]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
Add Go frontend, libgo library, and Go testsuite.
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
24#include "tm.h"
25#include "tm_p.h"
26
27#ifndef ENABLE_BUILD_WITH_CXX
28}
29#endif
30
31#include "go-c.h"
32#include "gogo.h"
33#include "types.h"
34#include "export.h"
35#include "import.h"
36#include "statements.h"
37#include "lex.h"
38#include "expressions.h"
39
40// Class Expression.
41
42Expression::Expression(Expression_classification classification,
43 source_location location)
44 : classification_(classification), location_(location)
45{
46}
47
48Expression::~Expression()
49{
50}
51
52// If this expression has a constant integer value, return it.
53
54bool
55Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
56 Type** ptype) const
57{
58 *ptype = NULL;
59 return this->do_integer_constant_value(iota_is_constant, val, ptype);
60}
61
62// If this expression has a constant floating point value, return it.
63
64bool
65Expression::float_constant_value(mpfr_t val, Type** ptype) const
66{
67 *ptype = NULL;
68 if (this->do_float_constant_value(val, ptype))
69 return true;
70 mpz_t ival;
71 mpz_init(ival);
72 Type* t;
73 bool ret;
74 if (!this->do_integer_constant_value(false, ival, &t))
75 ret = false;
76 else
77 {
78 mpfr_set_z(val, ival, GMP_RNDN);
79 ret = true;
80 }
81 mpz_clear(ival);
82 return ret;
83}
84
85// If this expression has a constant complex value, return it.
86
87bool
88Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
89 Type** ptype) const
90{
91 *ptype = NULL;
92 if (this->do_complex_constant_value(real, imag, ptype))
93 return true;
94 Type *t;
95 if (this->float_constant_value(real, &t))
96 {
97 mpfr_set_ui(imag, 0, GMP_RNDN);
98 return true;
99 }
100 return false;
101}
102
103// Traverse the expressions.
104
105int
106Expression::traverse(Expression** pexpr, Traverse* traverse)
107{
108 Expression* expr = *pexpr;
109 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
110 {
111 int t = traverse->expression(pexpr);
112 if (t == TRAVERSE_EXIT)
113 return TRAVERSE_EXIT;
114 else if (t == TRAVERSE_SKIP_COMPONENTS)
115 return TRAVERSE_CONTINUE;
116 }
117 return expr->do_traverse(traverse);
118}
119
120// Traverse subexpressions of this expression.
121
122int
123Expression::traverse_subexpressions(Traverse* traverse)
124{
125 return this->do_traverse(traverse);
126}
127
128// Default implementation for do_traverse for child classes.
129
130int
131Expression::do_traverse(Traverse*)
132{
133 return TRAVERSE_CONTINUE;
134}
135
136// This virtual function is called by the parser if the value of this
137// expression is being discarded. By default, we warn. Expressions
138// with side effects override.
139
140void
141Expression::do_discarding_value()
142{
143 this->warn_about_unused_value();
144}
145
146// This virtual function is called to export expressions. This will
147// only be used by expressions which may be constant.
148
149void
150Expression::do_export(Export*) const
151{
152 gcc_unreachable();
153}
154
155// Warn that the value of the expression is not used.
156
157void
158Expression::warn_about_unused_value()
159{
160 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
161}
162
163// Note that this expression is an error. This is called by children
164// when they discover an error.
165
166void
167Expression::set_is_error()
168{
169 this->classification_ = EXPRESSION_ERROR;
170}
171
172// For children to call to report an error conveniently.
173
174void
175Expression::report_error(const char* msg)
176{
177 error_at(this->location_, "%s", msg);
178 this->set_is_error();
179}
180
181// Set types of variables and constants. This is implemented by the
182// child class.
183
184void
185Expression::determine_type(const Type_context* context)
186{
187 this->do_determine_type(context);
188}
189
190// Set types when there is no context.
191
192void
193Expression::determine_type_no_context()
194{
195 Type_context context;
196 this->do_determine_type(&context);
197}
198
199// Return a tree handling any conversions which must be done during
200// assignment.
201
202tree
203Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
204 Type* rhs_type, tree rhs_tree,
205 source_location location)
206{
207 if (lhs_type == rhs_type)
208 return rhs_tree;
209
210 if (lhs_type->is_error_type() || rhs_type->is_error_type())
211 return error_mark_node;
212
213 if (lhs_type->is_undefined() || rhs_type->is_undefined())
214 {
215 // Make sure we report the error.
216 lhs_type->base();
217 rhs_type->base();
218 return error_mark_node;
219 }
220
221 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
222 return error_mark_node;
223
224 Gogo* gogo = context->gogo();
225
226 tree lhs_type_tree = lhs_type->get_tree(gogo);
227 if (lhs_type_tree == error_mark_node)
228 return error_mark_node;
229
230 if (lhs_type->interface_type() != NULL)
231 {
232 if (rhs_type->interface_type() == NULL)
233 return Expression::convert_type_to_interface(context, lhs_type,
234 rhs_type, rhs_tree,
235 location);
236 else
237 return Expression::convert_interface_to_interface(context, lhs_type,
238 rhs_type, rhs_tree,
239 false, location);
240 }
241 else if (rhs_type->interface_type() != NULL)
242 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
243 rhs_tree, location);
244 else if (lhs_type->is_open_array_type()
245 && rhs_type->is_nil_type())
246 {
247 // Assigning nil to an open array.
248 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
249
250 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
251
252 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
253 tree field = TYPE_FIELDS(lhs_type_tree);
254 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
255 "__values") == 0);
256 elt->index = field;
257 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
258
259 elt = VEC_quick_push(constructor_elt, init, NULL);
260 field = DECL_CHAIN(field);
261 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
262 "__count") == 0);
263 elt->index = field;
264 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
265
266 elt = VEC_quick_push(constructor_elt, init, NULL);
267 field = DECL_CHAIN(field);
268 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
269 "__capacity") == 0);
270 elt->index = field;
271 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
272
273 tree val = build_constructor(lhs_type_tree, init);
274 TREE_CONSTANT(val) = 1;
275
276 return val;
277 }
278 else if (rhs_type->is_nil_type())
279 {
280 // The left hand side should be a pointer type at the tree
281 // level.
282 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
283 return fold_convert(lhs_type_tree, null_pointer_node);
284 }
285 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
286 {
287 // No conversion is needed.
288 return rhs_tree;
289 }
290 else if (POINTER_TYPE_P(lhs_type_tree)
291 || INTEGRAL_TYPE_P(lhs_type_tree)
292 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
293 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
294 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
295 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
296 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
297 {
298 // This conversion must be permitted by Go, or we wouldn't have
299 // gotten here.
300 gcc_assert(int_size_in_bytes(lhs_type_tree)
301 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
302 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
303 rhs_tree);
304 }
305 else
306 {
307 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
308 return rhs_tree;
309 }
310}
311
312// Return a tree for a conversion from a non-interface type to an
313// interface type.
314
315tree
316Expression::convert_type_to_interface(Translate_context* context,
317 Type* lhs_type, Type* rhs_type,
318 tree rhs_tree, source_location location)
319{
320 Gogo* gogo = context->gogo();
321 Interface_type* lhs_interface_type = lhs_type->interface_type();
322 bool lhs_is_empty = lhs_interface_type->is_empty();
323
324 // Since RHS_TYPE is a static type, we can create the interface
325 // method table at compile time.
326
327 // When setting an interface to nil, we just set both fields to
328 // NULL.
329 if (rhs_type->is_nil_type())
330 return lhs_type->get_init_tree(gogo, false);
331
332 // This should have been checked already.
333 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
334
335 tree lhs_type_tree = lhs_type->get_tree(gogo);
336 if (lhs_type_tree == error_mark_node)
337 return error_mark_node;
338
339 // An interface is a tuple. If LHS_TYPE is an empty interface type,
340 // then the first field is the type descriptor for RHS_TYPE.
341 // Otherwise it is the interface method table for RHS_TYPE.
342 tree first_field_value;
343 if (lhs_is_empty)
344 first_field_value = rhs_type->type_descriptor_pointer(gogo);
345 else
346 {
347 // Build the interface method table for this interface and this
348 // object type: a list of function pointers for each interface
349 // method.
350 Named_type* rhs_named_type = rhs_type->named_type();
351 bool is_pointer = false;
352 if (rhs_named_type == NULL)
353 {
354 rhs_named_type = rhs_type->deref()->named_type();
355 is_pointer = true;
356 }
357 tree method_table;
358 if (rhs_named_type == NULL)
359 method_table = null_pointer_node;
360 else
361 method_table =
362 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
363 is_pointer);
364 first_field_value = fold_convert_loc(location, const_ptr_type_node,
365 method_table);
366 }
367
368 // Start building a constructor for the value we will return.
369
370 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
371
372 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
373 tree field = TYPE_FIELDS(lhs_type_tree);
374 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
375 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
376 elt->index = field;
377 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
378
379 elt = VEC_quick_push(constructor_elt, init, NULL);
380 field = DECL_CHAIN(field);
381 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
382 elt->index = field;
383
384 if (rhs_type->points_to() != NULL)
385 {
386 // We are assigning a pointer to the interface; the interface
387 // holds the pointer itself.
388 elt->value = rhs_tree;
389 return build_constructor(lhs_type_tree, init);
390 }
391
392 // We are assigning a non-pointer value to the interface; the
393 // interface gets a copy of the value in the heap.
394
395 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
396
397 tree space = gogo->allocate_memory(rhs_type, object_size, location);
398 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
399 space);
400 space = save_expr(space);
401
402 tree ref = build_fold_indirect_ref_loc(location, space);
403 TREE_THIS_NOTRAP(ref) = 1;
404 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
405 ref, rhs_tree);
406
407 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
408
409 return build2(COMPOUND_EXPR, lhs_type_tree, set,
410 build_constructor(lhs_type_tree, init));
411}
412
413// Return a tree for the type descriptor of RHS_TREE, which has
414// interface type RHS_TYPE. If RHS_TREE is nil the result will be
415// NULL.
416
417tree
418Expression::get_interface_type_descriptor(Translate_context*,
419 Type* rhs_type, tree rhs_tree,
420 source_location location)
421{
422 tree rhs_type_tree = TREE_TYPE(rhs_tree);
423 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
424 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
425 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
426 NULL_TREE);
427 if (rhs_type->interface_type()->is_empty())
428 {
429 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
430 "__type_descriptor") == 0);
431 return v;
432 }
433
434 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
435 == 0);
436 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
437 v = save_expr(v);
438 tree v1 = build_fold_indirect_ref_loc(location, v);
439 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
440 tree f = TYPE_FIELDS(TREE_TYPE(v1));
441 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
442 == 0);
443 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
444
445 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
446 fold_convert_loc(location, TREE_TYPE(v),
447 null_pointer_node));
448 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
449 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
450 eq, n, v1);
451}
452
453// Return a tree for the conversion of an interface type to an
454// interface type.
455
456tree
457Expression::convert_interface_to_interface(Translate_context* context,
458 Type *lhs_type, Type *rhs_type,
459 tree rhs_tree, bool for_type_guard,
460 source_location location)
461{
462 Gogo* gogo = context->gogo();
463 Interface_type* lhs_interface_type = lhs_type->interface_type();
464 bool lhs_is_empty = lhs_interface_type->is_empty();
465
466 tree lhs_type_tree = lhs_type->get_tree(gogo);
467 if (lhs_type_tree == error_mark_node)
468 return error_mark_node;
469
470 // In the general case this requires runtime examination of the type
471 // method table to match it up with the interface methods.
472
473 // FIXME: If all of the methods in the right hand side interface
474 // also appear in the left hand side interface, then we don't need
475 // to do a runtime check, although we still need to build a new
476 // method table.
477
478 // Get the type descriptor for the right hand side. This will be
479 // NULL for a nil interface.
480
481 if (!DECL_P(rhs_tree))
482 rhs_tree = save_expr(rhs_tree);
483
484 tree rhs_type_descriptor =
485 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
486 location);
487
488 // The result is going to be a two element constructor.
489
490 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
491
492 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
493 tree field = TYPE_FIELDS(lhs_type_tree);
494 elt->index = field;
495
496 if (for_type_guard)
497 {
498 // A type assertion fails when converting a nil interface.
499 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
500 static tree assert_interface_decl;
501 tree call = Gogo::call_builtin(&assert_interface_decl,
502 location,
503 "__go_assert_interface",
504 2,
505 ptr_type_node,
506 TREE_TYPE(lhs_type_descriptor),
507 lhs_type_descriptor,
508 TREE_TYPE(rhs_type_descriptor),
509 rhs_type_descriptor);
510 // This will panic if the interface conversion fails.
511 TREE_NOTHROW(assert_interface_decl) = 0;
512 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
513 }
514 else if (lhs_is_empty)
515 {
516 // A convertion to an empty interface always succeeds, and the
517 // first field is just the type descriptor of the object.
518 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
519 "__type_descriptor") == 0);
520 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
521 elt->value = rhs_type_descriptor;
522 }
523 else
524 {
525 // A conversion to a non-empty interface may fail, but unlike a
526 // type assertion converting nil will always succeed.
527 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
528 == 0);
529 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
530 static tree convert_interface_decl;
531 tree call = Gogo::call_builtin(&convert_interface_decl,
532 location,
533 "__go_convert_interface",
534 2,
535 ptr_type_node,
536 TREE_TYPE(lhs_type_descriptor),
537 lhs_type_descriptor,
538 TREE_TYPE(rhs_type_descriptor),
539 rhs_type_descriptor);
540 // This will panic if the interface conversion fails.
541 TREE_NOTHROW(convert_interface_decl) = 0;
542 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
543 }
544
545 // The second field is simply the object pointer.
546
547 elt = VEC_quick_push(constructor_elt, init, NULL);
548 field = DECL_CHAIN(field);
549 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
550 elt->index = field;
551
552 tree rhs_type_tree = TREE_TYPE(rhs_tree);
553 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
554 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
555 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
556 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
557 NULL_TREE);
558
559 return build_constructor(lhs_type_tree, init);
560}
561
562// Return a tree for the conversion of an interface type to a
563// non-interface type.
564
565tree
566Expression::convert_interface_to_type(Translate_context* context,
567 Type *lhs_type, Type* rhs_type,
568 tree rhs_tree, source_location location)
569{
570 Gogo* gogo = context->gogo();
571 tree rhs_type_tree = TREE_TYPE(rhs_tree);
572
573 tree lhs_type_tree = lhs_type->get_tree(gogo);
574 if (lhs_type_tree == error_mark_node)
575 return error_mark_node;
576
577 // Call a function to check that the type is valid. The function
578 // will panic with an appropriate runtime type error if the type is
579 // not valid.
580
581 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
582
583 if (!DECL_P(rhs_tree))
584 rhs_tree = save_expr(rhs_tree);
585
586 tree rhs_type_descriptor =
587 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
588 location);
589
590 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
591
592 static tree check_interface_type_decl;
593 tree call = Gogo::call_builtin(&check_interface_type_decl,
594 location,
595 "__go_check_interface_type",
596 3,
597 void_type_node,
598 TREE_TYPE(lhs_type_descriptor),
599 lhs_type_descriptor,
600 TREE_TYPE(rhs_type_descriptor),
601 rhs_type_descriptor,
602 TREE_TYPE(rhs_inter_descriptor),
603 rhs_inter_descriptor);
604 // This call will panic if the conversion is invalid.
605 TREE_NOTHROW(check_interface_type_decl) = 0;
606
607 // If the call succeeds, pull out the value.
608 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
609 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
610 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
611 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
612 NULL_TREE);
613
614 // If the value is a pointer, then it is the value we want.
615 // Otherwise it points to the value.
616 if (lhs_type->points_to() == NULL)
617 {
618 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
619 val = build_fold_indirect_ref_loc(location, val);
620 }
621
622 return build2(COMPOUND_EXPR, lhs_type_tree, call,
623 fold_convert_loc(location, lhs_type_tree, val));
624}
625
626// Convert an expression to a tree. This is implemented by the child
627// class. Not that it is not in general safe to call this multiple
628// times for a single expression, but that we don't catch such errors.
629
630tree
631Expression::get_tree(Translate_context* context)
632{
633 // The child may have marked this expression as having an error.
634 if (this->classification_ == EXPRESSION_ERROR)
635 return error_mark_node;
636
637 return this->do_get_tree(context);
638}
639
640// Return a tree for VAL in TYPE.
641
642tree
643Expression::integer_constant_tree(mpz_t val, tree type)
644{
645 if (type == error_mark_node)
646 return error_mark_node;
647 else if (TREE_CODE(type) == INTEGER_TYPE)
648 return double_int_to_tree(type,
649 mpz_get_double_int(type, val, true));
650 else if (TREE_CODE(type) == REAL_TYPE)
651 {
652 mpfr_t fval;
653 mpfr_init_set_z(fval, val, GMP_RNDN);
654 tree ret = Expression::float_constant_tree(fval, type);
655 mpfr_clear(fval);
656 return ret;
657 }
658 else if (TREE_CODE(type) == COMPLEX_TYPE)
659 {
660 mpfr_t fval;
661 mpfr_init_set_z(fval, val, GMP_RNDN);
662 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
663 mpfr_clear(fval);
664 tree imag = build_real_from_int_cst(TREE_TYPE(type),
665 integer_zero_node);
666 return build_complex(type, real, imag);
667 }
668 else
669 gcc_unreachable();
670}
671
672// Return a tree for VAL in TYPE.
673
674tree
675Expression::float_constant_tree(mpfr_t val, tree type)
676{
677 if (type == error_mark_node)
678 return error_mark_node;
679 else if (TREE_CODE(type) == INTEGER_TYPE)
680 {
681 mpz_t ival;
682 mpz_init(ival);
683 mpfr_get_z(ival, val, GMP_RNDN);
684 tree ret = Expression::integer_constant_tree(ival, type);
685 mpz_clear(ival);
686 return ret;
687 }
688 else if (TREE_CODE(type) == REAL_TYPE)
689 {
690 REAL_VALUE_TYPE r1;
691 real_from_mpfr(&r1, val, type, GMP_RNDN);
692 REAL_VALUE_TYPE r2;
693 real_convert(&r2, TYPE_MODE(type), &r1);
694 return build_real(type, r2);
695 }
696 else if (TREE_CODE(type) == COMPLEX_TYPE)
697 {
698 REAL_VALUE_TYPE r1;
699 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
700 REAL_VALUE_TYPE r2;
701 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
702 tree imag = build_real_from_int_cst(TREE_TYPE(type),
703 integer_zero_node);
704 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
705 }
706 else
707 gcc_unreachable();
708}
709
710// Return a tree for REAL/IMAG in TYPE.
711
712tree
713Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
714{
715 if (TREE_CODE(type) == COMPLEX_TYPE)
716 {
717 REAL_VALUE_TYPE r1;
718 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
719 REAL_VALUE_TYPE r2;
720 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
721
722 REAL_VALUE_TYPE r3;
723 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
724 REAL_VALUE_TYPE r4;
725 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
726
727 return build_complex(type, build_real(TREE_TYPE(type), r2),
728 build_real(TREE_TYPE(type), r4));
729 }
730 else
731 gcc_unreachable();
732}
733
734// Return a tree which evaluates to true if VAL, of arbitrary integer
735// type, is negative or is more than the maximum value of BOUND_TYPE.
736// If SOFAR is not NULL, it is or'red into the result. The return
737// value may be NULL if SOFAR is NULL.
738
739tree
740Expression::check_bounds(tree val, tree bound_type, tree sofar,
741 source_location loc)
742{
743 tree val_type = TREE_TYPE(val);
744 tree ret = NULL_TREE;
745
746 if (!TYPE_UNSIGNED(val_type))
747 {
748 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
749 build_int_cst(val_type, 0));
750 if (ret == boolean_false_node)
751 ret = NULL_TREE;
752 }
753
754 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
755 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
756 {
757 tree max = TYPE_MAX_VALUE(bound_type);
758 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
759 fold_convert_loc(loc, val_type, max));
760 if (big == boolean_false_node)
761 ;
762 else if (ret == NULL_TREE)
763 ret = big;
764 else
765 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
766 ret, big);
767 }
768
769 if (ret == NULL_TREE)
770 return sofar;
771 else if (sofar == NULL_TREE)
772 return ret;
773 else
774 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
775 sofar, ret);
776}
777
778// Error expressions. This are used to avoid cascading errors.
779
780class Error_expression : public Expression
781{
782 public:
783 Error_expression(source_location location)
784 : Expression(EXPRESSION_ERROR, location)
785 { }
786
787 protected:
788 bool
789 do_is_constant() const
790 { return true; }
791
792 bool
793 do_integer_constant_value(bool, mpz_t val, Type**) const
794 {
795 mpz_set_ui(val, 0);
796 return true;
797 }
798
799 bool
800 do_float_constant_value(mpfr_t val, Type**) const
801 {
802 mpfr_set_ui(val, 0, GMP_RNDN);
803 return true;
804 }
805
806 bool
807 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
808 {
809 mpfr_set_ui(real, 0, GMP_RNDN);
810 mpfr_set_ui(imag, 0, GMP_RNDN);
811 return true;
812 }
813
814 void
815 do_discarding_value()
816 { }
817
818 Type*
819 do_type()
820 { return Type::make_error_type(); }
821
822 void
823 do_determine_type(const Type_context*)
824 { }
825
826 Expression*
827 do_copy()
828 { return this; }
829
830 bool
831 do_is_addressable() const
832 { return true; }
833
834 tree
835 do_get_tree(Translate_context*)
836 { return error_mark_node; }
837};
838
839Expression*
840Expression::make_error(source_location location)
841{
842 return new Error_expression(location);
843}
844
845// An expression which is really a type. This is used during parsing.
846// It is an error if these survive after lowering.
847
848class
849Type_expression : public Expression
850{
851 public:
852 Type_expression(Type* type, source_location location)
853 : Expression(EXPRESSION_TYPE, location),
854 type_(type)
855 { }
856
857 protected:
858 int
859 do_traverse(Traverse* traverse)
860 { return Type::traverse(this->type_, traverse); }
861
862 Type*
863 do_type()
864 { return this->type_; }
865
866 void
867 do_determine_type(const Type_context*)
868 { }
869
870 void
871 do_check_types(Gogo*)
872 { this->report_error(_("invalid use of type")); }
873
874 Expression*
875 do_copy()
876 { return this; }
877
878 tree
879 do_get_tree(Translate_context*)
880 { gcc_unreachable(); }
881
882 private:
883 // The type which we are representing as an expression.
884 Type* type_;
885};
886
887Expression*
888Expression::make_type(Type* type, source_location location)
889{
890 return new Type_expression(type, location);
891}
892
893// Class Var_expression.
894
895// Lower a variable expression. Here we just make sure that the
896// initialization expression of the variable has been lowered. This
897// ensures that we will be able to determine the type of the variable
898// if necessary.
899
900Expression*
901Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
902{
903 if (this->variable_->is_variable())
904 {
905 Variable* var = this->variable_->var_value();
906 // This is either a local variable or a global variable. A
907 // reference to a variable which is local to an enclosing
908 // function will be a reference to a field in a closure.
909 if (var->is_global())
910 function = NULL;
911 var->lower_init_expression(gogo, function);
912 }
913 return this;
914}
915
916// Return the name of the variable.
917
918const std::string&
919Var_expression::name() const
920{
921 return this->variable_->name();
922}
923
924// Return the type of a reference to a variable.
925
926Type*
927Var_expression::do_type()
928{
929 if (this->variable_->is_variable())
930 return this->variable_->var_value()->type();
931 else if (this->variable_->is_result_variable())
932 return this->variable_->result_var_value()->type();
933 else
934 gcc_unreachable();
935}
936
937// Something takes the address of this variable. This means that we
938// may want to move the variable onto the heap.
939
940void
941Var_expression::do_address_taken(bool escapes)
942{
943 if (!escapes)
944 ;
945 else if (this->variable_->is_variable())
946 this->variable_->var_value()->set_address_taken();
947 else if (this->variable_->is_result_variable())
948 this->variable_->result_var_value()->set_address_taken();
949 else
950 gcc_unreachable();
951}
952
953// Get the tree for a reference to a variable.
954
955tree
956Var_expression::do_get_tree(Translate_context* context)
957{
958 return this->variable_->get_tree(context->gogo(), context->function());
959}
960
961// Make a reference to a variable in an expression.
962
963Expression*
964Expression::make_var_reference(Named_object* var, source_location location)
965{
966 if (var->is_sink())
967 return Expression::make_sink(location);
968
969 // FIXME: Creating a new object for each reference to a variable is
970 // wasteful.
971 return new Var_expression(var, location);
972}
973
974// Class Temporary_reference_expression.
975
976// The type.
977
978Type*
979Temporary_reference_expression::do_type()
980{
981 return this->statement_->type();
982}
983
984// Called if something takes the address of this temporary variable.
985// We never have to move temporary variables to the heap, but we do
986// need to know that they must live in the stack rather than in a
987// register.
988
989void
990Temporary_reference_expression::do_address_taken(bool)
991{
992 this->statement_->set_is_address_taken();
993}
994
995// Get a tree referring to the variable.
996
997tree
998Temporary_reference_expression::do_get_tree(Translate_context*)
999{
1000 return this->statement_->get_decl();
1001}
1002
1003// Make a reference to a temporary variable.
1004
1005Expression*
1006Expression::make_temporary_reference(Temporary_statement* statement,
1007 source_location location)
1008{
1009 return new Temporary_reference_expression(statement, location);
1010}
1011
1012// A sink expression--a use of the blank identifier _.
1013
1014class Sink_expression : public Expression
1015{
1016 public:
1017 Sink_expression(source_location location)
1018 : Expression(EXPRESSION_SINK, location),
1019 type_(NULL), var_(NULL_TREE)
1020 { }
1021
1022 protected:
1023 void
1024 do_discarding_value()
1025 { }
1026
1027 Type*
1028 do_type();
1029
1030 void
1031 do_determine_type(const Type_context*);
1032
1033 Expression*
1034 do_copy()
1035 { return new Sink_expression(this->location()); }
1036
1037 tree
1038 do_get_tree(Translate_context*);
1039
1040 private:
1041 // The type of this sink variable.
1042 Type* type_;
1043 // The temporary variable we generate.
1044 tree var_;
1045};
1046
1047// Return the type of a sink expression.
1048
1049Type*
1050Sink_expression::do_type()
1051{
1052 if (this->type_ == NULL)
1053 return Type::make_sink_type();
1054 return this->type_;
1055}
1056
1057// Determine the type of a sink expression.
1058
1059void
1060Sink_expression::do_determine_type(const Type_context* context)
1061{
1062 if (context->type != NULL)
1063 this->type_ = context->type;
1064}
1065
1066// Return a temporary variable for a sink expression. This will
1067// presumably be a write-only variable which the middle-end will drop.
1068
1069tree
1070Sink_expression::do_get_tree(Translate_context* context)
1071{
1072 if (this->var_ == NULL_TREE)
1073 {
1074 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1075 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1076 "blank");
1077 }
1078 return this->var_;
1079}
1080
1081// Make a sink expression.
1082
1083Expression*
1084Expression::make_sink(source_location location)
1085{
1086 return new Sink_expression(location);
1087}
1088
1089// Class Func_expression.
1090
1091// FIXME: Can a function expression appear in a constant expression?
1092// The value is unchanging. Initializing a constant to the address of
1093// a function seems like it could work, though there might be little
1094// point to it.
1095
1096// Return the name of the function.
1097
1098const std::string&
1099Func_expression::name() const
1100{
1101 return this->function_->name();
1102}
1103
1104// Traversal.
1105
1106int
1107Func_expression::do_traverse(Traverse* traverse)
1108{
1109 return (this->closure_ == NULL
1110 ? TRAVERSE_CONTINUE
1111 : Expression::traverse(&this->closure_, traverse));
1112}
1113
1114// Return the type of a function expression.
1115
1116Type*
1117Func_expression::do_type()
1118{
1119 if (this->function_->is_function())
1120 return this->function_->func_value()->type();
1121 else if (this->function_->is_function_declaration())
1122 return this->function_->func_declaration_value()->type();
1123 else
1124 gcc_unreachable();
1125}
1126
1127// Get the tree for a function expression without evaluating the
1128// closure.
1129
1130tree
1131Func_expression::get_tree_without_closure(Gogo* gogo)
1132{
1133 Function_type* fntype;
1134 if (this->function_->is_function())
1135 fntype = this->function_->func_value()->type();
1136 else if (this->function_->is_function_declaration())
1137 fntype = this->function_->func_declaration_value()->type();
1138 else
1139 gcc_unreachable();
1140
1141 // Builtin functions are handled specially by Call_expression. We
1142 // can't take their address.
1143 if (fntype->is_builtin())
1144 {
1145 error_at(this->location(), "invalid use of special builtin function %qs",
1146 this->function_->name().c_str());
1147 return error_mark_node;
1148 }
1149
1150 Named_object* no = this->function_;
1151 tree id = this->function_->get_id(gogo);
1152 tree fndecl;
1153 if (no->is_function())
1154 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1155 else if (no->is_function_declaration())
1156 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1157 else
1158 gcc_unreachable();
1159
1160 return build_fold_addr_expr_loc(this->location(), fndecl);
1161}
1162
1163// Get the tree for a function expression. This is used when we take
1164// the address of a function rather than simply calling it. If the
1165// function has a closure, we must use a trampoline.
1166
1167tree
1168Func_expression::do_get_tree(Translate_context* context)
1169{
1170 Gogo* gogo = context->gogo();
1171
1172 tree fnaddr = this->get_tree_without_closure(gogo);
1173 if (fnaddr == error_mark_node)
1174 return error_mark_node;
1175
1176 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1177 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1178 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1179
1180 // For a normal non-nested function call, that is all we have to do.
1181 if (!this->function_->is_function()
1182 || this->function_->func_value()->enclosing() == NULL)
1183 {
1184 gcc_assert(this->closure_ == NULL);
1185 return fnaddr;
1186 }
1187
1188 // For a nested function call, we have to always allocate a
1189 // trampoline. If we don't always allocate, then closures will not
1190 // be reliably distinct.
1191 Expression* closure = this->closure_;
1192 tree closure_tree;
1193 if (closure == NULL)
1194 closure_tree = null_pointer_node;
1195 else
1196 {
1197 // Get the value of the closure. This will be a pointer to
1198 // space allocated on the heap.
1199 closure_tree = closure->get_tree(context);
1200 if (closure_tree == error_mark_node)
1201 return error_mark_node;
1202 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1203 }
1204
1205 // Now we need to build some code on the heap. This code will load
1206 // the static chain pointer with the closure and then jump to the
1207 // body of the function. The normal gcc approach is to build the
1208 // code on the stack. Unfortunately we can not do that, as Go
1209 // permits us to return the function pointer.
1210
1211 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1212}
1213
1214// Make a reference to a function in an expression.
1215
1216Expression*
1217Expression::make_func_reference(Named_object* function, Expression* closure,
1218 source_location location)
1219{
1220 return new Func_expression(function, closure, location);
1221}
1222
1223// Class Unknown_expression.
1224
1225// Return the name of an unknown expression.
1226
1227const std::string&
1228Unknown_expression::name() const
1229{
1230 return this->named_object_->name();
1231}
1232
1233// Lower a reference to an unknown name.
1234
1235Expression*
1236Unknown_expression::do_lower(Gogo*, Named_object*, int)
1237{
1238 source_location location = this->location();
1239 Named_object* no = this->named_object_;
1240 Named_object* real = no->unknown_value()->real_named_object();
1241 if (real == NULL)
1242 {
1243 if (this->is_composite_literal_key_)
1244 return this;
1245 error_at(location, "reference to undefined name %qs",
1246 this->named_object_->message_name().c_str());
1247 return Expression::make_error(location);
1248 }
1249 switch (real->classification())
1250 {
1251 case Named_object::NAMED_OBJECT_CONST:
1252 return Expression::make_const_reference(real, location);
1253 case Named_object::NAMED_OBJECT_TYPE:
1254 return Expression::make_type(real->type_value(), location);
1255 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1256 if (this->is_composite_literal_key_)
1257 return this;
1258 error_at(location, "reference to undefined type %qs",
1259 real->message_name().c_str());
1260 return Expression::make_error(location);
1261 case Named_object::NAMED_OBJECT_VAR:
1262 return Expression::make_var_reference(real, location);
1263 case Named_object::NAMED_OBJECT_FUNC:
1264 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1265 return Expression::make_func_reference(real, NULL, location);
1266 case Named_object::NAMED_OBJECT_PACKAGE:
1267 if (this->is_composite_literal_key_)
1268 return this;
1269 error_at(location, "unexpected reference to package");
1270 return Expression::make_error(location);
1271 default:
1272 gcc_unreachable();
1273 }
1274}
1275
1276// Make a reference to an unknown name.
1277
1278Expression*
1279Expression::make_unknown_reference(Named_object* no, source_location location)
1280{
1281 gcc_assert(no->resolve()->is_unknown());
1282 return new Unknown_expression(no, location);
1283}
1284
1285// A boolean expression.
1286
1287class Boolean_expression : public Expression
1288{
1289 public:
1290 Boolean_expression(bool val, source_location location)
1291 : Expression(EXPRESSION_BOOLEAN, location),
1292 val_(val), type_(NULL)
1293 { }
1294
1295 static Expression*
1296 do_import(Import*);
1297
1298 protected:
1299 bool
1300 do_is_constant() const
1301 { return true; }
1302
1303 Type*
1304 do_type();
1305
1306 void
1307 do_determine_type(const Type_context*);
1308
1309 Expression*
1310 do_copy()
1311 { return this; }
1312
1313 tree
1314 do_get_tree(Translate_context*)
1315 { return this->val_ ? boolean_true_node : boolean_false_node; }
1316
1317 void
1318 do_export(Export* exp) const
1319 { exp->write_c_string(this->val_ ? "true" : "false"); }
1320
1321 private:
1322 // The constant.
1323 bool val_;
1324 // The type as determined by context.
1325 Type* type_;
1326};
1327
1328// Get the type.
1329
1330Type*
1331Boolean_expression::do_type()
1332{
1333 if (this->type_ == NULL)
1334 this->type_ = Type::make_boolean_type();
1335 return this->type_;
1336}
1337
1338// Set the type from the context.
1339
1340void
1341Boolean_expression::do_determine_type(const Type_context* context)
1342{
1343 if (this->type_ != NULL && !this->type_->is_abstract())
1344 ;
1345 else if (context->type != NULL && context->type->is_boolean_type())
1346 this->type_ = context->type;
1347 else if (!context->may_be_abstract)
1348 this->type_ = Type::lookup_bool_type();
1349}
1350
1351// Import a boolean constant.
1352
1353Expression*
1354Boolean_expression::do_import(Import* imp)
1355{
1356 if (imp->peek_char() == 't')
1357 {
1358 imp->require_c_string("true");
1359 return Expression::make_boolean(true, imp->location());
1360 }
1361 else
1362 {
1363 imp->require_c_string("false");
1364 return Expression::make_boolean(false, imp->location());
1365 }
1366}
1367
1368// Make a boolean expression.
1369
1370Expression*
1371Expression::make_boolean(bool val, source_location location)
1372{
1373 return new Boolean_expression(val, location);
1374}
1375
1376// Class String_expression.
1377
1378// Get the type.
1379
1380Type*
1381String_expression::do_type()
1382{
1383 if (this->type_ == NULL)
1384 this->type_ = Type::make_string_type();
1385 return this->type_;
1386}
1387
1388// Set the type from the context.
1389
1390void
1391String_expression::do_determine_type(const Type_context* context)
1392{
1393 if (this->type_ != NULL && !this->type_->is_abstract())
1394 ;
1395 else if (context->type != NULL && context->type->is_string_type())
1396 this->type_ = context->type;
1397 else if (!context->may_be_abstract)
1398 this->type_ = Type::lookup_string_type();
1399}
1400
1401// Build a string constant.
1402
1403tree
1404String_expression::do_get_tree(Translate_context* context)
1405{
1406 return context->gogo()->go_string_constant_tree(this->val_);
1407}
1408
1409// Export a string expression.
1410
1411void
1412String_expression::do_export(Export* exp) const
1413{
1414 std::string s;
1415 s.reserve(this->val_.length() * 4 + 2);
1416 s += '"';
1417 for (std::string::const_iterator p = this->val_.begin();
1418 p != this->val_.end();
1419 ++p)
1420 {
1421 if (*p == '\\' || *p == '"')
1422 {
1423 s += '\\';
1424 s += *p;
1425 }
1426 else if (*p >= 0x20 && *p < 0x7f)
1427 s += *p;
1428 else if (*p == '\n')
1429 s += "\\n";
1430 else if (*p == '\t')
1431 s += "\\t";
1432 else
1433 {
1434 s += "\\x";
1435 unsigned char c = *p;
1436 unsigned int dig = c >> 4;
1437 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1438 dig = c & 0xf;
1439 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1440 }
1441 }
1442 s += '"';
1443 exp->write_string(s);
1444}
1445
1446// Import a string expression.
1447
1448Expression*
1449String_expression::do_import(Import* imp)
1450{
1451 imp->require_c_string("\"");
1452 std::string val;
1453 while (true)
1454 {
1455 int c = imp->get_char();
1456 if (c == '"' || c == -1)
1457 break;
1458 if (c != '\\')
1459 val += static_cast<char>(c);
1460 else
1461 {
1462 c = imp->get_char();
1463 if (c == '\\' || c == '"')
1464 val += static_cast<char>(c);
1465 else if (c == 'n')
1466 val += '\n';
1467 else if (c == 't')
1468 val += '\t';
1469 else if (c == 'x')
1470 {
1471 c = imp->get_char();
1472 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1473 c = imp->get_char();
1474 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1475 char v = (vh << 4) | vl;
1476 val += v;
1477 }
1478 else
1479 {
1480 error_at(imp->location(), "bad string constant");
1481 return Expression::make_error(imp->location());
1482 }
1483 }
1484 }
1485 return Expression::make_string(val, imp->location());
1486}
1487
1488// Make a string expression.
1489
1490Expression*
1491Expression::make_string(const std::string& val, source_location location)
1492{
1493 return new String_expression(val, location);
1494}
1495
1496// Make an integer expression.
1497
1498class Integer_expression : public Expression
1499{
1500 public:
1501 Integer_expression(const mpz_t* val, Type* type, source_location location)
1502 : Expression(EXPRESSION_INTEGER, location),
1503 type_(type)
1504 { mpz_init_set(this->val_, *val); }
1505
1506 static Expression*
1507 do_import(Import*);
1508
1509 // Return whether VAL fits in the type.
1510 static bool
1511 check_constant(mpz_t val, Type*, source_location);
1512
1513 // Write VAL to export data.
1514 static void
1515 export_integer(Export* exp, const mpz_t val);
1516
1517 protected:
1518 bool
1519 do_is_constant() const
1520 { return true; }
1521
1522 bool
1523 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1524
1525 Type*
1526 do_type();
1527
1528 void
1529 do_determine_type(const Type_context* context);
1530
1531 void
1532 do_check_types(Gogo*);
1533
1534 tree
1535 do_get_tree(Translate_context*);
1536
1537 Expression*
1538 do_copy()
1539 { return Expression::make_integer(&this->val_, this->type_,
1540 this->location()); }
1541
1542 void
1543 do_export(Export*) const;
1544
1545 private:
1546 // The integer value.
1547 mpz_t val_;
1548 // The type so far.
1549 Type* type_;
1550};
1551
1552// Return an integer constant value.
1553
1554bool
1555Integer_expression::do_integer_constant_value(bool, mpz_t val,
1556 Type** ptype) const
1557{
1558 if (this->type_ != NULL)
1559 *ptype = this->type_;
1560 mpz_set(val, this->val_);
1561 return true;
1562}
1563
1564// Return the current type. If we haven't set the type yet, we return
1565// an abstract integer type.
1566
1567Type*
1568Integer_expression::do_type()
1569{
1570 if (this->type_ == NULL)
1571 this->type_ = Type::make_abstract_integer_type();
1572 return this->type_;
1573}
1574
1575// Set the type of the integer value. Here we may switch from an
1576// abstract type to a real type.
1577
1578void
1579Integer_expression::do_determine_type(const Type_context* context)
1580{
1581 if (this->type_ != NULL && !this->type_->is_abstract())
1582 ;
1583 else if (context->type != NULL
1584 && (context->type->integer_type() != NULL
1585 || context->type->float_type() != NULL
1586 || context->type->complex_type() != NULL))
1587 this->type_ = context->type;
1588 else if (!context->may_be_abstract)
1589 this->type_ = Type::lookup_integer_type("int");
1590}
1591
1592// Return true if the integer VAL fits in the range of the type TYPE.
1593// Otherwise give an error and return false. TYPE may be NULL.
1594
1595bool
1596Integer_expression::check_constant(mpz_t val, Type* type,
1597 source_location location)
1598{
1599 if (type == NULL)
1600 return true;
1601 Integer_type* itype = type->integer_type();
1602 if (itype == NULL || itype->is_abstract())
1603 return true;
1604
1605 int bits = mpz_sizeinbase(val, 2);
1606
1607 if (itype->is_unsigned())
1608 {
1609 // For an unsigned type we can only accept a nonnegative number,
1610 // and we must be able to represent at least BITS.
1611 if (mpz_sgn(val) >= 0
1612 && bits <= itype->bits())
1613 return true;
1614 }
1615 else
1616 {
1617 // For a signed type we need an extra bit to indicate the sign.
1618 // We have to handle the most negative integer specially.
1619 if (bits + 1 <= itype->bits()
1620 || (bits <= itype->bits()
1621 && mpz_sgn(val) < 0
1622 && (mpz_scan1(val, 0)
1623 == static_cast<unsigned long>(itype->bits() - 1))
1624 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1625 return true;
1626 }
1627
1628 error_at(location, "integer constant overflow");
1629 return false;
1630}
1631
1632// Check the type of an integer constant.
1633
1634void
1635Integer_expression::do_check_types(Gogo*)
1636{
1637 if (this->type_ == NULL)
1638 return;
1639 if (!Integer_expression::check_constant(this->val_, this->type_,
1640 this->location()))
1641 this->set_is_error();
1642}
1643
1644// Get a tree for an integer constant.
1645
1646tree
1647Integer_expression::do_get_tree(Translate_context* context)
1648{
1649 Gogo* gogo = context->gogo();
1650 tree type;
1651 if (this->type_ != NULL && !this->type_->is_abstract())
1652 type = this->type_->get_tree(gogo);
1653 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1654 {
1655 // We are converting to an abstract floating point type.
1656 type = Type::lookup_float_type("float64")->get_tree(gogo);
1657 }
1658 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1659 {
1660 // We are converting to an abstract complex type.
1661 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1662 }
1663 else
1664 {
1665 // If we still have an abstract type here, then this is being
1666 // used in a constant expression which didn't get reduced for
1667 // some reason. Use a type which will fit the value. We use <,
1668 // not <=, because we need an extra bit for the sign bit.
1669 int bits = mpz_sizeinbase(this->val_, 2);
1670 if (bits < INT_TYPE_SIZE)
1671 type = Type::lookup_integer_type("int")->get_tree(gogo);
1672 else if (bits < 64)
1673 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1674 else
1675 type = long_long_integer_type_node;
1676 }
1677 return Expression::integer_constant_tree(this->val_, type);
1678}
1679
1680// Write VAL to export data.
