn(t3));
4671
4672 mpfr_clear(t2);
4673 mpfr_clear(t3);
4674 mpfr_clear(t4);
4675 }
4676 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4677 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4678 {
4679 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4680 mpfr_copysign(t, t, rr, GMP_RNDN);
4681
4682 mpfr_t t2;
4683 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4685
4686 mpfr_t t3;
4687 mpfr_init(t3);
4688 mpfr_mul(t3, left_real, t, GMP_RNDN);
4689
4690 mpfr_t t4;
4691 mpfr_init(t4);
4692 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4693
4694 mpfr_add(t3, t3, t4, GMP_RNDN);
4695 mpfr_set_ui(real, 0, GMP_RNDN);
4696 mpfr_mul(real, real, t3, GMP_RNDN);
4697
4698 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4699 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4700 mpfr_sub(t3, t3, t4, GMP_RNDN);
4701 mpfr_set_ui(imag, 0, GMP_RNDN);
4702 mpfr_mul(imag, imag, t3, GMP_RNDN);
4703
4704 mpfr_clear(t2);
4705 mpfr_clear(t3);
4706 mpfr_clear(t4);
4707 }
4708 }
4709
4710 mpfr_clear(denom);
4711 mpfr_clear(rr);
4712 mpfr_clear(ri);
4713 mpfr_clear(t);
4714 mpfr_clear(rra);
4715 mpfr_clear(ria);
4716 }
4717 break;
4718 case OPERATOR_MOD:
4719 return false;
4720 case OPERATOR_LSHIFT:
4721 case OPERATOR_RSHIFT:
4722 return false;
4723 default:
4724 gcc_unreachable();
4725 }
4726
4727 Type* type = left_type;
4728 if (type == NULL)
4729 type = right_type;
4730 else if (type != right_type && right_type != NULL)
4731 {
4732 if (type->is_abstract())
4733 type = right_type;
4734 else if (!right_type->is_abstract())
4735 {
4736 // This looks like a type error which should be diagnosed
4737 // elsewhere. Don't do anything here, to avoid an unhelpful
4738 // chain of error messages.
4739 return true;
4740 }
4741 }
4742
4743 if (type != NULL && !type->is_abstract())
4744 {
4745 if ((type != left_type
4746 && !Complex_expression::check_constant(left_real, left_imag,
4747 type, location))
4748 || (type != right_type
4749 && !Complex_expression::check_constant(right_real, right_imag,
4750 type, location))
4751 || !Complex_expression::check_constant(real, imag, type,
4752 location))
4753 {
4754 mpfr_set_ui(real, 0, GMP_RNDN);
4755 mpfr_set_ui(imag, 0, GMP_RNDN);
4756 }
4757 }
4758
4759 return true;
4760}
4761
4762// Lower a binary expression. We have to evaluate constant
4763// expressions now, in order to implement Go's unlimited precision
4764// constants.
4765
4766Expression*
4767Binary_expression::do_lower(Gogo*, Named_object*, int)
4768{
4769 source_location location = this->location();
4770 Operator op = this->op_;
4771 Expression* left = this->left_;
4772 Expression* right = this->right_;
4773
4774 const bool is_comparison = (op == OPERATOR_EQEQ
4775 || op == OPERATOR_NOTEQ
4776 || op == OPERATOR_LT
4777 || op == OPERATOR_LE
4778 || op == OPERATOR_GT
4779 || op == OPERATOR_GE);
4780
4781 // Integer constant expressions.
4782 {
4783 mpz_t left_val;
4784 mpz_init(left_val);
4785 Type* left_type;
4786 mpz_t right_val;
4787 mpz_init(right_val);
4788 Type* right_type;
4789 if (left->integer_constant_value(false, left_val, &left_type)
4790 && right->integer_constant_value(false, right_val, &right_type))
4791 {
4792 Expression* ret = NULL;
4793 if (left_type != right_type
4794 && left_type != NULL
4795 && right_type != NULL
4796 && left_type->base() != right_type->base()
4797 && op != OPERATOR_LSHIFT
4798 && op != OPERATOR_RSHIFT)
4799 {
4800 // May be a type error--let it be diagnosed later.
4801 }
4802 else if (is_comparison)
4803 {
4804 bool b = Binary_expression::compare_integer(op, left_val,
4805 right_val);
4806 ret = Expression::make_cast(Type::lookup_bool_type(),
4807 Expression::make_boolean(b, location),
4808 location);
4809 }
4810 else
4811 {
4812 mpz_t val;
4813 mpz_init(val);
4814
4815 if (Binary_expression::eval_integer(op, left_type, left_val,
4816 right_type, right_val,
4817 location, val))
4818 {
4819 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4820 Type* type;
4821 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4822 type = left_type;
4823 else if (left_type == NULL)
4824 type = right_type;
4825 else if (right_type == NULL)
4826 type = left_type;
4827 else if (!left_type->is_abstract()
4828 && left_type->named_type() != NULL)
4829 type = left_type;
4830 else if (!right_type->is_abstract()
4831 && right_type->named_type() != NULL)
4832 type = right_type;
4833 else if (!left_type->is_abstract())
4834 type = left_type;
4835 else if (!right_type->is_abstract())
4836 type = right_type;
4837 else if (left_type->float_type() != NULL)
4838 type = left_type;
4839 else if (right_type->float_type() != NULL)
4840 type = right_type;
4841 else if (left_type->complex_type() != NULL)
4842 type = left_type;
4843 else if (right_type->complex_type() != NULL)
4844 type = right_type;
4845 else
4846 type = left_type;
4847 ret = Expression::make_integer(&val, type, location);
4848 }
4849
4850 mpz_clear(val);
4851 }
4852
4853 if (ret != NULL)
4854 {
4855 mpz_clear(right_val);
4856 mpz_clear(left_val);
4857 return ret;
4858 }
4859 }
4860 mpz_clear(right_val);
4861 mpz_clear(left_val);
4862 }
4863
4864 // Floating point constant expressions.
4865 {
4866 mpfr_t left_val;
4867 mpfr_init(left_val);
4868 Type* left_type;
4869 mpfr_t right_val;
4870 mpfr_init(right_val);
4871 Type* right_type;
4872 if (left->float_constant_value(left_val, &left_type)
4873 && right->float_constant_value(right_val, &right_type))
4874 {
4875 Expression* ret = NULL;
4876 if (left_type != right_type
4877 && left_type != NULL
4878 && right_type != NULL
4879 && left_type->base() != right_type->base()
4880 && op != OPERATOR_LSHIFT
4881 && op != OPERATOR_RSHIFT)
4882 {
4883 // May be a type error--let it be diagnosed later.
4884 }
4885 else if (is_comparison)
4886 {
4887 bool b = Binary_expression::compare_float(op,
4888 (left_type != NULL
4889 ? left_type
4890 : right_type),
4891 left_val, right_val);
4892 ret = Expression::make_boolean(b, location);
4893 }
4894 else
4895 {
4896 mpfr_t val;
4897 mpfr_init(val);
4898
4899 if (Binary_expression::eval_float(op, left_type, left_val,
4900 right_type, right_val, val,
4901 location))
4902 {
4903 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4904 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4905 Type* type;
4906 if (left_type == NULL)
4907 type = right_type;
4908 else if (right_type == NULL)
4909 type = left_type;
4910 else if (!left_type->is_abstract()
4911 && left_type->named_type() != NULL)
4912 type = left_type;
4913 else if (!right_type->is_abstract()
4914 && right_type->named_type() != NULL)
4915 type = right_type;
4916 else if (!left_type->is_abstract())
4917 type = left_type;
4918 else if (!right_type->is_abstract())
4919 type = right_type;
4920 else if (left_type->float_type() != NULL)
4921 type = left_type;
4922 else if (right_type->float_type() != NULL)
4923 type = right_type;
4924 else
4925 type = left_type;
4926 ret = Expression::make_float(&val, type, location);
4927 }
4928
4929 mpfr_clear(val);
4930 }
4931
4932 if (ret != NULL)
4933 {
4934 mpfr_clear(right_val);
4935 mpfr_clear(left_val);
4936 return ret;
4937 }
4938 }
4939 mpfr_clear(right_val);
4940 mpfr_clear(left_val);
4941 }
4942
4943 // Complex constant expressions.
4944 {
4945 mpfr_t left_real;
4946 mpfr_t left_imag;
4947 mpfr_init(left_real);
4948 mpfr_init(left_imag);
4949 Type* left_type;
4950
4951 mpfr_t right_real;
4952 mpfr_t right_imag;
4953 mpfr_init(right_real);
4954 mpfr_init(right_imag);
4955 Type* right_type;
4956
4957 if (left->complex_constant_value(left_real, left_imag, &left_type)
4958 && right->complex_constant_value(right_real, right_imag, &right_type))
4959 {
4960 Expression* ret = NULL;
4961 if (left_type != right_type
4962 && left_type != NULL
4963 && right_type != NULL
4964 && left_type->base() != right_type->base())
4965 {
4966 // May be a type error--let it be diagnosed later.
4967 }
4968 else if (is_comparison)
4969 {
4970 bool b = Binary_expression::compare_complex(op,
4971 (left_type != NULL
4972 ? left_type
4973 : right_type),
4974 left_real,
4975 left_imag,
4976 right_real,
4977 right_imag);
4978 ret = Expression::make_boolean(b, location);
4979 }
4980 else
4981 {
4982 mpfr_t real;
4983 mpfr_t imag;
4984 mpfr_init(real);
4985 mpfr_init(imag);
4986
4987 if (Binary_expression::eval_complex(op, left_type,
4988 left_real, left_imag,
4989 right_type,
4990 right_real, right_imag,
4991 real, imag,
4992 location))
4993 {
4994 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4995 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4996 Type* type;
4997 if (left_type == NULL)
4998 type = right_type;
4999 else if (right_type == NULL)
5000 type = left_type;
5001 else if (!left_type->is_abstract()
5002 && left_type->named_type() != NULL)
5003 type = left_type;
5004 else if (!right_type->is_abstract()
5005 && right_type->named_type() != NULL)
5006 type = right_type;
5007 else if (!left_type->is_abstract())
5008 type = left_type;
5009 else if (!right_type->is_abstract())
5010 type = right_type;
5011 else if (left_type->complex_type() != NULL)
5012 type = left_type;
5013 else if (right_type->complex_type() != NULL)
5014 type = right_type;
5015 else
5016 type = left_type;
5017 ret = Expression::make_complex(&real, &imag, type,
5018 location);
5019 }
5020 mpfr_clear(real);
5021 mpfr_clear(imag);
5022 }
5023
5024 if (ret != NULL)
5025 {
5026 mpfr_clear(left_real);
5027 mpfr_clear(left_imag);
5028 mpfr_clear(right_real);
5029 mpfr_clear(right_imag);
5030 return ret;
5031 }
5032 }
5033
5034 mpfr_clear(left_real);
5035 mpfr_clear(left_imag);
5036 mpfr_clear(right_real);
5037 mpfr_clear(right_imag);
5038 }
5039
5040 // String constant expressions.
5041 if (op == OPERATOR_PLUS
5042 && left->type()->is_string_type()
5043 && right->type()->is_string_type())
5044 {
5045 std::string left_string;
5046 std::string right_string;
5047 if (left->string_constant_value(&left_string)
5048 && right->string_constant_value(&right_string))
5049 return Expression::make_string(left_string + right_string, location);
5050 }
5051
5052 return this;
5053}
5054
5055// Return the integer constant value, if it has one.
5056
5057bool
5058Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5059 Type** ptype) const
5060{
5061 mpz_t left_val;
5062 mpz_init(left_val);
5063 Type* left_type;
5064 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5065 &left_type))
5066 {
5067 mpz_clear(left_val);
5068 return false;
5069 }
5070
5071 mpz_t right_val;
5072 mpz_init(right_val);
5073 Type* right_type;
5074 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5075 &right_type))
5076 {
5077 mpz_clear(right_val);
5078 mpz_clear(left_val);
5079 return false;
5080 }
5081
5082 bool ret;
5083 if (left_type != right_type
5084 && left_type != NULL
5085 && right_type != NULL
5086 && left_type->base() != right_type->base()
5087 && this->op_ != OPERATOR_RSHIFT
5088 && this->op_ != OPERATOR_LSHIFT)
5089 ret = false;
5090 else
5091 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5092 right_type, right_val,
5093 this->location(), val);
5094
5095 mpz_clear(right_val);
5096 mpz_clear(left_val);
5097
5098 if (ret)
5099 *ptype = left_type;
5100
5101 return ret;
5102}
5103
5104// Return the floating point constant value, if it has one.
5105
5106bool
5107Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5108{
5109 mpfr_t left_val;
5110 mpfr_init(left_val);
5111 Type* left_type;
5112 if (!this->left_->float_constant_value(left_val, &left_type))
5113 {
5114 mpfr_clear(left_val);
5115 return false;
5116 }
5117
5118 mpfr_t right_val;
5119 mpfr_init(right_val);
5120 Type* right_type;
5121 if (!this->right_->float_constant_value(right_val, &right_type))
5122 {
5123 mpfr_clear(right_val);
5124 mpfr_clear(left_val);
5125 return false;
5126 }
5127
5128 bool ret;
5129 if (left_type != right_type
5130 && left_type != NULL
5131 && right_type != NULL
5132 && left_type->base() != right_type->base())
5133 ret = false;
5134 else
5135 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5136 right_type, right_val,
5137 val, this->location());
5138
5139 mpfr_clear(left_val);
5140 mpfr_clear(right_val);
5141
5142 if (ret)
5143 *ptype = left_type;
5144
5145 return ret;
5146}
5147
5148// Return the complex constant value, if it has one.
5149
5150bool
5151Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5152 Type** ptype) const
5153{
5154 mpfr_t left_real;
5155 mpfr_t left_imag;
5156 mpfr_init(left_real);
5157 mpfr_init(left_imag);
5158 Type* left_type;
5159 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5160 {
5161 mpfr_clear(left_real);
5162 mpfr_clear(left_imag);
5163 return false;
5164 }
5165
5166 mpfr_t right_real;
5167 mpfr_t right_imag;
5168 mpfr_init(right_real);
5169 mpfr_init(right_imag);
5170 Type* right_type;
5171 if (!this->right_->complex_constant_value(right_real, right_imag,
5172 &right_type))
5173 {
5174 mpfr_clear(left_real);
5175 mpfr_clear(left_imag);
5176 mpfr_clear(right_real);
5177 mpfr_clear(right_imag);
5178 return false;
5179 }
5180
5181 bool ret;
5182 if (left_type != right_type
5183 && left_type != NULL
5184 && right_type != NULL
5185 && left_type->base() != right_type->base())
5186 ret = false;
5187 else
5188 ret = Binary_expression::eval_complex(this->op_, left_type,
5189 left_real, left_imag,
5190 right_type,
5191 right_real, right_imag,
5192 real, imag,
5193 this->location());
5194 mpfr_clear(left_real);
5195 mpfr_clear(left_imag);
5196 mpfr_clear(right_real);
5197 mpfr_clear(right_imag);
5198
5199 if (ret)
5200 *ptype = left_type;
5201
5202 return ret;
5203}
5204
5205// Note that the value is being discarded.
5206
5207void
5208Binary_expression::do_discarding_value()
5209{
5210 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5211 this->right_->discarding_value();
5212 else
5213 this->warn_about_unused_value();
5214}
5215
5216// Get type.
5217
5218Type*
5219Binary_expression::do_type()
5220{
5221 switch (this->op_)
5222 {
5223 case OPERATOR_OROR:
5224 case OPERATOR_ANDAND:
5225 case OPERATOR_EQEQ:
5226 case OPERATOR_NOTEQ:
5227 case OPERATOR_LT:
5228 case OPERATOR_LE:
5229 case OPERATOR_GT:
5230 case OPERATOR_GE:
5231 return Type::lookup_bool_type();
5232
5233 case OPERATOR_PLUS:
5234 case OPERATOR_MINUS:
5235 case OPERATOR_OR:
5236 case OPERATOR_XOR:
5237 case OPERATOR_MULT:
5238 case OPERATOR_DIV:
5239 case OPERATOR_MOD:
5240 case OPERATOR_AND:
5241 case OPERATOR_BITCLEAR:
5242 {
5243 Type* left_type = this->left_->type();
5244 Type* right_type = this->right_->type();
5245 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5246 return left_type;
5247 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5248 return right_type;
5249 else if (!left_type->is_abstract())
5250 return left_type;
5251 else if (!right_type->is_abstract())
5252 return right_type;
5253 else if (left_type->complex_type() != NULL)
5254 return left_type;
5255 else if (right_type->complex_type() != NULL)
5256 return right_type;
5257 else if (left_type->float_type() != NULL)
5258 return left_type;
5259 else if (right_type->float_type() != NULL)
5260 return right_type;
5261 else
5262 return left_type;
5263 }
5264
5265 case OPERATOR_LSHIFT:
5266 case OPERATOR_RSHIFT:
5267 return this->left_->type();
5268
5269 default:
5270 gcc_unreachable();
5271 }
5272}
5273
5274// Set type for a binary expression.
5275
5276void
5277Binary_expression::do_determine_type(const Type_context* context)
5278{
5279 Type* tleft = this->left_->type();
5280 Type* tright = this->right_->type();
5281
5282 // Both sides should have the same type, except for the shift
5283 // operations. For a comparison, we should ignore the incoming
5284 // type.
5285
5286 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5287 || this->op_ == OPERATOR_RSHIFT);
5288
5289 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5290 || this->op_ == OPERATOR_NOTEQ
5291 || this->op_ == OPERATOR_LT
5292 || this->op_ == OPERATOR_LE
5293 || this->op_ == OPERATOR_GT
5294 || this->op_ == OPERATOR_GE);
5295
5296 Type_context subcontext(*context);
5297
5298 if (is_comparison)
5299 {
5300 // In a comparison, the context does not determine the types of
5301 // the operands.
5302 subcontext.type = NULL;
5303 }
5304
5305 // Set the context for the left hand operand.
5306 if (is_shift_op)
5307 {
5308 // The right hand operand plays no role in determining the type
5309 // of the left hand operand. A shift of an abstract integer in
5310 // a string context gets special treatment, which may be a
5311 // language bug.
5312 if (subcontext.type != NULL
5313 && subcontext.type->is_string_type()
5314 && tleft->is_abstract())
5315 error_at(this->location(), "shift of non-integer operand");
5316 }
5317 else if (!tleft->is_abstract())
5318 subcontext.type = tleft;
5319 else if (!tright->is_abstract())
5320 subcontext.type = tright;
5321 else if (subcontext.type == NULL)
5322 {
5323 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5324 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5325 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5326 {
5327 // Both sides have an abstract integer, abstract float, or
5328 // abstract complex type. Just let CONTEXT determine
5329 // whether they may remain abstract or not.
5330 }
5331 else if (tleft->complex_type() != NULL)
5332 subcontext.type = tleft;
5333 else if (tright->complex_type() != NULL)
5334 subcontext.type = tright;
5335 else if (tleft->float_type() != NULL)
5336 subcontext.type = tleft;
5337 else if (tright->float_type() != NULL)
5338 subcontext.type = tright;
5339 else
5340 subcontext.type = tleft;
5341 }
5342
5343 this->left_->determine_type(&subcontext);
5344
5345 // The context for the right hand operand is the same as for the
5346 // left hand operand, except for a shift operator.
5347 if (is_shift_op)
5348 {
5349 subcontext.type = Type::lookup_integer_type("uint");
5350 subcontext.may_be_abstract = false;
5351 }
5352
5353 this->right_->determine_type(&subcontext);
5354}
5355
5356// Report an error if the binary operator OP does not support TYPE.
5357// Return whether the operation is OK. This should not be used for
5358// shift.
5359
5360bool
5361Binary_expression::check_operator_type(Operator op, Type* type,
5362 source_location location)
5363{
5364 switch (op)
5365 {
5366 case OPERATOR_OROR:
5367 case OPERATOR_ANDAND:
5368 if (!type->is_boolean_type())
5369 {
5370 error_at(location, "expected boolean type");
5371 return false;
5372 }
5373 break;
5374
5375 case OPERATOR_EQEQ:
5376 case OPERATOR_NOTEQ:
5377 if (type->integer_type() == NULL
5378 && type->float_type() == NULL
5379 && type->complex_type() == NULL
5380 && !type->is_string_type()
5381 && type->points_to() == NULL
5382 && !type->is_nil_type()
5383 && !type->is_boolean_type()
5384 && type->interface_type() == NULL
5385 && (type->array_type() == NULL
5386 || type->array_type()->length() != NULL)
5387 && type->map_type() == NULL
5388 && type->channel_type() == NULL
5389 && type->function_type() == NULL)
5390 {
5391 error_at(location,
5392 ("expected integer, floating, complex, string, pointer, "
5393 "boolean, interface, slice, map, channel, "
5394 "or function type"));
5395 return false;
5396 }
5397 break;
5398
5399 case OPERATOR_LT:
5400 case OPERATOR_LE:
5401 case OPERATOR_GT:
5402 case OPERATOR_GE:
5403 if (type->integer_type() == NULL
5404 && type->float_type() == NULL
5405 && !type->is_string_type())
5406 {
5407 error_at(location, "expected integer, floating, or string type");
5408 return false;
5409 }
5410 break;
5411
5412 case OPERATOR_PLUS:
5413 case OPERATOR_PLUSEQ:
5414 if (type->integer_type() == NULL
5415 && type->float_type() == NULL
5416 && type->complex_type() == NULL
5417 && !type->is_string_type())
5418 {
5419 error_at(location,
5420 "expected integer, floating, complex, or string type");
5421 return false;
5422 }
5423 break;
5424
5425 case OPERATOR_MINUS:
5426 case OPERATOR_MINUSEQ:
5427 case OPERATOR_MULT:
5428 case OPERATOR_MULTEQ:
5429 case OPERATOR_DIV:
5430 case OPERATOR_DIVEQ:
5431 if (type->integer_type() == NULL
5432 && type->float_type() == NULL
5433 && type->complex_type() == NULL)
5434 {
5435 error_at(location, "expected integer, floating, or complex type");
5436 return false;
5437 }
5438 break;
5439
5440 case OPERATOR_MOD:
5441 case OPERATOR_MODEQ:
5442 case OPERATOR_OR:
5443 case OPERATOR_OREQ:
5444 case OPERATOR_AND:
5445 case OPERATOR_ANDEQ:
5446 case OPERATOR_XOR:
5447 case OPERATOR_XOREQ:
5448 case OPERATOR_BITCLEAR:
5449 case OPERATOR_BITCLEAREQ:
5450 if (type->integer_type() == NULL)
5451 {
5452 error_at(location, "expected integer type");
5453 return false;
5454 }
5455 break;
5456
5457 default:
5458 gcc_unreachable();
5459 }
5460
5461 return true;
5462}
5463
5464// Check types.
5465
5466void
5467Binary_expression::do_check_types(Gogo*)
5468{
5469 Type* left_type = this->left_->type();
5470 Type* right_type = this->right_->type();
5471 if (left_type->is_error_type() || right_type->is_error_type())
9fe897ef 5472 {
5473 this->set_is_error();
5474 return;
5475 }
e440a328 5476
5477 if (this->op_ == OPERATOR_EQEQ
5478 || this->op_ == OPERATOR_NOTEQ
5479 || this->op_ == OPERATOR_LT
5480 || this->op_ == OPERATOR_LE
5481 || this->op_ == OPERATOR_GT
5482 || this->op_ == OPERATOR_GE)
5483 {
5484 if (!Type::are_assignable(left_type, right_type, NULL)
5485 && !Type::are_assignable(right_type, left_type, NULL))
5486 {
5487 this->report_error(_("incompatible types in binary expression"));
5488 return;
5489 }
5490 if (!Binary_expression::check_operator_type(this->op_, left_type,
5491 this->location())
5492 || !Binary_expression::check_operator_type(this->op_, right_type,
5493 this->location()))
5494 {
5495 this->set_is_error();
5496 return;
5497 }
5498 }
5499 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5500 {
5501 if (!Type::are_compatible_for_binop(left_type, right_type))
5502 {
5503 this->report_error(_("incompatible types in binary expression"));
5504 return;
5505 }
5506 if (!Binary_expression::check_operator_type(this->op_, left_type,
5507 this->location()))
5508 {
5509 this->set_is_error();
5510 return;
5511 }
5512 }
5513 else
5514 {
5515 if (left_type->integer_type() == NULL)
5516 this->report_error(_("shift of non-integer operand"));
5517
5518 if (!right_type->is_abstract()
5519 && (right_type->integer_type() == NULL
5520 || !right_type->integer_type()->is_unsigned()))
5521 this->report_error(_("shift count not unsigned integer"));
5522 else
5523 {
5524 mpz_t val;
5525 mpz_init(val);
5526 Type* type;
5527 if (this->right_->integer_constant_value(true, val, &type))
5528 {
5529 if (mpz_sgn(val) < 0)
5530 this->report_error(_("negative shift count"));
5531 }
5532 mpz_clear(val);
5533 }
5534 }
5535}
5536
5537// Get a tree for a binary expression.
5538
5539tree
5540Binary_expression::do_get_tree(Translate_context* context)
5541{
5542 tree left = this->left_->get_tree(context);
5543 tree right = this->right_->get_tree(context);
5544
5545 if (left == error_mark_node || right == error_mark_node)
5546 return error_mark_node;
5547
5548 enum tree_code code;
5549 bool use_left_type = true;
5550 bool is_shift_op = false;
5551 switch (this->op_)
5552 {
5553 case OPERATOR_EQEQ:
5554 case OPERATOR_NOTEQ:
5555 case OPERATOR_LT:
5556 case OPERATOR_LE:
5557 case OPERATOR_GT:
5558 case OPERATOR_GE:
5559 return Expression::comparison_tree(context, this->op_,
5560 this->left_->type(), left,
5561 this->right_->type(), right,
5562 this->location());
5563
5564 case OPERATOR_OROR:
5565 code = TRUTH_ORIF_EXPR;
5566 use_left_type = false;
5567 break;
5568 case OPERATOR_ANDAND:
5569 code = TRUTH_ANDIF_EXPR;
5570 use_left_type = false;
5571 break;
5572 case OPERATOR_PLUS:
5573 code = PLUS_EXPR;
5574 break;
5575 case OPERATOR_MINUS:
5576 code = MINUS_EXPR;
5577 break;
5578 case OPERATOR_OR:
5579 code = BIT_IOR_EXPR;
5580 break;
5581 case OPERATOR_XOR:
5582 code = BIT_XOR_EXPR;
5583 break;
5584 case OPERATOR_MULT:
5585 code = MULT_EXPR;
5586 break;
5587 case OPERATOR_DIV:
5588 {
5589 Type *t = this->left_->type();
5590 if (t->float_type() != NULL || t->complex_type() != NULL)
5591 code = RDIV_EXPR;
5592 else
5593 code = TRUNC_DIV_EXPR;
5594 }
5595 break;
5596 case OPERATOR_MOD:
5597 code = TRUNC_MOD_EXPR;
5598 break;
5599 case OPERATOR_LSHIFT:
5600 code = LSHIFT_EXPR;
5601 is_shift_op = true;
5602 break;
5603 case OPERATOR_RSHIFT:
5604 code = RSHIFT_EXPR;
5605 is_shift_op = true;
5606 break;
5607 case OPERATOR_AND:
5608 code = BIT_AND_EXPR;
5609 break;
5610 case OPERATOR_BITCLEAR:
5611 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5612 code = BIT_AND_EXPR;
5613 break;
5614 default:
5615 gcc_unreachable();
5616 }
5617
5618 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5619
5620 if (this->left_->type()->is_string_type())
5621 {
5622 gcc_assert(this->op_ == OPERATOR_PLUS);
5623 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5624 static tree string_plus_decl;
5625 return Gogo::call_builtin(&string_plus_decl,
5626 this->location(),
5627 "__go_string_plus",
5628 2,
5629 string_type,
5630 string_type,
5631 left,
5632 string_type,
5633 right);
5634 }
5635
5636 tree compute_type = excess_precision_type(type);
5637 if (compute_type != NULL_TREE)
5638 {
5639 left = ::convert(compute_type, left);
5640 right = ::convert(compute_type, right);
5641 }
5642
5643 tree eval_saved = NULL_TREE;
5644 if (is_shift_op)
5645 {
5646 if (!DECL_P(left))
5647 left = save_expr(left);
5648 if (!DECL_P(right))
5649 right = save_expr(right);
5650 // Make sure the values are evaluated.
