]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/go/gofrontend/expressions.cc
Daily bump.
[thirdparty/gcc.git] / gcc / go / gofrontend / expressions.cc
CommitLineData
e440a328 1// expressions.cc -- Go frontend expression handling.
2
3// Copyright 2009 The Go Authors. All rights reserved.
4// Use of this source code is governed by a BSD-style
5// license that can be found in the LICENSE file.
6
7#include "go-system.h"
8
9#include <gmp.h>
10
11#ifndef ENABLE_BUILD_WITH_CXX
12extern "C"
13{
14#endif
15
16#include "toplev.h"
17#include "intl.h"
18#include "tree.h"
19#include "gimple.h"
20#include "tree-iterator.h"
21#include "convert.h"
22#include "real.h"
23#include "realmpfr.h"
e440a328 24
25#ifndef ENABLE_BUILD_WITH_CXX
26}
27#endif
28
29#include "go-c.h"
30#include "gogo.h"
31#include "types.h"
32#include "export.h"
33#include "import.h"
34#include "statements.h"
35#include "lex.h"
36#include "expressions.h"
37
38// Class Expression.
39
40Expression::Expression(Expression_classification classification,
41 source_location location)
42 : classification_(classification), location_(location)
43{
44}
45
46Expression::~Expression()
47{
48}
49
50// If this expression has a constant integer value, return it.
51
52bool
53Expression::integer_constant_value(bool iota_is_constant, mpz_t val,
54 Type** ptype) const
55{
56 *ptype = NULL;
57 return this->do_integer_constant_value(iota_is_constant, val, ptype);
58}
59
60// If this expression has a constant floating point value, return it.
61
62bool
63Expression::float_constant_value(mpfr_t val, Type** ptype) const
64{
65 *ptype = NULL;
66 if (this->do_float_constant_value(val, ptype))
67 return true;
68 mpz_t ival;
69 mpz_init(ival);
70 Type* t;
71 bool ret;
72 if (!this->do_integer_constant_value(false, ival, &t))
73 ret = false;
74 else
75 {
76 mpfr_set_z(val, ival, GMP_RNDN);
77 ret = true;
78 }
79 mpz_clear(ival);
80 return ret;
81}
82
83// If this expression has a constant complex value, return it.
84
85bool
86Expression::complex_constant_value(mpfr_t real, mpfr_t imag,
87 Type** ptype) const
88{
89 *ptype = NULL;
90 if (this->do_complex_constant_value(real, imag, ptype))
91 return true;
92 Type *t;
93 if (this->float_constant_value(real, &t))
94 {
95 mpfr_set_ui(imag, 0, GMP_RNDN);
96 return true;
97 }
98 return false;
99}
100
101// Traverse the expressions.
102
103int
104Expression::traverse(Expression** pexpr, Traverse* traverse)
105{
106 Expression* expr = *pexpr;
107 if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
108 {
109 int t = traverse->expression(pexpr);
110 if (t == TRAVERSE_EXIT)
111 return TRAVERSE_EXIT;
112 else if (t == TRAVERSE_SKIP_COMPONENTS)
113 return TRAVERSE_CONTINUE;
114 }
115 return expr->do_traverse(traverse);
116}
117
118// Traverse subexpressions of this expression.
119
120int
121Expression::traverse_subexpressions(Traverse* traverse)
122{
123 return this->do_traverse(traverse);
124}
125
126// Default implementation for do_traverse for child classes.
127
128int
129Expression::do_traverse(Traverse*)
130{
131 return TRAVERSE_CONTINUE;
132}
133
134// This virtual function is called by the parser if the value of this
135// expression is being discarded. By default, we warn. Expressions
136// with side effects override.
137
138void
139Expression::do_discarding_value()
140{
141 this->warn_about_unused_value();
142}
143
144// This virtual function is called to export expressions. This will
145// only be used by expressions which may be constant.
146
147void
148Expression::do_export(Export*) const
149{
150 gcc_unreachable();
151}
152
153// Warn that the value of the expression is not used.
154
155void
156Expression::warn_about_unused_value()
157{
158 warning_at(this->location(), OPT_Wunused_value, "value computed is not used");
159}
160
161// Note that this expression is an error. This is called by children
162// when they discover an error.
163
164void
165Expression::set_is_error()
166{
167 this->classification_ = EXPRESSION_ERROR;
168}
169
170// For children to call to report an error conveniently.
171
172void
173Expression::report_error(const char* msg)
174{
175 error_at(this->location_, "%s", msg);
176 this->set_is_error();
177}
178
179// Set types of variables and constants. This is implemented by the
180// child class.
181
182void
183Expression::determine_type(const Type_context* context)
184{
185 this->do_determine_type(context);
186}
187
188// Set types when there is no context.
189
190void
191Expression::determine_type_no_context()
192{
193 Type_context context;
194 this->do_determine_type(&context);
195}
196
197// Return a tree handling any conversions which must be done during
198// assignment.
199
200tree
201Expression::convert_for_assignment(Translate_context* context, Type* lhs_type,
202 Type* rhs_type, tree rhs_tree,
203 source_location location)
204{
205 if (lhs_type == rhs_type)
206 return rhs_tree;
207
208 if (lhs_type->is_error_type() || rhs_type->is_error_type())
209 return error_mark_node;
210
211 if (lhs_type->is_undefined() || rhs_type->is_undefined())
212 {
213 // Make sure we report the error.
214 lhs_type->base();
215 rhs_type->base();
216 return error_mark_node;
217 }
218
219 if (rhs_tree == error_mark_node || TREE_TYPE(rhs_tree) == error_mark_node)
220 return error_mark_node;
221
222 Gogo* gogo = context->gogo();
223
224 tree lhs_type_tree = lhs_type->get_tree(gogo);
225 if (lhs_type_tree == error_mark_node)
226 return error_mark_node;
227
228 if (lhs_type->interface_type() != NULL)
229 {
230 if (rhs_type->interface_type() == NULL)
231 return Expression::convert_type_to_interface(context, lhs_type,
232 rhs_type, rhs_tree,
233 location);
234 else
235 return Expression::convert_interface_to_interface(context, lhs_type,
236 rhs_type, rhs_tree,
237 false, location);
238 }
239 else if (rhs_type->interface_type() != NULL)
240 return Expression::convert_interface_to_type(context, lhs_type, rhs_type,
241 rhs_tree, location);
242 else if (lhs_type->is_open_array_type()
243 && rhs_type->is_nil_type())
244 {
245 // Assigning nil to an open array.
246 gcc_assert(TREE_CODE(lhs_type_tree) == RECORD_TYPE);
247
248 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
249
250 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
251 tree field = TYPE_FIELDS(lhs_type_tree);
252 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
253 "__values") == 0);
254 elt->index = field;
255 elt->value = fold_convert(TREE_TYPE(field), null_pointer_node);
256
257 elt = VEC_quick_push(constructor_elt, init, NULL);
258 field = DECL_CHAIN(field);
259 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
260 "__count") == 0);
261 elt->index = field;
262 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
263
264 elt = VEC_quick_push(constructor_elt, init, NULL);
265 field = DECL_CHAIN(field);
266 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
267 "__capacity") == 0);
268 elt->index = field;
269 elt->value = fold_convert(TREE_TYPE(field), integer_zero_node);
270
271 tree val = build_constructor(lhs_type_tree, init);
272 TREE_CONSTANT(val) = 1;
273
274 return val;
275 }
276 else if (rhs_type->is_nil_type())
277 {
278 // The left hand side should be a pointer type at the tree
279 // level.
280 gcc_assert(POINTER_TYPE_P(lhs_type_tree));
281 return fold_convert(lhs_type_tree, null_pointer_node);
282 }
283 else if (lhs_type_tree == TREE_TYPE(rhs_tree))
284 {
285 // No conversion is needed.
286 return rhs_tree;
287 }
288 else if (POINTER_TYPE_P(lhs_type_tree)
289 || INTEGRAL_TYPE_P(lhs_type_tree)
290 || SCALAR_FLOAT_TYPE_P(lhs_type_tree)
291 || COMPLEX_FLOAT_TYPE_P(lhs_type_tree))
292 return fold_convert_loc(location, lhs_type_tree, rhs_tree);
293 else if (TREE_CODE(lhs_type_tree) == RECORD_TYPE
294 && TREE_CODE(TREE_TYPE(rhs_tree)) == RECORD_TYPE)
295 {
296 // This conversion must be permitted by Go, or we wouldn't have
297 // gotten here.
298 gcc_assert(int_size_in_bytes(lhs_type_tree)
299 == int_size_in_bytes(TREE_TYPE(rhs_tree)));
300 return fold_build1_loc(location, VIEW_CONVERT_EXPR, lhs_type_tree,
301 rhs_tree);
302 }
303 else
304 {
305 gcc_assert(useless_type_conversion_p(lhs_type_tree, TREE_TYPE(rhs_tree)));
306 return rhs_tree;
307 }
308}
309
310// Return a tree for a conversion from a non-interface type to an
311// interface type.
312
313tree
314Expression::convert_type_to_interface(Translate_context* context,
315 Type* lhs_type, Type* rhs_type,
316 tree rhs_tree, source_location location)
317{
318 Gogo* gogo = context->gogo();
319 Interface_type* lhs_interface_type = lhs_type->interface_type();
320 bool lhs_is_empty = lhs_interface_type->is_empty();
321
322 // Since RHS_TYPE is a static type, we can create the interface
323 // method table at compile time.
324
325 // When setting an interface to nil, we just set both fields to
326 // NULL.
327 if (rhs_type->is_nil_type())
328 return lhs_type->get_init_tree(gogo, false);
329
330 // This should have been checked already.
331 gcc_assert(lhs_interface_type->implements_interface(rhs_type, NULL));
332
333 tree lhs_type_tree = lhs_type->get_tree(gogo);
334 if (lhs_type_tree == error_mark_node)
335 return error_mark_node;
336
337 // An interface is a tuple. If LHS_TYPE is an empty interface type,
338 // then the first field is the type descriptor for RHS_TYPE.
339 // Otherwise it is the interface method table for RHS_TYPE.
340 tree first_field_value;
341 if (lhs_is_empty)
342 first_field_value = rhs_type->type_descriptor_pointer(gogo);
343 else
344 {
345 // Build the interface method table for this interface and this
346 // object type: a list of function pointers for each interface
347 // method.
348 Named_type* rhs_named_type = rhs_type->named_type();
349 bool is_pointer = false;
350 if (rhs_named_type == NULL)
351 {
352 rhs_named_type = rhs_type->deref()->named_type();
353 is_pointer = true;
354 }
355 tree method_table;
356 if (rhs_named_type == NULL)
357 method_table = null_pointer_node;
358 else
359 method_table =
360 rhs_named_type->interface_method_table(gogo, lhs_interface_type,
361 is_pointer);
362 first_field_value = fold_convert_loc(location, const_ptr_type_node,
363 method_table);
364 }
365
366 // Start building a constructor for the value we will return.
367
368 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
369
370 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
371 tree field = TYPE_FIELDS(lhs_type_tree);
372 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
373 (lhs_is_empty ? "__type_descriptor" : "__methods")) == 0);
374 elt->index = field;
375 elt->value = fold_convert_loc(location, TREE_TYPE(field), first_field_value);
376
377 elt = VEC_quick_push(constructor_elt, init, NULL);
378 field = DECL_CHAIN(field);
379 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
380 elt->index = field;
381
382 if (rhs_type->points_to() != NULL)
383 {
384 // We are assigning a pointer to the interface; the interface
385 // holds the pointer itself.
386 elt->value = rhs_tree;
387 return build_constructor(lhs_type_tree, init);
388 }
389
390 // We are assigning a non-pointer value to the interface; the
391 // interface gets a copy of the value in the heap.
392
393 tree object_size = TYPE_SIZE_UNIT(TREE_TYPE(rhs_tree));
394
395 tree space = gogo->allocate_memory(rhs_type, object_size, location);
396 space = fold_convert_loc(location, build_pointer_type(TREE_TYPE(rhs_tree)),
397 space);
398 space = save_expr(space);
399
400 tree ref = build_fold_indirect_ref_loc(location, space);
401 TREE_THIS_NOTRAP(ref) = 1;
402 tree set = fold_build2_loc(location, MODIFY_EXPR, void_type_node,
403 ref, rhs_tree);
404
405 elt->value = fold_convert_loc(location, TREE_TYPE(field), space);
406
407 return build2(COMPOUND_EXPR, lhs_type_tree, set,
408 build_constructor(lhs_type_tree, init));
409}
410
411// Return a tree for the type descriptor of RHS_TREE, which has
412// interface type RHS_TYPE. If RHS_TREE is nil the result will be
413// NULL.
414
415tree
416Expression::get_interface_type_descriptor(Translate_context*,
417 Type* rhs_type, tree rhs_tree,
418 source_location location)
419{
420 tree rhs_type_tree = TREE_TYPE(rhs_tree);
421 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
422 tree rhs_field = TYPE_FIELDS(rhs_type_tree);
423 tree v = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
424 NULL_TREE);
425 if (rhs_type->interface_type()->is_empty())
426 {
427 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)),
428 "__type_descriptor") == 0);
429 return v;
430 }
431
432 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__methods")
433 == 0);
434 gcc_assert(POINTER_TYPE_P(TREE_TYPE(v)));
435 v = save_expr(v);
436 tree v1 = build_fold_indirect_ref_loc(location, v);
437 gcc_assert(TREE_CODE(TREE_TYPE(v1)) == RECORD_TYPE);
438 tree f = TYPE_FIELDS(TREE_TYPE(v1));
439 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(f)), "__type_descriptor")
440 == 0);
441 v1 = build3(COMPONENT_REF, TREE_TYPE(f), v1, f, NULL_TREE);
442
443 tree eq = fold_build2_loc(location, EQ_EXPR, boolean_type_node, v,
444 fold_convert_loc(location, TREE_TYPE(v),
445 null_pointer_node));
446 tree n = fold_convert_loc(location, TREE_TYPE(v1), null_pointer_node);
447 return fold_build3_loc(location, COND_EXPR, TREE_TYPE(v1),
448 eq, n, v1);
449}
450
451// Return a tree for the conversion of an interface type to an
452// interface type.
453
454tree
455Expression::convert_interface_to_interface(Translate_context* context,
456 Type *lhs_type, Type *rhs_type,
457 tree rhs_tree, bool for_type_guard,
458 source_location location)
459{
460 Gogo* gogo = context->gogo();
461 Interface_type* lhs_interface_type = lhs_type->interface_type();
462 bool lhs_is_empty = lhs_interface_type->is_empty();
463
464 tree lhs_type_tree = lhs_type->get_tree(gogo);
465 if (lhs_type_tree == error_mark_node)
466 return error_mark_node;
467
468 // In the general case this requires runtime examination of the type
469 // method table to match it up with the interface methods.
470
471 // FIXME: If all of the methods in the right hand side interface
472 // also appear in the left hand side interface, then we don't need
473 // to do a runtime check, although we still need to build a new
474 // method table.
475
476 // Get the type descriptor for the right hand side. This will be
477 // NULL for a nil interface.
478
479 if (!DECL_P(rhs_tree))
480 rhs_tree = save_expr(rhs_tree);
481
482 tree rhs_type_descriptor =
483 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
484 location);
485
486 // The result is going to be a two element constructor.
487
488 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 2);
489
490 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
491 tree field = TYPE_FIELDS(lhs_type_tree);
492 elt->index = field;
493
494 if (for_type_guard)
495 {
496 // A type assertion fails when converting a nil interface.
497 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
498 static tree assert_interface_decl;
499 tree call = Gogo::call_builtin(&assert_interface_decl,
500 location,
501 "__go_assert_interface",
502 2,
503 ptr_type_node,
504 TREE_TYPE(lhs_type_descriptor),
505 lhs_type_descriptor,
506 TREE_TYPE(rhs_type_descriptor),
507 rhs_type_descriptor);
508 // This will panic if the interface conversion fails.
509 TREE_NOTHROW(assert_interface_decl) = 0;
510 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
511 }
512 else if (lhs_is_empty)
513 {
514 // A convertion to an empty interface always succeeds, and the
515 // first field is just the type descriptor of the object.
516 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),
517 "__type_descriptor") == 0);
518 gcc_assert(TREE_TYPE(field) == TREE_TYPE(rhs_type_descriptor));
519 elt->value = rhs_type_descriptor;
520 }
521 else
522 {
523 // A conversion to a non-empty interface may fail, but unlike a
524 // type assertion converting nil will always succeed.
525 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods")
526 == 0);
527 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
528 static tree convert_interface_decl;
529 tree call = Gogo::call_builtin(&convert_interface_decl,
530 location,
531 "__go_convert_interface",
532 2,
533 ptr_type_node,
534 TREE_TYPE(lhs_type_descriptor),
535 lhs_type_descriptor,
536 TREE_TYPE(rhs_type_descriptor),
537 rhs_type_descriptor);
538 // This will panic if the interface conversion fails.
539 TREE_NOTHROW(convert_interface_decl) = 0;
540 elt->value = fold_convert_loc(location, TREE_TYPE(field), call);
541 }
542
543 // The second field is simply the object pointer.
544
545 elt = VEC_quick_push(constructor_elt, init, NULL);
546 field = DECL_CHAIN(field);
547 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
548 elt->index = field;
549
550 tree rhs_type_tree = TREE_TYPE(rhs_tree);
551 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
552 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
553 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
554 elt->value = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
555 NULL_TREE);
556
557 return build_constructor(lhs_type_tree, init);
558}
559
560// Return a tree for the conversion of an interface type to a
561// non-interface type.
562
563tree
564Expression::convert_interface_to_type(Translate_context* context,
565 Type *lhs_type, Type* rhs_type,
566 tree rhs_tree, source_location location)
567{
568 Gogo* gogo = context->gogo();
569 tree rhs_type_tree = TREE_TYPE(rhs_tree);
570
571 tree lhs_type_tree = lhs_type->get_tree(gogo);
572 if (lhs_type_tree == error_mark_node)
573 return error_mark_node;
574
575 // Call a function to check that the type is valid. The function
576 // will panic with an appropriate runtime type error if the type is
577 // not valid.
578
579 tree lhs_type_descriptor = lhs_type->type_descriptor_pointer(gogo);
580
581 if (!DECL_P(rhs_tree))
582 rhs_tree = save_expr(rhs_tree);
583
584 tree rhs_type_descriptor =
585 Expression::get_interface_type_descriptor(context, rhs_type, rhs_tree,
586 location);
587
588 tree rhs_inter_descriptor = rhs_type->type_descriptor_pointer(gogo);
589
590 static tree check_interface_type_decl;
591 tree call = Gogo::call_builtin(&check_interface_type_decl,
592 location,
593 "__go_check_interface_type",
594 3,
595 void_type_node,
596 TREE_TYPE(lhs_type_descriptor),
597 lhs_type_descriptor,
598 TREE_TYPE(rhs_type_descriptor),
599 rhs_type_descriptor,
600 TREE_TYPE(rhs_inter_descriptor),
601 rhs_inter_descriptor);
602 // This call will panic if the conversion is invalid.
603 TREE_NOTHROW(check_interface_type_decl) = 0;
604
605 // If the call succeeds, pull out the value.
606 gcc_assert(TREE_CODE(rhs_type_tree) == RECORD_TYPE);
607 tree rhs_field = DECL_CHAIN(TYPE_FIELDS(rhs_type_tree));
608 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(rhs_field)), "__object") == 0);
609 tree val = build3(COMPONENT_REF, TREE_TYPE(rhs_field), rhs_tree, rhs_field,
610 NULL_TREE);
611
612 // If the value is a pointer, then it is the value we want.
613 // Otherwise it points to the value.
614 if (lhs_type->points_to() == NULL)
615 {
616 val = fold_convert_loc(location, build_pointer_type(lhs_type_tree), val);
617 val = build_fold_indirect_ref_loc(location, val);
618 }
619
620 return build2(COMPOUND_EXPR, lhs_type_tree, call,
621 fold_convert_loc(location, lhs_type_tree, val));
622}
623
624// Convert an expression to a tree. This is implemented by the child
625// class. Not that it is not in general safe to call this multiple
626// times for a single expression, but that we don't catch such errors.
627
628tree
629Expression::get_tree(Translate_context* context)
630{
631 // The child may have marked this expression as having an error.
632 if (this->classification_ == EXPRESSION_ERROR)
633 return error_mark_node;
634
635 return this->do_get_tree(context);
636}
637
638// Return a tree for VAL in TYPE.
639
640tree
641Expression::integer_constant_tree(mpz_t val, tree type)
642{
643 if (type == error_mark_node)
644 return error_mark_node;
645 else if (TREE_CODE(type) == INTEGER_TYPE)
646 return double_int_to_tree(type,
647 mpz_get_double_int(type, val, true));
648 else if (TREE_CODE(type) == REAL_TYPE)
649 {
650 mpfr_t fval;
651 mpfr_init_set_z(fval, val, GMP_RNDN);
652 tree ret = Expression::float_constant_tree(fval, type);
653 mpfr_clear(fval);
654 return ret;
655 }
656 else if (TREE_CODE(type) == COMPLEX_TYPE)
657 {
658 mpfr_t fval;
659 mpfr_init_set_z(fval, val, GMP_RNDN);
660 tree real = Expression::float_constant_tree(fval, TREE_TYPE(type));
661 mpfr_clear(fval);
662 tree imag = build_real_from_int_cst(TREE_TYPE(type),
663 integer_zero_node);
664 return build_complex(type, real, imag);
665 }
666 else
667 gcc_unreachable();
668}
669
670// Return a tree for VAL in TYPE.
671
672tree
673Expression::float_constant_tree(mpfr_t val, tree type)
674{
675 if (type == error_mark_node)
676 return error_mark_node;
677 else if (TREE_CODE(type) == INTEGER_TYPE)
678 {
679 mpz_t ival;
680 mpz_init(ival);
681 mpfr_get_z(ival, val, GMP_RNDN);
682 tree ret = Expression::integer_constant_tree(ival, type);
683 mpz_clear(ival);
684 return ret;
685 }
686 else if (TREE_CODE(type) == REAL_TYPE)
687 {
688 REAL_VALUE_TYPE r1;
689 real_from_mpfr(&r1, val, type, GMP_RNDN);
690 REAL_VALUE_TYPE r2;
691 real_convert(&r2, TYPE_MODE(type), &r1);
692 return build_real(type, r2);
693 }
694 else if (TREE_CODE(type) == COMPLEX_TYPE)
695 {
696 REAL_VALUE_TYPE r1;
697 real_from_mpfr(&r1, val, TREE_TYPE(type), GMP_RNDN);
698 REAL_VALUE_TYPE r2;
699 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
700 tree imag = build_real_from_int_cst(TREE_TYPE(type),
701 integer_zero_node);
702 return build_complex(type, build_real(TREE_TYPE(type), r2), imag);
703 }
704 else
705 gcc_unreachable();
706}
707
708// Return a tree for REAL/IMAG in TYPE.
709
710tree
711Expression::complex_constant_tree(mpfr_t real, mpfr_t imag, tree type)
712{
713 if (TREE_CODE(type) == COMPLEX_TYPE)
714 {
715 REAL_VALUE_TYPE r1;
716 real_from_mpfr(&r1, real, TREE_TYPE(type), GMP_RNDN);
717 REAL_VALUE_TYPE r2;
718 real_convert(&r2, TYPE_MODE(TREE_TYPE(type)), &r1);
719
720 REAL_VALUE_TYPE r3;
721 real_from_mpfr(&r3, imag, TREE_TYPE(type), GMP_RNDN);
722 REAL_VALUE_TYPE r4;
723 real_convert(&r4, TYPE_MODE(TREE_TYPE(type)), &r3);
724
725 return build_complex(type, build_real(TREE_TYPE(type), r2),
726 build_real(TREE_TYPE(type), r4));
727 }
728 else
729 gcc_unreachable();
730}
731
732// Return a tree which evaluates to true if VAL, of arbitrary integer
733// type, is negative or is more than the maximum value of BOUND_TYPE.
734// If SOFAR is not NULL, it is or'red into the result. The return
735// value may be NULL if SOFAR is NULL.
736
737tree
738Expression::check_bounds(tree val, tree bound_type, tree sofar,
739 source_location loc)
740{
741 tree val_type = TREE_TYPE(val);
742 tree ret = NULL_TREE;
743
744 if (!TYPE_UNSIGNED(val_type))
745 {
746 ret = fold_build2_loc(loc, LT_EXPR, boolean_type_node, val,
747 build_int_cst(val_type, 0));
748 if (ret == boolean_false_node)
749 ret = NULL_TREE;
750 }
751
752 if ((TYPE_UNSIGNED(val_type) && !TYPE_UNSIGNED(bound_type))
753 || TYPE_SIZE(val_type) > TYPE_SIZE(bound_type))
754 {
755 tree max = TYPE_MAX_VALUE(bound_type);
756 tree big = fold_build2_loc(loc, GT_EXPR, boolean_type_node, val,
757 fold_convert_loc(loc, val_type, max));
758 if (big == boolean_false_node)
759 ;
760 else if (ret == NULL_TREE)
761 ret = big;
762 else
763 ret = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
764 ret, big);
765 }
766
767 if (ret == NULL_TREE)
768 return sofar;
769 else if (sofar == NULL_TREE)
770 return ret;
771 else
772 return fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
773 sofar, ret);
774}
775
776// Error expressions. This are used to avoid cascading errors.
777
778class Error_expression : public Expression
779{
780 public:
781 Error_expression(source_location location)
782 : Expression(EXPRESSION_ERROR, location)
783 { }
784
785 protected:
786 bool
787 do_is_constant() const
788 { return true; }
789
790 bool
791 do_integer_constant_value(bool, mpz_t val, Type**) const
792 {
793 mpz_set_ui(val, 0);
794 return true;
795 }
796
797 bool
798 do_float_constant_value(mpfr_t val, Type**) const
799 {
800 mpfr_set_ui(val, 0, GMP_RNDN);
801 return true;
802 }
803
804 bool
805 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const
806 {
807 mpfr_set_ui(real, 0, GMP_RNDN);
808 mpfr_set_ui(imag, 0, GMP_RNDN);
809 return true;
810 }
811
812 void
813 do_discarding_value()
814 { }
815
816 Type*
817 do_type()
818 { return Type::make_error_type(); }
819
820 void
821 do_determine_type(const Type_context*)
822 { }
823
824 Expression*
825 do_copy()
826 { return this; }
827
828 bool
829 do_is_addressable() const
830 { return true; }
831
832 tree
833 do_get_tree(Translate_context*)
834 { return error_mark_node; }
835};
836
837Expression*
838Expression::make_error(source_location location)
839{
840 return new Error_expression(location);
841}
842
843// An expression which is really a type. This is used during parsing.
844// It is an error if these survive after lowering.
845
846class
847Type_expression : public Expression
848{
849 public:
850 Type_expression(Type* type, source_location location)
851 : Expression(EXPRESSION_TYPE, location),
852 type_(type)
853 { }
854
855 protected:
856 int
857 do_traverse(Traverse* traverse)
858 { return Type::traverse(this->type_, traverse); }
859
860 Type*
861 do_type()
862 { return this->type_; }
863
864 void
865 do_determine_type(const Type_context*)
866 { }
867
868 void
869 do_check_types(Gogo*)
870 { this->report_error(_("invalid use of type")); }
871
872 Expression*
873 do_copy()
874 { return this; }
875
876 tree
877 do_get_tree(Translate_context*)
878 { gcc_unreachable(); }
879
880 private:
881 // The type which we are representing as an expression.
882 Type* type_;
883};
884
885Expression*
886Expression::make_type(Type* type, source_location location)
887{
888 return new Type_expression(type, location);
889}
890
891// Class Var_expression.
892
893// Lower a variable expression. Here we just make sure that the
894// initialization expression of the variable has been lowered. This
895// ensures that we will be able to determine the type of the variable
896// if necessary.
897
898Expression*
899Var_expression::do_lower(Gogo* gogo, Named_object* function, int)
900{
901 if (this->variable_->is_variable())
902 {
903 Variable* var = this->variable_->var_value();
904 // This is either a local variable or a global variable. A
905 // reference to a variable which is local to an enclosing
906 // function will be a reference to a field in a closure.
907 if (var->is_global())
908 function = NULL;
909 var->lower_init_expression(gogo, function);
910 }
911 return this;
912}
913
914// Return the name of the variable.
915
916const std::string&
917Var_expression::name() const
918{
919 return this->variable_->name();
920}
921
922// Return the type of a reference to a variable.
923
924Type*
925Var_expression::do_type()
926{
927 if (this->variable_->is_variable())
928 return this->variable_->var_value()->type();
929 else if (this->variable_->is_result_variable())
930 return this->variable_->result_var_value()->type();
931 else
932 gcc_unreachable();
933}
934
935// Something takes the address of this variable. This means that we
936// may want to move the variable onto the heap.
937
938void
939Var_expression::do_address_taken(bool escapes)
940{
941 if (!escapes)
942 ;
943 else if (this->variable_->is_variable())
944 this->variable_->var_value()->set_address_taken();
945 else if (this->variable_->is_result_variable())
946 this->variable_->result_var_value()->set_address_taken();
947 else
948 gcc_unreachable();
949}
950
951// Get the tree for a reference to a variable.
952
953tree
954Var_expression::do_get_tree(Translate_context* context)
955{
956 return this->variable_->get_tree(context->gogo(), context->function());
957}
958
959// Make a reference to a variable in an expression.
960
961Expression*
962Expression::make_var_reference(Named_object* var, source_location location)
963{
964 if (var->is_sink())
965 return Expression::make_sink(location);
966
967 // FIXME: Creating a new object for each reference to a variable is
968 // wasteful.
969 return new Var_expression(var, location);
970}
971
972// Class Temporary_reference_expression.
973
974// The type.
975
976Type*
977Temporary_reference_expression::do_type()
978{
979 return this->statement_->type();
980}
981
982// Called if something takes the address of this temporary variable.
983// We never have to move temporary variables to the heap, but we do
984// need to know that they must live in the stack rather than in a
985// register.
986
987void
988Temporary_reference_expression::do_address_taken(bool)
989{
990 this->statement_->set_is_address_taken();
991}
992
993// Get a tree referring to the variable.
994
995tree
996Temporary_reference_expression::do_get_tree(Translate_context*)
997{
998 return this->statement_->get_decl();
999}
1000
1001// Make a reference to a temporary variable.
1002
1003Expression*
1004Expression::make_temporary_reference(Temporary_statement* statement,
1005 source_location location)
1006{
1007 return new Temporary_reference_expression(statement, location);
1008}
1009
1010// A sink expression--a use of the blank identifier _.
1011
1012class Sink_expression : public Expression
1013{
1014 public:
1015 Sink_expression(source_location location)
1016 : Expression(EXPRESSION_SINK, location),
1017 type_(NULL), var_(NULL_TREE)
1018 { }
1019
1020 protected:
1021 void
1022 do_discarding_value()
1023 { }
1024
1025 Type*
1026 do_type();
1027
1028 void
1029 do_determine_type(const Type_context*);
1030
1031 Expression*
1032 do_copy()
1033 { return new Sink_expression(this->location()); }
1034
1035 tree
1036 do_get_tree(Translate_context*);
1037
1038 private:
1039 // The type of this sink variable.
1040 Type* type_;
1041 // The temporary variable we generate.
1042 tree var_;
1043};
1044
1045// Return the type of a sink expression.
1046
1047Type*
1048Sink_expression::do_type()
1049{
1050 if (this->type_ == NULL)
1051 return Type::make_sink_type();
1052 return this->type_;
1053}
1054
1055// Determine the type of a sink expression.
1056
1057void
1058Sink_expression::do_determine_type(const Type_context* context)
1059{
1060 if (context->type != NULL)
1061 this->type_ = context->type;
1062}
1063
1064// Return a temporary variable for a sink expression. This will
1065// presumably be a write-only variable which the middle-end will drop.
1066
1067tree
1068Sink_expression::do_get_tree(Translate_context* context)
1069{
1070 if (this->var_ == NULL_TREE)
1071 {
1072 gcc_assert(this->type_ != NULL && !this->type_->is_sink_type());
1073 this->var_ = create_tmp_var(this->type_->get_tree(context->gogo()),
1074 "blank");
1075 }
1076 return this->var_;
1077}
1078
1079// Make a sink expression.
1080
1081Expression*
1082Expression::make_sink(source_location location)
1083{
1084 return new Sink_expression(location);
1085}
1086
1087// Class Func_expression.
1088
1089// FIXME: Can a function expression appear in a constant expression?
1090// The value is unchanging. Initializing a constant to the address of
1091// a function seems like it could work, though there might be little
1092// point to it.
1093
1094// Return the name of the function.
1095
1096const std::string&
1097Func_expression::name() const
1098{
1099 return this->function_->name();
1100}
1101
1102// Traversal.
1103
1104int
1105Func_expression::do_traverse(Traverse* traverse)
1106{
1107 return (this->closure_ == NULL
1108 ? TRAVERSE_CONTINUE
1109 : Expression::traverse(&this->closure_, traverse));
1110}
1111
1112// Return the type of a function expression.
1113
1114Type*
1115Func_expression::do_type()
1116{
1117 if (this->function_->is_function())
1118 return this->function_->func_value()->type();
1119 else if (this->function_->is_function_declaration())
1120 return this->function_->func_declaration_value()->type();
1121 else
1122 gcc_unreachable();
1123}
1124
1125// Get the tree for a function expression without evaluating the
1126// closure.
1127
1128tree
1129Func_expression::get_tree_without_closure(Gogo* gogo)
1130{
1131 Function_type* fntype;
1132 if (this->function_->is_function())
1133 fntype = this->function_->func_value()->type();
1134 else if (this->function_->is_function_declaration())
1135 fntype = this->function_->func_declaration_value()->type();
1136 else
1137 gcc_unreachable();
1138
1139 // Builtin functions are handled specially by Call_expression. We
1140 // can't take their address.
1141 if (fntype->is_builtin())
1142 {
1143 error_at(this->location(), "invalid use of special builtin function %qs",
1144 this->function_->name().c_str());
1145 return error_mark_node;
1146 }
1147
1148 Named_object* no = this->function_;
9d6f3721 1149
1150 tree id = no->get_id(gogo);
1151 if (id == error_mark_node)
1152 return error_mark_node;
1153
e440a328 1154 tree fndecl;
1155 if (no->is_function())
1156 fndecl = no->func_value()->get_or_make_decl(gogo, no, id);
1157 else if (no->is_function_declaration())
1158 fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no, id);
1159 else
1160 gcc_unreachable();
1161
9d6f3721 1162 if (fndecl == error_mark_node)
1163 return error_mark_node;
1164
e440a328 1165 return build_fold_addr_expr_loc(this->location(), fndecl);
1166}
1167
1168// Get the tree for a function expression. This is used when we take
1169// the address of a function rather than simply calling it. If the
1170// function has a closure, we must use a trampoline.
1171
1172tree
1173Func_expression::do_get_tree(Translate_context* context)
1174{
1175 Gogo* gogo = context->gogo();
1176
1177 tree fnaddr = this->get_tree_without_closure(gogo);
1178 if (fnaddr == error_mark_node)
1179 return error_mark_node;
1180
1181 gcc_assert(TREE_CODE(fnaddr) == ADDR_EXPR
1182 && TREE_CODE(TREE_OPERAND(fnaddr, 0)) == FUNCTION_DECL);
1183 TREE_ADDRESSABLE(TREE_OPERAND(fnaddr, 0)) = 1;
1184
1185 // For a normal non-nested function call, that is all we have to do.
1186 if (!this->function_->is_function()
1187 || this->function_->func_value()->enclosing() == NULL)
1188 {
1189 gcc_assert(this->closure_ == NULL);
1190 return fnaddr;
1191 }
1192
1193 // For a nested function call, we have to always allocate a
1194 // trampoline. If we don't always allocate, then closures will not
1195 // be reliably distinct.
1196 Expression* closure = this->closure_;
1197 tree closure_tree;
1198 if (closure == NULL)
1199 closure_tree = null_pointer_node;
1200 else
1201 {
1202 // Get the value of the closure. This will be a pointer to
1203 // space allocated on the heap.
1204 closure_tree = closure->get_tree(context);
1205 if (closure_tree == error_mark_node)
1206 return error_mark_node;
1207 gcc_assert(POINTER_TYPE_P(TREE_TYPE(closure_tree)));
1208 }
1209
1210 // Now we need to build some code on the heap. This code will load
1211 // the static chain pointer with the closure and then jump to the
1212 // body of the function. The normal gcc approach is to build the
1213 // code on the stack. Unfortunately we can not do that, as Go
1214 // permits us to return the function pointer.
1215
1216 return gogo->make_trampoline(fnaddr, closure_tree, this->location());
1217}
1218
1219// Make a reference to a function in an expression.
1220
1221Expression*
1222Expression::make_func_reference(Named_object* function, Expression* closure,
1223 source_location location)
1224{
1225 return new Func_expression(function, closure, location);
1226}
1227
1228// Class Unknown_expression.
1229
1230// Return the name of an unknown expression.
1231
1232const std::string&
1233Unknown_expression::name() const
1234{
1235 return this->named_object_->name();
1236}
1237
1238// Lower a reference to an unknown name.
1239
1240Expression*
1241Unknown_expression::do_lower(Gogo*, Named_object*, int)
1242{
1243 source_location location = this->location();
1244 Named_object* no = this->named_object_;
1245 Named_object* real = no->unknown_value()->real_named_object();
1246 if (real == NULL)
1247 {
1248 if (this->is_composite_literal_key_)
1249 return this;
1250 error_at(location, "reference to undefined name %qs",
1251 this->named_object_->message_name().c_str());
1252 return Expression::make_error(location);
1253 }
1254 switch (real->classification())
1255 {
1256 case Named_object::NAMED_OBJECT_CONST:
1257 return Expression::make_const_reference(real, location);
1258 case Named_object::NAMED_OBJECT_TYPE:
1259 return Expression::make_type(real->type_value(), location);
1260 case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
1261 if (this->is_composite_literal_key_)
1262 return this;
1263 error_at(location, "reference to undefined type %qs",
1264 real->message_name().c_str());
1265 return Expression::make_error(location);
1266 case Named_object::NAMED_OBJECT_VAR:
1267 return Expression::make_var_reference(real, location);
1268 case Named_object::NAMED_OBJECT_FUNC:
1269 case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
1270 return Expression::make_func_reference(real, NULL, location);
1271 case Named_object::NAMED_OBJECT_PACKAGE:
1272 if (this->is_composite_literal_key_)
1273 return this;
1274 error_at(location, "unexpected reference to package");
1275 return Expression::make_error(location);
1276 default:
1277 gcc_unreachable();
1278 }
1279}
1280
1281// Make a reference to an unknown name.
1282
1283Expression*
1284Expression::make_unknown_reference(Named_object* no, source_location location)
1285{
1286 gcc_assert(no->resolve()->is_unknown());
1287 return new Unknown_expression(no, location);
1288}
1289
1290// A boolean expression.
1291
1292class Boolean_expression : public Expression
1293{
1294 public:
1295 Boolean_expression(bool val, source_location location)
1296 : Expression(EXPRESSION_BOOLEAN, location),
1297 val_(val), type_(NULL)
1298 { }
1299
1300 static Expression*
1301 do_import(Import*);
1302
1303 protected:
1304 bool
1305 do_is_constant() const
1306 { return true; }
1307
1308 Type*
1309 do_type();
1310
1311 void
1312 do_determine_type(const Type_context*);
1313
1314 Expression*
1315 do_copy()
1316 { return this; }
1317
1318 tree
1319 do_get_tree(Translate_context*)
1320 { return this->val_ ? boolean_true_node : boolean_false_node; }
1321
1322 void
1323 do_export(Export* exp) const
1324 { exp->write_c_string(this->val_ ? "true" : "false"); }
1325
1326 private:
1327 // The constant.
1328 bool val_;
1329 // The type as determined by context.
1330 Type* type_;
1331};
1332
1333// Get the type.
1334
1335Type*
1336Boolean_expression::do_type()
1337{
1338 if (this->type_ == NULL)
1339 this->type_ = Type::make_boolean_type();
1340 return this->type_;
1341}
1342
1343// Set the type from the context.
1344
1345void
1346Boolean_expression::do_determine_type(const Type_context* context)
1347{
1348 if (this->type_ != NULL && !this->type_->is_abstract())
1349 ;
1350 else if (context->type != NULL && context->type->is_boolean_type())
1351 this->type_ = context->type;
1352 else if (!context->may_be_abstract)
1353 this->type_ = Type::lookup_bool_type();
1354}
1355
1356// Import a boolean constant.
1357
1358Expression*
1359Boolean_expression::do_import(Import* imp)
1360{
1361 if (imp->peek_char() == 't')
1362 {
1363 imp->require_c_string("true");
1364 return Expression::make_boolean(true, imp->location());
1365 }
1366 else
1367 {
1368 imp->require_c_string("false");
1369 return Expression::make_boolean(false, imp->location());
1370 }
1371}
1372
1373// Make a boolean expression.
1374
1375Expression*
1376Expression::make_boolean(bool val, source_location location)
1377{
1378 return new Boolean_expression(val, location);
1379}
1380
1381// Class String_expression.
1382
1383// Get the type.
1384
1385Type*
1386String_expression::do_type()
1387{
1388 if (this->type_ == NULL)
1389 this->type_ = Type::make_string_type();
1390 return this->type_;
1391}
1392
1393// Set the type from the context.
1394
1395void
1396String_expression::do_determine_type(const Type_context* context)
1397{
1398 if (this->type_ != NULL && !this->type_->is_abstract())
1399 ;
1400 else if (context->type != NULL && context->type->is_string_type())
1401 this->type_ = context->type;
1402 else if (!context->may_be_abstract)
1403 this->type_ = Type::lookup_string_type();
1404}
1405
1406// Build a string constant.
1407
1408tree
1409String_expression::do_get_tree(Translate_context* context)
1410{
1411 return context->gogo()->go_string_constant_tree(this->val_);
1412}
1413
1414// Export a string expression.
1415
1416void
1417String_expression::do_export(Export* exp) const
1418{
1419 std::string s;
1420 s.reserve(this->val_.length() * 4 + 2);
1421 s += '"';
1422 for (std::string::const_iterator p = this->val_.begin();
1423 p != this->val_.end();
1424 ++p)
1425 {
1426 if (*p == '\\' || *p == '"')
1427 {
1428 s += '\\';
1429 s += *p;
1430 }
1431 else if (*p >= 0x20 && *p < 0x7f)
1432 s += *p;
1433 else if (*p == '\n')
1434 s += "\\n";
1435 else if (*p == '\t')
1436 s += "\\t";
1437 else
1438 {
1439 s += "\\x";
1440 unsigned char c = *p;
1441 unsigned int dig = c >> 4;
1442 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1443 dig = c & 0xf;
1444 s += dig < 10 ? '0' + dig : 'A' + dig - 10;
1445 }
1446 }
1447 s += '"';
1448 exp->write_string(s);
1449}
1450
1451// Import a string expression.
1452
1453Expression*
1454String_expression::do_import(Import* imp)
1455{
1456 imp->require_c_string("\"");
1457 std::string val;
1458 while (true)
1459 {
1460 int c = imp->get_char();
1461 if (c == '"' || c == -1)
1462 break;
1463 if (c != '\\')
1464 val += static_cast<char>(c);
1465 else
1466 {
1467 c = imp->get_char();
1468 if (c == '\\' || c == '"')
1469 val += static_cast<char>(c);
1470 else if (c == 'n')
1471 val += '\n';
1472 else if (c == 't')
1473 val += '\t';
1474 else if (c == 'x')
1475 {
1476 c = imp->get_char();
1477 unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1478 c = imp->get_char();
1479 unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
1480 char v = (vh << 4) | vl;
1481 val += v;
1482 }
1483 else
1484 {
1485 error_at(imp->location(), "bad string constant");
1486 return Expression::make_error(imp->location());
1487 }
1488 }
1489 }
1490 return Expression::make_string(val, imp->location());
1491}
1492
1493// Make a string expression.