1681
1682void
1683Integer_expression::export_integer(Export* exp, const mpz_t val)
1684{
1685 char* s = mpz_get_str(NULL, 10, val);
1686 exp->write_c_string(s);
1687 free(s);
1688}
1689
1690// Export an integer in a constant expression.
1691
1692void
1693Integer_expression::do_export(Export* exp) const
1694{
1695 Integer_expression::export_integer(exp, this->val_);
1696 // A trailing space lets us reliably identify the end of the number.
1697 exp->write_c_string(" ");
1698}
1699
1700// Import an integer, floating point, or complex value. This handles
1701// all these types because they all start with digits.
1702
1703Expression*
1704Integer_expression::do_import(Import* imp)
1705{
1706 std::string num = imp->read_identifier();
1707 imp->require_c_string(" ");
1708 if (!num.empty() && num[num.length() - 1] == 'i')
1709 {
1710 mpfr_t real;
1711 size_t plus_pos = num.find('+', 1);
1712 size_t minus_pos = num.find('-', 1);
1713 size_t pos;
1714 if (plus_pos == std::string::npos)
1715 pos = minus_pos;
1716 else if (minus_pos == std::string::npos)
1717 pos = plus_pos;
1718 else
1719 {
1720 error_at(imp->location(), "bad number in import data: %qs",
1721 num.c_str());
1722 return Expression::make_error(imp->location());
1723 }
1724 if (pos == std::string::npos)
1725 mpfr_set_ui(real, 0, GMP_RNDN);
1726 else
1727 {
1728 std::string real_str = num.substr(0, pos);
1729 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1730 {
1731 error_at(imp->location(), "bad number in import data: %qs",
1732 real_str.c_str());
1733 return Expression::make_error(imp->location());
1734 }
1735 }
1736
1737 std::string imag_str;
1738 if (pos == std::string::npos)
1739 imag_str = num;
1740 else
1741 imag_str = num.substr(pos);
1742 imag_str = imag_str.substr(0, imag_str.size() - 1);
1743 mpfr_t imag;
1744 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1745 {
1746 error_at(imp->location(), "bad number in import data: %qs",
1747 imag_str.c_str());
1748 return Expression::make_error(imp->location());
1749 }
1750 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1751 imp->location());
1752 mpfr_clear(real);
1753 mpfr_clear(imag);
1754 return ret;
1755 }
1756 else if (num.find('.') == std::string::npos
1757 && num.find('E') == std::string::npos)
1758 {
1759 mpz_t val;
1760 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1761 {
1762 error_at(imp->location(), "bad number in import data: %qs",
1763 num.c_str());
1764 return Expression::make_error(imp->location());
1765 }
1766 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1767 mpz_clear(val);
1768 return ret;
1769 }
1770 else
1771 {
1772 mpfr_t val;
1773 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1774 {
1775 error_at(imp->location(), "bad number in import data: %qs",
1776 num.c_str());
1777 return Expression::make_error(imp->location());
1778 }
1779 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1780 mpfr_clear(val);
1781 return ret;
1782 }
1783}
1784
1785// Build a new integer value.
1786
1787Expression*
1788Expression::make_integer(const mpz_t* val, Type* type,
1789 source_location location)
1790{
1791 return new Integer_expression(val, type, location);
1792}
1793
1794// Floats.
1795
1796class Float_expression : public Expression
1797{
1798 public:
1799 Float_expression(const mpfr_t* val, Type* type, source_location location)
1800 : Expression(EXPRESSION_FLOAT, location),
1801 type_(type)
1802 {
1803 mpfr_init_set(this->val_, *val, GMP_RNDN);
1804 }
1805
1806 // Constrain VAL to fit into TYPE.
1807 static void
1808 constrain_float(mpfr_t val, Type* type);
1809
1810 // Return whether VAL fits in the type.
1811 static bool
1812 check_constant(mpfr_t val, Type*, source_location);
1813
1814 // Write VAL to export data.
1815 static void
1816 export_float(Export* exp, const mpfr_t val);
1817
1818 protected:
1819 bool
1820 do_is_constant() const
1821 { return true; }
1822
1823 bool
1824 do_float_constant_value(mpfr_t val, Type**) const;
1825
1826 Type*
1827 do_type();
1828
1829 void
1830 do_determine_type(const Type_context*);
1831
1832 void
1833 do_check_types(Gogo*);
1834
1835 Expression*
1836 do_copy()
1837 { return Expression::make_float(&this->val_, this->type_,
1838 this->location()); }
1839
1840 tree
1841 do_get_tree(Translate_context*);
1842
1843 void
1844 do_export(Export*) const;
1845
1846 private:
1847 // The floating point value.
1848 mpfr_t val_;
1849 // The type so far.
1850 Type* type_;
1851};
1852
1853// Constrain VAL to fit into TYPE.
1854
1855void
1856Float_expression::constrain_float(mpfr_t val, Type* type)
1857{
1858 Float_type* ftype = type->float_type();
1859 if (ftype != NULL && !ftype->is_abstract())
1860 {
1861 tree type_tree = ftype->type_tree();
1862 REAL_VALUE_TYPE rvt;
1863 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1864 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1865 mpfr_from_real(val, &rvt, GMP_RNDN);
1866 }
1867}
1868
1869// Return a floating point constant value.
1870
1871bool
1872Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1873{
1874 if (this->type_ != NULL)
1875 *ptype = this->type_;
1876 mpfr_set(val, this->val_, GMP_RNDN);
1877 return true;
1878}
1879
1880// Return the current type. If we haven't set the type yet, we return
1881// an abstract float type.
1882
1883Type*
1884Float_expression::do_type()
1885{
1886 if (this->type_ == NULL)
1887 this->type_ = Type::make_abstract_float_type();
1888 return this->type_;
1889}
1890
1891// Set the type of the float value. Here we may switch from an
1892// abstract type to a real type.
1893
1894void
1895Float_expression::do_determine_type(const Type_context* context)
1896{
1897 if (this->type_ != NULL && !this->type_->is_abstract())
1898 ;
1899 else if (context->type != NULL
1900 && (context->type->integer_type() != NULL
1901 || context->type->float_type() != NULL
1902 || context->type->complex_type() != NULL))
1903 this->type_ = context->type;
1904 else if (!context->may_be_abstract)
1905 this->type_ = Type::lookup_float_type("float");
1906}
1907
1908// Return true if the floating point value VAL fits in the range of
1909// the type TYPE. Otherwise give an error and return false. TYPE may
1910// be NULL.
1911
1912bool
1913Float_expression::check_constant(mpfr_t val, Type* type,
1914 source_location location)
1915{
1916 if (type == NULL)
1917 return true;
1918 Float_type* ftype = type->float_type();
1919 if (ftype == NULL || ftype->is_abstract())
1920 return true;
1921
1922 // A NaN or Infinity always fits in the range of the type.
1923 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1924 return true;
1925
1926 mp_exp_t exp = mpfr_get_exp(val);
1927 mp_exp_t max_exp;
1928 switch (ftype->bits())
1929 {
1930 case 32:
1931 max_exp = 128;
1932 break;
1933 case 64:
1934 max_exp = 1024;
1935 break;
1936 default:
1937 gcc_unreachable();
1938 }
1939 if (exp > max_exp)
1940 {
1941 error_at(location, "floating point constant overflow");
1942 return false;
1943 }
1944 return true;
1945}
1946
1947// Check the type of a float value.
1948
1949void
1950Float_expression::do_check_types(Gogo*)
1951{
1952 if (this->type_ == NULL)
1953 return;
1954
1955 if (!Float_expression::check_constant(this->val_, this->type_,
1956 this->location()))
1957 this->set_is_error();
1958
1959 Integer_type* integer_type = this->type_->integer_type();
1960 if (integer_type != NULL)
1961 {
1962 if (!mpfr_integer_p(this->val_))
1963 this->report_error(_("floating point constant truncated to integer"));
1964 else
1965 {
1966 gcc_assert(!integer_type->is_abstract());
1967 mpz_t ival;
1968 mpz_init(ival);
1969 mpfr_get_z(ival, this->val_, GMP_RNDN);
1970 Integer_expression::check_constant(ival, integer_type,
1971 this->location());
1972 mpz_clear(ival);
1973 }
1974 }
1975}
1976
1977// Get a tree for a float constant.
1978
1979tree
1980Float_expression::do_get_tree(Translate_context* context)
1981{
1982 Gogo* gogo = context->gogo();
1983 tree type;
1984 if (this->type_ != NULL && !this->type_->is_abstract())
1985 type = this->type_->get_tree(gogo);
1986 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1987 {
1988 // We have an abstract integer type. We just hope for the best.
1989 type = Type::lookup_integer_type("int")->get_tree(gogo);
1990 }
1991 else
1992 {
1993 // If we still have an abstract type here, then this is being
1994 // used in a constant expression which didn't get reduced. We
1995 // just use float64 and hope for the best.
1996 type = Type::lookup_float_type("float64")->get_tree(gogo);
1997 }
1998 return Expression::float_constant_tree(this->val_, type);
1999}
2000
2001// Write a floating point number to export data.
2002
2003void
2004Float_expression::export_float(Export *exp, const mpfr_t val)
2005{
2006 mp_exp_t exponent;
2007 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2008 if (*s == '-')
2009 exp->write_c_string("-");
2010 exp->write_c_string("0.");
2011 exp->write_c_string(*s == '-' ? s + 1 : s);
2012 mpfr_free_str(s);
2013 char buf[30];
2014 snprintf(buf, sizeof buf, "E%ld", exponent);
2015 exp->write_c_string(buf);
2016}
2017
2018// Export a floating point number in a constant expression.
2019
2020void
2021Float_expression::do_export(Export* exp) const
2022{
2023 Float_expression::export_float(exp, this->val_);
2024 // A trailing space lets us reliably identify the end of the number.
2025 exp->write_c_string(" ");
2026}
2027
2028// Make a float expression.
2029
2030Expression*
2031Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2032{
2033 return new Float_expression(val, type, location);
2034}
2035
2036// Complex numbers.
2037
2038class Complex_expression : public Expression
2039{
2040 public:
2041 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2042 source_location location)
2043 : Expression(EXPRESSION_COMPLEX, location),
2044 type_(type)
2045 {
2046 mpfr_init_set(this->real_, *real, GMP_RNDN);
2047 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2048 }
2049
2050 // Constrain REAL/IMAG to fit into TYPE.
2051 static void
2052 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2053
2054 // Return whether REAL/IMAG fits in the type.
2055 static bool
2056 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2057
2058 // Write REAL/IMAG to export data.
2059 static void
2060 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2061
2062 protected:
2063 bool
2064 do_is_constant() const
2065 { return true; }
2066
2067 bool
2068 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2069
2070 Type*
2071 do_type();
2072
2073 void
2074 do_determine_type(const Type_context*);
2075
2076 void
2077 do_check_types(Gogo*);
2078
2079 Expression*
2080 do_copy()
2081 {
2082 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2083 this->location());
2084 }
2085
2086 tree
2087 do_get_tree(Translate_context*);
2088
2089 void
2090 do_export(Export*) const;
2091
2092 private:
2093 // The real part.
2094 mpfr_t real_;
2095 // The imaginary part;
2096 mpfr_t imag_;
2097 // The type if known.
2098 Type* type_;
2099};
2100
2101// Constrain REAL/IMAG to fit into TYPE.
2102
2103void
2104Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2105{
2106 Complex_type* ctype = type->complex_type();
2107 if (ctype != NULL && !ctype->is_abstract())
2108 {
2109 tree type_tree = ctype->type_tree();
2110
2111 REAL_VALUE_TYPE rvt;
2112 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2113 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2114 mpfr_from_real(real, &rvt, GMP_RNDN);
2115
2116 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2117 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2118 mpfr_from_real(imag, &rvt, GMP_RNDN);
2119 }
2120}
2121
2122// Return a complex constant value.
2123
2124bool
2125Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2126 Type** ptype) const
2127{
2128 if (this->type_ != NULL)
2129 *ptype = this->type_;
2130 mpfr_set(real, this->real_, GMP_RNDN);
2131 mpfr_set(imag, this->imag_, GMP_RNDN);
2132 return true;
2133}
2134
2135// Return the current type. If we haven't set the type yet, we return
2136// an abstract complex type.
2137
2138Type*
2139Complex_expression::do_type()
2140{
2141 if (this->type_ == NULL)
2142 this->type_ = Type::make_abstract_complex_type();
2143 return this->type_;
2144}
2145
2146// Set the type of the complex value. Here we may switch from an
2147// abstract type to a real type.
2148
2149void
2150Complex_expression::do_determine_type(const Type_context* context)
2151{
2152 if (this->type_ != NULL && !this->type_->is_abstract())
2153 ;
2154 else if (context->type != NULL
2155 && context->type->complex_type() != NULL)
2156 this->type_ = context->type;
2157 else if (!context->may_be_abstract)
2158 this->type_ = Type::lookup_complex_type("complex");
2159}
2160
2161// Return true if the complex value REAL/IMAG fits in the range of the
2162// type TYPE. Otherwise give an error and return false. TYPE may be
2163// NULL.
2164
2165bool
2166Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2167 source_location location)
2168{
2169 if (type == NULL)
2170 return true;
2171 Complex_type* ctype = type->complex_type();
2172 if (ctype == NULL || ctype->is_abstract())
2173 return true;
2174
2175 mp_exp_t max_exp;
2176 switch (ctype->bits())
2177 {
2178 case 64:
2179 max_exp = 128;
2180 break;
2181 case 128:
2182 max_exp = 1024;
2183 break;
2184 default:
2185 gcc_unreachable();
2186 }
2187
2188 // A NaN or Infinity always fits in the range of the type.
2189 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2190 {
2191 if (mpfr_get_exp(real) > max_exp)
2192 {
2193 error_at(location, "complex real part constant overflow");
2194 return false;
2195 }
2196 }
2197
2198 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2199 {
2200 if (mpfr_get_exp(imag) > max_exp)
2201 {
2202 error_at(location, "complex imaginary part constant overflow");
2203 return false;
2204 }
2205 }
2206
2207 return true;
2208}
2209
2210// Check the type of a complex value.
2211
2212void
2213Complex_expression::do_check_types(Gogo*)
2214{
2215 if (this->type_ == NULL)
2216 return;
2217
2218 if (!Complex_expression::check_constant(this->real_, this->imag_,
2219 this->type_, this->location()))
2220 this->set_is_error();
2221}
2222
2223// Get a tree for a complex constant.
2224
2225tree
2226Complex_expression::do_get_tree(Translate_context* context)
2227{
2228 Gogo* gogo = context->gogo();
2229 tree type;
2230 if (this->type_ != NULL && !this->type_->is_abstract())
2231 type = this->type_->get_tree(gogo);
2232 else
2233 {
2234 // If we still have an abstract type here, this this is being
2235 // used in a constant expression which didn't get reduced. We
2236 // just use complex128 and hope for the best.
2237 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2238 }
2239 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2240}
2241
2242// Write REAL/IMAG to export data.
2243
2244void
2245Complex_expression::export_complex(Export* exp, const mpfr_t real,
2246 const mpfr_t imag)
2247{
2248 if (!mpfr_zero_p(real))
2249 {
2250 Float_expression::export_float(exp, real);
2251 if (mpfr_sgn(imag) > 0)
2252 exp->write_c_string("+");
2253 }
2254 Float_expression::export_float(exp, imag);
2255 exp->write_c_string("i");
2256}
2257
2258// Export a complex number in a constant expression.
2259
2260void
2261Complex_expression::do_export(Export* exp) const
2262{
2263 Complex_expression::export_complex(exp, this->real_, this->imag_);
2264 // A trailing space lets us reliably identify the end of the number.
2265 exp->write_c_string(" ");
2266}
2267
2268// Make a complex expression.
2269
2270Expression*
2271Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2272 source_location location)
2273{
2274 return new Complex_expression(real, imag, type, location);
2275}
2276
2277// A reference to a const in an expression.
2278
2279class Const_expression : public Expression
2280{
2281 public:
2282 Const_expression(Named_object* constant, source_location location)
2283 : Expression(EXPRESSION_CONST_REFERENCE, location),
2284 constant_(constant), type_(NULL)
2285 { }
2286
2287 const std::string&
2288 name() const
2289 { return this->constant_->name(); }
2290
2291 protected:
2292 Expression*
2293 do_lower(Gogo*, Named_object*, int);
2294
2295 bool
2296 do_is_constant() const
2297 { return true; }
2298
2299 bool
2300 do_integer_constant_value(bool, mpz_t val, Type**) const;
2301
2302 bool
2303 do_float_constant_value(mpfr_t val, Type**) const;
2304
2305 bool
2306 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2307
2308 bool
2309 do_string_constant_value(std::string* val) const
2310 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2311
2312 Type*
2313 do_type();
2314
2315 // The type of a const is set by the declaration, not the use.
2316 void
2317 do_determine_type(const Type_context*);
2318
2319 void
2320 do_check_types(Gogo*);
2321
2322 Expression*
2323 do_copy()
2324 { return this; }
2325
2326 tree
2327 do_get_tree(Translate_context* context);
2328
2329 // When exporting a reference to a const as part of a const
2330 // expression, we export the value. We ignore the fact that it has
2331 // a name.
2332 void
2333 do_export(Export* exp) const
2334 { this->constant_->const_value()->expr()->export_expression(exp); }
2335
2336 private:
2337 // The constant.
2338 Named_object* constant_;
2339 // The type of this reference. This is used if the constant has an
2340 // abstract type.
2341 Type* type_;
2342};
2343
2344// Lower a constant expression. This is where we convert the
2345// predeclared constant iota into an integer value.
2346
2347Expression*
2348Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2349{
2350 if (this->constant_->const_value()->expr()->classification()
2351 == EXPRESSION_IOTA)
2352 {
2353 if (iota_value == -1)
2354 {
2355 error_at(this->location(),
2356 "iota is only defined in const declarations");
2357 iota_value = 0;
2358 }
2359 mpz_t val;
2360 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2361 Expression* ret = Expression::make_integer(&val, NULL,
2362 this->location());
2363 mpz_clear(val);
2364 return ret;
2365 }
2366
2367 // Make sure that the constant itself has been lowered.
2368 gogo->lower_constant(this->constant_);
2369
2370 return this;
2371}
2372
2373// Return an integer constant value.
2374
2375bool
2376Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2377 Type** ptype) const
2378{
2379 Type* ctype;
2380 if (this->type_ != NULL)
2381 ctype = this->type_;
2382 else
2383 ctype = this->constant_->const_value()->type();
2384 if (ctype != NULL && ctype->integer_type() == NULL)
2385 return false;
2386
2387 Expression* e = this->constant_->const_value()->expr();
2388 Type* t;
2389 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2390
2391 if (r
2392 && ctype != NULL
2393 && !Integer_expression::check_constant(val, ctype, this->location()))
2394 return false;
2395
2396 *ptype = ctype != NULL ? ctype : t;
2397 return r;
2398}
2399
2400// Return a floating point constant value.
2401
2402bool
2403Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2404{
2405 Type* ctype;
2406 if (this->type_ != NULL)
2407 ctype = this->type_;
2408 else
2409 ctype = this->constant_->const_value()->type();
2410 if (ctype != NULL && ctype->float_type() == NULL)
2411 return false;
2412
2413 Type* t;
2414 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2415 &t);
2416 if (r && ctype != NULL)
2417 {
2418 if (!Float_expression::check_constant(val, ctype, this->location()))
2419 return false;
2420 Float_expression::constrain_float(val, ctype);
2421 }
2422 *ptype = ctype != NULL ? ctype : t;
2423 return r;
2424}
2425
2426// Return a complex constant value.
2427
2428bool
2429Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2430 Type **ptype) const
2431{
2432 Type* ctype;
2433 if (this->type_ != NULL)
2434 ctype = this->type_;
2435 else
2436 ctype = this->constant_->const_value()->type();
2437 if (ctype != NULL && ctype->complex_type() == NULL)
2438 return false;
2439
2440 Type *t;
2441 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2442 imag,
2443 &t);
2444 if (r && ctype != NULL)
2445 {
2446 if (!Complex_expression::check_constant(real, imag, ctype,
2447 this->location()))
2448 return false;
2449 Complex_expression::constrain_complex(real, imag, ctype);
2450 }
2451 *ptype = ctype != NULL ? ctype : t;
2452 return r;
2453}
2454
2455// Return the type of the const reference.
2456
2457Type*
2458Const_expression::do_type()
2459{
2460 if (this->type_ != NULL)
2461 return this->type_;
2462 Named_constant* nc = this->constant_->const_value();
2463 Type* ret = nc->type();
2464 if (ret != NULL)
2465 return ret;
2466 // During parsing, a named constant may have a NULL type, but we
2467 // must not return a NULL type here.
2468 return nc->expr()->type();
2469}
2470
2471// Set the type of the const reference.
2472
2473void
2474Const_expression::do_determine_type(const Type_context* context)
2475{
2476 Type* ctype = this->constant_->const_value()->type();
2477 Type* cetype = (ctype != NULL
2478 ? ctype
2479 : this->constant_->const_value()->expr()->type());
2480 if (ctype != NULL && !ctype->is_abstract())
2481 ;
2482 else if (context->type != NULL
2483 && (context->type->integer_type() != NULL
2484 || context->type->float_type() != NULL
2485 || context->type->complex_type() != NULL)
2486 && (cetype->integer_type() != NULL
2487 || cetype->float_type() != NULL
2488 || cetype->complex_type() != NULL))
2489 this->type_ = context->type;
2490 else if (context->type != NULL
2491 && context->type->is_string_type()
2492 && cetype->is_string_type())
2493 this->type_ = context->type;
2494 else if (context->type != NULL
2495 && context->type->is_boolean_type()
2496 && cetype->is_boolean_type())
2497 this->type_ = context->type;
2498 else if (!context->may_be_abstract)
2499 {
2500 if (cetype->is_abstract())
2501 cetype = cetype->make_non_abstract_type();
2502 this->type_ = cetype;
2503 }
2504}
2505
2506// Check types of a const reference.
2507
2508void
2509Const_expression::do_check_types(Gogo*)
2510{
2511 if (this->type_ == NULL || this->type_->is_abstract())
2512 return;
2513
2514 // Check for integer overflow.
2515 if (this->type_->integer_type() != NULL)
2516 {
2517 mpz_t ival;
2518 mpz_init(ival);
2519 Type* dummy;
2520 if (!this->integer_constant_value(true, ival, &dummy))
2521 {
2522 mpfr_t fval;
2523 mpfr_init(fval);
2524 Expression* cexpr = this->constant_->const_value()->expr();
2525 if (cexpr->float_constant_value(fval, &dummy))
2526 {
2527 if (!mpfr_integer_p(fval))
2528 this->report_error(_("floating point constant "
2529 "truncated to integer"));
2530 else
2531 {
2532 mpfr_get_z(ival, fval, GMP_RNDN);
2533 Integer_expression::check_constant(ival, this->type_,
2534 this->location());
2535 }
2536 }
2537 mpfr_clear(fval);
2538 }
2539 mpz_clear(ival);
2540 }
2541}
2542
2543// Return a tree for the const reference.
2544
2545tree
2546Const_expression::do_get_tree(Translate_context* context)
2547{
2548 Gogo* gogo = context->gogo();
2549 tree type_tree;
2550 if (this->type_ == NULL)
2551 type_tree = NULL_TREE;
2552 else
2553 {
2554 type_tree = this->type_->get_tree(gogo);
2555 if (type_tree == error_mark_node)
2556 return error_mark_node;
2557 }
2558
2559 // If the type has been set for this expression, but the underlying
2560 // object is an abstract int or float, we try to get the abstract
2561 // value. Otherwise we may lose something in the conversion.
2562 if (this->type_ != NULL
2563 && this->constant_->const_value()->type()->is_abstract())
2564 {
2565 Expression* expr = this->constant_->const_value()->expr();
2566 mpz_t ival;
2567 mpz_init(ival);
2568 Type* t;
2569 if (expr->integer_constant_value(true, ival, &t))
2570 {
2571 tree ret = Expression::integer_constant_tree(ival, type_tree);
2572 mpz_clear(ival);
2573 return ret;
2574 }
2575 mpz_clear(ival);
2576
2577 mpfr_t fval;
2578 mpfr_init(fval);
2579 if (expr->float_constant_value(fval, &t))
2580 {
2581 tree ret = Expression::float_constant_tree(fval, type_tree);
2582 mpfr_clear(fval);
2583 return ret;
2584 }
2585
2586 mpfr_t imag;
2587 mpfr_init(imag);
2588 if (expr->complex_constant_value(fval, imag, &t))
2589 {
2590 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2591 mpfr_clear(fval);
2592 mpfr_clear(imag);
2593 return ret;
2594 }
2595 mpfr_clear(imag);
2596 mpfr_clear(fval);
2597 }
2598
2599 tree const_tree = this->constant_->get_tree(gogo, context->function());
2600 if (this->type_ == NULL
2601 || const_tree == error_mark_node
2602 || TREE_TYPE(const_tree) == error_mark_node)
2603 return const_tree;
2604
2605 tree ret;
2606 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2607 ret = fold_convert(type_tree, const_tree);
2608 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2609 ret = fold(convert_to_integer(type_tree, const_tree));
2610 else if (TREE_CODE(type_tree) == REAL_TYPE)
2611 ret = fold(convert_to_real(type_tree, const_tree));
2612 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2613 ret = fold(convert_to_complex(type_tree, const_tree));
2614 else
2615 gcc_unreachable();
2616 return ret;
2617}
2618
2619// Make a reference to a constant in an expression.
2620
2621Expression*
2622Expression::make_const_reference(Named_object* constant,
2623 source_location location)
2624{
2625 return new Const_expression(constant, location);
2626}
2627
2628// The nil value.
2629
2630class Nil_expression : public Expression
2631{
2632 public:
2633 Nil_expression(source_location location)
2634 : Expression(EXPRESSION_NIL, location)
2635 { }
2636
2637 static Expression*
2638 do_import(Import*);
2639
2640 protected:
2641 bool
2642 do_is_constant() const
2643 { return true; }
2644
2645 Type*
2646 do_type()
2647 { return Type::make_nil_type(); }
2648
2649 void
2650 do_determine_type(const Type_context*)
2651 { }
2652
2653 Expression*
2654 do_copy()
2655 { return this; }
2656
2657 tree
2658 do_get_tree(Translate_context*)
2659 { return null_pointer_node; }
2660
2661 void
2662 do_export(Export* exp) const
2663 { exp->write_c_string("nil"); }
2664};
2665
2666// Import a nil expression.
2667
2668Expression*
2669Nil_expression::do_import(Import* imp)
2670{
2671 imp->require_c_string("nil");
2672 return Expression::make_nil(imp->location());
2673}
2674
2675// Make a nil expression.
2676
2677Expression*
2678Expression::make_nil(source_location location)
2679{
2680 return new Nil_expression(location);
2681}
2682
2683// The value of the predeclared constant iota. This is little more
2684// than a marker. This will be lowered to an integer in
2685// Const_expression::do_lower, which is where we know the value that
2686// it should have.
2687
2688class Iota_expression : public Parser_expression
2689{
2690 public:
2691 Iota_expression(source_location location)
2692 : Parser_expression(EXPRESSION_IOTA, location)
2693 { }
2694
2695 protected:
2696 Expression*
2697 do_lower(Gogo*, Named_object*, int)
2698 { gcc_unreachable(); }
2699
2700 // There should only ever be one of these.
2701 Expression*
2702 do_copy()
2703 { gcc_unreachable(); }
2704};
2705
2706// Make an iota expression. This is only called for one case: the
2707// value of the predeclared constant iota.
2708
2709Expression*
2710Expression::make_iota()
2711{
2712 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2713 return &iota_expression;
2714}
2715
2716// A type conversion expression.
2717
2718class Type_conversion_expression : public Expression
2719{
2720 public:
2721 Type_conversion_expression(Type* type, Expression* expr,
2722 source_location location)
2723 : Expression(EXPRESSION_CONVERSION, location),
2724 type_(type), expr_(expr), may_convert_function_types_(false)
2725 { }
2726
2727 // Return the type to which we are converting.
2728 Type*
2729 type() const
2730 { return this->type_; }
2731
2732 // Return the expression which we are converting.
2733 Expression*
2734 expr() const
2735 { return this->expr_; }
2736
2737 // Permit converting from one function type to another. This is
2738 // used internally for method expressions.
2739 void
2740 set_may_convert_function_types()
2741 {
2742 this->may_convert_function_types_ = true;
2743 }
2744
2745 // Import a type conversion expression.
2746 static Expression*
2747 do_import(Import*);
2748
2749 protected:
2750 int
2751 do_traverse(Traverse* traverse);
2752
2753 Expression*
2754 do_lower(Gogo*, Named_object*, int);
2755
2756 bool
2757 do_is_constant() const
2758 { return this->expr_->is_constant(); }
2759
2760 bool
2761 do_integer_constant_value(bool, mpz_t, Type**) const;
2762
2763 bool
2764 do_float_constant_value(mpfr_t, Type**) const;
2765
2766 bool
2767 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2768
2769 bool
2770 do_string_constant_value(std::string*) const;
2771
2772 Type*
2773 do_type()
2774 { return this->type_; }
2775
2776 void
2777 do_determine_type(const Type_context*)
2778 {
2779 Type_context subcontext(this->type_, false);
2780 this->expr_->determine_type(&subcontext);
2781 }
2782
2783 void
2784 do_check_types(Gogo*);
2785
2786 Expression*
2787 do_copy()
2788 {
2789 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2790 this->location());
2791 }
2792
2793 tree
2794 do_get_tree(Translate_context* context);
2795
2796 void
2797 do_export(Export*) const;
2798
2799 private:
2800 // The type to convert to.
2801 Type* type_;
2802 // The expression to convert.
2803 Expression* expr_;
2804 // True if this is permitted to convert function types. This is
2805 // used internally for method expressions.
2806 bool may_convert_function_types_;
2807};
2808
2809// Traversal.
2810
2811int
2812Type_conversion_expression::do_traverse(Traverse* traverse)
2813{
2814 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2815 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2816 return TRAVERSE_EXIT;
2817 return TRAVERSE_CONTINUE;
2818}
2819
2820// Convert to a constant at lowering time.
2821
2822Expression*
2823Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2824{
2825 Type* type = this->type_;
2826 Expression* val = this->expr_;
2827 source_location location = this->location();
2828
2829 if (type->integer_type() != NULL)
2830 {
2831 mpz_t ival;
2832 mpz_init(ival);
2833 Type* dummy;
2834 if (val->integer_constant_value(false, ival, &dummy))
2835 {
2836 if (!Integer_expression::check_constant(ival, type, location))
2837 mpz_set_ui(ival, 0);
2838 Expression* ret = Expression::make_integer(&ival, type, location);
2839 mpz_clear(ival);
2840 return ret;
2841 }
2842
2843 mpfr_t fval;
2844 mpfr_init(fval);
2845 if (val->float_constant_value(fval, &dummy))
2846 {
2847 if (!mpfr_integer_p(fval))
2848 {
2849 error_at(location,
2850 "floating point constant truncated to integer");
2851 return Expression::make_error(location);
2852 }
2853 mpfr_get_z(ival, fval, GMP_RNDN);
2854 if (!Integer_expression::check_constant(ival, type, location))
2855 mpz_set_ui(ival, 0);
2856 Expression* ret = Expression::make_integer(&ival, type, location);
2857 mpfr_clear(fval);
2858 mpz_clear(ival);
2859 return ret;
2860 }
2861 mpfr_clear(fval);
2862 mpz_clear(ival);
2863 }
2864
2865 if (type->float_type() != NULL)
2866 {
2867 mpfr_t fval;
2868 mpfr_init(fval);
2869 Type* dummy;
2870 if (val->float_constant_value(fval, &dummy))
2871 {
2872 if (!Float_expression::check_constant(fval, type, location))
2873 mpfr_set_ui(fval, 0, GMP_RNDN);
2874 Float_expression::constrain_float(fval, type);
2875 Expression *ret = Expression::make_float(&fval, type, location);
2876 mpfr_clear(fval);
2877 return ret;
2878 }
2879 mpfr_clear(fval);
2880 }
2881
2882 if (type->complex_type() != NULL)
2883 {
2884 mpfr_t real;
2885 mpfr_t imag;
2886 mpfr_init(real);
2887 mpfr_init(imag);
2888 Type* dummy;
2889 if (val->complex_constant_value(real, imag, &dummy))
2890 {
2891 if (!Complex_expression::check_constant(real, imag, type, location))
2892 {
2893 mpfr_set_ui(real, 0, GMP_RNDN);
2894 mpfr_set_ui(imag, 0, GMP_RNDN);
2895 }
2896 Complex_expression::constrain_complex(real, imag, type);
2897 Expression* ret = Expression::make_complex(&real, &imag, type,
2898 location);
2899 mpfr_clear(real);
2900 mpfr_clear(imag);
2901 return ret;
2902 }
2903 mpfr_clear(real);
2904 mpfr_clear(imag);
2905 }
2906
2907 if (type->is_open_array_type() && type->named_type() == NULL)
2908 {
2909 Type* element_type = type->array_type()->element_type()->forwarded();
2910 bool is_byte = element_type == Type::lookup_integer_type("uint8");
2911 bool is_int = element_type == Type::lookup_integer_type("int");
2912 if (is_byte || is_int)
2913 {
2914 std::string s;
2915 if (val->string_constant_value(&s))
2916 {
2917 Expression_list* vals = new Expression_list();
2918 if (is_byte)
2919 {
2920 for (std::string::const_iterator p = s.begin();
2921 p != s.end();
2922 p++)
2923 {
2924 mpz_t val;
2925 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
2926 Expression* v = Expression::make_integer(&val,
2927 element_type,
2928 location);
2929 vals->push_back(v);
2930 mpz_clear(val);
2931 }
2932 }
2933 else
2934 {
2935 const char *p = s.data();
2936 const char *pend = s.data() + s.length();
2937 while (p < pend)
2938 {
2939 unsigned int c;
2940 int adv = Lex::fetch_char(p, &c);
2941 if (adv == 0)
2942 {
2943 warning_at(this->location(), 0,
2944 "invalid UTF-8 encoding");
2945 adv = 1;
2946 }
2947 p += adv;
2948 mpz_t val;
2949 mpz_init_set_ui(val, c);
2950 Expression* v = Expression::make_integer(&val,
2951 element_type,
2952 location);
2953 vals->push_back(v);
2954 mpz_clear(val);
2955 }
2956 }
2957
2958 return Expression::make_slice_composite_literal(type, vals,
2959 location);
2960 }
2961 }
2962 }
2963
2964 return this;
2965}
2966
2967// Return the constant integer value if there is one.
2968
2969bool
2970Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
2971 mpz_t val,
2972 Type** ptype) const
2973{
2974 if (this->type_->integer_type() == NULL)
2975 return false;
2976
2977 mpz_t ival;
2978 mpz_init(ival);
2979 Type* dummy;
2980 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
2981 {
2982 if (!Integer_expression::check_constant(ival, this->type_,
2983 this->location()))
2984 {
2985 mpz_clear(ival);
2986 return false;
2987 }
2988 mpz_set(val, ival);
2989 mpz_clear(ival);
2990 *ptype = this->type_;
2991 return true;
2992 }
2993 mpz_clear(ival);
2994
2995 mpfr_t fval;
2996 mpfr_init(fval);
2997 if (this->expr_->float_constant_value(fval, &dummy))
2998 {
2999 mpfr_get_z(val, fval, GMP_RNDN);
3000 mpfr_clear(fval);
3001 if (!Integer_expression::check_constant(val, this->type_,
3002 this->location()))
3003 return false;
3004 *ptype = this->type_;
3005 return true;
3006 }
3007 mpfr_clear(fval);
3008
3009 return false;
3010}
3011
3012// Return the constant floating point value if there is one.
3013
3014bool
3015Type_conversion_expression::do_float_constant_value(mpfr_t val,
3016 Type** ptype) const
3017{
3018 if (this->type_->float_type() == NULL)
3019 return false;
3020
3021 mpfr_t fval;
3022 mpfr_init(fval);
3023 Type* dummy;
3024 if (this->expr_->float_constant_value(fval, &dummy))
3025 {
3026 if (!Float_expression::check_constant(fval, this->type_,
3027 this->location()))
3028 {
3029 mpfr_clear(fval);
3030 return false;
3031 }
3032 mpfr_set(val, fval, GMP_RNDN);
3033 mpfr_clear(fval);
3034 Float_expression::constrain_float(val, this->type_);
3035 *ptype = this->type_;
3036 return true;
3037 }
3038 mpfr_clear(fval);
3039
3040 return false;
3041}
3042
3043// Return the constant complex value if there is one.
3044
3045bool
3046Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3047 mpfr_t imag,
3048 Type **ptype) const
3049{
3050 if (this->type_->complex_type() == NULL)
3051 return false;
3052
3053 mpfr_t rval;
3054 mpfr_t ival;
3055 mpfr_init(rval);
3056 mpfr_init(ival);
3057 Type* dummy;
3058 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3059 {
3060 if (!Complex_expression::check_constant(rval, ival, this->type_,
3061 this->location()))
3062 {
3063 mpfr_clear(rval);
3064 mpfr_clear(ival);
3065 return false;
3066 }
3067 mpfr_set(real, rval, GMP_RNDN);
3068 mpfr_set(imag, ival, GMP_RNDN);
3069 mpfr_clear(rval);
3070 mpfr_clear(ival);
3071 Complex_expression::constrain_complex(real, imag, this->type_);
3072 *ptype = this->type_;
3073 return true;
3074 }
3075 mpfr_clear(rval);
3076 mpfr_clear(ival);
3077
3078 return false;
3079}
3080
3081// Return the constant string value if there is one.
3082
3083bool
3084Type_conversion_expression::do_string_constant_value(std::string* val) const
3085{
3086 if (this->type_->is_string_type()
3087 && this->expr_->type()->integer_type() != NULL)
3088 {
3089 mpz_t ival;
3090 mpz_init(ival);
3091 Type* dummy;
3092 if (this->expr_->integer_constant_value(false, ival, &dummy))
3093 {
3094 unsigned long ulval = mpz_get_ui(ival);
3095 if (mpz_cmp_ui(ival, ulval) == 0)
3096 {
3097 Lex::append_char(ulval, true, val, this->location());
3098 mpz_clear(ival);
3099 return true;
3100 }
3101 }
3102 mpz_clear(ival);
3103 }
3104
3105 // FIXME: Could handle conversion from const []int here.
3106
3107 return false;
3108}
3109
3110// Check that types are convertible.
3111
3112void
3113Type_conversion_expression::do_check_types(Gogo*)
3114{
3115 Type* type = this->type_;
3116 Type* expr_type = this->expr_->type();
3117 std::string reason;
3118
3119 if (this->may_convert_function_types_
3120 && type->function_type() != NULL
3121 && expr_type->function_type() != NULL)
3122 return;
3123
3124 if (Type::are_convertible(type, expr_type, &reason))
3125 return;
3126
3127 error_at(this->location(), "%s", reason.c_str());
3128 this->set_is_error();
3129}
3130
3131// Get a tree for a type conversion.
3132
3133tree
3134Type_conversion_expression::do_get_tree(Translate_context* context)
3135{
3136 Gogo* gogo = context->gogo();
3137 tree type_tree = this->type_->get_tree(gogo);
3138 tree expr_tree = this->expr_->get_tree(context);
3139
3140 if (type_tree == error_mark_node
3141 || expr_tree == error_mark_node
3142 || TREE_TYPE(expr_tree) == error_mark_node)
3143 return error_mark_node;
3144
3145 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3146 return fold_convert(type_tree, expr_tree);
3147
3148 Type* type = this->type_;
3149 Type* expr_type = this->expr_->type();
3150 tree ret;
3151 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3152 ret = Expression::convert_for_assignment(context, type, expr_type,
3153 expr_tree, this->location());
3154 else if (type->integer_type() != NULL)
3155 {
3156 if (expr_type->integer_type() != NULL
3157 || expr_type->float_type() != NULL
3158 || expr_type->is_unsafe_pointer_type())
3159 ret = fold(convert_to_integer(type_tree, expr_tree));
3160 else
3161 gcc_unreachable();
3162 }
3163 else if (type->float_type() != NULL)
3164 {
3165 if (expr_type->integer_type() != NULL
3166 || expr_type->float_type() != NULL)
3167 ret = fold(convert_to_real(type_tree, expr_tree));
3168 else
3169 gcc_unreachable();
3170 }
3171 else if (type->complex_type() != NULL)
3172 {
3173 if (expr_type->complex_type() != NULL)
3174 ret = fold(convert_to_complex(type_tree, expr_tree));
3175 else
3176 gcc_unreachable();
3177 }
3178 else if (type->is_string_type()
3179 && expr_type->integer_type() != NULL)
3180 {
3181 expr_tree = fold_convert(integer_type_node, expr_tree);
3182 if (host_integerp(expr_tree, 0))
3183 {
3184 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3185 std::string s;
3186 Lex::append_char(intval, true, &s, this->location());
3187 Expression* se = Expression::make_string(s, this->location());
3188 return se->get_tree(context);
3189 }
3190
3191 static tree int_to_string_fndecl;
3192 ret = Gogo::call_builtin(&int_to_string_fndecl,
3193 this->location(),
3194 "__go_int_to_string",
3195 1,
3196 type_tree,
3197 integer_type_node,
3198 fold_convert(integer_type_node, expr_tree));
3199 }
3200 else if (type->is_string_type()
3201 && (expr_type->array_type() != NULL
3202 || (expr_type->points_to() != NULL
3203 && expr_type->points_to()->array_type() != NULL)))
3204 {
3205 Type* t = expr_type;
3206 if (t->points_to() != NULL)
3207 {
3208 t = t->points_to();
3209 expr_tree = build_fold_indirect_ref(expr_tree);
3210 }
3211 if (!DECL_P(expr_tree))
3212 expr_tree = save_expr(expr_tree);
3213 Array_type* a = t->array_type();
3214 Type* e = a->element_type()->forwarded();
3215 gcc_assert(e->integer_type() != NULL);
3216 tree valptr = fold_convert(const_ptr_type_node,
3217 a->value_pointer_tree(gogo, expr_tree));
3218 tree len = a->length_tree(gogo, expr_tree);
3219 len = fold_convert_loc(this->location(), size_type_node, len);
3220 if (e->integer_type()->is_unsigned()
3221 && e->integer_type()->bits() == 8)
3222 {
3223 static tree byte_array_to_string_fndecl;
3224 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3225 this->location(),
3226 "__go_byte_array_to_string",
3227 2,
3228 type_tree,
3229 const_ptr_type_node,
3230 valptr,
3231 size_type_node,
3232 len);
3233 }
3234 else
3235 {
3236 gcc_assert(e == Type::lookup_integer_type("int"));
3237 static tree int_array_to_string_fndecl;
3238 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3239 this->location(),
3240 "__go_int_array_to_string",
3241 2,
3242 type_tree,
3243 const_ptr_type_node,
3244 valptr,
3245 size_type_node,
3246 len);
3247 }
3248 }
3249 else if (type->is_open_array_type() && expr_type->is_string_type())
3250 {
3251 Type* e = type->array_type()->element_type()->forwarded();
3252 gcc_assert(e->integer_type() != NULL);
3253 if (e->integer_type()->is_unsigned()
3254 && e->integer_type()->bits() == 8)
3255 {
3256 static tree string_to_byte_array_fndecl;
3257 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3258 this->location(),
3259 "__go_string_to_byte_array",
3260 1,
3261 type_tree,
3262 TREE_TYPE(expr_tree),
3263 expr_tree);
3264 }
3265 else
3266 {
3267 gcc_assert(e == Type::lookup_integer_type("int"));
3268 static tree string_to_int_array_fndecl;
3269 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3270 this->location(),
3271 "__go_string_to_int_array",
3272 1,
3273 type_tree,
3274 TREE_TYPE(expr_tree),
3275 expr_tree);
3276 }
3277 }
3278 else if ((type->is_unsafe_pointer_type()
3279 && expr_type->points_to() != NULL)
3280 || (expr_type->is_unsafe_pointer_type()
3281 && type->points_to() != NULL))
3282 ret = fold_convert(type_tree, expr_tree);
3283 else if (type->is_unsafe_pointer_type()
3284 && expr_type->integer_type() != NULL)
3285 ret = convert_to_pointer(type_tree, expr_tree);
3286 else if (this->may_convert_function_types_
3287 && type->function_type() != NULL
3288 && expr_type->function_type() != NULL)
3289 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3290 else
3291 ret = Expression::convert_for_assignment(context, type, expr_type,
3292 expr_tree, this->location());
3293
3294 return ret;
3295}
3296
3297// Output a type conversion in a constant expression.