5651 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5652 void_type_node, left, right);
5653 }
5654
5655 tree ret = fold_build2_loc(this->location(),
5656 code,
5657 compute_type != NULL_TREE ? compute_type : type,
5658 left, right);
5659
5660 if (compute_type != NULL_TREE)
5661 ret = ::convert(type, ret);
5662
5663 // In Go, a shift larger than the size of the type is well-defined.
5664 // This is not true in GENERIC, so we need to insert a conditional.
5665 if (is_shift_op)
5666 {
5667 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5668 gcc_assert(this->left_->type()->integer_type() != NULL);
5669 int bits = TYPE_PRECISION(TREE_TYPE(left));
5670
5671 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5672 build_int_cst_type(TREE_TYPE(right), bits));
5673
5674 tree overflow_result = fold_convert_loc(this->location(),
5675 TREE_TYPE(left),
5676 integer_zero_node);
5677 if (this->op_ == OPERATOR_RSHIFT
5678 && !this->left_->type()->integer_type()->is_unsigned())
5679 {
5680 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5681 boolean_type_node, left,
5682 fold_convert_loc(this->location(),
5683 TREE_TYPE(left),
5684 integer_zero_node));
5685 tree neg_one = fold_build2_loc(this->location(),
5686 MINUS_EXPR, TREE_TYPE(left),
5687 fold_convert_loc(this->location(),
5688 TREE_TYPE(left),
5689 integer_zero_node),
5690 fold_convert_loc(this->location(),
5691 TREE_TYPE(left),
5692 integer_one_node));
5693 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5694 TREE_TYPE(left), neg, neg_one,
5695 overflow_result);
5696 }
5697
5698 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5699 compare, ret, overflow_result);
5700
5701 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5702 TREE_TYPE(ret), eval_saved, ret);
5703 }
5704
5705 return ret;
5706}
5707
5708// Export a binary expression.
5709
5710void
5711Binary_expression::do_export(Export* exp) const
5712{
5713 exp->write_c_string("(");
5714 this->left_->export_expression(exp);
5715 switch (this->op_)
5716 {
5717 case OPERATOR_OROR:
5718 exp->write_c_string(" || ");
5719 break;
5720 case OPERATOR_ANDAND:
5721 exp->write_c_string(" && ");
5722 break;
5723 case OPERATOR_EQEQ:
5724 exp->write_c_string(" == ");
5725 break;
5726 case OPERATOR_NOTEQ:
5727 exp->write_c_string(" != ");
5728 break;
5729 case OPERATOR_LT:
5730 exp->write_c_string(" < ");
5731 break;
5732 case OPERATOR_LE:
5733 exp->write_c_string(" <= ");
5734 break;
5735 case OPERATOR_GT:
5736 exp->write_c_string(" > ");
5737 break;
5738 case OPERATOR_GE:
5739 exp->write_c_string(" >= ");
5740 break;
5741 case OPERATOR_PLUS:
5742 exp->write_c_string(" + ");
5743 break;
5744 case OPERATOR_MINUS:
5745 exp->write_c_string(" - ");
5746 break;
5747 case OPERATOR_OR:
5748 exp->write_c_string(" | ");
5749 break;
5750 case OPERATOR_XOR:
5751 exp->write_c_string(" ^ ");
5752 break;
5753 case OPERATOR_MULT:
5754 exp->write_c_string(" * ");
5755 break;
5756 case OPERATOR_DIV:
5757 exp->write_c_string(" / ");
5758 break;
5759 case OPERATOR_MOD:
5760 exp->write_c_string(" % ");
5761 break;
5762 case OPERATOR_LSHIFT:
5763 exp->write_c_string(" << ");
5764 break;
5765 case OPERATOR_RSHIFT:
5766 exp->write_c_string(" >> ");
5767 break;
5768 case OPERATOR_AND:
5769 exp->write_c_string(" & ");
5770 break;
5771 case OPERATOR_BITCLEAR:
5772 exp->write_c_string(" &^ ");
5773 break;
5774 default:
5775 gcc_unreachable();
5776 }
5777 this->right_->export_expression(exp);
5778 exp->write_c_string(")");
5779}
5780
5781// Import a binary expression.
5782
5783Expression*
5784Binary_expression::do_import(Import* imp)
5785{
5786 imp->require_c_string("(");
5787
5788 Expression* left = Expression::import_expression(imp);
5789
5790 Operator op;
5791 if (imp->match_c_string(" || "))
5792 {
5793 op = OPERATOR_OROR;
5794 imp->advance(4);
5795 }
5796 else if (imp->match_c_string(" && "))
5797 {
5798 op = OPERATOR_ANDAND;
5799 imp->advance(4);
5800 }
5801 else if (imp->match_c_string(" == "))
5802 {
5803 op = OPERATOR_EQEQ;
5804 imp->advance(4);
5805 }
5806 else if (imp->match_c_string(" != "))
5807 {
5808 op = OPERATOR_NOTEQ;
5809 imp->advance(4);
5810 }
5811 else if (imp->match_c_string(" < "))
5812 {
5813 op = OPERATOR_LT;
5814 imp->advance(3);
5815 }
5816 else if (imp->match_c_string(" <= "))
5817 {
5818 op = OPERATOR_LE;
5819 imp->advance(4);
5820 }
5821 else if (imp->match_c_string(" > "))
5822 {
5823 op = OPERATOR_GT;
5824 imp->advance(3);
5825 }
5826 else if (imp->match_c_string(" >= "))
5827 {
5828 op = OPERATOR_GE;
5829 imp->advance(4);
5830 }
5831 else if (imp->match_c_string(" + "))
5832 {
5833 op = OPERATOR_PLUS;
5834 imp->advance(3);
5835 }
5836 else if (imp->match_c_string(" - "))
5837 {
5838 op = OPERATOR_MINUS;
5839 imp->advance(3);
5840 }
5841 else if (imp->match_c_string(" | "))
5842 {
5843 op = OPERATOR_OR;
5844 imp->advance(3);
5845 }
5846 else if (imp->match_c_string(" ^ "))
5847 {
5848 op = OPERATOR_XOR;
5849 imp->advance(3);
5850 }
5851 else if (imp->match_c_string(" * "))
5852 {
5853 op = OPERATOR_MULT;
5854 imp->advance(3);
5855 }
5856 else if (imp->match_c_string(" / "))
5857 {
5858 op = OPERATOR_DIV;
5859 imp->advance(3);
5860 }
5861 else if (imp->match_c_string(" % "))
5862 {
5863 op = OPERATOR_MOD;
5864 imp->advance(3);
5865 }
5866 else if (imp->match_c_string(" << "))
5867 {
5868 op = OPERATOR_LSHIFT;
5869 imp->advance(4);
5870 }
5871 else if (imp->match_c_string(" >> "))
5872 {
5873 op = OPERATOR_RSHIFT;
5874 imp->advance(4);
5875 }
5876 else if (imp->match_c_string(" & "))
5877 {
5878 op = OPERATOR_AND;
5879 imp->advance(3);
5880 }
5881 else if (imp->match_c_string(" &^ "))
5882 {
5883 op = OPERATOR_BITCLEAR;
5884 imp->advance(4);
5885 }
5886 else
5887 {
5888 error_at(imp->location(), "unrecognized binary operator");
5889 return Expression::make_error(imp->location());
5890 }
5891
5892 Expression* right = Expression::import_expression(imp);
5893
5894 imp->require_c_string(")");
5895
5896 return Expression::make_binary(op, left, right, imp->location());
5897}
5898
5899// Make a binary expression.
5900
5901Expression*
5902Expression::make_binary(Operator op, Expression* left, Expression* right,
5903 source_location location)
5904{
5905 return new Binary_expression(op, left, right, location);
5906}
5907
5908// Implement a comparison.
5909
5910tree
5911Expression::comparison_tree(Translate_context* context, Operator op,
5912 Type* left_type, tree left_tree,
5913 Type* right_type, tree right_tree,
5914 source_location location)
5915{
5916 enum tree_code code;
5917 switch (op)
5918 {
5919 case OPERATOR_EQEQ:
5920 code = EQ_EXPR;
5921 break;
5922 case OPERATOR_NOTEQ:
5923 code = NE_EXPR;
5924 break;
5925 case OPERATOR_LT:
5926 code = LT_EXPR;
5927 break;
5928 case OPERATOR_LE:
5929 code = LE_EXPR;
5930 break;
5931 case OPERATOR_GT:
5932 code = GT_EXPR;
5933 break;
5934 case OPERATOR_GE:
5935 code = GE_EXPR;
5936 break;
5937 default:
5938 gcc_unreachable();
5939 }
5940
15c67ee2 5941 if (left_type->is_string_type() && right_type->is_string_type())
e440a328 5942 {
e440a328 5943 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5944 static tree string_compare_decl;
5945 left_tree = Gogo::call_builtin(&string_compare_decl,
5946 location,
5947 "__go_strcmp",
5948 2,
5949 integer_type_node,
5950 string_type,
5951 left_tree,
5952 string_type,
5953 right_tree);
5954 right_tree = build_int_cst_type(integer_type_node, 0);
5955 }
15c67ee2 5956 else if ((left_type->interface_type() != NULL
5957 && right_type->interface_type() == NULL
5958 && !right_type->is_nil_type())
5959 || (left_type->interface_type() == NULL
5960 && !left_type->is_nil_type()
5961 && right_type->interface_type() != NULL))
e440a328 5962 {
5963 // Comparing an interface value to a non-interface value.
5964 if (left_type->interface_type() == NULL)
5965 {
5966 std::swap(left_type, right_type);
5967 std::swap(left_tree, right_tree);
5968 }
5969
5970 // The right operand is not an interface. We need to take its
5971 // address if it is not a pointer.
5972 tree make_tmp;
5973 tree arg;
5974 if (right_type->points_to() != NULL)
5975 {
5976 make_tmp = NULL_TREE;
5977 arg = right_tree;
5978 }
5979 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
5980 {
5981 make_tmp = NULL_TREE;
5982 arg = build_fold_addr_expr_loc(location, right_tree);
5983 if (DECL_P(right_tree))
5984 TREE_ADDRESSABLE(right_tree) = 1;
5985 }
5986 else
5987 {
5988 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
5989 get_name(right_tree));
5990 DECL_IGNORED_P(tmp) = 0;
5991 DECL_INITIAL(tmp) = right_tree;
5992 TREE_ADDRESSABLE(tmp) = 1;
5993 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
5994 SET_EXPR_LOCATION(make_tmp, location);
5995 arg = build_fold_addr_expr_loc(location, tmp);
5996 }
5997 arg = fold_convert_loc(location, ptr_type_node, arg);
5998
5999 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6000
6001 if (left_type->interface_type()->is_empty())
6002 {
6003 static tree empty_interface_value_compare_decl;
6004 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6005 location,
6006 "__go_empty_interface_value_compare",
6007 3,
6008 integer_type_node,
6009 TREE_TYPE(left_tree),
6010 left_tree,
6011 TREE_TYPE(descriptor),
6012 descriptor,
6013 ptr_type_node,
6014 arg);
6015 // This can panic if the type is not comparable.
6016 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6017 }
6018 else
6019 {
6020 static tree interface_value_compare_decl;
6021 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6022 location,
6023 "__go_interface_value_compare",
6024 3,
6025 integer_type_node,
6026 TREE_TYPE(left_tree),
6027 left_tree,
6028 TREE_TYPE(descriptor),
6029 descriptor,
6030 ptr_type_node,
6031 arg);
6032 // This can panic if the type is not comparable.
6033 TREE_NOTHROW(interface_value_compare_decl) = 0;
6034 }
6035 right_tree = build_int_cst_type(integer_type_node, 0);
6036
6037 if (make_tmp != NULL_TREE)
6038 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6039 left_tree);
6040 }
6041 else if (left_type->interface_type() != NULL
6042 && right_type->interface_type() != NULL)
6043 {
6044 if (left_type->interface_type()->is_empty())
6045 {
6046 gcc_assert(right_type->interface_type()->is_empty());
6047 static tree empty_interface_compare_decl;
6048 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6049 location,
6050 "__go_empty_interface_compare",
6051 2,
6052 integer_type_node,
6053 TREE_TYPE(left_tree),
6054 left_tree,
6055 TREE_TYPE(right_tree),
6056 right_tree);
6057 // This can panic if the type is uncomparable.
6058 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6059 }
6060 else
6061 {
6062 gcc_assert(!right_type->interface_type()->is_empty());
6063 static tree interface_compare_decl;
6064 left_tree = Gogo::call_builtin(&interface_compare_decl,
6065 location,
6066 "__go_interface_compare",
6067 2,
6068 integer_type_node,
6069 TREE_TYPE(left_tree),
6070 left_tree,
6071 TREE_TYPE(right_tree),
6072 right_tree);
6073 // This can panic if the type is uncomparable.
6074 TREE_NOTHROW(interface_compare_decl) = 0;
6075 }
6076 right_tree = build_int_cst_type(integer_type_node, 0);
6077 }
6078
6079 if (left_type->is_nil_type()
6080 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6081 {
6082 std::swap(left_type, right_type);
6083 std::swap(left_tree, right_tree);
6084 }
6085
6086 if (right_type->is_nil_type())
6087 {
6088 if (left_type->array_type() != NULL
6089 && left_type->array_type()->length() == NULL)
6090 {
6091 Array_type* at = left_type->array_type();
6092 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6093 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6094 }
6095 else if (left_type->interface_type() != NULL)
6096 {
6097 // An interface is nil if the first field is nil.
6098 tree left_type_tree = TREE_TYPE(left_tree);
6099 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6100 tree field = TYPE_FIELDS(left_type_tree);
6101 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6102 field, NULL_TREE);
6103 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6104 }
6105 else
6106 {
6107 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6108 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6109 }
6110 }
6111
d8ccb1e3 6112 if (left_tree == error_mark_node || right_tree == error_mark_node)
6113 return error_mark_node;
6114
e440a328 6115 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6116 if (CAN_HAVE_LOCATION_P(ret))
6117 SET_EXPR_LOCATION(ret, location);
6118 return ret;
6119}
6120
6121// Class Bound_method_expression.
6122
6123// Traversal.
6124
6125int
6126Bound_method_expression::do_traverse(Traverse* traverse)
6127{
6128 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6129 return TRAVERSE_EXIT;
6130 return Expression::traverse(&this->method_, traverse);
6131}
6132
6133// Return the type of a bound method expression. The type of this
6134// object is really the type of the method with no receiver. We
6135// should be able to get away with just returning the type of the
6136// method.
6137
6138Type*
6139Bound_method_expression::do_type()
6140{
6141 return this->method_->type();
6142}
6143
6144// Determine the types of a method expression.
6145
6146void
6147Bound_method_expression::do_determine_type(const Type_context*)
6148{
6149 this->method_->determine_type_no_context();
6150 Type* mtype = this->method_->type();
6151 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6152 if (fntype == NULL || !fntype->is_method())
6153 this->expr_->determine_type_no_context();
6154 else
6155 {
6156 Type_context subcontext(fntype->receiver()->type(), false);
6157 this->expr_->determine_type(&subcontext);
6158 }
6159}
6160
6161// Check the types of a method expression.
6162
6163void
6164Bound_method_expression::do_check_types(Gogo*)
6165{
6166 Type* type = this->method_->type()->deref();
6167 if (type == NULL
6168 || type->function_type() == NULL
6169 || !type->function_type()->is_method())
6170 this->report_error(_("object is not a method"));
6171 else
6172 {
6173 Type* rtype = type->function_type()->receiver()->type()->deref();
6174 Type* etype = (this->expr_type_ != NULL
6175 ? this->expr_type_
6176 : this->expr_->type());
6177 etype = etype->deref();
07ba8be5 6178 if (!Type::are_identical(rtype, etype, true, NULL))
e440a328 6179 this->report_error(_("method type does not match object type"));
6180 }
6181}
6182
6183// Get the tree for a method expression. There is no standard tree
6184// representation for this. The only places it may currently be used
6185// are in a Call_expression or a Go_statement, which will take it
6186// apart directly. So this has nothing to do at present.
6187
6188tree
6189Bound_method_expression::do_get_tree(Translate_context*)
6190{
6191 gcc_unreachable();
6192}
6193
6194// Make a method expression.
6195
6196Bound_method_expression*
6197Expression::make_bound_method(Expression* expr, Expression* method,
6198 source_location location)
6199{
6200 return new Bound_method_expression(expr, method, location);
6201}
6202
6203// Class Builtin_call_expression. This is used for a call to a
6204// builtin function.
6205
6206class Builtin_call_expression : public Call_expression
6207{
6208 public:
6209 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6210 bool is_varargs, source_location location);
6211
6212 protected:
6213 // This overrides Call_expression::do_lower.
6214 Expression*
6215 do_lower(Gogo*, Named_object*, int);
6216
6217 bool
6218 do_is_constant() const;
6219
6220 bool
6221 do_integer_constant_value(bool, mpz_t, Type**) const;
6222
6223 bool
6224 do_float_constant_value(mpfr_t, Type**) const;
6225
6226 bool
6227 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6228
6229 Type*
6230 do_type();
6231
6232 void
6233 do_determine_type(const Type_context*);
6234
6235 void
6236 do_check_types(Gogo*);
6237
6238 Expression*
6239 do_copy()
6240 {
6241 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6242 this->args()->copy(),
6243 this->is_varargs(),
6244 this->location());
6245 }
6246
6247 tree
6248 do_get_tree(Translate_context*);
6249
6250 void
6251 do_export(Export*) const;
6252
6253 virtual bool
6254 do_is_recover_call() const;
6255
6256 virtual void
6257 do_set_recover_arg(Expression*);
6258
6259 private:
6260 // The builtin functions.
6261 enum Builtin_function_code
6262 {
6263 BUILTIN_INVALID,
6264
6265 // Predeclared builtin functions.
6266 BUILTIN_APPEND,
6267 BUILTIN_CAP,
6268 BUILTIN_CLOSE,
6269 BUILTIN_CLOSED,
6270 BUILTIN_CMPLX,
6271 BUILTIN_COPY,
6272 BUILTIN_IMAG,
6273 BUILTIN_LEN,
6274 BUILTIN_MAKE,
6275 BUILTIN_NEW,
6276 BUILTIN_PANIC,
6277 BUILTIN_PRINT,
6278 BUILTIN_PRINTLN,
6279 BUILTIN_REAL,
6280 BUILTIN_RECOVER,
6281
6282 // Builtin functions from the unsafe package.
6283 BUILTIN_ALIGNOF,
6284 BUILTIN_OFFSETOF,
6285 BUILTIN_SIZEOF
6286 };
6287
6288 Expression*
6289 one_arg() const;
6290
6291 bool
6292 check_one_arg();
6293
6294 static Type*
6295 real_imag_type(Type*);
6296
6297 static Type*
6298 cmplx_type(Type*);
6299
6300 // A pointer back to the general IR structure. This avoids a global
6301 // variable, or passing it around everywhere.
6302 Gogo* gogo_;
6303 // The builtin function being called.
6304 Builtin_function_code code_;
6305};
6306
6307Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6308 Expression* fn,
6309 Expression_list* args,
6310 bool is_varargs,
6311 source_location location)
6312 : Call_expression(fn, args, is_varargs, location),
6313 gogo_(gogo), code_(BUILTIN_INVALID)
6314{
6315 Func_expression* fnexp = this->fn()->func_expression();
6316 gcc_assert(fnexp != NULL);
6317 const std::string& name(fnexp->named_object()->name());
6318 if (name == "append")
6319 this->code_ = BUILTIN_APPEND;
6320 else if (name == "cap")
6321 this->code_ = BUILTIN_CAP;
6322 else if (name == "close")
6323 this->code_ = BUILTIN_CLOSE;
6324 else if (name == "closed")
6325 this->code_ = BUILTIN_CLOSED;
6326 else if (name == "cmplx")
6327 this->code_ = BUILTIN_CMPLX;
6328 else if (name == "copy")
6329 this->code_ = BUILTIN_COPY;
6330 else if (name == "imag")
6331 this->code_ = BUILTIN_IMAG;
6332 else if (name == "len")
6333 this->code_ = BUILTIN_LEN;
6334 else if (name == "make")
6335 this->code_ = BUILTIN_MAKE;
6336 else if (name == "new")
6337 this->code_ = BUILTIN_NEW;
6338 else if (name == "panic")
6339 this->code_ = BUILTIN_PANIC;
6340 else if (name == "print")
6341 this->code_ = BUILTIN_PRINT;
6342 else if (name == "println")
6343 this->code_ = BUILTIN_PRINTLN;
6344 else if (name == "real")
6345 this->code_ = BUILTIN_REAL;
6346 else if (name == "recover")
6347 this->code_ = BUILTIN_RECOVER;
6348 else if (name == "Alignof")
6349 this->code_ = BUILTIN_ALIGNOF;
6350 else if (name == "Offsetof")
6351 this->code_ = BUILTIN_OFFSETOF;
6352 else if (name == "Sizeof")
6353 this->code_ = BUILTIN_SIZEOF;
6354 else
6355 gcc_unreachable();
6356}
6357
6358// Return whether this is a call to recover. This is a virtual
6359// function called from the parent class.
6360
6361bool
6362Builtin_call_expression::do_is_recover_call() const
6363{
6364 if (this->classification() == EXPRESSION_ERROR)
6365 return false;
6366 return this->code_ == BUILTIN_RECOVER;
6367}
6368
6369// Set the argument for a call to recover.
6370
6371void
6372Builtin_call_expression::do_set_recover_arg(Expression* arg)
6373{
6374 const Expression_list* args = this->args();
6375 gcc_assert(args == NULL || args->empty());
6376 Expression_list* new_args = new Expression_list();
6377 new_args->push_back(arg);
6378 this->set_args(new_args);
6379}
6380
6381// A traversal class which looks for a call expression.
6382
6383class Find_call_expression : public Traverse
6384{
6385 public:
6386 Find_call_expression()
6387 : Traverse(traverse_expressions),
6388 found_(false)
6389 { }
6390
6391 int
6392 expression(Expression**);
6393
6394 bool
6395 found()
6396 { return this->found_; }
6397
6398 private:
6399 bool found_;
6400};
6401
6402int
6403Find_call_expression::expression(Expression** pexpr)
6404{
6405 if ((*pexpr)->call_expression() != NULL)
6406 {
6407 this->found_ = true;
6408 return TRAVERSE_EXIT;
6409 }
6410 return TRAVERSE_CONTINUE;
6411}
6412
6413// Lower a builtin call expression. This turns new and make into
6414// specific expressions. We also convert to a constant if we can.
6415
6416Expression*
6417Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6418{
6419 if (this->code_ == BUILTIN_NEW)
6420 {
6421 const Expression_list* args = this->args();
6422 if (args == NULL || args->size() < 1)
6423 this->report_error(_("not enough arguments"));
6424 else if (args->size() > 1)
6425 this->report_error(_("too many arguments"));
6426 else
6427 {
6428 Expression* arg = args->front();
6429 if (!arg->is_type_expression())
6430 {
6431 error_at(arg->location(), "expected type");
6432 this->set_is_error();
6433 }
6434 else
6435 return Expression::make_allocation(arg->type(), this->location());
6436 }
6437 }
6438 else if (this->code_ == BUILTIN_MAKE)
6439 {
6440 const Expression_list* args = this->args();
6441 if (args == NULL || args->size() < 1)
6442 this->report_error(_("not enough arguments"));
6443 else
6444 {
6445 Expression* arg = args->front();
6446 if (!arg->is_type_expression())
6447 {
6448 error_at(arg->location(), "expected type");
6449 this->set_is_error();
6450 }
6451 else
6452 {
6453 Expression_list* newargs;
6454 if (args->size() == 1)
6455 newargs = NULL;
6456 else
6457 {
6458 newargs = new Expression_list();
6459 Expression_list::const_iterator p = args->begin();
6460 ++p;
6461 for (; p != args->end(); ++p)
6462 newargs->push_back(*p);
6463 }
6464 return Expression::make_make(arg->type(), newargs,
6465 this->location());
6466 }
6467 }
6468 }
6469 else if (this->is_constant())
6470 {
6471 // We can only lower len and cap if there are no function calls
6472 // in the arguments. Otherwise we have to make the call.
6473 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6474 {
6475 Expression* arg = this->one_arg();
6476 if (!arg->is_constant())
6477 {
6478 Find_call_expression find_call;
6479 Expression::traverse(&arg, &find_call);
6480 if (find_call.found())
6481 return this;
6482 }
6483 }
6484
6485 mpz_t ival;
6486 mpz_init(ival);
6487 Type* type;
6488 if (this->integer_constant_value(true, ival, &type))
6489 {
6490 Expression* ret = Expression::make_integer(&ival, type,
6491 this->location());
6492 mpz_clear(ival);
6493 return ret;
6494 }
6495 mpz_clear(ival);
6496
6497 mpfr_t rval;
6498 mpfr_init(rval);
6499 if (this->float_constant_value(rval, &type))
6500 {
6501 Expression* ret = Expression::make_float(&rval, type,
6502 this->location());
6503 mpfr_clear(rval);
6504 return ret;
6505 }
6506
6507 mpfr_t imag;
6508 mpfr_init(imag);
6509 if (this->complex_constant_value(rval, imag, &type))
6510 {
6511 Expression* ret = Expression::make_complex(&rval, &imag, type,
6512 this->location());
6513 mpfr_clear(rval);
6514 mpfr_clear(imag);
6515 return ret;
6516 }
6517 mpfr_clear(rval);
6518 mpfr_clear(imag);
6519 }
6520 else if (this->code_ == BUILTIN_RECOVER)
6521 {
6522 if (function != NULL)
6523 function->func_value()->set_calls_recover();
6524 else
6525 {
6526 // Calling recover outside of a function always returns the
6527 // nil empty interface.
6528 Type* eface = Type::make_interface_type(NULL, this->location());
6529 return Expression::make_cast(eface,
6530 Expression::make_nil(this->location()),
6531 this->location());
6532 }
6533 }
6534 else if (this->code_ == BUILTIN_APPEND)
6535 {
6536 // Lower the varargs.
6537 const Expression_list* args = this->args();
6538 if (args == NULL || args->empty())
6539 return this;
6540 Type* slice_type = args->front()->type();
6541 if (!slice_type->is_open_array_type())
6542 {
6543 error_at(args->front()->location(), "argument 1 must be a slice");
6544 this->set_is_error();
6545 return this;
6546 }
6547 return this->lower_varargs(gogo, function, slice_type, 2);
6548 }
6549
6550 return this;
6551}
6552
6553// Return the type of the real or imag functions, given the type of
6554// the argument. We need to map complex to float, complex64 to
6555// float32, and complex128 to float64, so it has to be done by name.
6556// This returns NULL if it can't figure out the type.