1494
1495Expression*
1496Expression::make_string(const std::string& val, source_location location)
1497{
1498 return new String_expression(val, location);
1499}
1500
1501// Make an integer expression.
1502
1503class Integer_expression : public Expression
1504{
1505 public:
1506 Integer_expression(const mpz_t* val, Type* type, source_location location)
1507 : Expression(EXPRESSION_INTEGER, location),
1508 type_(type)
1509 { mpz_init_set(this->val_, *val); }
1510
1511 static Expression*
1512 do_import(Import*);
1513
1514 // Return whether VAL fits in the type.
1515 static bool
1516 check_constant(mpz_t val, Type*, source_location);
1517
1518 // Write VAL to export data.
1519 static void
1520 export_integer(Export* exp, const mpz_t val);
1521
1522 protected:
1523 bool
1524 do_is_constant() const
1525 { return true; }
1526
1527 bool
1528 do_integer_constant_value(bool, mpz_t val, Type** ptype) const;
1529
1530 Type*
1531 do_type();
1532
1533 void
1534 do_determine_type(const Type_context* context);
1535
1536 void
1537 do_check_types(Gogo*);
1538
1539 tree
1540 do_get_tree(Translate_context*);
1541
1542 Expression*
1543 do_copy()
1544 { return Expression::make_integer(&this->val_, this->type_,
1545 this->location()); }
1546
1547 void
1548 do_export(Export*) const;
1549
1550 private:
1551 // The integer value.
1552 mpz_t val_;
1553 // The type so far.
1554 Type* type_;
1555};
1556
1557// Return an integer constant value.
1558
1559bool
1560Integer_expression::do_integer_constant_value(bool, mpz_t val,
1561 Type** ptype) const
1562{
1563 if (this->type_ != NULL)
1564 *ptype = this->type_;
1565 mpz_set(val, this->val_);
1566 return true;
1567}
1568
1569// Return the current type. If we haven't set the type yet, we return
1570// an abstract integer type.
1571
1572Type*
1573Integer_expression::do_type()
1574{
1575 if (this->type_ == NULL)
1576 this->type_ = Type::make_abstract_integer_type();
1577 return this->type_;
1578}
1579
1580// Set the type of the integer value. Here we may switch from an
1581// abstract type to a real type.
1582
1583void
1584Integer_expression::do_determine_type(const Type_context* context)
1585{
1586 if (this->type_ != NULL && !this->type_->is_abstract())
1587 ;
1588 else if (context->type != NULL
1589 && (context->type->integer_type() != NULL
1590 || context->type->float_type() != NULL
1591 || context->type->complex_type() != NULL))
1592 this->type_ = context->type;
1593 else if (!context->may_be_abstract)
1594 this->type_ = Type::lookup_integer_type("int");
1595}
1596
1597// Return true if the integer VAL fits in the range of the type TYPE.
1598// Otherwise give an error and return false. TYPE may be NULL.
1599
1600bool
1601Integer_expression::check_constant(mpz_t val, Type* type,
1602 source_location location)
1603{
1604 if (type == NULL)
1605 return true;
1606 Integer_type* itype = type->integer_type();
1607 if (itype == NULL || itype->is_abstract())
1608 return true;
1609
1610 int bits = mpz_sizeinbase(val, 2);
1611
1612 if (itype->is_unsigned())
1613 {
1614 // For an unsigned type we can only accept a nonnegative number,
1615 // and we must be able to represent at least BITS.
1616 if (mpz_sgn(val) >= 0
1617 && bits <= itype->bits())
1618 return true;
1619 }
1620 else
1621 {
1622 // For a signed type we need an extra bit to indicate the sign.
1623 // We have to handle the most negative integer specially.
1624 if (bits + 1 <= itype->bits()
1625 || (bits <= itype->bits()
1626 && mpz_sgn(val) < 0
1627 && (mpz_scan1(val, 0)
1628 == static_cast<unsigned long>(itype->bits() - 1))
1629 && mpz_scan0(val, itype->bits()) == ULONG_MAX))
1630 return true;
1631 }
1632
1633 error_at(location, "integer constant overflow");
1634 return false;
1635}
1636
1637// Check the type of an integer constant.
1638
1639void
1640Integer_expression::do_check_types(Gogo*)
1641{
1642 if (this->type_ == NULL)
1643 return;
1644 if (!Integer_expression::check_constant(this->val_, this->type_,
1645 this->location()))
1646 this->set_is_error();
1647}
1648
1649// Get a tree for an integer constant.
1650
1651tree
1652Integer_expression::do_get_tree(Translate_context* context)
1653{
1654 Gogo* gogo = context->gogo();
1655 tree type;
1656 if (this->type_ != NULL && !this->type_->is_abstract())
1657 type = this->type_->get_tree(gogo);
1658 else if (this->type_ != NULL && this->type_->float_type() != NULL)
1659 {
1660 // We are converting to an abstract floating point type.
1661 type = Type::lookup_float_type("float64")->get_tree(gogo);
1662 }
1663 else if (this->type_ != NULL && this->type_->complex_type() != NULL)
1664 {
1665 // We are converting to an abstract complex type.
1666 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
1667 }
1668 else
1669 {
1670 // If we still have an abstract type here, then this is being
1671 // used in a constant expression which didn't get reduced for
1672 // some reason. Use a type which will fit the value. We use <,
1673 // not <=, because we need an extra bit for the sign bit.
1674 int bits = mpz_sizeinbase(this->val_, 2);
1675 if (bits < INT_TYPE_SIZE)
1676 type = Type::lookup_integer_type("int")->get_tree(gogo);
1677 else if (bits < 64)
1678 type = Type::lookup_integer_type("int64")->get_tree(gogo);
1679 else
1680 type = long_long_integer_type_node;
1681 }
1682 return Expression::integer_constant_tree(this->val_, type);
1683}
1684
1685// Write VAL to export data.
1686
1687void
1688Integer_expression::export_integer(Export* exp, const mpz_t val)
1689{
1690 char* s = mpz_get_str(NULL, 10, val);
1691 exp->write_c_string(s);
1692 free(s);
1693}
1694
1695// Export an integer in a constant expression.
1696
1697void
1698Integer_expression::do_export(Export* exp) const
1699{
1700 Integer_expression::export_integer(exp, this->val_);
1701 // A trailing space lets us reliably identify the end of the number.
1702 exp->write_c_string(" ");
1703}
1704
1705// Import an integer, floating point, or complex value. This handles
1706// all these types because they all start with digits.
1707
1708Expression*
1709Integer_expression::do_import(Import* imp)
1710{
1711 std::string num = imp->read_identifier();
1712 imp->require_c_string(" ");
1713 if (!num.empty() && num[num.length() - 1] == 'i')
1714 {
1715 mpfr_t real;
1716 size_t plus_pos = num.find('+', 1);
1717 size_t minus_pos = num.find('-', 1);
1718 size_t pos;
1719 if (plus_pos == std::string::npos)
1720 pos = minus_pos;
1721 else if (minus_pos == std::string::npos)
1722 pos = plus_pos;
1723 else
1724 {
1725 error_at(imp->location(), "bad number in import data: %qs",
1726 num.c_str());
1727 return Expression::make_error(imp->location());
1728 }
1729 if (pos == std::string::npos)
1730 mpfr_set_ui(real, 0, GMP_RNDN);
1731 else
1732 {
1733 std::string real_str = num.substr(0, pos);
1734 if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
1735 {
1736 error_at(imp->location(), "bad number in import data: %qs",
1737 real_str.c_str());
1738 return Expression::make_error(imp->location());
1739 }
1740 }
1741
1742 std::string imag_str;
1743 if (pos == std::string::npos)
1744 imag_str = num;
1745 else
1746 imag_str = num.substr(pos);
1747 imag_str = imag_str.substr(0, imag_str.size() - 1);
1748 mpfr_t imag;
1749 if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
1750 {
1751 error_at(imp->location(), "bad number in import data: %qs",
1752 imag_str.c_str());
1753 return Expression::make_error(imp->location());
1754 }
1755 Expression* ret = Expression::make_complex(&real, &imag, NULL,
1756 imp->location());
1757 mpfr_clear(real);
1758 mpfr_clear(imag);
1759 return ret;
1760 }
1761 else if (num.find('.') == std::string::npos
1762 && num.find('E') == std::string::npos)
1763 {
1764 mpz_t val;
1765 if (mpz_init_set_str(val, num.c_str(), 10) != 0)
1766 {
1767 error_at(imp->location(), "bad number in import data: %qs",
1768 num.c_str());
1769 return Expression::make_error(imp->location());
1770 }
1771 Expression* ret = Expression::make_integer(&val, NULL, imp->location());
1772 mpz_clear(val);
1773 return ret;
1774 }
1775 else
1776 {
1777 mpfr_t val;
1778 if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
1779 {
1780 error_at(imp->location(), "bad number in import data: %qs",
1781 num.c_str());
1782 return Expression::make_error(imp->location());
1783 }
1784 Expression* ret = Expression::make_float(&val, NULL, imp->location());
1785 mpfr_clear(val);
1786 return ret;
1787 }
1788}
1789
1790// Build a new integer value.
1791
1792Expression*
1793Expression::make_integer(const mpz_t* val, Type* type,
1794 source_location location)
1795{
1796 return new Integer_expression(val, type, location);
1797}
1798
1799// Floats.
1800
1801class Float_expression : public Expression
1802{
1803 public:
1804 Float_expression(const mpfr_t* val, Type* type, source_location location)
1805 : Expression(EXPRESSION_FLOAT, location),
1806 type_(type)
1807 {
1808 mpfr_init_set(this->val_, *val, GMP_RNDN);
1809 }
1810
1811 // Constrain VAL to fit into TYPE.
1812 static void
1813 constrain_float(mpfr_t val, Type* type);
1814
1815 // Return whether VAL fits in the type.
1816 static bool
1817 check_constant(mpfr_t val, Type*, source_location);
1818
1819 // Write VAL to export data.
1820 static void
1821 export_float(Export* exp, const mpfr_t val);
1822
1823 protected:
1824 bool
1825 do_is_constant() const
1826 { return true; }
1827
1828 bool
1829 do_float_constant_value(mpfr_t val, Type**) const;
1830
1831 Type*
1832 do_type();
1833
1834 void
1835 do_determine_type(const Type_context*);
1836
1837 void
1838 do_check_types(Gogo*);
1839
1840 Expression*
1841 do_copy()
1842 { return Expression::make_float(&this->val_, this->type_,
1843 this->location()); }
1844
1845 tree
1846 do_get_tree(Translate_context*);
1847
1848 void
1849 do_export(Export*) const;
1850
1851 private:
1852 // The floating point value.
1853 mpfr_t val_;
1854 // The type so far.
1855 Type* type_;
1856};
1857
1858// Constrain VAL to fit into TYPE.
1859
1860void
1861Float_expression::constrain_float(mpfr_t val, Type* type)
1862{
1863 Float_type* ftype = type->float_type();
1864 if (ftype != NULL && !ftype->is_abstract())
1865 {
1866 tree type_tree = ftype->type_tree();
1867 REAL_VALUE_TYPE rvt;
1868 real_from_mpfr(&rvt, val, type_tree, GMP_RNDN);
1869 real_convert(&rvt, TYPE_MODE(type_tree), &rvt);
1870 mpfr_from_real(val, &rvt, GMP_RNDN);
1871 }
1872}
1873
1874// Return a floating point constant value.
1875
1876bool
1877Float_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
1878{
1879 if (this->type_ != NULL)
1880 *ptype = this->type_;
1881 mpfr_set(val, this->val_, GMP_RNDN);
1882 return true;
1883}
1884
1885// Return the current type. If we haven't set the type yet, we return
1886// an abstract float type.
1887
1888Type*
1889Float_expression::do_type()
1890{
1891 if (this->type_ == NULL)
1892 this->type_ = Type::make_abstract_float_type();
1893 return this->type_;
1894}
1895
1896// Set the type of the float value. Here we may switch from an
1897// abstract type to a real type.
1898
1899void
1900Float_expression::do_determine_type(const Type_context* context)
1901{
1902 if (this->type_ != NULL && !this->type_->is_abstract())
1903 ;
1904 else if (context->type != NULL
1905 && (context->type->integer_type() != NULL
1906 || context->type->float_type() != NULL
1907 || context->type->complex_type() != NULL))
1908 this->type_ = context->type;
1909 else if (!context->may_be_abstract)
1910 this->type_ = Type::lookup_float_type("float");
1911}
1912
1913// Return true if the floating point value VAL fits in the range of
1914// the type TYPE. Otherwise give an error and return false. TYPE may
1915// be NULL.
1916
1917bool
1918Float_expression::check_constant(mpfr_t val, Type* type,
1919 source_location location)
1920{
1921 if (type == NULL)
1922 return true;
1923 Float_type* ftype = type->float_type();
1924 if (ftype == NULL || ftype->is_abstract())
1925 return true;
1926
1927 // A NaN or Infinity always fits in the range of the type.
1928 if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
1929 return true;
1930
1931 mp_exp_t exp = mpfr_get_exp(val);
1932 mp_exp_t max_exp;
1933 switch (ftype->bits())
1934 {
1935 case 32:
1936 max_exp = 128;
1937 break;
1938 case 64:
1939 max_exp = 1024;
1940 break;
1941 default:
1942 gcc_unreachable();
1943 }
1944 if (exp > max_exp)
1945 {
1946 error_at(location, "floating point constant overflow");
1947 return false;
1948 }
1949 return true;
1950}
1951
1952// Check the type of a float value.
1953
1954void
1955Float_expression::do_check_types(Gogo*)
1956{
1957 if (this->type_ == NULL)
1958 return;
1959
1960 if (!Float_expression::check_constant(this->val_, this->type_,
1961 this->location()))
1962 this->set_is_error();
1963
1964 Integer_type* integer_type = this->type_->integer_type();
1965 if (integer_type != NULL)
1966 {
1967 if (!mpfr_integer_p(this->val_))
1968 this->report_error(_("floating point constant truncated to integer"));
1969 else
1970 {
1971 gcc_assert(!integer_type->is_abstract());
1972 mpz_t ival;
1973 mpz_init(ival);
1974 mpfr_get_z(ival, this->val_, GMP_RNDN);
1975 Integer_expression::check_constant(ival, integer_type,
1976 this->location());
1977 mpz_clear(ival);
1978 }
1979 }
1980}
1981
1982// Get a tree for a float constant.
1983
1984tree
1985Float_expression::do_get_tree(Translate_context* context)
1986{
1987 Gogo* gogo = context->gogo();
1988 tree type;
1989 if (this->type_ != NULL && !this->type_->is_abstract())
1990 type = this->type_->get_tree(gogo);
1991 else if (this->type_ != NULL && this->type_->integer_type() != NULL)
1992 {
1993 // We have an abstract integer type. We just hope for the best.
1994 type = Type::lookup_integer_type("int")->get_tree(gogo);
1995 }
1996 else
1997 {
1998 // If we still have an abstract type here, then this is being
1999 // used in a constant expression which didn't get reduced. We
2000 // just use float64 and hope for the best.
2001 type = Type::lookup_float_type("float64")->get_tree(gogo);
2002 }
2003 return Expression::float_constant_tree(this->val_, type);
2004}
2005
2006// Write a floating point number to export data.
2007
2008void
2009Float_expression::export_float(Export *exp, const mpfr_t val)
2010{
2011 mp_exp_t exponent;
2012 char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
2013 if (*s == '-')
2014 exp->write_c_string("-");
2015 exp->write_c_string("0.");
2016 exp->write_c_string(*s == '-' ? s + 1 : s);
2017 mpfr_free_str(s);
2018 char buf[30];
2019 snprintf(buf, sizeof buf, "E%ld", exponent);
2020 exp->write_c_string(buf);
2021}
2022
2023// Export a floating point number in a constant expression.
2024
2025void
2026Float_expression::do_export(Export* exp) const
2027{
2028 Float_expression::export_float(exp, this->val_);
2029 // A trailing space lets us reliably identify the end of the number.
2030 exp->write_c_string(" ");
2031}
2032
2033// Make a float expression.
2034
2035Expression*
2036Expression::make_float(const mpfr_t* val, Type* type, source_location location)
2037{
2038 return new Float_expression(val, type, location);
2039}
2040
2041// Complex numbers.
2042
2043class Complex_expression : public Expression
2044{
2045 public:
2046 Complex_expression(const mpfr_t* real, const mpfr_t* imag, Type* type,
2047 source_location location)
2048 : Expression(EXPRESSION_COMPLEX, location),
2049 type_(type)
2050 {
2051 mpfr_init_set(this->real_, *real, GMP_RNDN);
2052 mpfr_init_set(this->imag_, *imag, GMP_RNDN);
2053 }
2054
2055 // Constrain REAL/IMAG to fit into TYPE.
2056 static void
2057 constrain_complex(mpfr_t real, mpfr_t imag, Type* type);
2058
2059 // Return whether REAL/IMAG fits in the type.
2060 static bool
2061 check_constant(mpfr_t real, mpfr_t imag, Type*, source_location);
2062
2063 // Write REAL/IMAG to export data.
2064 static void
2065 export_complex(Export* exp, const mpfr_t real, const mpfr_t val);
2066
2067 protected:
2068 bool
2069 do_is_constant() const
2070 { return true; }
2071
2072 bool
2073 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2074
2075 Type*
2076 do_type();
2077
2078 void
2079 do_determine_type(const Type_context*);
2080
2081 void
2082 do_check_types(Gogo*);
2083
2084 Expression*
2085 do_copy()
2086 {
2087 return Expression::make_complex(&this->real_, &this->imag_, this->type_,
2088 this->location());
2089 }
2090
2091 tree
2092 do_get_tree(Translate_context*);
2093
2094 void
2095 do_export(Export*) const;
2096
2097 private:
2098 // The real part.
2099 mpfr_t real_;
2100 // The imaginary part;
2101 mpfr_t imag_;
2102 // The type if known.
2103 Type* type_;
2104};
2105
2106// Constrain REAL/IMAG to fit into TYPE.
2107
2108void
2109Complex_expression::constrain_complex(mpfr_t real, mpfr_t imag, Type* type)
2110{
2111 Complex_type* ctype = type->complex_type();
2112 if (ctype != NULL && !ctype->is_abstract())
2113 {
2114 tree type_tree = ctype->type_tree();
2115
2116 REAL_VALUE_TYPE rvt;
2117 real_from_mpfr(&rvt, real, TREE_TYPE(type_tree), GMP_RNDN);
2118 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2119 mpfr_from_real(real, &rvt, GMP_RNDN);
2120
2121 real_from_mpfr(&rvt, imag, TREE_TYPE(type_tree), GMP_RNDN);
2122 real_convert(&rvt, TYPE_MODE(TREE_TYPE(type_tree)), &rvt);
2123 mpfr_from_real(imag, &rvt, GMP_RNDN);
2124 }
2125}
2126
2127// Return a complex constant value.
2128
2129bool
2130Complex_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2131 Type** ptype) const
2132{
2133 if (this->type_ != NULL)
2134 *ptype = this->type_;
2135 mpfr_set(real, this->real_, GMP_RNDN);
2136 mpfr_set(imag, this->imag_, GMP_RNDN);
2137 return true;
2138}
2139
2140// Return the current type. If we haven't set the type yet, we return
2141// an abstract complex type.
2142
2143Type*
2144Complex_expression::do_type()
2145{
2146 if (this->type_ == NULL)
2147 this->type_ = Type::make_abstract_complex_type();
2148 return this->type_;
2149}
2150
2151// Set the type of the complex value. Here we may switch from an
2152// abstract type to a real type.
2153
2154void
2155Complex_expression::do_determine_type(const Type_context* context)
2156{
2157 if (this->type_ != NULL && !this->type_->is_abstract())
2158 ;
2159 else if (context->type != NULL
2160 && context->type->complex_type() != NULL)
2161 this->type_ = context->type;
2162 else if (!context->may_be_abstract)
2163 this->type_ = Type::lookup_complex_type("complex");
2164}
2165
2166// Return true if the complex value REAL/IMAG fits in the range of the
2167// type TYPE. Otherwise give an error and return false. TYPE may be
2168// NULL.
2169
2170bool
2171Complex_expression::check_constant(mpfr_t real, mpfr_t imag, Type* type,
2172 source_location location)
2173{
2174 if (type == NULL)
2175 return true;
2176 Complex_type* ctype = type->complex_type();
2177 if (ctype == NULL || ctype->is_abstract())
2178 return true;
2179
2180 mp_exp_t max_exp;
2181 switch (ctype->bits())
2182 {
2183 case 64:
2184 max_exp = 128;
2185 break;
2186 case 128:
2187 max_exp = 1024;
2188 break;
2189 default:
2190 gcc_unreachable();
2191 }
2192
2193 // A NaN or Infinity always fits in the range of the type.
2194 if (!mpfr_nan_p(real) && !mpfr_inf_p(real) && !mpfr_zero_p(real))
2195 {
2196 if (mpfr_get_exp(real) > max_exp)
2197 {
2198 error_at(location, "complex real part constant overflow");
2199 return false;
2200 }
2201 }
2202
2203 if (!mpfr_nan_p(imag) && !mpfr_inf_p(imag) && !mpfr_zero_p(imag))
2204 {
2205 if (mpfr_get_exp(imag) > max_exp)
2206 {
2207 error_at(location, "complex imaginary part constant overflow");
2208 return false;
2209 }
2210 }
2211
2212 return true;
2213}
2214
2215// Check the type of a complex value.
2216
2217void
2218Complex_expression::do_check_types(Gogo*)
2219{
2220 if (this->type_ == NULL)
2221 return;
2222
2223 if (!Complex_expression::check_constant(this->real_, this->imag_,
2224 this->type_, this->location()))
2225 this->set_is_error();
2226}
2227
2228// Get a tree for a complex constant.
2229
2230tree
2231Complex_expression::do_get_tree(Translate_context* context)
2232{
2233 Gogo* gogo = context->gogo();
2234 tree type;
2235 if (this->type_ != NULL && !this->type_->is_abstract())
2236 type = this->type_->get_tree(gogo);
2237 else
2238 {
2239 // If we still have an abstract type here, this this is being
2240 // used in a constant expression which didn't get reduced. We
2241 // just use complex128 and hope for the best.
2242 type = Type::lookup_complex_type("complex128")->get_tree(gogo);
2243 }
2244 return Expression::complex_constant_tree(this->real_, this->imag_, type);
2245}
2246
2247// Write REAL/IMAG to export data.
2248
2249void
2250Complex_expression::export_complex(Export* exp, const mpfr_t real,
2251 const mpfr_t imag)
2252{
2253 if (!mpfr_zero_p(real))
2254 {
2255 Float_expression::export_float(exp, real);
2256 if (mpfr_sgn(imag) > 0)
2257 exp->write_c_string("+");
2258 }
2259 Float_expression::export_float(exp, imag);
2260 exp->write_c_string("i");
2261}
2262
2263// Export a complex number in a constant expression.
2264
2265void
2266Complex_expression::do_export(Export* exp) const
2267{
2268 Complex_expression::export_complex(exp, this->real_, this->imag_);
2269 // A trailing space lets us reliably identify the end of the number.
2270 exp->write_c_string(" ");
2271}
2272
2273// Make a complex expression.
2274
2275Expression*
2276Expression::make_complex(const mpfr_t* real, const mpfr_t* imag, Type* type,
2277 source_location location)
2278{
2279 return new Complex_expression(real, imag, type, location);
2280}
2281
2282// A reference to a const in an expression.
2283
2284class Const_expression : public Expression
2285{
2286 public:
2287 Const_expression(Named_object* constant, source_location location)
2288 : Expression(EXPRESSION_CONST_REFERENCE, location),
2289 constant_(constant), type_(NULL)
2290 { }
2291
2292 const std::string&
2293 name() const
2294 { return this->constant_->name(); }
2295
2296 protected:
2297 Expression*
2298 do_lower(Gogo*, Named_object*, int);
2299
2300 bool
2301 do_is_constant() const
2302 { return true; }
2303
2304 bool
2305 do_integer_constant_value(bool, mpz_t val, Type**) const;
2306
2307 bool
2308 do_float_constant_value(mpfr_t val, Type**) const;
2309
2310 bool
2311 do_complex_constant_value(mpfr_t real, mpfr_t imag, Type**) const;
2312
2313 bool
2314 do_string_constant_value(std::string* val) const
2315 { return this->constant_->const_value()->expr()->string_constant_value(val); }
2316
2317 Type*
2318 do_type();
2319
2320 // The type of a const is set by the declaration, not the use.
2321 void
2322 do_determine_type(const Type_context*);
2323
2324 void
2325 do_check_types(Gogo*);
2326
2327 Expression*
2328 do_copy()
2329 { return this; }
2330
2331 tree
2332 do_get_tree(Translate_context* context);
2333
2334 // When exporting a reference to a const as part of a const
2335 // expression, we export the value. We ignore the fact that it has
2336 // a name.
2337 void
2338 do_export(Export* exp) const
2339 { this->constant_->const_value()->expr()->export_expression(exp); }
2340
2341 private:
2342 // The constant.
2343 Named_object* constant_;
2344 // The type of this reference. This is used if the constant has an
2345 // abstract type.
2346 Type* type_;
2347};
2348
2349// Lower a constant expression. This is where we convert the
2350// predeclared constant iota into an integer value.
2351
2352Expression*
2353Const_expression::do_lower(Gogo* gogo, Named_object*, int iota_value)
2354{
2355 if (this->constant_->const_value()->expr()->classification()
2356 == EXPRESSION_IOTA)
2357 {
2358 if (iota_value == -1)
2359 {
2360 error_at(this->location(),
2361 "iota is only defined in const declarations");
2362 iota_value = 0;
2363 }
2364 mpz_t val;
2365 mpz_init_set_ui(val, static_cast<unsigned long>(iota_value));
2366 Expression* ret = Expression::make_integer(&val, NULL,
2367 this->location());
2368 mpz_clear(val);
2369 return ret;
2370 }
2371
2372 // Make sure that the constant itself has been lowered.
2373 gogo->lower_constant(this->constant_);
2374
2375 return this;
2376}
2377
2378// Return an integer constant value.
2379
2380bool
2381Const_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
2382 Type** ptype) const
2383{
2384 Type* ctype;
2385 if (this->type_ != NULL)
2386 ctype = this->type_;
2387 else
2388 ctype = this->constant_->const_value()->type();
2389 if (ctype != NULL && ctype->integer_type() == NULL)
2390 return false;
2391
2392 Expression* e = this->constant_->const_value()->expr();
2393 Type* t;
2394 bool r = e->integer_constant_value(iota_is_constant, val, &t);
2395
2396 if (r
2397 && ctype != NULL
2398 && !Integer_expression::check_constant(val, ctype, this->location()))
2399 return false;
2400
2401 *ptype = ctype != NULL ? ctype : t;
2402 return r;
2403}
2404
2405// Return a floating point constant value.
2406
2407bool
2408Const_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
2409{
2410 Type* ctype;
2411 if (this->type_ != NULL)
2412 ctype = this->type_;
2413 else
2414 ctype = this->constant_->const_value()->type();
2415 if (ctype != NULL && ctype->float_type() == NULL)
2416 return false;
2417
2418 Type* t;
2419 bool r = this->constant_->const_value()->expr()->float_constant_value(val,
2420 &t);
2421 if (r && ctype != NULL)
2422 {
2423 if (!Float_expression::check_constant(val, ctype, this->location()))
2424 return false;
2425 Float_expression::constrain_float(val, ctype);
2426 }
2427 *ptype = ctype != NULL ? ctype : t;
2428 return r;
2429}
2430
2431// Return a complex constant value.
2432
2433bool
2434Const_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
2435 Type **ptype) const
2436{
2437 Type* ctype;
2438 if (this->type_ != NULL)
2439 ctype = this->type_;
2440 else
2441 ctype = this->constant_->const_value()->type();
2442 if (ctype != NULL && ctype->complex_type() == NULL)
2443 return false;
2444
2445 Type *t;
2446 bool r = this->constant_->const_value()->expr()->complex_constant_value(real,
2447 imag,
2448 &t);
2449 if (r && ctype != NULL)
2450 {
2451 if (!Complex_expression::check_constant(real, imag, ctype,
2452 this->location()))
2453 return false;
2454 Complex_expression::constrain_complex(real, imag, ctype);
2455 }
2456 *ptype = ctype != NULL ? ctype : t;
2457 return r;
2458}
2459
2460// Return the type of the const reference.
2461
2462Type*
2463Const_expression::do_type()
2464{
2465 if (this->type_ != NULL)
2466 return this->type_;
2467 Named_constant* nc = this->constant_->const_value();
2468 Type* ret = nc->type();
2469 if (ret != NULL)
2470 return ret;
2471 // During parsing, a named constant may have a NULL type, but we
2472 // must not return a NULL type here.
2473 return nc->expr()->type();
2474}
2475
2476// Set the type of the const reference.
2477
2478void
2479Const_expression::do_determine_type(const Type_context* context)
2480{
2481 Type* ctype = this->constant_->const_value()->type();
2482 Type* cetype = (ctype != NULL
2483 ? ctype
2484 : this->constant_->const_value()->expr()->type());
2485 if (ctype != NULL && !ctype->is_abstract())
2486 ;
2487 else if (context->type != NULL
2488 && (context->type->integer_type() != NULL
2489 || context->type->float_type() != NULL
2490 || context->type->complex_type() != NULL)
2491 && (cetype->integer_type() != NULL
2492 || cetype->float_type() != NULL
2493 || cetype->complex_type() != NULL))
2494 this->type_ = context->type;
2495 else if (context->type != NULL
2496 && context->type->is_string_type()
2497 && cetype->is_string_type())
2498 this->type_ = context->type;
2499 else if (context->type != NULL
2500 && context->type->is_boolean_type()
2501 && cetype->is_boolean_type())
2502 this->type_ = context->type;
2503 else if (!context->may_be_abstract)
2504 {
2505 if (cetype->is_abstract())
2506 cetype = cetype->make_non_abstract_type();
2507 this->type_ = cetype;
2508 }
2509}
2510
2511// Check types of a const reference.
2512
2513void
2514Const_expression::do_check_types(Gogo*)
2515{
2516 if (this->type_ == NULL || this->type_->is_abstract())
2517 return;
2518
2519 // Check for integer overflow.
2520 if (this->type_->integer_type() != NULL)
2521 {
2522 mpz_t ival;
2523 mpz_init(ival);
2524 Type* dummy;
2525 if (!this->integer_constant_value(true, ival, &dummy))
2526 {
2527 mpfr_t fval;
2528 mpfr_init(fval);
2529 Expression* cexpr = this->constant_->const_value()->expr();
2530 if (cexpr->float_constant_value(fval, &dummy))
2531 {
2532 if (!mpfr_integer_p(fval))
2533 this->report_error(_("floating point constant "
2534 "truncated to integer"));
2535 else
2536 {
2537 mpfr_get_z(ival, fval, GMP_RNDN);
2538 Integer_expression::check_constant(ival, this->type_,
2539 this->location());
2540 }
2541 }
2542 mpfr_clear(fval);
2543 }
2544 mpz_clear(ival);
2545 }
2546}
2547
2548// Return a tree for the const reference.
2549
2550tree
2551Const_expression::do_get_tree(Translate_context* context)
2552{
2553 Gogo* gogo = context->gogo();
2554 tree type_tree;
2555 if (this->type_ == NULL)
2556 type_tree = NULL_TREE;
2557 else
2558 {
2559 type_tree = this->type_->get_tree(gogo);
2560 if (type_tree == error_mark_node)
2561 return error_mark_node;
2562 }
2563
2564 // If the type has been set for this expression, but the underlying
2565 // object is an abstract int or float, we try to get the abstract
2566 // value. Otherwise we may lose something in the conversion.
2567 if (this->type_ != NULL
2568 && this->constant_->const_value()->type()->is_abstract())
2569 {
2570 Expression* expr = this->constant_->const_value()->expr();
2571 mpz_t ival;
2572 mpz_init(ival);
2573 Type* t;
2574 if (expr->integer_constant_value(true, ival, &t))
2575 {
2576 tree ret = Expression::integer_constant_tree(ival, type_tree);
2577 mpz_clear(ival);
2578 return ret;
2579 }
2580 mpz_clear(ival);
2581
2582 mpfr_t fval;
2583 mpfr_init(fval);
2584 if (expr->float_constant_value(fval, &t))
2585 {
2586 tree ret = Expression::float_constant_tree(fval, type_tree);
2587 mpfr_clear(fval);
2588 return ret;
2589 }
2590
2591 mpfr_t imag;
2592 mpfr_init(imag);
2593 if (expr->complex_constant_value(fval, imag, &t))
2594 {
2595 tree ret = Expression::complex_constant_tree(fval, imag, type_tree);
2596 mpfr_clear(fval);
2597 mpfr_clear(imag);
2598 return ret;
2599 }
2600 mpfr_clear(imag);
2601 mpfr_clear(fval);
2602 }
2603
2604 tree const_tree = this->constant_->get_tree(gogo, context->function());
2605 if (this->type_ == NULL
2606 || const_tree == error_mark_node
2607 || TREE_TYPE(const_tree) == error_mark_node)
2608 return const_tree;
2609
2610 tree ret;
2611 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(const_tree)))
2612 ret = fold_convert(type_tree, const_tree);
2613 else if (TREE_CODE(type_tree) == INTEGER_TYPE)
2614 ret = fold(convert_to_integer(type_tree, const_tree));
2615 else if (TREE_CODE(type_tree) == REAL_TYPE)
2616 ret = fold(convert_to_real(type_tree, const_tree));
2617 else if (TREE_CODE(type_tree) == COMPLEX_TYPE)
2618 ret = fold(convert_to_complex(type_tree, const_tree));
2619 else
2620 gcc_unreachable();
2621 return ret;
2622}
2623
2624// Make a reference to a constant in an expression.
2625
2626Expression*
2627Expression::make_const_reference(Named_object* constant,
2628 source_location location)
2629{
2630 return new Const_expression(constant, location);
2631}
2632
2633// The nil value.
2634
2635class Nil_expression : public Expression
2636{
2637 public:
2638 Nil_expression(source_location location)
2639 : Expression(EXPRESSION_NIL, location)
2640 { }
2641
2642 static Expression*
2643 do_import(Import*);
2644
2645 protected:
2646 bool
2647 do_is_constant() const
2648 { return true; }
2649
2650 Type*
2651 do_type()
2652 { return Type::make_nil_type(); }
2653
2654 void
2655 do_determine_type(const Type_context*)
2656 { }
2657
2658 Expression*
2659 do_copy()
2660 { return this; }
2661
2662 tree
2663 do_get_tree(Translate_context*)
2664 { return null_pointer_node; }
2665
2666 void
2667 do_export(Export* exp) const
2668 { exp->write_c_string("nil"); }
2669};
2670
2671// Import a nil expression.
2672
2673Expression*
2674Nil_expression::do_import(Import* imp)
2675{
2676 imp->require_c_string("nil");
2677 return Expression::make_nil(imp->location());
2678}
2679
2680// Make a nil expression.
2681
2682Expression*
2683Expression::make_nil(source_location location)
2684{
2685 return new Nil_expression(location);
2686}
2687
2688// The value of the predeclared constant iota. This is little more
2689// than a marker. This will be lowered to an integer in
2690// Const_expression::do_lower, which is where we know the value that
2691// it should have.
2692
2693class Iota_expression : public Parser_expression
2694{
2695 public:
2696 Iota_expression(source_location location)
2697 : Parser_expression(EXPRESSION_IOTA, location)
2698 { }
2699
2700 protected:
2701 Expression*
2702 do_lower(Gogo*, Named_object*, int)
2703 { gcc_unreachable(); }
2704
2705 // There should only ever be one of these.
2706 Expression*
2707 do_copy()
2708 { gcc_unreachable(); }
2709};
2710
2711// Make an iota expression. This is only called for one case: the
2712// value of the predeclared constant iota.
2713
2714Expression*
2715Expression::make_iota()
2716{
2717 static Iota_expression iota_expression(UNKNOWN_LOCATION);
2718 return &iota_expression;
2719}
2720
2721// A type conversion expression.
2722
2723class Type_conversion_expression : public Expression
2724{
2725 public:
2726 Type_conversion_expression(Type* type, Expression* expr,
2727 source_location location)
2728 : Expression(EXPRESSION_CONVERSION, location),
2729 type_(type), expr_(expr), may_convert_function_types_(false)
2730 { }
2731
2732 // Return the type to which we are converting.
2733 Type*
2734 type() const
2735 { return this->type_; }
2736
2737 // Return the expression which we are converting.
2738 Expression*
2739 expr() const
2740 { return this->expr_; }
2741
2742 // Permit converting from one function type to another. This is
2743 // used internally for method expressions.
2744 void
2745 set_may_convert_function_types()
2746 {
2747 this->may_convert_function_types_ = true;
2748 }
2749
2750 // Import a type conversion expression.
2751 static Expression*
2752 do_import(Import*);
2753
2754 protected:
2755 int
2756 do_traverse(Traverse* traverse);
2757
2758 Expression*
2759 do_lower(Gogo*, Named_object*, int);
2760
2761 bool
2762 do_is_constant() const
2763 { return this->expr_->is_constant(); }
2764
2765 bool
2766 do_integer_constant_value(bool, mpz_t, Type**) const;
2767
2768 bool
2769 do_float_constant_value(mpfr_t, Type**) const;
2770
2771 bool
2772 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
2773
2774 bool
2775 do_string_constant_value(std::string*) const;
2776
2777 Type*
2778 do_type()
2779 { return this->type_; }
2780
2781 void
2782 do_determine_type(const Type_context*)
2783 {
2784 Type_context subcontext(this->type_, false);
2785 this->expr_->determine_type(&subcontext);
2786 }
2787
2788 void
2789 do_check_types(Gogo*);
2790
2791 Expression*
2792 do_copy()
2793 {
2794 return new Type_conversion_expression(this->type_, this->expr_->copy(),
2795 this->location());
2796 }
2797
2798 tree
2799 do_get_tree(Translate_context* context);
2800
2801 void
2802 do_export(Export*) const;
2803
2804 private:
2805 // The type to convert to.
2806 Type* type_;
2807 // The expression to convert.
2808 Expression* expr_;
2809 // True if this is permitted to convert function types. This is
2810 // used internally for method expressions.
2811 bool may_convert_function_types_;
2812};
2813
2814// Traversal.
2815
2816int
2817Type_conversion_expression::do_traverse(Traverse* traverse)
2818{
2819 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
2820 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
2821 return TRAVERSE_EXIT;
2822 return TRAVERSE_CONTINUE;
2823}
2824
2825// Convert to a constant at lowering time.
2826
2827Expression*
2828Type_conversion_expression::do_lower(Gogo*, Named_object*, int)
2829{
2830 Type* type = this->type_;
2831 Expression* val = this->expr_;
2832 source_location location = this->location();
2833
2834 if (type->integer_type() != NULL)
2835 {
2836 mpz_t ival;
2837 mpz_init(ival);
2838 Type* dummy;
2839 if (val->integer_constant_value(false, ival, &dummy))
2840 {
2841 if (!Integer_expression::check_constant(ival, type, location))
2842 mpz_set_ui(ival, 0);
2843 Expression* ret = Expression::make_integer(&ival, type, location);
2844 mpz_clear(ival);
2845 return ret;
2846 }
2847
2848 mpfr_t fval;
2849 mpfr_init(fval);
2850 if (val->float_constant_value(fval, &dummy))
2851 {
2852 if (!mpfr_integer_p(fval))
2853 {
2854 error_at(location,
2855 "floating point constant truncated to integer");
2856 return Expression::make_error(location);
2857 }
2858 mpfr_get_z(ival, fval, GMP_RNDN);
2859 if (!Integer_expression::check_constant(ival, type, location))
2860 mpz_set_ui(ival, 0);
2861 Expression* ret = Expression::make_integer(&ival, type, location);
2862 mpfr_clear(fval);
2863 mpz_clear(ival);
2864 return ret;
2865 }
2866 mpfr_clear(fval);
2867 mpz_clear(ival);
2868 }
2869
2870 if (type->float_type() != NULL)
2871 {
2872 mpfr_t fval;
2873 mpfr_init(fval);
2874 Type* dummy;
2875 if (val->float_constant_value(fval, &dummy))
2876 {
2877 if (!Float_expression::check_constant(fval, type, location))
2878 mpfr_set_ui(fval, 0, GMP_RNDN);
2879 Float_expression::constrain_float(fval, type);
2880 Expression *ret = Expression::make_float(&fval, type, location);
2881 mpfr_clear(fval);
2882 return ret;
2883 }
2884 mpfr_clear(fval);
2885 }
2886
2887 if (type->complex_type() != NULL)
2888 {
2889 mpfr_t real;
2890 mpfr_t imag;
2891 mpfr_init(real);
2892 mpfr_init(imag);
2893 Type* dummy;
2894 if (val->complex_constant_value(real, imag, &dummy))
2895 {
2896 if (!Complex_expression::check_constant(real, imag, type, location))
2897 {
2898 mpfr_set_ui(real, 0, GMP_RNDN);
2899 mpfr_set_ui(imag, 0, GMP_RNDN);
2900 }
2901 Complex_expression::constrain_complex(real, imag, type);
2902 Expression* ret = Expression::make_complex(&real, &imag, type,
2903 location);
2904 mpfr_clear(real);
2905 mpfr_clear(imag);
2906 return ret;
2907 }
2908 mpfr_clear(real);
2909 mpfr_clear(imag);
2910 }
2911
2912 if (type->is_open_array_type() && type->named_type() == NULL)
2913 {
2914 Type* element_type = type->array_type()->element_type()->forwarded();
2915 bool is_byte = element_type == Type::lookup_integer_type("uint8");
2916 bool is_int = element_type == Type::lookup_integer_type("int");
2917 if (is_byte || is_int)
2918 {
2919 std::string s;
2920 if (val->string_constant_value(&s))
2921 {
2922 Expression_list* vals = new Expression_list();
2923 if (is_byte)
2924 {
2925 for (std::string::const_iterator p = s.begin();
2926 p != s.end();
2927 p++)
2928 {
2929 mpz_t val;
2930 mpz_init_set_ui(val, static_cast<unsigned char>(*p));
2931 Expression* v = Expression::make_integer(&val,
2932 element_type,
2933 location);
2934 vals->push_back(v);
2935 mpz_clear(val);
2936 }
2937 }
2938 else
2939 {
2940 const char *p = s.data();
2941 const char *pend = s.data() + s.length();
2942 while (p < pend)
2943 {
2944 unsigned int c;
2945 int adv = Lex::fetch_char(p, &c);
2946 if (adv == 0)
2947 {
2948 warning_at(this->location(), 0,
2949 "invalid UTF-8 encoding");
2950 adv = 1;
2951 }
2952 p += adv;
2953 mpz_t val;
2954 mpz_init_set_ui(val, c);
2955 Expression* v = Expression::make_integer(&val,
2956 element_type,
2957 location);
2958 vals->push_back(v);
2959 mpz_clear(val);
2960 }
2961 }
2962
2963 return Expression::make_slice_composite_literal(type, vals,
2964 location);
2965 }
2966 }
2967 }
2968
2969 return this;
2970}
2971
2972// Return the constant integer value if there is one.
2973
2974bool
2975Type_conversion_expression::do_integer_constant_value(bool iota_is_constant,
2976 mpz_t val,
2977 Type** ptype) const
2978{
2979 if (this->type_->integer_type() == NULL)
2980 return false;
2981
2982 mpz_t ival;
2983 mpz_init(ival);
2984 Type* dummy;
2985 if (this->expr_->integer_constant_value(iota_is_constant, ival, &dummy))
2986 {
2987 if (!Integer_expression::check_constant(ival, this->type_,
2988 this->location()))
2989 {
2990 mpz_clear(ival);
2991 return false;
2992 }
2993 mpz_set(val, ival);
2994 mpz_clear(ival);
2995 *ptype = this->type_;
2996 return true;
2997 }
2998 mpz_clear(ival);
2999
3000 mpfr_t fval;
3001 mpfr_init(fval);
3002 if (this->expr_->float_constant_value(fval, &dummy))
3003 {
3004 mpfr_get_z(val, fval, GMP_RNDN);
3005 mpfr_clear(fval);
3006 if (!Integer_expression::check_constant(val, this->type_,
3007 this->location()))
3008 return false;
3009 *ptype = this->type_;
3010 return true;
3011 }
3012 mpfr_clear(fval);
3013
3014 return false;
3015}
3016
3017// Return the constant floating point value if there is one.