3298
3299void
3300Type_conversion_expression::do_export(Export* exp) const
3301{
3302 exp->write_c_string("convert(");
3303 exp->write_type(this->type_);
3304 exp->write_c_string(", ");
3305 this->expr_->export_expression(exp);
3306 exp->write_c_string(")");
3307}
3308
3309// Import a type conversion or a struct construction.
3310
3311Expression*
3312Type_conversion_expression::do_import(Import* imp)
3313{
3314 imp->require_c_string("convert(");
3315 Type* type = imp->read_type();
3316 imp->require_c_string(", ");
3317 Expression* val = Expression::import_expression(imp);
3318 imp->require_c_string(")");
3319 return Expression::make_cast(type, val, imp->location());
3320}
3321
3322// Make a type cast expression.
3323
3324Expression*
3325Expression::make_cast(Type* type, Expression* val, source_location location)
3326{
3327 if (type->is_error_type() || val->is_error_expression())
3328 return Expression::make_error(location);
3329 return new Type_conversion_expression(type, val, location);
3330}
3331
3332// Unary expressions.
3333
3334class Unary_expression : public Expression
3335{
3336 public:
3337 Unary_expression(Operator op, Expression* expr, source_location location)
3338 : Expression(EXPRESSION_UNARY, location),
3339 op_(op), escapes_(true), expr_(expr)
3340 { }
3341
3342 // Return the operator.
3343 Operator
3344 op() const
3345 { return this->op_; }
3346
3347 // Return the operand.
3348 Expression*
3349 operand() const
3350 { return this->expr_; }
3351
3352 // Record that an address expression does not escape.
3353 void
3354 set_does_not_escape()
3355 {
3356 gcc_assert(this->op_ == OPERATOR_AND);
3357 this->escapes_ = false;
3358 }
3359
3360 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3361 // could be done, false if not.
3362 static bool
3363 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3364 source_location);
3365
3366 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3367 // could be done, false if not.
3368 static bool
3369 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3370
3371 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3372 // true if this could be done, false if not.
3373 static bool
3374 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3375 mpfr_t imag);
3376
3377 static Expression*
3378 do_import(Import*);
3379
3380 protected:
3381 int
3382 do_traverse(Traverse* traverse)
3383 { return Expression::traverse(&this->expr_, traverse); }
3384
3385 Expression*
3386 do_lower(Gogo*, Named_object*, int);
3387
3388 bool
3389 do_is_constant() const;
3390
3391 bool
3392 do_integer_constant_value(bool, mpz_t, Type**) const;
3393
3394 bool
3395 do_float_constant_value(mpfr_t, Type**) const;
3396
3397 bool
3398 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3399
3400 Type*
3401 do_type();
3402
3403 void
3404 do_determine_type(const Type_context*);
3405
3406 void
3407 do_check_types(Gogo*);
3408
3409 Expression*
3410 do_copy()
3411 {
3412 return Expression::make_unary(this->op_, this->expr_->copy(),
3413 this->location());
3414 }
3415
3416 bool
3417 do_is_addressable() const
3418 { return this->op_ == OPERATOR_MULT; }
3419
3420 tree
3421 do_get_tree(Translate_context*);
3422
3423 void
3424 do_export(Export*) const;
3425
3426 private:
3427 // The unary operator to apply.
3428 Operator op_;
3429 // Normally true. False if this is an address expression which does
3430 // not escape the current function.
3431 bool escapes_;
3432 // The operand.
3433 Expression* expr_;
3434};
3435
3436// If we are taking the address of a composite literal, and the
3437// contents are not constant, then we want to make a heap composite
3438// instead.
3439
3440Expression*
3441Unary_expression::do_lower(Gogo*, Named_object*, int)
3442{
3443 source_location loc = this->location();
3444 Operator op = this->op_;
3445 Expression* expr = this->expr_;
3446
3447 if (op == OPERATOR_MULT && expr->is_type_expression())
3448 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3449
3450 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3451 // moving x to the heap. FIXME: Is it worth doing a real escape
3452 // analysis here? This case is found in math/unsafe.go and is
3453 // therefore worth special casing.
3454 if (op == OPERATOR_MULT)
3455 {
3456 Expression* e = expr;
3457 while (e->classification() == EXPRESSION_CONVERSION)
3458 {
3459 Type_conversion_expression* te
3460 = static_cast<Type_conversion_expression*>(e);
3461 e = te->expr();
3462 }
3463
3464 if (e->classification() == EXPRESSION_UNARY)
3465 {
3466 Unary_expression* ue = static_cast<Unary_expression*>(e);
3467 if (ue->op_ == OPERATOR_AND)
3468 {
3469 if (e == expr)
3470 {
3471 // *&x == x.
3472 return ue->expr_;
3473 }
3474 ue->set_does_not_escape();
3475 }
3476 }
3477 }
3478
3479 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3480 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3481 {
3482 Expression* ret = NULL;
3483
3484 mpz_t eval;
3485 mpz_init(eval);
3486 Type* etype;
3487 if (expr->integer_constant_value(false, eval, &etype))
3488 {
3489 mpz_t val;
3490 mpz_init(val);
3491 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3492 ret = Expression::make_integer(&val, etype, loc);
3493 mpz_clear(val);
3494 }
3495 mpz_clear(eval);
3496 if (ret != NULL)
3497 return ret;
3498
3499 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3500 {
3501 mpfr_t fval;
3502 mpfr_init(fval);
3503 Type* ftype;
3504 if (expr->float_constant_value(fval, &ftype))
3505 {
3506 mpfr_t val;
3507 mpfr_init(val);
3508 if (Unary_expression::eval_float(op, fval, val))
3509 ret = Expression::make_float(&val, ftype, loc);
3510 mpfr_clear(val);
3511 }
3512 if (ret != NULL)
3513 {
3514 mpfr_clear(fval);
3515 return ret;
3516 }
3517
3518 mpfr_t ival;
3519 mpfr_init(ival);
3520 if (expr->complex_constant_value(fval, ival, &ftype))
3521 {
3522 mpfr_t real;
3523 mpfr_t imag;
3524 mpfr_init(real);
3525 mpfr_init(imag);
3526 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3527 ret = Expression::make_complex(&real, &imag, ftype, loc);
3528 mpfr_clear(real);
3529 mpfr_clear(imag);
3530 }
3531 mpfr_clear(ival);
3532 mpfr_clear(fval);
3533 if (ret != NULL)
3534 return ret;
3535 }
3536 }
3537
3538 return this;
3539}
3540
3541// Return whether a unary expression is a constant.
3542
3543bool
3544Unary_expression::do_is_constant() const
3545{
3546 if (this->op_ == OPERATOR_MULT)
3547 {
3548 // Indirecting through a pointer is only constant if the object
3549 // to which the expression points is constant, but we currently
3550 // have no way to determine that.
3551 return false;
3552 }
3553 else if (this->op_ == OPERATOR_AND)
3554 {
3555 // Taking the address of a variable is constant if it is a
3556 // global variable, not constant otherwise. In other cases
3557 // taking the address is probably not a constant.
3558 Var_expression* ve = this->expr_->var_expression();
3559 if (ve != NULL)
3560 {
3561 Named_object* no = ve->named_object();
3562 return no->is_variable() && no->var_value()->is_global();
3563 }
3564 return false;
3565 }
3566 else
3567 return this->expr_->is_constant();
3568}
3569
3570// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3571// UVAL, if known; it may be NULL. Return true if this could be done,
3572// false if not.
3573
3574bool
3575Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3576 source_location location)
3577{
3578 switch (op)
3579 {
3580 case OPERATOR_PLUS:
3581 mpz_set(val, uval);
3582 return true;
3583 case OPERATOR_MINUS:
3584 mpz_neg(val, uval);
3585 return Integer_expression::check_constant(val, utype, location);
3586 case OPERATOR_NOT:
3587 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3588 return true;
3589 case OPERATOR_XOR:
3590 if (utype == NULL
3591 || utype->integer_type() == NULL
3592 || utype->integer_type()->is_abstract())
3593 mpz_com(val, uval);
3594 else
3595 {
3596 // The number of HOST_WIDE_INTs that it takes to represent
3597 // UVAL.
3598 size_t count = ((mpz_sizeinbase(uval, 2)
3599 + HOST_BITS_PER_WIDE_INT
3600 - 1)
3601 / HOST_BITS_PER_WIDE_INT);
3602
3603 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3604 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3605
3606 size_t ecount;
3607 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3608 gcc_assert(ecount <= count);
3609
3610 // Trim down to the number of words required by the type.
3611 size_t obits = utype->integer_type()->bits();
3612 if (!utype->integer_type()->is_unsigned())
3613 ++obits;
3614 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3615 / HOST_BITS_PER_WIDE_INT);
3616 gcc_assert(ocount <= ocount);
3617
3618 for (size_t i = 0; i < ocount; ++i)
3619 phwi[i] = ~phwi[i];
3620
3621 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3622 if (clearbits != 0)
3623 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3624 >> clearbits);
3625
3626 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3627
3628 delete[] phwi;
3629 }
3630 return Integer_expression::check_constant(val, utype, location);
3631 case OPERATOR_AND:
3632 case OPERATOR_MULT:
3633 return false;
3634 default:
3635 gcc_unreachable();
3636 }
3637}
3638
3639// Apply unary opcode OP to UVAL, setting VAL. Return true if this
3640// could be done, false if not.
3641
3642bool
3643Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3644{
3645 switch (op)
3646 {
3647 case OPERATOR_PLUS:
3648 mpfr_set(val, uval, GMP_RNDN);
3649 return true;
3650 case OPERATOR_MINUS:
3651 mpfr_neg(val, uval, GMP_RNDN);
3652 return true;
3653 case OPERATOR_NOT:
3654 case OPERATOR_XOR:
3655 case OPERATOR_AND:
3656 case OPERATOR_MULT:
3657 return false;
3658 default:
3659 gcc_unreachable();
3660 }
3661}
3662
3663// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3664// if this could be done, false if not.
3665
3666bool
3667Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3668 mpfr_t real, mpfr_t imag)
3669{
3670 switch (op)
3671 {
3672 case OPERATOR_PLUS:
3673 mpfr_set(real, rval, GMP_RNDN);
3674 mpfr_set(imag, ival, GMP_RNDN);
3675 return true;
3676 case OPERATOR_MINUS:
3677 mpfr_neg(real, rval, GMP_RNDN);
3678 mpfr_neg(imag, ival, GMP_RNDN);
3679 return true;
3680 case OPERATOR_NOT:
3681 case OPERATOR_XOR:
3682 case OPERATOR_AND:
3683 case OPERATOR_MULT:
3684 return false;
3685 default:
3686 gcc_unreachable();
3687 }
3688}
3689
3690// Return the integral constant value of a unary expression, if it has one.
3691
3692bool
3693Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3694 Type** ptype) const
3695{
3696 mpz_t uval;
3697 mpz_init(uval);
3698 bool ret;
3699 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3700 ret = false;
3701 else
3702 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3703 this->location());
3704 mpz_clear(uval);
3705 return ret;
3706}
3707
3708// Return the floating point constant value of a unary expression, if
3709// it has one.
3710
3711bool
3712Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3713{
3714 mpfr_t uval;
3715 mpfr_init(uval);
3716 bool ret;
3717 if (!this->expr_->float_constant_value(uval, ptype))
3718 ret = false;
3719 else
3720 ret = Unary_expression::eval_float(this->op_, uval, val);
3721 mpfr_clear(uval);
3722 return ret;
3723}
3724
3725// Return the complex constant value of a unary expression, if it has
3726// one.
3727
3728bool
3729Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3730 Type** ptype) const
3731{
3732 mpfr_t rval;
3733 mpfr_t ival;
3734 mpfr_init(rval);
3735 mpfr_init(ival);
3736 bool ret;
3737 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3738 ret = false;
3739 else
3740 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3741 mpfr_clear(rval);
3742 mpfr_clear(ival);
3743 return ret;
3744}
3745
3746// Return the type of a unary expression.
3747
3748Type*
3749Unary_expression::do_type()
3750{
3751 switch (this->op_)
3752 {
3753 case OPERATOR_PLUS:
3754 case OPERATOR_MINUS:
3755 case OPERATOR_NOT:
3756 case OPERATOR_XOR:
3757 return this->expr_->type();
3758
3759 case OPERATOR_AND:
3760 return Type::make_pointer_type(this->expr_->type());
3761
3762 case OPERATOR_MULT:
3763 {
3764 Type* subtype = this->expr_->type();
3765 Type* points_to = subtype->points_to();
3766 if (points_to == NULL)
3767 return Type::make_error_type();
3768 return points_to;
3769 }
3770
3771 default:
3772 gcc_unreachable();
3773 }
3774}
3775
3776// Determine abstract types for a unary expression.
3777
3778void
3779Unary_expression::do_determine_type(const Type_context* context)
3780{
3781 switch (this->op_)
3782 {
3783 case OPERATOR_PLUS:
3784 case OPERATOR_MINUS:
3785 case OPERATOR_NOT:
3786 case OPERATOR_XOR:
3787 this->expr_->determine_type(context);
3788 break;
3789
3790 case OPERATOR_AND:
3791 // Taking the address of something.
3792 {
3793 Type* subtype = (context->type == NULL
3794 ? NULL
3795 : context->type->points_to());
3796 Type_context subcontext(subtype, false);
3797 this->expr_->determine_type(&subcontext);
3798 }
3799 break;
3800
3801 case OPERATOR_MULT:
3802 // Indirecting through a pointer.
3803 {
3804 Type* subtype = (context->type == NULL
3805 ? NULL
3806 : Type::make_pointer_type(context->type));
3807 Type_context subcontext(subtype, false);
3808 this->expr_->determine_type(&subcontext);
3809 }
3810 break;
3811
3812 default:
3813 gcc_unreachable();
3814 }
3815}
3816
3817// Check types for a unary expression.
3818
3819void
3820Unary_expression::do_check_types(Gogo*)
3821{
3822 switch (this->op_)
3823 {
3824 case OPERATOR_PLUS:
3825 case OPERATOR_MINUS:
3826 {
3827 Type* type = this->expr_->type();
3828 if (type->integer_type() == NULL
3829 && type->float_type() == NULL
3830 && type->complex_type() == NULL
3831 && !type->is_error_type())
3832 this->report_error(_("expected numeric type"));
3833 }
3834 break;
3835
3836 case OPERATOR_NOT:
3837 case OPERATOR_XOR:
3838 {
3839 Type* type = this->expr_->type();
3840 if (type->integer_type() == NULL
3841 && !type->is_boolean_type()
3842 && !type->is_error_type())
3843 this->report_error(_("expected integer or boolean type"));
3844 }
3845 break;
3846
3847 case OPERATOR_AND:
3848 if (!this->expr_->is_addressable())
3849 this->report_error(_("invalid operand for unary %<&%>"));
3850 else
3851 this->expr_->address_taken(this->escapes_);
3852 break;
3853
3854 case OPERATOR_MULT:
3855 // Indirecting through a pointer.
3856 {
3857 Type* type = this->expr_->type();
3858 if (type->points_to() == NULL
3859 && !type->is_error_type())
3860 this->report_error(_("expected pointer"));
3861 }
3862 break;
3863
3864 default:
3865 gcc_unreachable();
3866 }
3867}
3868
3869// Get a tree for a unary expression.
3870
3871tree
3872Unary_expression::do_get_tree(Translate_context* context)
3873{
3874 tree expr = this->expr_->get_tree(context);
3875 if (expr == error_mark_node)
3876 return error_mark_node;
3877
3878 source_location loc = this->location();
3879 switch (this->op_)
3880 {
3881 case OPERATOR_PLUS:
3882 return expr;
3883
3884 case OPERATOR_MINUS:
3885 {
3886 tree type = TREE_TYPE(expr);
3887 tree compute_type = excess_precision_type(type);
3888 if (compute_type != NULL_TREE)
3889 expr = ::convert(compute_type, expr);
3890 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
3891 (compute_type != NULL_TREE
3892 ? compute_type
3893 : type),
3894 expr);
3895 if (compute_type != NULL_TREE)
3896 ret = ::convert(type, ret);
3897 return ret;
3898 }
3899
3900 case OPERATOR_NOT:
3901 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
3902 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
3903 else
3904 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
3905 build_int_cst(TREE_TYPE(expr), 0));
3906
3907 case OPERATOR_XOR:
3908 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
3909
3910 case OPERATOR_AND:
3911 // We should not see a non-constant constructor here; cases
3912 // where we would see one should have been moved onto the heap
3913 // at parse time. Taking the address of a nonconstant
3914 // constructor will not do what the programmer expects.
3915 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
3916 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
3917
3918 // Build a decl for a constant constructor.
3919 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
3920 {
3921 tree decl = build_decl(this->location(), VAR_DECL,
3922 create_tmp_var_name("C"), TREE_TYPE(expr));
3923 DECL_EXTERNAL(decl) = 0;
3924 TREE_PUBLIC(decl) = 0;
3925 TREE_READONLY(decl) = 1;
3926 TREE_CONSTANT(decl) = 1;
3927 TREE_STATIC(decl) = 1;
3928 TREE_ADDRESSABLE(decl) = 1;
3929 DECL_ARTIFICIAL(decl) = 1;
3930 DECL_INITIAL(decl) = expr;
3931 rest_of_decl_compilation(decl, 1, 0);
3932 expr = decl;
3933 }
3934
3935 return build_fold_addr_expr_loc(loc, expr);
3936
3937 case OPERATOR_MULT:
3938 {
3939 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
3940
3941 // If we are dereferencing the pointer to a large struct, we
3942 // need to check for nil. We don't bother to check for small
3943 // structs because we expect the system to crash on a nil
3944 // pointer dereference.
3945 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
3946 if (s == -1 || s >= 4096)
3947 {
3948 if (!DECL_P(expr))
3949 expr = save_expr(expr);
3950 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
3951 expr,
3952 fold_convert(TREE_TYPE(expr),
3953 null_pointer_node));
3954 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
3955 loc);
3956 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
3957 build3(COND_EXPR, void_type_node,
3958 compare, crash, NULL_TREE),
3959 expr);
3960 }
3961
3962 // If the type of EXPR is a recursive pointer type, then we
3963 // need to insert a cast before indirecting.
3964 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
3965 {
3966 Type* pt = this->expr_->type()->points_to();
3967 tree ind = pt->get_tree(context->gogo());
3968 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
3969 }
3970
3971 return build_fold_indirect_ref_loc(loc, expr);
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977}
3978
3979// Export a unary expression.
3980
3981void
3982Unary_expression::do_export(Export* exp) const
3983{
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 exp->write_c_string("+ ");
3988 break;
3989 case OPERATOR_MINUS:
3990 exp->write_c_string("- ");
3991 break;
3992 case OPERATOR_NOT:
3993 exp->write_c_string("! ");
3994 break;
3995 case OPERATOR_XOR:
3996 exp->write_c_string("^ ");
3997 break;
3998 case OPERATOR_AND:
3999 case OPERATOR_MULT:
4000 default:
4001 gcc_unreachable();
4002 }
4003 this->expr_->export_expression(exp);
4004}
4005
4006// Import a unary expression.
4007
4008Expression*
4009Unary_expression::do_import(Import* imp)
4010{
4011 Operator op;
4012 switch (imp->get_char())
4013 {
4014 case '+':
4015 op = OPERATOR_PLUS;
4016 break;
4017 case '-':
4018 op = OPERATOR_MINUS;
4019 break;
4020 case '!':
4021 op = OPERATOR_NOT;
4022 break;
4023 case '^':
4024 op = OPERATOR_XOR;
4025 break;
4026 default:
4027 gcc_unreachable();
4028 }
4029 imp->require_c_string(" ");
4030 Expression* expr = Expression::import_expression(imp);
4031 return Expression::make_unary(op, expr, imp->location());
4032}
4033
4034// Make a unary expression.
4035
4036Expression*
4037Expression::make_unary(Operator op, Expression* expr, source_location location)
4038{
4039 return new Unary_expression(op, expr, location);
4040}
4041
4042// If this is an indirection through a pointer, return the expression
4043// being pointed through. Otherwise return this.
4044
4045Expression*
4046Expression::deref()
4047{
4048 if (this->classification_ == EXPRESSION_UNARY)
4049 {
4050 Unary_expression* ue = static_cast<Unary_expression*>(this);
4051 if (ue->op() == OPERATOR_MULT)
4052 return ue->operand();
4053 }
4054 return this;
4055}
4056
4057// Class Binary_expression.
4058
4059// Traversal.
4060
4061int
4062Binary_expression::do_traverse(Traverse* traverse)
4063{
4064 int t = Expression::traverse(&this->left_, traverse);
4065 if (t == TRAVERSE_EXIT)
4066 return TRAVERSE_EXIT;
4067 return Expression::traverse(&this->right_, traverse);
4068}
4069
4070// Compare integer constants according to OP.
4071
4072bool
4073Binary_expression::compare_integer(Operator op, mpz_t left_val,
4074 mpz_t right_val)
4075{
4076 int i = mpz_cmp(left_val, right_val);
4077 switch (op)
4078 {
4079 case OPERATOR_EQEQ:
4080 return i == 0;
4081 case OPERATOR_NOTEQ:
4082 return i != 0;
4083 case OPERATOR_LT:
4084 return i < 0;
4085 case OPERATOR_LE:
4086 return i <= 0;
4087 case OPERATOR_GT:
4088 return i > 0;
4089 case OPERATOR_GE:
4090 return i >= 0;
4091 default:
4092 gcc_unreachable();
4093 }
4094}
4095
4096// Compare floating point constants according to OP.
4097
4098bool
4099Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4100 mpfr_t right_val)
4101{
4102 int i;
4103 if (type == NULL)
4104 i = mpfr_cmp(left_val, right_val);
4105 else
4106 {
4107 mpfr_t lv;
4108 mpfr_init_set(lv, left_val, GMP_RNDN);
4109 mpfr_t rv;
4110 mpfr_init_set(rv, right_val, GMP_RNDN);
4111 Float_expression::constrain_float(lv, type);
4112 Float_expression::constrain_float(rv, type);
4113 i = mpfr_cmp(lv, rv);
4114 mpfr_clear(lv);
4115 mpfr_clear(rv);
4116 }
4117 switch (op)
4118 {
4119 case OPERATOR_EQEQ:
4120 return i == 0;
4121 case OPERATOR_NOTEQ:
4122 return i != 0;
4123 case OPERATOR_LT:
4124 return i < 0;
4125 case OPERATOR_LE:
4126 return i <= 0;
4127 case OPERATOR_GT:
4128 return i > 0;
4129 case OPERATOR_GE:
4130 return i >= 0;
4131 default:
4132 gcc_unreachable();
4133 }
4134}
4135
4136// Compare complex constants according to OP. Complex numbers may
4137// only be compared for equality.
4138
4139bool
4140Binary_expression::compare_complex(Operator op, Type* type,
4141 mpfr_t left_real, mpfr_t left_imag,
4142 mpfr_t right_real, mpfr_t right_imag)
4143{
4144 bool is_equal;
4145 if (type == NULL)
4146 is_equal = (mpfr_cmp(left_real, right_real) == 0
4147 && mpfr_cmp(left_imag, right_imag) == 0);
4148 else
4149 {
4150 mpfr_t lr;
4151 mpfr_t li;
4152 mpfr_init_set(lr, left_real, GMP_RNDN);
4153 mpfr_init_set(li, left_imag, GMP_RNDN);
4154 mpfr_t rr;
4155 mpfr_t ri;
4156 mpfr_init_set(rr, right_real, GMP_RNDN);
4157 mpfr_init_set(ri, right_imag, GMP_RNDN);
4158 Complex_expression::constrain_complex(lr, li, type);
4159 Complex_expression::constrain_complex(rr, ri, type);
4160 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4161 mpfr_clear(lr);
4162 mpfr_clear(li);
4163 mpfr_clear(rr);
4164 mpfr_clear(ri);
4165 }
4166 switch (op)
4167 {
4168 case OPERATOR_EQEQ:
4169 return is_equal;
4170 case OPERATOR_NOTEQ:
4171 return !is_equal;
4172 default:
4173 gcc_unreachable();
4174 }
4175}
4176
4177// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4178// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4179// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4180// this could be done, false if not.
4181
4182bool
4183Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4184 Type* right_type, mpz_t right_val,
4185 source_location location, mpz_t val)
4186{
4187 bool is_shift_op = false;
4188 switch (op)
4189 {
4190 case OPERATOR_OROR:
4191 case OPERATOR_ANDAND:
4192 case OPERATOR_EQEQ:
4193 case OPERATOR_NOTEQ:
4194 case OPERATOR_LT:
4195 case OPERATOR_LE:
4196 case OPERATOR_GT:
4197 case OPERATOR_GE:
4198 // These return boolean values. We should probably handle them
4199 // anyhow in case a type conversion is used on the result.
4200 return false;
4201 case OPERATOR_PLUS:
4202 mpz_add(val, left_val, right_val);
4203 break;
4204 case OPERATOR_MINUS:
4205 mpz_sub(val, left_val, right_val);
4206 break;
4207 case OPERATOR_OR:
4208 mpz_ior(val, left_val, right_val);
4209 break;
4210 case OPERATOR_XOR:
4211 mpz_xor(val, left_val, right_val);
4212 break;
4213 case OPERATOR_MULT:
4214 mpz_mul(val, left_val, right_val);
4215 break;
4216 case OPERATOR_DIV:
4217 if (mpz_sgn(right_val) != 0)
4218 mpz_tdiv_q(val, left_val, right_val);
4219 else
4220 {
4221 error_at(location, "division by zero");
4222 mpz_set_ui(val, 0);
4223 return true;
4224 }
4225 break;
4226 case OPERATOR_MOD:
4227 if (mpz_sgn(right_val) != 0)
4228 mpz_tdiv_r(val, left_val, right_val);
4229 else
4230 {
4231 error_at(location, "division by zero");
4232 mpz_set_ui(val, 0);
4233 return true;
4234 }
4235 break;
4236 case OPERATOR_LSHIFT:
4237 {
4238 unsigned long shift = mpz_get_ui(right_val);
4239 if (mpz_cmp_ui(right_val, shift) != 0)
4240 {
4241 error_at(location, "shift count overflow");
4242 mpz_set_ui(val, 0);
4243 return true;
4244 }
4245 mpz_mul_2exp(val, left_val, shift);
4246 is_shift_op = true;
4247 break;
4248 }
4249 break;
4250 case OPERATOR_RSHIFT:
4251 {
4252 unsigned long shift = mpz_get_ui(right_val);
4253 if (mpz_cmp_ui(right_val, shift) != 0)
4254 {
4255 error_at(location, "shift count overflow");
4256 mpz_set_ui(val, 0);
4257 return true;
4258 }
4259 if (mpz_cmp_ui(left_val, 0) >= 0)
4260 mpz_tdiv_q_2exp(val, left_val, shift);
4261 else
4262 mpz_fdiv_q_2exp(val, left_val, shift);
4263 is_shift_op = true;
4264 break;
4265 }
4266 break;
4267 case OPERATOR_AND:
4268 mpz_and(val, left_val, right_val);
4269 break;
4270 case OPERATOR_BITCLEAR:
4271 {
4272 mpz_t tval;
4273 mpz_init(tval);
4274 mpz_com(tval, right_val);
4275 mpz_and(val, left_val, tval);
4276 mpz_clear(tval);
4277 }
4278 break;
4279 default:
4280 gcc_unreachable();
4281 }
4282
4283 Type* type = left_type;
4284 if (!is_shift_op)
4285 {
4286 if (type == NULL)
4287 type = right_type;
4288 else if (type != right_type && right_type != NULL)
4289 {
4290 if (type->is_abstract())
4291 type = right_type;
4292 else if (!right_type->is_abstract())
4293 {
4294 // This look like a type error which should be diagnosed
4295 // elsewhere. Don't do anything here, to avoid an
4296 // unhelpful chain of error messages.
4297 return true;
4298 }
4299 }
4300 }
4301
4302 if (type != NULL && !type->is_abstract())
4303 {
4304 // We have to check the operands too, as we have implicitly
4305 // coerced them to TYPE.
4306 if ((type != left_type
4307 && !Integer_expression::check_constant(left_val, type, location))
4308 || (!is_shift_op
4309 && type != right_type
4310 && !Integer_expression::check_constant(right_val, type,
4311 location))
4312 || !Integer_expression::check_constant(val, type, location))
4313 mpz_set_ui(val, 0);
4314 }
4315
4316 return true;
4317}
4318
4319// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4320// Return true if this could be done, false if not.
4321
4322bool
4323Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4324 Type* right_type, mpfr_t right_val,
4325 mpfr_t val, source_location location)
4326{
4327 switch (op)
4328 {
4329 case OPERATOR_OROR:
4330 case OPERATOR_ANDAND:
4331 case OPERATOR_EQEQ:
4332 case OPERATOR_NOTEQ:
4333 case OPERATOR_LT:
4334 case OPERATOR_LE:
4335 case OPERATOR_GT:
4336 case OPERATOR_GE:
4337 // These return boolean values. We should probably handle them
4338 // anyhow in case a type conversion is used on the result.
4339 return false;
4340 case OPERATOR_PLUS:
4341 mpfr_add(val, left_val, right_val, GMP_RNDN);
4342 break;
4343 case OPERATOR_MINUS:
4344 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4345 break;
4346 case OPERATOR_OR:
4347 case OPERATOR_XOR:
4348 case OPERATOR_AND:
4349 case OPERATOR_BITCLEAR:
4350 return false;
4351 case OPERATOR_MULT:
4352 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4353 break;
4354 case OPERATOR_DIV:
4355 if (mpfr_zero_p(right_val))
4356 error_at(location, "division by zero");
4357 mpfr_div(val, left_val, right_val, GMP_RNDN);
4358 break;
4359 case OPERATOR_MOD:
4360 return false;
4361 case OPERATOR_LSHIFT:
4362 case OPERATOR_RSHIFT:
4363 return false;
4364 default:
4365 gcc_unreachable();
4366 }
4367
4368 Type* type = left_type;
4369 if (type == NULL)
4370 type = right_type;
4371 else if (type != right_type && right_type != NULL)
4372 {
4373 if (type->is_abstract())
4374 type = right_type;
4375 else if (!right_type->is_abstract())
4376 {
4377 // This looks like a type error which should be diagnosed
4378 // elsewhere. Don't do anything here, to avoid an unhelpful
4379 // chain of error messages.
4380 return true;
4381 }
4382 }
4383
4384 if (type != NULL && !type->is_abstract())
4385 {
4386 if ((type != left_type
4387 && !Float_expression::check_constant(left_val, type, location))
4388 || (type != right_type
4389 && !Float_expression::check_constant(right_val, type,
4390 location))
4391 || !Float_expression::check_constant(val, type, location))
4392 mpfr_set_ui(val, 0, GMP_RNDN);
4393 }
4394
4395 return true;
4396}
4397
4398// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4399// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4400// could be done, false if not.
4401
4402bool
4403Binary_expression::eval_complex(Operator op, Type* left_type,
4404 mpfr_t left_real, mpfr_t left_imag,
4405 Type *right_type,
4406 mpfr_t right_real, mpfr_t right_imag,
4407 mpfr_t real, mpfr_t imag,
4408 source_location location)
4409{
4410 switch (op)
4411 {
4412 case OPERATOR_OROR:
4413 case OPERATOR_ANDAND:
4414 case OPERATOR_EQEQ:
4415 case OPERATOR_NOTEQ:
4416 case OPERATOR_LT:
4417 case OPERATOR_LE:
4418 case OPERATOR_GT:
4419 case OPERATOR_GE:
4420 // These return boolean values and must be handled differently.
4421 return false;
4422 case OPERATOR_PLUS:
4423 mpfr_add(real, left_real, right_real, GMP_RNDN);
4424 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4425 break;
4426 case OPERATOR_MINUS:
4427 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4428 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4429 break;
4430 case OPERATOR_OR:
4431 case OPERATOR_XOR:
4432 case OPERATOR_AND:
4433 case OPERATOR_BITCLEAR:
4434 return false;
4435 case OPERATOR_MULT:
4436 {
4437 // You might think that multiplying two complex numbers would
4438 // be simple, and you would be right, until you start to think
4439 // about getting the right answer for infinity. If one
4440 // operand here is infinity and the other is anything other
4441 // than zero or NaN, then we are going to wind up subtracting
4442 // two infinity values. That will give us a NaN, but the
4443 // correct answer is infinity.
4444
4445 mpfr_t lrrr;
4446 mpfr_init(lrrr);
4447 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4448
4449 mpfr_t lrri;
4450 mpfr_init(lrri);
4451 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4452
4453 mpfr_t lirr;
4454 mpfr_init(lirr);
4455 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4456
4457 mpfr_t liri;
4458 mpfr_init(liri);
4459 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4460
4461 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4462 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4463
4464 // If we get NaN on both sides, check whether it should really
4465 // be infinity. The rule is that if either side of the
4466 // complex number is infinity, then the whole value is
4467 // infinity, even if the other side is NaN. So the only case
4468 // we have to fix is the one in which both sides are NaN.
4469 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4470 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4471 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4472 {
4473 bool is_infinity = false;
4474
4475 mpfr_t lr;
4476 mpfr_t li;
4477 mpfr_init_set(lr, left_real, GMP_RNDN);
4478 mpfr_init_set(li, left_imag, GMP_RNDN);
4479
4480 mpfr_t rr;
4481 mpfr_t ri;
4482 mpfr_init_set(rr, right_real, GMP_RNDN);
4483 mpfr_init_set(ri, right_imag, GMP_RNDN);
4484
4485 // If the left side is infinity, then the result is
4486 // infinity.
4487 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4488 {
4489 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4490 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4491 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4492 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4493 if (mpfr_nan_p(rr))
4494 {
4495 mpfr_set_ui(rr, 0, GMP_RNDN);
4496 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4497 }
4498 if (mpfr_nan_p(ri))
4499 {
4500 mpfr_set_ui(ri, 0, GMP_RNDN);
4501 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4502 }
4503 is_infinity = true;
4504 }
4505
4506 // If the right side is infinity, then the result is
4507 // infinity.
4508 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4509 {
4510 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4511 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4512 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4513 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4514 if (mpfr_nan_p(lr))
4515 {
4516 mpfr_set_ui(lr, 0, GMP_RNDN);
4517 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4518 }
4519 if (mpfr_nan_p(li))
4520 {
4521 mpfr_set_ui(li, 0, GMP_RNDN);
4522 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4523 }
4524 is_infinity = true;
4525 }
4526
4527 // If we got an overflow in the intermediate computations,
4528 // then the result is infinity.
4529 if (!is_infinity
4530 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4531 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4532 {
4533 if (mpfr_nan_p(lr))
4534 {
4535 mpfr_set_ui(lr, 0, GMP_RNDN);
4536 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4537 }
4538 if (mpfr_nan_p(li))
4539 {
4540 mpfr_set_ui(li, 0, GMP_RNDN);
4541 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4542 }
4543 if (mpfr_nan_p(rr))
4544 {
4545 mpfr_set_ui(rr, 0, GMP_RNDN);
4546 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4547 }
4548 if (mpfr_nan_p(ri))
4549 {
4550 mpfr_set_ui(ri, 0, GMP_RNDN);
4551 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4552 }
4553 is_infinity = true;
4554 }
4555
4556 if (is_infinity)
4557 {
4558 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4559 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4560 mpfr_mul(lirr, li, rr, GMP_RNDN);
4561 mpfr_mul(liri, li, ri, GMP_RNDN);
4562 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4563 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4564 mpfr_set_inf(real, mpfr_sgn(real));
4565 mpfr_set_inf(imag, mpfr_sgn(imag));
4566 }
4567
4568 mpfr_clear(lr);
4569 mpfr_clear(li);
4570 mpfr_clear(rr);
4571 mpfr_clear(ri);
4572 }
4573
4574 mpfr_clear(lrrr);
4575 mpfr_clear(lrri);
4576 mpfr_clear(lirr);
4577 mpfr_clear(liri);
4578 }
4579 break;
4580 case OPERATOR_DIV:
4581 {
4582 // For complex division we want to avoid having an
4583 // intermediate overflow turn the whole result in a NaN. We
4584 // scale the values to try to avoid this.
4585
4586 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4587 error_at(location, "division by zero");
4588
4589 mpfr_t rra;
4590 mpfr_t ria;
4591 mpfr_init(rra);
4592 mpfr_init(ria);
4593 mpfr_abs(rra, right_real, GMP_RNDN);
4594 mpfr_abs(ria, right_imag, GMP_RNDN);
4595 mpfr_t t;
4596 mpfr_init(t);
4597 mpfr_max(t, rra, ria, GMP_RNDN);
4598
4599 mpfr_t rr;
4600 mpfr_t ri;
4601 mpfr_init_set(rr, right_real, GMP_RNDN);
4602 mpfr_init_set(ri, right_imag, GMP_RNDN);
4603 long ilogbw = 0;
4604 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4605 {
4606 ilogbw = mpfr_get_exp(t);
4607 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4608 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4609 }
4610
4611 mpfr_t denom;
4612 mpfr_init(denom);
4613 mpfr_mul(denom, rr, rr, GMP_RNDN);
4614 mpfr_mul(t, ri, ri, GMP_RNDN);
4615 mpfr_add(denom, denom, t, GMP_RNDN);
4616
4617 mpfr_mul(real, left_real, rr, GMP_RNDN);
4618 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4619 mpfr_add(real, real, t, GMP_RNDN);
4620 mpfr_div(real, real, denom, GMP_RNDN);
4621 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4622
4623 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4624 mpfr_mul(t, left_real, ri, GMP_RNDN);
4625 mpfr_sub(imag, imag, t, GMP_RNDN);
4626 mpfr_div(imag, imag, denom, GMP_RNDN);
4627 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4628
4629 // If we wind up with NaN on both sides, check whether we
4630 // should really have infinity. The rule is that if either
4631 // side of the complex number is infinity, then the whole
4632 // value is infinity, even if the other side is NaN. So the
4633 // only case we have to fix is the one in which both sides are
4634 // NaN.
4635 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4636 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4637 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4638 {
4639 if (mpfr_zero_p(denom))
4640 {
4641 mpfr_set_inf(real, mpfr_sgn(rr));
4642 mpfr_mul(real, real, left_real, GMP_RNDN);
4643 mpfr_set_inf(imag, mpfr_sgn(rr));
4644 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4645 }
4646 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4647 && mpfr_number_p(rr) && mpfr_number_p(ri))
4648 {
4649 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4650 mpfr_copysign(t, t, left_real, GMP_RNDN);
4651
4652 mpfr_t t2;
4653 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4654 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4655
4656 mpfr_t t3;
4657 mpfr_init(t3);
4658 mpfr_mul(t3, t, rr, GMP_RNDN);
4659
4660 mpfr_t t4;
4661 mpfr_init(t4);
4662 mpfr_mul(t4, t2, ri, GMP_RNDN);
4663
4664 mpfr_add(t3, t3, t4, GMP_RNDN);
4665 mpfr_set_inf(real, mpfr_sgn(t3));
4666
4667 mpfr_mul(t3, t2, rr, GMP_RNDN);
4668 mpfr_mul(t4, t, ri, GMP_RNDN);
4669 mpfr_sub(t3, t3, t4, GMP_RNDN);
4670 mpfr_set_inf(imag, mpfr_sgn(t3));
4671
4672 mpfr_clear(t2);
4673 mpfr_clear(t3);
4674 mpfr_clear(t4);
4675 }
4676 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4677 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4678 {
4679 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4680 mpfr_copysign(t, t, rr, GMP_RNDN);
4681
4682 mpfr_t t2;
4683 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4685
4686 mpfr_t t3;
4687 mpfr_init(t3);
4688 mpfr_mul(t3, left_real, t, GMP_RNDN);
4689
4690 mpfr_t t4;
4691 mpfr_init(t4);
4692 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4693
4694 mpfr_add(t3, t3, t4, GMP_RNDN);
4695 mpfr_set_ui(real, 0, GMP_RNDN);
4696 mpfr_mul(real, real, t3, GMP_RNDN);
4697
4698 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4699 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4700 mpfr_sub(t3, t3, t4, GMP_RNDN);
4701 mpfr_set_ui(imag, 0, GMP_RNDN);
4702 mpfr_mul(imag, imag, t3, GMP_RNDN);
4703
4704 mpfr_clear(t2);
4705 mpfr_clear(t3);
4706 mpfr_clear(t4);
4707 }
4708 }
4709
4710 mpfr_clear(denom);
4711 mpfr_clear(rr);
4712 mpfr_clear(ri);
4713 mpfr_clear(t);
4714 mpfr_clear(rra);
4715 mpfr_clear(ria);
4716 }
4717 break;
4718 case OPERATOR_MOD:
4719 return false;
4720 case OPERATOR_LSHIFT:
4721 case OPERATOR_RSHIFT:
4722 return false;
4723 default:
4724 gcc_unreachable();
4725 }
4726
4727 Type* type = left_type;
4728 if (type == NULL)
4729 type = right_type;
4730 else if (type != right_type && right_type != NULL)
4731 {
4732 if (type->is_abstract())
4733 type = right_type;
4734 else if (!right_type->is_abstract())
4735 {
4736 // This looks like a type error which should be diagnosed
4737 // elsewhere. Don't do anything here, to avoid an unhelpful
4738 // chain of error messages.
4739 return true;
4740 }
4741 }
4742
4743 if (type != NULL && !type->is_abstract())
4744 {
4745 if ((type != left_type
4746 && !Complex_expression::check_constant(left_real, left_imag,
4747 type, location))
4748 || (type != right_type
4749 && !Complex_expression::check_constant(right_real, right_imag,
4750 type, location))
4751 || !Complex_expression::check_constant(real, imag, type,
4752 location))
4753 {
4754 mpfr_set_ui(real, 0, GMP_RNDN);
4755 mpfr_set_ui(imag, 0, GMP_RNDN);
4756 }
4757 }
4758
4759 return true;
4760}
4761
4762// Lower a binary expression. We have to evaluate constant
4763// expressions now, in order to implement Go's unlimited precision
4764// constants.