6557
6558Type*
6559Builtin_call_expression::real_imag_type(Type* arg_type)
6560{
6561 if (arg_type == NULL || arg_type->is_abstract())
6562 return NULL;
6563 Named_type* nt = arg_type->named_type();
6564 if (nt == NULL)
6565 return NULL;
6566 while (nt->real_type()->named_type() != NULL)
6567 nt = nt->real_type()->named_type();
6568 if (nt->name() == "complex")
6569 return Type::lookup_float_type("float");
6570 else if (nt->name() == "complex64")
6571 return Type::lookup_float_type("float32");
6572 else if (nt->name() == "complex128")
6573 return Type::lookup_float_type("float64");
6574 else
6575 return NULL;
6576}
6577
6578// Return the type of the cmplx function, given the type of one of the
6579// argments. Like real_imag_type, we have to map by name.
6580
6581Type*
6582Builtin_call_expression::cmplx_type(Type* arg_type)
6583{
6584 if (arg_type == NULL || arg_type->is_abstract())
6585 return NULL;
6586 Named_type* nt = arg_type->named_type();
6587 if (nt == NULL)
6588 return NULL;
6589 while (nt->real_type()->named_type() != NULL)
6590 nt = nt->real_type()->named_type();
6591 if (nt->name() == "float")
6592 return Type::lookup_complex_type("complex");
6593 else if (nt->name() == "float32")
6594 return Type::lookup_complex_type("complex64");
6595 else if (nt->name() == "float64")
6596 return Type::lookup_complex_type("complex128");
6597 else
6598 return NULL;
6599}
6600
6601// Return a single argument, or NULL if there isn't one.
6602
6603Expression*
6604Builtin_call_expression::one_arg() const
6605{
6606 const Expression_list* args = this->args();
6607 if (args->size() != 1)
6608 return NULL;
6609 return args->front();
6610}
6611
6612// Return whether this is constant: len of a string, or len or cap of
6613// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6614
6615bool
6616Builtin_call_expression::do_is_constant() const
6617{
6618 switch (this->code_)
6619 {
6620 case BUILTIN_LEN:
6621 case BUILTIN_CAP:
6622 {
6623 Expression* arg = this->one_arg();
6624 if (arg == NULL)
6625 return false;
6626 Type* arg_type = arg->type();
6627
6628 if (arg_type->points_to() != NULL
6629 && arg_type->points_to()->array_type() != NULL
6630 && !arg_type->points_to()->is_open_array_type())
6631 arg_type = arg_type->points_to();
6632
6633 if (arg_type->array_type() != NULL
6634 && arg_type->array_type()->length() != NULL)
6635 return arg_type->array_type()->length()->is_constant();
6636
6637 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6638 return arg->is_constant();
6639 }
6640 break;
6641
6642 case BUILTIN_SIZEOF:
6643 case BUILTIN_ALIGNOF:
6644 return this->one_arg() != NULL;
6645
6646 case BUILTIN_OFFSETOF:
6647 {
6648 Expression* arg = this->one_arg();
6649 if (arg == NULL)
6650 return false;
6651 return arg->field_reference_expression() != NULL;
6652 }
6653
6654 case BUILTIN_CMPLX:
6655 {
6656 const Expression_list* args = this->args();
6657 if (args != NULL && args->size() == 2)
6658 return args->front()->is_constant() && args->back()->is_constant();
6659 }
6660 break;
6661
6662 case BUILTIN_REAL:
6663 case BUILTIN_IMAG:
6664 {
6665 Expression* arg = this->one_arg();
6666 return arg != NULL && arg->is_constant();
6667 }
6668
6669 default:
6670 break;
6671 }
6672
6673 return false;
6674}
6675
6676// Return an integer constant value if possible.
6677
6678bool
6679Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6680 mpz_t val,
6681 Type** ptype) const
6682{
6683 if (this->code_ == BUILTIN_LEN
6684 || this->code_ == BUILTIN_CAP)
6685 {
6686 Expression* arg = this->one_arg();
6687 if (arg == NULL)
6688 return false;
6689 Type* arg_type = arg->type();
6690
6691 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6692 {
6693 std::string sval;
6694 if (arg->string_constant_value(&sval))
6695 {
6696 mpz_set_ui(val, sval.length());
6697 *ptype = Type::lookup_integer_type("int");
6698 return true;
6699 }
6700 }
6701
6702 if (arg_type->points_to() != NULL
6703 && arg_type->points_to()->array_type() != NULL
6704 && !arg_type->points_to()->is_open_array_type())
6705 arg_type = arg_type->points_to();
6706
6707 if (arg_type->array_type() != NULL
6708 && arg_type->array_type()->length() != NULL)
6709 {
6710 Expression* e = arg_type->array_type()->length();
6711 if (e->integer_constant_value(iota_is_constant, val, ptype))
6712 {
6713 *ptype = Type::lookup_integer_type("int");
6714 return true;
6715 }
6716 }
6717 }
6718 else if (this->code_ == BUILTIN_SIZEOF
6719 || this->code_ == BUILTIN_ALIGNOF)
6720 {
6721 Expression* arg = this->one_arg();
6722 if (arg == NULL)
6723 return false;
6724 Type* arg_type = arg->type();
6725 if (arg_type->is_error_type())
6726 return false;
6727 if (arg_type->is_abstract())
6728 return false;
6729 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6730 unsigned long val_long;
6731 if (this->code_ == BUILTIN_SIZEOF)
6732 {
6733 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6734 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6735 if (TREE_INT_CST_HIGH(type_size) != 0)
6736 return false;
6737 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6738 val_long = static_cast<unsigned long>(val_wide);
6739 if (val_long != val_wide)
6740 return false;
6741 }
6742 else if (this->code_ == BUILTIN_ALIGNOF)
6743 {
637bd3af 6744 if (arg->field_reference_expression() == NULL)
6745 val_long = go_type_alignment(arg_type_tree);
6746 else
e440a328 6747 {
6748 // Calling unsafe.Alignof(s.f) returns the alignment of
6749 // the type of f when it is used as a field in a struct.
637bd3af 6750 val_long = go_field_alignment(arg_type_tree);
e440a328 6751 }
e440a328 6752 }
6753 else
6754 gcc_unreachable();
6755 mpz_set_ui(val, val_long);
6756 *ptype = NULL;
6757 return true;
6758 }
6759 else if (this->code_ == BUILTIN_OFFSETOF)
6760 {
6761 Expression* arg = this->one_arg();
6762 if (arg == NULL)
6763 return false;
6764 Field_reference_expression* farg = arg->field_reference_expression();
6765 if (farg == NULL)
6766 return false;
6767 Expression* struct_expr = farg->expr();
6768 Type* st = struct_expr->type();
6769 if (st->struct_type() == NULL)
6770 return false;
6771 tree struct_tree = st->get_tree(this->gogo_);
6772 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6773 tree field = TYPE_FIELDS(struct_tree);
6774 for (unsigned int index = farg->field_index(); index > 0; --index)
6775 {
6776 field = DECL_CHAIN(field);
6777 gcc_assert(field != NULL_TREE);
6778 }
6779 HOST_WIDE_INT offset_wide = int_byte_position (field);
6780 if (offset_wide < 0)
6781 return false;
6782 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6783 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6784 return false;
6785 mpz_set_ui(val, offset_long);
6786 return true;
6787 }
6788 return false;
6789}
6790
6791// Return a floating point constant value if possible.
6792
6793bool
6794Builtin_call_expression::do_float_constant_value(mpfr_t val,
6795 Type** ptype) const
6796{
6797 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6798 {
6799 Expression* arg = this->one_arg();
6800 if (arg == NULL)
6801 return false;
6802
6803 mpfr_t real;
6804 mpfr_t imag;
6805 mpfr_init(real);
6806 mpfr_init(imag);
6807
6808 bool ret = false;
6809 Type* type;
6810 if (arg->complex_constant_value(real, imag, &type))
6811 {
6812 if (this->code_ == BUILTIN_REAL)
6813 mpfr_set(val, real, GMP_RNDN);
6814 else
6815 mpfr_set(val, imag, GMP_RNDN);
6816 *ptype = Builtin_call_expression::real_imag_type(type);
6817 ret = true;
6818 }
6819
6820 mpfr_clear(real);
6821 mpfr_clear(imag);
6822 return ret;
6823 }
6824
6825 return false;
6826}
6827
6828// Return a complex constant value if possible.
6829
6830bool
6831Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6832 Type** ptype) const
6833{
6834 if (this->code_ == BUILTIN_CMPLX)
6835 {
6836 const Expression_list* args = this->args();
6837 if (args == NULL || args->size() != 2)
6838 return false;
6839
6840 mpfr_t r;
6841 mpfr_init(r);
6842 Type* rtype;
6843 if (!args->front()->float_constant_value(r, &rtype))
6844 {
6845 mpfr_clear(r);
6846 return false;
6847 }
6848
6849 mpfr_t i;
6850 mpfr_init(i);
6851
6852 bool ret = false;
6853 Type* itype;
6854 if (args->back()->float_constant_value(i, &itype)
07ba8be5 6855 && Type::are_identical(rtype, itype, false, NULL))
e440a328 6856 {
6857 mpfr_set(real, r, GMP_RNDN);
6858 mpfr_set(imag, i, GMP_RNDN);
6859 *ptype = Builtin_call_expression::cmplx_type(rtype);
6860 ret = true;
6861 }
6862
6863 mpfr_clear(r);
6864 mpfr_clear(i);
6865
6866 return ret;
6867 }
6868
6869 return false;
6870}
6871
6872// Return the type.
6873
6874Type*
6875Builtin_call_expression::do_type()
6876{
6877 switch (this->code_)
6878 {
6879 case BUILTIN_INVALID:
6880 default:
6881 gcc_unreachable();
6882
6883 case BUILTIN_NEW:
6884 case BUILTIN_MAKE:
6885 {
6886 const Expression_list* args = this->args();
6887 if (args == NULL || args->empty())
6888 return Type::make_error_type();
6889 return Type::make_pointer_type(args->front()->type());
6890 }
6891
6892 case BUILTIN_CAP:
6893 case BUILTIN_COPY:
6894 case BUILTIN_LEN:
6895 case BUILTIN_ALIGNOF:
6896 case BUILTIN_OFFSETOF:
6897 case BUILTIN_SIZEOF:
6898 return Type::lookup_integer_type("int");
6899
6900 case BUILTIN_CLOSE:
6901 case BUILTIN_PANIC:
6902 case BUILTIN_PRINT:
6903 case BUILTIN_PRINTLN:
6904 return Type::make_void_type();
6905
6906 case BUILTIN_CLOSED:
6907 return Type::lookup_bool_type();
6908
6909 case BUILTIN_RECOVER:
6910 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
6911
6912 case BUILTIN_APPEND:
6913 {
6914 const Expression_list* args = this->args();
6915 if (args == NULL || args->empty())
6916 return Type::make_error_type();
6917 return args->front()->type();
6918 }
6919
6920 case BUILTIN_REAL:
6921 case BUILTIN_IMAG:
6922 {
6923 Expression* arg = this->one_arg();
6924 if (arg == NULL)
6925 return Type::make_error_type();
6926 Type* t = arg->type();
6927 if (t->is_abstract())
6928 t = t->make_non_abstract_type();
6929 t = Builtin_call_expression::real_imag_type(t);
6930 if (t == NULL)
6931 t = Type::make_error_type();
6932 return t;
6933 }
6934
6935 case BUILTIN_CMPLX:
6936 {
6937 const Expression_list* args = this->args();
6938 if (args == NULL || args->size() != 2)
6939 return Type::make_error_type();
6940 Type* t = args->front()->type();
6941 if (t->is_abstract())
6942 {
6943 t = args->back()->type();
6944 if (t->is_abstract())
6945 t = t->make_non_abstract_type();
6946 }
6947 t = Builtin_call_expression::cmplx_type(t);
6948 if (t == NULL)
6949 t = Type::make_error_type();
6950 return t;
6951 }
6952 }
6953}
6954
6955// Determine the type.
6956
6957void
6958Builtin_call_expression::do_determine_type(const Type_context* context)
6959{
6960 this->fn()->determine_type_no_context();
6961
6962 const Expression_list* args = this->args();
6963
6964 bool is_print;
6965 Type* arg_type = NULL;
6966 switch (this->code_)
6967 {
6968 case BUILTIN_PRINT:
6969 case BUILTIN_PRINTLN:
6970 // Do not force a large integer constant to "int".
6971 is_print = true;
6972 break;
6973
6974 case BUILTIN_REAL:
6975 case BUILTIN_IMAG:
6976 arg_type = Builtin_call_expression::cmplx_type(context->type);
6977 is_print = false;
6978 break;
6979
6980 case BUILTIN_CMPLX:
6981 {
6982 // For the cmplx function the type of one operand can
6983 // determine the type of the other, as in a binary expression.
6984 arg_type = Builtin_call_expression::real_imag_type(context->type);
6985 if (args != NULL && args->size() == 2)
6986 {
6987 Type* t1 = args->front()->type();
6988 Type* t2 = args->front()->type();
6989 if (!t1->is_abstract())
6990 arg_type = t1;
6991 else if (!t2->is_abstract())
6992 arg_type = t2;
6993 }
6994 is_print = false;
6995 }
6996 break;
6997
6998 default:
6999 is_print = false;
7000 break;
7001 }
7002
7003 if (args != NULL)
7004 {
7005 for (Expression_list::const_iterator pa = args->begin();
7006 pa != args->end();
7007 ++pa)
7008 {
7009 Type_context subcontext;
7010 subcontext.type = arg_type;
7011
7012 if (is_print)
7013 {
7014 // We want to print large constants, we so can't just
7015 // use the appropriate nonabstract type. Use uint64 for
7016 // an integer if we know it is nonnegative, otherwise
7017 // use int64 for a integer, otherwise use float64 for a
7018 // float or complex128 for a complex.
7019 Type* want_type = NULL;
7020 Type* atype = (*pa)->type();
7021 if (atype->is_abstract())
7022 {
7023 if (atype->integer_type() != NULL)
7024 {
7025 mpz_t val;
7026 mpz_init(val);
7027 Type* dummy;
7028 if (this->integer_constant_value(true, val, &dummy)
7029 && mpz_sgn(val) >= 0)
7030 want_type = Type::lookup_integer_type("uint64");
7031 else
7032 want_type = Type::lookup_integer_type("int64");
7033 mpz_clear(val);
7034 }
7035 else if (atype->float_type() != NULL)
7036 want_type = Type::lookup_float_type("float64");
7037 else if (atype->complex_type() != NULL)
7038 want_type = Type::lookup_complex_type("complex128");
7039 else if (atype->is_abstract_string_type())
7040 want_type = Type::lookup_string_type();
7041 else if (atype->is_abstract_boolean_type())
7042 want_type = Type::lookup_bool_type();
7043 else
7044 gcc_unreachable();
7045 subcontext.type = want_type;
7046 }
7047 }
7048
7049 (*pa)->determine_type(&subcontext);
7050 }
7051 }
7052}
7053
7054// If there is exactly one argument, return true. Otherwise give an
7055// error message and return false.
7056
7057bool
7058Builtin_call_expression::check_one_arg()
7059{
7060 const Expression_list* args = this->args();
7061 if (args == NULL || args->size() < 1)
7062 {
7063 this->report_error(_("not enough arguments"));
7064 return false;
7065 }
7066 else if (args->size() > 1)
7067 {
7068 this->report_error(_("too many arguments"));
7069 return false;
7070 }
7071 if (args->front()->is_error_expression()
7072 || args->front()->type()->is_error_type())
7073 {
7074 this->set_is_error();
7075 return false;
7076 }
7077 return true;
7078}
7079
7080// Check argument types for a builtin function.
7081
7082void
7083Builtin_call_expression::do_check_types(Gogo*)
7084{
7085 switch (this->code_)
7086 {
7087 case BUILTIN_INVALID:
7088 case BUILTIN_NEW:
7089 case BUILTIN_MAKE:
7090 return;
7091
7092 case BUILTIN_LEN:
7093 case BUILTIN_CAP:
7094 {
7095 // The single argument may be either a string or an array or a
7096 // map or a channel, or a pointer to a closed array.
7097 if (this->check_one_arg())
7098 {
7099 Type* arg_type = this->one_arg()->type();
7100 if (arg_type->points_to() != NULL
7101 && arg_type->points_to()->array_type() != NULL
7102 && !arg_type->points_to()->is_open_array_type())
7103 arg_type = arg_type->points_to();
7104 if (this->code_ == BUILTIN_CAP)
7105 {
7106 if (!arg_type->is_error_type()
7107 && arg_type->array_type() == NULL
7108 && arg_type->channel_type() == NULL)
7109 this->report_error(_("argument must be array or slice "
7110 "or channel"));
7111 }
7112 else
7113 {
7114 if (!arg_type->is_error_type()
7115 && !arg_type->is_string_type()
7116 && arg_type->array_type() == NULL
7117 && arg_type->map_type() == NULL
7118 && arg_type->channel_type() == NULL)
7119 this->report_error(_("argument must be string or "
7120 "array or slice or map or channel"));
7121 }
7122 }
7123 }
7124 break;
7125
7126 case BUILTIN_PRINT:
7127 case BUILTIN_PRINTLN:
7128 {
7129 const Expression_list* args = this->args();
7130 if (args == NULL)
7131 {
7132 if (this->code_ == BUILTIN_PRINT)
7133 warning_at(this->location(), 0,
7134 "no arguments for builtin function %<%s%>",
7135 (this->code_ == BUILTIN_PRINT
7136 ? "print"
7137 : "println"));
7138 }
7139 else
7140 {
7141 for (Expression_list::const_iterator p = args->begin();
7142 p != args->end();
7143 ++p)
7144 {
7145 Type* type = (*p)->type();
7146 if (type->is_error_type()
7147 || type->is_string_type()
7148 || type->integer_type() != NULL
7149 || type->float_type() != NULL
7150 || type->complex_type() != NULL
7151 || type->is_boolean_type()
7152 || type->points_to() != NULL
7153 || type->interface_type() != NULL
7154 || type->channel_type() != NULL
7155 || type->map_type() != NULL
7156 || type->function_type() != NULL
7157 || type->is_open_array_type())
7158 ;
7159 else
7160 this->report_error(_("unsupported argument type to "
7161 "builtin function"));
7162 }
7163 }
7164 }
7165 break;
7166
7167 case BUILTIN_CLOSE:
7168 case BUILTIN_CLOSED:
7169 if (this->check_one_arg())
7170 {
7171 if (this->one_arg()->type()->channel_type() == NULL)
7172 this->report_error(_("argument must be channel"));
7173 }
7174 break;
7175
7176 case BUILTIN_PANIC:
7177 case BUILTIN_SIZEOF:
7178 case BUILTIN_ALIGNOF:
7179 this->check_one_arg();
7180 break;
7181
7182 case BUILTIN_RECOVER:
7183 if (this->args() != NULL && !this->args()->empty())
7184 this->report_error(_("too many arguments"));
7185 break;
7186
7187 case BUILTIN_OFFSETOF:
7188 if (this->check_one_arg())
7189 {
7190 Expression* arg = this->one_arg();
7191 if (arg->field_reference_expression() == NULL)
7192 this->report_error(_("argument must be a field reference"));
7193 }
7194 break;
7195
7196 case BUILTIN_COPY:
7197 {
7198 const Expression_list* args = this->args();
7199 if (args == NULL || args->size() < 2)
7200 {
7201 this->report_error(_("not enough arguments"));
7202 break;
7203 }
7204 else if (args->size() > 2)
7205 {
7206 this->report_error(_("too many arguments"));
7207 break;
7208 }
7209 Type* arg1_type = args->front()->type();
7210 Type* arg2_type = args->back()->type();
7211 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7212 break;
7213
7214 Type* e1;
7215 if (arg1_type->is_open_array_type())
7216 e1 = arg1_type->array_type()->element_type();
7217 else
7218 {
7219 this->report_error(_("left argument must be a slice"));
7220 break;
7221 }
7222
7223 Type* e2;
7224 if (arg2_type->is_open_array_type())
7225 e2 = arg2_type->array_type()->element_type();
7226 else if (arg2_type->is_string_type())
7227 e2 = Type::lookup_integer_type("uint8");
7228 else
7229 {
7230 this->report_error(_("right argument must be a slice or a string"));
7231 break;
7232 }
7233
07ba8be5 7234 if (!Type::are_identical(e1, e2, true, NULL))
e440a328 7235 this->report_error(_("element types must be the same"));
7236 }
7237 break;
7238
7239 case BUILTIN_APPEND:
7240 {
7241 const Expression_list* args = this->args();
7242 if (args == NULL || args->empty())
7243 {
7244 this->report_error(_("not enough arguments"));
7245 break;
7246 }
7247 /* Lowering varargs should have left us with 2 arguments. */
7248 gcc_assert(args->size() == 2);
7249 std::string reason;
7250 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7251 &reason))
7252 {
7253 if (reason.empty())
7254 this->report_error(_("arguments 1 and 2 have different types"));
7255 else
7256 {
7257 error_at(this->location(),
7258 "arguments 1 and 2 have different types (%s)",
7259 reason.c_str());
7260 this->set_is_error();
7261 }
7262 }
7263 break;
7264 }
7265
7266 case BUILTIN_REAL:
7267 case BUILTIN_IMAG:
7268 if (this->check_one_arg())
7269 {
7270 if (this->one_arg()->type()->complex_type() == NULL)
7271 this->report_error(_("argument must have complex type"));
7272 }
7273 break;
7274
7275 case BUILTIN_CMPLX:
7276 {
7277 const Expression_list* args = this->args();
7278 if (args == NULL || args->size() < 2)
7279 this->report_error(_("not enough arguments"));
7280 else if (args->size() > 2)
7281 this->report_error(_("too many arguments"));
7282 else if (args->front()->is_error_expression()
7283 || args->front()->type()->is_error_type()
7284 || args->back()->is_error_expression()
7285 || args->back()->type()->is_error_type())
7286 this->set_is_error();
7287 else if (!Type::are_identical(args->front()->type(),
07ba8be5 7288 args->back()->type(), true, NULL))
e440a328 7289 this->report_error(_("cmplx arguments must have identical types"));
7290 else if (args->front()->type()->float_type() == NULL)
7291 this->report_error(_("cmplx arguments must have "
7292 "floating-point type"));
7293 }
7294 break;
7295
7296 default:
7297 gcc_unreachable();
7298 }
7299}
7300
7301// Return the tree for a builtin function.
7302
7303tree
7304Builtin_call_expression::do_get_tree(Translate_context* context)
7305{
7306 Gogo* gogo = context->gogo();
7307 source_location location = this->location();
7308 switch (this->code_)
7309 {
7310 case BUILTIN_INVALID:
7311 case BUILTIN_NEW:
7312 case BUILTIN_MAKE:
7313 gcc_unreachable();
7314
7315 case BUILTIN_LEN:
7316 case BUILTIN_CAP:
7317 {
7318 const Expression_list* args = this->args();
7319 gcc_assert(args != NULL && args->size() == 1);
7320 Expression* arg = *args->begin();
7321 Type* arg_type = arg->type();
7322 tree arg_tree = arg->get_tree(context);
7323 if (arg_tree == error_mark_node)
7324 return error_mark_node;
7325
7326 if (arg_type->points_to() != NULL)
7327 {
7328 arg_type = arg_type->points_to();
7329 gcc_assert(arg_type->array_type() != NULL
7330 && !arg_type->is_open_array_type());
7331 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7332 arg_tree = build_fold_indirect_ref(arg_tree);
7333 }
7334
7335 tree val_tree;
7336 if (this->code_ == BUILTIN_LEN)
7337 {
7338 if (arg_type->is_string_type())
7339 val_tree = String_type::length_tree(gogo, arg_tree);
7340 else if (arg_type->array_type() != NULL)
7341 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7342 else if (arg_type->map_type() != NULL)
7343 {
7344 static tree map_len_fndecl;
7345 val_tree = Gogo::call_builtin(&map_len_fndecl,
7346 location,
7347 "__go_map_len",
7348 1,
7349 sizetype,
7350 arg_type->get_tree(gogo),
7351 arg_tree);
7352 }
7353 else if (arg_type->channel_type() != NULL)
7354 {
7355 static tree chan_len_fndecl;
7356 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7357 location,
7358 "__go_chan_len",
7359 1,
7360 sizetype,
7361 arg_type->get_tree(gogo),
7362 arg_tree);
7363 }
7364 else
7365 gcc_unreachable();
7366 }
7367 else
7368 {
7369 if (arg_type->array_type() != NULL)
7370 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7371 else if (arg_type->channel_type() != NULL)
7372 {
7373 static tree chan_cap_fndecl;
7374 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7375 location,
7376 "__go_chan_cap",
7377 1,
7378 sizetype,
7379 arg_type->get_tree(gogo),
7380 arg_tree);
7381 }
7382 else
7383 gcc_unreachable();
7384 }
7385
d8ccb1e3 7386 if (val_tree == error_mark_node)
7387 return error_mark_node;
7388
e440a328 7389 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7390 if (type_tree == TREE_TYPE(val_tree))
7391 return val_tree;
7392 else
7393 return fold(convert_to_integer(type_tree, val_tree));
7394 }
7395
7396 case BUILTIN_PRINT:
7397 case BUILTIN_PRINTLN:
7398 {
7399 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7400 tree stmt_list = NULL_TREE;
7401
7402 const Expression_list* call_args = this->args();
7403 if (call_args != NULL)
7404 {
7405 for (Expression_list::const_iterator p = call_args->begin();
7406 p != call_args->end();
7407 ++p)
7408 {
7409 if (is_ln && p != call_args->begin())
7410 {
7411 static tree print_space_fndecl;
7412 tree call = Gogo::call_builtin(&print_space_fndecl,
7413 location,
7414 "__go_print_space",
7415 0,
7416 void_type_node);
7417 append_to_statement_list(call, &stmt_list);
7418 }
7419
7420 Type* type = (*p)->type();
7421
7422 tree arg = (*p)->get_tree(context);
7423 if (arg == error_mark_node)
7424 return error_mark_node;
7425
7426 tree* pfndecl;
7427 const char* fnname;
7428 if (type->is_string_type())
7429 {
7430 static tree print_string_fndecl;
7431 pfndecl = &print_string_fndecl;
7432 fnname = "__go_print_string";
7433 }
7434 else if (type->integer_type() != NULL
7435 && type->integer_type()->is_unsigned())
7436 {
7437 static tree print_uint64_fndecl;
7438 pfndecl = &print_uint64_fndecl;
7439 fnname = "__go_print_uint64";
7440 Type* itype = Type::lookup_integer_type("uint64");
7441 arg = fold_convert_loc(location, itype->get_tree(gogo),
7442 arg);
7443 }
7444 else if (type->integer_type() != NULL)
7445 {
7446 static tree print_int64_fndecl;
7447 pfndecl = &print_int64_fndecl;
7448 fnname = "__go_print_int64";
7449 Type* itype = Type::lookup_integer_type("int64");
7450 arg = fold_convert_loc(location, itype->get_tree(gogo),
7451 arg);
7452 }
7453 else if (type->float_type() != NULL)
7454 {
7455 static tree print_double_fndecl;
7456 pfndecl = &print_double_fndecl;
7457 fnname = "__go_print_double";
7458 arg = fold_convert_loc(location, double_type_node, arg);
7459 }
7460 else if (type->complex_type() != NULL)
7461 {
7462 static tree print_complex_fndecl;
7463 pfndecl = &print_complex_fndecl;
7464 fnname = "__go_print_complex";
7465 arg = fold_convert_loc(location, complex_double_type_node,
7466 arg);
7467 }
7468 else if (type->is_boolean_type())
7469 {
7470 static tree print_bool_fndecl;
7471 pfndecl = &print_bool_fndecl;
7472 fnname = "__go_print_bool";
7473 }
7474 else if (type->points_to() != NULL
7475 || type->channel_type() != NULL
7476 || type->map_type() != NULL
7477 || type->function_type() != NULL)
7478 {
7479 static tree print_pointer_fndecl;
7480 pfndecl = &print_pointer_fndecl;
7481 fnname = "__go_print_pointer";
7482 arg = fold_convert_loc(location, ptr_type_node, arg);
7483 }
7484 else if (type->interface_type() != NULL)
7485 {
7486 if (type->interface_type()->is_empty())
7487 {
7488 static tree print_empty_interface_fndecl;
7489 pfndecl = &print_empty_interface_fndecl;
7490 fnname = "__go_print_empty_interface";
7491 }
7492 else
7493 {
7494 static tree print_interface_fndecl;
7495 pfndecl = &print_interface_fndecl;
7496 fnname = "__go_print_interface";
7497 }
7498 }
7499 else if (type->is_open_array_type())
7500 {
7501 static tree print_slice_fndecl;
7502 pfndecl = &print_slice_fndecl;
7503 fnname = "__go_print_slice";
7504 }
7505 else
7506 gcc_unreachable();
7507
7508 tree call = Gogo::call_builtin(pfndecl,
7509 location,
7510 fnname,
7511 1,
7512 void_type_node,
7513 TREE_TYPE(arg),
7514 arg);
d8ccb1e3 7515 if (call != error_mark_node)
7516 append_to_statement_list(call, &stmt_list);
e440a328 7517 }
7518 }
7519
7520 if (is_ln)
7521 {
7522 static tree print_nl_fndecl;
7523 tree call = Gogo::call_builtin(&print_nl_fndecl,
7524 location,
7525 "__go_print_nl",
7526 0,
7527 void_type_node);
7528 append_to_statement_list(call, &stmt_list);
7529 }
7530
7531 return stmt_list;
7532 }
7533
7534 case BUILTIN_PANIC:
7535 {
7536 const Expression_list* args = this->args();
7537 gcc_assert(args != NULL && args->size() == 1);
7538 Expression* arg = args->front();
7539 tree arg_tree = arg->get_tree(context);
7540 if (arg_tree == error_mark_node)
7541 return error_mark_node;
7542 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7543 arg_tree = Expression::convert_for_assignment(context, empty,
7544 arg->type(),
7545 arg_tree, location);
7546 static tree panic_fndecl;
7547 tree call = Gogo::call_builtin(&panic_fndecl,
7548 location,
7549 "__go_panic",
7550 1,
7551 void_type_node,
7552 TREE_TYPE(arg_tree),
7553 arg_tree);
7554 // This function will throw an exception.