3018
3019bool
3020Type_conversion_expression::do_float_constant_value(mpfr_t val,
3021 Type** ptype) const
3022{
3023 if (this->type_->float_type() == NULL)
3024 return false;
3025
3026 mpfr_t fval;
3027 mpfr_init(fval);
3028 Type* dummy;
3029 if (this->expr_->float_constant_value(fval, &dummy))
3030 {
3031 if (!Float_expression::check_constant(fval, this->type_,
3032 this->location()))
3033 {
3034 mpfr_clear(fval);
3035 return false;
3036 }
3037 mpfr_set(val, fval, GMP_RNDN);
3038 mpfr_clear(fval);
3039 Float_expression::constrain_float(val, this->type_);
3040 *ptype = this->type_;
3041 return true;
3042 }
3043 mpfr_clear(fval);
3044
3045 return false;
3046}
3047
3048// Return the constant complex value if there is one.
3049
3050bool
3051Type_conversion_expression::do_complex_constant_value(mpfr_t real,
3052 mpfr_t imag,
3053 Type **ptype) const
3054{
3055 if (this->type_->complex_type() == NULL)
3056 return false;
3057
3058 mpfr_t rval;
3059 mpfr_t ival;
3060 mpfr_init(rval);
3061 mpfr_init(ival);
3062 Type* dummy;
3063 if (this->expr_->complex_constant_value(rval, ival, &dummy))
3064 {
3065 if (!Complex_expression::check_constant(rval, ival, this->type_,
3066 this->location()))
3067 {
3068 mpfr_clear(rval);
3069 mpfr_clear(ival);
3070 return false;
3071 }
3072 mpfr_set(real, rval, GMP_RNDN);
3073 mpfr_set(imag, ival, GMP_RNDN);
3074 mpfr_clear(rval);
3075 mpfr_clear(ival);
3076 Complex_expression::constrain_complex(real, imag, this->type_);
3077 *ptype = this->type_;
3078 return true;
3079 }
3080 mpfr_clear(rval);
3081 mpfr_clear(ival);
3082
3083 return false;
3084}
3085
3086// Return the constant string value if there is one.
3087
3088bool
3089Type_conversion_expression::do_string_constant_value(std::string* val) const
3090{
3091 if (this->type_->is_string_type()
3092 && this->expr_->type()->integer_type() != NULL)
3093 {
3094 mpz_t ival;
3095 mpz_init(ival);
3096 Type* dummy;
3097 if (this->expr_->integer_constant_value(false, ival, &dummy))
3098 {
3099 unsigned long ulval = mpz_get_ui(ival);
3100 if (mpz_cmp_ui(ival, ulval) == 0)
3101 {
3102 Lex::append_char(ulval, true, val, this->location());
3103 mpz_clear(ival);
3104 return true;
3105 }
3106 }
3107 mpz_clear(ival);
3108 }
3109
3110 // FIXME: Could handle conversion from const []int here.
3111
3112 return false;
3113}
3114
3115// Check that types are convertible.
3116
3117void
3118Type_conversion_expression::do_check_types(Gogo*)
3119{
3120 Type* type = this->type_;
3121 Type* expr_type = this->expr_->type();
3122 std::string reason;
3123
3124 if (this->may_convert_function_types_
3125 && type->function_type() != NULL
3126 && expr_type->function_type() != NULL)
3127 return;
3128
3129 if (Type::are_convertible(type, expr_type, &reason))
3130 return;
3131
3132 error_at(this->location(), "%s", reason.c_str());
3133 this->set_is_error();
3134}
3135
3136// Get a tree for a type conversion.
3137
3138tree
3139Type_conversion_expression::do_get_tree(Translate_context* context)
3140{
3141 Gogo* gogo = context->gogo();
3142 tree type_tree = this->type_->get_tree(gogo);
3143 tree expr_tree = this->expr_->get_tree(context);
3144
3145 if (type_tree == error_mark_node
3146 || expr_tree == error_mark_node
3147 || TREE_TYPE(expr_tree) == error_mark_node)
3148 return error_mark_node;
3149
3150 if (TYPE_MAIN_VARIANT(type_tree) == TYPE_MAIN_VARIANT(TREE_TYPE(expr_tree)))
3151 return fold_convert(type_tree, expr_tree);
3152
3153 Type* type = this->type_;
3154 Type* expr_type = this->expr_->type();
3155 tree ret;
3156 if (type->interface_type() != NULL || expr_type->interface_type() != NULL)
3157 ret = Expression::convert_for_assignment(context, type, expr_type,
3158 expr_tree, this->location());
3159 else if (type->integer_type() != NULL)
3160 {
3161 if (expr_type->integer_type() != NULL
3162 || expr_type->float_type() != NULL
3163 || expr_type->is_unsafe_pointer_type())
3164 ret = fold(convert_to_integer(type_tree, expr_tree));
3165 else
3166 gcc_unreachable();
3167 }
3168 else if (type->float_type() != NULL)
3169 {
3170 if (expr_type->integer_type() != NULL
3171 || expr_type->float_type() != NULL)
3172 ret = fold(convert_to_real(type_tree, expr_tree));
3173 else
3174 gcc_unreachable();
3175 }
3176 else if (type->complex_type() != NULL)
3177 {
3178 if (expr_type->complex_type() != NULL)
3179 ret = fold(convert_to_complex(type_tree, expr_tree));
3180 else
3181 gcc_unreachable();
3182 }
3183 else if (type->is_string_type()
3184 && expr_type->integer_type() != NULL)
3185 {
3186 expr_tree = fold_convert(integer_type_node, expr_tree);
3187 if (host_integerp(expr_tree, 0))
3188 {
3189 HOST_WIDE_INT intval = tree_low_cst(expr_tree, 0);
3190 std::string s;
3191 Lex::append_char(intval, true, &s, this->location());
3192 Expression* se = Expression::make_string(s, this->location());
3193 return se->get_tree(context);
3194 }
3195
3196 static tree int_to_string_fndecl;
3197 ret = Gogo::call_builtin(&int_to_string_fndecl,
3198 this->location(),
3199 "__go_int_to_string",
3200 1,
3201 type_tree,
3202 integer_type_node,
3203 fold_convert(integer_type_node, expr_tree));
3204 }
3205 else if (type->is_string_type()
3206 && (expr_type->array_type() != NULL
3207 || (expr_type->points_to() != NULL
3208 && expr_type->points_to()->array_type() != NULL)))
3209 {
3210 Type* t = expr_type;
3211 if (t->points_to() != NULL)
3212 {
3213 t = t->points_to();
3214 expr_tree = build_fold_indirect_ref(expr_tree);
3215 }
3216 if (!DECL_P(expr_tree))
3217 expr_tree = save_expr(expr_tree);
3218 Array_type* a = t->array_type();
3219 Type* e = a->element_type()->forwarded();
3220 gcc_assert(e->integer_type() != NULL);
3221 tree valptr = fold_convert(const_ptr_type_node,
3222 a->value_pointer_tree(gogo, expr_tree));
3223 tree len = a->length_tree(gogo, expr_tree);
3224 len = fold_convert_loc(this->location(), size_type_node, len);
3225 if (e->integer_type()->is_unsigned()
3226 && e->integer_type()->bits() == 8)
3227 {
3228 static tree byte_array_to_string_fndecl;
3229 ret = Gogo::call_builtin(&byte_array_to_string_fndecl,
3230 this->location(),
3231 "__go_byte_array_to_string",
3232 2,
3233 type_tree,
3234 const_ptr_type_node,
3235 valptr,
3236 size_type_node,
3237 len);
3238 }
3239 else
3240 {
3241 gcc_assert(e == Type::lookup_integer_type("int"));
3242 static tree int_array_to_string_fndecl;
3243 ret = Gogo::call_builtin(&int_array_to_string_fndecl,
3244 this->location(),
3245 "__go_int_array_to_string",
3246 2,
3247 type_tree,
3248 const_ptr_type_node,
3249 valptr,
3250 size_type_node,
3251 len);
3252 }
3253 }
3254 else if (type->is_open_array_type() && expr_type->is_string_type())
3255 {
3256 Type* e = type->array_type()->element_type()->forwarded();
3257 gcc_assert(e->integer_type() != NULL);
3258 if (e->integer_type()->is_unsigned()
3259 && e->integer_type()->bits() == 8)
3260 {
3261 static tree string_to_byte_array_fndecl;
3262 ret = Gogo::call_builtin(&string_to_byte_array_fndecl,
3263 this->location(),
3264 "__go_string_to_byte_array",
3265 1,
3266 type_tree,
3267 TREE_TYPE(expr_tree),
3268 expr_tree);
3269 }
3270 else
3271 {
3272 gcc_assert(e == Type::lookup_integer_type("int"));
3273 static tree string_to_int_array_fndecl;
3274 ret = Gogo::call_builtin(&string_to_int_array_fndecl,
3275 this->location(),
3276 "__go_string_to_int_array",
3277 1,
3278 type_tree,
3279 TREE_TYPE(expr_tree),
3280 expr_tree);
3281 }
3282 }
3283 else if ((type->is_unsafe_pointer_type()
3284 && expr_type->points_to() != NULL)
3285 || (expr_type->is_unsafe_pointer_type()
3286 && type->points_to() != NULL))
3287 ret = fold_convert(type_tree, expr_tree);
3288 else if (type->is_unsafe_pointer_type()
3289 && expr_type->integer_type() != NULL)
3290 ret = convert_to_pointer(type_tree, expr_tree);
3291 else if (this->may_convert_function_types_
3292 && type->function_type() != NULL
3293 && expr_type->function_type() != NULL)
3294 ret = fold_convert_loc(this->location(), type_tree, expr_tree);
3295 else
3296 ret = Expression::convert_for_assignment(context, type, expr_type,
3297 expr_tree, this->location());
3298
3299 return ret;
3300}
3301
3302// Output a type conversion in a constant expression.
3303
3304void
3305Type_conversion_expression::do_export(Export* exp) const
3306{
3307 exp->write_c_string("convert(");
3308 exp->write_type(this->type_);
3309 exp->write_c_string(", ");
3310 this->expr_->export_expression(exp);
3311 exp->write_c_string(")");
3312}
3313
3314// Import a type conversion or a struct construction.
3315
3316Expression*
3317Type_conversion_expression::do_import(Import* imp)
3318{
3319 imp->require_c_string("convert(");
3320 Type* type = imp->read_type();
3321 imp->require_c_string(", ");
3322 Expression* val = Expression::import_expression(imp);
3323 imp->require_c_string(")");
3324 return Expression::make_cast(type, val, imp->location());
3325}
3326
3327// Make a type cast expression.
3328
3329Expression*
3330Expression::make_cast(Type* type, Expression* val, source_location location)
3331{
3332 if (type->is_error_type() || val->is_error_expression())
3333 return Expression::make_error(location);
3334 return new Type_conversion_expression(type, val, location);
3335}
3336
3337// Unary expressions.
3338
3339class Unary_expression : public Expression
3340{
3341 public:
3342 Unary_expression(Operator op, Expression* expr, source_location location)
3343 : Expression(EXPRESSION_UNARY, location),
3344 op_(op), escapes_(true), expr_(expr)
3345 { }
3346
3347 // Return the operator.
3348 Operator
3349 op() const
3350 { return this->op_; }
3351
3352 // Return the operand.
3353 Expression*
3354 operand() const
3355 { return this->expr_; }
3356
3357 // Record that an address expression does not escape.
3358 void
3359 set_does_not_escape()
3360 {
3361 gcc_assert(this->op_ == OPERATOR_AND);
3362 this->escapes_ = false;
3363 }
3364
3365 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3366 // could be done, false if not.
3367 static bool
3368 eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3369 source_location);
3370
3371 // Apply unary opcode OP to UVAL, setting VAL. Return true if this
3372 // could be done, false if not.
3373 static bool
3374 eval_float(Operator op, mpfr_t uval, mpfr_t val);
3375
3376 // Apply unary opcode OP to UREAL/UIMAG, setting REAL/IMAG. Return
3377 // true if this could be done, false if not.
3378 static bool
3379 eval_complex(Operator op, mpfr_t ureal, mpfr_t uimag, mpfr_t real,
3380 mpfr_t imag);
3381
3382 static Expression*
3383 do_import(Import*);
3384
3385 protected:
3386 int
3387 do_traverse(Traverse* traverse)
3388 { return Expression::traverse(&this->expr_, traverse); }
3389
3390 Expression*
3391 do_lower(Gogo*, Named_object*, int);
3392
3393 bool
3394 do_is_constant() const;
3395
3396 bool
3397 do_integer_constant_value(bool, mpz_t, Type**) const;
3398
3399 bool
3400 do_float_constant_value(mpfr_t, Type**) const;
3401
3402 bool
3403 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
3404
3405 Type*
3406 do_type();
3407
3408 void
3409 do_determine_type(const Type_context*);
3410
3411 void
3412 do_check_types(Gogo*);
3413
3414 Expression*
3415 do_copy()
3416 {
3417 return Expression::make_unary(this->op_, this->expr_->copy(),
3418 this->location());
3419 }
3420
3421 bool
3422 do_is_addressable() const
3423 { return this->op_ == OPERATOR_MULT; }
3424
3425 tree
3426 do_get_tree(Translate_context*);
3427
3428 void
3429 do_export(Export*) const;
3430
3431 private:
3432 // The unary operator to apply.
3433 Operator op_;
3434 // Normally true. False if this is an address expression which does
3435 // not escape the current function.
3436 bool escapes_;
3437 // The operand.
3438 Expression* expr_;
3439};
3440
3441// If we are taking the address of a composite literal, and the
3442// contents are not constant, then we want to make a heap composite
3443// instead.
3444
3445Expression*
3446Unary_expression::do_lower(Gogo*, Named_object*, int)
3447{
3448 source_location loc = this->location();
3449 Operator op = this->op_;
3450 Expression* expr = this->expr_;
3451
3452 if (op == OPERATOR_MULT && expr->is_type_expression())
3453 return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
3454
3455 // *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
3456 // moving x to the heap. FIXME: Is it worth doing a real escape
3457 // analysis here? This case is found in math/unsafe.go and is
3458 // therefore worth special casing.
3459 if (op == OPERATOR_MULT)
3460 {
3461 Expression* e = expr;
3462 while (e->classification() == EXPRESSION_CONVERSION)
3463 {
3464 Type_conversion_expression* te
3465 = static_cast<Type_conversion_expression*>(e);
3466 e = te->expr();
3467 }
3468
3469 if (e->classification() == EXPRESSION_UNARY)
3470 {
3471 Unary_expression* ue = static_cast<Unary_expression*>(e);
3472 if (ue->op_ == OPERATOR_AND)
3473 {
3474 if (e == expr)
3475 {
3476 // *&x == x.
3477 return ue->expr_;
3478 }
3479 ue->set_does_not_escape();
3480 }
3481 }
3482 }
3483
3484 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS
3485 || op == OPERATOR_NOT || op == OPERATOR_XOR)
3486 {
3487 Expression* ret = NULL;
3488
3489 mpz_t eval;
3490 mpz_init(eval);
3491 Type* etype;
3492 if (expr->integer_constant_value(false, eval, &etype))
3493 {
3494 mpz_t val;
3495 mpz_init(val);
3496 if (Unary_expression::eval_integer(op, etype, eval, val, loc))
3497 ret = Expression::make_integer(&val, etype, loc);
3498 mpz_clear(val);
3499 }
3500 mpz_clear(eval);
3501 if (ret != NULL)
3502 return ret;
3503
3504 if (op == OPERATOR_PLUS || op == OPERATOR_MINUS)
3505 {
3506 mpfr_t fval;
3507 mpfr_init(fval);
3508 Type* ftype;
3509 if (expr->float_constant_value(fval, &ftype))
3510 {
3511 mpfr_t val;
3512 mpfr_init(val);
3513 if (Unary_expression::eval_float(op, fval, val))
3514 ret = Expression::make_float(&val, ftype, loc);
3515 mpfr_clear(val);
3516 }
3517 if (ret != NULL)
3518 {
3519 mpfr_clear(fval);
3520 return ret;
3521 }
3522
3523 mpfr_t ival;
3524 mpfr_init(ival);
3525 if (expr->complex_constant_value(fval, ival, &ftype))
3526 {
3527 mpfr_t real;
3528 mpfr_t imag;
3529 mpfr_init(real);
3530 mpfr_init(imag);
3531 if (Unary_expression::eval_complex(op, fval, ival, real, imag))
3532 ret = Expression::make_complex(&real, &imag, ftype, loc);
3533 mpfr_clear(real);
3534 mpfr_clear(imag);
3535 }
3536 mpfr_clear(ival);
3537 mpfr_clear(fval);
3538 if (ret != NULL)
3539 return ret;
3540 }
3541 }
3542
3543 return this;
3544}
3545
3546// Return whether a unary expression is a constant.
3547
3548bool
3549Unary_expression::do_is_constant() const
3550{
3551 if (this->op_ == OPERATOR_MULT)
3552 {
3553 // Indirecting through a pointer is only constant if the object
3554 // to which the expression points is constant, but we currently
3555 // have no way to determine that.
3556 return false;
3557 }
3558 else if (this->op_ == OPERATOR_AND)
3559 {
3560 // Taking the address of a variable is constant if it is a
3561 // global variable, not constant otherwise. In other cases
3562 // taking the address is probably not a constant.
3563 Var_expression* ve = this->expr_->var_expression();
3564 if (ve != NULL)
3565 {
3566 Named_object* no = ve->named_object();
3567 return no->is_variable() && no->var_value()->is_global();
3568 }
3569 return false;
3570 }
3571 else
3572 return this->expr_->is_constant();
3573}
3574
3575// Apply unary opcode OP to UVAL, setting VAL. UTYPE is the type of
3576// UVAL, if known; it may be NULL. Return true if this could be done,
3577// false if not.
3578
3579bool
3580Unary_expression::eval_integer(Operator op, Type* utype, mpz_t uval, mpz_t val,
3581 source_location location)
3582{
3583 switch (op)
3584 {
3585 case OPERATOR_PLUS:
3586 mpz_set(val, uval);
3587 return true;
3588 case OPERATOR_MINUS:
3589 mpz_neg(val, uval);
3590 return Integer_expression::check_constant(val, utype, location);
3591 case OPERATOR_NOT:
3592 mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
3593 return true;
3594 case OPERATOR_XOR:
3595 if (utype == NULL
3596 || utype->integer_type() == NULL
3597 || utype->integer_type()->is_abstract())
3598 mpz_com(val, uval);
3599 else
3600 {
3601 // The number of HOST_WIDE_INTs that it takes to represent
3602 // UVAL.
3603 size_t count = ((mpz_sizeinbase(uval, 2)
3604 + HOST_BITS_PER_WIDE_INT
3605 - 1)
3606 / HOST_BITS_PER_WIDE_INT);
3607
3608 unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
3609 memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
3610
3611 size_t ecount;
3612 mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
3613 gcc_assert(ecount <= count);
3614
3615 // Trim down to the number of words required by the type.
3616 size_t obits = utype->integer_type()->bits();
3617 if (!utype->integer_type()->is_unsigned())
3618 ++obits;
3619 size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
3620 / HOST_BITS_PER_WIDE_INT);
3621 gcc_assert(ocount <= ocount);
3622
3623 for (size_t i = 0; i < ocount; ++i)
3624 phwi[i] = ~phwi[i];
3625
3626 size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
3627 if (clearbits != 0)
3628 phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
3629 >> clearbits);
3630
3631 mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
3632
3633 delete[] phwi;
3634 }
3635 return Integer_expression::check_constant(val, utype, location);
3636 case OPERATOR_AND:
3637 case OPERATOR_MULT:
3638 return false;
3639 default:
3640 gcc_unreachable();
3641 }
3642}
3643
3644// Apply unary opcode OP to UVAL, setting VAL. Return true if this
3645// could be done, false if not.
3646
3647bool
3648Unary_expression::eval_float(Operator op, mpfr_t uval, mpfr_t val)
3649{
3650 switch (op)
3651 {
3652 case OPERATOR_PLUS:
3653 mpfr_set(val, uval, GMP_RNDN);
3654 return true;
3655 case OPERATOR_MINUS:
3656 mpfr_neg(val, uval, GMP_RNDN);
3657 return true;
3658 case OPERATOR_NOT:
3659 case OPERATOR_XOR:
3660 case OPERATOR_AND:
3661 case OPERATOR_MULT:
3662 return false;
3663 default:
3664 gcc_unreachable();
3665 }
3666}
3667
3668// Apply unary opcode OP to RVAL/IVAL, setting REAL/IMAG. Return true
3669// if this could be done, false if not.
3670
3671bool
3672Unary_expression::eval_complex(Operator op, mpfr_t rval, mpfr_t ival,
3673 mpfr_t real, mpfr_t imag)
3674{
3675 switch (op)
3676 {
3677 case OPERATOR_PLUS:
3678 mpfr_set(real, rval, GMP_RNDN);
3679 mpfr_set(imag, ival, GMP_RNDN);
3680 return true;
3681 case OPERATOR_MINUS:
3682 mpfr_neg(real, rval, GMP_RNDN);
3683 mpfr_neg(imag, ival, GMP_RNDN);
3684 return true;
3685 case OPERATOR_NOT:
3686 case OPERATOR_XOR:
3687 case OPERATOR_AND:
3688 case OPERATOR_MULT:
3689 return false;
3690 default:
3691 gcc_unreachable();
3692 }
3693}
3694
3695// Return the integral constant value of a unary expression, if it has one.
3696
3697bool
3698Unary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
3699 Type** ptype) const
3700{
3701 mpz_t uval;
3702 mpz_init(uval);
3703 bool ret;
3704 if (!this->expr_->integer_constant_value(iota_is_constant, uval, ptype))
3705 ret = false;
3706 else
3707 ret = Unary_expression::eval_integer(this->op_, *ptype, uval, val,
3708 this->location());
3709 mpz_clear(uval);
3710 return ret;
3711}
3712
3713// Return the floating point constant value of a unary expression, if
3714// it has one.
3715
3716bool
3717Unary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
3718{
3719 mpfr_t uval;
3720 mpfr_init(uval);
3721 bool ret;
3722 if (!this->expr_->float_constant_value(uval, ptype))
3723 ret = false;
3724 else
3725 ret = Unary_expression::eval_float(this->op_, uval, val);
3726 mpfr_clear(uval);
3727 return ret;
3728}
3729
3730// Return the complex constant value of a unary expression, if it has
3731// one.
3732
3733bool
3734Unary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
3735 Type** ptype) const
3736{
3737 mpfr_t rval;
3738 mpfr_t ival;
3739 mpfr_init(rval);
3740 mpfr_init(ival);
3741 bool ret;
3742 if (!this->expr_->complex_constant_value(rval, ival, ptype))
3743 ret = false;
3744 else
3745 ret = Unary_expression::eval_complex(this->op_, rval, ival, real, imag);
3746 mpfr_clear(rval);
3747 mpfr_clear(ival);
3748 return ret;
3749}
3750
3751// Return the type of a unary expression.
3752
3753Type*
3754Unary_expression::do_type()
3755{
3756 switch (this->op_)
3757 {
3758 case OPERATOR_PLUS:
3759 case OPERATOR_MINUS:
3760 case OPERATOR_NOT:
3761 case OPERATOR_XOR:
3762 return this->expr_->type();
3763
3764 case OPERATOR_AND:
3765 return Type::make_pointer_type(this->expr_->type());
3766
3767 case OPERATOR_MULT:
3768 {
3769 Type* subtype = this->expr_->type();
3770 Type* points_to = subtype->points_to();
3771 if (points_to == NULL)
3772 return Type::make_error_type();
3773 return points_to;
3774 }
3775
3776 default:
3777 gcc_unreachable();
3778 }
3779}
3780
3781// Determine abstract types for a unary expression.
3782
3783void
3784Unary_expression::do_determine_type(const Type_context* context)
3785{
3786 switch (this->op_)
3787 {
3788 case OPERATOR_PLUS:
3789 case OPERATOR_MINUS:
3790 case OPERATOR_NOT:
3791 case OPERATOR_XOR:
3792 this->expr_->determine_type(context);
3793 break;
3794
3795 case OPERATOR_AND:
3796 // Taking the address of something.
3797 {
3798 Type* subtype = (context->type == NULL
3799 ? NULL
3800 : context->type->points_to());
3801 Type_context subcontext(subtype, false);
3802 this->expr_->determine_type(&subcontext);
3803 }
3804 break;
3805
3806 case OPERATOR_MULT:
3807 // Indirecting through a pointer.
3808 {
3809 Type* subtype = (context->type == NULL
3810 ? NULL
3811 : Type::make_pointer_type(context->type));
3812 Type_context subcontext(subtype, false);
3813 this->expr_->determine_type(&subcontext);
3814 }
3815 break;
3816
3817 default:
3818 gcc_unreachable();
3819 }
3820}
3821
3822// Check types for a unary expression.
3823
3824void
3825Unary_expression::do_check_types(Gogo*)
3826{
9fe897ef 3827 Type* type = this->expr_->type();
3828 if (type->is_error_type())
3829 {
3830 this->set_is_error();
3831 return;
3832 }
3833
e440a328 3834 switch (this->op_)
3835 {
3836 case OPERATOR_PLUS:
3837 case OPERATOR_MINUS:
9fe897ef 3838 if (type->integer_type() == NULL
3839 && type->float_type() == NULL
3840 && type->complex_type() == NULL)
3841 this->report_error(_("expected numeric type"));
e440a328 3842 break;
3843
3844 case OPERATOR_NOT:
3845 case OPERATOR_XOR:
9fe897ef 3846 if (type->integer_type() == NULL
3847 && !type->is_boolean_type())
3848 this->report_error(_("expected integer or boolean type"));
e440a328 3849 break;
3850
3851 case OPERATOR_AND:
3852 if (!this->expr_->is_addressable())
3853 this->report_error(_("invalid operand for unary %<&%>"));
3854 else
3855 this->expr_->address_taken(this->escapes_);
3856 break;
3857
3858 case OPERATOR_MULT:
3859 // Indirecting through a pointer.
9fe897ef 3860 if (type->points_to() == NULL)
3861 this->report_error(_("expected pointer"));
e440a328 3862 break;
3863
3864 default:
3865 gcc_unreachable();
3866 }
3867}
3868
3869// Get a tree for a unary expression.
3870
3871tree
3872Unary_expression::do_get_tree(Translate_context* context)
3873{
3874 tree expr = this->expr_->get_tree(context);
3875 if (expr == error_mark_node)
3876 return error_mark_node;
3877
3878 source_location loc = this->location();
3879 switch (this->op_)
3880 {
3881 case OPERATOR_PLUS:
3882 return expr;
3883
3884 case OPERATOR_MINUS:
3885 {
3886 tree type = TREE_TYPE(expr);
3887 tree compute_type = excess_precision_type(type);
3888 if (compute_type != NULL_TREE)
3889 expr = ::convert(compute_type, expr);
3890 tree ret = fold_build1_loc(loc, NEGATE_EXPR,
3891 (compute_type != NULL_TREE
3892 ? compute_type
3893 : type),
3894 expr);
3895 if (compute_type != NULL_TREE)
3896 ret = ::convert(type, ret);
3897 return ret;
3898 }
3899
3900 case OPERATOR_NOT:
3901 if (TREE_CODE(TREE_TYPE(expr)) == BOOLEAN_TYPE)
3902 return fold_build1_loc(loc, TRUTH_NOT_EXPR, TREE_TYPE(expr), expr);
3903 else
3904 return fold_build2_loc(loc, NE_EXPR, boolean_type_node, expr,
3905 build_int_cst(TREE_TYPE(expr), 0));
3906
3907 case OPERATOR_XOR:
3908 return fold_build1_loc(loc, BIT_NOT_EXPR, TREE_TYPE(expr), expr);
3909
3910 case OPERATOR_AND:
3911 // We should not see a non-constant constructor here; cases
3912 // where we would see one should have been moved onto the heap
3913 // at parse time. Taking the address of a nonconstant
3914 // constructor will not do what the programmer expects.
3915 gcc_assert(TREE_CODE(expr) != CONSTRUCTOR || TREE_CONSTANT(expr));
3916 gcc_assert(TREE_CODE(expr) != ADDR_EXPR);
3917
3918 // Build a decl for a constant constructor.
3919 if (TREE_CODE(expr) == CONSTRUCTOR && TREE_CONSTANT(expr))
3920 {
3921 tree decl = build_decl(this->location(), VAR_DECL,
3922 create_tmp_var_name("C"), TREE_TYPE(expr));
3923 DECL_EXTERNAL(decl) = 0;
3924 TREE_PUBLIC(decl) = 0;
3925 TREE_READONLY(decl) = 1;
3926 TREE_CONSTANT(decl) = 1;
3927 TREE_STATIC(decl) = 1;
3928 TREE_ADDRESSABLE(decl) = 1;
3929 DECL_ARTIFICIAL(decl) = 1;
3930 DECL_INITIAL(decl) = expr;
3931 rest_of_decl_compilation(decl, 1, 0);
3932 expr = decl;
3933 }
3934
3935 return build_fold_addr_expr_loc(loc, expr);
3936
3937 case OPERATOR_MULT:
3938 {
3939 gcc_assert(POINTER_TYPE_P(TREE_TYPE(expr)));
3940
3941 // If we are dereferencing the pointer to a large struct, we
3942 // need to check for nil. We don't bother to check for small
3943 // structs because we expect the system to crash on a nil
3944 // pointer dereference.
3945 HOST_WIDE_INT s = int_size_in_bytes(TREE_TYPE(TREE_TYPE(expr)));
3946 if (s == -1 || s >= 4096)
3947 {
3948 if (!DECL_P(expr))
3949 expr = save_expr(expr);
3950 tree compare = fold_build2_loc(loc, EQ_EXPR, boolean_type_node,
3951 expr,
3952 fold_convert(TREE_TYPE(expr),
3953 null_pointer_node));
3954 tree crash = Gogo::runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
3955 loc);
3956 expr = fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(expr),
3957 build3(COND_EXPR, void_type_node,
3958 compare, crash, NULL_TREE),
3959 expr);
3960 }
3961
3962 // If the type of EXPR is a recursive pointer type, then we
3963 // need to insert a cast before indirecting.
3964 if (TREE_TYPE(TREE_TYPE(expr)) == ptr_type_node)
3965 {
3966 Type* pt = this->expr_->type()->points_to();
3967 tree ind = pt->get_tree(context->gogo());
3968 expr = fold_convert_loc(loc, build_pointer_type(ind), expr);
3969 }
3970
3971 return build_fold_indirect_ref_loc(loc, expr);
3972 }
3973
3974 default:
3975 gcc_unreachable();
3976 }
3977}
3978
3979// Export a unary expression.
3980
3981void
3982Unary_expression::do_export(Export* exp) const
3983{
3984 switch (this->op_)
3985 {
3986 case OPERATOR_PLUS:
3987 exp->write_c_string("+ ");
3988 break;
3989 case OPERATOR_MINUS:
3990 exp->write_c_string("- ");
3991 break;
3992 case OPERATOR_NOT:
3993 exp->write_c_string("! ");
3994 break;
3995 case OPERATOR_XOR:
3996 exp->write_c_string("^ ");
3997 break;
3998 case OPERATOR_AND:
3999 case OPERATOR_MULT:
4000 default:
4001 gcc_unreachable();
4002 }
4003 this->expr_->export_expression(exp);
4004}
4005
4006// Import a unary expression.
4007
4008Expression*
4009Unary_expression::do_import(Import* imp)
4010{
4011 Operator op;
4012 switch (imp->get_char())
4013 {
4014 case '+':
4015 op = OPERATOR_PLUS;
4016 break;
4017 case '-':
4018 op = OPERATOR_MINUS;
4019 break;
4020 case '!':
4021 op = OPERATOR_NOT;
4022 break;
4023 case '^':
4024 op = OPERATOR_XOR;
4025 break;
4026 default:
4027 gcc_unreachable();
4028 }
4029 imp->require_c_string(" ");
4030 Expression* expr = Expression::import_expression(imp);
4031 return Expression::make_unary(op, expr, imp->location());
4032}
4033
4034// Make a unary expression.
4035
4036Expression*
4037Expression::make_unary(Operator op, Expression* expr, source_location location)
4038{
4039 return new Unary_expression(op, expr, location);
4040}
4041
4042// If this is an indirection through a pointer, return the expression
4043// being pointed through. Otherwise return this.
4044
4045Expression*
4046Expression::deref()
4047{
4048 if (this->classification_ == EXPRESSION_UNARY)
4049 {
4050 Unary_expression* ue = static_cast<Unary_expression*>(this);
4051 if (ue->op() == OPERATOR_MULT)
4052 return ue->operand();
4053 }
4054 return this;
4055}
4056
4057// Class Binary_expression.
4058
4059// Traversal.
4060
4061int
4062Binary_expression::do_traverse(Traverse* traverse)
4063{
4064 int t = Expression::traverse(&this->left_, traverse);
4065 if (t == TRAVERSE_EXIT)
4066 return TRAVERSE_EXIT;
4067 return Expression::traverse(&this->right_, traverse);
4068}
4069
4070// Compare integer constants according to OP.
4071
4072bool
4073Binary_expression::compare_integer(Operator op, mpz_t left_val,
4074 mpz_t right_val)
4075{
4076 int i = mpz_cmp(left_val, right_val);
4077 switch (op)
4078 {
4079 case OPERATOR_EQEQ:
4080 return i == 0;
4081 case OPERATOR_NOTEQ:
4082 return i != 0;
4083 case OPERATOR_LT:
4084 return i < 0;
4085 case OPERATOR_LE:
4086 return i <= 0;
4087 case OPERATOR_GT:
4088 return i > 0;
4089 case OPERATOR_GE:
4090 return i >= 0;
4091 default:
4092 gcc_unreachable();
4093 }
4094}
4095
4096// Compare floating point constants according to OP.
4097
4098bool
4099Binary_expression::compare_float(Operator op, Type* type, mpfr_t left_val,
4100 mpfr_t right_val)
4101{
4102 int i;
4103 if (type == NULL)
4104 i = mpfr_cmp(left_val, right_val);
4105 else
4106 {
4107 mpfr_t lv;
4108 mpfr_init_set(lv, left_val, GMP_RNDN);
4109 mpfr_t rv;
4110 mpfr_init_set(rv, right_val, GMP_RNDN);
4111 Float_expression::constrain_float(lv, type);
4112 Float_expression::constrain_float(rv, type);
4113 i = mpfr_cmp(lv, rv);
4114 mpfr_clear(lv);
4115 mpfr_clear(rv);
4116 }
4117 switch (op)
4118 {
4119 case OPERATOR_EQEQ:
4120 return i == 0;
4121 case OPERATOR_NOTEQ:
4122 return i != 0;
4123 case OPERATOR_LT:
4124 return i < 0;
4125 case OPERATOR_LE:
4126 return i <= 0;
4127 case OPERATOR_GT:
4128 return i > 0;
4129 case OPERATOR_GE:
4130 return i >= 0;
4131 default:
4132 gcc_unreachable();
4133 }
4134}
4135
4136// Compare complex constants according to OP. Complex numbers may
4137// only be compared for equality.
4138
4139bool
4140Binary_expression::compare_complex(Operator op, Type* type,
4141 mpfr_t left_real, mpfr_t left_imag,
4142 mpfr_t right_real, mpfr_t right_imag)
4143{
4144 bool is_equal;
4145 if (type == NULL)
4146 is_equal = (mpfr_cmp(left_real, right_real) == 0
4147 && mpfr_cmp(left_imag, right_imag) == 0);
4148 else
4149 {
4150 mpfr_t lr;
4151 mpfr_t li;
4152 mpfr_init_set(lr, left_real, GMP_RNDN);
4153 mpfr_init_set(li, left_imag, GMP_RNDN);
4154 mpfr_t rr;
4155 mpfr_t ri;
4156 mpfr_init_set(rr, right_real, GMP_RNDN);
4157 mpfr_init_set(ri, right_imag, GMP_RNDN);
4158 Complex_expression::constrain_complex(lr, li, type);
4159 Complex_expression::constrain_complex(rr, ri, type);
4160 is_equal = mpfr_cmp(lr, rr) == 0 && mpfr_cmp(li, ri) == 0;
4161 mpfr_clear(lr);
4162 mpfr_clear(li);
4163 mpfr_clear(rr);
4164 mpfr_clear(ri);
4165 }
4166 switch (op)
4167 {
4168 case OPERATOR_EQEQ:
4169 return is_equal;
4170 case OPERATOR_NOTEQ:
4171 return !is_equal;
4172 default:
4173 gcc_unreachable();
4174 }
4175}
4176
4177// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4178// LEFT_TYPE is the type of LEFT_VAL, RIGHT_TYPE is the type of
4179// RIGHT_VAL; LEFT_TYPE and/or RIGHT_TYPE may be NULL. Return true if
4180// this could be done, false if not.
4181
4182bool
4183Binary_expression::eval_integer(Operator op, Type* left_type, mpz_t left_val,
4184 Type* right_type, mpz_t right_val,
4185 source_location location, mpz_t val)
4186{
4187 bool is_shift_op = false;
4188 switch (op)
4189 {
4190 case OPERATOR_OROR:
4191 case OPERATOR_ANDAND:
4192 case OPERATOR_EQEQ:
4193 case OPERATOR_NOTEQ:
4194 case OPERATOR_LT:
4195 case OPERATOR_LE:
4196 case OPERATOR_GT:
4197 case OPERATOR_GE:
4198 // These return boolean values. We should probably handle them
4199 // anyhow in case a type conversion is used on the result.
4200 return false;
4201 case OPERATOR_PLUS:
4202 mpz_add(val, left_val, right_val);
4203 break;
4204 case OPERATOR_MINUS:
4205 mpz_sub(val, left_val, right_val);
4206 break;
4207 case OPERATOR_OR:
4208 mpz_ior(val, left_val, right_val);
4209 break;
4210 case OPERATOR_XOR:
4211 mpz_xor(val, left_val, right_val);
4212 break;
4213 case OPERATOR_MULT:
4214 mpz_mul(val, left_val, right_val);
4215 break;
4216 case OPERATOR_DIV:
4217 if (mpz_sgn(right_val) != 0)
4218 mpz_tdiv_q(val, left_val, right_val);
4219 else
4220 {
4221 error_at(location, "division by zero");
4222 mpz_set_ui(val, 0);
4223 return true;
4224 }
4225 break;
4226 case OPERATOR_MOD:
4227 if (mpz_sgn(right_val) != 0)
4228 mpz_tdiv_r(val, left_val, right_val);
4229 else
4230 {
4231 error_at(location, "division by zero");
4232 mpz_set_ui(val, 0);
4233 return true;
4234 }
4235 break;
4236 case OPERATOR_LSHIFT:
4237 {
4238 unsigned long shift = mpz_get_ui(right_val);
4239 if (mpz_cmp_ui(right_val, shift) != 0)
4240 {
4241 error_at(location, "shift count overflow");
4242 mpz_set_ui(val, 0);
4243 return true;
4244 }
4245 mpz_mul_2exp(val, left_val, shift);
4246 is_shift_op = true;
4247 break;
4248 }
4249 break;
4250 case OPERATOR_RSHIFT:
4251 {
4252 unsigned long shift = mpz_get_ui(right_val);
4253 if (mpz_cmp_ui(right_val, shift) != 0)
4254 {
4255 error_at(location, "shift count overflow");
4256 mpz_set_ui(val, 0);
4257 return true;
4258 }
4259 if (mpz_cmp_ui(left_val, 0) >= 0)
4260 mpz_tdiv_q_2exp(val, left_val, shift);
4261 else
4262 mpz_fdiv_q_2exp(val, left_val, shift);
4263 is_shift_op = true;
4264 break;
4265 }
4266 break;
4267 case OPERATOR_AND:
4268 mpz_and(val, left_val, right_val);
4269 break;
4270 case OPERATOR_BITCLEAR:
4271 {
4272 mpz_t tval;
4273 mpz_init(tval);
4274 mpz_com(tval, right_val);
4275 mpz_and(val, left_val, tval);
4276 mpz_clear(tval);
4277 }
4278 break;
4279 default:
4280 gcc_unreachable();
4281 }
4282
4283 Type* type = left_type;
4284 if (!is_shift_op)
4285 {
4286 if (type == NULL)
4287 type = right_type;
4288 else if (type != right_type && right_type != NULL)
4289 {
4290 if (type->is_abstract())
4291 type = right_type;
4292 else if (!right_type->is_abstract())
4293 {
4294 // This look like a type error which should be diagnosed
4295 // elsewhere. Don't do anything here, to avoid an
4296 // unhelpful chain of error messages.
4297 return true;
4298 }
4299 }
4300 }
4301
4302 if (type != NULL && !type->is_abstract())
4303 {
4304 // We have to check the operands too, as we have implicitly
4305 // coerced them to TYPE.
4306 if ((type != left_type
4307 && !Integer_expression::check_constant(left_val, type, location))
4308 || (!is_shift_op
4309 && type != right_type
4310 && !Integer_expression::check_constant(right_val, type,
4311 location))
4312 || !Integer_expression::check_constant(val, type, location))
4313 mpz_set_ui(val, 0);
4314 }
4315
4316 return true;
4317}
4318
4319// Apply binary opcode OP to LEFT_VAL and RIGHT_VAL, setting VAL.
4320// Return true if this could be done, false if not.
4321
4322bool
4323Binary_expression::eval_float(Operator op, Type* left_type, mpfr_t left_val,
4324 Type* right_type, mpfr_t right_val,
4325 mpfr_t val, source_location location)
4326{
4327 switch (op)
4328 {
4329 case OPERATOR_OROR:
4330 case OPERATOR_ANDAND:
4331 case OPERATOR_EQEQ:
4332 case OPERATOR_NOTEQ:
4333 case OPERATOR_LT:
4334 case OPERATOR_LE:
4335 case OPERATOR_GT:
4336 case OPERATOR_GE:
4337 // These return boolean values. We should probably handle them
4338 // anyhow in case a type conversion is used on the result.
4339 return false;
4340 case OPERATOR_PLUS:
4341 mpfr_add(val, left_val, right_val, GMP_RNDN);
4342 break;
4343 case OPERATOR_MINUS:
4344 mpfr_sub(val, left_val, right_val, GMP_RNDN);
4345 break;
4346 case OPERATOR_OR:
4347 case OPERATOR_XOR:
4348 case OPERATOR_AND:
4349 case OPERATOR_BITCLEAR:
4350 return false;
4351 case OPERATOR_MULT:
4352 mpfr_mul(val, left_val, right_val, GMP_RNDN);
4353 break;
4354 case OPERATOR_DIV:
4355 if (mpfr_zero_p(right_val))
4356 error_at(location, "division by zero");
4357 mpfr_div(val, left_val, right_val, GMP_RNDN);
4358 break;
4359 case OPERATOR_MOD:
4360 return false;
4361 case OPERATOR_LSHIFT:
4362 case OPERATOR_RSHIFT:
4363 return false;
4364 default:
4365 gcc_unreachable();
4366 }
4367
4368 Type* type = left_type;
4369 if (type == NULL)
4370 type = right_type;
4371 else if (type != right_type && right_type != NULL)
4372 {
4373 if (type->is_abstract())
4374 type = right_type;
4375 else if (!right_type->is_abstract())
4376 {
4377 // This looks like a type error which should be diagnosed
4378 // elsewhere. Don't do anything here, to avoid an unhelpful
4379 // chain of error messages.