4765
4766Expression*
4767Binary_expression::do_lower(Gogo*, Named_object*, int)
4768{
4769 source_location location = this->location();
4770 Operator op = this->op_;
4771 Expression* left = this->left_;
4772 Expression* right = this->right_;
4773
4774 const bool is_comparison = (op == OPERATOR_EQEQ
4775 || op == OPERATOR_NOTEQ
4776 || op == OPERATOR_LT
4777 || op == OPERATOR_LE
4778 || op == OPERATOR_GT
4779 || op == OPERATOR_GE);
4780
4781 // Integer constant expressions.
4782 {
4783 mpz_t left_val;
4784 mpz_init(left_val);
4785 Type* left_type;
4786 mpz_t right_val;
4787 mpz_init(right_val);
4788 Type* right_type;
4789 if (left->integer_constant_value(false, left_val, &left_type)
4790 && right->integer_constant_value(false, right_val, &right_type))
4791 {
4792 Expression* ret = NULL;
4793 if (left_type != right_type
4794 && left_type != NULL
4795 && right_type != NULL
4796 && left_type->base() != right_type->base()
4797 && op != OPERATOR_LSHIFT
4798 && op != OPERATOR_RSHIFT)
4799 {
4800 // May be a type error--let it be diagnosed later.
4801 }
4802 else if (is_comparison)
4803 {
4804 bool b = Binary_expression::compare_integer(op, left_val,
4805 right_val);
4806 ret = Expression::make_cast(Type::lookup_bool_type(),
4807 Expression::make_boolean(b, location),
4808 location);
4809 }
4810 else
4811 {
4812 mpz_t val;
4813 mpz_init(val);
4814
4815 if (Binary_expression::eval_integer(op, left_type, left_val,
4816 right_type, right_val,
4817 location, val))
4818 {
4819 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4820 Type* type;
4821 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4822 type = left_type;
4823 else if (left_type == NULL)
4824 type = right_type;
4825 else if (right_type == NULL)
4826 type = left_type;
4827 else if (!left_type->is_abstract()
4828 && left_type->named_type() != NULL)
4829 type = left_type;
4830 else if (!right_type->is_abstract()
4831 && right_type->named_type() != NULL)
4832 type = right_type;
4833 else if (!left_type->is_abstract())
4834 type = left_type;
4835 else if (!right_type->is_abstract())
4836 type = right_type;
4837 else if (left_type->float_type() != NULL)
4838 type = left_type;
4839 else if (right_type->float_type() != NULL)
4840 type = right_type;
4841 else if (left_type->complex_type() != NULL)
4842 type = left_type;
4843 else if (right_type->complex_type() != NULL)
4844 type = right_type;
4845 else
4846 type = left_type;
4847 ret = Expression::make_integer(&val, type, location);
4848 }
4849
4850 mpz_clear(val);
4851 }
4852
4853 if (ret != NULL)
4854 {
4855 mpz_clear(right_val);
4856 mpz_clear(left_val);
4857 return ret;
4858 }
4859 }
4860 mpz_clear(right_val);
4861 mpz_clear(left_val);
4862 }
4863
4864 // Floating point constant expressions.
4865 {
4866 mpfr_t left_val;
4867 mpfr_init(left_val);
4868 Type* left_type;
4869 mpfr_t right_val;
4870 mpfr_init(right_val);
4871 Type* right_type;
4872 if (left->float_constant_value(left_val, &left_type)
4873 && right->float_constant_value(right_val, &right_type))
4874 {
4875 Expression* ret = NULL;
4876 if (left_type != right_type
4877 && left_type != NULL
4878 && right_type != NULL
4879 && left_type->base() != right_type->base()
4880 && op != OPERATOR_LSHIFT
4881 && op != OPERATOR_RSHIFT)
4882 {
4883 // May be a type error--let it be diagnosed later.
4884 }
4885 else if (is_comparison)
4886 {
4887 bool b = Binary_expression::compare_float(op,
4888 (left_type != NULL
4889 ? left_type
4890 : right_type),
4891 left_val, right_val);
4892 ret = Expression::make_boolean(b, location);
4893 }
4894 else
4895 {
4896 mpfr_t val;
4897 mpfr_init(val);
4898
4899 if (Binary_expression::eval_float(op, left_type, left_val,
4900 right_type, right_val, val,
4901 location))
4902 {
4903 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4904 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4905 Type* type;
4906 if (left_type == NULL)
4907 type = right_type;
4908 else if (right_type == NULL)
4909 type = left_type;
4910 else if (!left_type->is_abstract()
4911 && left_type->named_type() != NULL)
4912 type = left_type;
4913 else if (!right_type->is_abstract()
4914 && right_type->named_type() != NULL)
4915 type = right_type;
4916 else if (!left_type->is_abstract())
4917 type = left_type;
4918 else if (!right_type->is_abstract())
4919 type = right_type;
4920 else if (left_type->float_type() != NULL)
4921 type = left_type;
4922 else if (right_type->float_type() != NULL)
4923 type = right_type;
4924 else
4925 type = left_type;
4926 ret = Expression::make_float(&val, type, location);
4927 }
4928
4929 mpfr_clear(val);
4930 }
4931
4932 if (ret != NULL)
4933 {
4934 mpfr_clear(right_val);
4935 mpfr_clear(left_val);
4936 return ret;
4937 }
4938 }
4939 mpfr_clear(right_val);
4940 mpfr_clear(left_val);
4941 }
4942
4943 // Complex constant expressions.
4944 {
4945 mpfr_t left_real;
4946 mpfr_t left_imag;
4947 mpfr_init(left_real);
4948 mpfr_init(left_imag);
4949 Type* left_type;
4950
4951 mpfr_t right_real;
4952 mpfr_t right_imag;
4953 mpfr_init(right_real);
4954 mpfr_init(right_imag);
4955 Type* right_type;
4956
4957 if (left->complex_constant_value(left_real, left_imag, &left_type)
4958 && right->complex_constant_value(right_real, right_imag, &right_type))
4959 {
4960 Expression* ret = NULL;
4961 if (left_type != right_type
4962 && left_type != NULL
4963 && right_type != NULL
4964 && left_type->base() != right_type->base())
4965 {
4966 // May be a type error--let it be diagnosed later.
4967 }
4968 else if (is_comparison)
4969 {
4970 bool b = Binary_expression::compare_complex(op,
4971 (left_type != NULL
4972 ? left_type
4973 : right_type),
4974 left_real,
4975 left_imag,
4976 right_real,
4977 right_imag);
4978 ret = Expression::make_boolean(b, location);
4979 }
4980 else
4981 {
4982 mpfr_t real;
4983 mpfr_t imag;
4984 mpfr_init(real);
4985 mpfr_init(imag);
4986
4987 if (Binary_expression::eval_complex(op, left_type,
4988 left_real, left_imag,
4989 right_type,
4990 right_real, right_imag,
4991 real, imag,
4992 location))
4993 {
4994 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4995 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4996 Type* type;
4997 if (left_type == NULL)
4998 type = right_type;
4999 else if (right_type == NULL)
5000 type = left_type;
5001 else if (!left_type->is_abstract()
5002 && left_type->named_type() != NULL)
5003 type = left_type;
5004 else if (!right_type->is_abstract()
5005 && right_type->named_type() != NULL)
5006 type = right_type;
5007 else if (!left_type->is_abstract())
5008 type = left_type;
5009 else if (!right_type->is_abstract())
5010 type = right_type;
5011 else if (left_type->complex_type() != NULL)
5012 type = left_type;
5013 else if (right_type->complex_type() != NULL)
5014 type = right_type;
5015 else
5016 type = left_type;
5017 ret = Expression::make_complex(&real, &imag, type,
5018 location);
5019 }
5020 mpfr_clear(real);
5021 mpfr_clear(imag);
5022 }
5023
5024 if (ret != NULL)
5025 {
5026 mpfr_clear(left_real);
5027 mpfr_clear(left_imag);
5028 mpfr_clear(right_real);
5029 mpfr_clear(right_imag);
5030 return ret;
5031 }
5032 }
5033
5034 mpfr_clear(left_real);
5035 mpfr_clear(left_imag);
5036 mpfr_clear(right_real);
5037 mpfr_clear(right_imag);
5038 }
5039
5040 // String constant expressions.
5041 if (op == OPERATOR_PLUS
5042 && left->type()->is_string_type()
5043 && right->type()->is_string_type())
5044 {
5045 std::string left_string;
5046 std::string right_string;
5047 if (left->string_constant_value(&left_string)
5048 && right->string_constant_value(&right_string))
5049 return Expression::make_string(left_string + right_string, location);
5050 }
5051
5052 return this;
5053}
5054
5055// Return the integer constant value, if it has one.
5056
5057bool
5058Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5059 Type** ptype) const
5060{
5061 mpz_t left_val;
5062 mpz_init(left_val);
5063 Type* left_type;
5064 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5065 &left_type))
5066 {
5067 mpz_clear(left_val);
5068 return false;
5069 }
5070
5071 mpz_t right_val;
5072 mpz_init(right_val);
5073 Type* right_type;
5074 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5075 &right_type))
5076 {
5077 mpz_clear(right_val);
5078 mpz_clear(left_val);
5079 return false;
5080 }
5081
5082 bool ret;
5083 if (left_type != right_type
5084 && left_type != NULL
5085 && right_type != NULL
5086 && left_type->base() != right_type->base()
5087 && this->op_ != OPERATOR_RSHIFT
5088 && this->op_ != OPERATOR_LSHIFT)
5089 ret = false;
5090 else
5091 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5092 right_type, right_val,
5093 this->location(), val);
5094
5095 mpz_clear(right_val);
5096 mpz_clear(left_val);
5097
5098 if (ret)
5099 *ptype = left_type;
5100
5101 return ret;
5102}
5103
5104// Return the floating point constant value, if it has one.
5105
5106bool
5107Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5108{
5109 mpfr_t left_val;
5110 mpfr_init(left_val);
5111 Type* left_type;
5112 if (!this->left_->float_constant_value(left_val, &left_type))
5113 {
5114 mpfr_clear(left_val);
5115 return false;
5116 }
5117
5118 mpfr_t right_val;
5119 mpfr_init(right_val);
5120 Type* right_type;
5121 if (!this->right_->float_constant_value(right_val, &right_type))
5122 {
5123 mpfr_clear(right_val);
5124 mpfr_clear(left_val);
5125 return false;
5126 }
5127
5128 bool ret;
5129 if (left_type != right_type
5130 && left_type != NULL
5131 && right_type != NULL
5132 && left_type->base() != right_type->base())
5133 ret = false;
5134 else
5135 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5136 right_type, right_val,
5137 val, this->location());
5138
5139 mpfr_clear(left_val);
5140 mpfr_clear(right_val);
5141
5142 if (ret)
5143 *ptype = left_type;
5144
5145 return ret;
5146}
5147
5148// Return the complex constant value, if it has one.
5149
5150bool
5151Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5152 Type** ptype) const
5153{
5154 mpfr_t left_real;
5155 mpfr_t left_imag;
5156 mpfr_init(left_real);
5157 mpfr_init(left_imag);
5158 Type* left_type;
5159 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5160 {
5161 mpfr_clear(left_real);
5162 mpfr_clear(left_imag);
5163 return false;
5164 }
5165
5166 mpfr_t right_real;
5167 mpfr_t right_imag;
5168 mpfr_init(right_real);
5169 mpfr_init(right_imag);
5170 Type* right_type;
5171 if (!this->right_->complex_constant_value(right_real, right_imag,
5172 &right_type))
5173 {
5174 mpfr_clear(left_real);
5175 mpfr_clear(left_imag);
5176 mpfr_clear(right_real);
5177 mpfr_clear(right_imag);
5178 return false;
5179 }
5180
5181 bool ret;
5182 if (left_type != right_type
5183 && left_type != NULL
5184 && right_type != NULL
5185 && left_type->base() != right_type->base())
5186 ret = false;
5187 else
5188 ret = Binary_expression::eval_complex(this->op_, left_type,
5189 left_real, left_imag,
5190 right_type,
5191 right_real, right_imag,
5192 real, imag,
5193 this->location());
5194 mpfr_clear(left_real);
5195 mpfr_clear(left_imag);
5196 mpfr_clear(right_real);
5197 mpfr_clear(right_imag);
5198
5199 if (ret)
5200 *ptype = left_type;
5201
5202 return ret;
5203}
5204
5205// Note that the value is being discarded.
5206
5207void
5208Binary_expression::do_discarding_value()
5209{
5210 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5211 this->right_->discarding_value();
5212 else
5213 this->warn_about_unused_value();
5214}
5215
5216// Get type.
5217
5218Type*
5219Binary_expression::do_type()
5220{
5221 switch (this->op_)
5222 {
5223 case OPERATOR_OROR:
5224 case OPERATOR_ANDAND:
5225 case OPERATOR_EQEQ:
5226 case OPERATOR_NOTEQ:
5227 case OPERATOR_LT:
5228 case OPERATOR_LE:
5229 case OPERATOR_GT:
5230 case OPERATOR_GE:
5231 return Type::lookup_bool_type();
5232
5233 case OPERATOR_PLUS:
5234 case OPERATOR_MINUS:
5235 case OPERATOR_OR:
5236 case OPERATOR_XOR:
5237 case OPERATOR_MULT:
5238 case OPERATOR_DIV:
5239 case OPERATOR_MOD:
5240 case OPERATOR_AND:
5241 case OPERATOR_BITCLEAR:
5242 {
5243 Type* left_type = this->left_->type();
5244 Type* right_type = this->right_->type();
5245 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5246 return left_type;
5247 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5248 return right_type;
5249 else if (!left_type->is_abstract())
5250 return left_type;
5251 else if (!right_type->is_abstract())
5252 return right_type;
5253 else if (left_type->complex_type() != NULL)
5254 return left_type;
5255 else if (right_type->complex_type() != NULL)
5256 return right_type;
5257 else if (left_type->float_type() != NULL)
5258 return left_type;
5259 else if (right_type->float_type() != NULL)
5260 return right_type;
5261 else
5262 return left_type;
5263 }
5264
5265 case OPERATOR_LSHIFT:
5266 case OPERATOR_RSHIFT:
5267 return this->left_->type();
5268
5269 default:
5270 gcc_unreachable();
5271 }
5272}
5273
5274// Set type for a binary expression.
5275
5276void
5277Binary_expression::do_determine_type(const Type_context* context)
5278{
5279 Type* tleft = this->left_->type();
5280 Type* tright = this->right_->type();
5281
5282 // Both sides should have the same type, except for the shift
5283 // operations. For a comparison, we should ignore the incoming
5284 // type.
5285
5286 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5287 || this->op_ == OPERATOR_RSHIFT);
5288
5289 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5290 || this->op_ == OPERATOR_NOTEQ
5291 || this->op_ == OPERATOR_LT
5292 || this->op_ == OPERATOR_LE
5293 || this->op_ == OPERATOR_GT
5294 || this->op_ == OPERATOR_GE);
5295
5296 Type_context subcontext(*context);
5297
5298 if (is_comparison)
5299 {
5300 // In a comparison, the context does not determine the types of
5301 // the operands.
5302 subcontext.type = NULL;
5303 }
5304
5305 // Set the context for the left hand operand.
5306 if (is_shift_op)
5307 {
5308 // The right hand operand plays no role in determining the type
5309 // of the left hand operand. A shift of an abstract integer in
5310 // a string context gets special treatment, which may be a
5311 // language bug.
5312 if (subcontext.type != NULL
5313 && subcontext.type->is_string_type()
5314 && tleft->is_abstract())
5315 error_at(this->location(), "shift of non-integer operand");
5316 }
5317 else if (!tleft->is_abstract())
5318 subcontext.type = tleft;
5319 else if (!tright->is_abstract())
5320 subcontext.type = tright;
5321 else if (subcontext.type == NULL)
5322 {
5323 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5324 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5325 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5326 {
5327 // Both sides have an abstract integer, abstract float, or
5328 // abstract complex type. Just let CONTEXT determine
5329 // whether they may remain abstract or not.
5330 }
5331 else if (tleft->complex_type() != NULL)
5332 subcontext.type = tleft;
5333 else if (tright->complex_type() != NULL)
5334 subcontext.type = tright;
5335 else if (tleft->float_type() != NULL)
5336 subcontext.type = tleft;
5337 else if (tright->float_type() != NULL)
5338 subcontext.type = tright;
5339 else
5340 subcontext.type = tleft;
5341 }
5342
5343 this->left_->determine_type(&subcontext);
5344
5345 // The context for the right hand operand is the same as for the
5346 // left hand operand, except for a shift operator.
5347 if (is_shift_op)
5348 {
5349 subcontext.type = Type::lookup_integer_type("uint");
5350 subcontext.may_be_abstract = false;
5351 }
5352
5353 this->right_->determine_type(&subcontext);
5354}
5355
5356// Report an error if the binary operator OP does not support TYPE.
5357// Return whether the operation is OK. This should not be used for
5358// shift.
5359
5360bool
5361Binary_expression::check_operator_type(Operator op, Type* type,
5362 source_location location)
5363{
5364 switch (op)
5365 {
5366 case OPERATOR_OROR:
5367 case OPERATOR_ANDAND:
5368 if (!type->is_boolean_type())
5369 {
5370 error_at(location, "expected boolean type");
5371 return false;
5372 }
5373 break;
5374
5375 case OPERATOR_EQEQ:
5376 case OPERATOR_NOTEQ:
5377 if (type->integer_type() == NULL
5378 && type->float_type() == NULL
5379 && type->complex_type() == NULL
5380 && !type->is_string_type()
5381 && type->points_to() == NULL
5382 && !type->is_nil_type()
5383 && !type->is_boolean_type()
5384 && type->interface_type() == NULL
5385 && (type->array_type() == NULL
5386 || type->array_type()->length() != NULL)
5387 && type->map_type() == NULL
5388 && type->channel_type() == NULL
5389 && type->function_type() == NULL)
5390 {
5391 error_at(location,
5392 ("expected integer, floating, complex, string, pointer, "
5393 "boolean, interface, slice, map, channel, "
5394 "or function type"));
5395 return false;
5396 }
5397 break;
5398
5399 case OPERATOR_LT:
5400 case OPERATOR_LE:
5401 case OPERATOR_GT:
5402 case OPERATOR_GE:
5403 if (type->integer_type() == NULL
5404 && type->float_type() == NULL
5405 && !type->is_string_type())
5406 {
5407 error_at(location, "expected integer, floating, or string type");
5408 return false;
5409 }
5410 break;
5411
5412 case OPERATOR_PLUS:
5413 case OPERATOR_PLUSEQ:
5414 if (type->integer_type() == NULL
5415 && type->float_type() == NULL
5416 && type->complex_type() == NULL
5417 && !type->is_string_type())
5418 {
5419 error_at(location,
5420 "expected integer, floating, complex, or string type");
5421 return false;
5422 }
5423 break;
5424
5425 case OPERATOR_MINUS:
5426 case OPERATOR_MINUSEQ:
5427 case OPERATOR_MULT:
5428 case OPERATOR_MULTEQ:
5429 case OPERATOR_DIV:
5430 case OPERATOR_DIVEQ:
5431 if (type->integer_type() == NULL
5432 && type->float_type() == NULL
5433 && type->complex_type() == NULL)
5434 {
5435 error_at(location, "expected integer, floating, or complex type");
5436 return false;
5437 }
5438 break;
5439
5440 case OPERATOR_MOD:
5441 case OPERATOR_MODEQ:
5442 case OPERATOR_OR:
5443 case OPERATOR_OREQ:
5444 case OPERATOR_AND:
5445 case OPERATOR_ANDEQ:
5446 case OPERATOR_XOR:
5447 case OPERATOR_XOREQ:
5448 case OPERATOR_BITCLEAR:
5449 case OPERATOR_BITCLEAREQ:
5450 if (type->integer_type() == NULL)
5451 {
5452 error_at(location, "expected integer type");
5453 return false;
5454 }
5455 break;
5456
5457 default:
5458 gcc_unreachable();
5459 }
5460
5461 return true;
5462}
5463
5464// Check types.
5465
5466void
5467Binary_expression::do_check_types(Gogo*)
5468{
5469 Type* left_type = this->left_->type();
5470 Type* right_type = this->right_->type();
5471 if (left_type->is_error_type() || right_type->is_error_type())
5472 return;
5473
5474 if (this->op_ == OPERATOR_EQEQ
5475 || this->op_ == OPERATOR_NOTEQ
5476 || this->op_ == OPERATOR_LT
5477 || this->op_ == OPERATOR_LE
5478 || this->op_ == OPERATOR_GT
5479 || this->op_ == OPERATOR_GE)
5480 {
5481 if (!Type::are_assignable(left_type, right_type, NULL)
5482 && !Type::are_assignable(right_type, left_type, NULL))
5483 {
5484 this->report_error(_("incompatible types in binary expression"));
5485 return;
5486 }
5487 if (!Binary_expression::check_operator_type(this->op_, left_type,
5488 this->location())
5489 || !Binary_expression::check_operator_type(this->op_, right_type,
5490 this->location()))
5491 {
5492 this->set_is_error();
5493 return;
5494 }
5495 }
5496 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5497 {
5498 if (!Type::are_compatible_for_binop(left_type, right_type))
5499 {
5500 this->report_error(_("incompatible types in binary expression"));
5501 return;
5502 }
5503 if (!Binary_expression::check_operator_type(this->op_, left_type,
5504 this->location()))
5505 {
5506 this->set_is_error();
5507 return;
5508 }
5509 }
5510 else
5511 {
5512 if (left_type->integer_type() == NULL)
5513 this->report_error(_("shift of non-integer operand"));
5514
5515 if (!right_type->is_abstract()
5516 && (right_type->integer_type() == NULL
5517 || !right_type->integer_type()->is_unsigned()))
5518 this->report_error(_("shift count not unsigned integer"));
5519 else
5520 {
5521 mpz_t val;
5522 mpz_init(val);
5523 Type* type;
5524 if (this->right_->integer_constant_value(true, val, &type))
5525 {
5526 if (mpz_sgn(val) < 0)
5527 this->report_error(_("negative shift count"));
5528 }
5529 mpz_clear(val);
5530 }
5531 }
5532}
5533
5534// Get a tree for a binary expression.
5535
5536tree
5537Binary_expression::do_get_tree(Translate_context* context)
5538{
5539 tree left = this->left_->get_tree(context);
5540 tree right = this->right_->get_tree(context);
5541
5542 if (left == error_mark_node || right == error_mark_node)
5543 return error_mark_node;
5544
5545 enum tree_code code;
5546 bool use_left_type = true;
5547 bool is_shift_op = false;
5548 switch (this->op_)
5549 {
5550 case OPERATOR_EQEQ:
5551 case OPERATOR_NOTEQ:
5552 case OPERATOR_LT:
5553 case OPERATOR_LE:
5554 case OPERATOR_GT:
5555 case OPERATOR_GE:
5556 return Expression::comparison_tree(context, this->op_,
5557 this->left_->type(), left,
5558 this->right_->type(), right,
5559 this->location());
5560
5561 case OPERATOR_OROR:
5562 code = TRUTH_ORIF_EXPR;
5563 use_left_type = false;
5564 break;
5565 case OPERATOR_ANDAND:
5566 code = TRUTH_ANDIF_EXPR;
5567 use_left_type = false;
5568 break;
5569 case OPERATOR_PLUS:
5570 code = PLUS_EXPR;
5571 break;
5572 case OPERATOR_MINUS:
5573 code = MINUS_EXPR;
5574 break;
5575 case OPERATOR_OR:
5576 code = BIT_IOR_EXPR;
5577 break;
5578 case OPERATOR_XOR:
5579 code = BIT_XOR_EXPR;
5580 break;
5581 case OPERATOR_MULT:
5582 code = MULT_EXPR;
5583 break;
5584 case OPERATOR_DIV:
5585 {
5586 Type *t = this->left_->type();
5587 if (t->float_type() != NULL || t->complex_type() != NULL)
5588 code = RDIV_EXPR;
5589 else
5590 code = TRUNC_DIV_EXPR;
5591 }
5592 break;
5593 case OPERATOR_MOD:
5594 code = TRUNC_MOD_EXPR;
5595 break;
5596 case OPERATOR_LSHIFT:
5597 code = LSHIFT_EXPR;
5598 is_shift_op = true;
5599 break;
5600 case OPERATOR_RSHIFT:
5601 code = RSHIFT_EXPR;
5602 is_shift_op = true;
5603 break;
5604 case OPERATOR_AND:
5605 code = BIT_AND_EXPR;
5606 break;
5607 case OPERATOR_BITCLEAR:
5608 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5609 code = BIT_AND_EXPR;
5610 break;
5611 default:
5612 gcc_unreachable();
5613 }
5614
5615 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5616
5617 if (this->left_->type()->is_string_type())
5618 {
5619 gcc_assert(this->op_ == OPERATOR_PLUS);
5620 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5621 static tree string_plus_decl;
5622 return Gogo::call_builtin(&string_plus_decl,
5623 this->location(),
5624 "__go_string_plus",
5625 2,
5626 string_type,
5627 string_type,
5628 left,
5629 string_type,
5630 right);
5631 }
5632
5633 tree compute_type = excess_precision_type(type);
5634 if (compute_type != NULL_TREE)
5635 {
5636 left = ::convert(compute_type, left);
5637 right = ::convert(compute_type, right);
5638 }
5639
5640 tree eval_saved = NULL_TREE;
5641 if (is_shift_op)
5642 {
5643 if (!DECL_P(left))
5644 left = save_expr(left);
5645 if (!DECL_P(right))
5646 right = save_expr(right);
5647 // Make sure the values are evaluated.
5648 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5649 void_type_node, left, right);
5650 }
5651
5652 tree ret = fold_build2_loc(this->location(),
5653 code,
5654 compute_type != NULL_TREE ? compute_type : type,
5655 left, right);
5656
5657 if (compute_type != NULL_TREE)
5658 ret = ::convert(type, ret);
5659
5660 // In Go, a shift larger than the size of the type is well-defined.
5661 // This is not true in GENERIC, so we need to insert a conditional.
5662 if (is_shift_op)
5663 {
5664 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5665 gcc_assert(this->left_->type()->integer_type() != NULL);
5666 int bits = TYPE_PRECISION(TREE_TYPE(left));
5667
5668 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5669 build_int_cst_type(TREE_TYPE(right), bits));
5670
5671 tree overflow_result = fold_convert_loc(this->location(),
5672 TREE_TYPE(left),
5673 integer_zero_node);
5674 if (this->op_ == OPERATOR_RSHIFT
5675 && !this->left_->type()->integer_type()->is_unsigned())
5676 {
5677 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5678 boolean_type_node, left,
5679 fold_convert_loc(this->location(),
5680 TREE_TYPE(left),
5681 integer_zero_node));
5682 tree neg_one = fold_build2_loc(this->location(),
5683 MINUS_EXPR, TREE_TYPE(left),
5684 fold_convert_loc(this->location(),
5685 TREE_TYPE(left),
5686 integer_zero_node),
5687 fold_convert_loc(this->location(),
5688 TREE_TYPE(left),
5689 integer_one_node));
5690 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5691 TREE_TYPE(left), neg, neg_one,
5692 overflow_result);
5693 }
5694
5695 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5696 compare, ret, overflow_result);
5697
5698 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5699 TREE_TYPE(ret), eval_saved, ret);
5700 }
5701
5702 return ret;
5703}
5704
5705// Export a binary expression.
5706
5707void
5708Binary_expression::do_export(Export* exp) const
5709{
5710 exp->write_c_string("(");
5711 this->left_->export_expression(exp);
5712 switch (this->op_)
5713 {
5714 case OPERATOR_OROR:
5715 exp->write_c_string(" || ");
5716 break;
5717 case OPERATOR_ANDAND:
5718 exp->write_c_string(" && ");
5719 break;
5720 case OPERATOR_EQEQ:
5721 exp->write_c_string(" == ");
5722 break;
5723 case OPERATOR_NOTEQ:
5724 exp->write_c_string(" != ");
5725 break;
5726 case OPERATOR_LT:
5727 exp->write_c_string(" < ");
5728 break;
5729 case OPERATOR_LE:
5730 exp->write_c_string(" <= ");
5731 break;
5732 case OPERATOR_GT:
5733 exp->write_c_string(" > ");
5734 break;
5735 case OPERATOR_GE:
5736 exp->write_c_string(" >= ");
5737 break;
5738 case OPERATOR_PLUS:
5739 exp->write_c_string(" + ");
5740 break;
5741 case OPERATOR_MINUS:
5742 exp->write_c_string(" - ");
5743 break;
5744 case OPERATOR_OR:
5745 exp->write_c_string(" | ");
5746 break;
5747 case OPERATOR_XOR:
5748 exp->write_c_string(" ^ ");
5749 break;
5750 case OPERATOR_MULT:
5751 exp->write_c_string(" * ");
5752 break;
5753 case OPERATOR_DIV:
5754 exp->write_c_string(" / ");
5755 break;
5756 case OPERATOR_MOD:
5757 exp->write_c_string(" % ");
5758 break;
5759 case OPERATOR_LSHIFT:
5760 exp->write_c_string(" << ");
5761 break;
5762 case OPERATOR_RSHIFT:
5763 exp->write_c_string(" >> ");
5764 break;
5765 case OPERATOR_AND:
5766 exp->write_c_string(" & ");
5767 break;
5768 case OPERATOR_BITCLEAR:
5769 exp->write_c_string(" &^ ");
5770 break;
5771 default:
5772 gcc_unreachable();
5773 }
5774 this->right_->export_expression(exp);
5775 exp->write_c_string(")");
5776}
5777
5778// Import a binary expression.
5779
5780Expression*
5781Binary_expression::do_import(Import* imp)
5782{
5783 imp->require_c_string("(");
5784
5785 Expression* left = Expression::import_expression(imp);
5786
5787 Operator op;
5788 if (imp->match_c_string(" || "))
5789 {
5790 op = OPERATOR_OROR;
5791 imp->advance(4);
5792 }
5793 else if (imp->match_c_string(" && "))
5794 {
5795 op = OPERATOR_ANDAND;
5796 imp->advance(4);
5797 }
5798 else if (imp->match_c_string(" == "))
5799 {
5800 op = OPERATOR_EQEQ;
5801 imp->advance(4);
5802 }
5803 else if (imp->match_c_string(" != "))
5804 {
5805 op = OPERATOR_NOTEQ;
5806 imp->advance(4);
5807 }
5808 else if (imp->match_c_string(" < "))
5809 {
5810 op = OPERATOR_LT;
5811 imp->advance(3);
5812 }
5813 else if (imp->match_c_string(" <= "))
5814 {
5815 op = OPERATOR_LE;
5816 imp->advance(4);
5817 }
5818 else if (imp->match_c_string(" > "))
5819 {
5820 op = OPERATOR_GT;
5821 imp->advance(3);
5822 }
5823 else if (imp->match_c_string(" >= "))
5824 {
5825 op = OPERATOR_GE;
5826 imp->advance(4);
5827 }
5828 else if (imp->match_c_string(" + "))
5829 {
5830 op = OPERATOR_PLUS;
5831 imp->advance(3);
5832 }
5833 else if (imp->match_c_string(" - "))
5834 {
5835 op = OPERATOR_MINUS;
5836 imp->advance(3);
5837 }
5838 else if (imp->match_c_string(" | "))
5839 {
5840 op = OPERATOR_OR;
5841 imp->advance(3);
5842 }
5843 else if (imp->match_c_string(" ^ "))
5844 {
5845 op = OPERATOR_XOR;
5846 imp->advance(3);
5847 }
5848 else if (imp->match_c_string(" * "))
5849 {
5850 op = OPERATOR_MULT;
5851 imp->advance(3);
5852 }
5853 else if (imp->match_c_string(" / "))
5854 {
5855 op = OPERATOR_DIV;
5856 imp->advance(3);
5857 }
5858 else if (imp->match_c_string(" % "))
5859 {
5860 op = OPERATOR_MOD;
5861 imp->advance(3);
5862 }
5863 else if (imp->match_c_string(" << "))
5864 {
5865 op = OPERATOR_LSHIFT;
5866 imp->advance(4);
5867 }
5868 else if (imp->match_c_string(" >> "))
5869 {
5870 op = OPERATOR_RSHIFT;
5871 imp->advance(4);
5872 }
5873 else if (imp->match_c_string(" & "))
5874 {
5875 op = OPERATOR_AND;
5876 imp->advance(3);
5877 }
5878 else if (imp->match_c_string(" &^ "))
5879 {
5880 op = OPERATOR_BITCLEAR;
5881 imp->advance(4);
5882 }
5883 else
5884 {
5885 error_at(imp->location(), "unrecognized binary operator");
5886 return Expression::make_error(imp->location());
5887 }
5888
5889 Expression* right = Expression::import_expression(imp);
5890
5891 imp->require_c_string(")");
5892
5893 return Expression::make_binary(op, left, right, imp->location());
5894}
5895
5896// Make a binary expression.
5897
5898Expression*
5899Expression::make_binary(Operator op, Expression* left, Expression* right,
5900 source_location location)
5901{
5902 return new Binary_expression(op, left, right, location);
5903}
5904
5905// Implement a comparison.
5906
5907tree
5908Expression::comparison_tree(Translate_context* context, Operator op,
5909 Type* left_type, tree left_tree,
5910 Type* right_type, tree right_tree,
5911 source_location location)
5912{
5913 enum tree_code code;
5914 switch (op)
5915 {
5916 case OPERATOR_EQEQ:
5917 code = EQ_EXPR;
5918 break;
5919 case OPERATOR_NOTEQ:
5920 code = NE_EXPR;
5921 break;
5922 case OPERATOR_LT:
5923 code = LT_EXPR;
5924 break;
5925 case OPERATOR_LE:
5926 code = LE_EXPR;
5927 break;
5928 case OPERATOR_GT:
5929 code = GT_EXPR;
5930 break;
5931 case OPERATOR_GE:
5932 code = GE_EXPR;
5933 break;
5934 default:
5935 gcc_unreachable();
5936 }
5937
5938 if (left_type->is_string_type())
5939 {
5940 gcc_assert(right_type->is_string_type());
5941 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5942 static tree string_compare_decl;
5943 left_tree = Gogo::call_builtin(&string_compare_decl,
5944 location,
5945 "__go_strcmp",
5946 2,
5947 integer_type_node,
5948 string_type,
5949 left_tree,
5950 string_type,
5951 right_tree);
5952 right_tree = build_int_cst_type(integer_type_node, 0);
5953 }
5954
5955 if ((left_type->interface_type() != NULL
5956 && right_type->interface_type() == NULL
5957 && !right_type->is_nil_type())
5958 || (left_type->interface_type() == NULL
5959 && !left_type->is_nil_type()
5960 && right_type->interface_type() != NULL))
5961 {
5962 // Comparing an interface value to a non-interface value.
5963 if (left_type->interface_type() == NULL)
5964 {
5965 std::swap(left_type, right_type);
5966 std::swap(left_tree, right_tree);
5967 }
5968
5969 // The right operand is not an interface. We need to take its
5970 // address if it is not a pointer.
5971 tree make_tmp;
5972 tree arg;
5973 if (right_type->points_to() != NULL)
5974 {
5975 make_tmp = NULL_TREE;
5976 arg = right_tree;
5977 }
5978 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
5979 {
5980 make_tmp = NULL_TREE;
5981 arg = build_fold_addr_expr_loc(location, right_tree);
5982 if (DECL_P(right_tree))
5983 TREE_ADDRESSABLE(right_tree) = 1;
5984 }
5985 else
5986 {
5987 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
5988 get_name(right_tree));
5989 DECL_IGNORED_P(tmp) = 0;
5990 DECL_INITIAL(tmp) = right_tree;
5991 TREE_ADDRESSABLE(tmp) = 1;
5992 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
5993 SET_EXPR_LOCATION(make_tmp, location);
5994 arg = build_fold_addr_expr_loc(location, tmp);
5995 }
5996 arg = fold_convert_loc(location, ptr_type_node, arg);
5997
5998 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
5999
6000 if (left_type->interface_type()->is_empty())
6001 {
6002 static tree empty_interface_value_compare_decl;
6003 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6004 location,
6005 "__go_empty_interface_value_compare",
6006 3,
6007 integer_type_node,
6008 TREE_TYPE(left_tree),
6009 left_tree,
6010 TREE_TYPE(descriptor),
6011 descriptor,
6012 ptr_type_node,
6013 arg);
6014 // This can panic if the type is not comparable.
6015 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6016 }
6017 else
6018 {
6019 static tree interface_value_compare_decl;
6020 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6021 location,
6022 "__go_interface_value_compare",
6023 3,
6024 integer_type_node,
6025 TREE_TYPE(left_tree),
6026 left_tree,
6027 TREE_TYPE(descriptor),
6028 descriptor,
6029 ptr_type_node,
6030 arg);
6031 // This can panic if the type is not comparable.
6032 TREE_NOTHROW(interface_value_compare_decl) = 0;
6033 }
6034 right_tree = build_int_cst_type(integer_type_node, 0);
6035
6036 if (make_tmp != NULL_TREE)
6037 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6038 left_tree);
6039 }
6040 else if (left_type->interface_type() != NULL
6041 && right_type->interface_type() != NULL)
6042 {
6043 if (left_type->interface_type()->is_empty())
6044 {
6045 gcc_assert(right_type->interface_type()->is_empty());
6046 static tree empty_interface_compare_decl;
6047 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6048 location,
6049 "__go_empty_interface_compare",
6050 2,
6051 integer_type_node,
6052 TREE_TYPE(left_tree),
6053 left_tree,
6054 TREE_TYPE(right_tree),
6055 right_tree);
6056 // This can panic if the type is uncomparable.
6057 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6058 }
6059 else
6060 {
6061 gcc_assert(!right_type->interface_type()->is_empty());
6062 static tree interface_compare_decl;
6063 left_tree = Gogo::call_builtin(&interface_compare_decl,
6064 location,
6065 "__go_interface_compare",
6066 2,
6067 integer_type_node,
6068 TREE_TYPE(left_tree),
6069 left_tree,
6070 TREE_TYPE(right_tree),
6071 right_tree);
6072 // This can panic if the type is uncomparable.
6073 TREE_NOTHROW(interface_compare_decl) = 0;
6074 }
6075 right_tree = build_int_cst_type(integer_type_node, 0);
6076 }
6077
6078 if (left_type->is_nil_type()
6079 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6080 {
6081 std::swap(left_type, right_type);
6082 std::swap(left_tree, right_tree);
6083 }
6084
6085 if (right_type->is_nil_type())
6086 {
6087 if (left_type->array_type() != NULL
6088 && left_type->array_type()->length() == NULL)
6089 {
6090 Array_type* at = left_type->array_type();
6091 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6092 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6093 }
6094 else if (left_type->interface_type() != NULL)
6095 {
6096 // An interface is nil if the first field is nil.
6097 tree left_type_tree = TREE_TYPE(left_tree);
6098 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6099 tree field = TYPE_FIELDS(left_type_tree);
6100 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6101 field, NULL_TREE);
6102 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6103 }
6104 else
6105 {
6106 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6107 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6108 }
6109 }
6110
6111 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6112 if (CAN_HAVE_LOCATION_P(ret))
6113 SET_EXPR_LOCATION(ret, location);
6114 return ret;
6115}
6116
6117// Class Bound_method_expression.
6118
6119// Traversal.
6120
6121int
6122Bound_method_expression::do_traverse(Traverse* traverse)
6123{
6124 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6125 return TRAVERSE_EXIT;
6126 return Expression::traverse(&this->method_, traverse);
6127}
6128
6129// Return the type of a bound method expression. The type of this
6130// object is really the type of the method with no receiver. We
6131// should be able to get away with just returning the type of the
6132// method.
6133
6134Type*
6135Bound_method_expression::do_type()
6136{
6137 return this->method_->type();
6138}
6139
6140// Determine the types of a method expression.
6141
6142void
6143Bound_method_expression::do_determine_type(const Type_context*)
6144{
6145 this->method_->determine_type_no_context();
6146 Type* mtype = this->method_->type();
6147 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6148 if (fntype == NULL || !fntype->is_method())
6149 this->expr_->determine_type_no_context();
6150 else
6151 {
6152 Type_context subcontext(fntype->receiver()->type(), false);
6153 this->expr_->determine_type(&subcontext);
6154 }
6155}
6156
6157// Check the types of a method expression.
6158
6159void
6160Bound_method_expression::do_check_types(Gogo*)
6161{
6162 Type* type = this->method_->type()->deref();
6163 if (type == NULL
6164 || type->function_type() == NULL
6165 || !type->function_type()->is_method())
6166 this->report_error(_("object is not a method"));
6167 else
6168 {
6169 Type* rtype = type->function_type()->receiver()->type()->deref();
6170 Type* etype = (this->expr_type_ != NULL
6171 ? this->expr_type_
6172 : this->expr_->type());
6173 etype = etype->deref();
6174 if (!Type::are_identical(rtype, etype, NULL))
6175 this->report_error(_("method type does not match object type"));
6176 }
6177}
6178
6179// Get the tree for a method expression. There is no standard tree
6180// representation for this. The only places it may currently be used
6181// are in a Call_expression or a Go_statement, which will take it
6182// apart directly. So this has nothing to do at present.
6183
6184tree
6185Bound_method_expression::do_get_tree(Translate_context*)
6186{
6187 gcc_unreachable();
6188}
6189
6190// Make a method expression.
6191
6192Bound_method_expression*
6193Expression::make_bound_method(Expression* expr, Expression* method,
6194 source_location location)
6195{
6196 return new Bound_method_expression(expr, method, location);
6197}
6198
6199// Class Builtin_call_expression. This is used for a call to a
6200// builtin function.
6201
6202class Builtin_call_expression : public Call_expression
6203{
6204 public:
6205 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6206 bool is_varargs, source_location location);
6207
6208 protected:
6209 // This overrides Call_expression::do_lower.
6210 Expression*
6211 do_lower(Gogo*, Named_object*, int);
6212
6213 bool
6214 do_is_constant() const;
6215
6216 bool
6217 do_integer_constant_value(bool, mpz_t, Type**) const;
6218
6219 bool
6220 do_float_constant_value(mpfr_t, Type**) const;
6221
6222 bool
6223 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6224
6225 Type*
6226 do_type();
6227
6228 void
6229 do_determine_type(const Type_context*);
6230
6231 void
6232 do_check_types(Gogo*);
6233
6234 Expression*
6235 do_copy()
6236 {
6237 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6238 this->args()->copy(),
6239 this->is_varargs(),
6240 this->location());
6241 }
6242
6243 tree
6244 do_get_tree(Translate_context*);
6245
6246 void
6247 do_export(Export*) const;
6248
6249 virtual bool
6250 do_is_recover_call() const;
6251
6252 virtual void
6253 do_set_recover_arg(Expression*);
6254
6255 private:
6256 // The builtin functions.
6257 enum Builtin_function_code
6258 {
6259 BUILTIN_INVALID,
6260
6261 // Predeclared builtin functions.
6262 BUILTIN_APPEND,
6263 BUILTIN_CAP,
6264 BUILTIN_CLOSE,
6265 BUILTIN_CLOSED,
6266 BUILTIN_CMPLX,
6267 BUILTIN_COPY,
6268 BUILTIN_IMAG,
6269 BUILTIN_LEN,
6270 BUILTIN_MAKE,
6271 BUILTIN_NEW,
6272 BUILTIN_PANIC,
6273 BUILTIN_PRINT,
6274 BUILTIN_PRINTLN,
6275 BUILTIN_REAL,
6276 BUILTIN_RECOVER,
6277
6278 // Builtin functions from the unsafe package.