7555 TREE_NOTHROW(panic_fndecl) = 0;
7556 // This function will not return.
7557 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7558 return call;
7559 }
7560
7561 case BUILTIN_RECOVER:
7562 {
7563 // The argument is set when building recover thunks. It's a
7564 // boolean value which is true if we can recover a value now.
7565 const Expression_list* args = this->args();
7566 gcc_assert(args != NULL && args->size() == 1);
7567 Expression* arg = args->front();
7568 tree arg_tree = arg->get_tree(context);
7569 if (arg_tree == error_mark_node)
7570 return error_mark_node;
7571
7572 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7573 tree empty_tree = empty->get_tree(context->gogo());
7574
7575 Type* nil_type = Type::make_nil_type();
7576 Expression* nil = Expression::make_nil(location);
7577 tree nil_tree = nil->get_tree(context);
7578 tree empty_nil_tree = Expression::convert_for_assignment(context,
7579 empty,
7580 nil_type,
7581 nil_tree,
7582 location);
7583
7584 // We need to handle a deferred call to recover specially,
7585 // because it changes whether it can recover a panic or not.
7586 // See test7 in test/recover1.go.
7587 tree call;
7588 if (this->is_deferred())
7589 {
7590 static tree deferred_recover_fndecl;
7591 call = Gogo::call_builtin(&deferred_recover_fndecl,
7592 location,
7593 "__go_deferred_recover",
7594 0,
7595 empty_tree);
7596 }
7597 else
7598 {
7599 static tree recover_fndecl;
7600 call = Gogo::call_builtin(&recover_fndecl,
7601 location,
7602 "__go_recover",
7603 0,
7604 empty_tree);
7605 }
7606 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7607 call, empty_nil_tree);
7608 }
7609
7610 case BUILTIN_CLOSE:
7611 case BUILTIN_CLOSED:
7612 {
7613 const Expression_list* args = this->args();
7614 gcc_assert(args != NULL && args->size() == 1);
7615 Expression* arg = args->front();
7616 tree arg_tree = arg->get_tree(context);
7617 if (arg_tree == error_mark_node)
7618 return error_mark_node;
7619 if (this->code_ == BUILTIN_CLOSE)
7620 {
7621 static tree close_fndecl;
7622 return Gogo::call_builtin(&close_fndecl,
7623 location,
7624 "__go_builtin_close",
7625 1,
7626 void_type_node,
7627 TREE_TYPE(arg_tree),
7628 arg_tree);
7629 }
7630 else
7631 {
7632 static tree closed_fndecl;
7633 return Gogo::call_builtin(&closed_fndecl,
7634 location,
7635 "__go_builtin_closed",
7636 1,
7637 boolean_type_node,
7638 TREE_TYPE(arg_tree),
7639 arg_tree);
7640 }
7641 }
7642
7643 case BUILTIN_SIZEOF:
7644 case BUILTIN_OFFSETOF:
7645 case BUILTIN_ALIGNOF:
7646 {
7647 mpz_t val;
7648 mpz_init(val);
7649 Type* dummy;
7650 bool b = this->integer_constant_value(true, val, &dummy);
7651 gcc_assert(b);
7652 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7653 tree ret = Expression::integer_constant_tree(val, type);
7654 mpz_clear(val);
7655 return ret;
7656 }
7657
7658 case BUILTIN_COPY:
7659 {
7660 const Expression_list* args = this->args();
7661 gcc_assert(args != NULL && args->size() == 2);
7662 Expression* arg1 = args->front();
7663 Expression* arg2 = args->back();
7664
7665 tree arg1_tree = arg1->get_tree(context);
7666 tree arg2_tree = arg2->get_tree(context);
7667 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7668 return error_mark_node;
7669
7670 Type* arg1_type = arg1->type();
7671 Array_type* at = arg1_type->array_type();
7672 arg1_tree = save_expr(arg1_tree);
7673 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7674 tree arg1_len = at->length_tree(gogo, arg1_tree);
d8ccb1e3 7675 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7676 return error_mark_node;
e440a328 7677
7678 Type* arg2_type = arg2->type();
7679 tree arg2_val;
7680 tree arg2_len;
7681 if (arg2_type->is_open_array_type())
7682 {
7683 at = arg2_type->array_type();
7684 arg2_tree = save_expr(arg2_tree);
7685 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7686 arg2_len = at->length_tree(gogo, arg2_tree);
7687 }
7688 else
7689 {
7690 arg2_tree = save_expr(arg2_tree);
7691 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7692 arg2_len = String_type::length_tree(gogo, arg2_tree);
7693 }
d8ccb1e3 7694 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7695 return error_mark_node;
e440a328 7696
7697 arg1_len = save_expr(arg1_len);
7698 arg2_len = save_expr(arg2_len);
7699 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7700 fold_build2_loc(location, LT_EXPR,
7701 boolean_type_node,
7702 arg1_len, arg2_len),
7703 arg1_len, arg2_len);
7704 len = save_expr(len);
7705
7706 Type* element_type = at->element_type();
7707 tree element_type_tree = element_type->get_tree(gogo);
d8ccb1e3 7708 if (element_type_tree == error_mark_node)
7709 return error_mark_node;
e440a328 7710 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7711 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7712 len);
7713 bytecount = fold_build2_loc(location, MULT_EXPR,
7714 TREE_TYPE(element_size),
7715 bytecount, element_size);
7716 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7717
7718 tree call = build_call_expr_loc(location,
7719 built_in_decls[BUILT_IN_MEMMOVE],
7720 3, arg1_val, arg2_val, bytecount);
7721
7722 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7723 call, len);
7724 }
7725
7726 case BUILTIN_APPEND:
7727 {
7728 const Expression_list* args = this->args();
7729 gcc_assert(args != NULL && args->size() == 2);
7730 Expression* arg1 = args->front();
7731 Expression* arg2 = args->back();
7732
7733 tree arg1_tree = arg1->get_tree(context);
7734 tree arg2_tree = arg2->get_tree(context);
7735 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7736 return error_mark_node;
7737
7738 tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
7739
7740 // We rebuild the decl each time since the slice types may
7741 // change.
7742 tree append_fndecl = NULL_TREE;
7743 return Gogo::call_builtin(&append_fndecl,
7744 location,
7745 "__go_append",
7746 3,
7747 TREE_TYPE(arg1_tree),
7748 TREE_TYPE(descriptor_tree),
7749 descriptor_tree,
7750 TREE_TYPE(arg1_tree),
7751 arg1_tree,
7752 TREE_TYPE(arg2_tree),
7753 arg2_tree);
7754 }
7755
7756 case BUILTIN_REAL:
7757 case BUILTIN_IMAG:
7758 {
7759 const Expression_list* args = this->args();
7760 gcc_assert(args != NULL && args->size() == 1);
7761 Expression* arg = args->front();
7762 tree arg_tree = arg->get_tree(context);
7763 if (arg_tree == error_mark_node)
7764 return error_mark_node;
7765 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7766 if (this->code_ == BUILTIN_REAL)
7767 return fold_build1_loc(location, REALPART_EXPR,
7768 TREE_TYPE(TREE_TYPE(arg_tree)),
7769 arg_tree);
7770 else
7771 return fold_build1_loc(location, IMAGPART_EXPR,
7772 TREE_TYPE(TREE_TYPE(arg_tree)),
7773 arg_tree);
7774 }
7775
7776 case BUILTIN_CMPLX:
7777 {
7778 const Expression_list* args = this->args();
7779 gcc_assert(args != NULL && args->size() == 2);
7780 tree r = args->front()->get_tree(context);
7781 tree i = args->back()->get_tree(context);
7782 if (r == error_mark_node || i == error_mark_node)
7783 return error_mark_node;
7784 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7785 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7786 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7787 return fold_build2_loc(location, COMPLEX_EXPR,
7788 build_complex_type(TREE_TYPE(r)),
7789 r, i);
7790 }
7791
7792 default:
7793 gcc_unreachable();
7794 }
7795}
7796
7797// We have to support exporting a builtin call expression, because
7798// code can set a constant to the result of a builtin expression.
7799
7800void
7801Builtin_call_expression::do_export(Export* exp) const
7802{
7803 bool ok = false;
7804
7805 mpz_t val;
7806 mpz_init(val);
7807 Type* dummy;
7808 if (this->integer_constant_value(true, val, &dummy))
7809 {
7810 Integer_expression::export_integer(exp, val);
7811 ok = true;
7812 }
7813 mpz_clear(val);
7814
7815 if (!ok)
7816 {
7817 mpfr_t fval;
7818 mpfr_init(fval);
7819 if (this->float_constant_value(fval, &dummy))
7820 {
7821 Float_expression::export_float(exp, fval);
7822 ok = true;
7823 }
7824 mpfr_clear(fval);
7825 }
7826
7827 if (!ok)
7828 {
7829 mpfr_t real;
7830 mpfr_t imag;
7831 mpfr_init(real);
7832 mpfr_init(imag);
7833 if (this->complex_constant_value(real, imag, &dummy))
7834 {
7835 Complex_expression::export_complex(exp, real, imag);
7836 ok = true;
7837 }
7838 mpfr_clear(real);
7839 mpfr_clear(imag);
7840 }
7841
7842 if (!ok)
7843 {
7844 error_at(this->location(), "value is not constant");
7845 return;
7846 }
7847
7848 // A trailing space lets us reliably identify the end of the number.
7849 exp->write_c_string(" ");
7850}
7851
7852// Class Call_expression.
7853
7854// Traversal.
7855
7856int
7857Call_expression::do_traverse(Traverse* traverse)
7858{
7859 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
7860 return TRAVERSE_EXIT;
7861 if (this->args_ != NULL)
7862 {
7863 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
7864 return TRAVERSE_EXIT;
7865 }
7866 return TRAVERSE_CONTINUE;
7867}
7868
7869// Lower a call statement.
7870
7871Expression*
7872Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
7873{
7874 // A type case can look like a function call.
7875 if (this->fn_->is_type_expression()
7876 && this->args_ != NULL
7877 && this->args_->size() == 1)
7878 return Expression::make_cast(this->fn_->type(), this->args_->front(),
7879 this->location());
7880
7881 // Recognize a call to a builtin function.
7882 Func_expression* fne = this->fn_->func_expression();
7883 if (fne != NULL
7884 && fne->named_object()->is_function_declaration()
7885 && fne->named_object()->func_declaration_value()->type()->is_builtin())
7886 return new Builtin_call_expression(gogo, this->fn_, this->args_,
7887 this->is_varargs_, this->location());
7888
7889 // Handle an argument which is a call to a function which returns
7890 // multiple results.
7891 if (this->args_ != NULL
7892 && this->args_->size() == 1
7893 && this->args_->front()->call_expression() != NULL
7894 && this->fn_->type()->function_type() != NULL)
7895 {
7896 Function_type* fntype = this->fn_->type()->function_type();
7897 size_t rc = this->args_->front()->call_expression()->result_count();
7898 if (rc > 1
7899 && fntype->parameters() != NULL
7900 && (fntype->parameters()->size() == rc
7901 || (fntype->is_varargs()
7902 && fntype->parameters()->size() - 1 <= rc)))
7903 {
7904 Call_expression* call = this->args_->front()->call_expression();
7905 Expression_list* args = new Expression_list;
7906 for (size_t i = 0; i < rc; ++i)
7907 args->push_back(Expression::make_call_result(call, i));
7908 // We can't return a new call expression here, because this
7909 // one may be referenced by Call_result expressions. FIXME.
7910 delete this->args_;
7911 this->args_ = args;
7912 }
7913 }
7914
7915 // Handle a call to a varargs function by packaging up the extra
7916 // parameters.
7917 if (this->fn_->type()->function_type() != NULL
7918 && this->fn_->type()->function_type()->is_varargs())
7919 {
7920 Function_type* fntype = this->fn_->type()->function_type();
7921 const Typed_identifier_list* parameters = fntype->parameters();
7922 gcc_assert(parameters != NULL && !parameters->empty());
7923 Type* varargs_type = parameters->back().type();
7924 return this->lower_varargs(gogo, function, varargs_type,
7925 parameters->size());
7926 }
7927
7928 return this;
7929}
7930
7931// Lower a call to a varargs function. FUNCTION is the function in
7932// which the call occurs--it's not the function we are calling.
7933// VARARGS_TYPE is the type of the varargs parameter, a slice type.
7934// PARAM_COUNT is the number of parameters of the function we are
7935// calling; the last of these parameters will be the varargs
7936// parameter.
7937
7938Expression*
7939Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
7940 Type* varargs_type, size_t param_count)
7941{
7942 if (this->varargs_are_lowered_)
7943 return this;
7944
7945 source_location loc = this->location();
7946
7947 gcc_assert(param_count > 0);
7948 gcc_assert(varargs_type->is_open_array_type());
7949
7950 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
7951 if (arg_count < param_count - 1)
7952 {
7953 // Not enough arguments; will be caught in check_types.
7954 return this;
7955 }
7956
7957 Expression_list* old_args = this->args_;
7958 Expression_list* new_args = new Expression_list();
7959 bool push_empty_arg = false;
7960 if (old_args == NULL || old_args->empty())
7961 {
7962 gcc_assert(param_count == 1);
7963 push_empty_arg = true;
7964 }
7965 else
7966 {
7967 Expression_list::const_iterator pa;
7968 int i = 1;
7969 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
7970 {
7971 if (static_cast<size_t>(i) == param_count)
7972 break;
7973 new_args->push_back(*pa);
7974 }
7975
7976 // We have reached the varargs parameter.
7977
7978 bool issued_error = false;
7979 if (pa == old_args->end())
7980 push_empty_arg = true;
7981 else if (pa + 1 == old_args->end() && this->is_varargs_)
7982 new_args->push_back(*pa);
7983 else if (this->is_varargs_)
7984 {
7985 this->report_error(_("too many arguments"));
7986 return this;
7987 }
7988 else if (pa + 1 == old_args->end()
7989 && this->is_compatible_varargs_argument(function, *pa,
7990 varargs_type,
7991 &issued_error))
7992 new_args->push_back(*pa);
7993 else
7994 {
7995 Type* element_type = varargs_type->array_type()->element_type();
7996 Expression_list* vals = new Expression_list;
7997 for (; pa != old_args->end(); ++pa, ++i)
7998 {
7999 // Check types here so that we get a better message.
8000 Type* patype = (*pa)->type();
8001 source_location paloc = (*pa)->location();
8002 if (!this->check_argument_type(i, element_type, patype,
8003 paloc, issued_error))
8004 continue;
8005 vals->push_back(*pa);
8006 }
8007 Expression* val =
8008 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8009 new_args->push_back(val);
8010 }
8011 }
8012
8013 if (push_empty_arg)
8014 new_args->push_back(Expression::make_nil(loc));
8015
8016 // We can't return a new call expression here, because this one may
8017 // be referenced by Call_result expressions. FIXME.
8018 if (old_args != NULL)
8019 delete old_args;
8020 this->args_ = new_args;
8021 this->varargs_are_lowered_ = true;
8022
8023 // Lower all the new subexpressions.
8024 Expression* ret = this;
8025 gogo->lower_expression(function, &ret);
8026 gcc_assert(ret == this);
8027 return ret;
8028}
8029
8030// Return true if ARG is a varargs argment which should be passed to
8031// the varargs parameter of type PARAM_TYPE without wrapping. ARG
8032// will be the last argument passed in the call, and PARAM_TYPE will
8033// be the type of the last parameter of the varargs function being
8034// called.
8035
8036bool
8037Call_expression::is_compatible_varargs_argument(Named_object* function,
8038 Expression* arg,
8039 Type* param_type,
8040 bool* issued_error)
8041{
8042 *issued_error = false;
8043
8044 Type* var_type = NULL;
8045
8046 // The simple case is passing the varargs parameter of the caller.
8047 Var_expression* ve = arg->var_expression();
8048 if (ve != NULL && ve->named_object()->is_variable())
8049 {
8050 Variable* var = ve->named_object()->var_value();
8051 if (var->is_varargs_parameter())
8052 var_type = var->type();
8053 }
8054
8055 // The complex case is passing the varargs parameter of some
8056 // enclosing function. This will look like passing down *c.f where
8057 // c is the closure variable and f is a field in the closure.
8058 if (function != NULL
8059 && function->func_value()->needs_closure()
8060 && arg->classification() == EXPRESSION_UNARY)
8061 {
8062 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8063 if (ue->op() == OPERATOR_MULT)
8064 {
8065 Field_reference_expression* fre =
8066 ue->operand()->deref()->field_reference_expression();
8067 if (fre != NULL)
8068 {
8069 Var_expression* ve = fre->expr()->deref()->var_expression();
8070 if (ve != NULL)
8071 {
8072 Named_object* no = ve->named_object();
8073 Function* f = function->func_value();
8074 if (no == f->closure_var())
8075 {
8076 // At this point we know that this indeed a
8077 // reference to some enclosing variable. Now we
8078 // need to figure out whether that variable is a
8079 // varargs parameter.
8080 Named_object* enclosing =
8081 f->enclosing_var(fre->field_index());
8082 Variable* var = enclosing->var_value();
8083 if (var->is_varargs_parameter())
8084 var_type = var->type();
8085 }
8086 }
8087 }
8088 }
8089 }
8090
8091 if (var_type == NULL)
8092 return false;
8093
8094 // We only match if the parameter is the same, with an identical
8095 // type.
8096 Array_type* var_at = var_type->array_type();
8097 gcc_assert(var_at != NULL);
8098 Array_type* param_at = param_type->array_type();
8099 if (param_at != NULL
8100 && Type::are_identical(var_at->element_type(),
07ba8be5 8101 param_at->element_type(), true, NULL))
e440a328 8102 return true;
8103 error_at(arg->location(), "... mismatch: passing ...T as ...");
8104 *issued_error = true;
8105 return false;
8106}
8107
8108// Get the function type. Returns NULL if we don't know the type. If
8109// this returns NULL, and if_ERROR is true, issues an error.
8110
8111Function_type*
8112Call_expression::get_function_type() const
8113{
8114 return this->fn_->type()->function_type();
8115}
8116
8117// Return the number of values which this call will return.
8118
8119size_t
8120Call_expression::result_count() const
8121{
8122 const Function_type* fntype = this->get_function_type();
8123 if (fntype == NULL)
8124 return 0;
8125 if (fntype->results() == NULL)
8126 return 0;
8127 return fntype->results()->size();
8128}
8129
8130// Return whether this is a call to the predeclared function recover.
8131
8132bool
8133Call_expression::is_recover_call() const
8134{
8135 return this->do_is_recover_call();
8136}
8137
8138// Set the argument to the recover function.
8139
8140void
8141Call_expression::set_recover_arg(Expression* arg)
8142{
8143 this->do_set_recover_arg(arg);
8144}
8145
8146// Virtual functions also implemented by Builtin_call_expression.
8147
8148bool
8149Call_expression::do_is_recover_call() const
8150{
8151 return false;
8152}
8153
8154void
8155Call_expression::do_set_recover_arg(Expression*)
8156{
8157 gcc_unreachable();
8158}
8159
8160// Get the type.
8161
8162Type*
8163Call_expression::do_type()
8164{
8165 if (this->type_ != NULL)
8166 return this->type_;
8167
8168 Type* ret;
8169 Function_type* fntype = this->get_function_type();
8170 if (fntype == NULL)
8171 return Type::make_error_type();
8172
8173 const Typed_identifier_list* results = fntype->results();
8174 if (results == NULL)
8175 ret = Type::make_void_type();
8176 else if (results->size() == 1)
8177 ret = results->begin()->type();
8178 else
8179 ret = Type::make_call_multiple_result_type(this);
8180
8181 this->type_ = ret;
8182
8183 return this->type_;
8184}
8185
8186// Determine types for a call expression. We can use the function
8187// parameter types to set the types of the arguments.
8188
8189void
8190Call_expression::do_determine_type(const Type_context*)
8191{
8192 this->fn_->determine_type_no_context();
8193 Function_type* fntype = this->get_function_type();
8194 const Typed_identifier_list* parameters = NULL;
8195 if (fntype != NULL)
8196 parameters = fntype->parameters();
8197 if (this->args_ != NULL)
8198 {
8199 Typed_identifier_list::const_iterator pt;
8200 if (parameters != NULL)
8201 pt = parameters->begin();
8202 for (Expression_list::const_iterator pa = this->args_->begin();
8203 pa != this->args_->end();
8204 ++pa)
8205 {
8206 if (parameters != NULL && pt != parameters->end())
8207 {
8208 Type_context subcontext(pt->type(), false);
8209 (*pa)->determine_type(&subcontext);
8210 ++pt;
8211 }
8212 else
8213 (*pa)->determine_type_no_context();
8214 }
8215 }
8216}
8217
8218// Check types for parameter I.
8219
8220bool
8221Call_expression::check_argument_type(int i, const Type* parameter_type,
8222 const Type* argument_type,
8223 source_location argument_location,
8224 bool issued_error)
8225{
8226 std::string reason;
8227 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8228 {
8229 if (!issued_error)
8230 {
8231 if (reason.empty())
8232 error_at(argument_location, "argument %d has incompatible type", i);
8233 else
8234 error_at(argument_location,
8235 "argument %d has incompatible type (%s)",
8236 i, reason.c_str());
8237 }
8238 this->set_is_error();
8239 return false;
8240 }
8241 return true;
8242}
8243
8244// Check types.
8245
8246void
8247Call_expression::do_check_types(Gogo*)
8248{
8249 Function_type* fntype = this->get_function_type();
8250 if (fntype == NULL)
8251 {
8252 if (!this->fn_->type()->is_error_type())
8253 this->report_error(_("expected function"));
8254 return;
8255 }
8256
8257 if (fntype->is_method())
8258 {
8259 // We don't support pointers to methods, so the function has to
8260 // be a bound method expression.
8261 Bound_method_expression* bme = this->fn_->bound_method_expression();
8262 if (bme == NULL)
8263 {
8264 this->report_error(_("method call without object"));
8265 return;
8266 }
8267 Type* first_arg_type = bme->first_argument()->type();
8268 if (first_arg_type->points_to() == NULL)
8269 {
8270 // When passing a value, we need to check that we are
8271 // permitted to copy it.
8272 std::string reason;
8273 if (!Type::are_assignable(fntype->receiver()->type(),
8274 first_arg_type, &reason))
8275 {
8276 if (reason.empty())
8277 this->report_error(_("incompatible type for receiver"));
8278 else
8279 {
8280 error_at(this->location(),
8281 "incompatible type for receiver (%s)",
8282 reason.c_str());
8283 this->set_is_error();
8284 }
8285 }
8286 }
8287 }
8288
8289 // Note that varargs was handled by the lower_varargs() method, so
8290 // we don't have to worry about it here.
8291
8292 const Typed_identifier_list* parameters = fntype->parameters();
8293 if (this->args_ == NULL)
8294 {
8295 if (parameters != NULL && !parameters->empty())
8296 this->report_error(_("not enough arguments"));
8297 }
8298 else if (parameters == NULL)
8299 this->report_error(_("too many arguments"));
8300 else
8301 {
8302 int i = 0;
8303 Typed_identifier_list::const_iterator pt = parameters->begin();
8304 for (Expression_list::const_iterator pa = this->args_->begin();
8305 pa != this->args_->end();
8306 ++pa, ++pt, ++i)
8307 {
8308 if (pt == parameters->end())
8309 {
8310 this->report_error(_("too many arguments"));
8311 return;
8312 }
8313 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8314 (*pa)->location(), false);
8315 }
8316 if (pt != parameters->end())
8317 this->report_error(_("not enough arguments"));
8318 }
8319}
8320
8321// Return whether we have to use a temporary variable to ensure that
8322// we evaluate this call expression in order. If the call returns no
8323// results then it will inevitably be executed last. If the call
8324// returns more than one result then it will be used with Call_result
8325// expressions. So we only have to use a temporary variable if the
8326// call returns exactly one result.
8327
8328bool
8329Call_expression::do_must_eval_in_order() const
8330{
8331 return this->result_count() == 1;
8332}
8333
8334// Get the function and the first argument to use when calling a bound
8335// method.
8336
8337tree
8338Call_expression::bound_method_function(Translate_context* context,
8339 Bound_method_expression* bound_method,
8340 tree* first_arg_ptr)
8341{
8342 Expression* first_argument = bound_method->first_argument();
8343 tree first_arg = first_argument->get_tree(context);
8344 if (first_arg == error_mark_node)
8345 return error_mark_node;
8346
8347 // We always pass a pointer to the first argument when calling a
8348 // method.
8349 if (first_argument->type()->points_to() == NULL)
8350 {
8351 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8352 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8353 || DECL_P(first_arg)
8354 || TREE_CODE(first_arg) == INDIRECT_REF
8355 || TREE_CODE(first_arg) == COMPONENT_REF)
8356 {
8357 first_arg = build_fold_addr_expr(first_arg);
8358 if (DECL_P(first_arg))
8359 TREE_ADDRESSABLE(first_arg) = 1;
8360 }
8361 else
8362 {
8363 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8364 get_name(first_arg));
8365 DECL_IGNORED_P(tmp) = 0;
8366 DECL_INITIAL(tmp) = first_arg;
8367 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8368 build1(DECL_EXPR, void_type_node, tmp),
8369 build_fold_addr_expr(tmp));
8370 TREE_ADDRESSABLE(tmp) = 1;
8371 }
8372 if (first_arg == error_mark_node)
8373 return error_mark_node;
8374 }
8375
8376 Type* fatype = bound_method->first_argument_type();
8377 if (fatype != NULL)
8378 {
8379 if (fatype->points_to() == NULL)
8380 fatype = Type::make_pointer_type(fatype);
8381 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8382 if (first_arg == error_mark_node
8383 || TREE_TYPE(first_arg) == error_mark_node)
8384 return error_mark_node;
8385 }
8386
8387 *first_arg_ptr = first_arg;
8388
8389 return bound_method->method()->get_tree(context);
8390}
8391
8392// Get the function and the first argument to use when calling an
8393// interface method.