4380 return true;
4381 }
4382 }
4383
4384 if (type != NULL && !type->is_abstract())
4385 {
4386 if ((type != left_type
4387 && !Float_expression::check_constant(left_val, type, location))
4388 || (type != right_type
4389 && !Float_expression::check_constant(right_val, type,
4390 location))
4391 || !Float_expression::check_constant(val, type, location))
4392 mpfr_set_ui(val, 0, GMP_RNDN);
4393 }
4394
4395 return true;
4396}
4397
4398// Apply binary opcode OP to LEFT_REAL/LEFT_IMAG and
4399// RIGHT_REAL/RIGHT_IMAG, setting REAL/IMAG. Return true if this
4400// could be done, false if not.
4401
4402bool
4403Binary_expression::eval_complex(Operator op, Type* left_type,
4404 mpfr_t left_real, mpfr_t left_imag,
4405 Type *right_type,
4406 mpfr_t right_real, mpfr_t right_imag,
4407 mpfr_t real, mpfr_t imag,
4408 source_location location)
4409{
4410 switch (op)
4411 {
4412 case OPERATOR_OROR:
4413 case OPERATOR_ANDAND:
4414 case OPERATOR_EQEQ:
4415 case OPERATOR_NOTEQ:
4416 case OPERATOR_LT:
4417 case OPERATOR_LE:
4418 case OPERATOR_GT:
4419 case OPERATOR_GE:
4420 // These return boolean values and must be handled differently.
4421 return false;
4422 case OPERATOR_PLUS:
4423 mpfr_add(real, left_real, right_real, GMP_RNDN);
4424 mpfr_add(imag, left_imag, right_imag, GMP_RNDN);
4425 break;
4426 case OPERATOR_MINUS:
4427 mpfr_sub(real, left_real, right_real, GMP_RNDN);
4428 mpfr_sub(imag, left_imag, right_imag, GMP_RNDN);
4429 break;
4430 case OPERATOR_OR:
4431 case OPERATOR_XOR:
4432 case OPERATOR_AND:
4433 case OPERATOR_BITCLEAR:
4434 return false;
4435 case OPERATOR_MULT:
4436 {
4437 // You might think that multiplying two complex numbers would
4438 // be simple, and you would be right, until you start to think
4439 // about getting the right answer for infinity. If one
4440 // operand here is infinity and the other is anything other
4441 // than zero or NaN, then we are going to wind up subtracting
4442 // two infinity values. That will give us a NaN, but the
4443 // correct answer is infinity.
4444
4445 mpfr_t lrrr;
4446 mpfr_init(lrrr);
4447 mpfr_mul(lrrr, left_real, right_real, GMP_RNDN);
4448
4449 mpfr_t lrri;
4450 mpfr_init(lrri);
4451 mpfr_mul(lrri, left_real, right_imag, GMP_RNDN);
4452
4453 mpfr_t lirr;
4454 mpfr_init(lirr);
4455 mpfr_mul(lirr, left_imag, right_real, GMP_RNDN);
4456
4457 mpfr_t liri;
4458 mpfr_init(liri);
4459 mpfr_mul(liri, left_imag, right_imag, GMP_RNDN);
4460
4461 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4462 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4463
4464 // If we get NaN on both sides, check whether it should really
4465 // be infinity. The rule is that if either side of the
4466 // complex number is infinity, then the whole value is
4467 // infinity, even if the other side is NaN. So the only case
4468 // we have to fix is the one in which both sides are NaN.
4469 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4470 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4471 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4472 {
4473 bool is_infinity = false;
4474
4475 mpfr_t lr;
4476 mpfr_t li;
4477 mpfr_init_set(lr, left_real, GMP_RNDN);
4478 mpfr_init_set(li, left_imag, GMP_RNDN);
4479
4480 mpfr_t rr;
4481 mpfr_t ri;
4482 mpfr_init_set(rr, right_real, GMP_RNDN);
4483 mpfr_init_set(ri, right_imag, GMP_RNDN);
4484
4485 // If the left side is infinity, then the result is
4486 // infinity.
4487 if (mpfr_inf_p(lr) || mpfr_inf_p(li))
4488 {
4489 mpfr_set_ui(lr, mpfr_inf_p(lr) ? 1 : 0, GMP_RNDN);
4490 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4491 mpfr_set_ui(li, mpfr_inf_p(li) ? 1 : 0, GMP_RNDN);
4492 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4493 if (mpfr_nan_p(rr))
4494 {
4495 mpfr_set_ui(rr, 0, GMP_RNDN);
4496 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4497 }
4498 if (mpfr_nan_p(ri))
4499 {
4500 mpfr_set_ui(ri, 0, GMP_RNDN);
4501 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4502 }
4503 is_infinity = true;
4504 }
4505
4506 // If the right side is infinity, then the result is
4507 // infinity.
4508 if (mpfr_inf_p(rr) || mpfr_inf_p(ri))
4509 {
4510 mpfr_set_ui(rr, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4511 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4512 mpfr_set_ui(ri, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4513 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4514 if (mpfr_nan_p(lr))
4515 {
4516 mpfr_set_ui(lr, 0, GMP_RNDN);
4517 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4518 }
4519 if (mpfr_nan_p(li))
4520 {
4521 mpfr_set_ui(li, 0, GMP_RNDN);
4522 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4523 }
4524 is_infinity = true;
4525 }
4526
4527 // If we got an overflow in the intermediate computations,
4528 // then the result is infinity.
4529 if (!is_infinity
4530 && (mpfr_inf_p(lrrr) || mpfr_inf_p(lrri)
4531 || mpfr_inf_p(lirr) || mpfr_inf_p(liri)))
4532 {
4533 if (mpfr_nan_p(lr))
4534 {
4535 mpfr_set_ui(lr, 0, GMP_RNDN);
4536 mpfr_copysign(lr, lr, left_real, GMP_RNDN);
4537 }
4538 if (mpfr_nan_p(li))
4539 {
4540 mpfr_set_ui(li, 0, GMP_RNDN);
4541 mpfr_copysign(li, li, left_imag, GMP_RNDN);
4542 }
4543 if (mpfr_nan_p(rr))
4544 {
4545 mpfr_set_ui(rr, 0, GMP_RNDN);
4546 mpfr_copysign(rr, rr, right_real, GMP_RNDN);
4547 }
4548 if (mpfr_nan_p(ri))
4549 {
4550 mpfr_set_ui(ri, 0, GMP_RNDN);
4551 mpfr_copysign(ri, ri, right_imag, GMP_RNDN);
4552 }
4553 is_infinity = true;
4554 }
4555
4556 if (is_infinity)
4557 {
4558 mpfr_mul(lrrr, lr, rr, GMP_RNDN);
4559 mpfr_mul(lrri, lr, ri, GMP_RNDN);
4560 mpfr_mul(lirr, li, rr, GMP_RNDN);
4561 mpfr_mul(liri, li, ri, GMP_RNDN);
4562 mpfr_sub(real, lrrr, liri, GMP_RNDN);
4563 mpfr_add(imag, lrri, lirr, GMP_RNDN);
4564 mpfr_set_inf(real, mpfr_sgn(real));
4565 mpfr_set_inf(imag, mpfr_sgn(imag));
4566 }
4567
4568 mpfr_clear(lr);
4569 mpfr_clear(li);
4570 mpfr_clear(rr);
4571 mpfr_clear(ri);
4572 }
4573
4574 mpfr_clear(lrrr);
4575 mpfr_clear(lrri);
4576 mpfr_clear(lirr);
4577 mpfr_clear(liri);
4578 }
4579 break;
4580 case OPERATOR_DIV:
4581 {
4582 // For complex division we want to avoid having an
4583 // intermediate overflow turn the whole result in a NaN. We
4584 // scale the values to try to avoid this.
4585
4586 if (mpfr_zero_p(right_real) && mpfr_zero_p(right_imag))
4587 error_at(location, "division by zero");
4588
4589 mpfr_t rra;
4590 mpfr_t ria;
4591 mpfr_init(rra);
4592 mpfr_init(ria);
4593 mpfr_abs(rra, right_real, GMP_RNDN);
4594 mpfr_abs(ria, right_imag, GMP_RNDN);
4595 mpfr_t t;
4596 mpfr_init(t);
4597 mpfr_max(t, rra, ria, GMP_RNDN);
4598
4599 mpfr_t rr;
4600 mpfr_t ri;
4601 mpfr_init_set(rr, right_real, GMP_RNDN);
4602 mpfr_init_set(ri, right_imag, GMP_RNDN);
4603 long ilogbw = 0;
4604 if (!mpfr_inf_p(t) && !mpfr_nan_p(t) && !mpfr_zero_p(t))
4605 {
4606 ilogbw = mpfr_get_exp(t);
4607 mpfr_mul_2si(rr, rr, - ilogbw, GMP_RNDN);
4608 mpfr_mul_2si(ri, ri, - ilogbw, GMP_RNDN);
4609 }
4610
4611 mpfr_t denom;
4612 mpfr_init(denom);
4613 mpfr_mul(denom, rr, rr, GMP_RNDN);
4614 mpfr_mul(t, ri, ri, GMP_RNDN);
4615 mpfr_add(denom, denom, t, GMP_RNDN);
4616
4617 mpfr_mul(real, left_real, rr, GMP_RNDN);
4618 mpfr_mul(t, left_imag, ri, GMP_RNDN);
4619 mpfr_add(real, real, t, GMP_RNDN);
4620 mpfr_div(real, real, denom, GMP_RNDN);
4621 mpfr_mul_2si(real, real, - ilogbw, GMP_RNDN);
4622
4623 mpfr_mul(imag, left_imag, rr, GMP_RNDN);
4624 mpfr_mul(t, left_real, ri, GMP_RNDN);
4625 mpfr_sub(imag, imag, t, GMP_RNDN);
4626 mpfr_div(imag, imag, denom, GMP_RNDN);
4627 mpfr_mul_2si(imag, imag, - ilogbw, GMP_RNDN);
4628
4629 // If we wind up with NaN on both sides, check whether we
4630 // should really have infinity. The rule is that if either
4631 // side of the complex number is infinity, then the whole
4632 // value is infinity, even if the other side is NaN. So the
4633 // only case we have to fix is the one in which both sides are
4634 // NaN.
4635 if (mpfr_nan_p(real) && mpfr_nan_p(imag)
4636 && (!mpfr_nan_p(left_real) || !mpfr_nan_p(left_imag))
4637 && (!mpfr_nan_p(right_real) || !mpfr_nan_p(right_imag)))
4638 {
4639 if (mpfr_zero_p(denom))
4640 {
4641 mpfr_set_inf(real, mpfr_sgn(rr));
4642 mpfr_mul(real, real, left_real, GMP_RNDN);
4643 mpfr_set_inf(imag, mpfr_sgn(rr));
4644 mpfr_mul(imag, imag, left_imag, GMP_RNDN);
4645 }
4646 else if ((mpfr_inf_p(left_real) || mpfr_inf_p(left_imag))
4647 && mpfr_number_p(rr) && mpfr_number_p(ri))
4648 {
4649 mpfr_set_ui(t, mpfr_inf_p(left_real) ? 1 : 0, GMP_RNDN);
4650 mpfr_copysign(t, t, left_real, GMP_RNDN);
4651
4652 mpfr_t t2;
4653 mpfr_init_set_ui(t2, mpfr_inf_p(left_imag) ? 1 : 0, GMP_RNDN);
4654 mpfr_copysign(t2, t2, left_imag, GMP_RNDN);
4655
4656 mpfr_t t3;
4657 mpfr_init(t3);
4658 mpfr_mul(t3, t, rr, GMP_RNDN);
4659
4660 mpfr_t t4;
4661 mpfr_init(t4);
4662 mpfr_mul(t4, t2, ri, GMP_RNDN);
4663
4664 mpfr_add(t3, t3, t4, GMP_RNDN);
4665 mpfr_set_inf(real, mpfr_sgn(t3));
4666
4667 mpfr_mul(t3, t2, rr, GMP_RNDN);
4668 mpfr_mul(t4, t, ri, GMP_RNDN);
4669 mpfr_sub(t3, t3, t4, GMP_RNDN);
4670 mpfr_set_inf(imag, mpfr_sgn(t3));
4671
4672 mpfr_clear(t2);
4673 mpfr_clear(t3);
4674 mpfr_clear(t4);
4675 }
4676 else if ((mpfr_inf_p(right_real) || mpfr_inf_p(right_imag))
4677 && mpfr_number_p(left_real) && mpfr_number_p(left_imag))
4678 {
4679 mpfr_set_ui(t, mpfr_inf_p(rr) ? 1 : 0, GMP_RNDN);
4680 mpfr_copysign(t, t, rr, GMP_RNDN);
4681
4682 mpfr_t t2;
4683 mpfr_init_set_ui(t2, mpfr_inf_p(ri) ? 1 : 0, GMP_RNDN);
4684 mpfr_copysign(t2, t2, ri, GMP_RNDN);
4685
4686 mpfr_t t3;
4687 mpfr_init(t3);
4688 mpfr_mul(t3, left_real, t, GMP_RNDN);
4689
4690 mpfr_t t4;
4691 mpfr_init(t4);
4692 mpfr_mul(t4, left_imag, t2, GMP_RNDN);
4693
4694 mpfr_add(t3, t3, t4, GMP_RNDN);
4695 mpfr_set_ui(real, 0, GMP_RNDN);
4696 mpfr_mul(real, real, t3, GMP_RNDN);
4697
4698 mpfr_mul(t3, left_imag, t, GMP_RNDN);
4699 mpfr_mul(t4, left_real, t2, GMP_RNDN);
4700 mpfr_sub(t3, t3, t4, GMP_RNDN);
4701 mpfr_set_ui(imag, 0, GMP_RNDN);
4702 mpfr_mul(imag, imag, t3, GMP_RNDN);
4703
4704 mpfr_clear(t2);
4705 mpfr_clear(t3);
4706 mpfr_clear(t4);
4707 }
4708 }
4709
4710 mpfr_clear(denom);
4711 mpfr_clear(rr);
4712 mpfr_clear(ri);
4713 mpfr_clear(t);
4714 mpfr_clear(rra);
4715 mpfr_clear(ria);
4716 }
4717 break;
4718 case OPERATOR_MOD:
4719 return false;
4720 case OPERATOR_LSHIFT:
4721 case OPERATOR_RSHIFT:
4722 return false;
4723 default:
4724 gcc_unreachable();
4725 }
4726
4727 Type* type = left_type;
4728 if (type == NULL)
4729 type = right_type;
4730 else if (type != right_type && right_type != NULL)
4731 {
4732 if (type->is_abstract())
4733 type = right_type;
4734 else if (!right_type->is_abstract())
4735 {
4736 // This looks like a type error which should be diagnosed
4737 // elsewhere. Don't do anything here, to avoid an unhelpful
4738 // chain of error messages.
4739 return true;
4740 }
4741 }
4742
4743 if (type != NULL && !type->is_abstract())
4744 {
4745 if ((type != left_type
4746 && !Complex_expression::check_constant(left_real, left_imag,
4747 type, location))
4748 || (type != right_type
4749 && !Complex_expression::check_constant(right_real, right_imag,
4750 type, location))
4751 || !Complex_expression::check_constant(real, imag, type,
4752 location))
4753 {
4754 mpfr_set_ui(real, 0, GMP_RNDN);
4755 mpfr_set_ui(imag, 0, GMP_RNDN);
4756 }
4757 }
4758
4759 return true;
4760}
4761
4762// Lower a binary expression. We have to evaluate constant
4763// expressions now, in order to implement Go's unlimited precision
4764// constants.
4765
4766Expression*
4767Binary_expression::do_lower(Gogo*, Named_object*, int)
4768{
4769 source_location location = this->location();
4770 Operator op = this->op_;
4771 Expression* left = this->left_;
4772 Expression* right = this->right_;
4773
4774 const bool is_comparison = (op == OPERATOR_EQEQ
4775 || op == OPERATOR_NOTEQ
4776 || op == OPERATOR_LT
4777 || op == OPERATOR_LE
4778 || op == OPERATOR_GT
4779 || op == OPERATOR_GE);
4780
4781 // Integer constant expressions.
4782 {
4783 mpz_t left_val;
4784 mpz_init(left_val);
4785 Type* left_type;
4786 mpz_t right_val;
4787 mpz_init(right_val);
4788 Type* right_type;
4789 if (left->integer_constant_value(false, left_val, &left_type)
4790 && right->integer_constant_value(false, right_val, &right_type))
4791 {
4792 Expression* ret = NULL;
4793 if (left_type != right_type
4794 && left_type != NULL
4795 && right_type != NULL
4796 && left_type->base() != right_type->base()
4797 && op != OPERATOR_LSHIFT
4798 && op != OPERATOR_RSHIFT)
4799 {
4800 // May be a type error--let it be diagnosed later.
4801 }
4802 else if (is_comparison)
4803 {
4804 bool b = Binary_expression::compare_integer(op, left_val,
4805 right_val);
4806 ret = Expression::make_cast(Type::lookup_bool_type(),
4807 Expression::make_boolean(b, location),
4808 location);
4809 }
4810 else
4811 {
4812 mpz_t val;
4813 mpz_init(val);
4814
4815 if (Binary_expression::eval_integer(op, left_type, left_val,
4816 right_type, right_val,
4817 location, val))
4818 {
4819 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND);
4820 Type* type;
4821 if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
4822 type = left_type;
4823 else if (left_type == NULL)
4824 type = right_type;
4825 else if (right_type == NULL)
4826 type = left_type;
4827 else if (!left_type->is_abstract()
4828 && left_type->named_type() != NULL)
4829 type = left_type;
4830 else if (!right_type->is_abstract()
4831 && right_type->named_type() != NULL)
4832 type = right_type;
4833 else if (!left_type->is_abstract())
4834 type = left_type;
4835 else if (!right_type->is_abstract())
4836 type = right_type;
4837 else if (left_type->float_type() != NULL)
4838 type = left_type;
4839 else if (right_type->float_type() != NULL)
4840 type = right_type;
4841 else if (left_type->complex_type() != NULL)
4842 type = left_type;
4843 else if (right_type->complex_type() != NULL)
4844 type = right_type;
4845 else
4846 type = left_type;
4847 ret = Expression::make_integer(&val, type, location);
4848 }
4849
4850 mpz_clear(val);
4851 }
4852
4853 if (ret != NULL)
4854 {
4855 mpz_clear(right_val);
4856 mpz_clear(left_val);
4857 return ret;
4858 }
4859 }
4860 mpz_clear(right_val);
4861 mpz_clear(left_val);
4862 }
4863
4864 // Floating point constant expressions.
4865 {
4866 mpfr_t left_val;
4867 mpfr_init(left_val);
4868 Type* left_type;
4869 mpfr_t right_val;
4870 mpfr_init(right_val);
4871 Type* right_type;
4872 if (left->float_constant_value(left_val, &left_type)
4873 && right->float_constant_value(right_val, &right_type))
4874 {
4875 Expression* ret = NULL;
4876 if (left_type != right_type
4877 && left_type != NULL
4878 && right_type != NULL
4879 && left_type->base() != right_type->base()
4880 && op != OPERATOR_LSHIFT
4881 && op != OPERATOR_RSHIFT)
4882 {
4883 // May be a type error--let it be diagnosed later.
4884 }
4885 else if (is_comparison)
4886 {
4887 bool b = Binary_expression::compare_float(op,
4888 (left_type != NULL
4889 ? left_type
4890 : right_type),
4891 left_val, right_val);
4892 ret = Expression::make_boolean(b, location);
4893 }
4894 else
4895 {
4896 mpfr_t val;
4897 mpfr_init(val);
4898
4899 if (Binary_expression::eval_float(op, left_type, left_val,
4900 right_type, right_val, val,
4901 location))
4902 {
4903 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4904 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4905 Type* type;
4906 if (left_type == NULL)
4907 type = right_type;
4908 else if (right_type == NULL)
4909 type = left_type;
4910 else if (!left_type->is_abstract()
4911 && left_type->named_type() != NULL)
4912 type = left_type;
4913 else if (!right_type->is_abstract()
4914 && right_type->named_type() != NULL)
4915 type = right_type;
4916 else if (!left_type->is_abstract())
4917 type = left_type;
4918 else if (!right_type->is_abstract())
4919 type = right_type;
4920 else if (left_type->float_type() != NULL)
4921 type = left_type;
4922 else if (right_type->float_type() != NULL)
4923 type = right_type;
4924 else
4925 type = left_type;
4926 ret = Expression::make_float(&val, type, location);
4927 }
4928
4929 mpfr_clear(val);
4930 }
4931
4932 if (ret != NULL)
4933 {
4934 mpfr_clear(right_val);
4935 mpfr_clear(left_val);
4936 return ret;
4937 }
4938 }
4939 mpfr_clear(right_val);
4940 mpfr_clear(left_val);
4941 }
4942
4943 // Complex constant expressions.
4944 {
4945 mpfr_t left_real;
4946 mpfr_t left_imag;
4947 mpfr_init(left_real);
4948 mpfr_init(left_imag);
4949 Type* left_type;
4950
4951 mpfr_t right_real;
4952 mpfr_t right_imag;
4953 mpfr_init(right_real);
4954 mpfr_init(right_imag);
4955 Type* right_type;
4956
4957 if (left->complex_constant_value(left_real, left_imag, &left_type)
4958 && right->complex_constant_value(right_real, right_imag, &right_type))
4959 {
4960 Expression* ret = NULL;
4961 if (left_type != right_type
4962 && left_type != NULL
4963 && right_type != NULL
4964 && left_type->base() != right_type->base())
4965 {
4966 // May be a type error--let it be diagnosed later.
4967 }
4968 else if (is_comparison)
4969 {
4970 bool b = Binary_expression::compare_complex(op,
4971 (left_type != NULL
4972 ? left_type
4973 : right_type),
4974 left_real,
4975 left_imag,
4976 right_real,
4977 right_imag);
4978 ret = Expression::make_boolean(b, location);
4979 }
4980 else
4981 {
4982 mpfr_t real;
4983 mpfr_t imag;
4984 mpfr_init(real);
4985 mpfr_init(imag);
4986
4987 if (Binary_expression::eval_complex(op, left_type,
4988 left_real, left_imag,
4989 right_type,
4990 right_real, right_imag,
4991 real, imag,
4992 location))
4993 {
4994 gcc_assert(op != OPERATOR_OROR && op != OPERATOR_ANDAND
4995 && op != OPERATOR_LSHIFT && op != OPERATOR_RSHIFT);
4996 Type* type;
4997 if (left_type == NULL)
4998 type = right_type;
4999 else if (right_type == NULL)
5000 type = left_type;
5001 else if (!left_type->is_abstract()
5002 && left_type->named_type() != NULL)
5003 type = left_type;
5004 else if (!right_type->is_abstract()
5005 && right_type->named_type() != NULL)
5006 type = right_type;
5007 else if (!left_type->is_abstract())
5008 type = left_type;
5009 else if (!right_type->is_abstract())
5010 type = right_type;
5011 else if (left_type->complex_type() != NULL)
5012 type = left_type;
5013 else if (right_type->complex_type() != NULL)
5014 type = right_type;
5015 else
5016 type = left_type;
5017 ret = Expression::make_complex(&real, &imag, type,
5018 location);
5019 }
5020 mpfr_clear(real);
5021 mpfr_clear(imag);
5022 }
5023
5024 if (ret != NULL)
5025 {
5026 mpfr_clear(left_real);
5027 mpfr_clear(left_imag);
5028 mpfr_clear(right_real);
5029 mpfr_clear(right_imag);
5030 return ret;
5031 }
5032 }
5033
5034 mpfr_clear(left_real);
5035 mpfr_clear(left_imag);
5036 mpfr_clear(right_real);
5037 mpfr_clear(right_imag);
5038 }
5039
5040 // String constant expressions.
5041 if (op == OPERATOR_PLUS
5042 && left->type()->is_string_type()
5043 && right->type()->is_string_type())
5044 {
5045 std::string left_string;
5046 std::string right_string;
5047 if (left->string_constant_value(&left_string)
5048 && right->string_constant_value(&right_string))
5049 return Expression::make_string(left_string + right_string, location);
5050 }
5051
5052 return this;
5053}
5054
5055// Return the integer constant value, if it has one.
5056
5057bool
5058Binary_expression::do_integer_constant_value(bool iota_is_constant, mpz_t val,
5059 Type** ptype) const
5060{
5061 mpz_t left_val;
5062 mpz_init(left_val);
5063 Type* left_type;
5064 if (!this->left_->integer_constant_value(iota_is_constant, left_val,
5065 &left_type))
5066 {
5067 mpz_clear(left_val);
5068 return false;
5069 }
5070
5071 mpz_t right_val;
5072 mpz_init(right_val);
5073 Type* right_type;
5074 if (!this->right_->integer_constant_value(iota_is_constant, right_val,
5075 &right_type))
5076 {
5077 mpz_clear(right_val);
5078 mpz_clear(left_val);
5079 return false;
5080 }
5081
5082 bool ret;
5083 if (left_type != right_type
5084 && left_type != NULL
5085 && right_type != NULL
5086 && left_type->base() != right_type->base()
5087 && this->op_ != OPERATOR_RSHIFT
5088 && this->op_ != OPERATOR_LSHIFT)
5089 ret = false;
5090 else
5091 ret = Binary_expression::eval_integer(this->op_, left_type, left_val,
5092 right_type, right_val,
5093 this->location(), val);
5094
5095 mpz_clear(right_val);
5096 mpz_clear(left_val);
5097
5098 if (ret)
5099 *ptype = left_type;
5100
5101 return ret;
5102}
5103
5104// Return the floating point constant value, if it has one.
5105
5106bool
5107Binary_expression::do_float_constant_value(mpfr_t val, Type** ptype) const
5108{
5109 mpfr_t left_val;
5110 mpfr_init(left_val);
5111 Type* left_type;
5112 if (!this->left_->float_constant_value(left_val, &left_type))
5113 {
5114 mpfr_clear(left_val);
5115 return false;
5116 }
5117
5118 mpfr_t right_val;
5119 mpfr_init(right_val);
5120 Type* right_type;
5121 if (!this->right_->float_constant_value(right_val, &right_type))
5122 {
5123 mpfr_clear(right_val);
5124 mpfr_clear(left_val);
5125 return false;
5126 }
5127
5128 bool ret;
5129 if (left_type != right_type
5130 && left_type != NULL
5131 && right_type != NULL
5132 && left_type->base() != right_type->base())
5133 ret = false;
5134 else
5135 ret = Binary_expression::eval_float(this->op_, left_type, left_val,
5136 right_type, right_val,
5137 val, this->location());
5138
5139 mpfr_clear(left_val);
5140 mpfr_clear(right_val);
5141
5142 if (ret)
5143 *ptype = left_type;
5144
5145 return ret;
5146}
5147
5148// Return the complex constant value, if it has one.
5149
5150bool
5151Binary_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
5152 Type** ptype) const
5153{
5154 mpfr_t left_real;
5155 mpfr_t left_imag;
5156 mpfr_init(left_real);
5157 mpfr_init(left_imag);
5158 Type* left_type;
5159 if (!this->left_->complex_constant_value(left_real, left_imag, &left_type))
5160 {
5161 mpfr_clear(left_real);
5162 mpfr_clear(left_imag);
5163 return false;
5164 }
5165
5166 mpfr_t right_real;
5167 mpfr_t right_imag;
5168 mpfr_init(right_real);
5169 mpfr_init(right_imag);
5170 Type* right_type;
5171 if (!this->right_->complex_constant_value(right_real, right_imag,
5172 &right_type))
5173 {
5174 mpfr_clear(left_real);
5175 mpfr_clear(left_imag);
5176 mpfr_clear(right_real);
5177 mpfr_clear(right_imag);
5178 return false;
5179 }
5180
5181 bool ret;
5182 if (left_type != right_type
5183 && left_type != NULL
5184 && right_type != NULL
5185 && left_type->base() != right_type->base())
5186 ret = false;
5187 else
5188 ret = Binary_expression::eval_complex(this->op_, left_type,
5189 left_real, left_imag,
5190 right_type,
5191 right_real, right_imag,
5192 real, imag,
5193 this->location());
5194 mpfr_clear(left_real);
5195 mpfr_clear(left_imag);
5196 mpfr_clear(right_real);
5197 mpfr_clear(right_imag);
5198
5199 if (ret)
5200 *ptype = left_type;
5201
5202 return ret;
5203}
5204
5205// Note that the value is being discarded.
5206
5207void
5208Binary_expression::do_discarding_value()
5209{
5210 if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
5211 this->right_->discarding_value();
5212 else
5213 this->warn_about_unused_value();
5214}
5215
5216// Get type.
5217
5218Type*
5219Binary_expression::do_type()
5220{
5221 switch (this->op_)
5222 {
5223 case OPERATOR_OROR:
5224 case OPERATOR_ANDAND:
5225 case OPERATOR_EQEQ:
5226 case OPERATOR_NOTEQ:
5227 case OPERATOR_LT:
5228 case OPERATOR_LE:
5229 case OPERATOR_GT:
5230 case OPERATOR_GE:
5231 return Type::lookup_bool_type();
5232
5233 case OPERATOR_PLUS:
5234 case OPERATOR_MINUS:
5235 case OPERATOR_OR:
5236 case OPERATOR_XOR:
5237 case OPERATOR_MULT:
5238 case OPERATOR_DIV:
5239 case OPERATOR_MOD:
5240 case OPERATOR_AND:
5241 case OPERATOR_BITCLEAR:
5242 {
5243 Type* left_type = this->left_->type();
5244 Type* right_type = this->right_->type();
5245 if (!left_type->is_abstract() && left_type->named_type() != NULL)
5246 return left_type;
5247 else if (!right_type->is_abstract() && right_type->named_type() != NULL)
5248 return right_type;
5249 else if (!left_type->is_abstract())
5250 return left_type;
5251 else if (!right_type->is_abstract())
5252 return right_type;
5253 else if (left_type->complex_type() != NULL)
5254 return left_type;
5255 else if (right_type->complex_type() != NULL)
5256 return right_type;
5257 else if (left_type->float_type() != NULL)
5258 return left_type;
5259 else if (right_type->float_type() != NULL)
5260 return right_type;
5261 else
5262 return left_type;
5263 }
5264
5265 case OPERATOR_LSHIFT:
5266 case OPERATOR_RSHIFT:
5267 return this->left_->type();
5268
5269 default:
5270 gcc_unreachable();
5271 }
5272}
5273
5274// Set type for a binary expression.
5275
5276void
5277Binary_expression::do_determine_type(const Type_context* context)
5278{
5279 Type* tleft = this->left_->type();
5280 Type* tright = this->right_->type();
5281
5282 // Both sides should have the same type, except for the shift
5283 // operations. For a comparison, we should ignore the incoming
5284 // type.
5285
5286 bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
5287 || this->op_ == OPERATOR_RSHIFT);
5288
5289 bool is_comparison = (this->op_ == OPERATOR_EQEQ
5290 || this->op_ == OPERATOR_NOTEQ
5291 || this->op_ == OPERATOR_LT
5292 || this->op_ == OPERATOR_LE
5293 || this->op_ == OPERATOR_GT
5294 || this->op_ == OPERATOR_GE);
5295
5296 Type_context subcontext(*context);
5297
5298 if (is_comparison)
5299 {
5300 // In a comparison, the context does not determine the types of
5301 // the operands.
5302 subcontext.type = NULL;
5303 }
5304
5305 // Set the context for the left hand operand.
5306 if (is_shift_op)
5307 {
5308 // The right hand operand plays no role in determining the type
5309 // of the left hand operand. A shift of an abstract integer in
5310 // a string context gets special treatment, which may be a
5311 // language bug.
5312 if (subcontext.type != NULL
5313 && subcontext.type->is_string_type()
5314 && tleft->is_abstract())
5315 error_at(this->location(), "shift of non-integer operand");
5316 }
5317 else if (!tleft->is_abstract())
5318 subcontext.type = tleft;
5319 else if (!tright->is_abstract())
5320 subcontext.type = tright;
5321 else if (subcontext.type == NULL)
5322 {
5323 if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
5324 || (tleft->float_type() != NULL && tright->float_type() != NULL)
5325 || (tleft->complex_type() != NULL && tright->complex_type() != NULL))
5326 {
5327 // Both sides have an abstract integer, abstract float, or
5328 // abstract complex type. Just let CONTEXT determine
5329 // whether they may remain abstract or not.
5330 }
5331 else if (tleft->complex_type() != NULL)
5332 subcontext.type = tleft;
5333 else if (tright->complex_type() != NULL)
5334 subcontext.type = tright;
5335 else if (tleft->float_type() != NULL)
5336 subcontext.type = tleft;
5337 else if (tright->float_type() != NULL)
5338 subcontext.type = tright;
5339 else
5340 subcontext.type = tleft;
5341 }
5342
5343 this->left_->determine_type(&subcontext);
5344
5345 // The context for the right hand operand is the same as for the
5346 // left hand operand, except for a shift operator.
5347 if (is_shift_op)
5348 {
5349 subcontext.type = Type::lookup_integer_type("uint");
5350 subcontext.may_be_abstract = false;
5351 }
5352
5353 this->right_->determine_type(&subcontext);
5354}
5355
5356// Report an error if the binary operator OP does not support TYPE.
5357// Return whether the operation is OK. This should not be used for
5358// shift.
5359
5360bool
5361Binary_expression::check_operator_type(Operator op, Type* type,
5362 source_location location)
5363{
5364 switch (op)
5365 {
5366 case OPERATOR_OROR:
5367 case OPERATOR_ANDAND:
5368 if (!type->is_boolean_type())
5369 {
5370 error_at(location, "expected boolean type");
5371 return false;
5372 }
5373 break;
5374
5375 case OPERATOR_EQEQ:
5376 case OPERATOR_NOTEQ:
5377 if (type->integer_type() == NULL
5378 && type->float_type() == NULL
5379 && type->complex_type() == NULL
5380 && !type->is_string_type()
5381 && type->points_to() == NULL
5382 && !type->is_nil_type()
5383 && !type->is_boolean_type()
5384 && type->interface_type() == NULL
5385 && (type->array_type() == NULL
5386 || type->array_type()->length() != NULL)
5387 && type->map_type() == NULL
5388 && type->channel_type() == NULL
5389 && type->function_type() == NULL)
5390 {
5391 error_at(location,
5392 ("expected integer, floating, complex, string, pointer, "
5393 "boolean, interface, slice, map, channel, "
5394 "or function type"));
5395 return false;
5396 }
5397 break;
5398
5399 case OPERATOR_LT:
5400 case OPERATOR_LE:
5401 case OPERATOR_GT:
5402 case OPERATOR_GE:
5403 if (type->integer_type() == NULL
5404 && type->float_type() == NULL
5405 && !type->is_string_type())
5406 {
5407 error_at(location, "expected integer, floating, or string type");
5408 return false;
5409 }
5410 break;
5411
5412 case OPERATOR_PLUS:
5413 case OPERATOR_PLUSEQ:
5414 if (type->integer_type() == NULL
5415 && type->float_type() == NULL
5416 && type->complex_type() == NULL
5417 && !type->is_string_type())
5418 {
5419 error_at(location,
5420 "expected integer, floating, complex, or string type");
5421 return false;
5422 }
5423 break;
5424
5425 case OPERATOR_MINUS:
5426 case OPERATOR_MINUSEQ:
5427 case OPERATOR_MULT:
5428 case OPERATOR_MULTEQ:
5429 case OPERATOR_DIV:
5430 case OPERATOR_DIVEQ:
5431 if (type->integer_type() == NULL
5432 && type->float_type() == NULL
5433 && type->complex_type() == NULL)
5434 {
5435 error_at(location, "expected integer, floating, or complex type");
5436 return false;
5437 }
5438 break;
5439
5440 case OPERATOR_MOD:
5441 case OPERATOR_MODEQ:
5442 case OPERATOR_OR:
5443 case OPERATOR_OREQ:
5444 case OPERATOR_AND:
5445 case OPERATOR_ANDEQ:
5446 case OPERATOR_XOR:
5447 case OPERATOR_XOREQ:
5448 case OPERATOR_BITCLEAR:
5449 case OPERATOR_BITCLEAREQ:
5450 if (type->integer_type() == NULL)
5451 {
5452 error_at(location, "expected integer type");
5453 return false;
5454 }
5455 break;
5456
5457 default:
5458 gcc_unreachable();
5459 }
5460
5461 return true;
5462}
5463
5464// Check types.
5465
5466void
5467Binary_expression::do_check_types(Gogo*)
5468{
5469 Type* left_type = this->left_->type();
5470 Type* right_type = this->right_->type();
5471 if (left_type->is_error_type() || right_type->is_error_type())
9fe897ef 5472 {
5473 this->set_is_error();
5474 return;
5475 }
e440a328 5476
5477 if (this->op_ == OPERATOR_EQEQ
5478 || this->op_ == OPERATOR_NOTEQ
5479 || this->op_ == OPERATOR_LT
5480 || this->op_ == OPERATOR_LE
5481 || this->op_ == OPERATOR_GT
5482 || this->op_ == OPERATOR_GE)
5483 {
5484 if (!Type::are_assignable(left_type, right_type, NULL)
5485 && !Type::are_assignable(right_type, left_type, NULL))
5486 {
5487 this->report_error(_("incompatible types in binary expression"));
5488 return;
5489 }
5490 if (!Binary_expression::check_operator_type(this->op_, left_type,
5491 this->location())
5492 || !Binary_expression::check_operator_type(this->op_, right_type,
5493 this->location()))
5494 {
5495 this->set_is_error();
5496 return;
5497 }
5498 }
5499 else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
5500 {
5501 if (!Type::are_compatible_for_binop(left_type, right_type))
5502 {
5503 this->report_error(_("incompatible types in binary expression"));
5504 return;
5505 }
5506 if (!Binary_expression::check_operator_type(this->op_, left_type,
5507 this->location()))
5508 {
5509 this->set_is_error();
5510 return;
5511 }
5512 }
5513 else
5514 {
5515 if (left_type->integer_type() == NULL)
5516 this->report_error(_("shift of non-integer operand"));
5517
5518 if (!right_type->is_abstract()
5519 && (right_type->integer_type() == NULL
5520 || !right_type->integer_type()->is_unsigned()))
5521 this->report_error(_("shift count not unsigned integer"));
5522 else
5523 {
5524 mpz_t val;
5525 mpz_init(val);
5526 Type* type;
5527 if (this->right_->integer_constant_value(true, val, &type))
5528 {
5529 if (mpz_sgn(val) < 0)
5530 this->report_error(_("negative shift count"));
5531 }
5532 mpz_clear(val);
5533 }
5534 }
5535}
5536
5537// Get a tree for a binary expression.
5538
5539tree
5540Binary_expression::do_get_tree(Translate_context* context)
5541{
5542 tree left = this->left_->get_tree(context);
5543 tree right = this->right_->get_tree(context);
5544
5545 if (left == error_mark_node || right == error_mark_node)
5546 return error_mark_node;
5547
5548 enum tree_code code;
5549 bool use_left_type = true;
5550 bool is_shift_op = false;
5551 switch (this->op_)
5552 {
5553 case OPERATOR_EQEQ:
5554 case OPERATOR_NOTEQ:
5555 case OPERATOR_LT:
5556 case OPERATOR_LE:
5557 case OPERATOR_GT:
5558 case OPERATOR_GE:
5559 return Expression::comparison_tree(context, this->op_,
5560 this->left_->type(), left,
5561 this->right_->type(), right,
5562 this->location());
5563
5564 case OPERATOR_OROR:
5565 code = TRUTH_ORIF_EXPR;
5566 use_left_type = false;
5567 break;
5568 case OPERATOR_ANDAND:
5569 code = TRUTH_ANDIF_EXPR;
5570 use_left_type = false;
5571 break;
5572 case OPERATOR_PLUS:
5573 code = PLUS_EXPR;
5574 break;
5575 case OPERATOR_MINUS:
5576 code = MINUS_EXPR;
5577 break;
5578 case OPERATOR_OR:
5579 code = BIT_IOR_EXPR;
5580 break;
5581 case OPERATOR_XOR:
5582 code = BIT_XOR_EXPR;
5583 break;
5584 case OPERATOR_MULT:
5585 code = MULT_EXPR;
5586 break;
5587 case OPERATOR_DIV:
5588 {
5589 Type *t = this->left_->type();
5590 if (t->float_type() != NULL || t->complex_type() != NULL)
5591 code = RDIV_EXPR;
5592 else
5593 code = TRUNC_DIV_EXPR;
5594 }
5595 break;
5596 case OPERATOR_MOD:
5597 code = TRUNC_MOD_EXPR;
5598 break;
5599 case OPERATOR_LSHIFT:
5600 code = LSHIFT_EXPR;
5601 is_shift_op = true;
5602 break;
5603 case OPERATOR_RSHIFT:
5604 code = RSHIFT_EXPR;
5605 is_shift_op = true;
5606 break;
5607 case OPERATOR_AND:
5608 code = BIT_AND_EXPR;
5609 break;
5610 case OPERATOR_BITCLEAR:
5611 right = fold_build1(BIT_NOT_EXPR, TREE_TYPE(right), right);
5612 code = BIT_AND_EXPR;
5613 break;
5614 default:
5615 gcc_unreachable();
5616 }
5617
5618 tree type = use_left_type ? TREE_TYPE(left) : TREE_TYPE(right);
5619
5620 if (this->left_->type()->is_string_type())
5621 {
5622 gcc_assert(this->op_ == OPERATOR_PLUS);
5623 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5624 static tree string_plus_decl;
5625 return Gogo::call_builtin(&string_plus_decl,
5626 this->location(),
5627 "__go_string_plus",
5628 2,
5629 string_type,
5630 string_type,
5631 left,
5632 string_type,
5633 right);
5634 }
5635
5636 tree compute_type = excess_precision_type(type);
5637 if (compute_type != NULL_TREE)
5638 {
5639 left = ::convert(compute_type, left);
5640 right = ::convert(compute_type, right);
5641 }
5642
5643 tree eval_saved = NULL_TREE;
5644 if (is_shift_op)
5645 {
5646 if (!DECL_P(left))
5647 left = save_expr(left);
5648 if (!DECL_P(right))
5649 right = save_expr(right);
5650 // Make sure the values are evaluated.
5651 eval_saved = fold_build2_loc(this->location(), COMPOUND_EXPR,
5652 void_type_node, left, right);
5653 }
5654
5655 tree ret = fold_build2_loc(this->location(),
5656 code,
5657 compute_type != NULL_TREE ? compute_type : type,
5658 left, right);
5659
5660 if (compute_type != NULL_TREE)
5661 ret = ::convert(type, ret);
5662
5663 // In Go, a shift larger than the size of the type is well-defined.
5664 // This is not true in GENERIC, so we need to insert a conditional.
5665 if (is_shift_op)
5666 {
5667 gcc_assert(INTEGRAL_TYPE_P(TREE_TYPE(left)));
5668 gcc_assert(this->left_->type()->integer_type() != NULL);
5669 int bits = TYPE_PRECISION(TREE_TYPE(left));
5670
5671 tree compare = fold_build2(LT_EXPR, boolean_type_node, right,
5672 build_int_cst_type(TREE_TYPE(right), bits));
5673
5674 tree overflow_result = fold_convert_loc(this->location(),
5675 TREE_TYPE(left),
5676 integer_zero_node);
5677 if (this->op_ == OPERATOR_RSHIFT
5678 && !this->left_->type()->integer_type()->is_unsigned())
5679 {
5680 tree neg = fold_build2_loc(this->location(), LT_EXPR,
5681 boolean_type_node, left,
5682 fold_convert_loc(this->location(),
5683 TREE_TYPE(left),
5684 integer_zero_node));
5685 tree neg_one = fold_build2_loc(this->location(),
5686 MINUS_EXPR, TREE_TYPE(left),
5687 fold_convert_loc(this->location(),
5688 TREE_TYPE(left),
5689 integer_zero_node),
5690 fold_convert_loc(this->location(),
5691 TREE_TYPE(left),
5692 integer_one_node));
5693 overflow_result = fold_build3_loc(this->location(), COND_EXPR,
5694 TREE_TYPE(left), neg, neg_one,
5695 overflow_result);
5696 }
5697
5698 ret = fold_build3_loc(this->location(), COND_EXPR, TREE_TYPE(left),
5699 compare, ret, overflow_result);
5700
5701 ret = fold_build2_loc(this->location(), COMPOUND_EXPR,
5702 TREE_TYPE(ret), eval_saved, ret);
5703 }
5704
5705 return ret;
5706}
5707
5708// Export a binary expression.