6279 BUILTIN_ALIGNOF,
6280 BUILTIN_OFFSETOF,
6281 BUILTIN_SIZEOF
6282 };
6283
6284 Expression*
6285 one_arg() const;
6286
6287 bool
6288 check_one_arg();
6289
6290 static Type*
6291 real_imag_type(Type*);
6292
6293 static Type*
6294 cmplx_type(Type*);
6295
6296 // A pointer back to the general IR structure. This avoids a global
6297 // variable, or passing it around everywhere.
6298 Gogo* gogo_;
6299 // The builtin function being called.
6300 Builtin_function_code code_;
6301};
6302
6303Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6304 Expression* fn,
6305 Expression_list* args,
6306 bool is_varargs,
6307 source_location location)
6308 : Call_expression(fn, args, is_varargs, location),
6309 gogo_(gogo), code_(BUILTIN_INVALID)
6310{
6311 Func_expression* fnexp = this->fn()->func_expression();
6312 gcc_assert(fnexp != NULL);
6313 const std::string& name(fnexp->named_object()->name());
6314 if (name == "append")
6315 this->code_ = BUILTIN_APPEND;
6316 else if (name == "cap")
6317 this->code_ = BUILTIN_CAP;
6318 else if (name == "close")
6319 this->code_ = BUILTIN_CLOSE;
6320 else if (name == "closed")
6321 this->code_ = BUILTIN_CLOSED;
6322 else if (name == "cmplx")
6323 this->code_ = BUILTIN_CMPLX;
6324 else if (name == "copy")
6325 this->code_ = BUILTIN_COPY;
6326 else if (name == "imag")
6327 this->code_ = BUILTIN_IMAG;
6328 else if (name == "len")
6329 this->code_ = BUILTIN_LEN;
6330 else if (name == "make")
6331 this->code_ = BUILTIN_MAKE;
6332 else if (name == "new")
6333 this->code_ = BUILTIN_NEW;
6334 else if (name == "panic")
6335 this->code_ = BUILTIN_PANIC;
6336 else if (name == "print")
6337 this->code_ = BUILTIN_PRINT;
6338 else if (name == "println")
6339 this->code_ = BUILTIN_PRINTLN;
6340 else if (name == "real")
6341 this->code_ = BUILTIN_REAL;
6342 else if (name == "recover")
6343 this->code_ = BUILTIN_RECOVER;
6344 else if (name == "Alignof")
6345 this->code_ = BUILTIN_ALIGNOF;
6346 else if (name == "Offsetof")
6347 this->code_ = BUILTIN_OFFSETOF;
6348 else if (name == "Sizeof")
6349 this->code_ = BUILTIN_SIZEOF;
6350 else
6351 gcc_unreachable();
6352}
6353
6354// Return whether this is a call to recover. This is a virtual
6355// function called from the parent class.
6356
6357bool
6358Builtin_call_expression::do_is_recover_call() const
6359{
6360 if (this->classification() == EXPRESSION_ERROR)
6361 return false;
6362 return this->code_ == BUILTIN_RECOVER;
6363}
6364
6365// Set the argument for a call to recover.
6366
6367void
6368Builtin_call_expression::do_set_recover_arg(Expression* arg)
6369{
6370 const Expression_list* args = this->args();
6371 gcc_assert(args == NULL || args->empty());
6372 Expression_list* new_args = new Expression_list();
6373 new_args->push_back(arg);
6374 this->set_args(new_args);
6375}
6376
6377// A traversal class which looks for a call expression.
6378
6379class Find_call_expression : public Traverse
6380{
6381 public:
6382 Find_call_expression()
6383 : Traverse(traverse_expressions),
6384 found_(false)
6385 { }
6386
6387 int
6388 expression(Expression**);
6389
6390 bool
6391 found()
6392 { return this->found_; }
6393
6394 private:
6395 bool found_;
6396};
6397
6398int
6399Find_call_expression::expression(Expression** pexpr)
6400{
6401 if ((*pexpr)->call_expression() != NULL)
6402 {
6403 this->found_ = true;
6404 return TRAVERSE_EXIT;
6405 }
6406 return TRAVERSE_CONTINUE;
6407}
6408
6409// Lower a builtin call expression. This turns new and make into
6410// specific expressions. We also convert to a constant if we can.
6411
6412Expression*
6413Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6414{
6415 if (this->code_ == BUILTIN_NEW)
6416 {
6417 const Expression_list* args = this->args();
6418 if (args == NULL || args->size() < 1)
6419 this->report_error(_("not enough arguments"));
6420 else if (args->size() > 1)
6421 this->report_error(_("too many arguments"));
6422 else
6423 {
6424 Expression* arg = args->front();
6425 if (!arg->is_type_expression())
6426 {
6427 error_at(arg->location(), "expected type");
6428 this->set_is_error();
6429 }
6430 else
6431 return Expression::make_allocation(arg->type(), this->location());
6432 }
6433 }
6434 else if (this->code_ == BUILTIN_MAKE)
6435 {
6436 const Expression_list* args = this->args();
6437 if (args == NULL || args->size() < 1)
6438 this->report_error(_("not enough arguments"));
6439 else
6440 {
6441 Expression* arg = args->front();
6442 if (!arg->is_type_expression())
6443 {
6444 error_at(arg->location(), "expected type");
6445 this->set_is_error();
6446 }
6447 else
6448 {
6449 Expression_list* newargs;
6450 if (args->size() == 1)
6451 newargs = NULL;
6452 else
6453 {
6454 newargs = new Expression_list();
6455 Expression_list::const_iterator p = args->begin();
6456 ++p;
6457 for (; p != args->end(); ++p)
6458 newargs->push_back(*p);
6459 }
6460 return Expression::make_make(arg->type(), newargs,
6461 this->location());
6462 }
6463 }
6464 }
6465 else if (this->is_constant())
6466 {
6467 // We can only lower len and cap if there are no function calls
6468 // in the arguments. Otherwise we have to make the call.
6469 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6470 {
6471 Expression* arg = this->one_arg();
6472 if (!arg->is_constant())
6473 {
6474 Find_call_expression find_call;
6475 Expression::traverse(&arg, &find_call);
6476 if (find_call.found())
6477 return this;
6478 }
6479 }
6480
6481 mpz_t ival;
6482 mpz_init(ival);
6483 Type* type;
6484 if (this->integer_constant_value(true, ival, &type))
6485 {
6486 Expression* ret = Expression::make_integer(&ival, type,
6487 this->location());
6488 mpz_clear(ival);
6489 return ret;
6490 }
6491 mpz_clear(ival);
6492
6493 mpfr_t rval;
6494 mpfr_init(rval);
6495 if (this->float_constant_value(rval, &type))
6496 {
6497 Expression* ret = Expression::make_float(&rval, type,
6498 this->location());
6499 mpfr_clear(rval);
6500 return ret;
6501 }
6502
6503 mpfr_t imag;
6504 mpfr_init(imag);
6505 if (this->complex_constant_value(rval, imag, &type))
6506 {
6507 Expression* ret = Expression::make_complex(&rval, &imag, type,
6508 this->location());
6509 mpfr_clear(rval);
6510 mpfr_clear(imag);
6511 return ret;
6512 }
6513 mpfr_clear(rval);
6514 mpfr_clear(imag);
6515 }
6516 else if (this->code_ == BUILTIN_RECOVER)
6517 {
6518 if (function != NULL)
6519 function->func_value()->set_calls_recover();
6520 else
6521 {
6522 // Calling recover outside of a function always returns the
6523 // nil empty interface.
6524 Type* eface = Type::make_interface_type(NULL, this->location());
6525 return Expression::make_cast(eface,
6526 Expression::make_nil(this->location()),
6527 this->location());
6528 }
6529 }
6530 else if (this->code_ == BUILTIN_APPEND)
6531 {
6532 // Lower the varargs.
6533 const Expression_list* args = this->args();
6534 if (args == NULL || args->empty())
6535 return this;
6536 Type* slice_type = args->front()->type();
6537 if (!slice_type->is_open_array_type())
6538 {
6539 error_at(args->front()->location(), "argument 1 must be a slice");
6540 this->set_is_error();
6541 return this;
6542 }
6543 return this->lower_varargs(gogo, function, slice_type, 2);
6544 }
6545
6546 return this;
6547}
6548
6549// Return the type of the real or imag functions, given the type of
6550// the argument. We need to map complex to float, complex64 to
6551// float32, and complex128 to float64, so it has to be done by name.
6552// This returns NULL if it can't figure out the type.
6553
6554Type*
6555Builtin_call_expression::real_imag_type(Type* arg_type)
6556{
6557 if (arg_type == NULL || arg_type->is_abstract())
6558 return NULL;
6559 Named_type* nt = arg_type->named_type();
6560 if (nt == NULL)
6561 return NULL;
6562 while (nt->real_type()->named_type() != NULL)
6563 nt = nt->real_type()->named_type();
6564 if (nt->name() == "complex")
6565 return Type::lookup_float_type("float");
6566 else if (nt->name() == "complex64")
6567 return Type::lookup_float_type("float32");
6568 else if (nt->name() == "complex128")
6569 return Type::lookup_float_type("float64");
6570 else
6571 return NULL;
6572}
6573
6574// Return the type of the cmplx function, given the type of one of the
6575// argments. Like real_imag_type, we have to map by name.
6576
6577Type*
6578Builtin_call_expression::cmplx_type(Type* arg_type)
6579{
6580 if (arg_type == NULL || arg_type->is_abstract())
6581 return NULL;
6582 Named_type* nt = arg_type->named_type();
6583 if (nt == NULL)
6584 return NULL;
6585 while (nt->real_type()->named_type() != NULL)
6586 nt = nt->real_type()->named_type();
6587 if (nt->name() == "float")
6588 return Type::lookup_complex_type("complex");
6589 else if (nt->name() == "float32")
6590 return Type::lookup_complex_type("complex64");
6591 else if (nt->name() == "float64")
6592 return Type::lookup_complex_type("complex128");
6593 else
6594 return NULL;
6595}
6596
6597// Return a single argument, or NULL if there isn't one.
6598
6599Expression*
6600Builtin_call_expression::one_arg() const
6601{
6602 const Expression_list* args = this->args();
6603 if (args->size() != 1)
6604 return NULL;
6605 return args->front();
6606}
6607
6608// Return whether this is constant: len of a string, or len or cap of
6609// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6610
6611bool
6612Builtin_call_expression::do_is_constant() const
6613{
6614 switch (this->code_)
6615 {
6616 case BUILTIN_LEN:
6617 case BUILTIN_CAP:
6618 {
6619 Expression* arg = this->one_arg();
6620 if (arg == NULL)
6621 return false;
6622 Type* arg_type = arg->type();
6623
6624 if (arg_type->points_to() != NULL
6625 && arg_type->points_to()->array_type() != NULL
6626 && !arg_type->points_to()->is_open_array_type())
6627 arg_type = arg_type->points_to();
6628
6629 if (arg_type->array_type() != NULL
6630 && arg_type->array_type()->length() != NULL)
6631 return arg_type->array_type()->length()->is_constant();
6632
6633 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6634 return arg->is_constant();
6635 }
6636 break;
6637
6638 case BUILTIN_SIZEOF:
6639 case BUILTIN_ALIGNOF:
6640 return this->one_arg() != NULL;
6641
6642 case BUILTIN_OFFSETOF:
6643 {
6644 Expression* arg = this->one_arg();
6645 if (arg == NULL)
6646 return false;
6647 return arg->field_reference_expression() != NULL;
6648 }
6649
6650 case BUILTIN_CMPLX:
6651 {
6652 const Expression_list* args = this->args();
6653 if (args != NULL && args->size() == 2)
6654 return args->front()->is_constant() && args->back()->is_constant();
6655 }
6656 break;
6657
6658 case BUILTIN_REAL:
6659 case BUILTIN_IMAG:
6660 {
6661 Expression* arg = this->one_arg();
6662 return arg != NULL && arg->is_constant();
6663 }
6664
6665 default:
6666 break;
6667 }
6668
6669 return false;
6670}
6671
6672// Return an integer constant value if possible.
6673
6674bool
6675Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6676 mpz_t val,
6677 Type** ptype) const
6678{
6679 if (this->code_ == BUILTIN_LEN
6680 || this->code_ == BUILTIN_CAP)
6681 {
6682 Expression* arg = this->one_arg();
6683 if (arg == NULL)
6684 return false;
6685 Type* arg_type = arg->type();
6686
6687 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6688 {
6689 std::string sval;
6690 if (arg->string_constant_value(&sval))
6691 {
6692 mpz_set_ui(val, sval.length());
6693 *ptype = Type::lookup_integer_type("int");
6694 return true;
6695 }
6696 }
6697
6698 if (arg_type->points_to() != NULL
6699 && arg_type->points_to()->array_type() != NULL
6700 && !arg_type->points_to()->is_open_array_type())
6701 arg_type = arg_type->points_to();
6702
6703 if (arg_type->array_type() != NULL
6704 && arg_type->array_type()->length() != NULL)
6705 {
6706 Expression* e = arg_type->array_type()->length();
6707 if (e->integer_constant_value(iota_is_constant, val, ptype))
6708 {
6709 *ptype = Type::lookup_integer_type("int");
6710 return true;
6711 }
6712 }
6713 }
6714 else if (this->code_ == BUILTIN_SIZEOF
6715 || this->code_ == BUILTIN_ALIGNOF)
6716 {
6717 Expression* arg = this->one_arg();
6718 if (arg == NULL)
6719 return false;
6720 Type* arg_type = arg->type();
6721 if (arg_type->is_error_type())
6722 return false;
6723 if (arg_type->is_abstract())
6724 return false;
6725 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6726 unsigned long val_long;
6727 if (this->code_ == BUILTIN_SIZEOF)
6728 {
6729 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6730 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6731 if (TREE_INT_CST_HIGH(type_size) != 0)
6732 return false;
6733 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6734 val_long = static_cast<unsigned long>(val_wide);
6735 if (val_long != val_wide)
6736 return false;
6737 }
6738 else if (this->code_ == BUILTIN_ALIGNOF)
6739 {
6740 val_long = TYPE_ALIGN(arg_type_tree);
6741 if (arg->field_reference_expression() != NULL)
6742 {
6743 // Calling unsafe.Alignof(s.f) returns the alignment of
6744 // the type of f when it is used as a field in a struct.
6745#ifdef BIGGEST_FIELD_ALIGNMENT
6746 if (val_long > BIGGEST_FIELD_ALIGNMENT)
6747 val_long = BIGGEST_FIELD_ALIGNMENT;
6748#endif
6749#ifdef ADJUST_FIELD_ALIGN
6750 // A separate declaration avoids a warning promoted to
6751 // an error if ADJUST_FIELD_ALIGN ignores FIELD.
6752 tree field;
6753 field = build_decl(UNKNOWN_LOCATION, FIELD_DECL, NULL,
6754 arg_type_tree);
6755 val_long = ADJUST_FIELD_ALIGN(field, val_long);
6756#endif
6757 }
6758 val_long /= BITS_PER_UNIT;
6759 }
6760 else
6761 gcc_unreachable();
6762 mpz_set_ui(val, val_long);
6763 *ptype = NULL;
6764 return true;
6765 }
6766 else if (this->code_ == BUILTIN_OFFSETOF)
6767 {
6768 Expression* arg = this->one_arg();
6769 if (arg == NULL)
6770 return false;
6771 Field_reference_expression* farg = arg->field_reference_expression();
6772 if (farg == NULL)
6773 return false;
6774 Expression* struct_expr = farg->expr();
6775 Type* st = struct_expr->type();
6776 if (st->struct_type() == NULL)
6777 return false;
6778 tree struct_tree = st->get_tree(this->gogo_);
6779 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6780 tree field = TYPE_FIELDS(struct_tree);
6781 for (unsigned int index = farg->field_index(); index > 0; --index)
6782 {
6783 field = DECL_CHAIN(field);
6784 gcc_assert(field != NULL_TREE);
6785 }
6786 HOST_WIDE_INT offset_wide = int_byte_position (field);
6787 if (offset_wide < 0)
6788 return false;
6789 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6790 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6791 return false;
6792 mpz_set_ui(val, offset_long);
6793 return true;
6794 }
6795 return false;
6796}
6797
6798// Return a floating point constant value if possible.
6799
6800bool
6801Builtin_call_expression::do_float_constant_value(mpfr_t val,
6802 Type** ptype) const
6803{
6804 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6805 {
6806 Expression* arg = this->one_arg();
6807 if (arg == NULL)
6808 return false;
6809
6810 mpfr_t real;
6811 mpfr_t imag;
6812 mpfr_init(real);
6813 mpfr_init(imag);
6814
6815 bool ret = false;
6816 Type* type;
6817 if (arg->complex_constant_value(real, imag, &type))
6818 {
6819 if (this->code_ == BUILTIN_REAL)
6820 mpfr_set(val, real, GMP_RNDN);
6821 else
6822 mpfr_set(val, imag, GMP_RNDN);
6823 *ptype = Builtin_call_expression::real_imag_type(type);
6824 ret = true;
6825 }
6826
6827 mpfr_clear(real);
6828 mpfr_clear(imag);
6829 return ret;
6830 }
6831
6832 return false;
6833}
6834
6835// Return a complex constant value if possible.
6836
6837bool
6838Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6839 Type** ptype) const
6840{
6841 if (this->code_ == BUILTIN_CMPLX)
6842 {
6843 const Expression_list* args = this->args();
6844 if (args == NULL || args->size() != 2)
6845 return false;
6846
6847 mpfr_t r;
6848 mpfr_init(r);
6849 Type* rtype;
6850 if (!args->front()->float_constant_value(r, &rtype))
6851 {
6852 mpfr_clear(r);
6853 return false;
6854 }
6855
6856 mpfr_t i;
6857 mpfr_init(i);
6858
6859 bool ret = false;
6860 Type* itype;
6861 if (args->back()->float_constant_value(i, &itype)
6862 && Type::are_identical(rtype, itype, NULL))
6863 {
6864 mpfr_set(real, r, GMP_RNDN);
6865 mpfr_set(imag, i, GMP_RNDN);
6866 *ptype = Builtin_call_expression::cmplx_type(rtype);
6867 ret = true;
6868 }
6869
6870 mpfr_clear(r);
6871 mpfr_clear(i);
6872
6873 return ret;
6874 }
6875
6876 return false;
6877}
6878
6879// Return the type.
6880
6881Type*
6882Builtin_call_expression::do_type()
6883{
6884 switch (this->code_)
6885 {
6886 case BUILTIN_INVALID:
6887 default:
6888 gcc_unreachable();
6889
6890 case BUILTIN_NEW:
6891 case BUILTIN_MAKE:
6892 {
6893 const Expression_list* args = this->args();
6894 if (args == NULL || args->empty())
6895 return Type::make_error_type();
6896 return Type::make_pointer_type(args->front()->type());
6897 }
6898
6899 case BUILTIN_CAP:
6900 case BUILTIN_COPY:
6901 case BUILTIN_LEN:
6902 case BUILTIN_ALIGNOF:
6903 case BUILTIN_OFFSETOF:
6904 case BUILTIN_SIZEOF:
6905 return Type::lookup_integer_type("int");
6906
6907 case BUILTIN_CLOSE:
6908 case BUILTIN_PANIC:
6909 case BUILTIN_PRINT:
6910 case BUILTIN_PRINTLN:
6911 return Type::make_void_type();
6912
6913 case BUILTIN_CLOSED:
6914 return Type::lookup_bool_type();
6915
6916 case BUILTIN_RECOVER:
6917 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
6918
6919 case BUILTIN_APPEND:
6920 {
6921 const Expression_list* args = this->args();
6922 if (args == NULL || args->empty())
6923 return Type::make_error_type();
6924 return args->front()->type();
6925 }
6926
6927 case BUILTIN_REAL:
6928 case BUILTIN_IMAG:
6929 {
6930 Expression* arg = this->one_arg();
6931 if (arg == NULL)
6932 return Type::make_error_type();
6933 Type* t = arg->type();
6934 if (t->is_abstract())
6935 t = t->make_non_abstract_type();
6936 t = Builtin_call_expression::real_imag_type(t);
6937 if (t == NULL)
6938 t = Type::make_error_type();
6939 return t;
6940 }
6941
6942 case BUILTIN_CMPLX:
6943 {
6944 const Expression_list* args = this->args();
6945 if (args == NULL || args->size() != 2)
6946 return Type::make_error_type();
6947 Type* t = args->front()->type();
6948 if (t->is_abstract())
6949 {
6950 t = args->back()->type();
6951 if (t->is_abstract())
6952 t = t->make_non_abstract_type();
6953 }
6954 t = Builtin_call_expression::cmplx_type(t);
6955 if (t == NULL)
6956 t = Type::make_error_type();
6957 return t;
6958 }
6959 }
6960}
6961
6962// Determine the type.
6963
6964void
6965Builtin_call_expression::do_determine_type(const Type_context* context)
6966{
6967 this->fn()->determine_type_no_context();
6968
6969 const Expression_list* args = this->args();
6970
6971 bool is_print;
6972 Type* arg_type = NULL;
6973 switch (this->code_)
6974 {
6975 case BUILTIN_PRINT:
6976 case BUILTIN_PRINTLN:
6977 // Do not force a large integer constant to "int".
6978 is_print = true;
6979 break;
6980
6981 case BUILTIN_REAL:
6982 case BUILTIN_IMAG:
6983 arg_type = Builtin_call_expression::cmplx_type(context->type);
6984 is_print = false;
6985 break;
6986
6987 case BUILTIN_CMPLX:
6988 {
6989 // For the cmplx function the type of one operand can
6990 // determine the type of the other, as in a binary expression.
6991 arg_type = Builtin_call_expression::real_imag_type(context->type);
6992 if (args != NULL && args->size() == 2)
6993 {
6994 Type* t1 = args->front()->type();
6995 Type* t2 = args->front()->type();
6996 if (!t1->is_abstract())
6997 arg_type = t1;
6998 else if (!t2->is_abstract())
6999 arg_type = t2;
7000 }
7001 is_print = false;
7002 }
7003 break;
7004
7005 default:
7006 is_print = false;
7007 break;
7008 }
7009
7010 if (args != NULL)
7011 {
7012 for (Expression_list::const_iterator pa = args->begin();
7013 pa != args->end();
7014 ++pa)
7015 {
7016 Type_context subcontext;
7017 subcontext.type = arg_type;
7018
7019 if (is_print)
7020 {
7021 // We want to print large constants, we so can't just
7022 // use the appropriate nonabstract type. Use uint64 for
7023 // an integer if we know it is nonnegative, otherwise
7024 // use int64 for a integer, otherwise use float64 for a
7025 // float or complex128 for a complex.
7026 Type* want_type = NULL;
7027 Type* atype = (*pa)->type();
7028 if (atype->is_abstract())
7029 {
7030 if (atype->integer_type() != NULL)
7031 {
7032 mpz_t val;
7033 mpz_init(val);
7034 Type* dummy;
7035 if (this->integer_constant_value(true, val, &dummy)
7036 && mpz_sgn(val) >= 0)
7037 want_type = Type::lookup_integer_type("uint64");
7038 else
7039 want_type = Type::lookup_integer_type("int64");
7040 mpz_clear(val);
7041 }
7042 else if (atype->float_type() != NULL)
7043 want_type = Type::lookup_float_type("float64");
7044 else if (atype->complex_type() != NULL)
7045 want_type = Type::lookup_complex_type("complex128");
7046 else if (atype->is_abstract_string_type())
7047 want_type = Type::lookup_string_type();
7048 else if (atype->is_abstract_boolean_type())
7049 want_type = Type::lookup_bool_type();
7050 else
7051 gcc_unreachable();
7052 subcontext.type = want_type;
7053 }
7054 }
7055
7056 (*pa)->determine_type(&subcontext);
7057 }
7058 }
7059}
7060
7061// If there is exactly one argument, return true. Otherwise give an
7062// error message and return false.
7063
7064bool
7065Builtin_call_expression::check_one_arg()
7066{
7067 const Expression_list* args = this->args();
7068 if (args == NULL || args->size() < 1)
7069 {
7070 this->report_error(_("not enough arguments"));
7071 return false;
7072 }
7073 else if (args->size() > 1)
7074 {
7075 this->report_error(_("too many arguments"));
7076 return false;
7077 }
7078 if (args->front()->is_error_expression()
7079 || args->front()->type()->is_error_type())
7080 {
7081 this->set_is_error();
7082 return false;
7083 }
7084 return true;
7085}
7086
7087// Check argument types for a builtin function.
7088
7089void
7090Builtin_call_expression::do_check_types(Gogo*)
7091{
7092 switch (this->code_)
7093 {
7094 case BUILTIN_INVALID:
7095 case BUILTIN_NEW:
7096 case BUILTIN_MAKE:
7097 return;
7098
7099 case BUILTIN_LEN:
7100 case BUILTIN_CAP:
7101 {
7102 // The single argument may be either a string or an array or a
7103 // map or a channel, or a pointer to a closed array.
7104 if (this->check_one_arg())
7105 {
7106 Type* arg_type = this->one_arg()->type();
7107 if (arg_type->points_to() != NULL
7108 && arg_type->points_to()->array_type() != NULL
7109 && !arg_type->points_to()->is_open_array_type())
7110 arg_type = arg_type->points_to();
7111 if (this->code_ == BUILTIN_CAP)
7112 {
7113 if (!arg_type->is_error_type()
7114 && arg_type->array_type() == NULL
7115 && arg_type->channel_type() == NULL)
7116 this->report_error(_("argument must be array or slice "
7117 "or channel"));
7118 }
7119 else
7120 {
7121 if (!arg_type->is_error_type()
7122 && !arg_type->is_string_type()
7123 && arg_type->array_type() == NULL
7124 && arg_type->map_type() == NULL
7125 && arg_type->channel_type() == NULL)
7126 this->report_error(_("argument must be string or "
7127 "array or slice or map or channel"));
7128 }
7129 }
7130 }
7131 break;
7132
7133 case BUILTIN_PRINT:
7134 case BUILTIN_PRINTLN:
7135 {
7136 const Expression_list* args = this->args();
7137 if (args == NULL)
7138 {
7139 if (this->code_ == BUILTIN_PRINT)
7140 warning_at(this->location(), 0,
7141 "no arguments for builtin function %<%s%>",
7142 (this->code_ == BUILTIN_PRINT
7143 ? "print"
7144 : "println"));
7145 }
7146 else
7147 {
7148 for (Expression_list::const_iterator p = args->begin();
7149 p != args->end();
7150 ++p)
7151 {
7152 Type* type = (*p)->type();
7153 if (type->is_error_type()
7154 || type->is_string_type()
7155 || type->integer_type() != NULL
7156 || type->float_type() != NULL
7157 || type->complex_type() != NULL
7158 || type->is_boolean_type()
7159 || type->points_to() != NULL
7160 || type->interface_type() != NULL
7161 || type->channel_type() != NULL
7162 || type->map_type() != NULL
7163 || type->function_type() != NULL
7164 || type->is_open_array_type())
7165 ;
7166 else
7167 this->report_error(_("unsupported argument type to "
7168 "builtin function"));
7169 }
7170 }
7171 }
7172 break;
7173
7174 case BUILTIN_CLOSE:
7175 case BUILTIN_CLOSED:
7176 if (this->check_one_arg())
7177 {
7178 if (this->one_arg()->type()->channel_type() == NULL)
7179 this->report_error(_("argument must be channel"));
7180 }
7181 break;
7182
7183 case BUILTIN_PANIC:
7184 case BUILTIN_SIZEOF:
7185 case BUILTIN_ALIGNOF:
7186 this->check_one_arg();
7187 break;
7188
7189 case BUILTIN_RECOVER:
7190 if (this->args() != NULL && !this->args()->empty())
7191 this->report_error(_("too many arguments"));
7192 break;
7193
7194 case BUILTIN_OFFSETOF:
7195 if (this->check_one_arg())
7196 {
7197 Expression* arg = this->one_arg();
7198 if (arg->field_reference_expression() == NULL)
7199 this->report_error(_("argument must be a field reference"));
7200 }
7201 break;
7202
7203 case BUILTIN_COPY:
7204 {
7205 const Expression_list* args = this->args();
7206 if (args == NULL || args->size() < 2)
7207 {
7208 this->report_error(_("not enough arguments"));
7209 break;
7210 }
7211 else if (args->size() > 2)
7212 {
7213 this->report_error(_("too many arguments"));
7214 break;
7215 }
7216 Type* arg1_type = args->front()->type();
7217 Type* arg2_type = args->back()->type();
7218 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7219 break;
7220
7221 Type* e1;
7222 if (arg1_type->is_open_array_type())
7223 e1 = arg1_type->array_type()->element_type();
7224 else
7225 {
7226 this->report_error(_("left argument must be a slice"));
7227 break;
7228 }
7229
7230 Type* e2;
7231 if (arg2_type->is_open_array_type())
7232 e2 = arg2_type->array_type()->element_type();
7233 else if (arg2_type->is_string_type())
7234 e2 = Type::lookup_integer_type("uint8");
7235 else
7236 {
7237 this->report_error(_("right argument must be a slice or a string"));
7238 break;
7239 }
7240
7241 if (!Type::are_identical(e1, e2, NULL))
7242 this->report_error(_("element types must be the same"));
7243 }
7244 break;
7245
7246 case BUILTIN_APPEND:
7247 {
7248 const Expression_list* args = this->args();
7249 if (args == NULL || args->empty())
7250 {
7251 this->report_error(_("not enough arguments"));
7252 break;
7253 }
7254 /* Lowering varargs should have left us with 2 arguments. */
7255 gcc_assert(args->size() == 2);
7256 std::string reason;
7257 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7258 &reason))
7259 {
7260 if (reason.empty())
7261 this->report_error(_("arguments 1 and 2 have different types"));
7262 else
7263 {
7264 error_at(this->location(),
7265 "arguments 1 and 2 have different types (%s)",
7266 reason.c_str());
7267 this->set_is_error();
7268 }
7269 }
7270 break;
7271 }
7272
7273 case BUILTIN_REAL:
7274 case BUILTIN_IMAG:
7275 if (this->check_one_arg())
7276 {
7277 if (this->one_arg()->type()->complex_type() == NULL)
7278 this->report_error(_("argument must have complex type"));
7279 }
7280 break;
7281
7282 case BUILTIN_CMPLX:
7283 {
7284 const Expression_list* args = this->args();
7285 if (args == NULL || args->size() < 2)
7286 this->report_error(_("not enough arguments"));
7287 else if (args->size() > 2)
7288 this->report_error(_("too many arguments"));
7289 else if (args->front()->is_error_expression()
7290 || args->front()->type()->is_error_type()
7291 || args->back()->is_error_expression()
7292 || args->back()->type()->is_error_type())
7293 this->set_is_error();
7294 else if (!Type::are_identical(args->front()->type(),
7295 args->back()->type(), NULL))
7296 this->report_error(_("cmplx arguments must have identical types"));
7297 else if (args->front()->type()->float_type() == NULL)
7298 this->report_error(_("cmplx arguments must have "
7299 "floating-point type"));
7300 }
7301 break;
7302
7303 default:
7304 gcc_unreachable();
7305 }
7306}
7307
7308// Return the tree for a builtin function.
7309
7310tree
7311Builtin_call_expression::do_get_tree(Translate_context* context)
7312{
7313 Gogo* gogo = context->gogo();
7314 source_location location = this->location();
7315 switch (this->code_)
7316 {
7317 case BUILTIN_INVALID:
7318 case BUILTIN_NEW:
7319 case BUILTIN_MAKE:
7320 gcc_unreachable();
7321
7322 case BUILTIN_LEN:
7323 case BUILTIN_CAP:
7324 {
7325 const Expression_list* args = this->args();
7326 gcc_assert(args != NULL && args->size() == 1);
7327 Expression* arg = *args->begin();
7328 Type* arg_type = arg->type();
7329 tree arg_tree = arg->get_tree(context);
7330 if (arg_tree == error_mark_node)
7331 return error_mark_node;
7332
7333 if (arg_type->points_to() != NULL)
7334 {
7335 arg_type = arg_type->points_to();
7336 gcc_assert(arg_type->array_type() != NULL
7337 && !arg_type->is_open_array_type());
7338 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7339 arg_tree = build_fold_indirect_ref(arg_tree);
7340 }
7341
7342 tree val_tree;
7343 if (this->code_ == BUILTIN_LEN)
7344 {
7345 if (arg_type->is_string_type())
7346 val_tree = String_type::length_tree(gogo, arg_tree);
7347 else if (arg_type->array_type() != NULL)
7348 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7349 else if (arg_type->map_type() != NULL)
7350 {
7351 static tree map_len_fndecl;
7352 val_tree = Gogo::call_builtin(&map_len_fndecl,
7353 location,
7354 "__go_map_len",
7355 1,
7356 sizetype,
7357 arg_type->get_tree(gogo),
7358 arg_tree);
7359 }
7360 else if (arg_type->channel_type() != NULL)
7361 {
7362 static tree chan_len_fndecl;
7363 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7364 location,
7365 "__go_chan_len",
7366 1,
7367 sizetype,
7368 arg_type->get_tree(gogo),
7369 arg_tree);
7370 }
7371 else
7372 gcc_unreachable();
7373 }
7374 else
7375 {
7376 if (arg_type->array_type() != NULL)
7377 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7378 else if (arg_type->channel_type() != NULL)
7379 {
7380 static tree chan_cap_fndecl;
7381 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7382 location,
7383 "__go_chan_cap",
7384 1,
7385 sizetype,
7386 arg_type->get_tree(gogo),
7387 arg_tree);
7388 }
7389 else
7390 gcc_unreachable();
7391 }
7392
7393 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7394 if (type_tree == TREE_TYPE(val_tree))
7395 return val_tree;
7396 else
7397 return fold(convert_to_integer(type_tree, val_tree));
7398 }
7399
7400 case BUILTIN_PRINT:
7401 case BUILTIN_PRINTLN:
7402 {
7403 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7404 tree stmt_list = NULL_TREE;
7405
7406 const Expression_list* call_args = this->args();
7407 if (call_args != NULL)
7408 {
7409 for (Expression_list::const_iterator p = call_args->begin();
7410 p != call_args->end();
7411 ++p)
7412 {
7413 if (is_ln && p != call_args->begin())
7414 {
7415 static tree print_space_fndecl;
7416 tree call = Gogo::call_builtin(&print_space_fndecl,
7417 location,
7418 "__go_print_space",
7419 0,
7420 void_type_node);
7421 append_to_statement_list(call, &stmt_list);
7422 }
7423
7424 Type* type = (*p)->type();
7425
7426 tree arg = (*p)->get_tree(context);
7427 if (arg == error_mark_node)
7428 return error_mark_node;
7429
7430 tree* pfndecl;
7431 const char* fnname;
7432 if (type->is_string_type())
7433 {
7434 static tree print_string_fndecl;
7435 pfndecl = &print_string_fndecl;
7436 fnname = "__go_print_string";
7437 }
7438 else if (type->integer_type() != NULL
7439 && type->integer_type()->is_unsigned())
7440 {
7441 static tree print_uint64_fndecl;
7442 pfndecl = &print_uint64_fndecl;
7443 fnname = "__go_print_uint64";
7444 Type* itype = Type::lookup_integer_type("uint64");
7445 arg = fold_convert_loc(location, itype->get_tree(gogo),
7446 arg);
7447 }
7448 else if (type->integer_type() != NULL)
7449 {
7450 static tree print_int64_fndecl;
7451 pfndecl = &print_int64_fndecl;
7452 fnname = "__go_print_int64";
7453 Type* itype = Type::lookup_integer_type("int64");
7454 arg = fold_convert_loc(location, itype->get_tree(gogo),
7455 arg);
7456 }
7457 else if (type->float_type() != NULL)
7458 {
7459 static tree print_double_fndecl;
7460 pfndecl = &print_double_fndecl;
7461 fnname = "__go_print_double";
7462 arg = fold_convert_loc(location, double_type_node, arg);
7463 }
7464 else if (type->complex_type() != NULL)
7465 {
7466 static tree print_complex_fndecl;
7467 pfndecl = &print_complex_fndecl;
7468 fnname = "__go_print_complex";
7469 arg = fold_convert_loc(location, complex_double_type_node,
7470 arg);
7471 }
7472 else if (type->is_boolean_type())
7473 {
7474 static tree print_bool_fndecl;
7475 pfndecl = &print_bool_fndecl;
7476 fnname = "__go_print_bool";
7477 }
7478 else if (type->points_to() != NULL
7479 || type->channel_type() != NULL
7480 || type->map_type() != NULL
7481 || type->function_type() != NULL)
7482 {
7483 static tree print_pointer_fndecl;
7484 pfndecl = &print_pointer_fndecl;
7485 fnname = "__go_print_pointer";
7486 arg = fold_convert_loc(location, ptr_type_node, arg);
7487 }
7488 else if (type->interface_type() != NULL)
7489 {
7490 if (type->interface_type()->is_empty())
7491 {
7492 static tree print_empty_interface_fndecl;
7493 pfndecl = &print_empty_interface_fndecl;
7494 fnname = "__go_print_empty_interface";
7495 }
7496 else
7497 {
7498 static tree print_interface_fndecl;
7499 pfndecl = &print_interface_fndecl;
7500 fnname = "__go_print_interface";
7501 }
7502 }
7503 else if (type->is_open_array_type())
7504 {
7505 static tree print_slice_fndecl;
7506 pfndecl = &print_slice_fndecl;
7507 fnname = "__go_print_slice";
7508 }
7509 else
7510 gcc_unreachable();
7511
7512 tree call = Gogo::call_builtin(pfndecl,
7513 location,
7514 fnname,
7515 1,
7516 void_type_node,
7517 TREE_TYPE(arg),
7518 arg);
7519 append_to_statement_list(call, &stmt_list);
7520 }
7521 }
7522
7523 if (is_ln)
7524 {
7525 static tree print_nl_fndecl;
7526 tree call = Gogo::call_builtin(&print_nl_fndecl,
7527 location,
7528 "__go_print_nl",
7529 0,
7530 void_type_node);
7531 append_to_statement_list(call, &stmt_list);
7532 }
7533
7534 return stmt_list;
7535 }
7536
7537 case BUILTIN_PANIC:
7538 {
7539 const Expression_list* args = this->args();
7540 gcc_assert(args != NULL && args->size() == 1);
7541 Expression* arg = args->front();
7542 tree arg_tree = arg->get_tree(context);
7543 if (arg_tree == error_mark_node)
7544 return error_mark_node;
7545 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7546 arg_tree = Expression::convert_for_assignment(context, empty,
7547 arg->type(),
7548 arg_tree, location);
7549 static tree panic_fndecl;
7550 tree call = Gogo::call_builtin(&panic_fndecl,
7551 location,
7552 "__go_panic",
7553 1,
7554 void_type_node,
7555 TREE_TYPE(arg_tree),
7556 arg_tree);
7557 // This function will throw an exception.
7558 TREE_NOTHROW(panic_fndecl) = 0;
7559 // This function will not return.
7560 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7561 return call;
7562 }
7563
7564 case BUILTIN_RECOVER:
7565 {
7566 // The argument is set when building recover thunks. It's a
7567 // boolean value which is true if we can recover a value now.
7568 const Expression_list* args = this->args();
7569 gcc_assert(args != NULL && args->size() == 1);
7570 Expression* arg = args->front();
7571 tree arg_tree = arg->get_tree(context);
7572 if (arg_tree == error_mark_node)
7573 return error_mark_node;
7574
7575 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7576 tree empty_tree = empty->get_tree(context->gogo());
7577
7578 Type* nil_type = Type::make_nil_type();
7579 Expression* nil = Expression::make_nil(location);
7580 tree nil_tree = nil->get_tree(context);
7581 tree empty_nil_tree = Expression::convert_for_assignment(context,
7582 empty,
7583 nil_type,
7584 nil_tree,
7585 location);
7586
7587 // We need to handle a deferred call to recover specially,
7588 // because it changes whether it can recover a panic or not.
7589 // See test7 in test/recover1.go.
7590 tree call;
7591 if (this->is_deferred())
7592 {
7593 static tree deferred_recover_fndecl;
7594 call = Gogo::call_builtin(&deferred_recover_fndecl,
7595 location,
7596 "__go_deferred_recover",
7597 0,
7598 empty_tree);
7599 }
7600 else
7601 {
7602 static tree recover_fndecl;
7603 call = Gogo::call_builtin(&recover_fndecl,
7604 location,
7605 "__go_recover",
7606 0,
7607 empty_tree);
7608 }
7609 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7610 call, empty_nil_tree);
7611 }
7612
7613 case BUILTIN_CLOSE:
7614 case BUILTIN_CLOSED:
7615 {
7616 const Expression_list* args = this->args();
7617 gcc_assert(args != NULL && args->size() == 1);
7618 Expression* arg = args->front();
7619 tree arg_tree = arg->get_tree(context);
7620 if (arg_tree == error_mark_node)
7621 return error_mark_node;
7622 if (this->code_ == BUILTIN_CLOSE)
7623 {
7624 static tree close_fndecl;
7625 return Gogo::call_builtin(&close_fndecl,
7626 location,
7627 "__go_builtin_close",
7628 1,
7629 void_type_node,
7630 TREE_TYPE(arg_tree),
7631 arg_tree);
7632 }
7633 else
7634 {
7635 static tree closed_fndecl;
7636 return Gogo::call_builtin(&closed_fndecl,
7637 location,
7638 "__go_builtin_closed",
7639 1,
7640 boolean_type_node,
7641 TREE_TYPE(arg_tree),
7642 arg_tree);
7643 }
7644 }
7645
7646 case BUILTIN_SIZEOF:
7647 case BUILTIN_OFFSETOF:
7648 case BUILTIN_ALIGNOF:
7649 {
7650 mpz_t val;
7651 mpz_init(val);
7652 Type* dummy;
7653 bool b = this->integer_constant_value(true, val, &dummy);
7654 gcc_assert(b);
7655 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7656 tree ret = Expression::integer_constant_tree(val, type);
7657 mpz_clear(val);
7658 return ret;
7659 }
7660
7661 case BUILTIN_COPY:
7662 {
7663 const Expression_list* args = this->args();
7664 gcc_assert(args != NULL && args->size() == 2);
7665 Expression* arg1 = args->front();
7666 Expression* arg2 = args->back();
7667
7668 tree arg1_tree = arg1->get_tree(context);
7669 tree arg2_tree = arg2->get_tree(context);
7670 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7671 return error_mark_node;
7672
7673 Type* arg1_type = arg1->type();
7674 Array_type* at = arg1_type->array_type();
7675 arg1_tree = save_expr(arg1_tree);
7676 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7677 tree arg1_len = at->length_tree(gogo, arg1_tree);
7678
7679 Type* arg2_type = arg2->type();
7680 tree arg2_val;
7681 tree arg2_len;
7682 if (arg2_type->is_open_array_type())
7683 {
7684 at = arg2_type->array_type();
7685 arg2_tree = save_expr(arg2_tree);
7686 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7687 arg2_len = at->length_tree(gogo, arg2_tree);
7688 }
7689 else
7690 {
7691 arg2_tree = save_expr(arg2_tree);
7692 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7693 arg2_len = String_type::length_tree(gogo, arg2_tree);
7694 }
7695
7696 arg1_len = save_expr(arg1_len);
7697 arg2_len = save_expr(arg2_len);
7698 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7699 fold_build2_loc(location, LT_EXPR,
7700 boolean_type_node,
7701 arg1_len, arg2_len),
7702 arg1_len, arg2_len);
7703 len = save_expr(len);
7704
7705 Type* element_type = at->element_type();
7706 tree element_type_tree = element_type->get_tree(gogo);
7707 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7708 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7709 len);
7710 bytecount = fold_build2_loc(location, MULT_EXPR,
7711 TREE_TYPE(element_size),
7712 bytecount, element_size);
7713 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7714
7715 tree call = build_call_expr_loc(location,
7716 built_in_decls[BUILT_IN_MEMMOVE],
7717 3, arg1_val, arg2_val, bytecount);
7718
7719 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7720 call, len);
7721 }
7722
7723 case BUILTIN_APPEND:
7724 {
7725 const Expression_list* args = this->args();
7726 gcc_assert(args != NULL && args->size() == 2);
7727 Expression* arg1 = args->front();
7728 Expression* arg2 = args->back();
7729
7730 tree arg1_tree = arg1->get_tree(context);
7731 tree arg2_tree = arg2->get_tree(context);
7732 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7733 return error_mark_node;
7734
7735 tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
7736
7737 // We rebuild the decl each time since the slice types may
7738 // change.