8394
8395tree
8396Call_expression::interface_method_function(
8397 Translate_context* context,
8398 Interface_field_reference_expression* interface_method,
8399 tree* first_arg_ptr)
8400{
8401 tree expr = interface_method->expr()->get_tree(context);
8402 if (expr == error_mark_node)
8403 return error_mark_node;
8404 expr = save_expr(expr);
8405 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8406 if (first_arg == error_mark_node)
8407 return error_mark_node;
8408 *first_arg_ptr = first_arg;
8409 return interface_method->get_function_tree(context, expr);
8410}
8411
8412// Build the call expression.
8413
8414tree
8415Call_expression::do_get_tree(Translate_context* context)
8416{
8417 if (this->tree_ != NULL_TREE)
8418 return this->tree_;
8419
8420 Function_type* fntype = this->get_function_type();
8421 if (fntype == NULL)
8422 return error_mark_node;
8423
8424 if (this->fn_->is_error_expression())
8425 return error_mark_node;
8426
8427 Gogo* gogo = context->gogo();
8428 source_location location = this->location();
8429
8430 Func_expression* func = this->fn_->func_expression();
8431 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8432 Interface_field_reference_expression* interface_method =
8433 this->fn_->interface_field_reference_expression();
8434 const bool has_closure = func != NULL && func->closure() != NULL;
8435 const bool is_method = bound_method != NULL || interface_method != NULL;
8436 gcc_assert(!fntype->is_method() || is_method);
8437
8438 int nargs;
8439 tree* args;
8440 if (this->args_ == NULL || this->args_->empty())
8441 {
8442 nargs = is_method ? 1 : 0;
8443 args = nargs == 0 ? NULL : new tree[nargs];
8444 }
8445 else
8446 {
8447 const Typed_identifier_list* params = fntype->parameters();
8448 gcc_assert(params != NULL);
8449
8450 nargs = this->args_->size();
8451 int i = is_method ? 1 : 0;
8452 nargs += i;
8453 args = new tree[nargs];
8454
8455 Typed_identifier_list::const_iterator pp = params->begin();
8456 Expression_list::const_iterator pe;
8457 for (pe = this->args_->begin();
8458 pe != this->args_->end();
8459 ++pe, ++pp, ++i)
8460 {
8461 tree arg_val = (*pe)->get_tree(context);
8462 args[i] = Expression::convert_for_assignment(context,
8463 pp->type(),
8464 (*pe)->type(),
8465 arg_val,
8466 location);
8467 if (args[i] == error_mark_node)
8468 return error_mark_node;
8469 }
8470 gcc_assert(pp == params->end());
8471 gcc_assert(i == nargs);
8472 }
8473
8474 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8475 if (rettype == error_mark_node)
8476 return error_mark_node;
8477
8478 tree fn;
8479 if (has_closure)
8480 fn = func->get_tree_without_closure(gogo);
8481 else if (!is_method)
8482 fn = this->fn_->get_tree(context);
8483 else if (bound_method != NULL)
8484 fn = this->bound_method_function(context, bound_method, &args[0]);
8485 else if (interface_method != NULL)
8486 fn = this->interface_method_function(context, interface_method, &args[0]);
8487 else
8488 gcc_unreachable();
8489
8490 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8491 return error_mark_node;
8492
8493 // This is to support builtin math functions when using 80387 math.
8494 tree fndecl = fn;
8495 if (TREE_CODE(fndecl) == ADDR_EXPR)
8496 fndecl = TREE_OPERAND(fndecl, 0);
8497 tree excess_type = NULL_TREE;
8498 if (DECL_P(fndecl)
8499 && DECL_IS_BUILTIN(fndecl)
8500 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8501 && nargs > 0
8502 && ((SCALAR_FLOAT_TYPE_P(rettype)
8503 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8504 || (COMPLEX_FLOAT_TYPE_P(rettype)
8505 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8506 {
8507 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8508 if (excess_type != NULL_TREE)
8509 {
8510 tree excess_fndecl = mathfn_built_in(excess_type,
8511 DECL_FUNCTION_CODE(fndecl));
8512 if (excess_fndecl == NULL_TREE)
8513 excess_type = NULL_TREE;
8514 else
8515 {
8516 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8517 for (int i = 0; i < nargs; ++i)
8518 args[i] = ::convert(excess_type, args[i]);
8519 }
8520 }
8521 }
8522
8523 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8524 fn, nargs, args);
8525 delete[] args;
8526
8527 SET_EXPR_LOCATION(ret, location);
8528
8529 if (has_closure)
8530 {
8531 tree closure_tree = func->closure()->get_tree(context);
8532 if (closure_tree != error_mark_node)
8533 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8534 }
8535
8536 // If this is a recursive function type which returns itself, as in
8537 // type F func() F
8538 // we have used ptr_type_node for the return type. Add a cast here
8539 // to the correct type.
8540 if (TREE_TYPE(ret) == ptr_type_node)
8541 {
8542 tree t = this->type()->get_tree(gogo);
8543 ret = fold_convert_loc(location, t, ret);
8544 }
8545
8546 if (excess_type != NULL_TREE)
8547 {
8548 // Calling convert here can undo our excess precision change.
8549 // That may or may not be a bug in convert_to_real.
8550 ret = build1(NOP_EXPR, rettype, ret);
8551 }
8552
8553 // If there is more than one result, we will refer to the call
8554 // multiple times.
8555 if (fntype->results() != NULL && fntype->results()->size() > 1)
8556 ret = save_expr(ret);
8557
8558 this->tree_ = ret;
8559
8560 return ret;
8561}
8562
8563// Make a call expression.
8564
8565Call_expression*
8566Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8567 source_location location)
8568{
8569 return new Call_expression(fn, args, is_varargs, location);
8570}
8571
8572// A single result from a call which returns multiple results.
8573
8574class Call_result_expression : public Expression
8575{
8576 public:
8577 Call_result_expression(Call_expression* call, unsigned int index)
8578 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8579 call_(call), index_(index)
8580 { }
8581
8582 protected:
8583 int
8584 do_traverse(Traverse*);
8585
8586 Type*
8587 do_type();
8588
8589 void
8590 do_determine_type(const Type_context*);
8591
8592 void
8593 do_check_types(Gogo*);
8594
8595 Expression*
8596 do_copy()
8597 {
8598 return new Call_result_expression(this->call_->call_expression(),
8599 this->index_);
8600 }
8601
8602 bool
8603 do_must_eval_in_order() const
8604 { return true; }
8605
8606 tree
8607 do_get_tree(Translate_context*);
8608
8609 private:
8610 // The underlying call expression.
8611 Expression* call_;
8612 // Which result we want.
8613 unsigned int index_;
8614};
8615
8616// Traverse a call result.
8617
8618int
8619Call_result_expression::do_traverse(Traverse* traverse)
8620{
8621 if (traverse->remember_expression(this->call_))
8622 {
8623 // We have already traversed the call expression.
8624 return TRAVERSE_CONTINUE;
8625 }
8626 return Expression::traverse(&this->call_, traverse);
8627}
8628
8629// Get the type.
8630
8631Type*
8632Call_result_expression::do_type()
8633{
8634 // THIS->CALL_ can be replaced with a temporary reference due to
8635 // Call_expression::do_must_eval_in_order when there is an error.
8636 Call_expression* ce = this->call_->call_expression();
8637 if (ce == NULL)
8638 return Type::make_error_type();
8639 Function_type* fntype = ce->get_function_type();
8640 if (fntype == NULL)
8641 return Type::make_error_type();
8642 const Typed_identifier_list* results = fntype->results();
8643 Typed_identifier_list::const_iterator pr = results->begin();
8644 for (unsigned int i = 0; i < this->index_; ++i)
8645 {
8646 if (pr == results->end())
8647 return Type::make_error_type();
8648 ++pr;
8649 }
8650 if (pr == results->end())
8651 return Type::make_error_type();
8652 return pr->type();
8653}
8654
8655// Check the type. This is where we give an error if we're trying to
8656// extract too many values from a call.
8657
8658void
8659Call_result_expression::do_check_types(Gogo*)
8660{
8661 bool ok = true;
8662 Call_expression* ce = this->call_->call_expression();
8663 if (ce != NULL)
8664 ok = this->index_ < ce->result_count();
8665 else
8666 {
8667 // This can happen when the call returns a single value but we
8668 // are asking for the second result.
8669 if (this->call_->is_error_expression())
8670 return;
8671 ok = false;
8672 }
8673 if (!ok)
567b7660 8674 this->report_error(_("number of results does not match number of values"));
e440a328 8675}
8676
8677// Determine the type. We have nothing to do here, but the 0 result
8678// needs to pass down to the caller.
8679
8680void
8681Call_result_expression::do_determine_type(const Type_context*)
8682{
8683 if (this->index_ == 0)
8684 this->call_->determine_type_no_context();
8685}
8686
8687// Return the tree.
8688
8689tree
8690Call_result_expression::do_get_tree(Translate_context* context)
8691{
8692 tree call_tree = this->call_->get_tree(context);
8693 if (call_tree == error_mark_node)
8694 return error_mark_node;
8695 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8696 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8697 for (unsigned int i = 0; i < this->index_; ++i)
8698 {
8699 gcc_assert(field != NULL_TREE);
8700 field = DECL_CHAIN(field);
8701 }
8702 gcc_assert(field != NULL_TREE);
8703 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8704}
8705
8706// Make a reference to a single result of a call which returns
8707// multiple results.
8708
8709Expression*
8710Expression::make_call_result(Call_expression* call, unsigned int index)
8711{
8712 return new Call_result_expression(call, index);
8713}
8714
8715// Class Index_expression.
8716
8717// Traversal.
8718
8719int
8720Index_expression::do_traverse(Traverse* traverse)
8721{
8722 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8723 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8724 || (this->end_ != NULL
8725 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8726 return TRAVERSE_EXIT;
8727 return TRAVERSE_CONTINUE;
8728}
8729
8730// Lower an index expression. This converts the generic index
8731// expression into an array index, a string index, or a map index.
8732
8733Expression*
8734Index_expression::do_lower(Gogo*, Named_object*, int)
8735{
8736 source_location location = this->location();
8737 Expression* left = this->left_;
8738 Expression* start = this->start_;
8739 Expression* end = this->end_;
8740
8741 Type* type = left->type();
8742 if (type->is_error_type())
8743 return Expression::make_error(location);
8744 else if (type->array_type() != NULL)
8745 return Expression::make_array_index(left, start, end, location);
8746 else if (type->points_to() != NULL
8747 && type->points_to()->array_type() != NULL
8748 && !type->points_to()->is_open_array_type())
8749 {
8750 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8751 location);
8752 return Expression::make_array_index(deref, start, end, location);
8753 }
8754 else if (type->is_string_type())
8755 return Expression::make_string_index(left, start, end, location);
8756 else if (type->map_type() != NULL)
8757 {
8758 if (end != NULL)
8759 {
8760 error_at(location, "invalid slice of map");
8761 return Expression::make_error(location);
8762 }
8763 Map_index_expression* ret= Expression::make_map_index(left, start,
8764 location);
8765 if (this->is_lvalue_)
8766 ret->set_is_lvalue();
8767 return ret;
8768 }
8769 else
8770 {
8771 error_at(location,
8772 "attempt to index object which is not array, string, or map");
8773 return Expression::make_error(location);
8774 }
8775}
8776
8777// Make an index expression.
8778
8779Expression*
8780Expression::make_index(Expression* left, Expression* start, Expression* end,
8781 source_location location)
8782{
8783 return new Index_expression(left, start, end, location);
8784}
8785
8786// An array index. This is used for both indexing and slicing.
8787
8788class Array_index_expression : public Expression
8789{
8790 public:
8791 Array_index_expression(Expression* array, Expression* start,
8792 Expression* end, source_location location)
8793 : Expression(EXPRESSION_ARRAY_INDEX, location),
8794 array_(array), start_(start), end_(end), type_(NULL)
8795 { }
8796
8797 protected:
8798 int
8799 do_traverse(Traverse*);
8800
8801 Type*
8802 do_type();
8803
8804 void
8805 do_determine_type(const Type_context*);
8806
8807 void
8808 do_check_types(Gogo*);
8809
8810 Expression*
8811 do_copy()
8812 {
8813 return Expression::make_array_index(this->array_->copy(),
8814 this->start_->copy(),
8815 (this->end_ == NULL
8816 ? NULL
8817 : this->end_->copy()),
8818 this->location());
8819 }
8820
8821 bool
8822 do_is_addressable() const;
8823
8824 void
8825 do_address_taken(bool escapes)
8826 { this->array_->address_taken(escapes); }
8827
8828 tree
8829 do_get_tree(Translate_context*);
8830
8831 private:
8832 // The array we are getting a value from.
8833 Expression* array_;
8834 // The start or only index.
8835 Expression* start_;
8836 // The end index of a slice. This may be NULL for a simple array
8837 // index, or it may be a nil expression for the length of the array.
8838 Expression* end_;
8839 // The type of the expression.
8840 Type* type_;
8841};
8842
8843// Array index traversal.
8844
8845int
8846Array_index_expression::do_traverse(Traverse* traverse)
8847{
8848 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
8849 return TRAVERSE_EXIT;
8850 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
8851 return TRAVERSE_EXIT;
8852 if (this->end_ != NULL)
8853 {
8854 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
8855 return TRAVERSE_EXIT;
8856 }
8857 return TRAVERSE_CONTINUE;
8858}
8859
8860// Return the type of an array index.
8861
8862Type*
8863Array_index_expression::do_type()
8864{
8865 if (this->type_ == NULL)
8866 {
8867 Array_type* type = this->array_->type()->array_type();
8868 if (type == NULL)
8869 this->type_ = Type::make_error_type();
8870 else if (this->end_ == NULL)
8871 this->type_ = type->element_type();
8872 else if (type->is_open_array_type())
8873 {
8874 // A slice of a slice has the same type as the original
8875 // slice.
8876 this->type_ = this->array_->type()->deref();
8877 }
8878 else
8879 {
8880 // A slice of an array is a slice.
8881 this->type_ = Type::make_array_type(type->element_type(), NULL);
8882 }
8883 }
8884 return this->type_;
8885}
8886
8887// Set the type of an array index.
8888
8889void
8890Array_index_expression::do_determine_type(const Type_context*)
8891{
8892 this->array_->determine_type_no_context();
8893 Type_context subcontext(NULL, true);
8894 this->start_->determine_type(&subcontext);
8895 if (this->end_ != NULL)
8896 this->end_->determine_type(&subcontext);
8897}
8898
8899// Check types of an array index.
8900
8901void
8902Array_index_expression::do_check_types(Gogo*)
8903{
8904 if (this->start_->type()->integer_type() == NULL)
8905 this->report_error(_("index must be integer"));
8906 if (this->end_ != NULL
8907 && this->end_->type()->integer_type() == NULL
8908 && !this->end_->is_nil_expression())
8909 this->report_error(_("slice end must be integer"));
8910
8911 Array_type* array_type = this->array_->type()->array_type();
8912 gcc_assert(array_type != NULL);
8913
8914 unsigned int int_bits =
8915 Type::lookup_integer_type("int")->integer_type()->bits();
8916
8917 Type* dummy;
8918 mpz_t lval;
8919 mpz_init(lval);
8920 bool lval_valid = (array_type->length() != NULL
8921 && array_type->length()->integer_constant_value(true,
8922 lval,
8923 &dummy));
8924 mpz_t ival;
8925 mpz_init(ival);
8926 if (this->start_->integer_constant_value(true, ival, &dummy))
8927 {
8928 if (mpz_sgn(ival) < 0
8929 || mpz_sizeinbase(ival, 2) >= int_bits
8930 || (lval_valid
8931 && (this->end_ == NULL
8932 ? mpz_cmp(ival, lval) >= 0
8933 : mpz_cmp(ival, lval) > 0)))
8934 {
8935 error_at(this->start_->location(), "array index out of bounds");
8936 this->set_is_error();
8937 }
8938 }
8939 if (this->end_ != NULL && !this->end_->is_nil_expression())
8940 {
8941 if (this->end_->integer_constant_value(true, ival, &dummy))
8942 {
8943 if (mpz_sgn(ival) < 0
8944 || mpz_sizeinbase(ival, 2) >= int_bits
8945 || (lval_valid && mpz_cmp(ival, lval) > 0))
8946 {
8947 error_at(this->end_->location(), "array index out of bounds");
8948 this->set_is_error();
8949 }
8950 }
8951 }
8952 mpz_clear(ival);
8953 mpz_clear(lval);
8954
8955 // A slice of an array requires an addressable array. A slice of a
8956 // slice is always possible.
8957 if (this->end_ != NULL
8958 && !array_type->is_open_array_type()
8959 && !this->array_->is_addressable())
8960 this->report_error(_("array is not addressable"));
8961}
8962
8963// Return whether this expression is addressable.
8964
8965bool
8966Array_index_expression::do_is_addressable() const
8967{
8968 // A slice expression is not addressable.
8969 if (this->end_ != NULL)
8970 return false;
8971
8972 // An index into a slice is addressable.
8973 if (this->array_->type()->is_open_array_type())
8974 return true;
8975
8976 // An index into an array is addressable if the array is
8977 // addressable.
8978 return this->array_->is_addressable();
8979}
8980
8981// Get a tree for an array index.
8982
8983tree
8984Array_index_expression::do_get_tree(Translate_context* context)
8985{
8986 Gogo* gogo = context->gogo();
8987 source_location loc = this->location();
8988
8989 Array_type* array_type = this->array_->type()->array_type();
8990 gcc_assert(array_type != NULL);
8991
8992 tree type_tree = array_type->get_tree(gogo);
c65212a0 8993 if (type_tree == error_mark_node)
8994 return error_mark_node;
e440a328 8995
8996 tree array_tree = this->array_->get_tree(context);
8997 if (array_tree == error_mark_node)
8998 return error_mark_node;
8999
9000 if (array_type->length() == NULL && !DECL_P(array_tree))
9001 array_tree = save_expr(array_tree);
9002 tree length_tree = array_type->length_tree(gogo, array_tree);
c65212a0 9003 if (length_tree == error_mark_node)
9004 return error_mark_node;
e440a328 9005 length_tree = save_expr(length_tree);
9006 tree length_type = TREE_TYPE(length_tree);
9007
9008 tree bad_index = boolean_false_node;
9009
9010 tree start_tree = this->start_->get_tree(context);
9011 if (start_tree == error_mark_node)
9012 return error_mark_node;
9013 if (!DECL_P(start_tree))
9014 start_tree = save_expr(start_tree);
9015 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9016 start_tree = convert_to_integer(length_type, start_tree);
9017
9018 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9019 loc);
9020
9021 start_tree = fold_convert_loc(loc, length_type, start_tree);
9022 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9023 fold_build2_loc(loc,
9024 (this->end_ == NULL
9025 ? GE_EXPR
9026 : GT_EXPR),
9027 boolean_type_node, start_tree,
9028 length_tree));
9029
9030 int code = (array_type->length() != NULL
9031 ? (this->end_ == NULL
9032 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9033 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9034 : (this->end_ == NULL
9035 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9036 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9037 tree crash = Gogo::runtime_error(code, loc);
9038
9039 if (this->end_ == NULL)
9040 {
9041 // Simple array indexing. This has to return an l-value, so
9042 // wrap the index check into START_TREE.
9043 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9044 build3(COND_EXPR, void_type_node,
9045 bad_index, crash, NULL_TREE),
9046 start_tree);
9047 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9048
9049 if (array_type->length() != NULL)
9050 {
9051 // Fixed array.
9052 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9053 start_tree, NULL_TREE, NULL_TREE);
9054 }
9055 else
9056 {
9057 // Open array.
9058 tree values = array_type->value_pointer_tree(gogo, array_tree);
9059 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9060 if (element_type_tree == error_mark_node)
9061 return error_mark_node;
e440a328 9062 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9063 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9064 start_tree, element_size);
9065 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9066 TREE_TYPE(values), values, offset);
9067 return build_fold_indirect_ref(ptr);
9068 }
9069 }
9070
9071 // Array slice.
9072
9073 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
c65212a0 9074 if (capacity_tree == error_mark_node)
9075 return error_mark_node;
e440a328 9076 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9077
9078 tree end_tree;
9079 if (this->end_->is_nil_expression())
9080 end_tree = length_tree;
9081 else
9082 {
9083 end_tree = this->end_->get_tree(context);
9084 if (end_tree == error_mark_node)
9085 return error_mark_node;
9086 if (!DECL_P(end_tree))
9087 end_tree = save_expr(end_tree);
9088 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9089 end_tree = convert_to_integer(length_type, end_tree);
9090
9091 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9092 loc);
9093
9094 end_tree = fold_convert_loc(loc, length_type, end_tree);
9095
9096 capacity_tree = save_expr(capacity_tree);
9097 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9098 fold_build2_loc(loc, LT_EXPR,
9099 boolean_type_node,
9100 end_tree, start_tree),
9101 fold_build2_loc(loc, GT_EXPR,
9102 boolean_type_node,
9103 end_tree, capacity_tree));
9104 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9105 bad_index, bad_end);
9106 }
9107
9108 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9109 if (element_type_tree == error_mark_node)
9110 return error_mark_node;
e440a328 9111 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9112
9113 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9114 fold_convert_loc(loc, sizetype, start_tree),
9115 element_size);
9116
9117 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
c65212a0 9118 if (value_pointer == error_mark_node)
9119 return error_mark_node;
e440a328 9120
9121 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9122 TREE_TYPE(value_pointer),
9123 value_pointer, offset);
9124
9125 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9126 end_tree, start_tree);
9127
9128 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9129 capacity_tree, start_tree);
9130
9131 tree struct_tree = this->type()->get_tree(gogo);
9132 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9133
9134 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9135
9136 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9137 tree field = TYPE_FIELDS(struct_tree);
9138 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9139 elt->index = field;
9140 elt->value = value_pointer;
9141
9142 elt = VEC_quick_push(constructor_elt, init, NULL);
9143 field = DECL_CHAIN(field);
9144 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9145 elt->index = field;
9146 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9147
9148 elt = VEC_quick_push(constructor_elt, init, NULL);
9149 field = DECL_CHAIN(field);
9150 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9151 elt->index = field;
9152 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9153
9154 tree constructor = build_constructor(struct_tree, init);
9155
9156 if (TREE_CONSTANT(value_pointer)
9157 && TREE_CONSTANT(result_length_tree)
9158 && TREE_CONSTANT(result_capacity_tree))
9159 TREE_CONSTANT(constructor) = 1;
9160
9161 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9162 build3(COND_EXPR, void_type_node,
9163 bad_index, crash, NULL_TREE),
9164 constructor);
9165}
9166
9167// Make an array index expression. END may be NULL.
9168
9169Expression*
9170Expression::make_array_index(Expression* array, Expression* start,
9171 Expression* end, source_location location)
9172{
9173 // Taking a slice of a composite literal requires moving the literal
9174 // onto the heap.
9175 if (end != NULL && array->is_composite_literal())
9176 {
9177 array = Expression::make_heap_composite(array, location);
9178 array = Expression::make_unary(OPERATOR_MULT, array, location);
9179 }
9180 return new Array_index_expression(array, start, end, location);
9181}
9182
9183// A string index. This is used for both indexing and slicing.
9184
9185class String_index_expression : public Expression
9186{
9187 public:
9188 String_index_expression(Expression* string, Expression* start,
9189 Expression* end, source_location location)
9190 : Expression(EXPRESSION_STRING_INDEX, location),
9191 string_(string), start_(start), end_(end)
9192 { }
9193
9194 protected:
9195 int
9196 do_traverse(Traverse*);
9197
9198 Type*
9199 do_type();
9200
9201 void
9202 do_determine_type(const Type_context*);
9203
9204 void
9205 do_check_types(Gogo*);
9206
9207 Expression*
9208 do_copy()
9209 {
9210 return Expression::make_string_index(this->string_->copy(),
9211 this->start_->copy(),
9212 (this->end_ == NULL
9213 ? NULL
9214 : this->end_->copy()),
9215 this->location());
9216 }
9217
9218 tree
9219 do_get_tree(Translate_context*);
9220
9221 private:
9222 // The string we are getting a value from.
9223 Expression* string_;
9224 // The start or only index.
9225 Expression* start_;
9226 // The end index of a slice. This may be NULL for a single index,
9227 // or it may be a nil expression for the length of the string.
9228 Expression* end_;
9229};
9230
9231// String index traversal.
9232
9233int
9234String_index_expression::do_traverse(Traverse* traverse)
9235{
9236 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9237 return TRAVERSE_EXIT;
9238 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9239 return TRAVERSE_EXIT;
9240 if (this->end_ != NULL)
9241 {
9242 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9243 return TRAVERSE_EXIT;
9244 }
9245 return TRAVERSE_CONTINUE;
9246}
9247
9248// Return the type of a string index.
9249
9250Type*
9251String_index_expression::do_type()
9252{
9253 if (this->end_ == NULL)
9254 return Type::lookup_integer_type("uint8");
9255 else
9256 return Type::make_string_type();
9257}
9258
9259// Determine the type of a string index.
9260
9261void
9262String_index_expression::do_determine_type(const Type_context*)
9263{
9264 this->string_->determine_type_no_context();
9265 Type_context subcontext(NULL, true);
9266 this->start_->determine_type(&subcontext);
9267 if (this->end_ != NULL)
9268 this->end_->determine_type(&subcontext);
9269}
9270
9271// Check types of a string index.
9272
9273void
9274String_index_expression::do_check_types(Gogo*)
9275{
9276 if (this->start_->type()->integer_type() == NULL)
9277 this->report_error(_("index must be integer"));
9278 if (this->end_ != NULL
9279 && this->end_->type()->integer_type() == NULL
9280 && !this->end_->is_nil_expression())
9281 this->report_error(_("slice end must be integer"));
9282
9283 std::string sval;
9284 bool sval_valid = this->string_->string_constant_value(&sval);
9285
9286 mpz_t ival;
9287 mpz_init(ival);
9288 Type* dummy;
9289 if (this->start_->integer_constant_value(true, ival, &dummy))
9290 {
9291 if (mpz_sgn(ival) < 0
9292 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9293 {
9294 error_at(this->start_->location(), "string index out of bounds");
9295 this->set_is_error();
9296 }
9297 }
9298 if (this->end_ != NULL && !this->end_->is_nil_expression())
9299 {
9300 if (this->end_->integer_constant_value(true, ival, &dummy))
9301 {
9302 if (mpz_sgn(ival) < 0
9303 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9304 {
9305 error_at(this->end_->location(), "string index out of bounds");
9306 this->set_is_error();
9307 }
9308 }
9309 }
9310 mpz_clear(ival);
9311}
9312
9313// Get a tree for a string index.