5709
5710void
5711Binary_expression::do_export(Export* exp) const
5712{
5713 exp->write_c_string("(");
5714 this->left_->export_expression(exp);
5715 switch (this->op_)
5716 {
5717 case OPERATOR_OROR:
5718 exp->write_c_string(" || ");
5719 break;
5720 case OPERATOR_ANDAND:
5721 exp->write_c_string(" && ");
5722 break;
5723 case OPERATOR_EQEQ:
5724 exp->write_c_string(" == ");
5725 break;
5726 case OPERATOR_NOTEQ:
5727 exp->write_c_string(" != ");
5728 break;
5729 case OPERATOR_LT:
5730 exp->write_c_string(" < ");
5731 break;
5732 case OPERATOR_LE:
5733 exp->write_c_string(" <= ");
5734 break;
5735 case OPERATOR_GT:
5736 exp->write_c_string(" > ");
5737 break;
5738 case OPERATOR_GE:
5739 exp->write_c_string(" >= ");
5740 break;
5741 case OPERATOR_PLUS:
5742 exp->write_c_string(" + ");
5743 break;
5744 case OPERATOR_MINUS:
5745 exp->write_c_string(" - ");
5746 break;
5747 case OPERATOR_OR:
5748 exp->write_c_string(" | ");
5749 break;
5750 case OPERATOR_XOR:
5751 exp->write_c_string(" ^ ");
5752 break;
5753 case OPERATOR_MULT:
5754 exp->write_c_string(" * ");
5755 break;
5756 case OPERATOR_DIV:
5757 exp->write_c_string(" / ");
5758 break;
5759 case OPERATOR_MOD:
5760 exp->write_c_string(" % ");
5761 break;
5762 case OPERATOR_LSHIFT:
5763 exp->write_c_string(" << ");
5764 break;
5765 case OPERATOR_RSHIFT:
5766 exp->write_c_string(" >> ");
5767 break;
5768 case OPERATOR_AND:
5769 exp->write_c_string(" & ");
5770 break;
5771 case OPERATOR_BITCLEAR:
5772 exp->write_c_string(" &^ ");
5773 break;
5774 default:
5775 gcc_unreachable();
5776 }
5777 this->right_->export_expression(exp);
5778 exp->write_c_string(")");
5779}
5780
5781// Import a binary expression.
5782
5783Expression*
5784Binary_expression::do_import(Import* imp)
5785{
5786 imp->require_c_string("(");
5787
5788 Expression* left = Expression::import_expression(imp);
5789
5790 Operator op;
5791 if (imp->match_c_string(" || "))
5792 {
5793 op = OPERATOR_OROR;
5794 imp->advance(4);
5795 }
5796 else if (imp->match_c_string(" && "))
5797 {
5798 op = OPERATOR_ANDAND;
5799 imp->advance(4);
5800 }
5801 else if (imp->match_c_string(" == "))
5802 {
5803 op = OPERATOR_EQEQ;
5804 imp->advance(4);
5805 }
5806 else if (imp->match_c_string(" != "))
5807 {
5808 op = OPERATOR_NOTEQ;
5809 imp->advance(4);
5810 }
5811 else if (imp->match_c_string(" < "))
5812 {
5813 op = OPERATOR_LT;
5814 imp->advance(3);
5815 }
5816 else if (imp->match_c_string(" <= "))
5817 {
5818 op = OPERATOR_LE;
5819 imp->advance(4);
5820 }
5821 else if (imp->match_c_string(" > "))
5822 {
5823 op = OPERATOR_GT;
5824 imp->advance(3);
5825 }
5826 else if (imp->match_c_string(" >= "))
5827 {
5828 op = OPERATOR_GE;
5829 imp->advance(4);
5830 }
5831 else if (imp->match_c_string(" + "))
5832 {
5833 op = OPERATOR_PLUS;
5834 imp->advance(3);
5835 }
5836 else if (imp->match_c_string(" - "))
5837 {
5838 op = OPERATOR_MINUS;
5839 imp->advance(3);
5840 }
5841 else if (imp->match_c_string(" | "))
5842 {
5843 op = OPERATOR_OR;
5844 imp->advance(3);
5845 }
5846 else if (imp->match_c_string(" ^ "))
5847 {
5848 op = OPERATOR_XOR;
5849 imp->advance(3);
5850 }
5851 else if (imp->match_c_string(" * "))
5852 {
5853 op = OPERATOR_MULT;
5854 imp->advance(3);
5855 }
5856 else if (imp->match_c_string(" / "))
5857 {
5858 op = OPERATOR_DIV;
5859 imp->advance(3);
5860 }
5861 else if (imp->match_c_string(" % "))
5862 {
5863 op = OPERATOR_MOD;
5864 imp->advance(3);
5865 }
5866 else if (imp->match_c_string(" << "))
5867 {
5868 op = OPERATOR_LSHIFT;
5869 imp->advance(4);
5870 }
5871 else if (imp->match_c_string(" >> "))
5872 {
5873 op = OPERATOR_RSHIFT;
5874 imp->advance(4);
5875 }
5876 else if (imp->match_c_string(" & "))
5877 {
5878 op = OPERATOR_AND;
5879 imp->advance(3);
5880 }
5881 else if (imp->match_c_string(" &^ "))
5882 {
5883 op = OPERATOR_BITCLEAR;
5884 imp->advance(4);
5885 }
5886 else
5887 {
5888 error_at(imp->location(), "unrecognized binary operator");
5889 return Expression::make_error(imp->location());
5890 }
5891
5892 Expression* right = Expression::import_expression(imp);
5893
5894 imp->require_c_string(")");
5895
5896 return Expression::make_binary(op, left, right, imp->location());
5897}
5898
5899// Make a binary expression.
5900
5901Expression*
5902Expression::make_binary(Operator op, Expression* left, Expression* right,
5903 source_location location)
5904{
5905 return new Binary_expression(op, left, right, location);
5906}
5907
5908// Implement a comparison.
5909
5910tree
5911Expression::comparison_tree(Translate_context* context, Operator op,
5912 Type* left_type, tree left_tree,
5913 Type* right_type, tree right_tree,
5914 source_location location)
5915{
5916 enum tree_code code;
5917 switch (op)
5918 {
5919 case OPERATOR_EQEQ:
5920 code = EQ_EXPR;
5921 break;
5922 case OPERATOR_NOTEQ:
5923 code = NE_EXPR;
5924 break;
5925 case OPERATOR_LT:
5926 code = LT_EXPR;
5927 break;
5928 case OPERATOR_LE:
5929 code = LE_EXPR;
5930 break;
5931 case OPERATOR_GT:
5932 code = GT_EXPR;
5933 break;
5934 case OPERATOR_GE:
5935 code = GE_EXPR;
5936 break;
5937 default:
5938 gcc_unreachable();
5939 }
5940
15c67ee2 5941 if (left_type->is_string_type() && right_type->is_string_type())
e440a328 5942 {
e440a328 5943 tree string_type = Type::make_string_type()->get_tree(context->gogo());
5944 static tree string_compare_decl;
5945 left_tree = Gogo::call_builtin(&string_compare_decl,
5946 location,
5947 "__go_strcmp",
5948 2,
5949 integer_type_node,
5950 string_type,
5951 left_tree,
5952 string_type,
5953 right_tree);
5954 right_tree = build_int_cst_type(integer_type_node, 0);
5955 }
15c67ee2 5956 else if ((left_type->interface_type() != NULL
5957 && right_type->interface_type() == NULL
5958 && !right_type->is_nil_type())
5959 || (left_type->interface_type() == NULL
5960 && !left_type->is_nil_type()
5961 && right_type->interface_type() != NULL))
e440a328 5962 {
5963 // Comparing an interface value to a non-interface value.
5964 if (left_type->interface_type() == NULL)
5965 {
5966 std::swap(left_type, right_type);
5967 std::swap(left_tree, right_tree);
5968 }
5969
5970 // The right operand is not an interface. We need to take its
5971 // address if it is not a pointer.
5972 tree make_tmp;
5973 tree arg;
5974 if (right_type->points_to() != NULL)
5975 {
5976 make_tmp = NULL_TREE;
5977 arg = right_tree;
5978 }
5979 else if (TREE_ADDRESSABLE(TREE_TYPE(right_tree)) || DECL_P(right_tree))
5980 {
5981 make_tmp = NULL_TREE;
5982 arg = build_fold_addr_expr_loc(location, right_tree);
5983 if (DECL_P(right_tree))
5984 TREE_ADDRESSABLE(right_tree) = 1;
5985 }
5986 else
5987 {
5988 tree tmp = create_tmp_var(TREE_TYPE(right_tree),
5989 get_name(right_tree));
5990 DECL_IGNORED_P(tmp) = 0;
5991 DECL_INITIAL(tmp) = right_tree;
5992 TREE_ADDRESSABLE(tmp) = 1;
5993 make_tmp = build1(DECL_EXPR, void_type_node, tmp);
5994 SET_EXPR_LOCATION(make_tmp, location);
5995 arg = build_fold_addr_expr_loc(location, tmp);
5996 }
5997 arg = fold_convert_loc(location, ptr_type_node, arg);
5998
5999 tree descriptor = right_type->type_descriptor_pointer(context->gogo());
6000
6001 if (left_type->interface_type()->is_empty())
6002 {
6003 static tree empty_interface_value_compare_decl;
6004 left_tree = Gogo::call_builtin(&empty_interface_value_compare_decl,
6005 location,
6006 "__go_empty_interface_value_compare",
6007 3,
6008 integer_type_node,
6009 TREE_TYPE(left_tree),
6010 left_tree,
6011 TREE_TYPE(descriptor),
6012 descriptor,
6013 ptr_type_node,
6014 arg);
6015 // This can panic if the type is not comparable.
6016 TREE_NOTHROW(empty_interface_value_compare_decl) = 0;
6017 }
6018 else
6019 {
6020 static tree interface_value_compare_decl;
6021 left_tree = Gogo::call_builtin(&interface_value_compare_decl,
6022 location,
6023 "__go_interface_value_compare",
6024 3,
6025 integer_type_node,
6026 TREE_TYPE(left_tree),
6027 left_tree,
6028 TREE_TYPE(descriptor),
6029 descriptor,
6030 ptr_type_node,
6031 arg);
6032 // This can panic if the type is not comparable.
6033 TREE_NOTHROW(interface_value_compare_decl) = 0;
6034 }
6035 right_tree = build_int_cst_type(integer_type_node, 0);
6036
6037 if (make_tmp != NULL_TREE)
6038 left_tree = build2(COMPOUND_EXPR, TREE_TYPE(left_tree), make_tmp,
6039 left_tree);
6040 }
6041 else if (left_type->interface_type() != NULL
6042 && right_type->interface_type() != NULL)
6043 {
6044 if (left_type->interface_type()->is_empty())
6045 {
6046 gcc_assert(right_type->interface_type()->is_empty());
6047 static tree empty_interface_compare_decl;
6048 left_tree = Gogo::call_builtin(&empty_interface_compare_decl,
6049 location,
6050 "__go_empty_interface_compare",
6051 2,
6052 integer_type_node,
6053 TREE_TYPE(left_tree),
6054 left_tree,
6055 TREE_TYPE(right_tree),
6056 right_tree);
6057 // This can panic if the type is uncomparable.
6058 TREE_NOTHROW(empty_interface_compare_decl) = 0;
6059 }
6060 else
6061 {
6062 gcc_assert(!right_type->interface_type()->is_empty());
6063 static tree interface_compare_decl;
6064 left_tree = Gogo::call_builtin(&interface_compare_decl,
6065 location,
6066 "__go_interface_compare",
6067 2,
6068 integer_type_node,
6069 TREE_TYPE(left_tree),
6070 left_tree,
6071 TREE_TYPE(right_tree),
6072 right_tree);
6073 // This can panic if the type is uncomparable.
6074 TREE_NOTHROW(interface_compare_decl) = 0;
6075 }
6076 right_tree = build_int_cst_type(integer_type_node, 0);
6077 }
6078
6079 if (left_type->is_nil_type()
6080 && (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
6081 {
6082 std::swap(left_type, right_type);
6083 std::swap(left_tree, right_tree);
6084 }
6085
6086 if (right_type->is_nil_type())
6087 {
6088 if (left_type->array_type() != NULL
6089 && left_type->array_type()->length() == NULL)
6090 {
6091 Array_type* at = left_type->array_type();
6092 left_tree = at->value_pointer_tree(context->gogo(), left_tree);
6093 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6094 }
6095 else if (left_type->interface_type() != NULL)
6096 {
6097 // An interface is nil if the first field is nil.
6098 tree left_type_tree = TREE_TYPE(left_tree);
6099 gcc_assert(TREE_CODE(left_type_tree) == RECORD_TYPE);
6100 tree field = TYPE_FIELDS(left_type_tree);
6101 left_tree = build3(COMPONENT_REF, TREE_TYPE(field), left_tree,
6102 field, NULL_TREE);
6103 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6104 }
6105 else
6106 {
6107 gcc_assert(POINTER_TYPE_P(TREE_TYPE(left_tree)));
6108 right_tree = fold_convert(TREE_TYPE(left_tree), null_pointer_node);
6109 }
6110 }
6111
d8ccb1e3 6112 if (left_tree == error_mark_node || right_tree == error_mark_node)
6113 return error_mark_node;
6114
e440a328 6115 tree ret = fold_build2(code, boolean_type_node, left_tree, right_tree);
6116 if (CAN_HAVE_LOCATION_P(ret))
6117 SET_EXPR_LOCATION(ret, location);
6118 return ret;
6119}
6120
6121// Class Bound_method_expression.
6122
6123// Traversal.
6124
6125int
6126Bound_method_expression::do_traverse(Traverse* traverse)
6127{
6128 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
6129 return TRAVERSE_EXIT;
6130 return Expression::traverse(&this->method_, traverse);
6131}
6132
6133// Return the type of a bound method expression. The type of this
6134// object is really the type of the method with no receiver. We
6135// should be able to get away with just returning the type of the
6136// method.
6137
6138Type*
6139Bound_method_expression::do_type()
6140{
6141 return this->method_->type();
6142}
6143
6144// Determine the types of a method expression.
6145
6146void
6147Bound_method_expression::do_determine_type(const Type_context*)
6148{
6149 this->method_->determine_type_no_context();
6150 Type* mtype = this->method_->type();
6151 Function_type* fntype = mtype == NULL ? NULL : mtype->function_type();
6152 if (fntype == NULL || !fntype->is_method())
6153 this->expr_->determine_type_no_context();
6154 else
6155 {
6156 Type_context subcontext(fntype->receiver()->type(), false);
6157 this->expr_->determine_type(&subcontext);
6158 }
6159}
6160
6161// Check the types of a method expression.
6162
6163void
6164Bound_method_expression::do_check_types(Gogo*)
6165{
6166 Type* type = this->method_->type()->deref();
6167 if (type == NULL
6168 || type->function_type() == NULL
6169 || !type->function_type()->is_method())
6170 this->report_error(_("object is not a method"));
6171 else
6172 {
6173 Type* rtype = type->function_type()->receiver()->type()->deref();
6174 Type* etype = (this->expr_type_ != NULL
6175 ? this->expr_type_
6176 : this->expr_->type());
6177 etype = etype->deref();
07ba8be5 6178 if (!Type::are_identical(rtype, etype, true, NULL))
e440a328 6179 this->report_error(_("method type does not match object type"));
6180 }
6181}
6182
6183// Get the tree for a method expression. There is no standard tree
6184// representation for this. The only places it may currently be used
6185// are in a Call_expression or a Go_statement, which will take it
6186// apart directly. So this has nothing to do at present.
6187
6188tree
6189Bound_method_expression::do_get_tree(Translate_context*)
6190{
6191 gcc_unreachable();
6192}
6193
6194// Make a method expression.
6195
6196Bound_method_expression*
6197Expression::make_bound_method(Expression* expr, Expression* method,
6198 source_location location)
6199{
6200 return new Bound_method_expression(expr, method, location);
6201}
6202
6203// Class Builtin_call_expression. This is used for a call to a
6204// builtin function.
6205
6206class Builtin_call_expression : public Call_expression
6207{
6208 public:
6209 Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
6210 bool is_varargs, source_location location);
6211
6212 protected:
6213 // This overrides Call_expression::do_lower.
6214 Expression*
6215 do_lower(Gogo*, Named_object*, int);
6216
6217 bool
6218 do_is_constant() const;
6219
6220 bool
6221 do_integer_constant_value(bool, mpz_t, Type**) const;
6222
6223 bool
6224 do_float_constant_value(mpfr_t, Type**) const;
6225
6226 bool
6227 do_complex_constant_value(mpfr_t, mpfr_t, Type**) const;
6228
6229 Type*
6230 do_type();
6231
6232 void
6233 do_determine_type(const Type_context*);
6234
6235 void
6236 do_check_types(Gogo*);
6237
6238 Expression*
6239 do_copy()
6240 {
6241 return new Builtin_call_expression(this->gogo_, this->fn()->copy(),
6242 this->args()->copy(),
6243 this->is_varargs(),
6244 this->location());
6245 }
6246
6247 tree
6248 do_get_tree(Translate_context*);
6249
6250 void
6251 do_export(Export*) const;
6252
6253 virtual bool
6254 do_is_recover_call() const;
6255
6256 virtual void
6257 do_set_recover_arg(Expression*);
6258
6259 private:
6260 // The builtin functions.
6261 enum Builtin_function_code
6262 {
6263 BUILTIN_INVALID,
6264
6265 // Predeclared builtin functions.
6266 BUILTIN_APPEND,
6267 BUILTIN_CAP,
6268 BUILTIN_CLOSE,
6269 BUILTIN_CLOSED,
6270 BUILTIN_CMPLX,
6271 BUILTIN_COPY,
6272 BUILTIN_IMAG,
6273 BUILTIN_LEN,
6274 BUILTIN_MAKE,
6275 BUILTIN_NEW,
6276 BUILTIN_PANIC,
6277 BUILTIN_PRINT,
6278 BUILTIN_PRINTLN,
6279 BUILTIN_REAL,
6280 BUILTIN_RECOVER,
6281
6282 // Builtin functions from the unsafe package.
6283 BUILTIN_ALIGNOF,
6284 BUILTIN_OFFSETOF,
6285 BUILTIN_SIZEOF
6286 };
6287
6288 Expression*
6289 one_arg() const;
6290
6291 bool
6292 check_one_arg();
6293
6294 static Type*
6295 real_imag_type(Type*);
6296
6297 static Type*
6298 cmplx_type(Type*);
6299
6300 // A pointer back to the general IR structure. This avoids a global
6301 // variable, or passing it around everywhere.
6302 Gogo* gogo_;
6303 // The builtin function being called.
6304 Builtin_function_code code_;
6305};
6306
6307Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
6308 Expression* fn,
6309 Expression_list* args,
6310 bool is_varargs,
6311 source_location location)
6312 : Call_expression(fn, args, is_varargs, location),
6313 gogo_(gogo), code_(BUILTIN_INVALID)
6314{
6315 Func_expression* fnexp = this->fn()->func_expression();
6316 gcc_assert(fnexp != NULL);
6317 const std::string& name(fnexp->named_object()->name());
6318 if (name == "append")
6319 this->code_ = BUILTIN_APPEND;
6320 else if (name == "cap")
6321 this->code_ = BUILTIN_CAP;
6322 else if (name == "close")
6323 this->code_ = BUILTIN_CLOSE;
6324 else if (name == "closed")
6325 this->code_ = BUILTIN_CLOSED;
6326 else if (name == "cmplx")
6327 this->code_ = BUILTIN_CMPLX;
6328 else if (name == "copy")
6329 this->code_ = BUILTIN_COPY;
6330 else if (name == "imag")
6331 this->code_ = BUILTIN_IMAG;
6332 else if (name == "len")
6333 this->code_ = BUILTIN_LEN;
6334 else if (name == "make")
6335 this->code_ = BUILTIN_MAKE;
6336 else if (name == "new")
6337 this->code_ = BUILTIN_NEW;
6338 else if (name == "panic")
6339 this->code_ = BUILTIN_PANIC;
6340 else if (name == "print")
6341 this->code_ = BUILTIN_PRINT;
6342 else if (name == "println")
6343 this->code_ = BUILTIN_PRINTLN;
6344 else if (name == "real")
6345 this->code_ = BUILTIN_REAL;
6346 else if (name == "recover")
6347 this->code_ = BUILTIN_RECOVER;
6348 else if (name == "Alignof")
6349 this->code_ = BUILTIN_ALIGNOF;
6350 else if (name == "Offsetof")
6351 this->code_ = BUILTIN_OFFSETOF;
6352 else if (name == "Sizeof")
6353 this->code_ = BUILTIN_SIZEOF;
6354 else
6355 gcc_unreachable();
6356}
6357
6358// Return whether this is a call to recover. This is a virtual
6359// function called from the parent class.
6360
6361bool
6362Builtin_call_expression::do_is_recover_call() const
6363{
6364 if (this->classification() == EXPRESSION_ERROR)
6365 return false;
6366 return this->code_ == BUILTIN_RECOVER;
6367}
6368
6369// Set the argument for a call to recover.
6370
6371void
6372Builtin_call_expression::do_set_recover_arg(Expression* arg)
6373{
6374 const Expression_list* args = this->args();
6375 gcc_assert(args == NULL || args->empty());
6376 Expression_list* new_args = new Expression_list();
6377 new_args->push_back(arg);
6378 this->set_args(new_args);
6379}
6380
6381// A traversal class which looks for a call expression.
6382
6383class Find_call_expression : public Traverse
6384{
6385 public:
6386 Find_call_expression()
6387 : Traverse(traverse_expressions),
6388 found_(false)
6389 { }
6390
6391 int
6392 expression(Expression**);
6393
6394 bool
6395 found()
6396 { return this->found_; }
6397
6398 private:
6399 bool found_;
6400};
6401
6402int
6403Find_call_expression::expression(Expression** pexpr)
6404{
6405 if ((*pexpr)->call_expression() != NULL)
6406 {
6407 this->found_ = true;
6408 return TRAVERSE_EXIT;
6409 }
6410 return TRAVERSE_CONTINUE;
6411}
6412
6413// Lower a builtin call expression. This turns new and make into
6414// specific expressions. We also convert to a constant if we can.
6415
6416Expression*
6417Builtin_call_expression::do_lower(Gogo* gogo, Named_object* function, int)
6418{
6419 if (this->code_ == BUILTIN_NEW)
6420 {
6421 const Expression_list* args = this->args();
6422 if (args == NULL || args->size() < 1)
6423 this->report_error(_("not enough arguments"));
6424 else if (args->size() > 1)
6425 this->report_error(_("too many arguments"));
6426 else
6427 {
6428 Expression* arg = args->front();
6429 if (!arg->is_type_expression())
6430 {
6431 error_at(arg->location(), "expected type");
6432 this->set_is_error();
6433 }
6434 else
6435 return Expression::make_allocation(arg->type(), this->location());
6436 }
6437 }
6438 else if (this->code_ == BUILTIN_MAKE)
6439 {
6440 const Expression_list* args = this->args();
6441 if (args == NULL || args->size() < 1)
6442 this->report_error(_("not enough arguments"));
6443 else
6444 {
6445 Expression* arg = args->front();
6446 if (!arg->is_type_expression())
6447 {
6448 error_at(arg->location(), "expected type");
6449 this->set_is_error();
6450 }
6451 else
6452 {
6453 Expression_list* newargs;
6454 if (args->size() == 1)
6455 newargs = NULL;
6456 else
6457 {
6458 newargs = new Expression_list();
6459 Expression_list::const_iterator p = args->begin();
6460 ++p;
6461 for (; p != args->end(); ++p)
6462 newargs->push_back(*p);
6463 }
6464 return Expression::make_make(arg->type(), newargs,
6465 this->location());
6466 }
6467 }
6468 }
6469 else if (this->is_constant())
6470 {
6471 // We can only lower len and cap if there are no function calls
6472 // in the arguments. Otherwise we have to make the call.
6473 if (this->code_ == BUILTIN_LEN || this->code_ == BUILTIN_CAP)
6474 {
6475 Expression* arg = this->one_arg();
6476 if (!arg->is_constant())
6477 {
6478 Find_call_expression find_call;
6479 Expression::traverse(&arg, &find_call);
6480 if (find_call.found())
6481 return this;
6482 }
6483 }
6484
6485 mpz_t ival;
6486 mpz_init(ival);
6487 Type* type;
6488 if (this->integer_constant_value(true, ival, &type))
6489 {
6490 Expression* ret = Expression::make_integer(&ival, type,
6491 this->location());
6492 mpz_clear(ival);
6493 return ret;
6494 }
6495 mpz_clear(ival);
6496
6497 mpfr_t rval;
6498 mpfr_init(rval);
6499 if (this->float_constant_value(rval, &type))
6500 {
6501 Expression* ret = Expression::make_float(&rval, type,
6502 this->location());
6503 mpfr_clear(rval);
6504 return ret;
6505 }
6506
6507 mpfr_t imag;
6508 mpfr_init(imag);
6509 if (this->complex_constant_value(rval, imag, &type))
6510 {
6511 Expression* ret = Expression::make_complex(&rval, &imag, type,
6512 this->location());
6513 mpfr_clear(rval);
6514 mpfr_clear(imag);
6515 return ret;
6516 }
6517 mpfr_clear(rval);
6518 mpfr_clear(imag);
6519 }
6520 else if (this->code_ == BUILTIN_RECOVER)
6521 {
6522 if (function != NULL)
6523 function->func_value()->set_calls_recover();
6524 else
6525 {
6526 // Calling recover outside of a function always returns the
6527 // nil empty interface.
6528 Type* eface = Type::make_interface_type(NULL, this->location());
6529 return Expression::make_cast(eface,
6530 Expression::make_nil(this->location()),
6531 this->location());
6532 }
6533 }
6534 else if (this->code_ == BUILTIN_APPEND)
6535 {
6536 // Lower the varargs.
6537 const Expression_list* args = this->args();
6538 if (args == NULL || args->empty())
6539 return this;
6540 Type* slice_type = args->front()->type();
6541 if (!slice_type->is_open_array_type())
6542 {
6543 error_at(args->front()->location(), "argument 1 must be a slice");
6544 this->set_is_error();
6545 return this;
6546 }
6547 return this->lower_varargs(gogo, function, slice_type, 2);
6548 }
6549
6550 return this;
6551}
6552
6553// Return the type of the real or imag functions, given the type of
6554// the argument. We need to map complex to float, complex64 to
6555// float32, and complex128 to float64, so it has to be done by name.
6556// This returns NULL if it can't figure out the type.
6557
6558Type*
6559Builtin_call_expression::real_imag_type(Type* arg_type)
6560{
6561 if (arg_type == NULL || arg_type->is_abstract())
6562 return NULL;
6563 Named_type* nt = arg_type->named_type();
6564 if (nt == NULL)
6565 return NULL;
6566 while (nt->real_type()->named_type() != NULL)
6567 nt = nt->real_type()->named_type();
6568 if (nt->name() == "complex")
6569 return Type::lookup_float_type("float");
6570 else if (nt->name() == "complex64")
6571 return Type::lookup_float_type("float32");
6572 else if (nt->name() == "complex128")
6573 return Type::lookup_float_type("float64");
6574 else
6575 return NULL;
6576}
6577
6578// Return the type of the cmplx function, given the type of one of the
6579// argments. Like real_imag_type, we have to map by name.
6580
6581Type*
6582Builtin_call_expression::cmplx_type(Type* arg_type)
6583{
6584 if (arg_type == NULL || arg_type->is_abstract())
6585 return NULL;
6586 Named_type* nt = arg_type->named_type();
6587 if (nt == NULL)
6588 return NULL;
6589 while (nt->real_type()->named_type() != NULL)
6590 nt = nt->real_type()->named_type();
6591 if (nt->name() == "float")
6592 return Type::lookup_complex_type("complex");
6593 else if (nt->name() == "float32")
6594 return Type::lookup_complex_type("complex64");
6595 else if (nt->name() == "float64")
6596 return Type::lookup_complex_type("complex128");
6597 else
6598 return NULL;
6599}
6600
6601// Return a single argument, or NULL if there isn't one.
6602
6603Expression*
6604Builtin_call_expression::one_arg() const
6605{
6606 const Expression_list* args = this->args();
6607 if (args->size() != 1)
6608 return NULL;
6609 return args->front();
6610}
6611
6612// Return whether this is constant: len of a string, or len or cap of
6613// a fixed array, or unsafe.Sizeof, unsafe.Offsetof, unsafe.Alignof.
6614
6615bool
6616Builtin_call_expression::do_is_constant() const
6617{
6618 switch (this->code_)
6619 {
6620 case BUILTIN_LEN:
6621 case BUILTIN_CAP:
6622 {
6623 Expression* arg = this->one_arg();
6624 if (arg == NULL)
6625 return false;
6626 Type* arg_type = arg->type();
6627
6628 if (arg_type->points_to() != NULL
6629 && arg_type->points_to()->array_type() != NULL
6630 && !arg_type->points_to()->is_open_array_type())
6631 arg_type = arg_type->points_to();
6632
6633 if (arg_type->array_type() != NULL
6634 && arg_type->array_type()->length() != NULL)
6635 return arg_type->array_type()->length()->is_constant();
6636
6637 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6638 return arg->is_constant();
6639 }
6640 break;
6641
6642 case BUILTIN_SIZEOF:
6643 case BUILTIN_ALIGNOF:
6644 return this->one_arg() != NULL;
6645
6646 case BUILTIN_OFFSETOF:
6647 {
6648 Expression* arg = this->one_arg();
6649 if (arg == NULL)
6650 return false;
6651 return arg->field_reference_expression() != NULL;
6652 }
6653
6654 case BUILTIN_CMPLX:
6655 {
6656 const Expression_list* args = this->args();
6657 if (args != NULL && args->size() == 2)
6658 return args->front()->is_constant() && args->back()->is_constant();
6659 }
6660 break;
6661
6662 case BUILTIN_REAL:
6663 case BUILTIN_IMAG:
6664 {
6665 Expression* arg = this->one_arg();
6666 return arg != NULL && arg->is_constant();
6667 }
6668
6669 default:
6670 break;
6671 }
6672
6673 return false;
6674}
6675
6676// Return an integer constant value if possible.
6677
6678bool
6679Builtin_call_expression::do_integer_constant_value(bool iota_is_constant,
6680 mpz_t val,
6681 Type** ptype) const
6682{
6683 if (this->code_ == BUILTIN_LEN
6684 || this->code_ == BUILTIN_CAP)
6685 {
6686 Expression* arg = this->one_arg();
6687 if (arg == NULL)
6688 return false;
6689 Type* arg_type = arg->type();
6690
6691 if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
6692 {
6693 std::string sval;
6694 if (arg->string_constant_value(&sval))
6695 {
6696 mpz_set_ui(val, sval.length());
6697 *ptype = Type::lookup_integer_type("int");
6698 return true;
6699 }
6700 }
6701
6702 if (arg_type->points_to() != NULL
6703 && arg_type->points_to()->array_type() != NULL
6704 && !arg_type->points_to()->is_open_array_type())
6705 arg_type = arg_type->points_to();
6706
6707 if (arg_type->array_type() != NULL
6708 && arg_type->array_type()->length() != NULL)
6709 {
6710 Expression* e = arg_type->array_type()->length();
6711 if (e->integer_constant_value(iota_is_constant, val, ptype))
6712 {
6713 *ptype = Type::lookup_integer_type("int");
6714 return true;
6715 }
6716 }
6717 }
6718 else if (this->code_ == BUILTIN_SIZEOF
6719 || this->code_ == BUILTIN_ALIGNOF)
6720 {
6721 Expression* arg = this->one_arg();
6722 if (arg == NULL)
6723 return false;
6724 Type* arg_type = arg->type();
ef3f552a 6725 if (arg_type->is_error_type() || arg_type->is_undefined())
e440a328 6726 return false;
6727 if (arg_type->is_abstract())
6728 return false;
6729 tree arg_type_tree = arg_type->get_tree(this->gogo_);
6730 unsigned long val_long;
6731 if (this->code_ == BUILTIN_SIZEOF)
6732 {
6733 tree type_size = TYPE_SIZE_UNIT(arg_type_tree);
6734 gcc_assert(TREE_CODE(type_size) == INTEGER_CST);
6735 if (TREE_INT_CST_HIGH(type_size) != 0)
6736 return false;
6737 unsigned HOST_WIDE_INT val_wide = TREE_INT_CST_LOW(type_size);
6738 val_long = static_cast<unsigned long>(val_wide);
6739 if (val_long != val_wide)
6740 return false;
6741 }
6742 else if (this->code_ == BUILTIN_ALIGNOF)
6743 {
637bd3af 6744 if (arg->field_reference_expression() == NULL)
6745 val_long = go_type_alignment(arg_type_tree);
6746 else
e440a328 6747 {
6748 // Calling unsafe.Alignof(s.f) returns the alignment of
6749 // the type of f when it is used as a field in a struct.
637bd3af 6750 val_long = go_field_alignment(arg_type_tree);
e440a328 6751 }
e440a328 6752 }
6753 else
6754 gcc_unreachable();
6755 mpz_set_ui(val, val_long);
6756 *ptype = NULL;
6757 return true;
6758 }
6759 else if (this->code_ == BUILTIN_OFFSETOF)
6760 {
6761 Expression* arg = this->one_arg();
6762 if (arg == NULL)
6763 return false;
6764 Field_reference_expression* farg = arg->field_reference_expression();
6765 if (farg == NULL)
6766 return false;
6767 Expression* struct_expr = farg->expr();
6768 Type* st = struct_expr->type();
6769 if (st->struct_type() == NULL)
6770 return false;
6771 tree struct_tree = st->get_tree(this->gogo_);
6772 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
6773 tree field = TYPE_FIELDS(struct_tree);
6774 for (unsigned int index = farg->field_index(); index > 0; --index)
6775 {
6776 field = DECL_CHAIN(field);
6777 gcc_assert(field != NULL_TREE);
6778 }
6779 HOST_WIDE_INT offset_wide = int_byte_position (field);
6780 if (offset_wide < 0)
6781 return false;
6782 unsigned long offset_long = static_cast<unsigned long>(offset_wide);
6783 if (offset_long != static_cast<unsigned HOST_WIDE_INT>(offset_wide))
6784 return false;
6785 mpz_set_ui(val, offset_long);
6786 return true;
6787 }
6788 return false;
6789}
6790
6791// Return a floating point constant value if possible.
6792
6793bool
6794Builtin_call_expression::do_float_constant_value(mpfr_t val,
6795 Type** ptype) const
6796{
6797 if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
6798 {
6799 Expression* arg = this->one_arg();
6800 if (arg == NULL)
6801 return false;
6802
6803 mpfr_t real;
6804 mpfr_t imag;
6805 mpfr_init(real);
6806 mpfr_init(imag);
6807
6808 bool ret = false;
6809 Type* type;
6810 if (arg->complex_constant_value(real, imag, &type))
6811 {
6812 if (this->code_ == BUILTIN_REAL)
6813 mpfr_set(val, real, GMP_RNDN);
6814 else
6815 mpfr_set(val, imag, GMP_RNDN);
6816 *ptype = Builtin_call_expression::real_imag_type(type);
6817 ret = true;
6818 }
6819
6820 mpfr_clear(real);
6821 mpfr_clear(imag);
6822 return ret;
6823 }
6824
6825 return false;
6826}
6827
6828// Return a complex constant value if possible.
6829
6830bool
6831Builtin_call_expression::do_complex_constant_value(mpfr_t real, mpfr_t imag,
6832 Type** ptype) const
6833{
6834 if (this->code_ == BUILTIN_CMPLX)
6835 {
6836 const Expression_list* args = this->args();
6837 if (args == NULL || args->size() != 2)
6838 return false;
6839
6840 mpfr_t r;
6841 mpfr_init(r);
6842 Type* rtype;
6843 if (!args->front()->float_constant_value(r, &rtype))
6844 {
6845 mpfr_clear(r);
6846 return false;
6847 }
6848
6849 mpfr_t i;
6850 mpfr_init(i);
6851
6852 bool ret = false;
6853 Type* itype;
6854 if (args->back()->float_constant_value(i, &itype)
07ba8be5 6855 && Type::are_identical(rtype, itype, false, NULL))
e440a328 6856 {
6857 mpfr_set(real, r, GMP_RNDN);
6858 mpfr_set(imag, i, GMP_RNDN);
6859 *ptype = Builtin_call_expression::cmplx_type(rtype);
6860 ret = true;
6861 }
6862
6863 mpfr_clear(r);
6864 mpfr_clear(i);
6865
6866 return ret;
6867 }
6868
6869 return false;
6870}
6871
6872// Return the type.
6873
6874Type*
6875Builtin_call_expression::do_type()
6876{
6877 switch (this->code_)
6878 {
6879 case BUILTIN_INVALID:
6880 default:
6881 gcc_unreachable();
6882
6883 case BUILTIN_NEW:
6884 case BUILTIN_MAKE:
6885 {
6886 const Expression_list* args = this->args();
6887 if (args == NULL || args->empty())
6888 return Type::make_error_type();
6889 return Type::make_pointer_type(args->front()->type());
6890 }
6891
6892 case BUILTIN_CAP:
6893 case BUILTIN_COPY:
6894 case BUILTIN_LEN:
6895 case BUILTIN_ALIGNOF:
6896 case BUILTIN_OFFSETOF:
6897 case BUILTIN_SIZEOF:
6898 return Type::lookup_integer_type("int");
6899
6900 case BUILTIN_CLOSE:
6901 case BUILTIN_PANIC:
6902 case BUILTIN_PRINT:
6903 case BUILTIN_PRINTLN:
6904 return Type::make_void_type();
6905
6906 case BUILTIN_CLOSED:
6907 return Type::lookup_bool_type();
6908
6909 case BUILTIN_RECOVER:
6910 return Type::make_interface_type(NULL, BUILTINS_LOCATION);
6911
6912 case BUILTIN_APPEND:
6913 {
6914 const Expression_list* args = this->args();
6915 if (args == NULL || args->empty())
6916 return Type::make_error_type();
6917 return args->front()->type();
6918 }
6919
6920 case BUILTIN_REAL:
6921 case BUILTIN_IMAG:
6922 {
6923 Expression* arg = this->one_arg();
6924 if (arg == NULL)
6925 return Type::make_error_type();
6926 Type* t = arg->type();
6927 if (t->is_abstract())
6928 t = t->make_non_abstract_type();
6929 t = Builtin_call_expression::real_imag_type(t);
6930 if (t == NULL)
6931 t = Type::make_error_type();
6932 return t;
6933 }
6934
6935 case BUILTIN_CMPLX:
6936 {
6937 const Expression_list* args = this->args();
6938 if (args == NULL || args->size() != 2)
6939 return Type::make_error_type();
6940 Type* t = args->front()->type();
6941 if (t->is_abstract())
6942 {
6943 t = args->back()->type();
6944 if (t->is_abstract())
6945 t = t->make_non_abstract_type();
6946 }
6947 t = Builtin_call_expression::cmplx_type(t);
6948 if (t == NULL)
6949 t = Type::make_error_type();
6950 return t;
6951 }
6952 }
6953}
6954
6955// Determine the type.
6956
6957void
6958Builtin_call_expression::do_determine_type(const Type_context* context)
6959{
6960 this->fn()->determine_type_no_context();
6961
6962 const Expression_list* args = this->args();
6963
6964 bool is_print;
6965 Type* arg_type = NULL;
6966 switch (this->code_)
6967 {
6968 case BUILTIN_PRINT:
6969 case BUILTIN_PRINTLN:
6970 // Do not force a large integer constant to "int".
6971 is_print = true;
6972 break;
6973
6974 case BUILTIN_REAL:
6975 case BUILTIN_IMAG:
6976 arg_type = Builtin_call_expression::cmplx_type(context->type);
6977 is_print = false;
6978 break;
6979
6980 case BUILTIN_CMPLX:
6981 {
6982 // For the cmplx function the type of one operand can
6983 // determine the type of the other, as in a binary expression.
6984 arg_type = Builtin_call_expression::real_imag_type(context->type);
6985 if (args != NULL && args->size() == 2)
6986 {
6987 Type* t1 = args->front()->type();
6988 Type* t2 = args->front()->type();
6989 if (!t1->is_abstract())
6990 arg_type = t1;
6991 else if (!t2->is_abstract())
6992 arg_type = t2;
6993 }
6994 is_print = false;
6995 }
6996 break;
6997
6998 default:
6999 is_print = false;
7000 break;
7001 }
7002
7003 if (args != NULL)
7004 {
7005 for (Expression_list::const_iterator pa = args->begin();
7006 pa != args->end();
7007 ++pa)
7008 {
7009 Type_context subcontext;
7010 subcontext.type = arg_type;
7011
7012 if (is_print)
7013 {
7014 // We want to print large constants, we so can't just
7015 // use the appropriate nonabstract type. Use uint64 for
7016 // an integer if we know it is nonnegative, otherwise
7017 // use int64 for a integer, otherwise use float64 for a
7018 // float or complex128 for a complex.
7019 Type* want_type = NULL;
7020 Type* atype = (*pa)->type();
7021 if (atype->is_abstract())
7022 {
7023 if (atype->integer_type() != NULL)
7024 {
7025 mpz_t val;
7026 mpz_init(val);
7027 Type* dummy;
7028 if (this->integer_constant_value(true, val, &dummy)
7029 && mpz_sgn(val) >= 0)
7030 want_type = Type::lookup_integer_type("uint64");
7031 else
7032 want_type = Type::lookup_integer_type("int64");
7033 mpz_clear(val);
7034 }
7035 else if (atype->float_type() != NULL)
7036 want_type = Type::lookup_float_type("float64");
7037 else if (atype->complex_type() != NULL)
7038 want_type = Type::lookup_complex_type("complex128");
7039 else if (atype->is_abstract_string_type())
7040 want_type = Type::lookup_string_type();
7041 else if (atype->is_abstract_boolean_type())
7042 want_type = Type::lookup_bool_type();
7043 else
7044 gcc_unreachable();
7045 subcontext.type = want_type;
7046 }
7047 }
7048
7049 (*pa)->determine_type(&subcontext);
7050 }
7051 }
7052}
7053
7054// If there is exactly one argument, return true. Otherwise give an
7055// error message and return false.
7056
7057bool
7058Builtin_call_expression::check_one_arg()
7059{
7060 const Expression_list* args = this->args();
7061 if (args == NULL || args->size() < 1)
7062 {
7063 this->report_error(_("not enough arguments"));
7064 return false;
7065 }
7066 else if (args->size() > 1)
7067 {
7068 this->report_error(_("too many arguments"));
7069 return false;
7070 }
7071 if (args->front()->is_error_expression()
4c0f874c 7072 || args->front()->type()->is_error_type()
7073 || args->front()->type()->is_undefined())
e440a328 7074 {
7075 this->set_is_error();
7076 return false;
7077 }
7078 return true;
7079}
7080
7081// Check argument types for a builtin function.
7082
7083void
7084Builtin_call_expression::do_check_types(Gogo*)
7085{
7086 switch (this->code_)
7087 {
7088 case BUILTIN_INVALID:
7089 case BUILTIN_NEW:
7090 case BUILTIN_MAKE:
7091 return;
7092
7093 case BUILTIN_LEN:
7094 case BUILTIN_CAP:
7095 {
7096 // The single argument may be either a string or an array or a
7097 // map or a channel, or a pointer to a closed array.