7739 tree append_fndecl = NULL_TREE;
7740 return Gogo::call_builtin(&append_fndecl,
7741 location,
7742 "__go_append",
7743 3,
7744 TREE_TYPE(arg1_tree),
7745 TREE_TYPE(descriptor_tree),
7746 descriptor_tree,
7747 TREE_TYPE(arg1_tree),
7748 arg1_tree,
7749 TREE_TYPE(arg2_tree),
7750 arg2_tree);
7751 }
7752
7753 case BUILTIN_REAL:
7754 case BUILTIN_IMAG:
7755 {
7756 const Expression_list* args = this->args();
7757 gcc_assert(args != NULL && args->size() == 1);
7758 Expression* arg = args->front();
7759 tree arg_tree = arg->get_tree(context);
7760 if (arg_tree == error_mark_node)
7761 return error_mark_node;
7762 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7763 if (this->code_ == BUILTIN_REAL)
7764 return fold_build1_loc(location, REALPART_EXPR,
7765 TREE_TYPE(TREE_TYPE(arg_tree)),
7766 arg_tree);
7767 else
7768 return fold_build1_loc(location, IMAGPART_EXPR,
7769 TREE_TYPE(TREE_TYPE(arg_tree)),
7770 arg_tree);
7771 }
7772
7773 case BUILTIN_CMPLX:
7774 {
7775 const Expression_list* args = this->args();
7776 gcc_assert(args != NULL && args->size() == 2);
7777 tree r = args->front()->get_tree(context);
7778 tree i = args->back()->get_tree(context);
7779 if (r == error_mark_node || i == error_mark_node)
7780 return error_mark_node;
7781 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7782 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7783 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7784 return fold_build2_loc(location, COMPLEX_EXPR,
7785 build_complex_type(TREE_TYPE(r)),
7786 r, i);
7787 }
7788
7789 default:
7790 gcc_unreachable();
7791 }
7792}
7793
7794// We have to support exporting a builtin call expression, because
7795// code can set a constant to the result of a builtin expression.
7796
7797void
7798Builtin_call_expression::do_export(Export* exp) const
7799{
7800 bool ok = false;
7801
7802 mpz_t val;
7803 mpz_init(val);
7804 Type* dummy;
7805 if (this->integer_constant_value(true, val, &dummy))
7806 {
7807 Integer_expression::export_integer(exp, val);
7808 ok = true;
7809 }
7810 mpz_clear(val);
7811
7812 if (!ok)
7813 {
7814 mpfr_t fval;
7815 mpfr_init(fval);
7816 if (this->float_constant_value(fval, &dummy))
7817 {
7818 Float_expression::export_float(exp, fval);
7819 ok = true;
7820 }
7821 mpfr_clear(fval);
7822 }
7823
7824 if (!ok)
7825 {
7826 mpfr_t real;
7827 mpfr_t imag;
7828 mpfr_init(real);
7829 mpfr_init(imag);
7830 if (this->complex_constant_value(real, imag, &dummy))
7831 {
7832 Complex_expression::export_complex(exp, real, imag);
7833 ok = true;
7834 }
7835 mpfr_clear(real);
7836 mpfr_clear(imag);
7837 }
7838
7839 if (!ok)
7840 {
7841 error_at(this->location(), "value is not constant");
7842 return;
7843 }
7844
7845 // A trailing space lets us reliably identify the end of the number.
7846 exp->write_c_string(" ");
7847}
7848
7849// Class Call_expression.
7850
7851// Traversal.
7852
7853int
7854Call_expression::do_traverse(Traverse* traverse)
7855{
7856 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
7857 return TRAVERSE_EXIT;
7858 if (this->args_ != NULL)
7859 {
7860 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
7861 return TRAVERSE_EXIT;
7862 }
7863 return TRAVERSE_CONTINUE;
7864}
7865
7866// Lower a call statement.
7867
7868Expression*
7869Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
7870{
7871 // A type case can look like a function call.
7872 if (this->fn_->is_type_expression()
7873 && this->args_ != NULL
7874 && this->args_->size() == 1)
7875 return Expression::make_cast(this->fn_->type(), this->args_->front(),
7876 this->location());
7877
7878 // Recognize a call to a builtin function.
7879 Func_expression* fne = this->fn_->func_expression();
7880 if (fne != NULL
7881 && fne->named_object()->is_function_declaration()
7882 && fne->named_object()->func_declaration_value()->type()->is_builtin())
7883 return new Builtin_call_expression(gogo, this->fn_, this->args_,
7884 this->is_varargs_, this->location());
7885
7886 // Handle an argument which is a call to a function which returns
7887 // multiple results.
7888 if (this->args_ != NULL
7889 && this->args_->size() == 1
7890 && this->args_->front()->call_expression() != NULL
7891 && this->fn_->type()->function_type() != NULL)
7892 {
7893 Function_type* fntype = this->fn_->type()->function_type();
7894 size_t rc = this->args_->front()->call_expression()->result_count();
7895 if (rc > 1
7896 && fntype->parameters() != NULL
7897 && (fntype->parameters()->size() == rc
7898 || (fntype->is_varargs()
7899 && fntype->parameters()->size() - 1 <= rc)))
7900 {
7901 Call_expression* call = this->args_->front()->call_expression();
7902 Expression_list* args = new Expression_list;
7903 for (size_t i = 0; i < rc; ++i)
7904 args->push_back(Expression::make_call_result(call, i));
7905 // We can't return a new call expression here, because this
7906 // one may be referenced by Call_result expressions. FIXME.
7907 delete this->args_;
7908 this->args_ = args;
7909 }
7910 }
7911
7912 // Handle a call to a varargs function by packaging up the extra
7913 // parameters.
7914 if (this->fn_->type()->function_type() != NULL
7915 && this->fn_->type()->function_type()->is_varargs())
7916 {
7917 Function_type* fntype = this->fn_->type()->function_type();
7918 const Typed_identifier_list* parameters = fntype->parameters();
7919 gcc_assert(parameters != NULL && !parameters->empty());
7920 Type* varargs_type = parameters->back().type();
7921 return this->lower_varargs(gogo, function, varargs_type,
7922 parameters->size());
7923 }
7924
7925 return this;
7926}
7927
7928// Lower a call to a varargs function. FUNCTION is the function in
7929// which the call occurs--it's not the function we are calling.
7930// VARARGS_TYPE is the type of the varargs parameter, a slice type.
7931// PARAM_COUNT is the number of parameters of the function we are
7932// calling; the last of these parameters will be the varargs
7933// parameter.
7934
7935Expression*
7936Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
7937 Type* varargs_type, size_t param_count)
7938{
7939 if (this->varargs_are_lowered_)
7940 return this;
7941
7942 source_location loc = this->location();
7943
7944 gcc_assert(param_count > 0);
7945 gcc_assert(varargs_type->is_open_array_type());
7946
7947 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
7948 if (arg_count < param_count - 1)
7949 {
7950 // Not enough arguments; will be caught in check_types.
7951 return this;
7952 }
7953
7954 Expression_list* old_args = this->args_;
7955 Expression_list* new_args = new Expression_list();
7956 bool push_empty_arg = false;
7957 if (old_args == NULL || old_args->empty())
7958 {
7959 gcc_assert(param_count == 1);
7960 push_empty_arg = true;
7961 }
7962 else
7963 {
7964 Expression_list::const_iterator pa;
7965 int i = 1;
7966 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
7967 {
7968 if (static_cast<size_t>(i) == param_count)
7969 break;
7970 new_args->push_back(*pa);
7971 }
7972
7973 // We have reached the varargs parameter.
7974
7975 bool issued_error = false;
7976 if (pa == old_args->end())
7977 push_empty_arg = true;
7978 else if (pa + 1 == old_args->end() && this->is_varargs_)
7979 new_args->push_back(*pa);
7980 else if (this->is_varargs_)
7981 {
7982 this->report_error(_("too many arguments"));
7983 return this;
7984 }
7985 else if (pa + 1 == old_args->end()
7986 && this->is_compatible_varargs_argument(function, *pa,
7987 varargs_type,
7988 &issued_error))
7989 new_args->push_back(*pa);
7990 else
7991 {
7992 Type* element_type = varargs_type->array_type()->element_type();
7993 Expression_list* vals = new Expression_list;
7994 for (; pa != old_args->end(); ++pa, ++i)
7995 {
7996 // Check types here so that we get a better message.
7997 Type* patype = (*pa)->type();
7998 source_location paloc = (*pa)->location();
7999 if (!this->check_argument_type(i, element_type, patype,
8000 paloc, issued_error))
8001 continue;
8002 vals->push_back(*pa);
8003 }
8004 Expression* val =
8005 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8006 new_args->push_back(val);
8007 }
8008 }
8009
8010 if (push_empty_arg)
8011 new_args->push_back(Expression::make_nil(loc));
8012
8013 // We can't return a new call expression here, because this one may
8014 // be referenced by Call_result expressions. FIXME.
8015 if (old_args != NULL)
8016 delete old_args;
8017 this->args_ = new_args;
8018 this->varargs_are_lowered_ = true;
8019
8020 // Lower all the new subexpressions.
8021 Expression* ret = this;
8022 gogo->lower_expression(function, &ret);
8023 gcc_assert(ret == this);
8024 return ret;
8025}
8026
8027// Return true if ARG is a varargs argment which should be passed to
8028// the varargs parameter of type PARAM_TYPE without wrapping. ARG
8029// will be the last argument passed in the call, and PARAM_TYPE will
8030// be the type of the last parameter of the varargs function being
8031// called.
8032
8033bool
8034Call_expression::is_compatible_varargs_argument(Named_object* function,
8035 Expression* arg,
8036 Type* param_type,
8037 bool* issued_error)
8038{
8039 *issued_error = false;
8040
8041 Type* var_type = NULL;
8042
8043 // The simple case is passing the varargs parameter of the caller.
8044 Var_expression* ve = arg->var_expression();
8045 if (ve != NULL && ve->named_object()->is_variable())
8046 {
8047 Variable* var = ve->named_object()->var_value();
8048 if (var->is_varargs_parameter())
8049 var_type = var->type();
8050 }
8051
8052 // The complex case is passing the varargs parameter of some
8053 // enclosing function. This will look like passing down *c.f where
8054 // c is the closure variable and f is a field in the closure.
8055 if (function != NULL
8056 && function->func_value()->needs_closure()
8057 && arg->classification() == EXPRESSION_UNARY)
8058 {
8059 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8060 if (ue->op() == OPERATOR_MULT)
8061 {
8062 Field_reference_expression* fre =
8063 ue->operand()->deref()->field_reference_expression();
8064 if (fre != NULL)
8065 {
8066 Var_expression* ve = fre->expr()->deref()->var_expression();
8067 if (ve != NULL)
8068 {
8069 Named_object* no = ve->named_object();
8070 Function* f = function->func_value();
8071 if (no == f->closure_var())
8072 {
8073 // At this point we know that this indeed a
8074 // reference to some enclosing variable. Now we
8075 // need to figure out whether that variable is a
8076 // varargs parameter.
8077 Named_object* enclosing =
8078 f->enclosing_var(fre->field_index());
8079 Variable* var = enclosing->var_value();
8080 if (var->is_varargs_parameter())
8081 var_type = var->type();
8082 }
8083 }
8084 }
8085 }
8086 }
8087
8088 if (var_type == NULL)
8089 return false;
8090
8091 // We only match if the parameter is the same, with an identical
8092 // type.
8093 Array_type* var_at = var_type->array_type();
8094 gcc_assert(var_at != NULL);
8095 Array_type* param_at = param_type->array_type();
8096 if (param_at != NULL
8097 && Type::are_identical(var_at->element_type(),
8098 param_at->element_type(), NULL))
8099 return true;
8100 error_at(arg->location(), "... mismatch: passing ...T as ...");
8101 *issued_error = true;
8102 return false;
8103}
8104
8105// Get the function type. Returns NULL if we don't know the type. If
8106// this returns NULL, and if_ERROR is true, issues an error.
8107
8108Function_type*
8109Call_expression::get_function_type() const
8110{
8111 return this->fn_->type()->function_type();
8112}
8113
8114// Return the number of values which this call will return.
8115
8116size_t
8117Call_expression::result_count() const
8118{
8119 const Function_type* fntype = this->get_function_type();
8120 if (fntype == NULL)
8121 return 0;
8122 if (fntype->results() == NULL)
8123 return 0;
8124 return fntype->results()->size();
8125}
8126
8127// Return whether this is a call to the predeclared function recover.
8128
8129bool
8130Call_expression::is_recover_call() const
8131{
8132 return this->do_is_recover_call();
8133}
8134
8135// Set the argument to the recover function.
8136
8137void
8138Call_expression::set_recover_arg(Expression* arg)
8139{
8140 this->do_set_recover_arg(arg);
8141}
8142
8143// Virtual functions also implemented by Builtin_call_expression.
8144
8145bool
8146Call_expression::do_is_recover_call() const
8147{
8148 return false;
8149}
8150
8151void
8152Call_expression::do_set_recover_arg(Expression*)
8153{
8154 gcc_unreachable();
8155}
8156
8157// Get the type.
8158
8159Type*
8160Call_expression::do_type()
8161{
8162 if (this->type_ != NULL)
8163 return this->type_;
8164
8165 Type* ret;
8166 Function_type* fntype = this->get_function_type();
8167 if (fntype == NULL)
8168 return Type::make_error_type();
8169
8170 const Typed_identifier_list* results = fntype->results();
8171 if (results == NULL)
8172 ret = Type::make_void_type();
8173 else if (results->size() == 1)
8174 ret = results->begin()->type();
8175 else
8176 ret = Type::make_call_multiple_result_type(this);
8177
8178 this->type_ = ret;
8179
8180 return this->type_;
8181}
8182
8183// Determine types for a call expression. We can use the function
8184// parameter types to set the types of the arguments.
8185
8186void
8187Call_expression::do_determine_type(const Type_context*)
8188{
8189 this->fn_->determine_type_no_context();
8190 Function_type* fntype = this->get_function_type();
8191 const Typed_identifier_list* parameters = NULL;
8192 if (fntype != NULL)
8193 parameters = fntype->parameters();
8194 if (this->args_ != NULL)
8195 {
8196 Typed_identifier_list::const_iterator pt;
8197 if (parameters != NULL)
8198 pt = parameters->begin();
8199 for (Expression_list::const_iterator pa = this->args_->begin();
8200 pa != this->args_->end();
8201 ++pa)
8202 {
8203 if (parameters != NULL && pt != parameters->end())
8204 {
8205 Type_context subcontext(pt->type(), false);
8206 (*pa)->determine_type(&subcontext);
8207 ++pt;
8208 }
8209 else
8210 (*pa)->determine_type_no_context();
8211 }
8212 }
8213}
8214
8215// Check types for parameter I.
8216
8217bool
8218Call_expression::check_argument_type(int i, const Type* parameter_type,
8219 const Type* argument_type,
8220 source_location argument_location,
8221 bool issued_error)
8222{
8223 std::string reason;
8224 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8225 {
8226 if (!issued_error)
8227 {
8228 if (reason.empty())
8229 error_at(argument_location, "argument %d has incompatible type", i);
8230 else
8231 error_at(argument_location,
8232 "argument %d has incompatible type (%s)",
8233 i, reason.c_str());
8234 }
8235 this->set_is_error();
8236 return false;
8237 }
8238 return true;
8239}
8240
8241// Check types.
8242
8243void
8244Call_expression::do_check_types(Gogo*)
8245{
8246 Function_type* fntype = this->get_function_type();
8247 if (fntype == NULL)
8248 {
8249 if (!this->fn_->type()->is_error_type())
8250 this->report_error(_("expected function"));
8251 return;
8252 }
8253
8254 if (fntype->is_method())
8255 {
8256 // We don't support pointers to methods, so the function has to
8257 // be a bound method expression.
8258 Bound_method_expression* bme = this->fn_->bound_method_expression();
8259 if (bme == NULL)
8260 {
8261 this->report_error(_("method call without object"));
8262 return;
8263 }
8264 Type* first_arg_type = bme->first_argument()->type();
8265 if (first_arg_type->points_to() == NULL)
8266 {
8267 // When passing a value, we need to check that we are
8268 // permitted to copy it.
8269 std::string reason;
8270 if (!Type::are_assignable(fntype->receiver()->type(),
8271 first_arg_type, &reason))
8272 {
8273 if (reason.empty())
8274 this->report_error(_("incompatible type for receiver"));
8275 else
8276 {
8277 error_at(this->location(),
8278 "incompatible type for receiver (%s)",
8279 reason.c_str());
8280 this->set_is_error();
8281 }
8282 }
8283 }
8284 }
8285
8286 // Note that varargs was handled by the lower_varargs() method, so
8287 // we don't have to worry about it here.
8288
8289 const Typed_identifier_list* parameters = fntype->parameters();
8290 if (this->args_ == NULL)
8291 {
8292 if (parameters != NULL && !parameters->empty())
8293 this->report_error(_("not enough arguments"));
8294 }
8295 else if (parameters == NULL)
8296 this->report_error(_("too many arguments"));
8297 else
8298 {
8299 int i = 0;
8300 Typed_identifier_list::const_iterator pt = parameters->begin();
8301 for (Expression_list::const_iterator pa = this->args_->begin();
8302 pa != this->args_->end();
8303 ++pa, ++pt, ++i)
8304 {
8305 if (pt == parameters->end())
8306 {
8307 this->report_error(_("too many arguments"));
8308 return;
8309 }
8310 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8311 (*pa)->location(), false);
8312 }
8313 if (pt != parameters->end())
8314 this->report_error(_("not enough arguments"));
8315 }
8316}
8317
8318// Return whether we have to use a temporary variable to ensure that
8319// we evaluate this call expression in order. If the call returns no
8320// results then it will inevitably be executed last. If the call
8321// returns more than one result then it will be used with Call_result
8322// expressions. So we only have to use a temporary variable if the
8323// call returns exactly one result.
8324
8325bool
8326Call_expression::do_must_eval_in_order() const
8327{
8328 return this->result_count() == 1;
8329}
8330
8331// Get the function and the first argument to use when calling a bound
8332// method.
8333
8334tree
8335Call_expression::bound_method_function(Translate_context* context,
8336 Bound_method_expression* bound_method,
8337 tree* first_arg_ptr)
8338{
8339 Expression* first_argument = bound_method->first_argument();
8340 tree first_arg = first_argument->get_tree(context);
8341 if (first_arg == error_mark_node)
8342 return error_mark_node;
8343
8344 // We always pass a pointer to the first argument when calling a
8345 // method.
8346 if (first_argument->type()->points_to() == NULL)
8347 {
8348 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8349 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8350 || DECL_P(first_arg)
8351 || TREE_CODE(first_arg) == INDIRECT_REF
8352 || TREE_CODE(first_arg) == COMPONENT_REF)
8353 {
8354 first_arg = build_fold_addr_expr(first_arg);
8355 if (DECL_P(first_arg))
8356 TREE_ADDRESSABLE(first_arg) = 1;
8357 }
8358 else
8359 {
8360 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8361 get_name(first_arg));
8362 DECL_IGNORED_P(tmp) = 0;
8363 DECL_INITIAL(tmp) = first_arg;
8364 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8365 build1(DECL_EXPR, void_type_node, tmp),
8366 build_fold_addr_expr(tmp));
8367 TREE_ADDRESSABLE(tmp) = 1;
8368 }
8369 if (first_arg == error_mark_node)
8370 return error_mark_node;
8371 }
8372
8373 Type* fatype = bound_method->first_argument_type();
8374 if (fatype != NULL)
8375 {
8376 if (fatype->points_to() == NULL)
8377 fatype = Type::make_pointer_type(fatype);
8378 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8379 if (first_arg == error_mark_node
8380 || TREE_TYPE(first_arg) == error_mark_node)
8381 return error_mark_node;
8382 }
8383
8384 *first_arg_ptr = first_arg;
8385
8386 return bound_method->method()->get_tree(context);
8387}
8388
8389// Get the function and the first argument to use when calling an
8390// interface method.
8391
8392tree
8393Call_expression::interface_method_function(
8394 Translate_context* context,
8395 Interface_field_reference_expression* interface_method,
8396 tree* first_arg_ptr)
8397{
8398 tree expr = interface_method->expr()->get_tree(context);
8399 if (expr == error_mark_node)
8400 return error_mark_node;
8401 expr = save_expr(expr);
8402 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8403 if (first_arg == error_mark_node)
8404 return error_mark_node;
8405 *first_arg_ptr = first_arg;
8406 return interface_method->get_function_tree(context, expr);
8407}
8408
8409// Build the call expression.
8410
8411tree
8412Call_expression::do_get_tree(Translate_context* context)
8413{
8414 if (this->tree_ != NULL_TREE)
8415 return this->tree_;
8416
8417 Function_type* fntype = this->get_function_type();
8418 if (fntype == NULL)
8419 return error_mark_node;
8420
8421 if (this->fn_->is_error_expression())
8422 return error_mark_node;
8423
8424 Gogo* gogo = context->gogo();
8425 source_location location = this->location();
8426
8427 Func_expression* func = this->fn_->func_expression();
8428 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8429 Interface_field_reference_expression* interface_method =
8430 this->fn_->interface_field_reference_expression();
8431 const bool has_closure = func != NULL && func->closure() != NULL;
8432 const bool is_method = bound_method != NULL || interface_method != NULL;
8433 gcc_assert(!fntype->is_method() || is_method);
8434
8435 int nargs;
8436 tree* args;
8437 if (this->args_ == NULL || this->args_->empty())
8438 {
8439 nargs = is_method ? 1 : 0;
8440 args = nargs == 0 ? NULL : new tree[nargs];
8441 }
8442 else
8443 {
8444 const Typed_identifier_list* params = fntype->parameters();
8445 gcc_assert(params != NULL);
8446
8447 nargs = this->args_->size();
8448 int i = is_method ? 1 : 0;
8449 nargs += i;
8450 args = new tree[nargs];
8451
8452 Typed_identifier_list::const_iterator pp = params->begin();
8453 Expression_list::const_iterator pe;
8454 for (pe = this->args_->begin();
8455 pe != this->args_->end();
8456 ++pe, ++pp, ++i)
8457 {
8458 tree arg_val = (*pe)->get_tree(context);
8459 args[i] = Expression::convert_for_assignment(context,
8460 pp->type(),
8461 (*pe)->type(),
8462 arg_val,
8463 location);
8464 if (args[i] == error_mark_node)
8465 return error_mark_node;
8466 }
8467 gcc_assert(pp == params->end());
8468 gcc_assert(i == nargs);
8469 }
8470
8471 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8472 if (rettype == error_mark_node)
8473 return error_mark_node;
8474
8475 tree fn;
8476 if (has_closure)
8477 fn = func->get_tree_without_closure(gogo);
8478 else if (!is_method)
8479 fn = this->fn_->get_tree(context);
8480 else if (bound_method != NULL)
8481 fn = this->bound_method_function(context, bound_method, &args[0]);
8482 else if (interface_method != NULL)
8483 fn = this->interface_method_function(context, interface_method, &args[0]);
8484 else
8485 gcc_unreachable();
8486
8487 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8488 return error_mark_node;
8489
8490 // This is to support builtin math functions when using 80387 math.
8491 tree fndecl = fn;
8492 if (TREE_CODE(fndecl) == ADDR_EXPR)
8493 fndecl = TREE_OPERAND(fndecl, 0);
8494 tree excess_type = NULL_TREE;
8495 if (DECL_P(fndecl)
8496 && DECL_IS_BUILTIN(fndecl)
8497 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8498 && nargs > 0
8499 && ((SCALAR_FLOAT_TYPE_P(rettype)
8500 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8501 || (COMPLEX_FLOAT_TYPE_P(rettype)
8502 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8503 {
8504 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8505 if (excess_type != NULL_TREE)
8506 {
8507 tree excess_fndecl = mathfn_built_in(excess_type,
8508 DECL_FUNCTION_CODE(fndecl));
8509 if (excess_fndecl == NULL_TREE)
8510 excess_type = NULL_TREE;
8511 else
8512 {
8513 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8514 for (int i = 0; i < nargs; ++i)
8515 args[i] = ::convert(excess_type, args[i]);
8516 }
8517 }
8518 }
8519
8520 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8521 fn, nargs, args);
8522 delete[] args;
8523
8524 SET_EXPR_LOCATION(ret, location);
8525
8526 if (has_closure)
8527 {
8528 tree closure_tree = func->closure()->get_tree(context);
8529 if (closure_tree != error_mark_node)
8530 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8531 }
8532
8533 // If this is a recursive function type which returns itself, as in
8534 // type F func() F
8535 // we have used ptr_type_node for the return type. Add a cast here
8536 // to the correct type.
8537 if (TREE_TYPE(ret) == ptr_type_node)
8538 {
8539 tree t = this->type()->get_tree(gogo);
8540 ret = fold_convert_loc(location, t, ret);
8541 }
8542
8543 if (excess_type != NULL_TREE)
8544 {
8545 // Calling convert here can undo our excess precision change.
8546 // That may or may not be a bug in convert_to_real.
8547 ret = build1(NOP_EXPR, rettype, ret);
8548 }
8549
8550 // If there is more than one result, we will refer to the call
8551 // multiple times.
8552 if (fntype->results() != NULL && fntype->results()->size() > 1)
8553 ret = save_expr(ret);
8554
8555 this->tree_ = ret;
8556
8557 return ret;
8558}
8559
8560// Make a call expression.
8561
8562Call_expression*
8563Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8564 source_location location)
8565{
8566 return new Call_expression(fn, args, is_varargs, location);
8567}
8568
8569// A single result from a call which returns multiple results.
8570
8571class Call_result_expression : public Expression
8572{
8573 public:
8574 Call_result_expression(Call_expression* call, unsigned int index)
8575 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8576 call_(call), index_(index)
8577 { }
8578
8579 protected:
8580 int
8581 do_traverse(Traverse*);
8582
8583 Type*
8584 do_type();
8585
8586 void
8587 do_determine_type(const Type_context*);
8588
8589 void
8590 do_check_types(Gogo*);
8591
8592 Expression*
8593 do_copy()
8594 {
8595 return new Call_result_expression(this->call_->call_expression(),
8596 this->index_);
8597 }
8598
8599 bool
8600 do_must_eval_in_order() const
8601 { return true; }
8602
8603 tree
8604 do_get_tree(Translate_context*);
8605
8606 private:
8607 // The underlying call expression.
8608 Expression* call_;
8609 // Which result we want.
8610 unsigned int index_;
8611};
8612
8613// Traverse a call result.
8614
8615int
8616Call_result_expression::do_traverse(Traverse* traverse)
8617{
8618 if (traverse->remember_expression(this->call_))
8619 {
8620 // We have already traversed the call expression.
8621 return TRAVERSE_CONTINUE;
8622 }
8623 return Expression::traverse(&this->call_, traverse);
8624}
8625
8626// Get the type.
8627
8628Type*
8629Call_result_expression::do_type()
8630{
8631 // THIS->CALL_ can be replaced with a temporary reference due to
8632 // Call_expression::do_must_eval_in_order when there is an error.
8633 Call_expression* ce = this->call_->call_expression();
8634 if (ce == NULL)
8635 return Type::make_error_type();
8636 Function_type* fntype = ce->get_function_type();
8637 if (fntype == NULL)
8638 return Type::make_error_type();
8639 const Typed_identifier_list* results = fntype->results();
8640 Typed_identifier_list::const_iterator pr = results->begin();
8641 for (unsigned int i = 0; i < this->index_; ++i)
8642 {
8643 if (pr == results->end())
8644 return Type::make_error_type();
8645 ++pr;
8646 }
8647 if (pr == results->end())
8648 return Type::make_error_type();
8649 return pr->type();
8650}
8651
8652// Check the type. This is where we give an error if we're trying to
8653// extract too many values from a call.
8654
8655void
8656Call_result_expression::do_check_types(Gogo*)
8657{
8658 bool ok = true;
8659 Call_expression* ce = this->call_->call_expression();
8660 if (ce != NULL)
8661 ok = this->index_ < ce->result_count();
8662 else
8663 {
8664 // This can happen when the call returns a single value but we
8665 // are asking for the second result.
8666 if (this->call_->is_error_expression())
8667 return;
8668 ok = false;
8669 }
8670 if (!ok)
8671 error_at(this->location(),
8672 "number of results does not match number of values");
8673}
8674
8675// Determine the type. We have nothing to do here, but the 0 result
8676// needs to pass down to the caller.
8677
8678void
8679Call_result_expression::do_determine_type(const Type_context*)
8680{
8681 if (this->index_ == 0)
8682 this->call_->determine_type_no_context();
8683}
8684
8685// Return the tree.
8686
8687tree
8688Call_result_expression::do_get_tree(Translate_context* context)
8689{
8690 tree call_tree = this->call_->get_tree(context);
8691 if (call_tree == error_mark_node)
8692 return error_mark_node;
8693 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8694 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8695 for (unsigned int i = 0; i < this->index_; ++i)
8696 {
8697 gcc_assert(field != NULL_TREE);
8698 field = DECL_CHAIN(field);
8699 }
8700 gcc_assert(field != NULL_TREE);
8701 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8702}
8703
8704// Make a reference to a single result of a call which returns
8705// multiple results.
8706
8707Expression*
8708Expression::make_call_result(Call_expression* call, unsigned int index)
8709{
8710 return new Call_result_expression(call, index);
8711}
8712
8713// Class Index_expression.
8714
8715// Traversal.
8716
8717int
8718Index_expression::do_traverse(Traverse* traverse)
8719{
8720 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8721 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8722 || (this->end_ != NULL
8723 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8724 return TRAVERSE_EXIT;
8725 return TRAVERSE_CONTINUE;
8726}
8727
8728// Lower an index expression. This converts the generic index
8729// expression into an array index, a string index, or a map index.
8730
8731Expression*
8732Index_expression::do_lower(Gogo*, Named_object*, int)
8733{
8734 source_location location = this->location();
8735 Expression* left = this->left_;
8736 Expression* start = this->start_;
8737 Expression* end = this->end_;
8738
8739 Type* type = left->type();
8740 if (type->is_error_type())
8741 return Expression::make_error(location);
8742 else if (type->array_type() != NULL)
8743 return Expression::make_array_index(left, start, end, location);
8744 else if (type->points_to() != NULL
8745 && type->points_to()->array_type() != NULL
8746 && !type->points_to()->is_open_array_type())
8747 {
8748 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8749 location);
8750 return Expression::make_array_index(deref, start, end, location);
8751 }
8752 else if (type->is_string_type())
8753 return Expression::make_string_index(left, start, end, location);
8754 else if (type->map_type() != NULL)
8755 {
8756 if (end != NULL)
8757 {
8758 error_at(location, "invalid slice of map");
8759 return Expression::make_error(location);
8760 }
8761 Map_index_expression* ret= Expression::make_map_index(left, start,
8762 location);
8763 if (this->is_lvalue_)
8764 ret->set_is_lvalue();
8765 return ret;
8766 }
8767 else
8768 {
8769 error_at(location,
8770 "attempt to index object which is not array, string, or map");
8771 return Expression::make_error(location);
8772 }
8773}
8774
8775// Make an index expression.
8776
8777Expression*
8778Expression::make_index(Expression* left, Expression* start, Expression* end,
8779 source_location location)
8780{
8781 return new Index_expression(left, start, end, location);
8782}
8783
8784// An array index. This is used for both indexing and slicing.
8785
8786class Array_index_expression : public Expression
8787{
8788 public:
8789 Array_index_expression(Expression* array, Expression* start,
8790 Expression* end, source_location location)
8791 : Expression(EXPRESSION_ARRAY_INDEX, location),
8792 array_(array), start_(start), end_(end), type_(NULL)
8793 { }
8794
8795 protected:
8796 int
8797 do_traverse(Traverse*);
8798
8799 Type*
8800 do_type();
8801
8802 void
8803 do_determine_type(const Type_context*);
8804
8805 void
8806 do_check_types(Gogo*);
8807
8808 Expression*
8809 do_copy()
8810 {
8811 return Expression::make_array_index(this->array_->copy(),
8812 this->start_->copy(),
8813 (this->end_ == NULL
8814 ? NULL
8815 : this->end_->copy()),
8816 this->location());
8817 }
8818
8819 bool
8820 do_is_addressable() const;
8821
8822 void
8823 do_address_taken(bool escapes)
8824 { this->array_->address_taken(escapes); }
8825
8826 tree
8827 do_get_tree(Translate_context*);
8828
8829 private:
8830 // The array we are getting a value from.
8831 Expression* array_;
8832 // The start or only index.
8833 Expression* start_;
8834 // The end index of a slice. This may be NULL for a simple array
8835 // index, or it may be a nil expression for the length of the array.
8836 Expression* end_;
8837 // The type of the expression.
8838 Type* type_;
8839};
8840
8841// Array index traversal.
8842
8843int
8844Array_index_expression::do_traverse(Traverse* traverse)
8845{
8846 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
8847 return TRAVERSE_EXIT;
8848 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
8849 return TRAVERSE_EXIT;
8850 if (this->end_ != NULL)
8851 {
8852 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
8853 return TRAVERSE_EXIT;
8854 }
8855 return TRAVERSE_CONTINUE;
8856}
8857
8858// Return the type of an array index.
8859
8860Type*
8861Array_index_expression::do_type()
8862{
8863 if (this->type_ == NULL)
8864 {
8865 Array_type* type = this->array_->type()->array_type();
8866 if (type == NULL)
8867 this->type_ = Type::make_error_type();
8868 else if (this->end_ == NULL)
8869 this->type_ = type->element_type();
8870 else if (type->is_open_array_type())
8871 {
8872 // A slice of a slice has the same type as the original
8873 // slice.
8874 this->type_ = this->array_->type()->deref();
8875 }
8876 else
8877 {
8878 // A slice of an array is a slice.
8879 this->type_ = Type::make_array_type(type->element_type(), NULL);
8880 }
8881 }
8882 return this->type_;
8883}
8884
8885// Set the type of an array index.
8886
8887void
8888Array_index_expression::do_determine_type(const Type_context*)
8889{
8890 this->array_->determine_type_no_context();
8891 Type_context subcontext(NULL, true);
8892 this->start_->determine_type(&subcontext);
8893 if (this->end_ != NULL)
8894 this->end_->determine_type(&subcontext);
8895}
8896
8897// Check types of an array index.
8898
8899void
8900Array_index_expression::do_check_types(Gogo*)
8901{
8902 if (this->start_->type()->integer_type() == NULL)
8903 this->report_error(_("index must be integer"));
8904 if (this->end_ != NULL
8905 && this->end_->type()->integer_type() == NULL
8906 && !this->end_->is_nil_expression())
8907 this->report_error(_("slice end must be integer"));
8908
8909 Array_type* array_type = this->array_->type()->array_type();
8910 gcc_assert(array_type != NULL);
8911
8912 unsigned int int_bits =
8913 Type::lookup_integer_type("int")->integer_type()->bits();
8914
8915 Type* dummy;
8916 mpz_t lval;
8917 mpz_init(lval);
8918 bool lval_valid = (array_type->length() != NULL
8919 && array_type->length()->integer_constant_value(true,
8920 lval,
8921 &dummy));
8922 mpz_t ival;
8923 mpz_init(ival);
8924 if (this->start_->integer_constant_value(true, ival, &dummy))
8925 {
8926 if (mpz_sgn(ival) < 0
8927 || mpz_sizeinbase(ival, 2) >= int_bits
8928 || (lval_valid
8929 && (this->end_ == NULL
8930 ? mpz_cmp(ival, lval) >= 0
8931 : mpz_cmp(ival, lval) > 0)))
8932 {
8933 error_at(this->start_->location(), "array index out of bounds");
8934 this->set_is_error();
8935 }
8936 }
8937 if (this->end_ != NULL && !this->end_->is_nil_expression())
8938 {
8939 if (this->end_->integer_constant_value(true, ival, &dummy))
8940 {
8941 if (mpz_sgn(ival) < 0
8942 || mpz_sizeinbase(ival, 2) >= int_bits
8943 || (lval_valid && mpz_cmp(ival, lval) > 0))
8944 {
8945 error_at(this->end_->location(), "array index out of bounds");
8946 this->set_is_error();
8947 }
8948 }
8949 }
8950 mpz_clear(ival);
8951 mpz_clear(lval);
8952
8953 // A slice of an array requires an addressable array. A slice of a
8954 // slice is always possible.
8955 if (this->end_ != NULL
8956 && !array_type->is_open_array_type()
8957 && !this->array_->is_addressable())
8958 this->report_error(_("array is not addressable"));
8959}
8960
8961// Return whether this expression is addressable.
8962
8963bool
8964Array_index_expression::do_is_addressable() const
8965{
8966 // A slice expression is not addressable.
8967 if (this->end_ != NULL)
8968 return false;
8969
8970 // An index into a slice is addressable.
8971 if (this->array_->type()->is_open_array_type())
8972 return true;
8973
8974 // An index into an array is addressable if the array is
8975 // addressable.
8976 return this->array_->is_addressable();
8977}
8978
8979// Get a tree for an array index.
8980
8981tree
8982Array_index_expression::do_get_tree(Translate_context* context)
8983{
8984 Gogo* gogo = context->gogo();
8985 source_location loc = this->location();
8986
8987 Array_type* array_type = this->array_->type()->array_type();
8988 gcc_assert(array_type != NULL);
8989
8990 tree type_tree = array_type->get_tree(gogo);
8991
8992 tree array_tree = this->array_->get_tree(context);
8993 if (array_tree == error_mark_node)
8994 return error_mark_node;
8995
8996 if (array_type->length() == NULL && !DECL_P(array_tree))
8997 array_tree = save_expr(array_tree);
8998 tree length_tree = array_type->length_tree(gogo, array_tree);
8999 length_tree = save_expr(length_tree);
9000 tree length_type = TREE_TYPE(length_tree);
9001
9002 tree bad_index = boolean_false_node;
9003
9004 tree start_tree = this->start_->get_tree(context);
9005 if (start_tree == error_mark_node)
9006 return error_mark_node;
9007 if (!DECL_P(start_tree))
9008 start_tree = save_expr(start_tree);
9009 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9010 start_tree = convert_to_integer(length_type, start_tree);
9011
9012 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9013 loc);
9014
9015 start_tree = fold_convert_loc(loc, length_type, start_tree);
9016 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9017 fold_build2_loc(loc,
9018 (this->end_ == NULL
9019 ? GE_EXPR
9020 : GT_EXPR),
9021 boolean_type_node, start_tree,
9022 length_tree));
9023
9024 int code = (array_type->length() != NULL
9025 ? (this->end_ == NULL
9026 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9027 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9028 : (this->end_ == NULL
9029 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9030 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9031 tree crash = Gogo::runtime_error(code, loc);
9032
9033 if (this->end_ == NULL)
9034 {
9035 // Simple array indexing. This has to return an l-value, so
9036 // wrap the index check into START_TREE.
9037 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9038 build3(COND_EXPR, void_type_node,
9039 bad_index, crash, NULL_TREE),
9040 start_tree);
9041 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9042
9043 if (array_type->length() != NULL)
9044 {
9045 // Fixed array.
9046 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9047 start_tree, NULL_TREE, NULL_TREE);
9048 }
9049 else
9050 {
9051 // Open array.
9052 tree values = array_type->value_pointer_tree(gogo, array_tree);
9053 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9054 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9055 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9056 start_tree, element_size);
9057 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9058 TREE_TYPE(values), values, offset);
9059 return build_fold_indirect_ref(ptr);
9060 }
9061 }
9062
9063 // Array slice.
9064
9065 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
9066 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9067
9068 tree end_tree;
9069 if (this->end_->is_nil_expression())
9070 end_tree = length_tree;
9071 else
9072 {
9073 end_tree = this->end_->get_tree(context);
9074 if (end_tree == error_mark_node)
9075 return error_mark_node;
9076 if (!DECL_P(end_tree))
9077 end_tree = save_expr(end_tree);
9078 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9079 end_tree = convert_to_integer(length_type, end_tree);
9080
9081 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9082 loc);
9083
9084 end_tree = fold_convert_loc(loc, length_type, end_tree);
9085
9086 capacity_tree = save_expr(capacity_tree);
9087 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9088 fold_build2_loc(loc, LT_EXPR,
9089 boolean_type_node,
9090 end_tree, start_tree),
9091 fold_build2_loc(loc, GT_EXPR,
9092 boolean_type_node,
9093 end_tree, capacity_tree));
9094 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9095 bad_index, bad_end);
9096 }
9097
9098 tree element_type_tree = array_type->element_type()->get_tree(gogo);
9099 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9100
9101 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9102 fold_convert_loc(loc, sizetype, start_tree),
9103 element_size);
9104
9105 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
9106
9107 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9108 TREE_TYPE(value_pointer),
9109 value_pointer, offset);
9110
9111 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9112 end_tree, start_tree);
9113
9114 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9115 capacity_tree, start_tree);
9116
9117 tree struct_tree = this->type()->get_tree(gogo);
9118 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9119
9120 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9121
9122 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9123 tree field = TYPE_FIELDS(struct_tree);
9124 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9125 elt->index = field;
9126 elt->value = value_pointer;
9127
9128 elt = VEC_quick_push(constructor_elt, init, NULL);
9129 field = DECL_CHAIN(field);
9130 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9131 elt->index = field;
9132 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9133
9134 elt = VEC_quick_push(constructor_elt, init, NULL);
9135 field = DECL_CHAIN(field);
9136 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9137 elt->index = field;
9138 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9139
9140 tree constructor = build_constructor(struct_tree, init);
9141
9142 if (TREE_CONSTANT(value_pointer)
9143 && TREE_CONSTANT(result_length_tree)
9144 && TREE_CONSTANT(result_capacity_tree))
9145 TREE_CONSTANT(constructor) = 1;
9146
9147 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9148 build3(COND_EXPR, void_type_node,
9149 bad_index, crash, NULL_TREE),
9150 constructor);
9151}
9152
9153// Make an array index expression. END may be NULL.
9154
9155Expression*
9156Expression::make_array_index(Expression* array, Expression* start,
9157 Expression* end, source_location location)
9158{
9159 // Taking a slice of a composite literal requires moving the literal
9160 // onto the heap.