9314
9315tree
9316String_index_expression::do_get_tree(Translate_context* context)
9317{
9318 source_location loc = this->location();
9319
9320 tree string_tree = this->string_->get_tree(context);
9321 if (string_tree == error_mark_node)
9322 return error_mark_node;
9323
9324 if (this->string_->type()->points_to() != NULL)
9325 string_tree = build_fold_indirect_ref(string_tree);
9326 if (!DECL_P(string_tree))
9327 string_tree = save_expr(string_tree);
9328 tree string_type = TREE_TYPE(string_tree);
9329
9330 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9331 length_tree = save_expr(length_tree);
9332 tree length_type = TREE_TYPE(length_tree);
9333
9334 tree bad_index = boolean_false_node;
9335
9336 tree start_tree = this->start_->get_tree(context);
9337 if (start_tree == error_mark_node)
9338 return error_mark_node;
9339 if (!DECL_P(start_tree))
9340 start_tree = save_expr(start_tree);
9341 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9342 start_tree = convert_to_integer(length_type, start_tree);
9343
9344 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9345 loc);
9346
9347 start_tree = fold_convert_loc(loc, length_type, start_tree);
9348
9349 int code = (this->end_ == NULL
9350 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9351 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9352 tree crash = Gogo::runtime_error(code, loc);
9353
9354 if (this->end_ == NULL)
9355 {
9356 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9357 bad_index,
9358 fold_build2_loc(loc, GE_EXPR,
9359 boolean_type_node,
9360 start_tree, length_tree));
9361
9362 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9363 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9364 bytes_tree,
9365 fold_convert_loc(loc, sizetype, start_tree));
9366 tree index = build_fold_indirect_ref_loc(loc, ptr);
9367
9368 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9369 build3(COND_EXPR, void_type_node,
9370 bad_index, crash, NULL_TREE),
9371 index);
9372 }
9373 else
9374 {
9375 tree end_tree;
9376 if (this->end_->is_nil_expression())
9377 end_tree = build_int_cst(length_type, -1);
9378 else
9379 {
9380 end_tree = this->end_->get_tree(context);
9381 if (end_tree == error_mark_node)
9382 return error_mark_node;
9383 if (!DECL_P(end_tree))
9384 end_tree = save_expr(end_tree);
9385 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9386 end_tree = convert_to_integer(length_type, end_tree);
9387
9388 bad_index = Expression::check_bounds(end_tree, length_type,
9389 bad_index, loc);
9390
9391 end_tree = fold_convert_loc(loc, length_type, end_tree);
9392 }
9393
9394 static tree strslice_fndecl;
9395 tree ret = Gogo::call_builtin(&strslice_fndecl,
9396 loc,
9397 "__go_string_slice",
9398 3,
9399 string_type,
9400 string_type,
9401 string_tree,
9402 length_type,
9403 start_tree,
9404 length_type,
9405 end_tree);
9406 // This will panic if the bounds are out of range for the
9407 // string.
9408 TREE_NOTHROW(strslice_fndecl) = 0;
9409
9410 if (bad_index == boolean_false_node)
9411 return ret;
9412 else
9413 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9414 build3(COND_EXPR, void_type_node,
9415 bad_index, crash, NULL_TREE),
9416 ret);
9417 }
9418}
9419
9420// Make a string index expression. END may be NULL.
9421
9422Expression*
9423Expression::make_string_index(Expression* string, Expression* start,
9424 Expression* end, source_location location)
9425{
9426 return new String_index_expression(string, start, end, location);
9427}
9428
9429// Class Map_index.
9430
9431// Get the type of the map.
9432
9433Map_type*
9434Map_index_expression::get_map_type() const
9435{
9436 Map_type* mt = this->map_->type()->deref()->map_type();
9437 gcc_assert(mt != NULL);
9438 return mt;
9439}
9440
9441// Map index traversal.
9442
9443int
9444Map_index_expression::do_traverse(Traverse* traverse)
9445{
9446 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9447 return TRAVERSE_EXIT;
9448 return Expression::traverse(&this->index_, traverse);
9449}
9450
9451// Return the type of a map index.
9452
9453Type*
9454Map_index_expression::do_type()
9455{
9456 Type* type = this->get_map_type()->val_type();
9457 // If this map index is in a tuple assignment, we actually return a
9458 // pointer to the value type. Tuple_map_assignment_statement is
9459 // responsible for handling this correctly. We need to get the type
9460 // right in case this gets assigned to a temporary variable.
9461 if (this->is_in_tuple_assignment_)
9462 type = Type::make_pointer_type(type);
9463 return type;
9464}
9465
9466// Fix the type of a map index.
9467
9468void
9469Map_index_expression::do_determine_type(const Type_context*)
9470{
9471 this->map_->determine_type_no_context();
9472 Type_context subcontext(this->get_map_type()->key_type(), false);
9473 this->index_->determine_type(&subcontext);
9474}
9475
9476// Check types of a map index.
9477
9478void
9479Map_index_expression::do_check_types(Gogo*)
9480{
9481 std::string reason;
9482 if (!Type::are_assignable(this->get_map_type()->key_type(),
9483 this->index_->type(), &reason))
9484 {
9485 if (reason.empty())
9486 this->report_error(_("incompatible type for map index"));
9487 else
9488 {
9489 error_at(this->location(), "incompatible type for map index (%s)",
9490 reason.c_str());
9491 this->set_is_error();
9492 }
9493 }
9494}
9495
9496// Get a tree for a map index.
9497
9498tree
9499Map_index_expression::do_get_tree(Translate_context* context)
9500{
9501 Map_type* type = this->get_map_type();
9502
9503 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9504 if (valptr == error_mark_node)
9505 return error_mark_node;
9506 valptr = save_expr(valptr);
9507
9508 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9509
9510 if (this->is_lvalue_)
9511 return build_fold_indirect_ref(valptr);
9512 else if (this->is_in_tuple_assignment_)
9513 {
9514 // Tuple_map_assignment_statement is responsible for using this
9515 // appropriately.
9516 return valptr;
9517 }
9518 else
9519 {
9520 return fold_build3(COND_EXPR, val_type_tree,
9521 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9522 fold_convert(TREE_TYPE(valptr),
9523 null_pointer_node)),
9524 type->val_type()->get_init_tree(context->gogo(),
9525 false),
9526 build_fold_indirect_ref(valptr));
9527 }
9528}
9529
9530// Get a tree for the map index. This returns a tree which evaluates
9531// to a pointer to a value. The pointer will be NULL if the key is
9532// not in the map.
9533
9534tree
9535Map_index_expression::get_value_pointer(Translate_context* context,
9536 bool insert)
9537{
9538 Map_type* type = this->get_map_type();
9539
9540 tree map_tree = this->map_->get_tree(context);
9541 tree index_tree = this->index_->get_tree(context);
9542 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9543 this->index_->type(),
9544 index_tree,
9545 this->location());
9546 if (map_tree == error_mark_node || index_tree == error_mark_node)
9547 return error_mark_node;
9548
9549 if (this->map_->type()->points_to() != NULL)
9550 map_tree = build_fold_indirect_ref(map_tree);
9551
9552 // We need to pass in a pointer to the key, so stuff it into a
9553 // variable.
9554 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9555 DECL_IGNORED_P(tmp) = 0;
9556 DECL_INITIAL(tmp) = index_tree;
9557 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9558 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9559 TREE_ADDRESSABLE(tmp) = 1;
9560
9561 static tree map_index_fndecl;
9562 tree call = Gogo::call_builtin(&map_index_fndecl,
9563 this->location(),
9564 "__go_map_index",
9565 3,
9566 const_ptr_type_node,
9567 TREE_TYPE(map_tree),
9568 map_tree,
9569 const_ptr_type_node,
9570 tmpref,
9571 boolean_type_node,
9572 (insert
9573 ? boolean_true_node
9574 : boolean_false_node));
9575 // This can panic on a map of interface type if the interface holds
9576 // an uncomparable or unhashable type.
9577 TREE_NOTHROW(map_index_fndecl) = 0;
9578
9579 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9580 if (val_type_tree == error_mark_node)
9581 return error_mark_node;
9582 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9583
9584 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9585 make_tmp,
9586 fold_convert(ptr_val_type_tree, call));
9587}
9588
9589// Make a map index expression.
9590
9591Map_index_expression*
9592Expression::make_map_index(Expression* map, Expression* index,
9593 source_location location)
9594{
9595 return new Map_index_expression(map, index, location);
9596}
9597
9598// Class Field_reference_expression.
9599
9600// Return the type of a field reference.
9601
9602Type*
9603Field_reference_expression::do_type()
9604{
9605 Struct_type* struct_type = this->expr_->type()->struct_type();
9606 gcc_assert(struct_type != NULL);
9607 return struct_type->field(this->field_index_)->type();
9608}
9609
9610// Check the types for a field reference.
9611
9612void
9613Field_reference_expression::do_check_types(Gogo*)
9614{
9615 Struct_type* struct_type = this->expr_->type()->struct_type();
9616 gcc_assert(struct_type != NULL);
9617 gcc_assert(struct_type->field(this->field_index_) != NULL);
9618}
9619
9620// Get a tree for a field reference.
9621
9622tree
9623Field_reference_expression::do_get_tree(Translate_context* context)
9624{
9625 tree struct_tree = this->expr_->get_tree(context);
9626 if (struct_tree == error_mark_node
9627 || TREE_TYPE(struct_tree) == error_mark_node)
9628 return error_mark_node;
9629 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9630 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9631 gcc_assert(field != NULL_TREE);
9632 for (unsigned int i = this->field_index_; i > 0; --i)
9633 {
9634 field = DECL_CHAIN(field);
9635 gcc_assert(field != NULL_TREE);
9636 }
9637 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9638 NULL_TREE);
9639}
9640
9641// Make a reference to a qualified identifier in an expression.
9642
9643Field_reference_expression*
9644Expression::make_field_reference(Expression* expr, unsigned int field_index,
9645 source_location location)
9646{
9647 return new Field_reference_expression(expr, field_index, location);
9648}
9649
9650// Class Interface_field_reference_expression.
9651
9652// Return a tree for the pointer to the function to call.
9653
9654tree
9655Interface_field_reference_expression::get_function_tree(Translate_context*,
9656 tree expr)
9657{
9658 if (this->expr_->type()->points_to() != NULL)
9659 expr = build_fold_indirect_ref(expr);
9660
9661 tree expr_type = TREE_TYPE(expr);
9662 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9663
9664 tree field = TYPE_FIELDS(expr_type);
9665 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9666
9667 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9668 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9669
9670 table = build_fold_indirect_ref(table);
9671 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9672
9673 std::string name = Gogo::unpack_hidden_name(this->name_);
9674 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9675 field != NULL_TREE;
9676 field = DECL_CHAIN(field))
9677 {
9678 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9679 break;
9680 }
9681 gcc_assert(field != NULL_TREE);
9682
9683 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9684}
9685
9686// Return a tree for the first argument to pass to the interface
9687// function.
9688
9689tree
9690Interface_field_reference_expression::get_underlying_object_tree(
9691 Translate_context*,
9692 tree expr)
9693{
9694 if (this->expr_->type()->points_to() != NULL)
9695 expr = build_fold_indirect_ref(expr);
9696
9697 tree expr_type = TREE_TYPE(expr);
9698 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9699
9700 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9701 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9702
9703 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9704}
9705
9706// Traversal.
9707
9708int
9709Interface_field_reference_expression::do_traverse(Traverse* traverse)
9710{
9711 return Expression::traverse(&this->expr_, traverse);
9712}
9713
9714// Return the type of an interface field reference.
9715
9716Type*
9717Interface_field_reference_expression::do_type()
9718{
9719 Type* expr_type = this->expr_->type();
9720
9721 Type* points_to = expr_type->points_to();
9722 if (points_to != NULL)
9723 expr_type = points_to;
9724
9725 Interface_type* interface_type = expr_type->interface_type();
9726 if (interface_type == NULL)
9727 return Type::make_error_type();
9728
9729 const Typed_identifier* method = interface_type->find_method(this->name_);
9730 if (method == NULL)
9731 return Type::make_error_type();
9732
9733 return method->type();
9734}
9735
9736// Determine types.
9737
9738void
9739Interface_field_reference_expression::do_determine_type(const Type_context*)
9740{
9741 this->expr_->determine_type_no_context();
9742}
9743
9744// Check the types for an interface field reference.
9745
9746void
9747Interface_field_reference_expression::do_check_types(Gogo*)
9748{
9749 Type* type = this->expr_->type();
9750
9751 Type* points_to = type->points_to();
9752 if (points_to != NULL)
9753 type = points_to;
9754
9755 Interface_type* interface_type = type->interface_type();
9756 if (interface_type == NULL)
9757 this->report_error(_("expected interface or pointer to interface"));
9758 else
9759 {
9760 const Typed_identifier* method =
9761 interface_type->find_method(this->name_);
9762 if (method == NULL)
9763 {
9764 error_at(this->location(), "method %qs not in interface",
9765 Gogo::message_name(this->name_).c_str());
9766 this->set_is_error();
9767 }
9768 }
9769}
9770
9771// Get a tree for a reference to a field in an interface. There is no
9772// standard tree type representation for this: it's a function
9773// attached to its first argument, like a Bound_method_expression.
9774// The only places it may currently be used are in a Call_expression
9775// or a Go_statement, which will take it apart directly. So this has
9776// nothing to do at present.
9777
9778tree
9779Interface_field_reference_expression::do_get_tree(Translate_context*)
9780{
9781 gcc_unreachable();
9782}
9783
9784// Make a reference to a field in an interface.
9785
9786Expression*
9787Expression::make_interface_field_reference(Expression* expr,
9788 const std::string& field,
9789 source_location location)
9790{
9791 return new Interface_field_reference_expression(expr, field, location);
9792}
9793
9794// A general selector. This is a Parser_expression for LEFT.NAME. It
9795// is lowered after we know the type of the left hand side.
9796
9797class Selector_expression : public Parser_expression
9798{
9799 public:
9800 Selector_expression(Expression* left, const std::string& name,
9801 source_location location)
9802 : Parser_expression(EXPRESSION_SELECTOR, location),
9803 left_(left), name_(name)
9804 { }
9805
9806 protected:
9807 int
9808 do_traverse(Traverse* traverse)
9809 { return Expression::traverse(&this->left_, traverse); }
9810
9811 Expression*
9812 do_lower(Gogo*, Named_object*, int);
9813
9814 Expression*
9815 do_copy()
9816 {
9817 return new Selector_expression(this->left_->copy(), this->name_,
9818 this->location());
9819 }
9820
9821 private:
9822 Expression*
9823 lower_method_expression(Gogo*);
9824
9825 // The expression on the left hand side.
9826 Expression* left_;
9827 // The name on the right hand side.
9828 std::string name_;
9829};
9830
9831// Lower a selector expression once we know the real type of the left
9832// hand side.
9833
9834Expression*
9835Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
9836{
9837 Expression* left = this->left_;
9838 if (left->is_type_expression())
9839 return this->lower_method_expression(gogo);
9840 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
9841 this->location());
9842}
9843
9844// Lower a method expression T.M or (*T).M. We turn this into a
9845// function literal.
9846
9847Expression*
9848Selector_expression::lower_method_expression(Gogo* gogo)
9849{
9850 source_location location = this->location();
9851 Type* type = this->left_->type();
9852 const std::string& name(this->name_);
9853
9854 bool is_pointer;
9855 if (type->points_to() == NULL)
9856 is_pointer = false;
9857 else
9858 {
9859 is_pointer = true;
9860 type = type->points_to();
9861 }
9862 Named_type* nt = type->named_type();
9863 if (nt == NULL)
9864 {
9865 error_at(location,
9866 ("method expression requires named type or "
9867 "pointer to named type"));
9868 return Expression::make_error(location);
9869 }
9870
9871 bool is_ambiguous;
9872 Method* method = nt->method_function(name, &is_ambiguous);
9873 if (method == NULL)
9874 {
9875 if (!is_ambiguous)
9876 error_at(location, "type %<%s%> has no method %<%s%>",
9877 nt->message_name().c_str(),
9878 Gogo::message_name(name).c_str());
9879 else
9880 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
9881 Gogo::message_name(name).c_str(),
9882 nt->message_name().c_str());
9883 return Expression::make_error(location);
9884 }
9885
9886 if (!is_pointer && !method->is_value_method())
9887 {
9888 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
9889 nt->message_name().c_str(),
9890 Gogo::message_name(name).c_str());
9891 return Expression::make_error(location);
9892 }
9893
9894 // Build a new function type in which the receiver becomes the first
9895 // argument.
9896 Function_type* method_type = method->type();
9897 gcc_assert(method_type->is_method());
9898
9899 const char* const receiver_name = "$this";
9900 Typed_identifier_list* parameters = new Typed_identifier_list();
9901 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
9902 location));
9903
9904 const Typed_identifier_list* method_parameters = method_type->parameters();
9905 if (method_parameters != NULL)
9906 {
9907 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9908 p != method_parameters->end();
9909 ++p)
9910 parameters->push_back(*p);
9911 }
9912
9913 const Typed_identifier_list* method_results = method_type->results();
9914 Typed_identifier_list* results;
9915 if (method_results == NULL)
9916 results = NULL;
9917 else
9918 {
9919 results = new Typed_identifier_list();
9920 for (Typed_identifier_list::const_iterator p = method_results->begin();
9921 p != method_results->end();
9922 ++p)
9923 results->push_back(*p);
9924 }
9925
9926 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
9927 location);
9928 if (method_type->is_varargs())
9929 fntype->set_is_varargs();
9930
9931 // We generate methods which always takes a pointer to the receiver
9932 // as their first argument. If this is for a pointer type, we can
9933 // simply reuse the existing function. We use an internal hack to
9934 // get the right type.
9935
9936 if (is_pointer)
9937 {
9938 Named_object* mno = (method->needs_stub_method()
9939 ? method->stub_object()
9940 : method->named_object());
9941 Expression* f = Expression::make_func_reference(mno, NULL, location);
9942 f = Expression::make_cast(fntype, f, location);
9943 Type_conversion_expression* tce =
9944 static_cast<Type_conversion_expression*>(f);
9945 tce->set_may_convert_function_types();
9946 return f;
9947 }
9948
9949 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
9950 location);
9951
9952 Named_object* vno = gogo->lookup(receiver_name, NULL);
9953 gcc_assert(vno != NULL);
9954 Expression* ve = Expression::make_var_reference(vno, location);
9955 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
9956 gcc_assert(bm != NULL && !bm->is_error_expression());
9957
9958 Expression_list* args;
9959 if (method_parameters == NULL)
9960 args = NULL;
9961 else
9962 {
9963 args = new Expression_list();
9964 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9965 p != method_parameters->end();
9966 ++p)
9967 {
9968 vno = gogo->lookup(p->name(), NULL);
9969 gcc_assert(vno != NULL);
9970 args->push_back(Expression::make_var_reference(vno, location));
9971 }
9972 }
9973
9974 Call_expression* call = Expression::make_call(bm, args,
9975 method_type->is_varargs(),
9976 location);
9977
9978 size_t count = call->result_count();
9979 Statement* s;
9980 if (count == 0)
9981 s = Statement::make_statement(call);
9982 else
9983 {
9984 Expression_list* retvals = new Expression_list();
9985 if (count <= 1)
9986 retvals->push_back(call);
9987 else
9988 {
9989 for (size_t i = 0; i < count; ++i)
9990 retvals->push_back(Expression::make_call_result(call, i));
9991 }
9992 s = Statement::make_return_statement(no->func_value()->type()->results(),
9993 retvals, location);
9994 }
9995 gogo->add_statement(s);
9996
9997 gogo->finish_function(location);
9998
9999 return Expression::make_func_reference(no, NULL, location);
10000}
10001
10002// Make a selector expression.
10003
10004Expression*
10005Expression::make_selector(Expression* left, const std::string& name,
10006 source_location location)
10007{
10008 return new Selector_expression(left, name, location);
10009}
10010
10011// Implement the builtin function new.
10012
10013class Allocation_expression : public Expression
10014{
10015 public:
10016 Allocation_expression(Type* type, source_location location)
10017 : Expression(EXPRESSION_ALLOCATION, location),
10018 type_(type)
10019 { }
10020
10021 protected:
10022 int
10023 do_traverse(Traverse* traverse)
10024 { return Type::traverse(this->type_, traverse); }
10025
10026 Type*
10027 do_type()
10028 { return Type::make_pointer_type(this->type_); }
10029
10030 void
10031 do_determine_type(const Type_context*)
10032 { }
10033
10034 void
10035 do_check_types(Gogo*);
10036
10037 Expression*
10038 do_copy()
10039 { return new Allocation_expression(this->type_, this->location()); }
10040
10041 tree
10042 do_get_tree(Translate_context*);
10043
10044 private:
10045 // The type we are allocating.
10046 Type* type_;
10047};
10048
10049// Check the type of an allocation expression.
10050
10051void
10052Allocation_expression::do_check_types(Gogo*)
10053{
10054 if (this->type_->function_type() != NULL)
10055 this->report_error(_("invalid new of function type"));
10056}
10057
10058// Return a tree for an allocation expression.
10059
10060tree
10061Allocation_expression::do_get_tree(Translate_context* context)
10062{
10063 tree type_tree = this->type_->get_tree(context->gogo());
10064 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10065 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10066 this->location());
10067 return fold_convert(build_pointer_type(type_tree), space);
10068}
10069
10070// Make an allocation expression.
10071
10072Expression*
10073Expression::make_allocation(Type* type, source_location location)
10074{
10075 return new Allocation_expression(type, location);
10076}
10077
10078// Implement the builtin function make.
10079
10080class Make_expression : public Expression
10081{
10082 public:
10083 Make_expression(Type* type, Expression_list* args, source_location location)
10084 : Expression(EXPRESSION_MAKE, location),
10085 type_(type), args_(args)
10086 { }
10087
10088 protected:
10089 int
10090 do_traverse(Traverse* traverse);
10091
10092 Type*
10093 do_type()
10094 { return this->type_; }
10095
10096 void
10097 do_determine_type(const Type_context*);
10098
10099 void
10100 do_check_types(Gogo*);
10101
10102 Expression*
10103 do_copy()
10104 {
10105 return new Make_expression(this->type_, this->args_->copy(),
10106 this->location());
10107 }
10108
10109 tree
10110 do_get_tree(Translate_context*);
10111
10112 private:
10113 // The type we are making.
10114 Type* type_;
10115 // The arguments to pass to the make routine.
10116 Expression_list* args_;
10117};
10118
10119// Traversal.
10120
10121int
10122Make_expression::do_traverse(Traverse* traverse)
10123{
10124 if (this->args_ != NULL
10125 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10126 return TRAVERSE_EXIT;
10127 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10128 return TRAVERSE_EXIT;
10129 return TRAVERSE_CONTINUE;
10130}
10131
10132// Set types of arguments.
10133
10134void
10135Make_expression::do_determine_type(const Type_context*)
10136{
10137 if (this->args_ != NULL)
10138 {
10139 Type_context context(Type::lookup_integer_type("int"), false);
10140 for (Expression_list::const_iterator pe = this->args_->begin();
10141 pe != this->args_->end();
10142 ++pe)
10143 (*pe)->determine_type(&context);
10144 }
10145}
10146
10147// Check types for a make expression.
10148
10149void
10150Make_expression::do_check_types(Gogo*)
10151{
10152 if (this->type_->channel_type() == NULL
10153 && this->type_->map_type() == NULL
10154 && (this->type_->array_type() == NULL
10155 || this->type_->array_type()->length() != NULL))
10156 this->report_error(_("invalid type for make function"));
10157 else if (!this->type_->check_make_expression(this->args_, this->location()))
10158 this->set_is_error();
10159}
10160
10161// Return a tree for a make expression.
10162
10163tree
10164Make_expression::do_get_tree(Translate_context* context)
10165{
10166 return this->type_->make_expression_tree(context, this->args_,
10167 this->location());
10168}
10169
10170// Make a make expression.
10171
10172Expression*
10173Expression::make_make(Type* type, Expression_list* args,
10174 source_location location)
10175{
10176 return new Make_expression(type, args, location);
10177}
10178
10179// Construct a struct.
10180
10181class Struct_construction_expression : public Expression
10182{
10183 public:
10184 Struct_construction_expression(Type* type, Expression_list* vals,
10185 source_location location)
10186 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10187 type_(type), vals_(vals)
10188 { }
10189
10190 // Return whether this is a constant initializer.
10191 bool
10192 is_constant_struct() const;
10193
10194 protected:
10195 int
10196 do_traverse(Traverse* traverse);
10197
10198 Type*
10199 do_type()
10200 { return this->type_; }
10201
10202 void
10203 do_determine_type(const Type_context*);
10204
10205 void
10206 do_check_types(Gogo*);
10207
10208 Expression*
10209 do_copy()
10210 {
10211 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10212 this->location());
10213 }
10214
10215 bool
10216 do_is_addressable() const
10217 { return true; }
10218
10219 tree
10220 do_get_tree(Translate_context*);
10221
10222 void
10223 do_export(Export*) const;
10224
10225 private:
10226 // The type of the struct to construct.
10227 Type* type_;
10228 // The list of values, in order of the fields in the struct. A NULL
10229 // entry means that the field should be zero-initialized.
10230 Expression_list* vals_;
10231};
10232
10233// Traversal.
10234
10235int
10236Struct_construction_expression::do_traverse(Traverse* traverse)
10237{
10238 if (this->vals_ != NULL
10239 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10240 return TRAVERSE_EXIT;
10241 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10242 return TRAVERSE_EXIT;
10243 return TRAVERSE_CONTINUE;
10244}
10245
10246// Return whether this is a constant initializer.
10247
10248bool
10249Struct_construction_expression::is_constant_struct() const
10250{
10251 if (this->vals_ == NULL)
10252 return true;
10253 for (Expression_list::const_iterator pv = this->vals_->begin();
10254 pv != this->vals_->end();
10255 ++pv)
10256 {
10257 if (*pv != NULL
10258 && !(*pv)->is_constant()
10259 && (!(*pv)->is_composite_literal()
10260 || (*pv)->is_nonconstant_composite_literal()))
10261 return false;
10262 }
10263
10264 const Struct_field_list* fields = this->type_->struct_type()->fields();
10265 for (Struct_field_list::const_iterator pf = fields->begin();
10266 pf != fields->end();
10267 ++pf)
10268 {
10269 // There are no constant constructors for interfaces.
10270 if (pf->type()->interface_type() != NULL)
10271 return false;
10272 }
10273
10274 return true;
10275}
10276
10277// Final type determination.
10278
10279void
10280Struct_construction_expression::do_determine_type(const Type_context*)
10281{
10282 if (this->vals_ == NULL)
10283 return;
10284 const Struct_field_list* fields = this->type_->struct_type()->fields();
10285 Expression_list::const_iterator pv = this->vals_->begin();
10286 for (Struct_field_list::const_iterator pf = fields->begin();
10287 pf != fields->end();
10288 ++pf, ++pv)
10289 {
10290 if (pv == this->vals_->end())
10291 return;
10292 if (*pv != NULL)
10293 {
10294 Type_context subcontext(pf->type(), false);
10295 (*pv)->determine_type(&subcontext);
10296 }
10297 }
10298}
10299
10300// Check types.
10301
10302void
10303Struct_construction_expression::do_check_types(Gogo*)
10304{
10305 if (this->vals_ == NULL)
10306 return;
10307
10308 Struct_type* st = this->type_->struct_type();
10309 if (this->vals_->size() > st->field_count())
10310 {
10311 this->report_error(_("too many expressions for struct"));
10312 return;
10313 }
10314
10315 const Struct_field_list* fields = st->fields();
10316 Expression_list::const_iterator pv = this->vals_->begin();
10317 int i = 0;
10318 for (Struct_field_list::const_iterator pf = fields->begin();
10319 pf != fields->end();
10320 ++pf, ++pv, ++i)
10321 {
10322 if (pv == this->vals_->end())
10323 {
10324 this->report_error(_("too few expressions for struct"));
10325 break;
10326 }
10327
10328 if (*pv == NULL)
10329 continue;
10330
10331 std::string reason;
10332 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10333 {
10334 if (reason.empty())
10335 error_at((*pv)->location(),
10336 "incompatible type for field %d in struct construction",
10337 i + 1);
10338 else
10339 error_at((*pv)->location(),
10340 ("incompatible type for field %d in "
10341 "struct construction (%s)"),
10342 i + 1, reason.c_str());
10343 this->set_is_error();
10344 }
10345 }
10346 gcc_assert(pv == this->vals_->end());
10347}
10348
10349// Return a tree for constructing a struct.