7098 if (this->check_one_arg())
7099 {
7100 Type* arg_type = this->one_arg()->type();
7101 if (arg_type->points_to() != NULL
7102 && arg_type->points_to()->array_type() != NULL
7103 && !arg_type->points_to()->is_open_array_type())
7104 arg_type = arg_type->points_to();
7105 if (this->code_ == BUILTIN_CAP)
7106 {
7107 if (!arg_type->is_error_type()
7108 && arg_type->array_type() == NULL
7109 && arg_type->channel_type() == NULL)
7110 this->report_error(_("argument must be array or slice "
7111 "or channel"));
7112 }
7113 else
7114 {
7115 if (!arg_type->is_error_type()
7116 && !arg_type->is_string_type()
7117 && arg_type->array_type() == NULL
7118 && arg_type->map_type() == NULL
7119 && arg_type->channel_type() == NULL)
7120 this->report_error(_("argument must be string or "
7121 "array or slice or map or channel"));
7122 }
7123 }
7124 }
7125 break;
7126
7127 case BUILTIN_PRINT:
7128 case BUILTIN_PRINTLN:
7129 {
7130 const Expression_list* args = this->args();
7131 if (args == NULL)
7132 {
7133 if (this->code_ == BUILTIN_PRINT)
7134 warning_at(this->location(), 0,
7135 "no arguments for builtin function %<%s%>",
7136 (this->code_ == BUILTIN_PRINT
7137 ? "print"
7138 : "println"));
7139 }
7140 else
7141 {
7142 for (Expression_list::const_iterator p = args->begin();
7143 p != args->end();
7144 ++p)
7145 {
7146 Type* type = (*p)->type();
7147 if (type->is_error_type()
7148 || type->is_string_type()
7149 || type->integer_type() != NULL
7150 || type->float_type() != NULL
7151 || type->complex_type() != NULL
7152 || type->is_boolean_type()
7153 || type->points_to() != NULL
7154 || type->interface_type() != NULL
7155 || type->channel_type() != NULL
7156 || type->map_type() != NULL
7157 || type->function_type() != NULL
7158 || type->is_open_array_type())
7159 ;
7160 else
7161 this->report_error(_("unsupported argument type to "
7162 "builtin function"));
7163 }
7164 }
7165 }
7166 break;
7167
7168 case BUILTIN_CLOSE:
7169 case BUILTIN_CLOSED:
7170 if (this->check_one_arg())
7171 {
7172 if (this->one_arg()->type()->channel_type() == NULL)
7173 this->report_error(_("argument must be channel"));
7174 }
7175 break;
7176
7177 case BUILTIN_PANIC:
7178 case BUILTIN_SIZEOF:
7179 case BUILTIN_ALIGNOF:
7180 this->check_one_arg();
7181 break;
7182
7183 case BUILTIN_RECOVER:
7184 if (this->args() != NULL && !this->args()->empty())
7185 this->report_error(_("too many arguments"));
7186 break;
7187
7188 case BUILTIN_OFFSETOF:
7189 if (this->check_one_arg())
7190 {
7191 Expression* arg = this->one_arg();
7192 if (arg->field_reference_expression() == NULL)
7193 this->report_error(_("argument must be a field reference"));
7194 }
7195 break;
7196
7197 case BUILTIN_COPY:
7198 {
7199 const Expression_list* args = this->args();
7200 if (args == NULL || args->size() < 2)
7201 {
7202 this->report_error(_("not enough arguments"));
7203 break;
7204 }
7205 else if (args->size() > 2)
7206 {
7207 this->report_error(_("too many arguments"));
7208 break;
7209 }
7210 Type* arg1_type = args->front()->type();
7211 Type* arg2_type = args->back()->type();
7212 if (arg1_type->is_error_type() || arg2_type->is_error_type())
7213 break;
7214
7215 Type* e1;
7216 if (arg1_type->is_open_array_type())
7217 e1 = arg1_type->array_type()->element_type();
7218 else
7219 {
7220 this->report_error(_("left argument must be a slice"));
7221 break;
7222 }
7223
7224 Type* e2;
7225 if (arg2_type->is_open_array_type())
7226 e2 = arg2_type->array_type()->element_type();
7227 else if (arg2_type->is_string_type())
7228 e2 = Type::lookup_integer_type("uint8");
7229 else
7230 {
7231 this->report_error(_("right argument must be a slice or a string"));
7232 break;
7233 }
7234
07ba8be5 7235 if (!Type::are_identical(e1, e2, true, NULL))
e440a328 7236 this->report_error(_("element types must be the same"));
7237 }
7238 break;
7239
7240 case BUILTIN_APPEND:
7241 {
7242 const Expression_list* args = this->args();
7243 if (args == NULL || args->empty())
7244 {
7245 this->report_error(_("not enough arguments"));
7246 break;
7247 }
7248 /* Lowering varargs should have left us with 2 arguments. */
7249 gcc_assert(args->size() == 2);
7250 std::string reason;
7251 if (!Type::are_assignable(args->front()->type(), args->back()->type(),
7252 &reason))
7253 {
7254 if (reason.empty())
7255 this->report_error(_("arguments 1 and 2 have different types"));
7256 else
7257 {
7258 error_at(this->location(),
7259 "arguments 1 and 2 have different types (%s)",
7260 reason.c_str());
7261 this->set_is_error();
7262 }
7263 }
7264 break;
7265 }
7266
7267 case BUILTIN_REAL:
7268 case BUILTIN_IMAG:
7269 if (this->check_one_arg())
7270 {
7271 if (this->one_arg()->type()->complex_type() == NULL)
7272 this->report_error(_("argument must have complex type"));
7273 }
7274 break;
7275
7276 case BUILTIN_CMPLX:
7277 {
7278 const Expression_list* args = this->args();
7279 if (args == NULL || args->size() < 2)
7280 this->report_error(_("not enough arguments"));
7281 else if (args->size() > 2)
7282 this->report_error(_("too many arguments"));
7283 else if (args->front()->is_error_expression()
7284 || args->front()->type()->is_error_type()
7285 || args->back()->is_error_expression()
7286 || args->back()->type()->is_error_type())
7287 this->set_is_error();
7288 else if (!Type::are_identical(args->front()->type(),
07ba8be5 7289 args->back()->type(), true, NULL))
e440a328 7290 this->report_error(_("cmplx arguments must have identical types"));
7291 else if (args->front()->type()->float_type() == NULL)
7292 this->report_error(_("cmplx arguments must have "
7293 "floating-point type"));
7294 }
7295 break;
7296
7297 default:
7298 gcc_unreachable();
7299 }
7300}
7301
7302// Return the tree for a builtin function.
7303
7304tree
7305Builtin_call_expression::do_get_tree(Translate_context* context)
7306{
7307 Gogo* gogo = context->gogo();
7308 source_location location = this->location();
7309 switch (this->code_)
7310 {
7311 case BUILTIN_INVALID:
7312 case BUILTIN_NEW:
7313 case BUILTIN_MAKE:
7314 gcc_unreachable();
7315
7316 case BUILTIN_LEN:
7317 case BUILTIN_CAP:
7318 {
7319 const Expression_list* args = this->args();
7320 gcc_assert(args != NULL && args->size() == 1);
7321 Expression* arg = *args->begin();
7322 Type* arg_type = arg->type();
7323 tree arg_tree = arg->get_tree(context);
7324 if (arg_tree == error_mark_node)
7325 return error_mark_node;
7326
7327 if (arg_type->points_to() != NULL)
7328 {
7329 arg_type = arg_type->points_to();
7330 gcc_assert(arg_type->array_type() != NULL
7331 && !arg_type->is_open_array_type());
7332 gcc_assert(POINTER_TYPE_P(TREE_TYPE(arg_tree)));
7333 arg_tree = build_fold_indirect_ref(arg_tree);
7334 }
7335
7336 tree val_tree;
7337 if (this->code_ == BUILTIN_LEN)
7338 {
7339 if (arg_type->is_string_type())
7340 val_tree = String_type::length_tree(gogo, arg_tree);
7341 else if (arg_type->array_type() != NULL)
7342 val_tree = arg_type->array_type()->length_tree(gogo, arg_tree);
7343 else if (arg_type->map_type() != NULL)
7344 {
7345 static tree map_len_fndecl;
7346 val_tree = Gogo::call_builtin(&map_len_fndecl,
7347 location,
7348 "__go_map_len",
7349 1,
7350 sizetype,
7351 arg_type->get_tree(gogo),
7352 arg_tree);
7353 }
7354 else if (arg_type->channel_type() != NULL)
7355 {
7356 static tree chan_len_fndecl;
7357 val_tree = Gogo::call_builtin(&chan_len_fndecl,
7358 location,
7359 "__go_chan_len",
7360 1,
7361 sizetype,
7362 arg_type->get_tree(gogo),
7363 arg_tree);
7364 }
7365 else
7366 gcc_unreachable();
7367 }
7368 else
7369 {
7370 if (arg_type->array_type() != NULL)
7371 val_tree = arg_type->array_type()->capacity_tree(gogo, arg_tree);
7372 else if (arg_type->channel_type() != NULL)
7373 {
7374 static tree chan_cap_fndecl;
7375 val_tree = Gogo::call_builtin(&chan_cap_fndecl,
7376 location,
7377 "__go_chan_cap",
7378 1,
7379 sizetype,
7380 arg_type->get_tree(gogo),
7381 arg_tree);
7382 }
7383 else
7384 gcc_unreachable();
7385 }
7386
d8ccb1e3 7387 if (val_tree == error_mark_node)
7388 return error_mark_node;
7389
e440a328 7390 tree type_tree = Type::lookup_integer_type("int")->get_tree(gogo);
7391 if (type_tree == TREE_TYPE(val_tree))
7392 return val_tree;
7393 else
7394 return fold(convert_to_integer(type_tree, val_tree));
7395 }
7396
7397 case BUILTIN_PRINT:
7398 case BUILTIN_PRINTLN:
7399 {
7400 const bool is_ln = this->code_ == BUILTIN_PRINTLN;
7401 tree stmt_list = NULL_TREE;
7402
7403 const Expression_list* call_args = this->args();
7404 if (call_args != NULL)
7405 {
7406 for (Expression_list::const_iterator p = call_args->begin();
7407 p != call_args->end();
7408 ++p)
7409 {
7410 if (is_ln && p != call_args->begin())
7411 {
7412 static tree print_space_fndecl;
7413 tree call = Gogo::call_builtin(&print_space_fndecl,
7414 location,
7415 "__go_print_space",
7416 0,
7417 void_type_node);
7418 append_to_statement_list(call, &stmt_list);
7419 }
7420
7421 Type* type = (*p)->type();
7422
7423 tree arg = (*p)->get_tree(context);
7424 if (arg == error_mark_node)
7425 return error_mark_node;
7426
7427 tree* pfndecl;
7428 const char* fnname;
7429 if (type->is_string_type())
7430 {
7431 static tree print_string_fndecl;
7432 pfndecl = &print_string_fndecl;
7433 fnname = "__go_print_string";
7434 }
7435 else if (type->integer_type() != NULL
7436 && type->integer_type()->is_unsigned())
7437 {
7438 static tree print_uint64_fndecl;
7439 pfndecl = &print_uint64_fndecl;
7440 fnname = "__go_print_uint64";
7441 Type* itype = Type::lookup_integer_type("uint64");
7442 arg = fold_convert_loc(location, itype->get_tree(gogo),
7443 arg);
7444 }
7445 else if (type->integer_type() != NULL)
7446 {
7447 static tree print_int64_fndecl;
7448 pfndecl = &print_int64_fndecl;
7449 fnname = "__go_print_int64";
7450 Type* itype = Type::lookup_integer_type("int64");
7451 arg = fold_convert_loc(location, itype->get_tree(gogo),
7452 arg);
7453 }
7454 else if (type->float_type() != NULL)
7455 {
7456 static tree print_double_fndecl;
7457 pfndecl = &print_double_fndecl;
7458 fnname = "__go_print_double";
7459 arg = fold_convert_loc(location, double_type_node, arg);
7460 }
7461 else if (type->complex_type() != NULL)
7462 {
7463 static tree print_complex_fndecl;
7464 pfndecl = &print_complex_fndecl;
7465 fnname = "__go_print_complex";
7466 arg = fold_convert_loc(location, complex_double_type_node,
7467 arg);
7468 }
7469 else if (type->is_boolean_type())
7470 {
7471 static tree print_bool_fndecl;
7472 pfndecl = &print_bool_fndecl;
7473 fnname = "__go_print_bool";
7474 }
7475 else if (type->points_to() != NULL
7476 || type->channel_type() != NULL
7477 || type->map_type() != NULL
7478 || type->function_type() != NULL)
7479 {
7480 static tree print_pointer_fndecl;
7481 pfndecl = &print_pointer_fndecl;
7482 fnname = "__go_print_pointer";
7483 arg = fold_convert_loc(location, ptr_type_node, arg);
7484 }
7485 else if (type->interface_type() != NULL)
7486 {
7487 if (type->interface_type()->is_empty())
7488 {
7489 static tree print_empty_interface_fndecl;
7490 pfndecl = &print_empty_interface_fndecl;
7491 fnname = "__go_print_empty_interface";
7492 }
7493 else
7494 {
7495 static tree print_interface_fndecl;
7496 pfndecl = &print_interface_fndecl;
7497 fnname = "__go_print_interface";
7498 }
7499 }
7500 else if (type->is_open_array_type())
7501 {
7502 static tree print_slice_fndecl;
7503 pfndecl = &print_slice_fndecl;
7504 fnname = "__go_print_slice";
7505 }
7506 else
7507 gcc_unreachable();
7508
7509 tree call = Gogo::call_builtin(pfndecl,
7510 location,
7511 fnname,
7512 1,
7513 void_type_node,
7514 TREE_TYPE(arg),
7515 arg);
d8ccb1e3 7516 if (call != error_mark_node)
7517 append_to_statement_list(call, &stmt_list);
e440a328 7518 }
7519 }
7520
7521 if (is_ln)
7522 {
7523 static tree print_nl_fndecl;
7524 tree call = Gogo::call_builtin(&print_nl_fndecl,
7525 location,
7526 "__go_print_nl",
7527 0,
7528 void_type_node);
7529 append_to_statement_list(call, &stmt_list);
7530 }
7531
7532 return stmt_list;
7533 }
7534
7535 case BUILTIN_PANIC:
7536 {
7537 const Expression_list* args = this->args();
7538 gcc_assert(args != NULL && args->size() == 1);
7539 Expression* arg = args->front();
7540 tree arg_tree = arg->get_tree(context);
7541 if (arg_tree == error_mark_node)
7542 return error_mark_node;
7543 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7544 arg_tree = Expression::convert_for_assignment(context, empty,
7545 arg->type(),
7546 arg_tree, location);
7547 static tree panic_fndecl;
7548 tree call = Gogo::call_builtin(&panic_fndecl,
7549 location,
7550 "__go_panic",
7551 1,
7552 void_type_node,
7553 TREE_TYPE(arg_tree),
7554 arg_tree);
7555 // This function will throw an exception.
7556 TREE_NOTHROW(panic_fndecl) = 0;
7557 // This function will not return.
7558 TREE_THIS_VOLATILE(panic_fndecl) = 1;
7559 return call;
7560 }
7561
7562 case BUILTIN_RECOVER:
7563 {
7564 // The argument is set when building recover thunks. It's a
7565 // boolean value which is true if we can recover a value now.
7566 const Expression_list* args = this->args();
7567 gcc_assert(args != NULL && args->size() == 1);
7568 Expression* arg = args->front();
7569 tree arg_tree = arg->get_tree(context);
7570 if (arg_tree == error_mark_node)
7571 return error_mark_node;
7572
7573 Type *empty = Type::make_interface_type(NULL, BUILTINS_LOCATION);
7574 tree empty_tree = empty->get_tree(context->gogo());
7575
7576 Type* nil_type = Type::make_nil_type();
7577 Expression* nil = Expression::make_nil(location);
7578 tree nil_tree = nil->get_tree(context);
7579 tree empty_nil_tree = Expression::convert_for_assignment(context,
7580 empty,
7581 nil_type,
7582 nil_tree,
7583 location);
7584
7585 // We need to handle a deferred call to recover specially,
7586 // because it changes whether it can recover a panic or not.
7587 // See test7 in test/recover1.go.
7588 tree call;
7589 if (this->is_deferred())
7590 {
7591 static tree deferred_recover_fndecl;
7592 call = Gogo::call_builtin(&deferred_recover_fndecl,
7593 location,
7594 "__go_deferred_recover",
7595 0,
7596 empty_tree);
7597 }
7598 else
7599 {
7600 static tree recover_fndecl;
7601 call = Gogo::call_builtin(&recover_fndecl,
7602 location,
7603 "__go_recover",
7604 0,
7605 empty_tree);
7606 }
7607 return fold_build3_loc(location, COND_EXPR, empty_tree, arg_tree,
7608 call, empty_nil_tree);
7609 }
7610
7611 case BUILTIN_CLOSE:
7612 case BUILTIN_CLOSED:
7613 {
7614 const Expression_list* args = this->args();
7615 gcc_assert(args != NULL && args->size() == 1);
7616 Expression* arg = args->front();
7617 tree arg_tree = arg->get_tree(context);
7618 if (arg_tree == error_mark_node)
7619 return error_mark_node;
7620 if (this->code_ == BUILTIN_CLOSE)
7621 {
7622 static tree close_fndecl;
7623 return Gogo::call_builtin(&close_fndecl,
7624 location,
7625 "__go_builtin_close",
7626 1,
7627 void_type_node,
7628 TREE_TYPE(arg_tree),
7629 arg_tree);
7630 }
7631 else
7632 {
7633 static tree closed_fndecl;
7634 return Gogo::call_builtin(&closed_fndecl,
7635 location,
7636 "__go_builtin_closed",
7637 1,
7638 boolean_type_node,
7639 TREE_TYPE(arg_tree),
7640 arg_tree);
7641 }
7642 }
7643
7644 case BUILTIN_SIZEOF:
7645 case BUILTIN_OFFSETOF:
7646 case BUILTIN_ALIGNOF:
7647 {
7648 mpz_t val;
7649 mpz_init(val);
7650 Type* dummy;
7651 bool b = this->integer_constant_value(true, val, &dummy);
7652 gcc_assert(b);
7653 tree type = Type::lookup_integer_type("int")->get_tree(gogo);
7654 tree ret = Expression::integer_constant_tree(val, type);
7655 mpz_clear(val);
7656 return ret;
7657 }
7658
7659 case BUILTIN_COPY:
7660 {
7661 const Expression_list* args = this->args();
7662 gcc_assert(args != NULL && args->size() == 2);
7663 Expression* arg1 = args->front();
7664 Expression* arg2 = args->back();
7665
7666 tree arg1_tree = arg1->get_tree(context);
7667 tree arg2_tree = arg2->get_tree(context);
7668 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7669 return error_mark_node;
7670
7671 Type* arg1_type = arg1->type();
7672 Array_type* at = arg1_type->array_type();
7673 arg1_tree = save_expr(arg1_tree);
7674 tree arg1_val = at->value_pointer_tree(gogo, arg1_tree);
7675 tree arg1_len = at->length_tree(gogo, arg1_tree);
d8ccb1e3 7676 if (arg1_val == error_mark_node || arg1_len == error_mark_node)
7677 return error_mark_node;
e440a328 7678
7679 Type* arg2_type = arg2->type();
7680 tree arg2_val;
7681 tree arg2_len;
7682 if (arg2_type->is_open_array_type())
7683 {
7684 at = arg2_type->array_type();
7685 arg2_tree = save_expr(arg2_tree);
7686 arg2_val = at->value_pointer_tree(gogo, arg2_tree);
7687 arg2_len = at->length_tree(gogo, arg2_tree);
7688 }
7689 else
7690 {
7691 arg2_tree = save_expr(arg2_tree);
7692 arg2_val = String_type::bytes_tree(gogo, arg2_tree);
7693 arg2_len = String_type::length_tree(gogo, arg2_tree);
7694 }
d8ccb1e3 7695 if (arg2_val == error_mark_node || arg2_len == error_mark_node)
7696 return error_mark_node;
e440a328 7697
7698 arg1_len = save_expr(arg1_len);
7699 arg2_len = save_expr(arg2_len);
7700 tree len = fold_build3_loc(location, COND_EXPR, TREE_TYPE(arg1_len),
7701 fold_build2_loc(location, LT_EXPR,
7702 boolean_type_node,
7703 arg1_len, arg2_len),
7704 arg1_len, arg2_len);
7705 len = save_expr(len);
7706
7707 Type* element_type = at->element_type();
7708 tree element_type_tree = element_type->get_tree(gogo);
d8ccb1e3 7709 if (element_type_tree == error_mark_node)
7710 return error_mark_node;
e440a328 7711 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
7712 tree bytecount = fold_convert_loc(location, TREE_TYPE(element_size),
7713 len);
7714 bytecount = fold_build2_loc(location, MULT_EXPR,
7715 TREE_TYPE(element_size),
7716 bytecount, element_size);
7717 bytecount = fold_convert_loc(location, size_type_node, bytecount);
7718
7719 tree call = build_call_expr_loc(location,
7720 built_in_decls[BUILT_IN_MEMMOVE],
7721 3, arg1_val, arg2_val, bytecount);
7722
7723 return fold_build2_loc(location, COMPOUND_EXPR, TREE_TYPE(len),
7724 call, len);
7725 }
7726
7727 case BUILTIN_APPEND:
7728 {
7729 const Expression_list* args = this->args();
7730 gcc_assert(args != NULL && args->size() == 2);
7731 Expression* arg1 = args->front();
7732 Expression* arg2 = args->back();
7733
7734 tree arg1_tree = arg1->get_tree(context);
7735 tree arg2_tree = arg2->get_tree(context);
7736 if (arg1_tree == error_mark_node || arg2_tree == error_mark_node)
7737 return error_mark_node;
7738
7739 tree descriptor_tree = arg1->type()->type_descriptor_pointer(gogo);
7740
7741 // We rebuild the decl each time since the slice types may
7742 // change.
7743 tree append_fndecl = NULL_TREE;
7744 return Gogo::call_builtin(&append_fndecl,
7745 location,
7746 "__go_append",
7747 3,
7748 TREE_TYPE(arg1_tree),
7749 TREE_TYPE(descriptor_tree),
7750 descriptor_tree,
7751 TREE_TYPE(arg1_tree),
7752 arg1_tree,
7753 TREE_TYPE(arg2_tree),
7754 arg2_tree);
7755 }
7756
7757 case BUILTIN_REAL:
7758 case BUILTIN_IMAG:
7759 {
7760 const Expression_list* args = this->args();
7761 gcc_assert(args != NULL && args->size() == 1);
7762 Expression* arg = args->front();
7763 tree arg_tree = arg->get_tree(context);
7764 if (arg_tree == error_mark_node)
7765 return error_mark_node;
7766 gcc_assert(COMPLEX_FLOAT_TYPE_P(TREE_TYPE(arg_tree)));
7767 if (this->code_ == BUILTIN_REAL)
7768 return fold_build1_loc(location, REALPART_EXPR,
7769 TREE_TYPE(TREE_TYPE(arg_tree)),
7770 arg_tree);
7771 else
7772 return fold_build1_loc(location, IMAGPART_EXPR,
7773 TREE_TYPE(TREE_TYPE(arg_tree)),
7774 arg_tree);
7775 }
7776
7777 case BUILTIN_CMPLX:
7778 {
7779 const Expression_list* args = this->args();
7780 gcc_assert(args != NULL && args->size() == 2);
7781 tree r = args->front()->get_tree(context);
7782 tree i = args->back()->get_tree(context);
7783 if (r == error_mark_node || i == error_mark_node)
7784 return error_mark_node;
7785 gcc_assert(TYPE_MAIN_VARIANT(TREE_TYPE(r))
7786 == TYPE_MAIN_VARIANT(TREE_TYPE(i)));
7787 gcc_assert(SCALAR_FLOAT_TYPE_P(TREE_TYPE(r)));
7788 return fold_build2_loc(location, COMPLEX_EXPR,
7789 build_complex_type(TREE_TYPE(r)),
7790 r, i);
7791 }
7792
7793 default:
7794 gcc_unreachable();
7795 }
7796}
7797
7798// We have to support exporting a builtin call expression, because
7799// code can set a constant to the result of a builtin expression.
7800
7801void
7802Builtin_call_expression::do_export(Export* exp) const
7803{
7804 bool ok = false;
7805
7806 mpz_t val;
7807 mpz_init(val);
7808 Type* dummy;
7809 if (this->integer_constant_value(true, val, &dummy))
7810 {
7811 Integer_expression::export_integer(exp, val);
7812 ok = true;
7813 }
7814 mpz_clear(val);
7815
7816 if (!ok)
7817 {
7818 mpfr_t fval;
7819 mpfr_init(fval);
7820 if (this->float_constant_value(fval, &dummy))
7821 {
7822 Float_expression::export_float(exp, fval);
7823 ok = true;
7824 }
7825 mpfr_clear(fval);
7826 }
7827
7828 if (!ok)
7829 {
7830 mpfr_t real;
7831 mpfr_t imag;
7832 mpfr_init(real);
7833 mpfr_init(imag);
7834 if (this->complex_constant_value(real, imag, &dummy))
7835 {
7836 Complex_expression::export_complex(exp, real, imag);
7837 ok = true;
7838 }
7839 mpfr_clear(real);
7840 mpfr_clear(imag);
7841 }
7842
7843 if (!ok)
7844 {
7845 error_at(this->location(), "value is not constant");
7846 return;
7847 }
7848
7849 // A trailing space lets us reliably identify the end of the number.
7850 exp->write_c_string(" ");
7851}
7852
7853// Class Call_expression.
7854
7855// Traversal.
7856
7857int
7858Call_expression::do_traverse(Traverse* traverse)
7859{
7860 if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
7861 return TRAVERSE_EXIT;
7862 if (this->args_ != NULL)
7863 {
7864 if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
7865 return TRAVERSE_EXIT;
7866 }
7867 return TRAVERSE_CONTINUE;
7868}
7869
7870// Lower a call statement.
7871
7872Expression*
7873Call_expression::do_lower(Gogo* gogo, Named_object* function, int)
7874{
7875 // A type case can look like a function call.
7876 if (this->fn_->is_type_expression()
7877 && this->args_ != NULL
7878 && this->args_->size() == 1)
7879 return Expression::make_cast(this->fn_->type(), this->args_->front(),
7880 this->location());
7881
7882 // Recognize a call to a builtin function.
7883 Func_expression* fne = this->fn_->func_expression();
7884 if (fne != NULL
7885 && fne->named_object()->is_function_declaration()
7886 && fne->named_object()->func_declaration_value()->type()->is_builtin())
7887 return new Builtin_call_expression(gogo, this->fn_, this->args_,
7888 this->is_varargs_, this->location());
7889
7890 // Handle an argument which is a call to a function which returns
7891 // multiple results.
7892 if (this->args_ != NULL
7893 && this->args_->size() == 1
7894 && this->args_->front()->call_expression() != NULL
7895 && this->fn_->type()->function_type() != NULL)
7896 {
7897 Function_type* fntype = this->fn_->type()->function_type();
7898 size_t rc = this->args_->front()->call_expression()->result_count();
7899 if (rc > 1
7900 && fntype->parameters() != NULL
7901 && (fntype->parameters()->size() == rc
7902 || (fntype->is_varargs()
7903 && fntype->parameters()->size() - 1 <= rc)))
7904 {
7905 Call_expression* call = this->args_->front()->call_expression();
7906 Expression_list* args = new Expression_list;
7907 for (size_t i = 0; i < rc; ++i)
7908 args->push_back(Expression::make_call_result(call, i));
7909 // We can't return a new call expression here, because this
7910 // one may be referenced by Call_result expressions. FIXME.
7911 delete this->args_;
7912 this->args_ = args;
7913 }
7914 }
7915
7916 // Handle a call to a varargs function by packaging up the extra
7917 // parameters.
7918 if (this->fn_->type()->function_type() != NULL
7919 && this->fn_->type()->function_type()->is_varargs())
7920 {
7921 Function_type* fntype = this->fn_->type()->function_type();
7922 const Typed_identifier_list* parameters = fntype->parameters();
7923 gcc_assert(parameters != NULL && !parameters->empty());
7924 Type* varargs_type = parameters->back().type();
7925 return this->lower_varargs(gogo, function, varargs_type,
7926 parameters->size());
7927 }
7928
7929 return this;
7930}
7931
7932// Lower a call to a varargs function. FUNCTION is the function in
7933// which the call occurs--it's not the function we are calling.
7934// VARARGS_TYPE is the type of the varargs parameter, a slice type.
7935// PARAM_COUNT is the number of parameters of the function we are
7936// calling; the last of these parameters will be the varargs
7937// parameter.
7938
7939Expression*
7940Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
7941 Type* varargs_type, size_t param_count)
7942{
7943 if (this->varargs_are_lowered_)
7944 return this;
7945
7946 source_location loc = this->location();
7947
7948 gcc_assert(param_count > 0);
7949 gcc_assert(varargs_type->is_open_array_type());
7950
7951 size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
7952 if (arg_count < param_count - 1)
7953 {
7954 // Not enough arguments; will be caught in check_types.
7955 return this;
7956 }
7957
7958 Expression_list* old_args = this->args_;
7959 Expression_list* new_args = new Expression_list();
7960 bool push_empty_arg = false;
7961 if (old_args == NULL || old_args->empty())
7962 {
7963 gcc_assert(param_count == 1);
7964 push_empty_arg = true;
7965 }
7966 else
7967 {
7968 Expression_list::const_iterator pa;
7969 int i = 1;
7970 for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
7971 {
7972 if (static_cast<size_t>(i) == param_count)
7973 break;
7974 new_args->push_back(*pa);
7975 }
7976
7977 // We have reached the varargs parameter.
7978
7979 bool issued_error = false;
7980 if (pa == old_args->end())
7981 push_empty_arg = true;
7982 else if (pa + 1 == old_args->end() && this->is_varargs_)
7983 new_args->push_back(*pa);
7984 else if (this->is_varargs_)
7985 {
7986 this->report_error(_("too many arguments"));
7987 return this;
7988 }
7989 else if (pa + 1 == old_args->end()
7990 && this->is_compatible_varargs_argument(function, *pa,
7991 varargs_type,
7992 &issued_error))
7993 new_args->push_back(*pa);
7994 else
7995 {
7996 Type* element_type = varargs_type->array_type()->element_type();
7997 Expression_list* vals = new Expression_list;
7998 for (; pa != old_args->end(); ++pa, ++i)
7999 {
8000 // Check types here so that we get a better message.
8001 Type* patype = (*pa)->type();
8002 source_location paloc = (*pa)->location();
8003 if (!this->check_argument_type(i, element_type, patype,
8004 paloc, issued_error))
8005 continue;
8006 vals->push_back(*pa);
8007 }
8008 Expression* val =
8009 Expression::make_slice_composite_literal(varargs_type, vals, loc);
8010 new_args->push_back(val);
8011 }
8012 }
8013
8014 if (push_empty_arg)
8015 new_args->push_back(Expression::make_nil(loc));
8016
8017 // We can't return a new call expression here, because this one may
8018 // be referenced by Call_result expressions. FIXME.
8019 if (old_args != NULL)
8020 delete old_args;
8021 this->args_ = new_args;
8022 this->varargs_are_lowered_ = true;
8023
8024 // Lower all the new subexpressions.
8025 Expression* ret = this;
8026 gogo->lower_expression(function, &ret);
8027 gcc_assert(ret == this);
8028 return ret;
8029}
8030
8031// Return true if ARG is a varargs argment which should be passed to
8032// the varargs parameter of type PARAM_TYPE without wrapping. ARG
8033// will be the last argument passed in the call, and PARAM_TYPE will
8034// be the type of the last parameter of the varargs function being
8035// called.
8036
8037bool
8038Call_expression::is_compatible_varargs_argument(Named_object* function,
8039 Expression* arg,
8040 Type* param_type,
8041 bool* issued_error)
8042{
8043 *issued_error = false;
8044
8045 Type* var_type = NULL;
8046
8047 // The simple case is passing the varargs parameter of the caller.
8048 Var_expression* ve = arg->var_expression();
8049 if (ve != NULL && ve->named_object()->is_variable())
8050 {
8051 Variable* var = ve->named_object()->var_value();
8052 if (var->is_varargs_parameter())
8053 var_type = var->type();
8054 }
8055
8056 // The complex case is passing the varargs parameter of some
8057 // enclosing function. This will look like passing down *c.f where
8058 // c is the closure variable and f is a field in the closure.
8059 if (function != NULL
8060 && function->func_value()->needs_closure()
8061 && arg->classification() == EXPRESSION_UNARY)
8062 {
8063 Unary_expression* ue = static_cast<Unary_expression*>(arg);
8064 if (ue->op() == OPERATOR_MULT)
8065 {
8066 Field_reference_expression* fre =
8067 ue->operand()->deref()->field_reference_expression();
8068 if (fre != NULL)
8069 {
8070 Var_expression* ve = fre->expr()->deref()->var_expression();
8071 if (ve != NULL)
8072 {
8073 Named_object* no = ve->named_object();
8074 Function* f = function->func_value();
8075 if (no == f->closure_var())
8076 {
8077 // At this point we know that this indeed a
8078 // reference to some enclosing variable. Now we
8079 // need to figure out whether that variable is a
8080 // varargs parameter.
8081 Named_object* enclosing =
8082 f->enclosing_var(fre->field_index());
8083 Variable* var = enclosing->var_value();
8084 if (var->is_varargs_parameter())
8085 var_type = var->type();
8086 }
8087 }
8088 }
8089 }
8090 }
8091
8092 if (var_type == NULL)
8093 return false;
8094
8095 // We only match if the parameter is the same, with an identical
8096 // type.
8097 Array_type* var_at = var_type->array_type();
8098 gcc_assert(var_at != NULL);
8099 Array_type* param_at = param_type->array_type();
8100 if (param_at != NULL
8101 && Type::are_identical(var_at->element_type(),
07ba8be5 8102 param_at->element_type(), true, NULL))
e440a328 8103 return true;
8104 error_at(arg->location(), "... mismatch: passing ...T as ...");
8105 *issued_error = true;
8106 return false;
8107}
8108
8109// Get the function type. Returns NULL if we don't know the type. If
8110// this returns NULL, and if_ERROR is true, issues an error.
8111
8112Function_type*
8113Call_expression::get_function_type() const
8114{
8115 return this->fn_->type()->function_type();
8116}
8117
8118// Return the number of values which this call will return.
8119
8120size_t
8121Call_expression::result_count() const
8122{
8123 const Function_type* fntype = this->get_function_type();
8124 if (fntype == NULL)
8125 return 0;
8126 if (fntype->results() == NULL)
8127 return 0;
8128 return fntype->results()->size();
8129}
8130
8131// Return whether this is a call to the predeclared function recover.
8132
8133bool
8134Call_expression::is_recover_call() const
8135{
8136 return this->do_is_recover_call();
8137}
8138
8139// Set the argument to the recover function.
8140
8141void
8142Call_expression::set_recover_arg(Expression* arg)
8143{
8144 this->do_set_recover_arg(arg);
8145}
8146
8147// Virtual functions also implemented by Builtin_call_expression.
8148
8149bool
8150Call_expression::do_is_recover_call() const
8151{
8152 return false;
8153}
8154
8155void
8156Call_expression::do_set_recover_arg(Expression*)
8157{
8158 gcc_unreachable();
8159}
8160
8161// Get the type.
8162
8163Type*
8164Call_expression::do_type()
8165{
8166 if (this->type_ != NULL)
8167 return this->type_;
8168
8169 Type* ret;
8170 Function_type* fntype = this->get_function_type();
8171 if (fntype == NULL)
8172 return Type::make_error_type();
8173
8174 const Typed_identifier_list* results = fntype->results();
8175 if (results == NULL)
8176 ret = Type::make_void_type();
8177 else if (results->size() == 1)
8178 ret = results->begin()->type();
8179 else
8180 ret = Type::make_call_multiple_result_type(this);
8181
8182 this->type_ = ret;
8183
8184 return this->type_;
8185}
8186
8187// Determine types for a call expression. We can use the function
8188// parameter types to set the types of the arguments.
8189
8190void
8191Call_expression::do_determine_type(const Type_context*)
8192{
8193 this->fn_->determine_type_no_context();
8194 Function_type* fntype = this->get_function_type();
8195 const Typed_identifier_list* parameters = NULL;
8196 if (fntype != NULL)
8197 parameters = fntype->parameters();
8198 if (this->args_ != NULL)
8199 {
8200 Typed_identifier_list::const_iterator pt;
8201 if (parameters != NULL)
8202 pt = parameters->begin();
8203 for (Expression_list::const_iterator pa = this->args_->begin();
8204 pa != this->args_->end();
8205 ++pa)
8206 {
8207 if (parameters != NULL && pt != parameters->end())
8208 {
8209 Type_context subcontext(pt->type(), false);
8210 (*pa)->determine_type(&subcontext);
8211 ++pt;
8212 }
8213 else
8214 (*pa)->determine_type_no_context();
8215 }
8216 }
8217}
8218
8219// Check types for parameter I.
8220
8221bool
8222Call_expression::check_argument_type(int i, const Type* parameter_type,
8223 const Type* argument_type,
8224 source_location argument_location,
8225 bool issued_error)
8226{
8227 std::string reason;
8228 if (!Type::are_assignable(parameter_type, argument_type, &reason))
8229 {
8230 if (!issued_error)
8231 {
8232 if (reason.empty())
8233 error_at(argument_location, "argument %d has incompatible type", i);
8234 else
8235 error_at(argument_location,
8236 "argument %d has incompatible type (%s)",
8237 i, reason.c_str());
8238 }
8239 this->set_is_error();
8240 return false;
8241 }
8242 return true;
8243}
8244
8245// Check types.
8246
8247void
8248Call_expression::do_check_types(Gogo*)
8249{
8250 Function_type* fntype = this->get_function_type();
8251 if (fntype == NULL)
8252 {
8253 if (!this->fn_->type()->is_error_type())
8254 this->report_error(_("expected function"));
8255 return;
8256 }
8257
8258 if (fntype->is_method())
8259 {
8260 // We don't support pointers to methods, so the function has to
8261 // be a bound method expression.
8262 Bound_method_expression* bme = this->fn_->bound_method_expression();
8263 if (bme == NULL)
8264 {
8265 this->report_error(_("method call without object"));
8266 return;
8267 }
8268 Type* first_arg_type = bme->first_argument()->type();
8269 if (first_arg_type->points_to() == NULL)
8270 {
8271 // When passing a value, we need to check that we are
8272 // permitted to copy it.
8273 std::string reason;
8274 if (!Type::are_assignable(fntype->receiver()->type(),
8275 first_arg_type, &reason))
8276 {
8277 if (reason.empty())
8278 this->report_error(_("incompatible type for receiver"));
8279 else
8280 {
8281 error_at(this->location(),
8282 "incompatible type for receiver (%s)",
8283 reason.c_str());
8284 this->set_is_error();
8285 }
8286 }
8287 }
8288 }
8289
8290 // Note that varargs was handled by the lower_varargs() method, so
8291 // we don't have to worry about it here.
8292
8293 const Typed_identifier_list* parameters = fntype->parameters();
8294 if (this->args_ == NULL)
8295 {
8296 if (parameters != NULL && !parameters->empty())
8297 this->report_error(_("not enough arguments"));
8298 }
8299 else if (parameters == NULL)
8300 this->report_error(_("too many arguments"));
8301 else
8302 {
8303 int i = 0;
8304 Typed_identifier_list::const_iterator pt = parameters->begin();
8305 for (Expression_list::const_iterator pa = this->args_->begin();
8306 pa != this->args_->end();
8307 ++pa, ++pt, ++i)
8308 {
8309 if (pt == parameters->end())
8310 {
8311 this->report_error(_("too many arguments"));
8312 return;
8313 }
8314 this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
8315 (*pa)->location(), false);
8316 }
8317 if (pt != parameters->end())
8318 this->report_error(_("not enough arguments"));
8319 }
8320}
8321
8322// Return whether we have to use a temporary variable to ensure that
8323// we evaluate this call expression in order. If the call returns no
8324// results then it will inevitably be executed last. If the call
8325// returns more than one result then it will be used with Call_result
8326// expressions. So we only have to use a temporary variable if the
8327// call returns exactly one result.
8328
8329bool
8330Call_expression::do_must_eval_in_order() const
8331{
8332 return this->result_count() == 1;
8333}
8334
8335// Get the function and the first argument to use when calling a bound
8336// method.
8337
8338tree
8339Call_expression::bound_method_function(Translate_context* context,
8340 Bound_method_expression* bound_method,
8341 tree* first_arg_ptr)
8342{
8343 Expression* first_argument = bound_method->first_argument();
8344 tree first_arg = first_argument->get_tree(context);
8345 if (first_arg == error_mark_node)
8346 return error_mark_node;
8347
8348 // We always pass a pointer to the first argument when calling a
8349 // method.
8350 if (first_argument->type()->points_to() == NULL)
8351 {
8352 tree pointer_to_arg_type = build_pointer_type(TREE_TYPE(first_arg));
8353 if (TREE_ADDRESSABLE(TREE_TYPE(first_arg))
8354 || DECL_P(first_arg)
8355 || TREE_CODE(first_arg) == INDIRECT_REF
8356 || TREE_CODE(first_arg) == COMPONENT_REF)
8357 {
8358 first_arg = build_fold_addr_expr(first_arg);
8359 if (DECL_P(first_arg))
8360 TREE_ADDRESSABLE(first_arg) = 1;
8361 }
8362 else
8363 {
8364 tree tmp = create_tmp_var(TREE_TYPE(first_arg),
8365 get_name(first_arg));
8366 DECL_IGNORED_P(tmp) = 0;
8367 DECL_INITIAL(tmp) = first_arg;
8368 first_arg = build2(COMPOUND_EXPR, pointer_to_arg_type,
8369 build1(DECL_EXPR, void_type_node, tmp),
8370 build_fold_addr_expr(tmp));
8371 TREE_ADDRESSABLE(tmp) = 1;
8372 }
8373 if (first_arg == error_mark_node)
8374 return error_mark_node;
8375 }
8376
8377 Type* fatype = bound_method->first_argument_type();
8378 if (fatype != NULL)
8379 {
8380 if (fatype->points_to() == NULL)
8381 fatype = Type::make_pointer_type(fatype);
8382 first_arg = fold_convert(fatype->get_tree(context->gogo()), first_arg);
8383 if (first_arg == error_mark_node
8384 || TREE_TYPE(first_arg) == error_mark_node)
8385 return error_mark_node;
8386 }
8387
8388 *first_arg_ptr = first_arg;
8389
8390 return bound_method->method()->get_tree(context);
8391}
8392
8393// Get the function and the first argument to use when calling an
8394// interface method.
8395
8396tree
8397Call_expression::interface_method_function(
8398 Translate_context* context,
8399 Interface_field_reference_expression* interface_method,
8400 tree* first_arg_ptr)
8401{
8402 tree expr = interface_method->expr()->get_tree(context);
8403 if (expr == error_mark_node)
8404 return error_mark_node;
8405 expr = save_expr(expr);
8406 tree first_arg = interface_method->get_underlying_object_tree(context, expr);
8407 if (first_arg == error_mark_node)
8408 return error_mark_node;
8409 *first_arg_ptr = first_arg;
8410 return interface_method->get_function_tree(context, expr);
8411}
8412
8413// Build the call expression.