9161 if (end != NULL && array->is_composite_literal())
9162 {
9163 array = Expression::make_heap_composite(array, location);
9164 array = Expression::make_unary(OPERATOR_MULT, array, location);
9165 }
9166 return new Array_index_expression(array, start, end, location);
9167}
9168
9169// A string index. This is used for both indexing and slicing.
9170
9171class String_index_expression : public Expression
9172{
9173 public:
9174 String_index_expression(Expression* string, Expression* start,
9175 Expression* end, source_location location)
9176 : Expression(EXPRESSION_STRING_INDEX, location),
9177 string_(string), start_(start), end_(end)
9178 { }
9179
9180 protected:
9181 int
9182 do_traverse(Traverse*);
9183
9184 Type*
9185 do_type();
9186
9187 void
9188 do_determine_type(const Type_context*);
9189
9190 void
9191 do_check_types(Gogo*);
9192
9193 Expression*
9194 do_copy()
9195 {
9196 return Expression::make_string_index(this->string_->copy(),
9197 this->start_->copy(),
9198 (this->end_ == NULL
9199 ? NULL
9200 : this->end_->copy()),
9201 this->location());
9202 }
9203
9204 tree
9205 do_get_tree(Translate_context*);
9206
9207 private:
9208 // The string we are getting a value from.
9209 Expression* string_;
9210 // The start or only index.
9211 Expression* start_;
9212 // The end index of a slice. This may be NULL for a single index,
9213 // or it may be a nil expression for the length of the string.
9214 Expression* end_;
9215};
9216
9217// String index traversal.
9218
9219int
9220String_index_expression::do_traverse(Traverse* traverse)
9221{
9222 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9223 return TRAVERSE_EXIT;
9224 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9225 return TRAVERSE_EXIT;
9226 if (this->end_ != NULL)
9227 {
9228 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9229 return TRAVERSE_EXIT;
9230 }
9231 return TRAVERSE_CONTINUE;
9232}
9233
9234// Return the type of a string index.
9235
9236Type*
9237String_index_expression::do_type()
9238{
9239 if (this->end_ == NULL)
9240 return Type::lookup_integer_type("uint8");
9241 else
9242 return Type::make_string_type();
9243}
9244
9245// Determine the type of a string index.
9246
9247void
9248String_index_expression::do_determine_type(const Type_context*)
9249{
9250 this->string_->determine_type_no_context();
9251 Type_context subcontext(NULL, true);
9252 this->start_->determine_type(&subcontext);
9253 if (this->end_ != NULL)
9254 this->end_->determine_type(&subcontext);
9255}
9256
9257// Check types of a string index.
9258
9259void
9260String_index_expression::do_check_types(Gogo*)
9261{
9262 if (this->start_->type()->integer_type() == NULL)
9263 this->report_error(_("index must be integer"));
9264 if (this->end_ != NULL
9265 && this->end_->type()->integer_type() == NULL
9266 && !this->end_->is_nil_expression())
9267 this->report_error(_("slice end must be integer"));
9268
9269 std::string sval;
9270 bool sval_valid = this->string_->string_constant_value(&sval);
9271
9272 mpz_t ival;
9273 mpz_init(ival);
9274 Type* dummy;
9275 if (this->start_->integer_constant_value(true, ival, &dummy))
9276 {
9277 if (mpz_sgn(ival) < 0
9278 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9279 {
9280 error_at(this->start_->location(), "string index out of bounds");
9281 this->set_is_error();
9282 }
9283 }
9284 if (this->end_ != NULL && !this->end_->is_nil_expression())
9285 {
9286 if (this->end_->integer_constant_value(true, ival, &dummy))
9287 {
9288 if (mpz_sgn(ival) < 0
9289 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9290 {
9291 error_at(this->end_->location(), "string index out of bounds");
9292 this->set_is_error();
9293 }
9294 }
9295 }
9296 mpz_clear(ival);
9297}
9298
9299// Get a tree for a string index.
9300
9301tree
9302String_index_expression::do_get_tree(Translate_context* context)
9303{
9304 source_location loc = this->location();
9305
9306 tree string_tree = this->string_->get_tree(context);
9307 if (string_tree == error_mark_node)
9308 return error_mark_node;
9309
9310 if (this->string_->type()->points_to() != NULL)
9311 string_tree = build_fold_indirect_ref(string_tree);
9312 if (!DECL_P(string_tree))
9313 string_tree = save_expr(string_tree);
9314 tree string_type = TREE_TYPE(string_tree);
9315
9316 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9317 length_tree = save_expr(length_tree);
9318 tree length_type = TREE_TYPE(length_tree);
9319
9320 tree bad_index = boolean_false_node;
9321
9322 tree start_tree = this->start_->get_tree(context);
9323 if (start_tree == error_mark_node)
9324 return error_mark_node;
9325 if (!DECL_P(start_tree))
9326 start_tree = save_expr(start_tree);
9327 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9328 start_tree = convert_to_integer(length_type, start_tree);
9329
9330 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9331 loc);
9332
9333 start_tree = fold_convert_loc(loc, length_type, start_tree);
9334
9335 int code = (this->end_ == NULL
9336 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9337 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9338 tree crash = Gogo::runtime_error(code, loc);
9339
9340 if (this->end_ == NULL)
9341 {
9342 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9343 bad_index,
9344 fold_build2_loc(loc, GE_EXPR,
9345 boolean_type_node,
9346 start_tree, length_tree));
9347
9348 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9349 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9350 bytes_tree,
9351 fold_convert_loc(loc, sizetype, start_tree));
9352 tree index = build_fold_indirect_ref_loc(loc, ptr);
9353
9354 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9355 build3(COND_EXPR, void_type_node,
9356 bad_index, crash, NULL_TREE),
9357 index);
9358 }
9359 else
9360 {
9361 tree end_tree;
9362 if (this->end_->is_nil_expression())
9363 end_tree = build_int_cst(length_type, -1);
9364 else
9365 {
9366 end_tree = this->end_->get_tree(context);
9367 if (end_tree == error_mark_node)
9368 return error_mark_node;
9369 if (!DECL_P(end_tree))
9370 end_tree = save_expr(end_tree);
9371 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9372 end_tree = convert_to_integer(length_type, end_tree);
9373
9374 bad_index = Expression::check_bounds(end_tree, length_type,
9375 bad_index, loc);
9376
9377 end_tree = fold_convert_loc(loc, length_type, end_tree);
9378 }
9379
9380 static tree strslice_fndecl;
9381 tree ret = Gogo::call_builtin(&strslice_fndecl,
9382 loc,
9383 "__go_string_slice",
9384 3,
9385 string_type,
9386 string_type,
9387 string_tree,
9388 length_type,
9389 start_tree,
9390 length_type,
9391 end_tree);
9392 // This will panic if the bounds are out of range for the
9393 // string.
9394 TREE_NOTHROW(strslice_fndecl) = 0;
9395
9396 if (bad_index == boolean_false_node)
9397 return ret;
9398 else
9399 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9400 build3(COND_EXPR, void_type_node,
9401 bad_index, crash, NULL_TREE),
9402 ret);
9403 }
9404}
9405
9406// Make a string index expression. END may be NULL.
9407
9408Expression*
9409Expression::make_string_index(Expression* string, Expression* start,
9410 Expression* end, source_location location)
9411{
9412 return new String_index_expression(string, start, end, location);
9413}
9414
9415// Class Map_index.
9416
9417// Get the type of the map.
9418
9419Map_type*
9420Map_index_expression::get_map_type() const
9421{
9422 Map_type* mt = this->map_->type()->deref()->map_type();
9423 gcc_assert(mt != NULL);
9424 return mt;
9425}
9426
9427// Map index traversal.
9428
9429int
9430Map_index_expression::do_traverse(Traverse* traverse)
9431{
9432 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9433 return TRAVERSE_EXIT;
9434 return Expression::traverse(&this->index_, traverse);
9435}
9436
9437// Return the type of a map index.
9438
9439Type*
9440Map_index_expression::do_type()
9441{
9442 Type* type = this->get_map_type()->val_type();
9443 // If this map index is in a tuple assignment, we actually return a
9444 // pointer to the value type. Tuple_map_assignment_statement is
9445 // responsible for handling this correctly. We need to get the type
9446 // right in case this gets assigned to a temporary variable.
9447 if (this->is_in_tuple_assignment_)
9448 type = Type::make_pointer_type(type);
9449 return type;
9450}
9451
9452// Fix the type of a map index.
9453
9454void
9455Map_index_expression::do_determine_type(const Type_context*)
9456{
9457 this->map_->determine_type_no_context();
9458 Type_context subcontext(this->get_map_type()->key_type(), false);
9459 this->index_->determine_type(&subcontext);
9460}
9461
9462// Check types of a map index.
9463
9464void
9465Map_index_expression::do_check_types(Gogo*)
9466{
9467 std::string reason;
9468 if (!Type::are_assignable(this->get_map_type()->key_type(),
9469 this->index_->type(), &reason))
9470 {
9471 if (reason.empty())
9472 this->report_error(_("incompatible type for map index"));
9473 else
9474 {
9475 error_at(this->location(), "incompatible type for map index (%s)",
9476 reason.c_str());
9477 this->set_is_error();
9478 }
9479 }
9480}
9481
9482// Get a tree for a map index.
9483
9484tree
9485Map_index_expression::do_get_tree(Translate_context* context)
9486{
9487 Map_type* type = this->get_map_type();
9488
9489 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9490 if (valptr == error_mark_node)
9491 return error_mark_node;
9492 valptr = save_expr(valptr);
9493
9494 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9495
9496 if (this->is_lvalue_)
9497 return build_fold_indirect_ref(valptr);
9498 else if (this->is_in_tuple_assignment_)
9499 {
9500 // Tuple_map_assignment_statement is responsible for using this
9501 // appropriately.
9502 return valptr;
9503 }
9504 else
9505 {
9506 return fold_build3(COND_EXPR, val_type_tree,
9507 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9508 fold_convert(TREE_TYPE(valptr),
9509 null_pointer_node)),
9510 type->val_type()->get_init_tree(context->gogo(),
9511 false),
9512 build_fold_indirect_ref(valptr));
9513 }
9514}
9515
9516// Get a tree for the map index. This returns a tree which evaluates
9517// to a pointer to a value. The pointer will be NULL if the key is
9518// not in the map.
9519
9520tree
9521Map_index_expression::get_value_pointer(Translate_context* context,
9522 bool insert)
9523{
9524 Map_type* type = this->get_map_type();
9525
9526 tree map_tree = this->map_->get_tree(context);
9527 tree index_tree = this->index_->get_tree(context);
9528 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9529 this->index_->type(),
9530 index_tree,
9531 this->location());
9532 if (map_tree == error_mark_node || index_tree == error_mark_node)
9533 return error_mark_node;
9534
9535 if (this->map_->type()->points_to() != NULL)
9536 map_tree = build_fold_indirect_ref(map_tree);
9537
9538 // We need to pass in a pointer to the key, so stuff it into a
9539 // variable.
9540 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9541 DECL_IGNORED_P(tmp) = 0;
9542 DECL_INITIAL(tmp) = index_tree;
9543 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9544 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9545 TREE_ADDRESSABLE(tmp) = 1;
9546
9547 static tree map_index_fndecl;
9548 tree call = Gogo::call_builtin(&map_index_fndecl,
9549 this->location(),
9550 "__go_map_index",
9551 3,
9552 const_ptr_type_node,
9553 TREE_TYPE(map_tree),
9554 map_tree,
9555 const_ptr_type_node,
9556 tmpref,
9557 boolean_type_node,
9558 (insert
9559 ? boolean_true_node
9560 : boolean_false_node));
9561 // This can panic on a map of interface type if the interface holds
9562 // an uncomparable or unhashable type.
9563 TREE_NOTHROW(map_index_fndecl) = 0;
9564
9565 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9566 if (val_type_tree == error_mark_node)
9567 return error_mark_node;
9568 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9569
9570 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9571 make_tmp,
9572 fold_convert(ptr_val_type_tree, call));
9573}
9574
9575// Make a map index expression.
9576
9577Map_index_expression*
9578Expression::make_map_index(Expression* map, Expression* index,
9579 source_location location)
9580{
9581 return new Map_index_expression(map, index, location);
9582}
9583
9584// Class Field_reference_expression.
9585
9586// Return the type of a field reference.
9587
9588Type*
9589Field_reference_expression::do_type()
9590{
9591 Struct_type* struct_type = this->expr_->type()->struct_type();
9592 gcc_assert(struct_type != NULL);
9593 return struct_type->field(this->field_index_)->type();
9594}
9595
9596// Check the types for a field reference.
9597
9598void
9599Field_reference_expression::do_check_types(Gogo*)
9600{
9601 Struct_type* struct_type = this->expr_->type()->struct_type();
9602 gcc_assert(struct_type != NULL);
9603 gcc_assert(struct_type->field(this->field_index_) != NULL);
9604}
9605
9606// Get a tree for a field reference.
9607
9608tree
9609Field_reference_expression::do_get_tree(Translate_context* context)
9610{
9611 tree struct_tree = this->expr_->get_tree(context);
9612 if (struct_tree == error_mark_node
9613 || TREE_TYPE(struct_tree) == error_mark_node)
9614 return error_mark_node;
9615 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9616 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
9617 gcc_assert(field != NULL_TREE);
9618 for (unsigned int i = this->field_index_; i > 0; --i)
9619 {
9620 field = DECL_CHAIN(field);
9621 gcc_assert(field != NULL_TREE);
9622 }
9623 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9624 NULL_TREE);
9625}
9626
9627// Make a reference to a qualified identifier in an expression.
9628
9629Field_reference_expression*
9630Expression::make_field_reference(Expression* expr, unsigned int field_index,
9631 source_location location)
9632{
9633 return new Field_reference_expression(expr, field_index, location);
9634}
9635
9636// Class Interface_field_reference_expression.
9637
9638// Return a tree for the pointer to the function to call.
9639
9640tree
9641Interface_field_reference_expression::get_function_tree(Translate_context*,
9642 tree expr)
9643{
9644 if (this->expr_->type()->points_to() != NULL)
9645 expr = build_fold_indirect_ref(expr);
9646
9647 tree expr_type = TREE_TYPE(expr);
9648 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9649
9650 tree field = TYPE_FIELDS(expr_type);
9651 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9652
9653 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9654 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9655
9656 table = build_fold_indirect_ref(table);
9657 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9658
9659 std::string name = Gogo::unpack_hidden_name(this->name_);
9660 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9661 field != NULL_TREE;
9662 field = DECL_CHAIN(field))
9663 {
9664 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9665 break;
9666 }
9667 gcc_assert(field != NULL_TREE);
9668
9669 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9670}
9671
9672// Return a tree for the first argument to pass to the interface
9673// function.
9674
9675tree
9676Interface_field_reference_expression::get_underlying_object_tree(
9677 Translate_context*,
9678 tree expr)
9679{
9680 if (this->expr_->type()->points_to() != NULL)
9681 expr = build_fold_indirect_ref(expr);
9682
9683 tree expr_type = TREE_TYPE(expr);
9684 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9685
9686 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9687 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9688
9689 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9690}
9691
9692// Traversal.
9693
9694int
9695Interface_field_reference_expression::do_traverse(Traverse* traverse)
9696{
9697 return Expression::traverse(&this->expr_, traverse);
9698}
9699
9700// Return the type of an interface field reference.
9701
9702Type*
9703Interface_field_reference_expression::do_type()
9704{
9705 Type* expr_type = this->expr_->type();
9706
9707 Type* points_to = expr_type->points_to();
9708 if (points_to != NULL)
9709 expr_type = points_to;
9710
9711 Interface_type* interface_type = expr_type->interface_type();
9712 if (interface_type == NULL)
9713 return Type::make_error_type();
9714
9715 const Typed_identifier* method = interface_type->find_method(this->name_);
9716 if (method == NULL)
9717 return Type::make_error_type();
9718
9719 return method->type();
9720}
9721
9722// Determine types.
9723
9724void
9725Interface_field_reference_expression::do_determine_type(const Type_context*)
9726{
9727 this->expr_->determine_type_no_context();
9728}
9729
9730// Check the types for an interface field reference.
9731
9732void
9733Interface_field_reference_expression::do_check_types(Gogo*)
9734{
9735 Type* type = this->expr_->type();
9736
9737 Type* points_to = type->points_to();
9738 if (points_to != NULL)
9739 type = points_to;
9740
9741 Interface_type* interface_type = type->interface_type();
9742 if (interface_type == NULL)
9743 this->report_error(_("expected interface or pointer to interface"));
9744 else
9745 {
9746 const Typed_identifier* method =
9747 interface_type->find_method(this->name_);
9748 if (method == NULL)
9749 {
9750 error_at(this->location(), "method %qs not in interface",
9751 Gogo::message_name(this->name_).c_str());
9752 this->set_is_error();
9753 }
9754 }
9755}
9756
9757// Get a tree for a reference to a field in an interface. There is no
9758// standard tree type representation for this: it's a function
9759// attached to its first argument, like a Bound_method_expression.
9760// The only places it may currently be used are in a Call_expression
9761// or a Go_statement, which will take it apart directly. So this has
9762// nothing to do at present.
9763
9764tree
9765Interface_field_reference_expression::do_get_tree(Translate_context*)
9766{
9767 gcc_unreachable();
9768}
9769
9770// Make a reference to a field in an interface.
9771
9772Expression*
9773Expression::make_interface_field_reference(Expression* expr,
9774 const std::string& field,
9775 source_location location)
9776{
9777 return new Interface_field_reference_expression(expr, field, location);
9778}
9779
9780// A general selector. This is a Parser_expression for LEFT.NAME. It
9781// is lowered after we know the type of the left hand side.
9782
9783class Selector_expression : public Parser_expression
9784{
9785 public:
9786 Selector_expression(Expression* left, const std::string& name,
9787 source_location location)
9788 : Parser_expression(EXPRESSION_SELECTOR, location),
9789 left_(left), name_(name)
9790 { }
9791
9792 protected:
9793 int
9794 do_traverse(Traverse* traverse)
9795 { return Expression::traverse(&this->left_, traverse); }
9796
9797 Expression*
9798 do_lower(Gogo*, Named_object*, int);
9799
9800 Expression*
9801 do_copy()
9802 {
9803 return new Selector_expression(this->left_->copy(), this->name_,
9804 this->location());
9805 }
9806
9807 private:
9808 Expression*
9809 lower_method_expression(Gogo*);
9810
9811 // The expression on the left hand side.
9812 Expression* left_;
9813 // The name on the right hand side.
9814 std::string name_;
9815};
9816
9817// Lower a selector expression once we know the real type of the left
9818// hand side.
9819
9820Expression*
9821Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
9822{
9823 Expression* left = this->left_;
9824 if (left->is_type_expression())
9825 return this->lower_method_expression(gogo);
9826 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
9827 this->location());
9828}
9829
9830// Lower a method expression T.M or (*T).M. We turn this into a
9831// function literal.
9832
9833Expression*
9834Selector_expression::lower_method_expression(Gogo* gogo)
9835{
9836 source_location location = this->location();
9837 Type* type = this->left_->type();
9838 const std::string& name(this->name_);
9839
9840 bool is_pointer;
9841 if (type->points_to() == NULL)
9842 is_pointer = false;
9843 else
9844 {
9845 is_pointer = true;
9846 type = type->points_to();
9847 }
9848 Named_type* nt = type->named_type();
9849 if (nt == NULL)
9850 {
9851 error_at(location,
9852 ("method expression requires named type or "
9853 "pointer to named type"));
9854 return Expression::make_error(location);
9855 }
9856
9857 bool is_ambiguous;
9858 Method* method = nt->method_function(name, &is_ambiguous);
9859 if (method == NULL)
9860 {
9861 if (!is_ambiguous)
9862 error_at(location, "type %<%s%> has no method %<%s%>",
9863 nt->message_name().c_str(),
9864 Gogo::message_name(name).c_str());
9865 else
9866 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
9867 Gogo::message_name(name).c_str(),
9868 nt->message_name().c_str());
9869 return Expression::make_error(location);
9870 }
9871
9872 if (!is_pointer && !method->is_value_method())
9873 {
9874 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
9875 nt->message_name().c_str(),
9876 Gogo::message_name(name).c_str());
9877 return Expression::make_error(location);
9878 }
9879
9880 // Build a new function type in which the receiver becomes the first
9881 // argument.
9882 Function_type* method_type = method->type();
9883 gcc_assert(method_type->is_method());
9884
9885 const char* const receiver_name = "$this";
9886 Typed_identifier_list* parameters = new Typed_identifier_list();
9887 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
9888 location));
9889
9890 const Typed_identifier_list* method_parameters = method_type->parameters();
9891 if (method_parameters != NULL)
9892 {
9893 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9894 p != method_parameters->end();
9895 ++p)
9896 parameters->push_back(*p);
9897 }
9898
9899 const Typed_identifier_list* method_results = method_type->results();
9900 Typed_identifier_list* results;
9901 if (method_results == NULL)
9902 results = NULL;
9903 else
9904 {
9905 results = new Typed_identifier_list();
9906 for (Typed_identifier_list::const_iterator p = method_results->begin();
9907 p != method_results->end();
9908 ++p)
9909 results->push_back(*p);
9910 }
9911
9912 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
9913 location);
9914 if (method_type->is_varargs())
9915 fntype->set_is_varargs();
9916
9917 // We generate methods which always takes a pointer to the receiver
9918 // as their first argument. If this is for a pointer type, we can
9919 // simply reuse the existing function. We use an internal hack to
9920 // get the right type.
9921
9922 if (is_pointer)
9923 {
9924 Named_object* mno = (method->needs_stub_method()
9925 ? method->stub_object()
9926 : method->named_object());
9927 Expression* f = Expression::make_func_reference(mno, NULL, location);
9928 f = Expression::make_cast(fntype, f, location);
9929 Type_conversion_expression* tce =
9930 static_cast<Type_conversion_expression*>(f);
9931 tce->set_may_convert_function_types();
9932 return f;
9933 }
9934
9935 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
9936 location);
9937
9938 Named_object* vno = gogo->lookup(receiver_name, NULL);
9939 gcc_assert(vno != NULL);
9940 Expression* ve = Expression::make_var_reference(vno, location);
9941 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
9942 gcc_assert(bm != NULL && !bm->is_error_expression());
9943
9944 Expression_list* args;
9945 if (method_parameters == NULL)
9946 args = NULL;
9947 else
9948 {
9949 args = new Expression_list();
9950 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9951 p != method_parameters->end();
9952 ++p)
9953 {
9954 vno = gogo->lookup(p->name(), NULL);
9955 gcc_assert(vno != NULL);
9956 args->push_back(Expression::make_var_reference(vno, location));
9957 }
9958 }
9959
9960 Call_expression* call = Expression::make_call(bm, args,
9961 method_type->is_varargs(),
9962 location);
9963
9964 size_t count = call->result_count();
9965 Statement* s;
9966 if (count == 0)
9967 s = Statement::make_statement(call);
9968 else
9969 {
9970 Expression_list* retvals = new Expression_list();
9971 if (count <= 1)
9972 retvals->push_back(call);
9973 else
9974 {
9975 for (size_t i = 0; i < count; ++i)
9976 retvals->push_back(Expression::make_call_result(call, i));
9977 }
9978 s = Statement::make_return_statement(no->func_value()->type()->results(),
9979 retvals, location);
9980 }
9981 gogo->add_statement(s);
9982
9983 gogo->finish_function(location);
9984
9985 return Expression::make_func_reference(no, NULL, location);
9986}
9987
9988// Make a selector expression.
9989
9990Expression*
9991Expression::make_selector(Expression* left, const std::string& name,
9992 source_location location)
9993{
9994 return new Selector_expression(left, name, location);
9995}
9996
9997// Implement the builtin function new.
9998
9999class Allocation_expression : public Expression
10000{
10001 public:
10002 Allocation_expression(Type* type, source_location location)
10003 : Expression(EXPRESSION_ALLOCATION, location),
10004 type_(type)
10005 { }
10006
10007 protected:
10008 int
10009 do_traverse(Traverse* traverse)
10010 { return Type::traverse(this->type_, traverse); }
10011
10012 Type*
10013 do_type()
10014 { return Type::make_pointer_type(this->type_); }
10015
10016 void
10017 do_determine_type(const Type_context*)
10018 { }
10019
10020 void
10021 do_check_types(Gogo*);
10022
10023 Expression*
10024 do_copy()
10025 { return new Allocation_expression(this->type_, this->location()); }
10026
10027 tree
10028 do_get_tree(Translate_context*);
10029
10030 private:
10031 // The type we are allocating.
10032 Type* type_;
10033};
10034
10035// Check the type of an allocation expression.
10036
10037void
10038Allocation_expression::do_check_types(Gogo*)
10039{
10040 if (this->type_->function_type() != NULL)
10041 this->report_error(_("invalid new of function type"));
10042}
10043
10044// Return a tree for an allocation expression.
10045
10046tree
10047Allocation_expression::do_get_tree(Translate_context* context)
10048{
10049 tree type_tree = this->type_->get_tree(context->gogo());
10050 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10051 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10052 this->location());
10053 return fold_convert(build_pointer_type(type_tree), space);
10054}
10055
10056// Make an allocation expression.
10057
10058Expression*
10059Expression::make_allocation(Type* type, source_location location)
10060{
10061 return new Allocation_expression(type, location);
10062}
10063
10064// Implement the builtin function make.
10065
10066class Make_expression : public Expression
10067{
10068 public:
10069 Make_expression(Type* type, Expression_list* args, source_location location)
10070 : Expression(EXPRESSION_MAKE, location),
10071 type_(type), args_(args)
10072 { }
10073
10074 protected:
10075 int
10076 do_traverse(Traverse* traverse);
10077
10078 Type*
10079 do_type()
10080 { return this->type_; }
10081
10082 void
10083 do_determine_type(const Type_context*);
10084
10085 void
10086 do_check_types(Gogo*);
10087
10088 Expression*
10089 do_copy()
10090 {
10091 return new Make_expression(this->type_, this->args_->copy(),
10092 this->location());
10093 }
10094
10095 tree
10096 do_get_tree(Translate_context*);
10097
10098 private:
10099 // The type we are making.
10100 Type* type_;
10101 // The arguments to pass to the make routine.
10102 Expression_list* args_;
10103};
10104
10105// Traversal.
10106
10107int
10108Make_expression::do_traverse(Traverse* traverse)
10109{
10110 if (this->args_ != NULL
10111 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10112 return TRAVERSE_EXIT;
10113 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10114 return TRAVERSE_EXIT;
10115 return TRAVERSE_CONTINUE;
10116}
10117
10118// Set types of arguments.
10119
10120void
10121Make_expression::do_determine_type(const Type_context*)
10122{
10123 if (this->args_ != NULL)
10124 {
10125 Type_context context(Type::lookup_integer_type("int"), false);
10126 for (Expression_list::const_iterator pe = this->args_->begin();
10127 pe != this->args_->end();
10128 ++pe)
10129 (*pe)->determine_type(&context);
10130 }
10131}
10132
10133// Check types for a make expression.
10134
10135void
10136Make_expression::do_check_types(Gogo*)
10137{
10138 if (this->type_->channel_type() == NULL
10139 && this->type_->map_type() == NULL
10140 && (this->type_->array_type() == NULL
10141 || this->type_->array_type()->length() != NULL))
10142 this->report_error(_("invalid type for make function"));
10143 else if (!this->type_->check_make_expression(this->args_, this->location()))
10144 this->set_is_error();
10145}
10146
10147// Return a tree for a make expression.
10148
10149tree
10150Make_expression::do_get_tree(Translate_context* context)
10151{
10152 return this->type_->make_expression_tree(context, this->args_,
10153 this->location());
10154}
10155
10156// Make a make expression.
10157
10158Expression*
10159Expression::make_make(Type* type, Expression_list* args,
10160 source_location location)
10161{
10162 return new Make_expression(type, args, location);
10163}
10164
10165// Construct a struct.
10166
10167class Struct_construction_expression : public Expression
10168{
10169 public:
10170 Struct_construction_expression(Type* type, Expression_list* vals,
10171 source_location location)
10172 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10173 type_(type), vals_(vals)
10174 { }
10175
10176 // Return whether this is a constant initializer.
10177 bool
10178 is_constant_struct() const;
10179
10180 protected:
10181 int
10182 do_traverse(Traverse* traverse);
10183
10184 Type*
10185 do_type()
10186 { return this->type_; }
10187
10188 void
10189 do_determine_type(const Type_context*);
10190
10191 void
10192 do_check_types(Gogo*);
10193
10194 Expression*
10195 do_copy()
10196 {
10197 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10198 this->location());
10199 }
10200
10201 bool
10202 do_is_addressable() const
10203 { return true; }
10204
10205 tree
10206 do_get_tree(Translate_context*);
10207
10208 void
10209 do_export(Export*) const;
10210
10211 private:
10212 // The type of the struct to construct.
10213 Type* type_;
10214 // The list of values, in order of the fields in the struct. A NULL
10215 // entry means that the field should be zero-initialized.
10216 Expression_list* vals_;
10217};
10218
10219// Traversal.
10220
10221int
10222Struct_construction_expression::do_traverse(Traverse* traverse)
10223{
10224 if (this->vals_ != NULL
10225 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10226 return TRAVERSE_EXIT;
10227 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10228 return TRAVERSE_EXIT;
10229 return TRAVERSE_CONTINUE;
10230}
10231
10232// Return whether this is a constant initializer.
10233
10234bool
10235Struct_construction_expression::is_constant_struct() const
10236{
10237 if (this->vals_ == NULL)
10238 return true;
10239 for (Expression_list::const_iterator pv = this->vals_->begin();
10240 pv != this->vals_->end();
10241 ++pv)
10242 {
10243 if (*pv != NULL
10244 && !(*pv)->is_constant()
10245 && (!(*pv)->is_composite_literal()
10246 || (*pv)->is_nonconstant_composite_literal()))
10247 return false;
10248 }
10249
10250 const Struct_field_list* fields = this->type_->struct_type()->fields();
10251 for (Struct_field_list::const_iterator pf = fields->begin();
10252 pf != fields->end();
10253 ++pf)
10254 {
10255 // There are no constant constructors for interfaces.
10256 if (pf->type()->interface_type() != NULL)
10257 return false;
10258 }
10259
10260 return true;
10261}
10262
10263// Final type determination.
10264
10265void
10266Struct_construction_expression::do_determine_type(const Type_context*)
10267{
10268 if (this->vals_ == NULL)
10269 return;
10270 const Struct_field_list* fields = this->type_->struct_type()->fields();
10271 Expression_list::const_iterator pv = this->vals_->begin();
10272 for (Struct_field_list::const_iterator pf = fields->begin();
10273 pf != fields->end();
10274 ++pf, ++pv)
10275 {
10276 if (pv == this->vals_->end())
10277 return;
10278 if (*pv != NULL)
10279 {
10280 Type_context subcontext(pf->type(), false);
10281 (*pv)->determine_type(&subcontext);
10282 }
10283 }
10284}
10285
10286// Check types.
10287
10288void
10289Struct_construction_expression::do_check_types(Gogo*)
10290{
10291 if (this->vals_ == NULL)
10292 return;
10293
10294 Struct_type* st = this->type_->struct_type();
10295 if (this->vals_->size() > st->field_count())
10296 {
10297 this->report_error(_("too many expressions for struct"));
10298 return;
10299 }
10300
10301 const Struct_field_list* fields = st->fields();
10302 Expression_list::const_iterator pv = this->vals_->begin();
10303 int i = 0;
10304 for (Struct_field_list::const_iterator pf = fields->begin();
10305 pf != fields->end();
10306 ++pf, ++pv, ++i)
10307 {
10308 if (pv == this->vals_->end())
10309 {
10310 this->report_error(_("too few expressions for struct"));
10311 break;
10312 }
10313
10314 if (*pv == NULL)
10315 continue;
10316
10317 std::string reason;
10318 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10319 {
10320 if (reason.empty())
10321 error_at((*pv)->location(),
10322 "incompatible type for field %d in struct construction",
10323 i + 1);
10324 else
10325 error_at((*pv)->location(),
10326 ("incompatible type for field %d in "
10327 "struct construction (%s)"),
10328 i + 1, reason.c_str());
10329 this->set_is_error();
10330 }
10331 }
10332 gcc_assert(pv == this->vals_->end());
10333}
10334
10335// Return a tree for constructing a struct.
10336
10337tree
10338Struct_construction_expression::do_get_tree(Translate_context* context)
10339{
10340 Gogo* gogo = context->gogo();
10341
10342 if (this->vals_ == NULL)
10343 return this->type_->get_init_tree(gogo, false);
10344
10345 tree type_tree = this->type_->get_tree(gogo);
10346 if (type_tree == error_mark_node)
10347 return error_mark_node;
10348 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10349
10350 bool is_constant = true;
10351 const Struct_field_list* fields = this->type_->struct_type()->fields();
10352 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10353 fields->size());
10354 Struct_field_list::const_iterator pf = fields->begin();
10355 Expression_list::const_iterator pv = this->vals_->begin();
10356 for (tree field = TYPE_FIELDS(type_tree);
10357 field != NULL_TREE;
10358 field = DECL_CHAIN(field), ++pf)
10359 {
10360 gcc_assert(pf != fields->end());
10361
10362 tree val;
10363 if (pv == this->vals_->end())
10364 val = pf->type()->get_init_tree(gogo, false);
10365 else if (*pv == NULL)
10366 {
10367 val = pf->type()->get_init_tree(gogo, false);
10368 ++pv;
10369 }
10370 else
10371 {
10372 val = Expression::convert_for_assignment(context, pf->type(),
10373 (*pv)->type(),
10374 (*pv)->get_tree(context),
10375 this->location());
10376 ++pv;
10377 }
10378
10379 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10380 return error_mark_node;
10381
10382 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10383 elt->index = field;
10384 elt->value = val;
10385 if (!TREE_CONSTANT(val))
10386 is_constant = false;
10387 }
10388 gcc_assert(pf == fields->end());
10389
10390 tree ret = build_constructor(type_tree, elts);
10391 if (is_constant)
10392 TREE_CONSTANT(ret) = 1;
10393 return ret;
10394}
10395
10396// Export a struct construction.
10397
10398void
10399Struct_construction_expression::do_export(Export* exp) const
10400{
10401 exp->write_c_string("convert(");
10402 exp->write_type(this->type_);
10403 for (Expression_list::const_iterator pv = this->vals_->begin();
10404 pv != this->vals_->end();
10405 ++pv)
10406 {
10407 exp->write_c_string(", ");
10408 if (*pv != NULL)
10409 (*pv)->export_expression(exp);
10410 }
10411 exp->write_c_string(")");
10412}
10413
10414// Make a struct composite literal. This used by the thunk code.
10415
10416Expression*
10417Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10418 source_location location)
10419{
10420 gcc_assert(type->struct_type() != NULL);
10421 return new Struct_construction_expression(type, vals, location);
10422}
10423
10424// Construct an array. This class is not used directly; instead we
10425// use the child classes, Fixed_array_construction_expression and
10426// Open_array_construction_expression.
10427
10428class Array_construction_expression : public Expression
10429{
10430 protected:
10431 Array_construction_expression(Expression_classification classification,
10432 Type* type, Expression_list* vals,
10433 source_location location)
10434 : Expression(classification, location),
10435 type_(type), vals_(vals)
10436 { }
10437
10438 public:
10439 // Return whether this is a constant initializer.
10440 bool
10441 is_constant_array() const;
10442
10443 // Return the number of elements.
10444 size_t
10445 element_count() const
10446 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10447
10448protected:
10449 int
10450 do_traverse(Traverse* traverse);
10451
10452 Type*
10453 do_type()
10454 { return this->type_; }
10455
10456 void
10457 do_determine_type(const Type_context*);
10458
10459 void
10460 do_check_types(Gogo*);
10461
10462 bool
10463 do_is_addressable() const
10464 { return true; }
10465
10466 void
10467 do_export(Export*) const;
10468
10469 // The list of values.
10470 Expression_list*
10471 vals()
10472 { return this->vals_; }
10473
10474 // Get a constructor tree for the array values.
10475 tree
10476 get_constructor_tree(Translate_context* context, tree type_tree);
10477
10478 private:
10479 // The type of the array to construct.
10480 Type* type_;
10481 // The list of values.
10482 Expression_list* vals_;
10483};
10484
10485// Traversal.
10486
10487int
10488Array_construction_expression::do_traverse(Traverse* traverse)
10489{
10490 if (this->vals_ != NULL
10491 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10492 return TRAVERSE_EXIT;
10493 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10494 return TRAVERSE_EXIT;
10495 return TRAVERSE_CONTINUE;
10496}
10497
10498// Return whether this is a constant initializer.
10499
10500bool
10501Array_construction_expression::is_constant_array() const
10502{
10503 if (this->vals_ == NULL)
10504 return true;
10505
10506 // There are no constant constructors for interfaces.
10507 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10508 return false;
10509
10510 for (Expression_list::const_iterator pv = this->vals_->begin();
10511 pv != this->vals_->end();
10512 ++pv)
10513 {
10514 if (*pv != NULL
10515 && !(*pv)->is_constant()
10516 && (!(*pv)->is_composite_literal()
10517 || (*pv)->is_nonconstant_composite_literal()))
10518 return false;
10519 }
10520 return true;
10521}
10522
10523// Final type determination.
10524
10525void
10526Array_construction_expression::do_determine_type(const Type_context*)
10527{
10528 if (this->vals_ == NULL)
10529 return;
10530 Type_context subcontext(this->type_->array_type()->element_type(), false);
10531 for (Expression_list::const_iterator pv = this->vals_->begin();
10532 pv != this->vals_->end();
10533 ++pv)
10534 {
10535 if (*pv != NULL)
10536 (*pv)->determine_type(&subcontext);
10537 }
10538}
10539
10540// Check types.
10541
10542void
10543Array_construction_expression::do_check_types(Gogo*)
10544{
10545 if (this->vals_ == NULL)
10546 return;
10547
10548 Array_type* at = this->type_->array_type();
10549 int i = 0;
10550 Type* element_type = at->element_type();
10551 for (Expression_list::const_iterator pv = this->vals_->begin();
10552 pv != this->vals_->end();
10553 ++pv, ++i)
10554 {
10555 if (*pv != NULL
10556 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10557 {
10558 error_at((*pv)->location(),
10559 "incompatible type for element %d in composite literal",
10560 i + 1);
10561 this->set_is_error();
10562 }
10563 }
10564
10565 Expression* length = at->length();
10566 if (length != NULL)
10567 {
10568 mpz_t val;
10569 mpz_init(val);
10570 Type* type;
10571 if (at->length()->integer_constant_value(true, val, &type))
10572 {
10573 if (this->vals_->size() > mpz_get_ui(val))
10574 this->report_error(_("too many elements in composite literal"));
10575 }
10576 mpz_clear(val);
10577 }
10578}
10579
10580// Get a constructor tree for the array values.
10581
10582tree
10583Array_construction_expression::get_constructor_tree(Translate_context* context,
10584 tree type_tree)
10585{
10586 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10587 (this->vals_ == NULL
10588 ? 0
10589 : this->vals_->size()));
10590 Type* element_type = this->type_->array_type()->element_type();
10591 bool is_constant = true;
10592 if (this->vals_ != NULL)
10593 {
10594 size_t i = 0;
10595 for (Expression_list::const_iterator pv = this->vals_->begin();
10596 pv != this->vals_->end();
10597 ++pv, ++i)
10598 {
10599 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10600 elt->index = size_int(i);
10601 if (*pv == NULL)
10602 elt->value = element_type->get_init_tree(context->gogo(), false);
10603 else
10604 {
10605 tree value_tree = (*pv)->get_tree(context);
10606 elt->value = Expression::convert_for_assignment(context,
10607 element_type,
10608 (*pv)->type(),
10609 value_tree,
10610 this->location());
10611 }
10612 if (elt->value == error_mark_node)
10613 return error_mark_node;
10614 if (!TREE_CONSTANT(elt->value))
10615 is_constant = false;
10616 }
10617 }
10618
10619 tree ret = build_constructor(type_tree, values);
10620 if (is_constant)
10621 TREE_CONSTANT(ret) = 1;
10622 return ret;
10623}
10624
10625// Export an array construction.
10626
10627void
10628Array_construction_expression::do_export(Export* exp) const
10629{
10630 exp->write_c_string("convert(");
10631 exp->write_type(this->type_);
10632 if (this->vals_ != NULL)
10633 {
10634 for (Expression_list::const_iterator pv = this->vals_->begin();
10635 pv != this->vals_->end();
10636 ++pv)
10637 {
10638 exp->write_c_string(", ");
10639 if (*pv != NULL)
10640 (*pv)->export_expression(exp);
10641 }
10642 }
10643 exp->write_c_string(")");
10644}
10645
10646// Construct a fixed array.
10647
10648class Fixed_array_construction_expression :
10649 public Array_construction_expression
10650{
10651 public:
10652 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10653 source_location location)
10654 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10655 type, vals, location)
10656 {
10657 gcc_assert(type->array_type() != NULL
10658 && type->array_type()->length() != NULL);
10659 }
10660
10661 protected:
10662 Expression*
10663 do_copy()
10664 {
10665 return new Fixed_array_construction_expression(this->type(),
10666 (this->vals() == NULL
10667 ? NULL
10668 : this->vals()->copy()),
10669 this->location());
10670 }
10671
10672 tree
10673 do_get_tree(Translate_context*);
10674};
10675
10676// Return a tree for constructing a fixed array.
10677
10678tree
10679Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10680{
10681 return this->get_constructor_tree(context,
10682 this->type()->get_tree(context->gogo()));
10683}
10684
10685// Construct an open array.
10686
10687class Open_array_construction_expression : public Array_construction_expression
10688{
10689 public:
10690 Open_array_construction_expression(Type* type, Expression_list* vals,
10691 source_location location)
10692 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10693 type, vals, location)
10694 {
10695 gcc_assert(type->array_type() != NULL
10696 && type->array_type()->length() == NULL);
10697 }
10698
10699 protected:
10700 // Note that taking the address of an open array literal is invalid.
10701
10702 Expression*
10703 do_copy()
10704 {
10705 return new Open_array_construction_expression(this->type(),
10706 (this->vals() == NULL
10707 ? NULL
10708 : this->vals()->copy()),
10709 this->location());
10710 }
10711
10712 tree
10713 do_get_tree(Translate_context*);
10714};
10715
10716// Return a tree for constructing an open array.
10717
10718tree
10719Open_array_construction_expression::do_get_tree(Translate_context* context)
10720{
10721 Type* element_type = this->type()->array_type()->element_type();
10722 tree element_type_tree = element_type->get_tree(context->gogo());
10723 tree values;
10724 tree length_tree;
10725 if (this->vals() == NULL || this->vals()->empty())
10726 {
10727 // We need to create a unique value.