10350
10351tree
10352Struct_construction_expression::do_get_tree(Translate_context* context)
10353{
10354 Gogo* gogo = context->gogo();
10355
10356 if (this->vals_ == NULL)
10357 return this->type_->get_init_tree(gogo, false);
10358
10359 tree type_tree = this->type_->get_tree(gogo);
10360 if (type_tree == error_mark_node)
10361 return error_mark_node;
10362 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10363
10364 bool is_constant = true;
10365 const Struct_field_list* fields = this->type_->struct_type()->fields();
10366 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10367 fields->size());
10368 Struct_field_list::const_iterator pf = fields->begin();
10369 Expression_list::const_iterator pv = this->vals_->begin();
10370 for (tree field = TYPE_FIELDS(type_tree);
10371 field != NULL_TREE;
10372 field = DECL_CHAIN(field), ++pf)
10373 {
10374 gcc_assert(pf != fields->end());
10375
10376 tree val;
10377 if (pv == this->vals_->end())
10378 val = pf->type()->get_init_tree(gogo, false);
10379 else if (*pv == NULL)
10380 {
10381 val = pf->type()->get_init_tree(gogo, false);
10382 ++pv;
10383 }
10384 else
10385 {
10386 val = Expression::convert_for_assignment(context, pf->type(),
10387 (*pv)->type(),
10388 (*pv)->get_tree(context),
10389 this->location());
10390 ++pv;
10391 }
10392
10393 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10394 return error_mark_node;
10395
10396 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10397 elt->index = field;
10398 elt->value = val;
10399 if (!TREE_CONSTANT(val))
10400 is_constant = false;
10401 }
10402 gcc_assert(pf == fields->end());
10403
10404 tree ret = build_constructor(type_tree, elts);
10405 if (is_constant)
10406 TREE_CONSTANT(ret) = 1;
10407 return ret;
10408}
10409
10410// Export a struct construction.
10411
10412void
10413Struct_construction_expression::do_export(Export* exp) const
10414{
10415 exp->write_c_string("convert(");
10416 exp->write_type(this->type_);
10417 for (Expression_list::const_iterator pv = this->vals_->begin();
10418 pv != this->vals_->end();
10419 ++pv)
10420 {
10421 exp->write_c_string(", ");
10422 if (*pv != NULL)
10423 (*pv)->export_expression(exp);
10424 }
10425 exp->write_c_string(")");
10426}
10427
10428// Make a struct composite literal. This used by the thunk code.
10429
10430Expression*
10431Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10432 source_location location)
10433{
10434 gcc_assert(type->struct_type() != NULL);
10435 return new Struct_construction_expression(type, vals, location);
10436}
10437
10438// Construct an array. This class is not used directly; instead we
10439// use the child classes, Fixed_array_construction_expression and
10440// Open_array_construction_expression.
10441
10442class Array_construction_expression : public Expression
10443{
10444 protected:
10445 Array_construction_expression(Expression_classification classification,
10446 Type* type, Expression_list* vals,
10447 source_location location)
10448 : Expression(classification, location),
10449 type_(type), vals_(vals)
10450 { }
10451
10452 public:
10453 // Return whether this is a constant initializer.
10454 bool
10455 is_constant_array() const;
10456
10457 // Return the number of elements.
10458 size_t
10459 element_count() const
10460 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10461
10462protected:
10463 int
10464 do_traverse(Traverse* traverse);
10465
10466 Type*
10467 do_type()
10468 { return this->type_; }
10469
10470 void
10471 do_determine_type(const Type_context*);
10472
10473 void
10474 do_check_types(Gogo*);
10475
10476 bool
10477 do_is_addressable() const
10478 { return true; }
10479
10480 void
10481 do_export(Export*) const;
10482
10483 // The list of values.
10484 Expression_list*
10485 vals()
10486 { return this->vals_; }
10487
10488 // Get a constructor tree for the array values.
10489 tree
10490 get_constructor_tree(Translate_context* context, tree type_tree);
10491
10492 private:
10493 // The type of the array to construct.
10494 Type* type_;
10495 // The list of values.
10496 Expression_list* vals_;
10497};
10498
10499// Traversal.
10500
10501int
10502Array_construction_expression::do_traverse(Traverse* traverse)
10503{
10504 if (this->vals_ != NULL
10505 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10506 return TRAVERSE_EXIT;
10507 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10508 return TRAVERSE_EXIT;
10509 return TRAVERSE_CONTINUE;
10510}
10511
10512// Return whether this is a constant initializer.
10513
10514bool
10515Array_construction_expression::is_constant_array() const
10516{
10517 if (this->vals_ == NULL)
10518 return true;
10519
10520 // There are no constant constructors for interfaces.
10521 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10522 return false;
10523
10524 for (Expression_list::const_iterator pv = this->vals_->begin();
10525 pv != this->vals_->end();
10526 ++pv)
10527 {
10528 if (*pv != NULL
10529 && !(*pv)->is_constant()
10530 && (!(*pv)->is_composite_literal()
10531 || (*pv)->is_nonconstant_composite_literal()))
10532 return false;
10533 }
10534 return true;
10535}
10536
10537// Final type determination.
10538
10539void
10540Array_construction_expression::do_determine_type(const Type_context*)
10541{
10542 if (this->vals_ == NULL)
10543 return;
10544 Type_context subcontext(this->type_->array_type()->element_type(), false);
10545 for (Expression_list::const_iterator pv = this->vals_->begin();
10546 pv != this->vals_->end();
10547 ++pv)
10548 {
10549 if (*pv != NULL)
10550 (*pv)->determine_type(&subcontext);
10551 }
10552}
10553
10554// Check types.
10555
10556void
10557Array_construction_expression::do_check_types(Gogo*)
10558{
10559 if (this->vals_ == NULL)
10560 return;
10561
10562 Array_type* at = this->type_->array_type();
10563 int i = 0;
10564 Type* element_type = at->element_type();
10565 for (Expression_list::const_iterator pv = this->vals_->begin();
10566 pv != this->vals_->end();
10567 ++pv, ++i)
10568 {
10569 if (*pv != NULL
10570 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10571 {
10572 error_at((*pv)->location(),
10573 "incompatible type for element %d in composite literal",
10574 i + 1);
10575 this->set_is_error();
10576 }
10577 }
10578
10579 Expression* length = at->length();
10580 if (length != NULL)
10581 {
10582 mpz_t val;
10583 mpz_init(val);
10584 Type* type;
10585 if (at->length()->integer_constant_value(true, val, &type))
10586 {
10587 if (this->vals_->size() > mpz_get_ui(val))
10588 this->report_error(_("too many elements in composite literal"));
10589 }
10590 mpz_clear(val);
10591 }
10592}
10593
10594// Get a constructor tree for the array values.
10595
10596tree
10597Array_construction_expression::get_constructor_tree(Translate_context* context,
10598 tree type_tree)
10599{
10600 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10601 (this->vals_ == NULL
10602 ? 0
10603 : this->vals_->size()));
10604 Type* element_type = this->type_->array_type()->element_type();
10605 bool is_constant = true;
10606 if (this->vals_ != NULL)
10607 {
10608 size_t i = 0;
10609 for (Expression_list::const_iterator pv = this->vals_->begin();
10610 pv != this->vals_->end();
10611 ++pv, ++i)
10612 {
10613 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10614 elt->index = size_int(i);
10615 if (*pv == NULL)
10616 elt->value = element_type->get_init_tree(context->gogo(), false);
10617 else
10618 {
10619 tree value_tree = (*pv)->get_tree(context);
10620 elt->value = Expression::convert_for_assignment(context,
10621 element_type,
10622 (*pv)->type(),
10623 value_tree,
10624 this->location());
10625 }
10626 if (elt->value == error_mark_node)
10627 return error_mark_node;
10628 if (!TREE_CONSTANT(elt->value))
10629 is_constant = false;
10630 }
10631 }
10632
10633 tree ret = build_constructor(type_tree, values);
10634 if (is_constant)
10635 TREE_CONSTANT(ret) = 1;
10636 return ret;
10637}
10638
10639// Export an array construction.
10640
10641void
10642Array_construction_expression::do_export(Export* exp) const
10643{
10644 exp->write_c_string("convert(");
10645 exp->write_type(this->type_);
10646 if (this->vals_ != NULL)
10647 {
10648 for (Expression_list::const_iterator pv = this->vals_->begin();
10649 pv != this->vals_->end();
10650 ++pv)
10651 {
10652 exp->write_c_string(", ");
10653 if (*pv != NULL)
10654 (*pv)->export_expression(exp);
10655 }
10656 }
10657 exp->write_c_string(")");
10658}
10659
10660// Construct a fixed array.
10661
10662class Fixed_array_construction_expression :
10663 public Array_construction_expression
10664{
10665 public:
10666 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10667 source_location location)
10668 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10669 type, vals, location)
10670 {
10671 gcc_assert(type->array_type() != NULL
10672 && type->array_type()->length() != NULL);
10673 }
10674
10675 protected:
10676 Expression*
10677 do_copy()
10678 {
10679 return new Fixed_array_construction_expression(this->type(),
10680 (this->vals() == NULL
10681 ? NULL
10682 : this->vals()->copy()),
10683 this->location());
10684 }
10685
10686 tree
10687 do_get_tree(Translate_context*);
10688};
10689
10690// Return a tree for constructing a fixed array.
10691
10692tree
10693Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10694{
10695 return this->get_constructor_tree(context,
10696 this->type()->get_tree(context->gogo()));
10697}
10698
10699// Construct an open array.
10700
10701class Open_array_construction_expression : public Array_construction_expression
10702{
10703 public:
10704 Open_array_construction_expression(Type* type, Expression_list* vals,
10705 source_location location)
10706 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10707 type, vals, location)
10708 {
10709 gcc_assert(type->array_type() != NULL
10710 && type->array_type()->length() == NULL);
10711 }
10712
10713 protected:
10714 // Note that taking the address of an open array literal is invalid.
10715
10716 Expression*
10717 do_copy()
10718 {
10719 return new Open_array_construction_expression(this->type(),
10720 (this->vals() == NULL
10721 ? NULL
10722 : this->vals()->copy()),
10723 this->location());
10724 }
10725
10726 tree
10727 do_get_tree(Translate_context*);
10728};
10729
10730// Return a tree for constructing an open array.
10731
10732tree
10733Open_array_construction_expression::do_get_tree(Translate_context* context)
10734{
10735 Type* element_type = this->type()->array_type()->element_type();
10736 tree element_type_tree = element_type->get_tree(context->gogo());
3d60812e 10737 if (element_type_tree == error_mark_node)
10738 return error_mark_node;
10739
e440a328 10740 tree values;
10741 tree length_tree;
10742 if (this->vals() == NULL || this->vals()->empty())
10743 {
10744 // We need to create a unique value.
10745 tree max = size_int(0);
10746 tree constructor_type = build_array_type(element_type_tree,
10747 build_index_type(max));
10748 if (constructor_type == error_mark_node)
10749 return error_mark_node;
10750 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10751 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10752 elt->index = size_int(0);
10753 elt->value = element_type->get_init_tree(context->gogo(), false);
10754 values = build_constructor(constructor_type, vec);
10755 if (TREE_CONSTANT(elt->value))
10756 TREE_CONSTANT(values) = 1;
10757 length_tree = size_int(0);
10758 }
10759 else
10760 {
10761 tree max = size_int(this->vals()->size() - 1);
10762 tree constructor_type = build_array_type(element_type_tree,
10763 build_index_type(max));
10764 if (constructor_type == error_mark_node)
10765 return error_mark_node;
10766 values = this->get_constructor_tree(context, constructor_type);
10767 length_tree = size_int(this->vals()->size());
10768 }
10769
10770 if (values == error_mark_node)
10771 return error_mark_node;
10772
10773 bool is_constant_initializer = TREE_CONSTANT(values);
10774 bool is_in_function = context->function() != NULL;
10775
10776 if (is_constant_initializer)
10777 {
10778 tree tmp = build_decl(this->location(), VAR_DECL,
10779 create_tmp_var_name("C"), TREE_TYPE(values));
10780 DECL_EXTERNAL(tmp) = 0;
10781 TREE_PUBLIC(tmp) = 0;
10782 TREE_STATIC(tmp) = 1;
10783 DECL_ARTIFICIAL(tmp) = 1;
10784 if (is_in_function)
10785 {
10786 // If this is not a function, we will only initialize the
10787 // value once, so we can use this directly rather than
10788 // copying it. In that case we can't make it read-only,
10789 // because the program is permitted to change it.
10790 TREE_READONLY(tmp) = 1;
10791 TREE_CONSTANT(tmp) = 1;
10792 }
10793 DECL_INITIAL(tmp) = values;
10794 rest_of_decl_compilation(tmp, 1, 0);
10795 values = tmp;
10796 }
10797
10798 tree space;
10799 tree set;
10800 if (!is_in_function && is_constant_initializer)
10801 {
10802 // Outside of a function, we know the initializer will only run
10803 // once.
10804 space = build_fold_addr_expr(values);
10805 set = NULL_TREE;
10806 }
10807 else
10808 {
10809 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
10810 space = context->gogo()->allocate_memory(element_type, memsize,
10811 this->location());
10812 space = save_expr(space);
10813
10814 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
10815 tree ref = build_fold_indirect_ref_loc(this->location(), s);
10816 TREE_THIS_NOTRAP(ref) = 1;
10817 set = build2(MODIFY_EXPR, void_type_node, ref, values);
10818 }
10819
10820 // Build a constructor for the open array.
10821
10822 tree type_tree = this->type()->get_tree(context->gogo());
3d60812e 10823 if (type_tree == error_mark_node)
10824 return error_mark_node;
e440a328 10825 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10826
10827 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10828
10829 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10830 tree field = TYPE_FIELDS(type_tree);
10831 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10832 elt->index = field;
10833 elt->value = fold_convert(TREE_TYPE(field), space);
10834
10835 elt = VEC_quick_push(constructor_elt, init, NULL);
10836 field = DECL_CHAIN(field);
10837 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10838 elt->index = field;
10839 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10840
10841 elt = VEC_quick_push(constructor_elt, init, NULL);
10842 field = DECL_CHAIN(field);
10843 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
10844 elt->index = field;
10845 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10846
10847 tree constructor = build_constructor(type_tree, init);
3d60812e 10848 if (constructor == error_mark_node)
10849 return error_mark_node;
e440a328 10850 if (!is_in_function && is_constant_initializer)
10851 TREE_CONSTANT(constructor) = 1;
10852
10853 if (set == NULL_TREE)
10854 return constructor;
10855 else
10856 return build2(COMPOUND_EXPR, type_tree, set, constructor);
10857}
10858
10859// Make a slice composite literal. This is used by the type
10860// descriptor code.
10861
10862Expression*
10863Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
10864 source_location location)
10865{
10866 gcc_assert(type->is_open_array_type());
10867 return new Open_array_construction_expression(type, vals, location);
10868}
10869
10870// Construct a map.
10871
10872class Map_construction_expression : public Expression
10873{
10874 public:
10875 Map_construction_expression(Type* type, Expression_list* vals,
10876 source_location location)
10877 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
10878 type_(type), vals_(vals)
10879 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
10880
10881 protected:
10882 int
10883 do_traverse(Traverse* traverse);
10884
10885 Type*
10886 do_type()
10887 { return this->type_; }
10888
10889 void
10890 do_determine_type(const Type_context*);
10891
10892 void
10893 do_check_types(Gogo*);
10894
10895 Expression*
10896 do_copy()
10897 {
10898 return new Map_construction_expression(this->type_, this->vals_->copy(),
10899 this->location());
10900 }
10901
10902 tree
10903 do_get_tree(Translate_context*);
10904
10905 void
10906 do_export(Export*) const;
10907
10908 private:
10909 // The type of the map to construct.
10910 Type* type_;
10911 // The list of values.
10912 Expression_list* vals_;
10913};
10914
10915// Traversal.
10916
10917int
10918Map_construction_expression::do_traverse(Traverse* traverse)
10919{
10920 if (this->vals_ != NULL
10921 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10922 return TRAVERSE_EXIT;
10923 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10924 return TRAVERSE_EXIT;
10925 return TRAVERSE_CONTINUE;
10926}
10927
10928// Final type determination.
10929
10930void
10931Map_construction_expression::do_determine_type(const Type_context*)
10932{
10933 if (this->vals_ == NULL)
10934 return;
10935
10936 Map_type* mt = this->type_->map_type();
10937 Type_context key_context(mt->key_type(), false);
10938 Type_context val_context(mt->val_type(), false);
10939 for (Expression_list::const_iterator pv = this->vals_->begin();
10940 pv != this->vals_->end();
10941 ++pv)
10942 {
10943 (*pv)->determine_type(&key_context);
10944 ++pv;
10945 (*pv)->determine_type(&val_context);
10946 }
10947}
10948
10949// Check types.
10950
10951void
10952Map_construction_expression::do_check_types(Gogo*)
10953{
10954 if (this->vals_ == NULL)
10955 return;
10956
10957 Map_type* mt = this->type_->map_type();
10958 int i = 0;
10959 Type* key_type = mt->key_type();
10960 Type* val_type = mt->val_type();
10961 for (Expression_list::const_iterator pv = this->vals_->begin();
10962 pv != this->vals_->end();
10963 ++pv, ++i)
10964 {
10965 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
10966 {
10967 error_at((*pv)->location(),
10968 "incompatible type for element %d key in map construction",
10969 i + 1);
10970 this->set_is_error();
10971 }
10972 ++pv;
10973 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
10974 {
10975 error_at((*pv)->location(),
10976 ("incompatible type for element %d value "
10977 "in map construction"),
10978 i + 1);
10979 this->set_is_error();
10980 }
10981 }
10982}
10983
10984// Return a tree for constructing a map.
10985
10986tree
10987Map_construction_expression::do_get_tree(Translate_context* context)
10988{
10989 Gogo* gogo = context->gogo();
10990 source_location loc = this->location();
10991
10992 Map_type* mt = this->type_->map_type();
10993
10994 // Build a struct to hold the key and value.
10995 tree struct_type = make_node(RECORD_TYPE);
10996
10997 Type* key_type = mt->key_type();
10998 tree id = get_identifier("__key");
10999 tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
11000 DECL_CONTEXT(key_field) = struct_type;
11001 TYPE_FIELDS(struct_type) = key_field;
11002
11003 Type* val_type = mt->val_type();
11004 id = get_identifier("__val");
11005 tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
11006 DECL_CONTEXT(val_field) = struct_type;
11007 DECL_CHAIN(key_field) = val_field;
11008
11009 layout_type(struct_type);
11010
11011 bool is_constant = true;
11012 size_t i = 0;
11013 tree valaddr;
11014 tree make_tmp;
11015
11016 if (this->vals_ == NULL || this->vals_->empty())
11017 {
11018 valaddr = null_pointer_node;
11019 make_tmp = NULL_TREE;
11020 }
11021 else
11022 {
11023 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11024 this->vals_->size() / 2);
11025
11026 for (Expression_list::const_iterator pv = this->vals_->begin();
11027 pv != this->vals_->end();
11028 ++pv, ++i)
11029 {
11030 bool one_is_constant = true;
11031
11032 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11033
11034 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11035 elt->index = key_field;
11036 tree val_tree = (*pv)->get_tree(context);
11037 elt->value = Expression::convert_for_assignment(context, key_type,
11038 (*pv)->type(),
11039 val_tree, loc);
11040 if (elt->value == error_mark_node)
11041 return error_mark_node;
11042 if (!TREE_CONSTANT(elt->value))
11043 one_is_constant = false;
11044
11045 ++pv;
11046
11047 elt = VEC_quick_push(constructor_elt, one, NULL);
11048 elt->index = val_field;
11049 val_tree = (*pv)->get_tree(context);
11050 elt->value = Expression::convert_for_assignment(context, val_type,
11051 (*pv)->type(),
11052 val_tree, loc);
11053 if (elt->value == error_mark_node)
11054 return error_mark_node;
11055 if (!TREE_CONSTANT(elt->value))
11056 one_is_constant = false;
11057
11058 elt = VEC_quick_push(constructor_elt, values, NULL);
11059 elt->index = size_int(i);
11060 elt->value = build_constructor(struct_type, one);
11061 if (one_is_constant)
11062 TREE_CONSTANT(elt->value) = 1;
11063 else
11064 is_constant = false;
11065 }
11066
11067 tree index_type = build_index_type(size_int(i - 1));
11068 tree array_type = build_array_type(struct_type, index_type);
11069 tree init = build_constructor(array_type, values);
11070 if (is_constant)
11071 TREE_CONSTANT(init) = 1;
11072 tree tmp;
11073 if (current_function_decl != NULL)
11074 {
11075 tmp = create_tmp_var(array_type, get_name(array_type));
11076 DECL_INITIAL(tmp) = init;
11077 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11078 TREE_ADDRESSABLE(tmp) = 1;
11079 }
11080 else
11081 {
11082 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11083 DECL_EXTERNAL(tmp) = 0;
11084 TREE_PUBLIC(tmp) = 0;
11085 TREE_STATIC(tmp) = 1;
11086 DECL_ARTIFICIAL(tmp) = 1;
11087 if (!TREE_CONSTANT(init))
11088 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11089 init);
11090 else
11091 {
11092 TREE_READONLY(tmp) = 1;
11093 TREE_CONSTANT(tmp) = 1;
11094 DECL_INITIAL(tmp) = init;
11095 make_tmp = NULL_TREE;
11096 }
11097 rest_of_decl_compilation(tmp, 1, 0);
11098 }
11099
11100 valaddr = build_fold_addr_expr(tmp);
11101 }
11102
11103 tree descriptor = gogo->map_descriptor(mt);
11104
11105 tree type_tree = this->type_->get_tree(gogo);
11106
11107 static tree construct_map_fndecl;
11108 tree call = Gogo::call_builtin(&construct_map_fndecl,
11109 loc,
11110 "__go_construct_map",
11111 6,
11112 type_tree,
11113 TREE_TYPE(descriptor),
11114 descriptor,
11115 sizetype,
11116 size_int(i),
11117 sizetype,
11118 TYPE_SIZE_UNIT(struct_type),
11119 sizetype,
11120 byte_position(val_field),
11121 sizetype,
11122 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11123 const_ptr_type_node,
11124 fold_convert(const_ptr_type_node, valaddr));
11125
11126 tree ret;
11127 if (make_tmp == NULL)
11128 ret = call;
11129 else
11130 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11131 return ret;
11132}
11133
11134// Export an array construction.
11135
11136void
11137Map_construction_expression::do_export(Export* exp) const
11138{
11139 exp->write_c_string("convert(");
11140 exp->write_type(this->type_);
11141 for (Expression_list::const_iterator pv = this->vals_->begin();
11142 pv != this->vals_->end();
11143 ++pv)
11144 {
11145 exp->write_c_string(", ");
11146 (*pv)->export_expression(exp);
11147 }
11148 exp->write_c_string(")");
11149}
11150
11151// A general composite literal. This is lowered to a type specific
11152// version.
11153
11154class Composite_literal_expression : public Parser_expression
11155{
11156 public:
11157 Composite_literal_expression(Type* type, int depth, bool has_keys,
11158 Expression_list* vals, source_location location)
11159 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11160 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11161 { }
11162
11163 protected:
11164 int
11165 do_traverse(Traverse* traverse);
11166
11167 Expression*
11168 do_lower(Gogo*, Named_object*, int);
11169
11170 Expression*
11171 do_copy()
11172 {
11173 return new Composite_literal_expression(this->type_, this->depth_,
11174 this->has_keys_,
11175 (this->vals_ == NULL
11176 ? NULL
11177 : this->vals_->copy()),
11178 this->location());
11179 }
11180
11181 private:
11182 Expression*
11183 lower_struct(Type*);
11184
11185 Expression*
11186 lower_array(Type*);
11187
11188 Expression*
11189 make_array(Type*, Expression_list*);
11190
11191 Expression*
a287720d 11192 lower_map(Gogo*, Named_object*, Type*);
e440a328 11193
11194 // The type of the composite literal.
11195 Type* type_;
11196 // The depth within a list of composite literals within a composite
11197 // literal, when the type is omitted.
11198 int depth_;
11199 // The values to put in the composite literal.
11200 Expression_list* vals_;
11201 // If this is true, then VALS_ is a list of pairs: a key and a
11202 // value. In an array initializer, a missing key will be NULL.
11203 bool has_keys_;
11204};
11205
11206// Traversal.
11207
11208int
11209Composite_literal_expression::do_traverse(Traverse* traverse)
11210{
11211 if (this->vals_ != NULL
11212 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11213 return TRAVERSE_EXIT;
11214 return Type::traverse(this->type_, traverse);
11215}
11216
11217// Lower a generic composite literal into a specific version based on
11218// the type.
11219
11220Expression*
a287720d 11221Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
e440a328 11222{
11223 Type* type = this->type_;
11224
11225 for (int depth = this->depth_; depth > 0; --depth)
11226 {
11227 if (type->array_type() != NULL)
11228 type = type->array_type()->element_type();
11229 else if (type->map_type() != NULL)
11230 type = type->map_type()->val_type();
11231 else
11232 {
11233 if (!type->is_error_type())
11234 error_at(this->location(),
11235 ("may only omit types within composite literals "
11236 "of slice, array, or map type"));
11237 return Expression::make_error(this->location());
11238 }
11239 }
11240
11241 if (type->is_error_type())
11242 return Expression::make_error(this->location());
11243 else if (type->struct_type() != NULL)
11244 return this->lower_struct(type);
11245 else if (type->array_type() != NULL)
11246 return this->lower_array(type);
11247 else if (type->map_type() != NULL)
a287720d 11248 return this->lower_map(gogo, function, type);
e440a328 11249 else
11250 {
11251 error_at(this->location(),
11252 ("expected struct, slice, array, or map type "
11253 "for composite literal"));
11254 return Expression::make_error(this->location());
11255 }
11256}
11257
11258// Lower a struct composite literal.
11259
11260Expression*
11261Composite_literal_expression::lower_struct(Type* type)
11262{
11263 source_location location = this->location();
11264 Struct_type* st = type->struct_type();
11265 if (this->vals_ == NULL || !this->has_keys_)
11266 return new Struct_construction_expression(type, this->vals_, location);
11267
11268 size_t field_count = st->field_count();
11269 std::vector<Expression*> vals(field_count);
11270 Expression_list::const_iterator p = this->vals_->begin();
11271 while (p != this->vals_->end())
11272 {
11273 Expression* name_expr = *p;
11274
11275 ++p;
11276 gcc_assert(p != this->vals_->end());
11277 Expression* val = *p;
11278
11279 ++p;
11280
11281 if (name_expr == NULL)
11282 {
11283 error_at(val->location(), "mixture of field and value initializers");
11284 return Expression::make_error(location);
11285 }
11286
11287 bool bad_key = false;
11288 std::string name;
11289 switch (name_expr->classification())
11290 {
11291 case EXPRESSION_UNKNOWN_REFERENCE:
11292 name = name_expr->unknown_expression()->name();
11293 break;
11294
11295 case EXPRESSION_CONST_REFERENCE:
11296 name = static_cast<Const_expression*>(name_expr)->name();
11297 break;
11298
11299 case EXPRESSION_TYPE:
11300 {
11301 Type* t = name_expr->type();
11302 Named_type* nt = t->named_type();
11303 if (nt == NULL)
11304 bad_key = true;
11305 else
11306 name = nt->name();
11307 }
11308 break;
11309
11310 case EXPRESSION_VAR_REFERENCE:
11311 name = name_expr->var_expression()->name();
11312 break;
11313
11314 case EXPRESSION_FUNC_REFERENCE:
11315 name = name_expr->func_expression()->name();
11316 break;
11317
11318 case EXPRESSION_UNARY:
11319 // If there is a local variable around with the same name as
11320 // the field, and this occurs in the closure, then the
11321 // parser may turn the field reference into an indirection
11322 // through the closure. FIXME: This is a mess.