8414
8415tree
8416Call_expression::do_get_tree(Translate_context* context)
8417{
8418 if (this->tree_ != NULL_TREE)
8419 return this->tree_;
8420
8421 Function_type* fntype = this->get_function_type();
8422 if (fntype == NULL)
8423 return error_mark_node;
8424
8425 if (this->fn_->is_error_expression())
8426 return error_mark_node;
8427
8428 Gogo* gogo = context->gogo();
8429 source_location location = this->location();
8430
8431 Func_expression* func = this->fn_->func_expression();
8432 Bound_method_expression* bound_method = this->fn_->bound_method_expression();
8433 Interface_field_reference_expression* interface_method =
8434 this->fn_->interface_field_reference_expression();
8435 const bool has_closure = func != NULL && func->closure() != NULL;
8436 const bool is_method = bound_method != NULL || interface_method != NULL;
8437 gcc_assert(!fntype->is_method() || is_method);
8438
8439 int nargs;
8440 tree* args;
8441 if (this->args_ == NULL || this->args_->empty())
8442 {
8443 nargs = is_method ? 1 : 0;
8444 args = nargs == 0 ? NULL : new tree[nargs];
8445 }
8446 else
8447 {
8448 const Typed_identifier_list* params = fntype->parameters();
8449 gcc_assert(params != NULL);
8450
8451 nargs = this->args_->size();
8452 int i = is_method ? 1 : 0;
8453 nargs += i;
8454 args = new tree[nargs];
8455
8456 Typed_identifier_list::const_iterator pp = params->begin();
8457 Expression_list::const_iterator pe;
8458 for (pe = this->args_->begin();
8459 pe != this->args_->end();
8460 ++pe, ++pp, ++i)
8461 {
8462 tree arg_val = (*pe)->get_tree(context);
8463 args[i] = Expression::convert_for_assignment(context,
8464 pp->type(),
8465 (*pe)->type(),
8466 arg_val,
8467 location);
8468 if (args[i] == error_mark_node)
8469 return error_mark_node;
8470 }
8471 gcc_assert(pp == params->end());
8472 gcc_assert(i == nargs);
8473 }
8474
8475 tree rettype = TREE_TYPE(TREE_TYPE(fntype->get_tree(gogo)));
8476 if (rettype == error_mark_node)
8477 return error_mark_node;
8478
8479 tree fn;
8480 if (has_closure)
8481 fn = func->get_tree_without_closure(gogo);
8482 else if (!is_method)
8483 fn = this->fn_->get_tree(context);
8484 else if (bound_method != NULL)
8485 fn = this->bound_method_function(context, bound_method, &args[0]);
8486 else if (interface_method != NULL)
8487 fn = this->interface_method_function(context, interface_method, &args[0]);
8488 else
8489 gcc_unreachable();
8490
8491 if (fn == error_mark_node || TREE_TYPE(fn) == error_mark_node)
8492 return error_mark_node;
8493
8494 // This is to support builtin math functions when using 80387 math.
8495 tree fndecl = fn;
8496 if (TREE_CODE(fndecl) == ADDR_EXPR)
8497 fndecl = TREE_OPERAND(fndecl, 0);
8498 tree excess_type = NULL_TREE;
8499 if (DECL_P(fndecl)
8500 && DECL_IS_BUILTIN(fndecl)
8501 && DECL_BUILT_IN_CLASS(fndecl) == BUILT_IN_NORMAL
8502 && nargs > 0
8503 && ((SCALAR_FLOAT_TYPE_P(rettype)
8504 && SCALAR_FLOAT_TYPE_P(TREE_TYPE(args[0])))
8505 || (COMPLEX_FLOAT_TYPE_P(rettype)
8506 && COMPLEX_FLOAT_TYPE_P(TREE_TYPE(args[0])))))
8507 {
8508 excess_type = excess_precision_type(TREE_TYPE(args[0]));
8509 if (excess_type != NULL_TREE)
8510 {
8511 tree excess_fndecl = mathfn_built_in(excess_type,
8512 DECL_FUNCTION_CODE(fndecl));
8513 if (excess_fndecl == NULL_TREE)
8514 excess_type = NULL_TREE;
8515 else
8516 {
8517 fn = build_fold_addr_expr_loc(location, excess_fndecl);
8518 for (int i = 0; i < nargs; ++i)
8519 args[i] = ::convert(excess_type, args[i]);
8520 }
8521 }
8522 }
8523
8524 tree ret = build_call_array(excess_type != NULL_TREE ? excess_type : rettype,
8525 fn, nargs, args);
8526 delete[] args;
8527
8528 SET_EXPR_LOCATION(ret, location);
8529
8530 if (has_closure)
8531 {
8532 tree closure_tree = func->closure()->get_tree(context);
8533 if (closure_tree != error_mark_node)
8534 CALL_EXPR_STATIC_CHAIN(ret) = closure_tree;
8535 }
8536
8537 // If this is a recursive function type which returns itself, as in
8538 // type F func() F
8539 // we have used ptr_type_node for the return type. Add a cast here
8540 // to the correct type.
8541 if (TREE_TYPE(ret) == ptr_type_node)
8542 {
8543 tree t = this->type()->get_tree(gogo);
8544 ret = fold_convert_loc(location, t, ret);
8545 }
8546
8547 if (excess_type != NULL_TREE)
8548 {
8549 // Calling convert here can undo our excess precision change.
8550 // That may or may not be a bug in convert_to_real.
8551 ret = build1(NOP_EXPR, rettype, ret);
8552 }
8553
8554 // If there is more than one result, we will refer to the call
8555 // multiple times.
8556 if (fntype->results() != NULL && fntype->results()->size() > 1)
8557 ret = save_expr(ret);
8558
8559 this->tree_ = ret;
8560
8561 return ret;
8562}
8563
8564// Make a call expression.
8565
8566Call_expression*
8567Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
8568 source_location location)
8569{
8570 return new Call_expression(fn, args, is_varargs, location);
8571}
8572
8573// A single result from a call which returns multiple results.
8574
8575class Call_result_expression : public Expression
8576{
8577 public:
8578 Call_result_expression(Call_expression* call, unsigned int index)
8579 : Expression(EXPRESSION_CALL_RESULT, call->location()),
8580 call_(call), index_(index)
8581 { }
8582
8583 protected:
8584 int
8585 do_traverse(Traverse*);
8586
8587 Type*
8588 do_type();
8589
8590 void
8591 do_determine_type(const Type_context*);
8592
8593 void
8594 do_check_types(Gogo*);
8595
8596 Expression*
8597 do_copy()
8598 {
8599 return new Call_result_expression(this->call_->call_expression(),
8600 this->index_);
8601 }
8602
8603 bool
8604 do_must_eval_in_order() const
8605 { return true; }
8606
8607 tree
8608 do_get_tree(Translate_context*);
8609
8610 private:
8611 // The underlying call expression.
8612 Expression* call_;
8613 // Which result we want.
8614 unsigned int index_;
8615};
8616
8617// Traverse a call result.
8618
8619int
8620Call_result_expression::do_traverse(Traverse* traverse)
8621{
8622 if (traverse->remember_expression(this->call_))
8623 {
8624 // We have already traversed the call expression.
8625 return TRAVERSE_CONTINUE;
8626 }
8627 return Expression::traverse(&this->call_, traverse);
8628}
8629
8630// Get the type.
8631
8632Type*
8633Call_result_expression::do_type()
8634{
8635 // THIS->CALL_ can be replaced with a temporary reference due to
8636 // Call_expression::do_must_eval_in_order when there is an error.
8637 Call_expression* ce = this->call_->call_expression();
8638 if (ce == NULL)
8639 return Type::make_error_type();
8640 Function_type* fntype = ce->get_function_type();
8641 if (fntype == NULL)
8642 return Type::make_error_type();
8643 const Typed_identifier_list* results = fntype->results();
8644 Typed_identifier_list::const_iterator pr = results->begin();
8645 for (unsigned int i = 0; i < this->index_; ++i)
8646 {
8647 if (pr == results->end())
8648 return Type::make_error_type();
8649 ++pr;
8650 }
8651 if (pr == results->end())
8652 return Type::make_error_type();
8653 return pr->type();
8654}
8655
8656// Check the type. This is where we give an error if we're trying to
8657// extract too many values from a call.
8658
8659void
8660Call_result_expression::do_check_types(Gogo*)
8661{
8662 bool ok = true;
8663 Call_expression* ce = this->call_->call_expression();
8664 if (ce != NULL)
8665 ok = this->index_ < ce->result_count();
8666 else
8667 {
8668 // This can happen when the call returns a single value but we
8669 // are asking for the second result.
8670 if (this->call_->is_error_expression())
8671 return;
8672 ok = false;
8673 }
8674 if (!ok)
567b7660 8675 this->report_error(_("number of results does not match number of values"));
e440a328 8676}
8677
8678// Determine the type. We have nothing to do here, but the 0 result
8679// needs to pass down to the caller.
8680
8681void
8682Call_result_expression::do_determine_type(const Type_context*)
8683{
8684 if (this->index_ == 0)
8685 this->call_->determine_type_no_context();
8686}
8687
8688// Return the tree.
8689
8690tree
8691Call_result_expression::do_get_tree(Translate_context* context)
8692{
8693 tree call_tree = this->call_->get_tree(context);
8694 if (call_tree == error_mark_node)
8695 return error_mark_node;
8696 gcc_assert(TREE_CODE(TREE_TYPE(call_tree)) == RECORD_TYPE);
8697 tree field = TYPE_FIELDS(TREE_TYPE(call_tree));
8698 for (unsigned int i = 0; i < this->index_; ++i)
8699 {
8700 gcc_assert(field != NULL_TREE);
8701 field = DECL_CHAIN(field);
8702 }
8703 gcc_assert(field != NULL_TREE);
8704 return build3(COMPONENT_REF, TREE_TYPE(field), call_tree, field, NULL_TREE);
8705}
8706
8707// Make a reference to a single result of a call which returns
8708// multiple results.
8709
8710Expression*
8711Expression::make_call_result(Call_expression* call, unsigned int index)
8712{
8713 return new Call_result_expression(call, index);
8714}
8715
8716// Class Index_expression.
8717
8718// Traversal.
8719
8720int
8721Index_expression::do_traverse(Traverse* traverse)
8722{
8723 if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
8724 || Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
8725 || (this->end_ != NULL
8726 && Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT))
8727 return TRAVERSE_EXIT;
8728 return TRAVERSE_CONTINUE;
8729}
8730
8731// Lower an index expression. This converts the generic index
8732// expression into an array index, a string index, or a map index.
8733
8734Expression*
8735Index_expression::do_lower(Gogo*, Named_object*, int)
8736{
8737 source_location location = this->location();
8738 Expression* left = this->left_;
8739 Expression* start = this->start_;
8740 Expression* end = this->end_;
8741
8742 Type* type = left->type();
8743 if (type->is_error_type())
8744 return Expression::make_error(location);
8745 else if (type->array_type() != NULL)
8746 return Expression::make_array_index(left, start, end, location);
8747 else if (type->points_to() != NULL
8748 && type->points_to()->array_type() != NULL
8749 && !type->points_to()->is_open_array_type())
8750 {
8751 Expression* deref = Expression::make_unary(OPERATOR_MULT, left,
8752 location);
8753 return Expression::make_array_index(deref, start, end, location);
8754 }
8755 else if (type->is_string_type())
8756 return Expression::make_string_index(left, start, end, location);
8757 else if (type->map_type() != NULL)
8758 {
8759 if (end != NULL)
8760 {
8761 error_at(location, "invalid slice of map");
8762 return Expression::make_error(location);
8763 }
8764 Map_index_expression* ret= Expression::make_map_index(left, start,
8765 location);
8766 if (this->is_lvalue_)
8767 ret->set_is_lvalue();
8768 return ret;
8769 }
8770 else
8771 {
8772 error_at(location,
8773 "attempt to index object which is not array, string, or map");
8774 return Expression::make_error(location);
8775 }
8776}
8777
8778// Make an index expression.
8779
8780Expression*
8781Expression::make_index(Expression* left, Expression* start, Expression* end,
8782 source_location location)
8783{
8784 return new Index_expression(left, start, end, location);
8785}
8786
8787// An array index. This is used for both indexing and slicing.
8788
8789class Array_index_expression : public Expression
8790{
8791 public:
8792 Array_index_expression(Expression* array, Expression* start,
8793 Expression* end, source_location location)
8794 : Expression(EXPRESSION_ARRAY_INDEX, location),
8795 array_(array), start_(start), end_(end), type_(NULL)
8796 { }
8797
8798 protected:
8799 int
8800 do_traverse(Traverse*);
8801
8802 Type*
8803 do_type();
8804
8805 void
8806 do_determine_type(const Type_context*);
8807
8808 void
8809 do_check_types(Gogo*);
8810
8811 Expression*
8812 do_copy()
8813 {
8814 return Expression::make_array_index(this->array_->copy(),
8815 this->start_->copy(),
8816 (this->end_ == NULL
8817 ? NULL
8818 : this->end_->copy()),
8819 this->location());
8820 }
8821
8822 bool
8823 do_is_addressable() const;
8824
8825 void
8826 do_address_taken(bool escapes)
8827 { this->array_->address_taken(escapes); }
8828
8829 tree
8830 do_get_tree(Translate_context*);
8831
8832 private:
8833 // The array we are getting a value from.
8834 Expression* array_;
8835 // The start or only index.
8836 Expression* start_;
8837 // The end index of a slice. This may be NULL for a simple array
8838 // index, or it may be a nil expression for the length of the array.
8839 Expression* end_;
8840 // The type of the expression.
8841 Type* type_;
8842};
8843
8844// Array index traversal.
8845
8846int
8847Array_index_expression::do_traverse(Traverse* traverse)
8848{
8849 if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
8850 return TRAVERSE_EXIT;
8851 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
8852 return TRAVERSE_EXIT;
8853 if (this->end_ != NULL)
8854 {
8855 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
8856 return TRAVERSE_EXIT;
8857 }
8858 return TRAVERSE_CONTINUE;
8859}
8860
8861// Return the type of an array index.
8862
8863Type*
8864Array_index_expression::do_type()
8865{
8866 if (this->type_ == NULL)
8867 {
8868 Array_type* type = this->array_->type()->array_type();
8869 if (type == NULL)
8870 this->type_ = Type::make_error_type();
8871 else if (this->end_ == NULL)
8872 this->type_ = type->element_type();
8873 else if (type->is_open_array_type())
8874 {
8875 // A slice of a slice has the same type as the original
8876 // slice.
8877 this->type_ = this->array_->type()->deref();
8878 }
8879 else
8880 {
8881 // A slice of an array is a slice.
8882 this->type_ = Type::make_array_type(type->element_type(), NULL);
8883 }
8884 }
8885 return this->type_;
8886}
8887
8888// Set the type of an array index.
8889
8890void
8891Array_index_expression::do_determine_type(const Type_context*)
8892{
8893 this->array_->determine_type_no_context();
8894 Type_context subcontext(NULL, true);
8895 this->start_->determine_type(&subcontext);
8896 if (this->end_ != NULL)
8897 this->end_->determine_type(&subcontext);
8898}
8899
8900// Check types of an array index.
8901
8902void
8903Array_index_expression::do_check_types(Gogo*)
8904{
8905 if (this->start_->type()->integer_type() == NULL)
8906 this->report_error(_("index must be integer"));
8907 if (this->end_ != NULL
8908 && this->end_->type()->integer_type() == NULL
8909 && !this->end_->is_nil_expression())
8910 this->report_error(_("slice end must be integer"));
8911
8912 Array_type* array_type = this->array_->type()->array_type();
8913 gcc_assert(array_type != NULL);
8914
8915 unsigned int int_bits =
8916 Type::lookup_integer_type("int")->integer_type()->bits();
8917
8918 Type* dummy;
8919 mpz_t lval;
8920 mpz_init(lval);
8921 bool lval_valid = (array_type->length() != NULL
8922 && array_type->length()->integer_constant_value(true,
8923 lval,
8924 &dummy));
8925 mpz_t ival;
8926 mpz_init(ival);
8927 if (this->start_->integer_constant_value(true, ival, &dummy))
8928 {
8929 if (mpz_sgn(ival) < 0
8930 || mpz_sizeinbase(ival, 2) >= int_bits
8931 || (lval_valid
8932 && (this->end_ == NULL
8933 ? mpz_cmp(ival, lval) >= 0
8934 : mpz_cmp(ival, lval) > 0)))
8935 {
8936 error_at(this->start_->location(), "array index out of bounds");
8937 this->set_is_error();
8938 }
8939 }
8940 if (this->end_ != NULL && !this->end_->is_nil_expression())
8941 {
8942 if (this->end_->integer_constant_value(true, ival, &dummy))
8943 {
8944 if (mpz_sgn(ival) < 0
8945 || mpz_sizeinbase(ival, 2) >= int_bits
8946 || (lval_valid && mpz_cmp(ival, lval) > 0))
8947 {
8948 error_at(this->end_->location(), "array index out of bounds");
8949 this->set_is_error();
8950 }
8951 }
8952 }
8953 mpz_clear(ival);
8954 mpz_clear(lval);
8955
8956 // A slice of an array requires an addressable array. A slice of a
8957 // slice is always possible.
8958 if (this->end_ != NULL
8959 && !array_type->is_open_array_type()
8960 && !this->array_->is_addressable())
8961 this->report_error(_("array is not addressable"));
8962}
8963
8964// Return whether this expression is addressable.
8965
8966bool
8967Array_index_expression::do_is_addressable() const
8968{
8969 // A slice expression is not addressable.
8970 if (this->end_ != NULL)
8971 return false;
8972
8973 // An index into a slice is addressable.
8974 if (this->array_->type()->is_open_array_type())
8975 return true;
8976
8977 // An index into an array is addressable if the array is
8978 // addressable.
8979 return this->array_->is_addressable();
8980}
8981
8982// Get a tree for an array index.
8983
8984tree
8985Array_index_expression::do_get_tree(Translate_context* context)
8986{
8987 Gogo* gogo = context->gogo();
8988 source_location loc = this->location();
8989
8990 Array_type* array_type = this->array_->type()->array_type();
8991 gcc_assert(array_type != NULL);
8992
8993 tree type_tree = array_type->get_tree(gogo);
c65212a0 8994 if (type_tree == error_mark_node)
8995 return error_mark_node;
e440a328 8996
8997 tree array_tree = this->array_->get_tree(context);
8998 if (array_tree == error_mark_node)
8999 return error_mark_node;
9000
9001 if (array_type->length() == NULL && !DECL_P(array_tree))
9002 array_tree = save_expr(array_tree);
9003 tree length_tree = array_type->length_tree(gogo, array_tree);
c65212a0 9004 if (length_tree == error_mark_node)
9005 return error_mark_node;
e440a328 9006 length_tree = save_expr(length_tree);
9007 tree length_type = TREE_TYPE(length_tree);
9008
9009 tree bad_index = boolean_false_node;
9010
9011 tree start_tree = this->start_->get_tree(context);
9012 if (start_tree == error_mark_node)
9013 return error_mark_node;
9014 if (!DECL_P(start_tree))
9015 start_tree = save_expr(start_tree);
9016 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9017 start_tree = convert_to_integer(length_type, start_tree);
9018
9019 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9020 loc);
9021
9022 start_tree = fold_convert_loc(loc, length_type, start_tree);
9023 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node, bad_index,
9024 fold_build2_loc(loc,
9025 (this->end_ == NULL
9026 ? GE_EXPR
9027 : GT_EXPR),
9028 boolean_type_node, start_tree,
9029 length_tree));
9030
9031 int code = (array_type->length() != NULL
9032 ? (this->end_ == NULL
9033 ? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
9034 : RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
9035 : (this->end_ == NULL
9036 ? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
9037 : RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
9038 tree crash = Gogo::runtime_error(code, loc);
9039
9040 if (this->end_ == NULL)
9041 {
9042 // Simple array indexing. This has to return an l-value, so
9043 // wrap the index check into START_TREE.
9044 start_tree = build2(COMPOUND_EXPR, TREE_TYPE(start_tree),
9045 build3(COND_EXPR, void_type_node,
9046 bad_index, crash, NULL_TREE),
9047 start_tree);
9048 start_tree = fold_convert_loc(loc, sizetype, start_tree);
9049
9050 if (array_type->length() != NULL)
9051 {
9052 // Fixed array.
9053 return build4(ARRAY_REF, TREE_TYPE(type_tree), array_tree,
9054 start_tree, NULL_TREE, NULL_TREE);
9055 }
9056 else
9057 {
9058 // Open array.
9059 tree values = array_type->value_pointer_tree(gogo, array_tree);
9060 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9061 if (element_type_tree == error_mark_node)
9062 return error_mark_node;
e440a328 9063 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9064 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9065 start_tree, element_size);
9066 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9067 TREE_TYPE(values), values, offset);
9068 return build_fold_indirect_ref(ptr);
9069 }
9070 }
9071
9072 // Array slice.
9073
9074 tree capacity_tree = array_type->capacity_tree(gogo, array_tree);
c65212a0 9075 if (capacity_tree == error_mark_node)
9076 return error_mark_node;
e440a328 9077 capacity_tree = fold_convert_loc(loc, length_type, capacity_tree);
9078
9079 tree end_tree;
9080 if (this->end_->is_nil_expression())
9081 end_tree = length_tree;
9082 else
9083 {
9084 end_tree = this->end_->get_tree(context);
9085 if (end_tree == error_mark_node)
9086 return error_mark_node;
9087 if (!DECL_P(end_tree))
9088 end_tree = save_expr(end_tree);
9089 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9090 end_tree = convert_to_integer(length_type, end_tree);
9091
9092 bad_index = Expression::check_bounds(end_tree, length_type, bad_index,
9093 loc);
9094
9095 end_tree = fold_convert_loc(loc, length_type, end_tree);
9096
9097 capacity_tree = save_expr(capacity_tree);
9098 tree bad_end = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9099 fold_build2_loc(loc, LT_EXPR,
9100 boolean_type_node,
9101 end_tree, start_tree),
9102 fold_build2_loc(loc, GT_EXPR,
9103 boolean_type_node,
9104 end_tree, capacity_tree));
9105 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9106 bad_index, bad_end);
9107 }
9108
9109 tree element_type_tree = array_type->element_type()->get_tree(gogo);
c65212a0 9110 if (element_type_tree == error_mark_node)
9111 return error_mark_node;
e440a328 9112 tree element_size = TYPE_SIZE_UNIT(element_type_tree);
9113
9114 tree offset = fold_build2_loc(loc, MULT_EXPR, sizetype,
9115 fold_convert_loc(loc, sizetype, start_tree),
9116 element_size);
9117
9118 tree value_pointer = array_type->value_pointer_tree(gogo, array_tree);
c65212a0 9119 if (value_pointer == error_mark_node)
9120 return error_mark_node;
e440a328 9121
9122 value_pointer = fold_build2_loc(loc, POINTER_PLUS_EXPR,
9123 TREE_TYPE(value_pointer),
9124 value_pointer, offset);
9125
9126 tree result_length_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9127 end_tree, start_tree);
9128
9129 tree result_capacity_tree = fold_build2_loc(loc, MINUS_EXPR, length_type,
9130 capacity_tree, start_tree);
9131
9132 tree struct_tree = this->type()->get_tree(gogo);
9133 gcc_assert(TREE_CODE(struct_tree) == RECORD_TYPE);
9134
9135 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
9136
9137 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
9138 tree field = TYPE_FIELDS(struct_tree);
9139 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
9140 elt->index = field;
9141 elt->value = value_pointer;
9142
9143 elt = VEC_quick_push(constructor_elt, init, NULL);
9144 field = DECL_CHAIN(field);
9145 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
9146 elt->index = field;
9147 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_length_tree);
9148
9149 elt = VEC_quick_push(constructor_elt, init, NULL);
9150 field = DECL_CHAIN(field);
9151 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__capacity") == 0);
9152 elt->index = field;
9153 elt->value = fold_convert_loc(loc, TREE_TYPE(field), result_capacity_tree);
9154
9155 tree constructor = build_constructor(struct_tree, init);
9156
9157 if (TREE_CONSTANT(value_pointer)
9158 && TREE_CONSTANT(result_length_tree)
9159 && TREE_CONSTANT(result_capacity_tree))
9160 TREE_CONSTANT(constructor) = 1;
9161
9162 return fold_build2_loc(loc, COMPOUND_EXPR, TREE_TYPE(constructor),
9163 build3(COND_EXPR, void_type_node,
9164 bad_index, crash, NULL_TREE),
9165 constructor);
9166}
9167
9168// Make an array index expression. END may be NULL.
9169
9170Expression*
9171Expression::make_array_index(Expression* array, Expression* start,
9172 Expression* end, source_location location)
9173{
9174 // Taking a slice of a composite literal requires moving the literal
9175 // onto the heap.
9176 if (end != NULL && array->is_composite_literal())
9177 {
9178 array = Expression::make_heap_composite(array, location);
9179 array = Expression::make_unary(OPERATOR_MULT, array, location);
9180 }
9181 return new Array_index_expression(array, start, end, location);
9182}
9183
9184// A string index. This is used for both indexing and slicing.
9185
9186class String_index_expression : public Expression
9187{
9188 public:
9189 String_index_expression(Expression* string, Expression* start,
9190 Expression* end, source_location location)
9191 : Expression(EXPRESSION_STRING_INDEX, location),
9192 string_(string), start_(start), end_(end)
9193 { }
9194
9195 protected:
9196 int
9197 do_traverse(Traverse*);
9198
9199 Type*
9200 do_type();
9201
9202 void
9203 do_determine_type(const Type_context*);
9204
9205 void
9206 do_check_types(Gogo*);
9207
9208 Expression*
9209 do_copy()
9210 {
9211 return Expression::make_string_index(this->string_->copy(),
9212 this->start_->copy(),
9213 (this->end_ == NULL
9214 ? NULL
9215 : this->end_->copy()),
9216 this->location());
9217 }
9218
9219 tree
9220 do_get_tree(Translate_context*);
9221
9222 private:
9223 // The string we are getting a value from.
9224 Expression* string_;
9225 // The start or only index.
9226 Expression* start_;
9227 // The end index of a slice. This may be NULL for a single index,
9228 // or it may be a nil expression for the length of the string.
9229 Expression* end_;
9230};
9231
9232// String index traversal.
9233
9234int
9235String_index_expression::do_traverse(Traverse* traverse)
9236{
9237 if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
9238 return TRAVERSE_EXIT;
9239 if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
9240 return TRAVERSE_EXIT;
9241 if (this->end_ != NULL)
9242 {
9243 if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
9244 return TRAVERSE_EXIT;
9245 }
9246 return TRAVERSE_CONTINUE;
9247}
9248
9249// Return the type of a string index.
9250
9251Type*
9252String_index_expression::do_type()
9253{
9254 if (this->end_ == NULL)
9255 return Type::lookup_integer_type("uint8");
9256 else
9257 return Type::make_string_type();
9258}
9259
9260// Determine the type of a string index.
9261
9262void
9263String_index_expression::do_determine_type(const Type_context*)
9264{
9265 this->string_->determine_type_no_context();
9266 Type_context subcontext(NULL, true);
9267 this->start_->determine_type(&subcontext);
9268 if (this->end_ != NULL)
9269 this->end_->determine_type(&subcontext);
9270}
9271
9272// Check types of a string index.
9273
9274void
9275String_index_expression::do_check_types(Gogo*)
9276{
9277 if (this->start_->type()->integer_type() == NULL)
9278 this->report_error(_("index must be integer"));
9279 if (this->end_ != NULL
9280 && this->end_->type()->integer_type() == NULL
9281 && !this->end_->is_nil_expression())
9282 this->report_error(_("slice end must be integer"));
9283
9284 std::string sval;
9285 bool sval_valid = this->string_->string_constant_value(&sval);
9286
9287 mpz_t ival;
9288 mpz_init(ival);
9289 Type* dummy;
9290 if (this->start_->integer_constant_value(true, ival, &dummy))
9291 {
9292 if (mpz_sgn(ival) < 0
9293 || (sval_valid && mpz_cmp_ui(ival, sval.length()) >= 0))
9294 {
9295 error_at(this->start_->location(), "string index out of bounds");
9296 this->set_is_error();
9297 }
9298 }
9299 if (this->end_ != NULL && !this->end_->is_nil_expression())
9300 {
9301 if (this->end_->integer_constant_value(true, ival, &dummy))
9302 {
9303 if (mpz_sgn(ival) < 0
9304 || (sval_valid && mpz_cmp_ui(ival, sval.length()) > 0))
9305 {
9306 error_at(this->end_->location(), "string index out of bounds");
9307 this->set_is_error();
9308 }
9309 }
9310 }
9311 mpz_clear(ival);
9312}
9313
9314// Get a tree for a string index.
9315
9316tree
9317String_index_expression::do_get_tree(Translate_context* context)
9318{
9319 source_location loc = this->location();
9320
9321 tree string_tree = this->string_->get_tree(context);
9322 if (string_tree == error_mark_node)
9323 return error_mark_node;
9324
9325 if (this->string_->type()->points_to() != NULL)
9326 string_tree = build_fold_indirect_ref(string_tree);
9327 if (!DECL_P(string_tree))
9328 string_tree = save_expr(string_tree);
9329 tree string_type = TREE_TYPE(string_tree);
9330
9331 tree length_tree = String_type::length_tree(context->gogo(), string_tree);
9332 length_tree = save_expr(length_tree);
9333 tree length_type = TREE_TYPE(length_tree);
9334
9335 tree bad_index = boolean_false_node;
9336
9337 tree start_tree = this->start_->get_tree(context);
9338 if (start_tree == error_mark_node)
9339 return error_mark_node;
9340 if (!DECL_P(start_tree))
9341 start_tree = save_expr(start_tree);
9342 if (!INTEGRAL_TYPE_P(TREE_TYPE(start_tree)))
9343 start_tree = convert_to_integer(length_type, start_tree);
9344
9345 bad_index = Expression::check_bounds(start_tree, length_type, bad_index,
9346 loc);
9347
9348 start_tree = fold_convert_loc(loc, length_type, start_tree);
9349
9350 int code = (this->end_ == NULL
9351 ? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
9352 : RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
9353 tree crash = Gogo::runtime_error(code, loc);
9354
9355 if (this->end_ == NULL)
9356 {
9357 bad_index = fold_build2_loc(loc, TRUTH_OR_EXPR, boolean_type_node,
9358 bad_index,
9359 fold_build2_loc(loc, GE_EXPR,
9360 boolean_type_node,
9361 start_tree, length_tree));
9362
9363 tree bytes_tree = String_type::bytes_tree(context->gogo(), string_tree);
9364 tree ptr = fold_build2_loc(loc, POINTER_PLUS_EXPR, TREE_TYPE(bytes_tree),
9365 bytes_tree,
9366 fold_convert_loc(loc, sizetype, start_tree));
9367 tree index = build_fold_indirect_ref_loc(loc, ptr);
9368
9369 return build2(COMPOUND_EXPR, TREE_TYPE(index),
9370 build3(COND_EXPR, void_type_node,
9371 bad_index, crash, NULL_TREE),
9372 index);
9373 }
9374 else
9375 {
9376 tree end_tree;
9377 if (this->end_->is_nil_expression())
9378 end_tree = build_int_cst(length_type, -1);
9379 else
9380 {
9381 end_tree = this->end_->get_tree(context);
9382 if (end_tree == error_mark_node)
9383 return error_mark_node;
9384 if (!DECL_P(end_tree))
9385 end_tree = save_expr(end_tree);
9386 if (!INTEGRAL_TYPE_P(TREE_TYPE(end_tree)))
9387 end_tree = convert_to_integer(length_type, end_tree);
9388
9389 bad_index = Expression::check_bounds(end_tree, length_type,
9390 bad_index, loc);
9391
9392 end_tree = fold_convert_loc(loc, length_type, end_tree);
9393 }
9394
9395 static tree strslice_fndecl;
9396 tree ret = Gogo::call_builtin(&strslice_fndecl,
9397 loc,
9398 "__go_string_slice",
9399 3,
9400 string_type,
9401 string_type,
9402 string_tree,
9403 length_type,
9404 start_tree,
9405 length_type,
9406 end_tree);
9407 // This will panic if the bounds are out of range for the
9408 // string.
9409 TREE_NOTHROW(strslice_fndecl) = 0;
9410
9411 if (bad_index == boolean_false_node)
9412 return ret;
9413 else
9414 return build2(COMPOUND_EXPR, TREE_TYPE(ret),
9415 build3(COND_EXPR, void_type_node,
9416 bad_index, crash, NULL_TREE),
9417 ret);
9418 }
9419}
9420
9421// Make a string index expression. END may be NULL.
9422
9423Expression*
9424Expression::make_string_index(Expression* string, Expression* start,
9425 Expression* end, source_location location)
9426{
9427 return new String_index_expression(string, start, end, location);
9428}
9429
9430// Class Map_index.
9431
9432// Get the type of the map.
9433
9434Map_type*
9435Map_index_expression::get_map_type() const
9436{
9437 Map_type* mt = this->map_->type()->deref()->map_type();
9438 gcc_assert(mt != NULL);
9439 return mt;
9440}
9441
9442// Map index traversal.
9443
9444int
9445Map_index_expression::do_traverse(Traverse* traverse)
9446{
9447 if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
9448 return TRAVERSE_EXIT;
9449 return Expression::traverse(&this->index_, traverse);
9450}
9451
9452// Return the type of a map index.
9453
9454Type*
9455Map_index_expression::do_type()
9456{
9457 Type* type = this->get_map_type()->val_type();
9458 // If this map index is in a tuple assignment, we actually return a
9459 // pointer to the value type. Tuple_map_assignment_statement is
9460 // responsible for handling this correctly. We need to get the type
9461 // right in case this gets assigned to a temporary variable.
9462 if (this->is_in_tuple_assignment_)
9463 type = Type::make_pointer_type(type);
9464 return type;
9465}
9466
9467// Fix the type of a map index.
9468
9469void
9470Map_index_expression::do_determine_type(const Type_context*)
9471{
9472 this->map_->determine_type_no_context();
9473 Type_context subcontext(this->get_map_type()->key_type(), false);
9474 this->index_->determine_type(&subcontext);
9475}
9476
9477// Check types of a map index.
9478
9479void
9480Map_index_expression::do_check_types(Gogo*)
9481{
9482 std::string reason;
9483 if (!Type::are_assignable(this->get_map_type()->key_type(),
9484 this->index_->type(), &reason))
9485 {
9486 if (reason.empty())
9487 this->report_error(_("incompatible type for map index"));
9488 else
9489 {
9490 error_at(this->location(), "incompatible type for map index (%s)",
9491 reason.c_str());
9492 this->set_is_error();
9493 }
9494 }
9495}
9496
9497// Get a tree for a map index.
9498
9499tree
9500Map_index_expression::do_get_tree(Translate_context* context)
9501{
9502 Map_type* type = this->get_map_type();
9503
9504 tree valptr = this->get_value_pointer(context, this->is_lvalue_);
9505 if (valptr == error_mark_node)
9506 return error_mark_node;
9507 valptr = save_expr(valptr);
9508
9509 tree val_type_tree = TREE_TYPE(TREE_TYPE(valptr));
9510
9511 if (this->is_lvalue_)
9512 return build_fold_indirect_ref(valptr);
9513 else if (this->is_in_tuple_assignment_)
9514 {
9515 // Tuple_map_assignment_statement is responsible for using this
9516 // appropriately.
9517 return valptr;
9518 }
9519 else
9520 {
9521 return fold_build3(COND_EXPR, val_type_tree,
9522 fold_build2(EQ_EXPR, boolean_type_node, valptr,
9523 fold_convert(TREE_TYPE(valptr),
9524 null_pointer_node)),
9525 type->val_type()->get_init_tree(context->gogo(),
9526 false),
9527 build_fold_indirect_ref(valptr));
9528 }
9529}
9530
9531// Get a tree for the map index. This returns a tree which evaluates
9532// to a pointer to a value. The pointer will be NULL if the key is
9533// not in the map.
9534
9535tree
9536Map_index_expression::get_value_pointer(Translate_context* context,
9537 bool insert)
9538{
9539 Map_type* type = this->get_map_type();
9540
9541 tree map_tree = this->map_->get_tree(context);
9542 tree index_tree = this->index_->get_tree(context);
9543 index_tree = Expression::convert_for_assignment(context, type->key_type(),
9544 this->index_->type(),
9545 index_tree,
9546 this->location());
9547 if (map_tree == error_mark_node || index_tree == error_mark_node)
9548 return error_mark_node;
9549
9550 if (this->map_->type()->points_to() != NULL)
9551 map_tree = build_fold_indirect_ref(map_tree);
9552
9553 // We need to pass in a pointer to the key, so stuff it into a
9554 // variable.
9555 tree tmp = create_tmp_var(TREE_TYPE(index_tree), get_name(index_tree));
9556 DECL_IGNORED_P(tmp) = 0;
9557 DECL_INITIAL(tmp) = index_tree;
9558 tree make_tmp = build1(DECL_EXPR, void_type_node, tmp);
9559 tree tmpref = fold_convert(const_ptr_type_node, build_fold_addr_expr(tmp));
9560 TREE_ADDRESSABLE(tmp) = 1;
9561
9562 static tree map_index_fndecl;
9563 tree call = Gogo::call_builtin(&map_index_fndecl,
9564 this->location(),
9565 "__go_map_index",
9566 3,
9567 const_ptr_type_node,
9568 TREE_TYPE(map_tree),
9569 map_tree,
9570 const_ptr_type_node,
9571 tmpref,
9572 boolean_type_node,
9573 (insert
9574 ? boolean_true_node
9575 : boolean_false_node));
9576 // This can panic on a map of interface type if the interface holds
9577 // an uncomparable or unhashable type.
9578 TREE_NOTHROW(map_index_fndecl) = 0;
9579
9580 tree val_type_tree = type->val_type()->get_tree(context->gogo());
9581 if (val_type_tree == error_mark_node)
9582 return error_mark_node;
9583 tree ptr_val_type_tree = build_pointer_type(val_type_tree);
9584
9585 return build2(COMPOUND_EXPR, ptr_val_type_tree,
9586 make_tmp,
9587 fold_convert(ptr_val_type_tree, call));
9588}
9589
9590// Make a map index expression.
9591
9592Map_index_expression*
9593Expression::make_map_index(Expression* map, Expression* index,
9594 source_location location)
9595{
9596 return new Map_index_expression(map, index, location);
9597}
9598
9599// Class Field_reference_expression.
9600
9601// Return the type of a field reference.
9602
9603Type*
9604Field_reference_expression::do_type()
9605{
9606 Struct_type* struct_type = this->expr_->type()->struct_type();
9607 gcc_assert(struct_type != NULL);
9608 return struct_type->field(this->field_index_)->type();
9609}
9610
9611// Check the types for a field reference.
9612
9613void
9614Field_reference_expression::do_check_types(Gogo*)
9615{
9616 Struct_type* struct_type = this->expr_->type()->struct_type();
9617 gcc_assert(struct_type != NULL);
9618 gcc_assert(struct_type->field(this->field_index_) != NULL);
9619}
9620
9621// Get a tree for a field reference.
9622
9623tree
9624Field_reference_expression::do_get_tree(Translate_context* context)
9625{
9626 tree struct_tree = this->expr_->get_tree(context);
9627 if (struct_tree == error_mark_node
9628 || TREE_TYPE(struct_tree) == error_mark_node)
9629 return error_mark_node;
9630 gcc_assert(TREE_CODE(TREE_TYPE(struct_tree)) == RECORD_TYPE);
9631 tree field = TYPE_FIELDS(TREE_TYPE(struct_tree));
b1d655d5 9632 if (field == NULL_TREE)
9633 {
9634 // This can happen for a type which refers to itself indirectly
9635 // and then turns out to be erroneous.
9636 gcc_assert(saw_errors());
9637 return error_mark_node;
9638 }
e440a328 9639 for (unsigned int i = this->field_index_; i > 0; --i)
9640 {
9641 field = DECL_CHAIN(field);
9642 gcc_assert(field != NULL_TREE);
9643 }
9644 return build3(COMPONENT_REF, TREE_TYPE(field), struct_tree, field,
9645 NULL_TREE);
9646}
9647
9648// Make a reference to a qualified identifier in an expression.
9649
9650Field_reference_expression*
9651Expression::make_field_reference(Expression* expr, unsigned int field_index,
9652 source_location location)
9653{
9654 return new Field_reference_expression(expr, field_index, location);
9655}
9656
9657// Class Interface_field_reference_expression.
9658
9659// Return a tree for the pointer to the function to call.
9660
9661tree
9662Interface_field_reference_expression::get_function_tree(Translate_context*,
9663 tree expr)
9664{
9665 if (this->expr_->type()->points_to() != NULL)
9666 expr = build_fold_indirect_ref(expr);
9667
9668 tree expr_type = TREE_TYPE(expr);
9669 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9670
9671 tree field = TYPE_FIELDS(expr_type);
9672 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__methods") == 0);
9673
9674 tree table = build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9675 gcc_assert(POINTER_TYPE_P(TREE_TYPE(table)));
9676
9677 table = build_fold_indirect_ref(table);
9678 gcc_assert(TREE_CODE(TREE_TYPE(table)) == RECORD_TYPE);
9679
9680 std::string name = Gogo::unpack_hidden_name(this->name_);
9681 for (field = DECL_CHAIN(TYPE_FIELDS(TREE_TYPE(table)));
9682 field != NULL_TREE;
9683 field = DECL_CHAIN(field))
9684 {
9685 if (name == IDENTIFIER_POINTER(DECL_NAME(field)))
9686 break;
9687 }
9688 gcc_assert(field != NULL_TREE);
9689
9690 return build3(COMPONENT_REF, TREE_TYPE(field), table, field, NULL_TREE);
9691}
9692
9693// Return a tree for the first argument to pass to the interface
9694// function.
9695
9696tree
9697Interface_field_reference_expression::get_underlying_object_tree(
9698 Translate_context*,
9699 tree expr)
9700{
9701 if (this->expr_->type()->points_to() != NULL)
9702 expr = build_fold_indirect_ref(expr);
9703
9704 tree expr_type = TREE_TYPE(expr);
9705 gcc_assert(TREE_CODE(expr_type) == RECORD_TYPE);
9706
9707 tree field = DECL_CHAIN(TYPE_FIELDS(expr_type));
9708 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__object") == 0);
9709
9710 return build3(COMPONENT_REF, TREE_TYPE(field), expr, field, NULL_TREE);
9711}
9712
9713// Traversal.
9714
9715int
9716Interface_field_reference_expression::do_traverse(Traverse* traverse)
9717{
9718 return Expression::traverse(&this->expr_, traverse);
9719}
9720
9721// Return the type of an interface field reference.
9722
9723Type*
9724Interface_field_reference_expression::do_type()
9725{
9726 Type* expr_type = this->expr_->type();
9727
9728 Type* points_to = expr_type->points_to();
9729 if (points_to != NULL)
9730 expr_type = points_to;
9731
9732 Interface_type* interface_type = expr_type->interface_type();
9733 if (interface_type == NULL)
9734 return Type::make_error_type();
9735
9736 const Typed_identifier* method = interface_type->find_method(this->name_);
9737 if (method == NULL)
9738 return Type::make_error_type();
9739
9740 return method->type();
9741}
9742
9743// Determine types.
9744
9745void
9746Interface_field_reference_expression::do_determine_type(const Type_context*)
9747{
9748 this->expr_->determine_type_no_context();
9749}
9750
9751// Check the types for an interface field reference.
9752
9753void
9754Interface_field_reference_expression::do_check_types(Gogo*)
9755{
9756 Type* type = this->expr_->type();
9757
9758 Type* points_to = type->points_to();
9759 if (points_to != NULL)
9760 type = points_to;
9761
9762 Interface_type* interface_type = type->interface_type();
9763 if (interface_type == NULL)
9764 this->report_error(_("expected interface or pointer to interface"));
9765 else
9766 {
9767 const Typed_identifier* method =
9768 interface_type->find_method(this->name_);
9769 if (method == NULL)
9770 {
9771 error_at(this->location(), "method %qs not in interface",
9772 Gogo::message_name(this->name_).c_str());
9773 this->set_is_error();
9774 }
9775 }
9776}
9777
9778// Get a tree for a reference to a field in an interface. There is no
9779// standard tree type representation for this: it's a function
9780// attached to its first argument, like a Bound_method_expression.
9781// The only places it may currently be used are in a Call_expression
9782// or a Go_statement, which will take it apart directly. So this has
9783// nothing to do at present.