10728 tree max = size_int(0);
10729 tree constructor_type = build_array_type(element_type_tree,
10730 build_index_type(max));
10731 if (constructor_type == error_mark_node)
10732 return error_mark_node;
10733 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10734 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10735 elt->index = size_int(0);
10736 elt->value = element_type->get_init_tree(context->gogo(), false);
10737 values = build_constructor(constructor_type, vec);
10738 if (TREE_CONSTANT(elt->value))
10739 TREE_CONSTANT(values) = 1;
10740 length_tree = size_int(0);
10741 }
10742 else
10743 {
10744 tree max = size_int(this->vals()->size() - 1);
10745 tree constructor_type = build_array_type(element_type_tree,
10746 build_index_type(max));
10747 if (constructor_type == error_mark_node)
10748 return error_mark_node;
10749 values = this->get_constructor_tree(context, constructor_type);
10750 length_tree = size_int(this->vals()->size());
10751 }
10752
10753 if (values == error_mark_node)
10754 return error_mark_node;
10755
10756 bool is_constant_initializer = TREE_CONSTANT(values);
10757 bool is_in_function = context->function() != NULL;
10758
10759 if (is_constant_initializer)
10760 {
10761 tree tmp = build_decl(this->location(), VAR_DECL,
10762 create_tmp_var_name("C"), TREE_TYPE(values));
10763 DECL_EXTERNAL(tmp) = 0;
10764 TREE_PUBLIC(tmp) = 0;
10765 TREE_STATIC(tmp) = 1;
10766 DECL_ARTIFICIAL(tmp) = 1;
10767 if (is_in_function)
10768 {
10769 // If this is not a function, we will only initialize the
10770 // value once, so we can use this directly rather than
10771 // copying it. In that case we can't make it read-only,
10772 // because the program is permitted to change it.
10773 TREE_READONLY(tmp) = 1;
10774 TREE_CONSTANT(tmp) = 1;
10775 }
10776 DECL_INITIAL(tmp) = values;
10777 rest_of_decl_compilation(tmp, 1, 0);
10778 values = tmp;
10779 }
10780
10781 tree space;
10782 tree set;
10783 if (!is_in_function && is_constant_initializer)
10784 {
10785 // Outside of a function, we know the initializer will only run
10786 // once.
10787 space = build_fold_addr_expr(values);
10788 set = NULL_TREE;
10789 }
10790 else
10791 {
10792 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
10793 space = context->gogo()->allocate_memory(element_type, memsize,
10794 this->location());
10795 space = save_expr(space);
10796
10797 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
10798 tree ref = build_fold_indirect_ref_loc(this->location(), s);
10799 TREE_THIS_NOTRAP(ref) = 1;
10800 set = build2(MODIFY_EXPR, void_type_node, ref, values);
10801 }
10802
10803 // Build a constructor for the open array.
10804
10805 tree type_tree = this->type()->get_tree(context->gogo());
10806 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10807
10808 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10809
10810 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10811 tree field = TYPE_FIELDS(type_tree);
10812 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10813 elt->index = field;
10814 elt->value = fold_convert(TREE_TYPE(field), space);
10815
10816 elt = VEC_quick_push(constructor_elt, init, NULL);
10817 field = DECL_CHAIN(field);
10818 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10819 elt->index = field;
10820 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10821
10822 elt = VEC_quick_push(constructor_elt, init, NULL);
10823 field = DECL_CHAIN(field);
10824 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
10825 elt->index = field;
10826 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10827
10828 tree constructor = build_constructor(type_tree, init);
10829 if (!is_in_function && is_constant_initializer)
10830 TREE_CONSTANT(constructor) = 1;
10831
10832 if (set == NULL_TREE)
10833 return constructor;
10834 else
10835 return build2(COMPOUND_EXPR, type_tree, set, constructor);
10836}
10837
10838// Make a slice composite literal. This is used by the type
10839// descriptor code.
10840
10841Expression*
10842Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
10843 source_location location)
10844{
10845 gcc_assert(type->is_open_array_type());
10846 return new Open_array_construction_expression(type, vals, location);
10847}
10848
10849// Construct a map.
10850
10851class Map_construction_expression : public Expression
10852{
10853 public:
10854 Map_construction_expression(Type* type, Expression_list* vals,
10855 source_location location)
10856 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
10857 type_(type), vals_(vals)
10858 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
10859
10860 protected:
10861 int
10862 do_traverse(Traverse* traverse);
10863
10864 Type*
10865 do_type()
10866 { return this->type_; }
10867
10868 void
10869 do_determine_type(const Type_context*);
10870
10871 void
10872 do_check_types(Gogo*);
10873
10874 Expression*
10875 do_copy()
10876 {
10877 return new Map_construction_expression(this->type_, this->vals_->copy(),
10878 this->location());
10879 }
10880
10881 tree
10882 do_get_tree(Translate_context*);
10883
10884 void
10885 do_export(Export*) const;
10886
10887 private:
10888 // The type of the map to construct.
10889 Type* type_;
10890 // The list of values.
10891 Expression_list* vals_;
10892};
10893
10894// Traversal.
10895
10896int
10897Map_construction_expression::do_traverse(Traverse* traverse)
10898{
10899 if (this->vals_ != NULL
10900 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10901 return TRAVERSE_EXIT;
10902 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10903 return TRAVERSE_EXIT;
10904 return TRAVERSE_CONTINUE;
10905}
10906
10907// Final type determination.
10908
10909void
10910Map_construction_expression::do_determine_type(const Type_context*)
10911{
10912 if (this->vals_ == NULL)
10913 return;
10914
10915 Map_type* mt = this->type_->map_type();
10916 Type_context key_context(mt->key_type(), false);
10917 Type_context val_context(mt->val_type(), false);
10918 for (Expression_list::const_iterator pv = this->vals_->begin();
10919 pv != this->vals_->end();
10920 ++pv)
10921 {
10922 (*pv)->determine_type(&key_context);
10923 ++pv;
10924 (*pv)->determine_type(&val_context);
10925 }
10926}
10927
10928// Check types.
10929
10930void
10931Map_construction_expression::do_check_types(Gogo*)
10932{
10933 if (this->vals_ == NULL)
10934 return;
10935
10936 Map_type* mt = this->type_->map_type();
10937 int i = 0;
10938 Type* key_type = mt->key_type();
10939 Type* val_type = mt->val_type();
10940 for (Expression_list::const_iterator pv = this->vals_->begin();
10941 pv != this->vals_->end();
10942 ++pv, ++i)
10943 {
10944 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
10945 {
10946 error_at((*pv)->location(),
10947 "incompatible type for element %d key in map construction",
10948 i + 1);
10949 this->set_is_error();
10950 }
10951 ++pv;
10952 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
10953 {
10954 error_at((*pv)->location(),
10955 ("incompatible type for element %d value "
10956 "in map construction"),
10957 i + 1);
10958 this->set_is_error();
10959 }
10960 }
10961}
10962
10963// Return a tree for constructing a map.
10964
10965tree
10966Map_construction_expression::do_get_tree(Translate_context* context)
10967{
10968 Gogo* gogo = context->gogo();
10969 source_location loc = this->location();
10970
10971 Map_type* mt = this->type_->map_type();
10972
10973 // Build a struct to hold the key and value.
10974 tree struct_type = make_node(RECORD_TYPE);
10975
10976 Type* key_type = mt->key_type();
10977 tree id = get_identifier("__key");
10978 tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
10979 DECL_CONTEXT(key_field) = struct_type;
10980 TYPE_FIELDS(struct_type) = key_field;
10981
10982 Type* val_type = mt->val_type();
10983 id = get_identifier("__val");
10984 tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
10985 DECL_CONTEXT(val_field) = struct_type;
10986 DECL_CHAIN(key_field) = val_field;
10987
10988 layout_type(struct_type);
10989
10990 bool is_constant = true;
10991 size_t i = 0;
10992 tree valaddr;
10993 tree make_tmp;
10994
10995 if (this->vals_ == NULL || this->vals_->empty())
10996 {
10997 valaddr = null_pointer_node;
10998 make_tmp = NULL_TREE;
10999 }
11000 else
11001 {
11002 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11003 this->vals_->size() / 2);
11004
11005 for (Expression_list::const_iterator pv = this->vals_->begin();
11006 pv != this->vals_->end();
11007 ++pv, ++i)
11008 {
11009 bool one_is_constant = true;
11010
11011 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11012
11013 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11014 elt->index = key_field;
11015 tree val_tree = (*pv)->get_tree(context);
11016 elt->value = Expression::convert_for_assignment(context, key_type,
11017 (*pv)->type(),
11018 val_tree, loc);
11019 if (elt->value == error_mark_node)
11020 return error_mark_node;
11021 if (!TREE_CONSTANT(elt->value))
11022 one_is_constant = false;
11023
11024 ++pv;
11025
11026 elt = VEC_quick_push(constructor_elt, one, NULL);
11027 elt->index = val_field;
11028 val_tree = (*pv)->get_tree(context);
11029 elt->value = Expression::convert_for_assignment(context, val_type,
11030 (*pv)->type(),
11031 val_tree, loc);
11032 if (elt->value == error_mark_node)
11033 return error_mark_node;
11034 if (!TREE_CONSTANT(elt->value))
11035 one_is_constant = false;
11036
11037 elt = VEC_quick_push(constructor_elt, values, NULL);
11038 elt->index = size_int(i);
11039 elt->value = build_constructor(struct_type, one);
11040 if (one_is_constant)
11041 TREE_CONSTANT(elt->value) = 1;
11042 else
11043 is_constant = false;
11044 }
11045
11046 tree index_type = build_index_type(size_int(i - 1));
11047 tree array_type = build_array_type(struct_type, index_type);
11048 tree init = build_constructor(array_type, values);
11049 if (is_constant)
11050 TREE_CONSTANT(init) = 1;
11051 tree tmp;
11052 if (current_function_decl != NULL)
11053 {
11054 tmp = create_tmp_var(array_type, get_name(array_type));
11055 DECL_INITIAL(tmp) = init;
11056 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11057 TREE_ADDRESSABLE(tmp) = 1;
11058 }
11059 else
11060 {
11061 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11062 DECL_EXTERNAL(tmp) = 0;
11063 TREE_PUBLIC(tmp) = 0;
11064 TREE_STATIC(tmp) = 1;
11065 DECL_ARTIFICIAL(tmp) = 1;
11066 if (!TREE_CONSTANT(init))
11067 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11068 init);
11069 else
11070 {
11071 TREE_READONLY(tmp) = 1;
11072 TREE_CONSTANT(tmp) = 1;
11073 DECL_INITIAL(tmp) = init;
11074 make_tmp = NULL_TREE;
11075 }
11076 rest_of_decl_compilation(tmp, 1, 0);
11077 }
11078
11079 valaddr = build_fold_addr_expr(tmp);
11080 }
11081
11082 tree descriptor = gogo->map_descriptor(mt);
11083
11084 tree type_tree = this->type_->get_tree(gogo);
11085
11086 static tree construct_map_fndecl;
11087 tree call = Gogo::call_builtin(&construct_map_fndecl,
11088 loc,
11089 "__go_construct_map",
11090 6,
11091 type_tree,
11092 TREE_TYPE(descriptor),
11093 descriptor,
11094 sizetype,
11095 size_int(i),
11096 sizetype,
11097 TYPE_SIZE_UNIT(struct_type),
11098 sizetype,
11099 byte_position(val_field),
11100 sizetype,
11101 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11102 const_ptr_type_node,
11103 fold_convert(const_ptr_type_node, valaddr));
11104
11105 tree ret;
11106 if (make_tmp == NULL)
11107 ret = call;
11108 else
11109 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11110 return ret;
11111}
11112
11113// Export an array construction.
11114
11115void
11116Map_construction_expression::do_export(Export* exp) const
11117{
11118 exp->write_c_string("convert(");
11119 exp->write_type(this->type_);
11120 for (Expression_list::const_iterator pv = this->vals_->begin();
11121 pv != this->vals_->end();
11122 ++pv)
11123 {
11124 exp->write_c_string(", ");
11125 (*pv)->export_expression(exp);
11126 }
11127 exp->write_c_string(")");
11128}
11129
11130// A general composite literal. This is lowered to a type specific
11131// version.
11132
11133class Composite_literal_expression : public Parser_expression
11134{
11135 public:
11136 Composite_literal_expression(Type* type, int depth, bool has_keys,
11137 Expression_list* vals, source_location location)
11138 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11139 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11140 { }
11141
11142 protected:
11143 int
11144 do_traverse(Traverse* traverse);
11145
11146 Expression*
11147 do_lower(Gogo*, Named_object*, int);
11148
11149 Expression*
11150 do_copy()
11151 {
11152 return new Composite_literal_expression(this->type_, this->depth_,
11153 this->has_keys_,
11154 (this->vals_ == NULL
11155 ? NULL
11156 : this->vals_->copy()),
11157 this->location());
11158 }
11159
11160 private:
11161 Expression*
11162 lower_struct(Type*);
11163
11164 Expression*
11165 lower_array(Type*);
11166
11167 Expression*
11168 make_array(Type*, Expression_list*);
11169
11170 Expression*
11171 lower_map(Type*);
11172
11173 // The type of the composite literal.
11174 Type* type_;
11175 // The depth within a list of composite literals within a composite
11176 // literal, when the type is omitted.
11177 int depth_;
11178 // The values to put in the composite literal.
11179 Expression_list* vals_;
11180 // If this is true, then VALS_ is a list of pairs: a key and a
11181 // value. In an array initializer, a missing key will be NULL.
11182 bool has_keys_;
11183};
11184
11185// Traversal.
11186
11187int
11188Composite_literal_expression::do_traverse(Traverse* traverse)
11189{
11190 if (this->vals_ != NULL
11191 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11192 return TRAVERSE_EXIT;
11193 return Type::traverse(this->type_, traverse);
11194}
11195
11196// Lower a generic composite literal into a specific version based on
11197// the type.
11198
11199Expression*
11200Composite_literal_expression::do_lower(Gogo*, Named_object*, int)
11201{
11202 Type* type = this->type_;
11203
11204 for (int depth = this->depth_; depth > 0; --depth)
11205 {
11206 if (type->array_type() != NULL)
11207 type = type->array_type()->element_type();
11208 else if (type->map_type() != NULL)
11209 type = type->map_type()->val_type();
11210 else
11211 {
11212 if (!type->is_error_type())
11213 error_at(this->location(),
11214 ("may only omit types within composite literals "
11215 "of slice, array, or map type"));
11216 return Expression::make_error(this->location());
11217 }
11218 }
11219
11220 if (type->is_error_type())
11221 return Expression::make_error(this->location());
11222 else if (type->struct_type() != NULL)
11223 return this->lower_struct(type);
11224 else if (type->array_type() != NULL)
11225 return this->lower_array(type);
11226 else if (type->map_type() != NULL)
11227 return this->lower_map(type);
11228 else
11229 {
11230 error_at(this->location(),
11231 ("expected struct, slice, array, or map type "
11232 "for composite literal"));
11233 return Expression::make_error(this->location());
11234 }
11235}
11236
11237// Lower a struct composite literal.
11238
11239Expression*
11240Composite_literal_expression::lower_struct(Type* type)
11241{
11242 source_location location = this->location();
11243 Struct_type* st = type->struct_type();
11244 if (this->vals_ == NULL || !this->has_keys_)
11245 return new Struct_construction_expression(type, this->vals_, location);
11246
11247 size_t field_count = st->field_count();
11248 std::vector<Expression*> vals(field_count);
11249 Expression_list::const_iterator p = this->vals_->begin();
11250 while (p != this->vals_->end())
11251 {
11252 Expression* name_expr = *p;
11253
11254 ++p;
11255 gcc_assert(p != this->vals_->end());
11256 Expression* val = *p;
11257
11258 ++p;
11259
11260 if (name_expr == NULL)
11261 {
11262 error_at(val->location(), "mixture of field and value initializers");
11263 return Expression::make_error(location);
11264 }
11265
11266 bool bad_key = false;
11267 std::string name;
11268 switch (name_expr->classification())
11269 {
11270 case EXPRESSION_UNKNOWN_REFERENCE:
11271 name = name_expr->unknown_expression()->name();
11272 break;
11273
11274 case EXPRESSION_CONST_REFERENCE:
11275 name = static_cast<Const_expression*>(name_expr)->name();
11276 break;
11277
11278 case EXPRESSION_TYPE:
11279 {
11280 Type* t = name_expr->type();
11281 Named_type* nt = t->named_type();
11282 if (nt == NULL)
11283 bad_key = true;
11284 else
11285 name = nt->name();
11286 }
11287 break;
11288
11289 case EXPRESSION_VAR_REFERENCE:
11290 name = name_expr->var_expression()->name();
11291 break;
11292
11293 case EXPRESSION_FUNC_REFERENCE:
11294 name = name_expr->func_expression()->name();
11295 break;
11296
11297 case EXPRESSION_UNARY:
11298 // If there is a local variable around with the same name as
11299 // the field, and this occurs in the closure, then the
11300 // parser may turn the field reference into an indirection
11301 // through the closure. FIXME: This is a mess.
11302 {
11303 bad_key = true;
11304 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11305 if (ue->op() == OPERATOR_MULT)
11306 {
11307 Field_reference_expression* fre =
11308 ue->operand()->field_reference_expression();
11309 if (fre != NULL)
11310 {
11311 Struct_type* st =
11312 fre->expr()->type()->deref()->struct_type();
11313 if (st != NULL)
11314 {
11315 const Struct_field* sf = st->field(fre->field_index());
11316 name = sf->field_name();
11317 char buf[20];
11318 snprintf(buf, sizeof buf, "%u", fre->field_index());
11319 size_t buflen = strlen(buf);
11320 if (name.compare(name.length() - buflen, buflen, buf)
11321 == 0)
11322 {
11323 name = name.substr(0, name.length() - buflen);
11324 bad_key = false;
11325 }
11326 }
11327 }
11328 }
11329 }
11330 break;
11331
11332 default:
11333 bad_key = true;
11334 break;
11335 }
11336 if (bad_key)
11337 {
11338 error_at(name_expr->location(), "expected struct field name");
11339 return Expression::make_error(location);
11340 }
11341
11342 unsigned int index;
11343 const Struct_field* sf = st->find_local_field(name, &index);
11344 if (sf == NULL)
11345 {
11346 error_at(name_expr->location(), "unknown field %qs in %qs",
11347 Gogo::message_name(name).c_str(),
11348 (type->named_type() != NULL
11349 ? type->named_type()->message_name().c_str()
11350 : "unnamed struct"));
11351 return Expression::make_error(location);
11352 }
11353 if (vals[index] != NULL)
11354 {
11355 error_at(name_expr->location(),
11356 "duplicate value for field %qs in %qs",
11357 Gogo::message_name(name).c_str(),
11358 (type->named_type() != NULL
11359 ? type->named_type()->message_name().c_str()
11360 : "unnamed struct"));
11361 return Expression::make_error(location);
11362 }
11363
11364 vals[index] = val;
11365 }
11366
11367 Expression_list* list = new Expression_list;
11368 list->reserve(field_count);
11369 for (size_t i = 0; i < field_count; ++i)
11370 list->push_back(vals[i]);
11371
11372 return new Struct_construction_expression(type, list, location);
11373}
11374
11375// Lower an array composite literal.
11376
11377Expression*
11378Composite_literal_expression::lower_array(Type* type)
11379{
11380 source_location location = this->location();
11381 if (this->vals_ == NULL || !this->has_keys_)
11382 return this->make_array(type, this->vals_);
11383
11384 std::vector<Expression*> vals;
11385 vals.reserve(this->vals_->size());
11386 unsigned long index = 0;
11387 Expression_list::const_iterator p = this->vals_->begin();
11388 while (p != this->vals_->end())
11389 {
11390 Expression* index_expr = *p;
11391
11392 ++p;
11393 gcc_assert(p != this->vals_->end());
11394 Expression* val = *p;
11395
11396 ++p;
11397
11398 if (index_expr != NULL)
11399 {
11400 mpz_t ival;
11401 mpz_init(ival);
11402 Type* dummy;
11403 if (!index_expr->integer_constant_value(true, ival, &dummy))
11404 {
11405 mpz_clear(ival);
11406 error_at(index_expr->location(),
11407 "index expression is not integer constant");
11408 return Expression::make_error(location);
11409 }
11410 if (mpz_sgn(ival) < 0)
11411 {
11412 mpz_clear(ival);
11413 error_at(index_expr->location(), "index expression is negative");
11414 return Expression::make_error(location);
11415 }
11416 index = mpz_get_ui(ival);
11417 if (mpz_cmp_ui(ival, index) != 0)
11418 {
11419 mpz_clear(ival);
11420 error_at(index_expr->location(), "index value overflow");
11421 return Expression::make_error(location);
11422 }
11423 mpz_clear(ival);
11424 }
11425
11426 if (index == vals.size())
11427 vals.push_back(val);
11428 else
11429 {
11430 if (index > vals.size())
11431 {
11432 vals.reserve(index + 32);
11433 vals.resize(index + 1, static_cast<Expression*>(NULL));
11434 }
11435 if (vals[index] != NULL)
11436 {
11437 error_at((index_expr != NULL
11438 ? index_expr->location()
11439 : val->location()),
11440 "duplicate value for index %lu",
11441 index);
11442 return Expression::make_error(location);
11443 }
11444 vals[index] = val;
11445 }
11446
11447 ++index;
11448 }
11449
11450 size_t size = vals.size();
11451 Expression_list* list = new Expression_list;
11452 list->reserve(size);
11453 for (size_t i = 0; i < size; ++i)
11454 list->push_back(vals[i]);
11455
11456 return this->make_array(type, list);
11457}
11458
11459// Actually build the array composite literal. This handles
11460// [...]{...}.
11461
11462Expression*
11463Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11464{
11465 source_location location = this->location();
11466 Array_type* at = type->array_type();
11467 if (at->length() != NULL && at->length()->is_nil_expression())
11468 {
11469 size_t size = vals == NULL ? 0 : vals->size();
11470 mpz_t vlen;
11471 mpz_init_set_ui(vlen, size);
11472 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11473 mpz_clear(vlen);
11474 at = Type::make_array_type(at->element_type(), elen);
11475 type = at;
11476 }
11477 if (at->length() != NULL)
11478 return new Fixed_array_construction_expression(type, vals, location);
11479 else
11480 return new Open_array_construction_expression(type, vals, location);
11481}
11482
11483// Lower a map composite literal.
11484
11485Expression*
11486Composite_literal_expression::lower_map(Type* type)
11487{
11488 source_location location = this->location();
11489 if (this->vals_ != NULL)
11490 {
11491 if (!this->has_keys_)
11492 {
11493 error_at(location, "map composite literal must have keys");
11494 return Expression::make_error(location);
11495 }
11496
11497 for (Expression_list::const_iterator p = this->vals_->begin();
11498 p != this->vals_->end();
11499 p += 2)
11500 {
11501 if (*p == NULL)
11502 {
11503 ++p;
11504 error_at((*p)->location(),
11505 "map composite literal must have keys for every value");
11506 return Expression::make_error(location);
11507 }
11508 }
11509 }
11510
11511 return new Map_construction_expression(type, this->vals_, location);
11512}
11513
11514// Make a composite literal expression.
11515
11516Expression*
11517Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11518 Expression_list* vals,
11519 source_location location)
11520{
11521 return new Composite_literal_expression(type, depth, has_keys, vals,
11522 location);
11523}
11524
11525// Return whether this expression is a composite literal.
11526
11527bool
11528Expression::is_composite_literal() const
11529{
11530 switch (this->classification_)
11531 {
11532 case EXPRESSION_COMPOSITE_LITERAL:
11533 case EXPRESSION_STRUCT_CONSTRUCTION:
11534 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11535 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11536 case EXPRESSION_MAP_CONSTRUCTION:
11537 return true;
11538 default:
11539 return false;
11540 }
11541}
11542
11543// Return whether this expression is a composite literal which is not
11544// constant.
11545
11546bool
11547Expression::is_nonconstant_composite_literal() const
11548{
11549 switch (this->classification_)
11550 {
11551 case EXPRESSION_STRUCT_CONSTRUCTION:
11552 {
11553 const Struct_construction_expression *psce =
11554 static_cast<const Struct_construction_expression*>(this);
11555 return !psce->is_constant_struct();
11556 }
11557 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11558 {
11559 const Fixed_array_construction_expression *pace =
11560 static_cast<const Fixed_array_construction_expression*>(this);
11561 return !pace->is_constant_array();
11562 }
11563 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11564 {
11565 const Open_array_construction_expression *pace =
11566 static_cast<const Open_array_construction_expression*>(this);
11567 return !pace->is_constant_array();
11568 }
11569 case EXPRESSION_MAP_CONSTRUCTION:
11570 return true;
11571 default:
11572 return false;
11573 }
11574}
11575
11576// Return true if this is a reference to a local variable.
11577
11578bool
11579Expression::is_local_variable() const
11580{
11581 const Var_expression* ve = this->var_expression();
11582 if (ve == NULL)
11583 return false;
11584 const Named_object* no = ve->named_object();
11585 return (no->is_result_variable()
11586 || (no->is_variable() && !no->var_value()->is_global()));
11587}
11588
11589// Class Type_guard_expression.
11590
11591// Traversal.
11592
11593int
11594Type_guard_expression::do_traverse(Traverse* traverse)
11595{
11596 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11597 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11598 return TRAVERSE_EXIT;
11599 return TRAVERSE_CONTINUE;
11600}
11601
11602// Check types of a type guard expression. The expression must have
11603// an interface type, but the actual type conversion is checked at run
11604// time.
11605
11606void
11607Type_guard_expression::do_check_types(Gogo*)
11608{
11609 // 6g permits using a type guard with unsafe.pointer; we are
11610 // compatible.
11611 Type* expr_type = this->expr_->type();
11612 if (expr_type->is_unsafe_pointer_type())
11613 {
11614 if (this->type_->points_to() == NULL
11615 && (this->type_->integer_type() == NULL
11616 || (this->type_->forwarded()
11617 != Type::lookup_integer_type("uintptr"))))
11618 this->report_error(_("invalid unsafe.Pointer conversion"));
11619 }
11620 else if (this->type_->is_unsafe_pointer_type())
11621 {
11622 if (expr_type->points_to() == NULL
11623 && (expr_type->integer_type() == NULL
11624 || (expr_type->forwarded()
11625 != Type::lookup_integer_type("uintptr"))))
11626 this->report_error(_("invalid unsafe.Pointer conversion"));
11627 }
11628 else if (expr_type->interface_type() == NULL)
11629 this->report_error(_("type assertion only valid for interface types"));
11630 else if (this->type_->interface_type() == NULL)
11631 {
11632 std::string reason;
11633 if (!expr_type->interface_type()->implements_interface(this->type_,
11634 &reason))
11635 {
11636 if (reason.empty())
11637 this->report_error(_("impossible type assertion: "
11638 "type does not implement interface"));
11639 else
11640 {
11641 error_at(this->location(),
11642 ("impossible type assertion: "
11643 "type does not implement interface (%s)"),
11644 reason.c_str());
11645 this->set_is_error();
11646 }
11647 }
11648 }
11649}
11650
11651// Return a tree for a type guard expression.
11652
11653tree
11654Type_guard_expression::do_get_tree(Translate_context* context)
11655{
11656 Gogo* gogo = context->gogo();
11657 tree expr_tree = this->expr_->get_tree(context);
11658 if (expr_tree == error_mark_node)
11659 return error_mark_node;
11660 Type* expr_type = this->expr_->type();
11661 if ((this->type_->is_unsafe_pointer_type()
11662 && (expr_type->points_to() != NULL
11663 || expr_type->integer_type() != NULL))
11664 || (expr_type->is_unsafe_pointer_type()
11665 && this->type_->points_to() != NULL))
11666 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11667 else if (expr_type->is_unsafe_pointer_type()
11668 && this->type_->integer_type() != NULL)
11669 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11670 else if (this->type_->interface_type() != NULL)
11671 return Expression::convert_interface_to_interface(context, this->type_,
11672 this->expr_->type(),
11673 expr_tree, true,
11674 this->location());
11675 else
11676 return Expression::convert_for_assignment(context, this->type_,
11677 this->expr_->type(), expr_tree,
11678 this->location());
11679}
11680
11681// Make a type guard expression.
11682
11683Expression*
11684Expression::make_type_guard(Expression* expr, Type* type,
11685 source_location location)
11686{
11687 return new Type_guard_expression(expr, type, location);
11688}
11689
11690// Class Heap_composite_expression.
11691
11692// When you take the address of a composite literal, it is allocated
11693// on the heap. This class implements that.
11694
11695class Heap_composite_expression : public Expression
11696{
11697 public:
11698 Heap_composite_expression(Expression* expr, source_location location)
11699 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11700 expr_(expr)
11701 { }
11702
11703 protected:
11704 int
11705 do_traverse(Traverse* traverse)
11706 { return Expression::traverse(&this->expr_, traverse); }
11707
11708 Type*
11709 do_type()
11710 { return Type::make_pointer_type(this->expr_->type()); }
11711
11712 void
11713 do_determine_type(const Type_context*)
11714 { this->expr_->determine_type_no_context(); }
11715
11716 Expression*
11717 do_copy()
11718 {
11719 return Expression::make_heap_composite(this->expr_->copy(),
11720 this->location());
11721 }
11722
11723 tree
11724 do_get_tree(Translate_context*);
11725
11726 // We only export global objects, and the parser does not generate
11727 // this in global scope.
11728 void
11729 do_export(Export*) const
11730 { gcc_unreachable(); }
11731
11732 private:
11733 // The composite literal which is being put on the heap.
11734 Expression* expr_;
11735};
11736
11737// Return a tree which allocates a composite literal on the heap.
11738
11739tree
11740Heap_composite_expression::do_get_tree(Translate_context* context)
11741{
11742 tree expr_tree = this->expr_->get_tree(context);
11743 if (expr_tree == error_mark_node)
11744 return error_mark_node;
11745 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11746 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11747 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11748 expr_size, this->location());
11749 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11750 space = save_expr(space);
11751 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11752 TREE_THIS_NOTRAP(ref) = 1;
11753 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11754 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11755 space);
11756 SET_EXPR_LOCATION(ret, this->location());
11757 return ret;
11758}
11759
11760// Allocate a composite literal on the heap.
11761
11762Expression*
11763Expression::make_heap_composite(Expression* expr, source_location location)
11764{
11765 return new Heap_composite_expression(expr, location);
11766}
11767
11768// Class Receive_expression.
11769
11770// Return the type of a receive expression.
11771
11772Type*
11773Receive_expression::do_type()
11774{
11775 Channel_type* channel_type = this->channel_->type()->channel_type();
11776 if (channel_type == NULL)
11777 return Type::make_error_type();
11778 return channel_type->element_type();
11779}
11780
11781// Check types for a receive expression.
11782
11783void
11784Receive_expression::do_check_types(Gogo*)
11785{
11786 Type* type = this->channel_->type();
11787 if (type->is_error_type())
11788 {
11789 this->set_is_error();
11790 return;
11791 }
11792 if (type->channel_type() == NULL)
11793 {
11794 this->report_error(_("expected channel"));
11795 return;
11796 }
11797 if (!type->channel_type()->may_receive())
11798 {
11799 this->report_error(_("invalid receive on send-only channel"));
11800 return;
11801 }
11802}
11803
11804// Get a tree for a receive expression.
11805
11806tree
11807Receive_expression::do_get_tree(Translate_context* context)
11808{
11809 Channel_type* channel_type = this->channel_->type()->channel_type();
11810 gcc_assert(channel_type != NULL);
11811 Type* element_type = channel_type->element_type();
11812 tree element_type_tree = element_type->get_tree(context->gogo());
11813
11814 tree channel = this->channel_->get_tree(context);
11815 if (element_type_tree == error_mark_node || channel == error_mark_node)
11816 return error_mark_node;
11817
11818 return Gogo::receive_from_channel(element_type_tree, channel,
11819 this->for_select_, this->location());
11820}
11821
11822// Make a receive expression.
11823
11824Receive_expression*
11825Expression::make_receive(Expression* channel, source_location location)
11826{
11827 return new Receive_expression(channel, location);
11828}
11829
11830// Class Send_expression.
11831
11832// Traversal.
11833
11834int
11835Send_expression::do_traverse(Traverse* traverse)
11836{
11837 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
11838 return TRAVERSE_EXIT;
11839 return Expression::traverse(&this->val_, traverse);
11840}
11841
11842// Get the type.
11843
11844Type*
11845Send_expression::do_type()
11846{
11847 return Type::lookup_bool_type();
11848}
11849
11850// Set types.
11851
11852void
11853Send_expression::do_determine_type(const Type_context*)
11854{
11855 this->channel_->determine_type_no_context();
11856
11857 Type* type = this->channel_->type();
11858 Type_context subcontext;
11859 if (type->channel_type() != NULL)
11860 subcontext.type = type->channel_type()->element_type();
11861 this->val_->determine_type(&subcontext);
11862}
11863
11864// Check types.
11865
11866void
11867Send_expression::do_check_types(Gogo*)
11868{
11869 Type* type = this->channel_->type();
11870 if (type->is_error_type())
11871 {
11872 this->set_is_error();
11873 return;
11874 }
11875 Channel_type* channel_type = type->channel_type();
11876 if (channel_type == NULL)
11877 {
11878 error_at(this->location(), "left operand of %<<-%> must be channel");
11879 this->set_is_error();
11880 return;
11881 }
11882 Type* element_type = channel_type->element_type();
11883 if (element_type != NULL
11884 && !Type::are_assignable(element_type, this->val_->type(), NULL))
11885 {
11886 this->report_error(_("incompatible types in send"));
11887 return;
11888 }
11889 if (!channel_type->may_send())
11890 {
11891 this->report_error(_("invalid send on receive-only channel"));
11892 return;
11893 }
11894}
11895
11896// Get a tree for a send expression.
11897
11898tree
11899Send_expression::do_get_tree(Translate_context* context)
11900{
11901 tree channel = this->channel_->get_tree(context);
11902 tree val = this->val_->get_tree(context);
11903 if (channel == error_mark_node || val == error_mark_node)
11904 return error_mark_node;
11905 Channel_type* channel_type = this->channel_->type()->channel_type();
11906 val = Expression::convert_for_assignment(context,
11907 channel_type->element_type(),
11908 this->val_->type(),
11909 val,
11910 this->location());
11911 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
11912 this->for_select_, this->location());
11913}
11914
11915// Make a send expression
11916
11917Send_expression*
11918Expression::make_send(Expression* channel, Expression* val,
11919 source_location location)
11920{
11921 return new Send_expression(channel, val, location);
11922}
11923
11924// An expression which evaluates to a pointer to the type descriptor
11925// of a type.
11926
11927class Type_descriptor_expression : public Expression
11928{
11929 public:
11930 Type_descriptor_expression(Type* type, source_location location)
11931 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
11932 type_(type)
11933 { }
11934
11935 protected:
11936 Type*
11937 do_type()
11938 { return Type::make_type_descriptor_ptr_type(); }
11939
11940 void
11941 do_determine_type(const Type_context*)
11942 { }
11943
11944 Expression*
11945 do_copy()
11946 { return this; }
11947
11948 tree
11949 do_get_tree(Translate_context* context)
11950 { return this->type_->type_descriptor_pointer(context->gogo()); }
11951
11952 private:
11953 // The type for which this is the descriptor.
11954 Type* type_;
11955};
11956
11957// Make a type descriptor expression.
11958
11959Expression*
11960Expression::make_type_descriptor(Type* type, source_location location)
11961{
11962 return new Type_descriptor_expression(type, location);
11963}
11964
11965// An expression which evaluates to some characteristic of a type.
11966// This is only used to initialize fields of a type descriptor. Using
11967// a new expression class is slightly inefficient but gives us a good
11968// separation between the frontend and the middle-end with regard to
11969// how types are laid out.
11970
11971class Type_info_expression : public Expression
11972{
11973 public:
11974 Type_info_expression(Type* type, Type_info type_info)
11975 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
11976 type_(type), type_info_(type_info)
11977 { }
11978
11979 protected:
11980 Type*
11981 do_type();
11982
11983 void
11984 do_determine_type(const Type_context*)
11985 { }
11986
11987 Expression*
11988 do_copy()
11989 { return this; }
11990
11991 tree
11992 do_get_tree(Translate_context* context);
11993
11994 private:
11995 // The type for which we are getting information.
11996 Type* type_;
11997 // What information we want.
11998 Type_info type_info_;
11999};
12000
12001// The type is chosen to match what the type descriptor struct
12002// expects.
12003
12004Type*
12005Type_info_expression::do_type()
12006{
12007 switch (this->type_info_)
12008 {
12009 case TYPE_INFO_SIZE:
12010 return Type::lookup_integer_type("uintptr");
12011 case TYPE_INFO_ALIGNMENT:
12012 case TYPE_INFO_FIELD_ALIGNMENT:
12013 return Type::lookup_integer_type("uint8");
12014 default:
12015 gcc_unreachable();
12016 }
12017}
12018
12019// Return type information in GENERIC.
12020
12021tree
12022Type_info_expression::do_get_tree(Translate_context* context)
12023{
12024 tree type_tree = this->type_->get_tree(context->gogo());
12025 if (type_tree == error_mark_node)
12026 return error_mark_node;
12027
12028 tree val_type_tree = this->type()->get_tree(context->gogo());
12029 gcc_assert(val_type_tree != error_mark_node);
12030
12031 if (this->type_info_ == TYPE_INFO_SIZE)
12032 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12033 TYPE_SIZE_UNIT(type_tree));
12034 else
12035 {
12036 unsigned HOST_WIDE_INT val;
12037 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
12038 val = TYPE_ALIGN_UNIT(type_tree);
12039 else
12040 {
12041 gcc_assert(this->type_info_ == TYPE_INFO_FIELD_ALIGNMENT);
12042 val = TYPE_ALIGN(type_tree);
12043#ifdef BIGGEST_FIELD_ALIGMENT
12044 if (val > BIGGEST_FIELD_ALIGNMENT)
12045 val = BIGGEST_FIELD_ALIGNMENT;
12046#endif
12047#ifdef ADJUST_FIELD_ALIGN
12048 {
12049 tree f = build_decl(UNKNOWN_LOCATION, FIELD_DECL, NULL, type_tree);
12050 val = ADJUST_FIELD_ALIGN(f, val);
12051 }
12052#endif
12053 val /= BITS_PER_UNIT;
12054 }
12055
12056 return build_int_cstu(val_type_tree, val);
12057 }
12058}
12059
12060// Make a type info expression.
12061
12062Expression*
12063Expression::make_type_info(Type* type, Type_info type_info)
12064{
12065 return new Type_info_expression(type, type_info);
12066}
12067
12068// An expression which evaluates to the offset of a field within a
12069// struct. This, like Type_info_expression, q.v., is only used to
12070// initialize fields of a type descriptor.
12071
12072class Struct_field_offset_expression : public Expression
12073{
12074 public:
12075 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12076 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12077 type_(type), field_(field)
12078 { }
12079
12080 protected:
12081 Type*
12082 do_type()
12083 { return Type::lookup_integer_type("uintptr"); }
12084
12085 void
12086 do_determine_type(const Type_context*)
12087 { }
12088
12089 Expression*
12090 do_copy()
12091 { return this; }
12092
12093 tree
12094 do_get_tree(Translate_context* context);
12095
12096 private:
12097 // The type of the struct.
12098 Struct_type* type_;
12099 // The field.
12100 const Struct_field* field_;
12101};
12102
12103// Return a struct field offset in GENERIC.
12104
12105tree
12106Struct_field_offset_expression::do_get_tree(Translate_context* context)
12107{
12108 tree type_tree = this->type_->get_tree(context->gogo());
12109 if (type_tree == error_mark_node)
12110 return error_mark_node;
12111
12112 tree val_type_tree = this->type()->get_tree(context->gogo());
12113 gcc_assert(val_type_tree != error_mark_node);
12114
12115 const Struct_field_list* fields = this->type_->fields();
12116 tree struct_field_tree = TYPE_FIELDS(type_tree);
12117 Struct_field_list::const_iterator p;
12118 for (p = fields->begin();
12119 p != fields->end();
12120 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12121 {
12122 gcc_assert(struct_field_tree != NULL_TREE);
12123 if (&*p == this->field_)
12124 break;
12125 }
12126 gcc_assert(&*p == this->field_);
12127
12128 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12129 byte_position(struct_field_tree));
12130}
12131
12132// Make an expression for a struct field offset.
12133
12134Expression*
12135Expression::make_struct_field_offset(Struct_type* type,
12136 const Struct_field* field)
12137{
12138 return new Struct_field_offset_expression(type, field);
12139}
12140
12141// An expression which evaluates to the address of an unnamed label.
12142
12143class Label_addr_expression : public Expression
12144{
12145 public:
12146 Label_addr_expression(Label* label, source_location location)
12147 : Expression(EXPRESSION_LABEL_ADDR, location),
12148 label_(label)
12149 { }
12150
12151 protected:
12152 Type*
12153 do_type()
12154 { return Type::make_pointer_type(Type::make_void_type()); }
12155
12156 void
12157 do_determine_type(const Type_context*)
12158 { }
12159
12160 Expression*
12161 do_copy()
12162 { return new Label_addr_expression(this->label_, this->location()); }
12163
12164 tree
12165 do_get_tree(Translate_context*)
12166 { return this->label_->get_addr(this->location()); }
12167
12168 private:
12169 // The label whose address we are taking.
12170 Label* label_;
12171};
12172
12173// Make an expression for the address of an unnamed label.
12174
12175Expression*
12176Expression::make_label_addr(Label* label, source_location location)
12177{
12178 return new Label_addr_expression(label, location);
12179}
12180
12181// Import an expression. This comes at the end in order to see the
12182// various class definitions.
12183
12184Expression*
12185Expression::import_expression(Import* imp)
12186{
12187 int c = imp->peek_char();
12188 if (imp->match_c_string("- ")
12189 || imp->match_c_string("! ")
12190 || imp->match_c_string("^ "))
12191 return Unary_expression::do_import(imp);
12192 else if (c == '(')
12193 return Binary_expression::do_import(imp);
12194 else if (imp->match_c_string("true")
12195 || imp->match_c_string("false"))
12196 return Boolean_expression::do_import(imp);
12197 else if (c == '"')
12198 return String_expression::do_import(imp);
12199 else if (c == '-' || (c >= '0' && c <= '9'))
12200 {
12201 // This handles integers, floats and complex constants.
12202 return Integer_expression::do_import(imp);
12203 }
12204 else if (imp->match_c_string("nil"))
12205 return Nil_expression::do_import(imp);
12206 else if (imp->match_c_string("convert"))
12207 return Type_conversion_expression::do_import(imp);
12208 else
12209 {
12210 error_at(imp->location(), "import error: expected expression");
12211 return Expression::make_error(imp->location());
12212 }
12213}
12214
12215// Class Expression_list.
12216
12217// Traverse the list.
12218
12219int
12220Expression_list::traverse(Traverse* traverse)
12221{
12222 for (Expression_list::iterator p = this->begin();
12223 p != this->end();
12224 ++p)
12225 {
12226 if (*p != NULL)
12227 {
12228 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12229 return TRAVERSE_EXIT;
12230 }
12231 }
12232 return TRAVERSE_CONTINUE;
12233}
12234
12235// Copy the list.
12236
12237Expression_list*
12238Expression_list::copy()
12239{
12240 Expression_list* ret = new Expression_list();
12241 for (Expression_list::iterator p = this->begin();
12242 p != this->end();
12243 ++p)
12244 {
12245 if (*p == NULL)
12246 ret->push_back(NULL);
12247 else
12248 ret->push_back((*p)->copy());
12249 }
12250 return ret;
12251}
12252
12253// Return whether an expression list has an error expression.
12254
12255bool
12256Expression_list::contains_error() const
12257{
12258 for (Expression_list::const_iterator p = this->begin();
12259 p != this->end();
12260 ++p)
12261 if (*p != NULL && (*p)->is_error_expression())
12262 return true;
12263 return false;
12264}