11323 {
11324 bad_key = true;
11325 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11326 if (ue->op() == OPERATOR_MULT)
11327 {
11328 Field_reference_expression* fre =
11329 ue->operand()->field_reference_expression();
11330 if (fre != NULL)
11331 {
11332 Struct_type* st =
11333 fre->expr()->type()->deref()->struct_type();
11334 if (st != NULL)
11335 {
11336 const Struct_field* sf = st->field(fre->field_index());
11337 name = sf->field_name();
11338 char buf[20];
11339 snprintf(buf, sizeof buf, "%u", fre->field_index());
11340 size_t buflen = strlen(buf);
11341 if (name.compare(name.length() - buflen, buflen, buf)
11342 == 0)
11343 {
11344 name = name.substr(0, name.length() - buflen);
11345 bad_key = false;
11346 }
11347 }
11348 }
11349 }
11350 }
11351 break;
11352
11353 default:
11354 bad_key = true;
11355 break;
11356 }
11357 if (bad_key)
11358 {
11359 error_at(name_expr->location(), "expected struct field name");
11360 return Expression::make_error(location);
11361 }
11362
11363 unsigned int index;
11364 const Struct_field* sf = st->find_local_field(name, &index);
11365 if (sf == NULL)
11366 {
11367 error_at(name_expr->location(), "unknown field %qs in %qs",
11368 Gogo::message_name(name).c_str(),
11369 (type->named_type() != NULL
11370 ? type->named_type()->message_name().c_str()
11371 : "unnamed struct"));
11372 return Expression::make_error(location);
11373 }
11374 if (vals[index] != NULL)
11375 {
11376 error_at(name_expr->location(),
11377 "duplicate value for field %qs in %qs",
11378 Gogo::message_name(name).c_str(),
11379 (type->named_type() != NULL
11380 ? type->named_type()->message_name().c_str()
11381 : "unnamed struct"));
11382 return Expression::make_error(location);
11383 }
11384
11385 vals[index] = val;
11386 }
11387
11388 Expression_list* list = new Expression_list;
11389 list->reserve(field_count);
11390 for (size_t i = 0; i < field_count; ++i)
11391 list->push_back(vals[i]);
11392
11393 return new Struct_construction_expression(type, list, location);
11394}
11395
11396// Lower an array composite literal.
11397
11398Expression*
11399Composite_literal_expression::lower_array(Type* type)
11400{
11401 source_location location = this->location();
11402 if (this->vals_ == NULL || !this->has_keys_)
11403 return this->make_array(type, this->vals_);
11404
11405 std::vector<Expression*> vals;
11406 vals.reserve(this->vals_->size());
11407 unsigned long index = 0;
11408 Expression_list::const_iterator p = this->vals_->begin();
11409 while (p != this->vals_->end())
11410 {
11411 Expression* index_expr = *p;
11412
11413 ++p;
11414 gcc_assert(p != this->vals_->end());
11415 Expression* val = *p;
11416
11417 ++p;
11418
11419 if (index_expr != NULL)
11420 {
11421 mpz_t ival;
11422 mpz_init(ival);
11423 Type* dummy;
11424 if (!index_expr->integer_constant_value(true, ival, &dummy))
11425 {
11426 mpz_clear(ival);
11427 error_at(index_expr->location(),
11428 "index expression is not integer constant");
11429 return Expression::make_error(location);
11430 }
11431 if (mpz_sgn(ival) < 0)
11432 {
11433 mpz_clear(ival);
11434 error_at(index_expr->location(), "index expression is negative");
11435 return Expression::make_error(location);
11436 }
11437 index = mpz_get_ui(ival);
11438 if (mpz_cmp_ui(ival, index) != 0)
11439 {
11440 mpz_clear(ival);
11441 error_at(index_expr->location(), "index value overflow");
11442 return Expression::make_error(location);
11443 }
11444 mpz_clear(ival);
11445 }
11446
11447 if (index == vals.size())
11448 vals.push_back(val);
11449 else
11450 {
11451 if (index > vals.size())
11452 {
11453 vals.reserve(index + 32);
11454 vals.resize(index + 1, static_cast<Expression*>(NULL));
11455 }
11456 if (vals[index] != NULL)
11457 {
11458 error_at((index_expr != NULL
11459 ? index_expr->location()
11460 : val->location()),
11461 "duplicate value for index %lu",
11462 index);
11463 return Expression::make_error(location);
11464 }
11465 vals[index] = val;
11466 }
11467
11468 ++index;
11469 }
11470
11471 size_t size = vals.size();
11472 Expression_list* list = new Expression_list;
11473 list->reserve(size);
11474 for (size_t i = 0; i < size; ++i)
11475 list->push_back(vals[i]);
11476
11477 return this->make_array(type, list);
11478}
11479
11480// Actually build the array composite literal. This handles
11481// [...]{...}.
11482
11483Expression*
11484Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11485{
11486 source_location location = this->location();
11487 Array_type* at = type->array_type();
11488 if (at->length() != NULL && at->length()->is_nil_expression())
11489 {
11490 size_t size = vals == NULL ? 0 : vals->size();
11491 mpz_t vlen;
11492 mpz_init_set_ui(vlen, size);
11493 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11494 mpz_clear(vlen);
11495 at = Type::make_array_type(at->element_type(), elen);
11496 type = at;
11497 }
11498 if (at->length() != NULL)
11499 return new Fixed_array_construction_expression(type, vals, location);
11500 else
11501 return new Open_array_construction_expression(type, vals, location);
11502}
11503
11504// Lower a map composite literal.
11505
11506Expression*
a287720d 11507Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11508 Type* type)
e440a328 11509{
11510 source_location location = this->location();
11511 if (this->vals_ != NULL)
11512 {
11513 if (!this->has_keys_)
11514 {
11515 error_at(location, "map composite literal must have keys");
11516 return Expression::make_error(location);
11517 }
11518
a287720d 11519 for (Expression_list::iterator p = this->vals_->begin();
e440a328 11520 p != this->vals_->end();
11521 p += 2)
11522 {
11523 if (*p == NULL)
11524 {
11525 ++p;
11526 error_at((*p)->location(),
11527 "map composite literal must have keys for every value");
11528 return Expression::make_error(location);
11529 }
a287720d 11530 // Make sure we have lowered the key; it may not have been
11531 // lowered in order to handle keys for struct composite
11532 // literals. Lower it now to get the right error message.
11533 if ((*p)->unknown_expression() != NULL)
11534 {
11535 (*p)->unknown_expression()->clear_is_composite_literal_key();
11536 gogo->lower_expression(function, &*p);
11537 gcc_assert((*p)->is_error_expression());
11538 return Expression::make_error(location);
11539 }
e440a328 11540 }
11541 }
11542
11543 return new Map_construction_expression(type, this->vals_, location);
11544}
11545
11546// Make a composite literal expression.
11547
11548Expression*
11549Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11550 Expression_list* vals,
11551 source_location location)
11552{
11553 return new Composite_literal_expression(type, depth, has_keys, vals,
11554 location);
11555}
11556
11557// Return whether this expression is a composite literal.
11558
11559bool
11560Expression::is_composite_literal() const
11561{
11562 switch (this->classification_)
11563 {
11564 case EXPRESSION_COMPOSITE_LITERAL:
11565 case EXPRESSION_STRUCT_CONSTRUCTION:
11566 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11567 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11568 case EXPRESSION_MAP_CONSTRUCTION:
11569 return true;
11570 default:
11571 return false;
11572 }
11573}
11574
11575// Return whether this expression is a composite literal which is not
11576// constant.
11577
11578bool
11579Expression::is_nonconstant_composite_literal() const
11580{
11581 switch (this->classification_)
11582 {
11583 case EXPRESSION_STRUCT_CONSTRUCTION:
11584 {
11585 const Struct_construction_expression *psce =
11586 static_cast<const Struct_construction_expression*>(this);
11587 return !psce->is_constant_struct();
11588 }
11589 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11590 {
11591 const Fixed_array_construction_expression *pace =
11592 static_cast<const Fixed_array_construction_expression*>(this);
11593 return !pace->is_constant_array();
11594 }
11595 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11596 {
11597 const Open_array_construction_expression *pace =
11598 static_cast<const Open_array_construction_expression*>(this);
11599 return !pace->is_constant_array();
11600 }
11601 case EXPRESSION_MAP_CONSTRUCTION:
11602 return true;
11603 default:
11604 return false;
11605 }
11606}
11607
11608// Return true if this is a reference to a local variable.
11609
11610bool
11611Expression::is_local_variable() const
11612{
11613 const Var_expression* ve = this->var_expression();
11614 if (ve == NULL)
11615 return false;
11616 const Named_object* no = ve->named_object();
11617 return (no->is_result_variable()
11618 || (no->is_variable() && !no->var_value()->is_global()));
11619}
11620
11621// Class Type_guard_expression.
11622
11623// Traversal.
11624
11625int
11626Type_guard_expression::do_traverse(Traverse* traverse)
11627{
11628 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11629 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11630 return TRAVERSE_EXIT;
11631 return TRAVERSE_CONTINUE;
11632}
11633
11634// Check types of a type guard expression. The expression must have
11635// an interface type, but the actual type conversion is checked at run
11636// time.
11637
11638void
11639Type_guard_expression::do_check_types(Gogo*)
11640{
11641 // 6g permits using a type guard with unsafe.pointer; we are
11642 // compatible.
11643 Type* expr_type = this->expr_->type();
11644 if (expr_type->is_unsafe_pointer_type())
11645 {
11646 if (this->type_->points_to() == NULL
11647 && (this->type_->integer_type() == NULL
11648 || (this->type_->forwarded()
11649 != Type::lookup_integer_type("uintptr"))))
11650 this->report_error(_("invalid unsafe.Pointer conversion"));
11651 }
11652 else if (this->type_->is_unsafe_pointer_type())
11653 {
11654 if (expr_type->points_to() == NULL
11655 && (expr_type->integer_type() == NULL
11656 || (expr_type->forwarded()
11657 != Type::lookup_integer_type("uintptr"))))
11658 this->report_error(_("invalid unsafe.Pointer conversion"));
11659 }
11660 else if (expr_type->interface_type() == NULL)
f725ade8 11661 {
11662 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11663 this->report_error(_("type assertion only valid for interface types"));
11664 this->set_is_error();
11665 }
e440a328 11666 else if (this->type_->interface_type() == NULL)
11667 {
11668 std::string reason;
11669 if (!expr_type->interface_type()->implements_interface(this->type_,
11670 &reason))
11671 {
f725ade8 11672 if (!this->type_->is_error_type())
e440a328 11673 {
f725ade8 11674 if (reason.empty())
11675 this->report_error(_("impossible type assertion: "
11676 "type does not implement interface"));
11677 else
11678 error_at(this->location(),
11679 ("impossible type assertion: "
11680 "type does not implement interface (%s)"),
11681 reason.c_str());
e440a328 11682 }
f725ade8 11683 this->set_is_error();
e440a328 11684 }
11685 }
11686}
11687
11688// Return a tree for a type guard expression.
11689
11690tree
11691Type_guard_expression::do_get_tree(Translate_context* context)
11692{
11693 Gogo* gogo = context->gogo();
11694 tree expr_tree = this->expr_->get_tree(context);
11695 if (expr_tree == error_mark_node)
11696 return error_mark_node;
11697 Type* expr_type = this->expr_->type();
11698 if ((this->type_->is_unsafe_pointer_type()
11699 && (expr_type->points_to() != NULL
11700 || expr_type->integer_type() != NULL))
11701 || (expr_type->is_unsafe_pointer_type()
11702 && this->type_->points_to() != NULL))
11703 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11704 else if (expr_type->is_unsafe_pointer_type()
11705 && this->type_->integer_type() != NULL)
11706 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11707 else if (this->type_->interface_type() != NULL)
11708 return Expression::convert_interface_to_interface(context, this->type_,
11709 this->expr_->type(),
11710 expr_tree, true,
11711 this->location());
11712 else
11713 return Expression::convert_for_assignment(context, this->type_,
11714 this->expr_->type(), expr_tree,
11715 this->location());
11716}
11717
11718// Make a type guard expression.
11719
11720Expression*
11721Expression::make_type_guard(Expression* expr, Type* type,
11722 source_location location)
11723{
11724 return new Type_guard_expression(expr, type, location);
11725}
11726
11727// Class Heap_composite_expression.
11728
11729// When you take the address of a composite literal, it is allocated
11730// on the heap. This class implements that.
11731
11732class Heap_composite_expression : public Expression
11733{
11734 public:
11735 Heap_composite_expression(Expression* expr, source_location location)
11736 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11737 expr_(expr)
11738 { }
11739
11740 protected:
11741 int
11742 do_traverse(Traverse* traverse)
11743 { return Expression::traverse(&this->expr_, traverse); }
11744
11745 Type*
11746 do_type()
11747 { return Type::make_pointer_type(this->expr_->type()); }
11748
11749 void
11750 do_determine_type(const Type_context*)
11751 { this->expr_->determine_type_no_context(); }
11752
11753 Expression*
11754 do_copy()
11755 {
11756 return Expression::make_heap_composite(this->expr_->copy(),
11757 this->location());
11758 }
11759
11760 tree
11761 do_get_tree(Translate_context*);
11762
11763 // We only export global objects, and the parser does not generate
11764 // this in global scope.
11765 void
11766 do_export(Export*) const
11767 { gcc_unreachable(); }
11768
11769 private:
11770 // The composite literal which is being put on the heap.
11771 Expression* expr_;
11772};
11773
11774// Return a tree which allocates a composite literal on the heap.
11775
11776tree
11777Heap_composite_expression::do_get_tree(Translate_context* context)
11778{
11779 tree expr_tree = this->expr_->get_tree(context);
11780 if (expr_tree == error_mark_node)
11781 return error_mark_node;
11782 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11783 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11784 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11785 expr_size, this->location());
11786 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11787 space = save_expr(space);
11788 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11789 TREE_THIS_NOTRAP(ref) = 1;
11790 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11791 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11792 space);
11793 SET_EXPR_LOCATION(ret, this->location());
11794 return ret;
11795}
11796
11797// Allocate a composite literal on the heap.
11798
11799Expression*
11800Expression::make_heap_composite(Expression* expr, source_location location)
11801{
11802 return new Heap_composite_expression(expr, location);
11803}
11804
11805// Class Receive_expression.
11806
11807// Return the type of a receive expression.
11808
11809Type*
11810Receive_expression::do_type()
11811{
11812 Channel_type* channel_type = this->channel_->type()->channel_type();
11813 if (channel_type == NULL)
11814 return Type::make_error_type();
11815 return channel_type->element_type();
11816}
11817
11818// Check types for a receive expression.
11819
11820void
11821Receive_expression::do_check_types(Gogo*)
11822{
11823 Type* type = this->channel_->type();
11824 if (type->is_error_type())
11825 {
11826 this->set_is_error();
11827 return;
11828 }
11829 if (type->channel_type() == NULL)
11830 {
11831 this->report_error(_("expected channel"));
11832 return;
11833 }
11834 if (!type->channel_type()->may_receive())
11835 {
11836 this->report_error(_("invalid receive on send-only channel"));
11837 return;
11838 }
11839}
11840
11841// Get a tree for a receive expression.
11842
11843tree
11844Receive_expression::do_get_tree(Translate_context* context)
11845{
11846 Channel_type* channel_type = this->channel_->type()->channel_type();
11847 gcc_assert(channel_type != NULL);
11848 Type* element_type = channel_type->element_type();
11849 tree element_type_tree = element_type->get_tree(context->gogo());
11850
11851 tree channel = this->channel_->get_tree(context);
11852 if (element_type_tree == error_mark_node || channel == error_mark_node)
11853 return error_mark_node;
11854
11855 return Gogo::receive_from_channel(element_type_tree, channel,
11856 this->for_select_, this->location());
11857}
11858
11859// Make a receive expression.
11860
11861Receive_expression*
11862Expression::make_receive(Expression* channel, source_location location)
11863{
11864 return new Receive_expression(channel, location);
11865}
11866
11867// Class Send_expression.
11868
11869// Traversal.
11870
11871int
11872Send_expression::do_traverse(Traverse* traverse)
11873{
11874 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
11875 return TRAVERSE_EXIT;
11876 return Expression::traverse(&this->val_, traverse);
11877}
11878
11879// Get the type.
11880
11881Type*
11882Send_expression::do_type()
11883{
11884 return Type::lookup_bool_type();
11885}
11886
11887// Set types.
11888
11889void
11890Send_expression::do_determine_type(const Type_context*)
11891{
11892 this->channel_->determine_type_no_context();
11893
11894 Type* type = this->channel_->type();
11895 Type_context subcontext;
11896 if (type->channel_type() != NULL)
11897 subcontext.type = type->channel_type()->element_type();
11898 this->val_->determine_type(&subcontext);
11899}
11900
11901// Check types.
11902
11903void
11904Send_expression::do_check_types(Gogo*)
11905{
11906 Type* type = this->channel_->type();
11907 if (type->is_error_type())
11908 {
11909 this->set_is_error();
11910 return;
11911 }
11912 Channel_type* channel_type = type->channel_type();
11913 if (channel_type == NULL)
11914 {
11915 error_at(this->location(), "left operand of %<<-%> must be channel");
11916 this->set_is_error();
11917 return;
11918 }
11919 Type* element_type = channel_type->element_type();
11920 if (element_type != NULL
11921 && !Type::are_assignable(element_type, this->val_->type(), NULL))
11922 {
11923 this->report_error(_("incompatible types in send"));
11924 return;
11925 }
11926 if (!channel_type->may_send())
11927 {
11928 this->report_error(_("invalid send on receive-only channel"));
11929 return;
11930 }
11931}
11932
11933// Get a tree for a send expression.
11934
11935tree
11936Send_expression::do_get_tree(Translate_context* context)
11937{
11938 tree channel = this->channel_->get_tree(context);
11939 tree val = this->val_->get_tree(context);
11940 if (channel == error_mark_node || val == error_mark_node)
11941 return error_mark_node;
11942 Channel_type* channel_type = this->channel_->type()->channel_type();
11943 val = Expression::convert_for_assignment(context,
11944 channel_type->element_type(),
11945 this->val_->type(),
11946 val,
11947 this->location());
11948 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
11949 this->for_select_, this->location());
11950}
11951
11952// Make a send expression
11953
11954Send_expression*
11955Expression::make_send(Expression* channel, Expression* val,
11956 source_location location)
11957{
11958 return new Send_expression(channel, val, location);
11959}
11960
11961// An expression which evaluates to a pointer to the type descriptor
11962// of a type.
11963
11964class Type_descriptor_expression : public Expression
11965{
11966 public:
11967 Type_descriptor_expression(Type* type, source_location location)
11968 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
11969 type_(type)
11970 { }
11971
11972 protected:
11973 Type*
11974 do_type()
11975 { return Type::make_type_descriptor_ptr_type(); }
11976
11977 void
11978 do_determine_type(const Type_context*)
11979 { }
11980
11981 Expression*
11982 do_copy()
11983 { return this; }
11984
11985 tree
11986 do_get_tree(Translate_context* context)
11987 { return this->type_->type_descriptor_pointer(context->gogo()); }
11988
11989 private:
11990 // The type for which this is the descriptor.
11991 Type* type_;
11992};
11993
11994// Make a type descriptor expression.
11995
11996Expression*
11997Expression::make_type_descriptor(Type* type, source_location location)
11998{
11999 return new Type_descriptor_expression(type, location);
12000}
12001
12002// An expression which evaluates to some characteristic of a type.
12003// This is only used to initialize fields of a type descriptor. Using
12004// a new expression class is slightly inefficient but gives us a good
12005// separation between the frontend and the middle-end with regard to
12006// how types are laid out.
12007
12008class Type_info_expression : public Expression
12009{
12010 public:
12011 Type_info_expression(Type* type, Type_info type_info)
12012 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12013 type_(type), type_info_(type_info)
12014 { }
12015
12016 protected:
12017 Type*
12018 do_type();
12019
12020 void
12021 do_determine_type(const Type_context*)
12022 { }
12023
12024 Expression*
12025 do_copy()
12026 { return this; }
12027
12028 tree
12029 do_get_tree(Translate_context* context);
12030
12031 private:
12032 // The type for which we are getting information.
12033 Type* type_;
12034 // What information we want.
12035 Type_info type_info_;
12036};
12037
12038// The type is chosen to match what the type descriptor struct
12039// expects.
12040
12041Type*
12042Type_info_expression::do_type()
12043{
12044 switch (this->type_info_)
12045 {
12046 case TYPE_INFO_SIZE:
12047 return Type::lookup_integer_type("uintptr");
12048 case TYPE_INFO_ALIGNMENT:
12049 case TYPE_INFO_FIELD_ALIGNMENT:
12050 return Type::lookup_integer_type("uint8");
12051 default:
12052 gcc_unreachable();
12053 }
12054}
12055
12056// Return type information in GENERIC.
12057
12058tree
12059Type_info_expression::do_get_tree(Translate_context* context)
12060{
12061 tree type_tree = this->type_->get_tree(context->gogo());
12062 if (type_tree == error_mark_node)
12063 return error_mark_node;
12064
12065 tree val_type_tree = this->type()->get_tree(context->gogo());
12066 gcc_assert(val_type_tree != error_mark_node);
12067
12068 if (this->type_info_ == TYPE_INFO_SIZE)
12069 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12070 TYPE_SIZE_UNIT(type_tree));
12071 else
12072 {
637bd3af 12073 unsigned int val;
e440a328 12074 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
637bd3af 12075 val = go_type_alignment(type_tree);
e440a328 12076 else
637bd3af 12077 val = go_field_alignment(type_tree);
e440a328 12078 return build_int_cstu(val_type_tree, val);
12079 }
12080}
12081
12082// Make a type info expression.
12083
12084Expression*
12085Expression::make_type_info(Type* type, Type_info type_info)
12086{
12087 return new Type_info_expression(type, type_info);
12088}
12089
12090// An expression which evaluates to the offset of a field within a
12091// struct. This, like Type_info_expression, q.v., is only used to
12092// initialize fields of a type descriptor.
12093
12094class Struct_field_offset_expression : public Expression
12095{
12096 public:
12097 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12098 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12099 type_(type), field_(field)
12100 { }
12101
12102 protected:
12103 Type*
12104 do_type()
12105 { return Type::lookup_integer_type("uintptr"); }
12106
12107 void
12108 do_determine_type(const Type_context*)
12109 { }
12110
12111 Expression*
12112 do_copy()
12113 { return this; }
12114
12115 tree
12116 do_get_tree(Translate_context* context);
12117
12118 private:
12119 // The type of the struct.
12120 Struct_type* type_;
12121 // The field.
12122 const Struct_field* field_;
12123};
12124
12125// Return a struct field offset in GENERIC.
12126
12127tree
12128Struct_field_offset_expression::do_get_tree(Translate_context* context)
12129{
12130 tree type_tree = this->type_->get_tree(context->gogo());
12131 if (type_tree == error_mark_node)
12132 return error_mark_node;
12133
12134 tree val_type_tree = this->type()->get_tree(context->gogo());
12135 gcc_assert(val_type_tree != error_mark_node);
12136
12137 const Struct_field_list* fields = this->type_->fields();
12138 tree struct_field_tree = TYPE_FIELDS(type_tree);
12139 Struct_field_list::const_iterator p;
12140 for (p = fields->begin();
12141 p != fields->end();
12142 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12143 {
12144 gcc_assert(struct_field_tree != NULL_TREE);
12145 if (&*p == this->field_)
12146 break;
12147 }
12148 gcc_assert(&*p == this->field_);
12149
12150 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12151 byte_position(struct_field_tree));
12152}
12153
12154// Make an expression for a struct field offset.
12155
12156Expression*
12157Expression::make_struct_field_offset(Struct_type* type,
12158 const Struct_field* field)
12159{
12160 return new Struct_field_offset_expression(type, field);
12161}
12162
12163// An expression which evaluates to the address of an unnamed label.
12164
12165class Label_addr_expression : public Expression
12166{
12167 public:
12168 Label_addr_expression(Label* label, source_location location)
12169 : Expression(EXPRESSION_LABEL_ADDR, location),
12170 label_(label)
12171 { }
12172
12173 protected:
12174 Type*
12175 do_type()
12176 { return Type::make_pointer_type(Type::make_void_type()); }
12177
12178 void
12179 do_determine_type(const Type_context*)
12180 { }
12181
12182 Expression*
12183 do_copy()
12184 { return new Label_addr_expression(this->label_, this->location()); }
12185
12186 tree
12187 do_get_tree(Translate_context*)
12188 { return this->label_->get_addr(this->location()); }
12189
12190 private:
12191 // The label whose address we are taking.
12192 Label* label_;
12193};
12194
12195// Make an expression for the address of an unnamed label.
12196
12197Expression*
12198Expression::make_label_addr(Label* label, source_location location)
12199{
12200 return new Label_addr_expression(label, location);
12201}
12202
12203// Import an expression. This comes at the end in order to see the
12204// various class definitions.
12205
12206Expression*
12207Expression::import_expression(Import* imp)
12208{
12209 int c = imp->peek_char();
12210 if (imp->match_c_string("- ")
12211 || imp->match_c_string("! ")
12212 || imp->match_c_string("^ "))
12213 return Unary_expression::do_import(imp);
12214 else if (c == '(')
12215 return Binary_expression::do_import(imp);
12216 else if (imp->match_c_string("true")
12217 || imp->match_c_string("false"))
12218 return Boolean_expression::do_import(imp);
12219 else if (c == '"')
12220 return String_expression::do_import(imp);
12221 else if (c == '-' || (c >= '0' && c <= '9'))
12222 {
12223 // This handles integers, floats and complex constants.
12224 return Integer_expression::do_import(imp);
12225 }
12226 else if (imp->match_c_string("nil"))
12227 return Nil_expression::do_import(imp);
12228 else if (imp->match_c_string("convert"))
12229 return Type_conversion_expression::do_import(imp);
12230 else
12231 {
12232 error_at(imp->location(), "import error: expected expression");
12233 return Expression::make_error(imp->location());
12234 }
12235}
12236
12237// Class Expression_list.
12238
12239// Traverse the list.
12240
12241int
12242Expression_list::traverse(Traverse* traverse)
12243{
12244 for (Expression_list::iterator p = this->begin();
12245 p != this->end();
12246 ++p)
12247 {
12248 if (*p != NULL)
12249 {
12250 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12251 return TRAVERSE_EXIT;
12252 }
12253 }
12254 return TRAVERSE_CONTINUE;
12255}
12256
12257// Copy the list.
12258
12259Expression_list*
12260Expression_list::copy()
12261{
12262 Expression_list* ret = new Expression_list();
12263 for (Expression_list::iterator p = this->begin();
12264 p != this->end();
12265 ++p)
12266 {
12267 if (*p == NULL)
12268 ret->push_back(NULL);
12269 else
12270 ret->push_back((*p)->copy());
12271 }
12272 return ret;
12273}
12274
12275// Return whether an expression list has an error expression.
12276
12277bool
12278Expression_list::contains_error() const
12279{
12280 for (Expression_list::const_iterator p = this->begin();
12281 p != this->end();
12282 ++p)
12283 if (*p != NULL && (*p)->is_error_expression())
12284 return true;
12285 return false;
12286}