9784
9785tree
9786Interface_field_reference_expression::do_get_tree(Translate_context*)
9787{
9788 gcc_unreachable();
9789}
9790
9791// Make a reference to a field in an interface.
9792
9793Expression*
9794Expression::make_interface_field_reference(Expression* expr,
9795 const std::string& field,
9796 source_location location)
9797{
9798 return new Interface_field_reference_expression(expr, field, location);
9799}
9800
9801// A general selector. This is a Parser_expression for LEFT.NAME. It
9802// is lowered after we know the type of the left hand side.
9803
9804class Selector_expression : public Parser_expression
9805{
9806 public:
9807 Selector_expression(Expression* left, const std::string& name,
9808 source_location location)
9809 : Parser_expression(EXPRESSION_SELECTOR, location),
9810 left_(left), name_(name)
9811 { }
9812
9813 protected:
9814 int
9815 do_traverse(Traverse* traverse)
9816 { return Expression::traverse(&this->left_, traverse); }
9817
9818 Expression*
9819 do_lower(Gogo*, Named_object*, int);
9820
9821 Expression*
9822 do_copy()
9823 {
9824 return new Selector_expression(this->left_->copy(), this->name_,
9825 this->location());
9826 }
9827
9828 private:
9829 Expression*
9830 lower_method_expression(Gogo*);
9831
9832 // The expression on the left hand side.
9833 Expression* left_;
9834 // The name on the right hand side.
9835 std::string name_;
9836};
9837
9838// Lower a selector expression once we know the real type of the left
9839// hand side.
9840
9841Expression*
9842Selector_expression::do_lower(Gogo* gogo, Named_object*, int)
9843{
9844 Expression* left = this->left_;
9845 if (left->is_type_expression())
9846 return this->lower_method_expression(gogo);
9847 return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
9848 this->location());
9849}
9850
9851// Lower a method expression T.M or (*T).M. We turn this into a
9852// function literal.
9853
9854Expression*
9855Selector_expression::lower_method_expression(Gogo* gogo)
9856{
9857 source_location location = this->location();
9858 Type* type = this->left_->type();
9859 const std::string& name(this->name_);
9860
9861 bool is_pointer;
9862 if (type->points_to() == NULL)
9863 is_pointer = false;
9864 else
9865 {
9866 is_pointer = true;
9867 type = type->points_to();
9868 }
9869 Named_type* nt = type->named_type();
9870 if (nt == NULL)
9871 {
9872 error_at(location,
9873 ("method expression requires named type or "
9874 "pointer to named type"));
9875 return Expression::make_error(location);
9876 }
9877
9878 bool is_ambiguous;
9879 Method* method = nt->method_function(name, &is_ambiguous);
9880 if (method == NULL)
9881 {
9882 if (!is_ambiguous)
9883 error_at(location, "type %<%s%> has no method %<%s%>",
9884 nt->message_name().c_str(),
9885 Gogo::message_name(name).c_str());
9886 else
9887 error_at(location, "method %<%s%> is ambiguous in type %<%s%>",
9888 Gogo::message_name(name).c_str(),
9889 nt->message_name().c_str());
9890 return Expression::make_error(location);
9891 }
9892
9893 if (!is_pointer && !method->is_value_method())
9894 {
9895 error_at(location, "method requires pointer (use %<(*%s).%s)%>",
9896 nt->message_name().c_str(),
9897 Gogo::message_name(name).c_str());
9898 return Expression::make_error(location);
9899 }
9900
9901 // Build a new function type in which the receiver becomes the first
9902 // argument.
9903 Function_type* method_type = method->type();
9904 gcc_assert(method_type->is_method());
9905
9906 const char* const receiver_name = "$this";
9907 Typed_identifier_list* parameters = new Typed_identifier_list();
9908 parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
9909 location));
9910
9911 const Typed_identifier_list* method_parameters = method_type->parameters();
9912 if (method_parameters != NULL)
9913 {
9914 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9915 p != method_parameters->end();
9916 ++p)
9917 parameters->push_back(*p);
9918 }
9919
9920 const Typed_identifier_list* method_results = method_type->results();
9921 Typed_identifier_list* results;
9922 if (method_results == NULL)
9923 results = NULL;
9924 else
9925 {
9926 results = new Typed_identifier_list();
9927 for (Typed_identifier_list::const_iterator p = method_results->begin();
9928 p != method_results->end();
9929 ++p)
9930 results->push_back(*p);
9931 }
9932
9933 Function_type* fntype = Type::make_function_type(NULL, parameters, results,
9934 location);
9935 if (method_type->is_varargs())
9936 fntype->set_is_varargs();
9937
9938 // We generate methods which always takes a pointer to the receiver
9939 // as their first argument. If this is for a pointer type, we can
9940 // simply reuse the existing function. We use an internal hack to
9941 // get the right type.
9942
9943 if (is_pointer)
9944 {
9945 Named_object* mno = (method->needs_stub_method()
9946 ? method->stub_object()
9947 : method->named_object());
9948 Expression* f = Expression::make_func_reference(mno, NULL, location);
9949 f = Expression::make_cast(fntype, f, location);
9950 Type_conversion_expression* tce =
9951 static_cast<Type_conversion_expression*>(f);
9952 tce->set_may_convert_function_types();
9953 return f;
9954 }
9955
9956 Named_object* no = gogo->start_function(Gogo::thunk_name(), fntype, false,
9957 location);
9958
9959 Named_object* vno = gogo->lookup(receiver_name, NULL);
9960 gcc_assert(vno != NULL);
9961 Expression* ve = Expression::make_var_reference(vno, location);
9962 Expression* bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
9963 gcc_assert(bm != NULL && !bm->is_error_expression());
9964
9965 Expression_list* args;
9966 if (method_parameters == NULL)
9967 args = NULL;
9968 else
9969 {
9970 args = new Expression_list();
9971 for (Typed_identifier_list::const_iterator p = method_parameters->begin();
9972 p != method_parameters->end();
9973 ++p)
9974 {
9975 vno = gogo->lookup(p->name(), NULL);
9976 gcc_assert(vno != NULL);
9977 args->push_back(Expression::make_var_reference(vno, location));
9978 }
9979 }
9980
9981 Call_expression* call = Expression::make_call(bm, args,
9982 method_type->is_varargs(),
9983 location);
9984
9985 size_t count = call->result_count();
9986 Statement* s;
9987 if (count == 0)
9988 s = Statement::make_statement(call);
9989 else
9990 {
9991 Expression_list* retvals = new Expression_list();
9992 if (count <= 1)
9993 retvals->push_back(call);
9994 else
9995 {
9996 for (size_t i = 0; i < count; ++i)
9997 retvals->push_back(Expression::make_call_result(call, i));
9998 }
9999 s = Statement::make_return_statement(no->func_value()->type()->results(),
10000 retvals, location);
10001 }
10002 gogo->add_statement(s);
10003
10004 gogo->finish_function(location);
10005
10006 return Expression::make_func_reference(no, NULL, location);
10007}
10008
10009// Make a selector expression.
10010
10011Expression*
10012Expression::make_selector(Expression* left, const std::string& name,
10013 source_location location)
10014{
10015 return new Selector_expression(left, name, location);
10016}
10017
10018// Implement the builtin function new.
10019
10020class Allocation_expression : public Expression
10021{
10022 public:
10023 Allocation_expression(Type* type, source_location location)
10024 : Expression(EXPRESSION_ALLOCATION, location),
10025 type_(type)
10026 { }
10027
10028 protected:
10029 int
10030 do_traverse(Traverse* traverse)
10031 { return Type::traverse(this->type_, traverse); }
10032
10033 Type*
10034 do_type()
10035 { return Type::make_pointer_type(this->type_); }
10036
10037 void
10038 do_determine_type(const Type_context*)
10039 { }
10040
10041 void
10042 do_check_types(Gogo*);
10043
10044 Expression*
10045 do_copy()
10046 { return new Allocation_expression(this->type_, this->location()); }
10047
10048 tree
10049 do_get_tree(Translate_context*);
10050
10051 private:
10052 // The type we are allocating.
10053 Type* type_;
10054};
10055
10056// Check the type of an allocation expression.
10057
10058void
10059Allocation_expression::do_check_types(Gogo*)
10060{
10061 if (this->type_->function_type() != NULL)
10062 this->report_error(_("invalid new of function type"));
10063}
10064
10065// Return a tree for an allocation expression.
10066
10067tree
10068Allocation_expression::do_get_tree(Translate_context* context)
10069{
10070 tree type_tree = this->type_->get_tree(context->gogo());
10071 tree size_tree = TYPE_SIZE_UNIT(type_tree);
10072 tree space = context->gogo()->allocate_memory(this->type_, size_tree,
10073 this->location());
10074 return fold_convert(build_pointer_type(type_tree), space);
10075}
10076
10077// Make an allocation expression.
10078
10079Expression*
10080Expression::make_allocation(Type* type, source_location location)
10081{
10082 return new Allocation_expression(type, location);
10083}
10084
10085// Implement the builtin function make.
10086
10087class Make_expression : public Expression
10088{
10089 public:
10090 Make_expression(Type* type, Expression_list* args, source_location location)
10091 : Expression(EXPRESSION_MAKE, location),
10092 type_(type), args_(args)
10093 { }
10094
10095 protected:
10096 int
10097 do_traverse(Traverse* traverse);
10098
10099 Type*
10100 do_type()
10101 { return this->type_; }
10102
10103 void
10104 do_determine_type(const Type_context*);
10105
10106 void
10107 do_check_types(Gogo*);
10108
10109 Expression*
10110 do_copy()
10111 {
10112 return new Make_expression(this->type_, this->args_->copy(),
10113 this->location());
10114 }
10115
10116 tree
10117 do_get_tree(Translate_context*);
10118
10119 private:
10120 // The type we are making.
10121 Type* type_;
10122 // The arguments to pass to the make routine.
10123 Expression_list* args_;
10124};
10125
10126// Traversal.
10127
10128int
10129Make_expression::do_traverse(Traverse* traverse)
10130{
10131 if (this->args_ != NULL
10132 && this->args_->traverse(traverse) == TRAVERSE_EXIT)
10133 return TRAVERSE_EXIT;
10134 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10135 return TRAVERSE_EXIT;
10136 return TRAVERSE_CONTINUE;
10137}
10138
10139// Set types of arguments.
10140
10141void
10142Make_expression::do_determine_type(const Type_context*)
10143{
10144 if (this->args_ != NULL)
10145 {
10146 Type_context context(Type::lookup_integer_type("int"), false);
10147 for (Expression_list::const_iterator pe = this->args_->begin();
10148 pe != this->args_->end();
10149 ++pe)
10150 (*pe)->determine_type(&context);
10151 }
10152}
10153
10154// Check types for a make expression.
10155
10156void
10157Make_expression::do_check_types(Gogo*)
10158{
10159 if (this->type_->channel_type() == NULL
10160 && this->type_->map_type() == NULL
10161 && (this->type_->array_type() == NULL
10162 || this->type_->array_type()->length() != NULL))
10163 this->report_error(_("invalid type for make function"));
10164 else if (!this->type_->check_make_expression(this->args_, this->location()))
10165 this->set_is_error();
10166}
10167
10168// Return a tree for a make expression.
10169
10170tree
10171Make_expression::do_get_tree(Translate_context* context)
10172{
10173 return this->type_->make_expression_tree(context, this->args_,
10174 this->location());
10175}
10176
10177// Make a make expression.
10178
10179Expression*
10180Expression::make_make(Type* type, Expression_list* args,
10181 source_location location)
10182{
10183 return new Make_expression(type, args, location);
10184}
10185
10186// Construct a struct.
10187
10188class Struct_construction_expression : public Expression
10189{
10190 public:
10191 Struct_construction_expression(Type* type, Expression_list* vals,
10192 source_location location)
10193 : Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
10194 type_(type), vals_(vals)
10195 { }
10196
10197 // Return whether this is a constant initializer.
10198 bool
10199 is_constant_struct() const;
10200
10201 protected:
10202 int
10203 do_traverse(Traverse* traverse);
10204
10205 Type*
10206 do_type()
10207 { return this->type_; }
10208
10209 void
10210 do_determine_type(const Type_context*);
10211
10212 void
10213 do_check_types(Gogo*);
10214
10215 Expression*
10216 do_copy()
10217 {
10218 return new Struct_construction_expression(this->type_, this->vals_->copy(),
10219 this->location());
10220 }
10221
10222 bool
10223 do_is_addressable() const
10224 { return true; }
10225
10226 tree
10227 do_get_tree(Translate_context*);
10228
10229 void
10230 do_export(Export*) const;
10231
10232 private:
10233 // The type of the struct to construct.
10234 Type* type_;
10235 // The list of values, in order of the fields in the struct. A NULL
10236 // entry means that the field should be zero-initialized.
10237 Expression_list* vals_;
10238};
10239
10240// Traversal.
10241
10242int
10243Struct_construction_expression::do_traverse(Traverse* traverse)
10244{
10245 if (this->vals_ != NULL
10246 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10247 return TRAVERSE_EXIT;
10248 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10249 return TRAVERSE_EXIT;
10250 return TRAVERSE_CONTINUE;
10251}
10252
10253// Return whether this is a constant initializer.
10254
10255bool
10256Struct_construction_expression::is_constant_struct() const
10257{
10258 if (this->vals_ == NULL)
10259 return true;
10260 for (Expression_list::const_iterator pv = this->vals_->begin();
10261 pv != this->vals_->end();
10262 ++pv)
10263 {
10264 if (*pv != NULL
10265 && !(*pv)->is_constant()
10266 && (!(*pv)->is_composite_literal()
10267 || (*pv)->is_nonconstant_composite_literal()))
10268 return false;
10269 }
10270
10271 const Struct_field_list* fields = this->type_->struct_type()->fields();
10272 for (Struct_field_list::const_iterator pf = fields->begin();
10273 pf != fields->end();
10274 ++pf)
10275 {
10276 // There are no constant constructors for interfaces.
10277 if (pf->type()->interface_type() != NULL)
10278 return false;
10279 }
10280
10281 return true;
10282}
10283
10284// Final type determination.
10285
10286void
10287Struct_construction_expression::do_determine_type(const Type_context*)
10288{
10289 if (this->vals_ == NULL)
10290 return;
10291 const Struct_field_list* fields = this->type_->struct_type()->fields();
10292 Expression_list::const_iterator pv = this->vals_->begin();
10293 for (Struct_field_list::const_iterator pf = fields->begin();
10294 pf != fields->end();
10295 ++pf, ++pv)
10296 {
10297 if (pv == this->vals_->end())
10298 return;
10299 if (*pv != NULL)
10300 {
10301 Type_context subcontext(pf->type(), false);
10302 (*pv)->determine_type(&subcontext);
10303 }
10304 }
10305}
10306
10307// Check types.
10308
10309void
10310Struct_construction_expression::do_check_types(Gogo*)
10311{
10312 if (this->vals_ == NULL)
10313 return;
10314
10315 Struct_type* st = this->type_->struct_type();
10316 if (this->vals_->size() > st->field_count())
10317 {
10318 this->report_error(_("too many expressions for struct"));
10319 return;
10320 }
10321
10322 const Struct_field_list* fields = st->fields();
10323 Expression_list::const_iterator pv = this->vals_->begin();
10324 int i = 0;
10325 for (Struct_field_list::const_iterator pf = fields->begin();
10326 pf != fields->end();
10327 ++pf, ++pv, ++i)
10328 {
10329 if (pv == this->vals_->end())
10330 {
10331 this->report_error(_("too few expressions for struct"));
10332 break;
10333 }
10334
10335 if (*pv == NULL)
10336 continue;
10337
10338 std::string reason;
10339 if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
10340 {
10341 if (reason.empty())
10342 error_at((*pv)->location(),
10343 "incompatible type for field %d in struct construction",
10344 i + 1);
10345 else
10346 error_at((*pv)->location(),
10347 ("incompatible type for field %d in "
10348 "struct construction (%s)"),
10349 i + 1, reason.c_str());
10350 this->set_is_error();
10351 }
10352 }
10353 gcc_assert(pv == this->vals_->end());
10354}
10355
10356// Return a tree for constructing a struct.
10357
10358tree
10359Struct_construction_expression::do_get_tree(Translate_context* context)
10360{
10361 Gogo* gogo = context->gogo();
10362
10363 if (this->vals_ == NULL)
10364 return this->type_->get_init_tree(gogo, false);
10365
10366 tree type_tree = this->type_->get_tree(gogo);
10367 if (type_tree == error_mark_node)
10368 return error_mark_node;
10369 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10370
10371 bool is_constant = true;
10372 const Struct_field_list* fields = this->type_->struct_type()->fields();
10373 VEC(constructor_elt,gc)* elts = VEC_alloc(constructor_elt, gc,
10374 fields->size());
10375 Struct_field_list::const_iterator pf = fields->begin();
10376 Expression_list::const_iterator pv = this->vals_->begin();
10377 for (tree field = TYPE_FIELDS(type_tree);
10378 field != NULL_TREE;
10379 field = DECL_CHAIN(field), ++pf)
10380 {
10381 gcc_assert(pf != fields->end());
10382
10383 tree val;
10384 if (pv == this->vals_->end())
10385 val = pf->type()->get_init_tree(gogo, false);
10386 else if (*pv == NULL)
10387 {
10388 val = pf->type()->get_init_tree(gogo, false);
10389 ++pv;
10390 }
10391 else
10392 {
10393 val = Expression::convert_for_assignment(context, pf->type(),
10394 (*pv)->type(),
10395 (*pv)->get_tree(context),
10396 this->location());
10397 ++pv;
10398 }
10399
10400 if (val == error_mark_node || TREE_TYPE(val) == error_mark_node)
10401 return error_mark_node;
10402
10403 constructor_elt* elt = VEC_quick_push(constructor_elt, elts, NULL);
10404 elt->index = field;
10405 elt->value = val;
10406 if (!TREE_CONSTANT(val))
10407 is_constant = false;
10408 }
10409 gcc_assert(pf == fields->end());
10410
10411 tree ret = build_constructor(type_tree, elts);
10412 if (is_constant)
10413 TREE_CONSTANT(ret) = 1;
10414 return ret;
10415}
10416
10417// Export a struct construction.
10418
10419void
10420Struct_construction_expression::do_export(Export* exp) const
10421{
10422 exp->write_c_string("convert(");
10423 exp->write_type(this->type_);
10424 for (Expression_list::const_iterator pv = this->vals_->begin();
10425 pv != this->vals_->end();
10426 ++pv)
10427 {
10428 exp->write_c_string(", ");
10429 if (*pv != NULL)
10430 (*pv)->export_expression(exp);
10431 }
10432 exp->write_c_string(")");
10433}
10434
10435// Make a struct composite literal. This used by the thunk code.
10436
10437Expression*
10438Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
10439 source_location location)
10440{
10441 gcc_assert(type->struct_type() != NULL);
10442 return new Struct_construction_expression(type, vals, location);
10443}
10444
10445// Construct an array. This class is not used directly; instead we
10446// use the child classes, Fixed_array_construction_expression and
10447// Open_array_construction_expression.
10448
10449class Array_construction_expression : public Expression
10450{
10451 protected:
10452 Array_construction_expression(Expression_classification classification,
10453 Type* type, Expression_list* vals,
10454 source_location location)
10455 : Expression(classification, location),
10456 type_(type), vals_(vals)
10457 { }
10458
10459 public:
10460 // Return whether this is a constant initializer.
10461 bool
10462 is_constant_array() const;
10463
10464 // Return the number of elements.
10465 size_t
10466 element_count() const
10467 { return this->vals_ == NULL ? 0 : this->vals_->size(); }
10468
10469protected:
10470 int
10471 do_traverse(Traverse* traverse);
10472
10473 Type*
10474 do_type()
10475 { return this->type_; }
10476
10477 void
10478 do_determine_type(const Type_context*);
10479
10480 void
10481 do_check_types(Gogo*);
10482
10483 bool
10484 do_is_addressable() const
10485 { return true; }
10486
10487 void
10488 do_export(Export*) const;
10489
10490 // The list of values.
10491 Expression_list*
10492 vals()
10493 { return this->vals_; }
10494
10495 // Get a constructor tree for the array values.
10496 tree
10497 get_constructor_tree(Translate_context* context, tree type_tree);
10498
10499 private:
10500 // The type of the array to construct.
10501 Type* type_;
10502 // The list of values.
10503 Expression_list* vals_;
10504};
10505
10506// Traversal.
10507
10508int
10509Array_construction_expression::do_traverse(Traverse* traverse)
10510{
10511 if (this->vals_ != NULL
10512 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10513 return TRAVERSE_EXIT;
10514 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10515 return TRAVERSE_EXIT;
10516 return TRAVERSE_CONTINUE;
10517}
10518
10519// Return whether this is a constant initializer.
10520
10521bool
10522Array_construction_expression::is_constant_array() const
10523{
10524 if (this->vals_ == NULL)
10525 return true;
10526
10527 // There are no constant constructors for interfaces.
10528 if (this->type_->array_type()->element_type()->interface_type() != NULL)
10529 return false;
10530
10531 for (Expression_list::const_iterator pv = this->vals_->begin();
10532 pv != this->vals_->end();
10533 ++pv)
10534 {
10535 if (*pv != NULL
10536 && !(*pv)->is_constant()
10537 && (!(*pv)->is_composite_literal()
10538 || (*pv)->is_nonconstant_composite_literal()))
10539 return false;
10540 }
10541 return true;
10542}
10543
10544// Final type determination.
10545
10546void
10547Array_construction_expression::do_determine_type(const Type_context*)
10548{
10549 if (this->vals_ == NULL)
10550 return;
10551 Type_context subcontext(this->type_->array_type()->element_type(), false);
10552 for (Expression_list::const_iterator pv = this->vals_->begin();
10553 pv != this->vals_->end();
10554 ++pv)
10555 {
10556 if (*pv != NULL)
10557 (*pv)->determine_type(&subcontext);
10558 }
10559}
10560
10561// Check types.
10562
10563void
10564Array_construction_expression::do_check_types(Gogo*)
10565{
10566 if (this->vals_ == NULL)
10567 return;
10568
10569 Array_type* at = this->type_->array_type();
10570 int i = 0;
10571 Type* element_type = at->element_type();
10572 for (Expression_list::const_iterator pv = this->vals_->begin();
10573 pv != this->vals_->end();
10574 ++pv, ++i)
10575 {
10576 if (*pv != NULL
10577 && !Type::are_assignable(element_type, (*pv)->type(), NULL))
10578 {
10579 error_at((*pv)->location(),
10580 "incompatible type for element %d in composite literal",
10581 i + 1);
10582 this->set_is_error();
10583 }
10584 }
10585
10586 Expression* length = at->length();
10587 if (length != NULL)
10588 {
10589 mpz_t val;
10590 mpz_init(val);
10591 Type* type;
10592 if (at->length()->integer_constant_value(true, val, &type))
10593 {
10594 if (this->vals_->size() > mpz_get_ui(val))
10595 this->report_error(_("too many elements in composite literal"));
10596 }
10597 mpz_clear(val);
10598 }
10599}
10600
10601// Get a constructor tree for the array values.
10602
10603tree
10604Array_construction_expression::get_constructor_tree(Translate_context* context,
10605 tree type_tree)
10606{
10607 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
10608 (this->vals_ == NULL
10609 ? 0
10610 : this->vals_->size()));
10611 Type* element_type = this->type_->array_type()->element_type();
10612 bool is_constant = true;
10613 if (this->vals_ != NULL)
10614 {
10615 size_t i = 0;
10616 for (Expression_list::const_iterator pv = this->vals_->begin();
10617 pv != this->vals_->end();
10618 ++pv, ++i)
10619 {
10620 constructor_elt* elt = VEC_quick_push(constructor_elt, values, NULL);
10621 elt->index = size_int(i);
10622 if (*pv == NULL)
10623 elt->value = element_type->get_init_tree(context->gogo(), false);
10624 else
10625 {
10626 tree value_tree = (*pv)->get_tree(context);
10627 elt->value = Expression::convert_for_assignment(context,
10628 element_type,
10629 (*pv)->type(),
10630 value_tree,
10631 this->location());
10632 }
10633 if (elt->value == error_mark_node)
10634 return error_mark_node;
10635 if (!TREE_CONSTANT(elt->value))
10636 is_constant = false;
10637 }
10638 }
10639
10640 tree ret = build_constructor(type_tree, values);
10641 if (is_constant)
10642 TREE_CONSTANT(ret) = 1;
10643 return ret;
10644}
10645
10646// Export an array construction.
10647
10648void
10649Array_construction_expression::do_export(Export* exp) const
10650{
10651 exp->write_c_string("convert(");
10652 exp->write_type(this->type_);
10653 if (this->vals_ != NULL)
10654 {
10655 for (Expression_list::const_iterator pv = this->vals_->begin();
10656 pv != this->vals_->end();
10657 ++pv)
10658 {
10659 exp->write_c_string(", ");
10660 if (*pv != NULL)
10661 (*pv)->export_expression(exp);
10662 }
10663 }
10664 exp->write_c_string(")");
10665}
10666
10667// Construct a fixed array.
10668
10669class Fixed_array_construction_expression :
10670 public Array_construction_expression
10671{
10672 public:
10673 Fixed_array_construction_expression(Type* type, Expression_list* vals,
10674 source_location location)
10675 : Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
10676 type, vals, location)
10677 {
10678 gcc_assert(type->array_type() != NULL
10679 && type->array_type()->length() != NULL);
10680 }
10681
10682 protected:
10683 Expression*
10684 do_copy()
10685 {
10686 return new Fixed_array_construction_expression(this->type(),
10687 (this->vals() == NULL
10688 ? NULL
10689 : this->vals()->copy()),
10690 this->location());
10691 }
10692
10693 tree
10694 do_get_tree(Translate_context*);
10695};
10696
10697// Return a tree for constructing a fixed array.
10698
10699tree
10700Fixed_array_construction_expression::do_get_tree(Translate_context* context)
10701{
10702 return this->get_constructor_tree(context,
10703 this->type()->get_tree(context->gogo()));
10704}
10705
10706// Construct an open array.
10707
10708class Open_array_construction_expression : public Array_construction_expression
10709{
10710 public:
10711 Open_array_construction_expression(Type* type, Expression_list* vals,
10712 source_location location)
10713 : Array_construction_expression(EXPRESSION_OPEN_ARRAY_CONSTRUCTION,
10714 type, vals, location)
10715 {
10716 gcc_assert(type->array_type() != NULL
10717 && type->array_type()->length() == NULL);
10718 }
10719
10720 protected:
10721 // Note that taking the address of an open array literal is invalid.
10722
10723 Expression*
10724 do_copy()
10725 {
10726 return new Open_array_construction_expression(this->type(),
10727 (this->vals() == NULL
10728 ? NULL
10729 : this->vals()->copy()),
10730 this->location());
10731 }
10732
10733 tree
10734 do_get_tree(Translate_context*);
10735};
10736
10737// Return a tree for constructing an open array.
10738
10739tree
10740Open_array_construction_expression::do_get_tree(Translate_context* context)
10741{
10742 Type* element_type = this->type()->array_type()->element_type();
10743 tree element_type_tree = element_type->get_tree(context->gogo());
3d60812e 10744 if (element_type_tree == error_mark_node)
10745 return error_mark_node;
10746
e440a328 10747 tree values;
10748 tree length_tree;
10749 if (this->vals() == NULL || this->vals()->empty())
10750 {
10751 // We need to create a unique value.
10752 tree max = size_int(0);
10753 tree constructor_type = build_array_type(element_type_tree,
10754 build_index_type(max));
10755 if (constructor_type == error_mark_node)
10756 return error_mark_node;
10757 VEC(constructor_elt,gc)* vec = VEC_alloc(constructor_elt, gc, 1);
10758 constructor_elt* elt = VEC_quick_push(constructor_elt, vec, NULL);
10759 elt->index = size_int(0);
10760 elt->value = element_type->get_init_tree(context->gogo(), false);
10761 values = build_constructor(constructor_type, vec);
10762 if (TREE_CONSTANT(elt->value))
10763 TREE_CONSTANT(values) = 1;
10764 length_tree = size_int(0);
10765 }
10766 else
10767 {
10768 tree max = size_int(this->vals()->size() - 1);
10769 tree constructor_type = build_array_type(element_type_tree,
10770 build_index_type(max));
10771 if (constructor_type == error_mark_node)
10772 return error_mark_node;
10773 values = this->get_constructor_tree(context, constructor_type);
10774 length_tree = size_int(this->vals()->size());
10775 }
10776
10777 if (values == error_mark_node)
10778 return error_mark_node;
10779
10780 bool is_constant_initializer = TREE_CONSTANT(values);
10781 bool is_in_function = context->function() != NULL;
10782
10783 if (is_constant_initializer)
10784 {
10785 tree tmp = build_decl(this->location(), VAR_DECL,
10786 create_tmp_var_name("C"), TREE_TYPE(values));
10787 DECL_EXTERNAL(tmp) = 0;
10788 TREE_PUBLIC(tmp) = 0;
10789 TREE_STATIC(tmp) = 1;
10790 DECL_ARTIFICIAL(tmp) = 1;
10791 if (is_in_function)
10792 {
10793 // If this is not a function, we will only initialize the
10794 // value once, so we can use this directly rather than
10795 // copying it. In that case we can't make it read-only,
10796 // because the program is permitted to change it.
10797 TREE_READONLY(tmp) = 1;
10798 TREE_CONSTANT(tmp) = 1;
10799 }
10800 DECL_INITIAL(tmp) = values;
10801 rest_of_decl_compilation(tmp, 1, 0);
10802 values = tmp;
10803 }
10804
10805 tree space;
10806 tree set;
10807 if (!is_in_function && is_constant_initializer)
10808 {
10809 // Outside of a function, we know the initializer will only run
10810 // once.
10811 space = build_fold_addr_expr(values);
10812 set = NULL_TREE;
10813 }
10814 else
10815 {
10816 tree memsize = TYPE_SIZE_UNIT(TREE_TYPE(values));
10817 space = context->gogo()->allocate_memory(element_type, memsize,
10818 this->location());
10819 space = save_expr(space);
10820
10821 tree s = fold_convert(build_pointer_type(TREE_TYPE(values)), space);
10822 tree ref = build_fold_indirect_ref_loc(this->location(), s);
10823 TREE_THIS_NOTRAP(ref) = 1;
10824 set = build2(MODIFY_EXPR, void_type_node, ref, values);
10825 }
10826
10827 // Build a constructor for the open array.
10828
10829 tree type_tree = this->type()->get_tree(context->gogo());
3d60812e 10830 if (type_tree == error_mark_node)
10831 return error_mark_node;
e440a328 10832 gcc_assert(TREE_CODE(type_tree) == RECORD_TYPE);
10833
10834 VEC(constructor_elt,gc)* init = VEC_alloc(constructor_elt, gc, 3);
10835
10836 constructor_elt* elt = VEC_quick_push(constructor_elt, init, NULL);
10837 tree field = TYPE_FIELDS(type_tree);
10838 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__values") == 0);
10839 elt->index = field;
10840 elt->value = fold_convert(TREE_TYPE(field), space);
10841
10842 elt = VEC_quick_push(constructor_elt, init, NULL);
10843 field = DECL_CHAIN(field);
10844 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)), "__count") == 0);
10845 elt->index = field;
10846 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10847
10848 elt = VEC_quick_push(constructor_elt, init, NULL);
10849 field = DECL_CHAIN(field);
10850 gcc_assert(strcmp(IDENTIFIER_POINTER(DECL_NAME(field)),"__capacity") == 0);
10851 elt->index = field;
10852 elt->value = fold_convert(TREE_TYPE(field), length_tree);
10853
10854 tree constructor = build_constructor(type_tree, init);
3d60812e 10855 if (constructor == error_mark_node)
10856 return error_mark_node;
e440a328 10857 if (!is_in_function && is_constant_initializer)
10858 TREE_CONSTANT(constructor) = 1;
10859
10860 if (set == NULL_TREE)
10861 return constructor;
10862 else
10863 return build2(COMPOUND_EXPR, type_tree, set, constructor);
10864}
10865
10866// Make a slice composite literal. This is used by the type
10867// descriptor code.
10868
10869Expression*
10870Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
10871 source_location location)
10872{
10873 gcc_assert(type->is_open_array_type());
10874 return new Open_array_construction_expression(type, vals, location);
10875}
10876
10877// Construct a map.
10878
10879class Map_construction_expression : public Expression
10880{
10881 public:
10882 Map_construction_expression(Type* type, Expression_list* vals,
10883 source_location location)
10884 : Expression(EXPRESSION_MAP_CONSTRUCTION, location),
10885 type_(type), vals_(vals)
10886 { gcc_assert(vals == NULL || vals->size() % 2 == 0); }
10887
10888 protected:
10889 int
10890 do_traverse(Traverse* traverse);
10891
10892 Type*
10893 do_type()
10894 { return this->type_; }
10895
10896 void
10897 do_determine_type(const Type_context*);
10898
10899 void
10900 do_check_types(Gogo*);
10901
10902 Expression*
10903 do_copy()
10904 {
10905 return new Map_construction_expression(this->type_, this->vals_->copy(),
10906 this->location());
10907 }
10908
10909 tree
10910 do_get_tree(Translate_context*);
10911
10912 void
10913 do_export(Export*) const;
10914
10915 private:
10916 // The type of the map to construct.
10917 Type* type_;
10918 // The list of values.
10919 Expression_list* vals_;
10920};
10921
10922// Traversal.
10923
10924int
10925Map_construction_expression::do_traverse(Traverse* traverse)
10926{
10927 if (this->vals_ != NULL
10928 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
10929 return TRAVERSE_EXIT;
10930 if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
10931 return TRAVERSE_EXIT;
10932 return TRAVERSE_CONTINUE;
10933}
10934
10935// Final type determination.
10936
10937void
10938Map_construction_expression::do_determine_type(const Type_context*)
10939{
10940 if (this->vals_ == NULL)
10941 return;
10942
10943 Map_type* mt = this->type_->map_type();
10944 Type_context key_context(mt->key_type(), false);
10945 Type_context val_context(mt->val_type(), false);
10946 for (Expression_list::const_iterator pv = this->vals_->begin();
10947 pv != this->vals_->end();
10948 ++pv)
10949 {
10950 (*pv)->determine_type(&key_context);
10951 ++pv;
10952 (*pv)->determine_type(&val_context);
10953 }
10954}
10955
10956// Check types.
10957
10958void
10959Map_construction_expression::do_check_types(Gogo*)
10960{
10961 if (this->vals_ == NULL)
10962 return;
10963
10964 Map_type* mt = this->type_->map_type();
10965 int i = 0;
10966 Type* key_type = mt->key_type();
10967 Type* val_type = mt->val_type();
10968 for (Expression_list::const_iterator pv = this->vals_->begin();
10969 pv != this->vals_->end();
10970 ++pv, ++i)
10971 {
10972 if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
10973 {
10974 error_at((*pv)->location(),
10975 "incompatible type for element %d key in map construction",
10976 i + 1);
10977 this->set_is_error();
10978 }
10979 ++pv;
10980 if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
10981 {
10982 error_at((*pv)->location(),
10983 ("incompatible type for element %d value "
10984 "in map construction"),
10985 i + 1);
10986 this->set_is_error();
10987 }
10988 }
10989}
10990
10991// Return a tree for constructing a map.
10992
10993tree
10994Map_construction_expression::do_get_tree(Translate_context* context)
10995{
10996 Gogo* gogo = context->gogo();
10997 source_location loc = this->location();
10998
10999 Map_type* mt = this->type_->map_type();
11000
11001 // Build a struct to hold the key and value.
11002 tree struct_type = make_node(RECORD_TYPE);
11003
11004 Type* key_type = mt->key_type();
11005 tree id = get_identifier("__key");
11006 tree key_field = build_decl(loc, FIELD_DECL, id, key_type->get_tree(gogo));
11007 DECL_CONTEXT(key_field) = struct_type;
11008 TYPE_FIELDS(struct_type) = key_field;
11009
11010 Type* val_type = mt->val_type();
11011 id = get_identifier("__val");
11012 tree val_field = build_decl(loc, FIELD_DECL, id, val_type->get_tree(gogo));
11013 DECL_CONTEXT(val_field) = struct_type;
11014 DECL_CHAIN(key_field) = val_field;
11015
11016 layout_type(struct_type);
11017
11018 bool is_constant = true;
11019 size_t i = 0;
11020 tree valaddr;
11021 tree make_tmp;
11022
11023 if (this->vals_ == NULL || this->vals_->empty())
11024 {
11025 valaddr = null_pointer_node;
11026 make_tmp = NULL_TREE;
11027 }
11028 else
11029 {
11030 VEC(constructor_elt,gc)* values = VEC_alloc(constructor_elt, gc,
11031 this->vals_->size() / 2);
11032
11033 for (Expression_list::const_iterator pv = this->vals_->begin();
11034 pv != this->vals_->end();
11035 ++pv, ++i)
11036 {
11037 bool one_is_constant = true;
11038
11039 VEC(constructor_elt,gc)* one = VEC_alloc(constructor_elt, gc, 2);
11040
11041 constructor_elt* elt = VEC_quick_push(constructor_elt, one, NULL);
11042 elt->index = key_field;
11043 tree val_tree = (*pv)->get_tree(context);
11044 elt->value = Expression::convert_for_assignment(context, key_type,
11045 (*pv)->type(),
11046 val_tree, loc);
11047 if (elt->value == error_mark_node)
11048 return error_mark_node;
11049 if (!TREE_CONSTANT(elt->value))
11050 one_is_constant = false;
11051
11052 ++pv;
11053
11054 elt = VEC_quick_push(constructor_elt, one, NULL);
11055 elt->index = val_field;
11056 val_tree = (*pv)->get_tree(context);
11057 elt->value = Expression::convert_for_assignment(context, val_type,
11058 (*pv)->type(),
11059 val_tree, loc);
11060 if (elt->value == error_mark_node)
11061 return error_mark_node;
11062 if (!TREE_CONSTANT(elt->value))
11063 one_is_constant = false;
11064
11065 elt = VEC_quick_push(constructor_elt, values, NULL);
11066 elt->index = size_int(i);
11067 elt->value = build_constructor(struct_type, one);
11068 if (one_is_constant)
11069 TREE_CONSTANT(elt->value) = 1;
11070 else
11071 is_constant = false;
11072 }
11073
11074 tree index_type = build_index_type(size_int(i - 1));
11075 tree array_type = build_array_type(struct_type, index_type);
11076 tree init = build_constructor(array_type, values);
11077 if (is_constant)
11078 TREE_CONSTANT(init) = 1;
11079 tree tmp;
11080 if (current_function_decl != NULL)
11081 {
11082 tmp = create_tmp_var(array_type, get_name(array_type));
11083 DECL_INITIAL(tmp) = init;
11084 make_tmp = fold_build1_loc(loc, DECL_EXPR, void_type_node, tmp);
11085 TREE_ADDRESSABLE(tmp) = 1;
11086 }
11087 else
11088 {
11089 tmp = build_decl(loc, VAR_DECL, create_tmp_var_name("M"), array_type);
11090 DECL_EXTERNAL(tmp) = 0;
11091 TREE_PUBLIC(tmp) = 0;
11092 TREE_STATIC(tmp) = 1;
11093 DECL_ARTIFICIAL(tmp) = 1;
11094 if (!TREE_CONSTANT(init))
11095 make_tmp = fold_build2_loc(loc, INIT_EXPR, void_type_node, tmp,
11096 init);
11097 else
11098 {
11099 TREE_READONLY(tmp) = 1;
11100 TREE_CONSTANT(tmp) = 1;
11101 DECL_INITIAL(tmp) = init;
11102 make_tmp = NULL_TREE;
11103 }
11104 rest_of_decl_compilation(tmp, 1, 0);
11105 }
11106
11107 valaddr = build_fold_addr_expr(tmp);
11108 }
11109
11110 tree descriptor = gogo->map_descriptor(mt);
11111
11112 tree type_tree = this->type_->get_tree(gogo);
11113
11114 static tree construct_map_fndecl;
11115 tree call = Gogo::call_builtin(&construct_map_fndecl,
11116 loc,
11117 "__go_construct_map",
11118 6,
11119 type_tree,
11120 TREE_TYPE(descriptor),
11121 descriptor,
11122 sizetype,
11123 size_int(i),
11124 sizetype,
11125 TYPE_SIZE_UNIT(struct_type),
11126 sizetype,
11127 byte_position(val_field),
11128 sizetype,
11129 TYPE_SIZE_UNIT(TREE_TYPE(val_field)),
11130 const_ptr_type_node,
11131 fold_convert(const_ptr_type_node, valaddr));
11132
11133 tree ret;
11134 if (make_tmp == NULL)
11135 ret = call;
11136 else
11137 ret = fold_build2_loc(loc, COMPOUND_EXPR, type_tree, make_tmp, call);
11138 return ret;
11139}
11140
11141// Export an array construction.
11142
11143void
11144Map_construction_expression::do_export(Export* exp) const
11145{
11146 exp->write_c_string("convert(");
11147 exp->write_type(this->type_);
11148 for (Expression_list::const_iterator pv = this->vals_->begin();
11149 pv != this->vals_->end();
11150 ++pv)
11151 {
11152 exp->write_c_string(", ");
11153 (*pv)->export_expression(exp);
11154 }
11155 exp->write_c_string(")");
11156}
11157
11158// A general composite literal. This is lowered to a type specific
11159// version.
11160
11161class Composite_literal_expression : public Parser_expression
11162{
11163 public:
11164 Composite_literal_expression(Type* type, int depth, bool has_keys,
11165 Expression_list* vals, source_location location)
11166 : Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
11167 type_(type), depth_(depth), vals_(vals), has_keys_(has_keys)
11168 { }
11169
11170 protected:
11171 int
11172 do_traverse(Traverse* traverse);
11173
11174 Expression*
11175 do_lower(Gogo*, Named_object*, int);
11176
11177 Expression*
11178 do_copy()
11179 {
11180 return new Composite_literal_expression(this->type_, this->depth_,
11181 this->has_keys_,
11182 (this->vals_ == NULL
11183 ? NULL
11184 : this->vals_->copy()),
11185 this->location());
11186 }
11187
11188 private:
11189 Expression*
11190 lower_struct(Type*);
11191
11192 Expression*
11193 lower_array(Type*);
11194
11195 Expression*
11196 make_array(Type*, Expression_list*);
11197
11198 Expression*
a287720d 11199 lower_map(Gogo*, Named_object*, Type*);
e440a328 11200
11201 // The type of the composite literal.
11202 Type* type_;
11203 // The depth within a list of composite literals within a composite
11204 // literal, when the type is omitted.
11205 int depth_;
11206 // The values to put in the composite literal.
11207 Expression_list* vals_;
11208 // If this is true, then VALS_ is a list of pairs: a key and a
11209 // value. In an array initializer, a missing key will be NULL.
11210 bool has_keys_;
11211};
11212
11213// Traversal.
11214
11215int
11216Composite_literal_expression::do_traverse(Traverse* traverse)
11217{
11218 if (this->vals_ != NULL
11219 && this->vals_->traverse(traverse) == TRAVERSE_EXIT)
11220 return TRAVERSE_EXIT;
11221 return Type::traverse(this->type_, traverse);
11222}
11223
11224// Lower a generic composite literal into a specific version based on
11225// the type.
11226
11227Expression*
a287720d 11228Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function, int)
e440a328 11229{
11230 Type* type = this->type_;
11231
11232 for (int depth = this->depth_; depth > 0; --depth)
11233 {
11234 if (type->array_type() != NULL)
11235 type = type->array_type()->element_type();
11236 else if (type->map_type() != NULL)
11237 type = type->map_type()->val_type();
11238 else
11239 {
11240 if (!type->is_error_type())
11241 error_at(this->location(),
11242 ("may only omit types within composite literals "
11243 "of slice, array, or map type"));
11244 return Expression::make_error(this->location());
11245 }
11246 }
11247
11248 if (type->is_error_type())
11249 return Expression::make_error(this->location());
11250 else if (type->struct_type() != NULL)
11251 return this->lower_struct(type);
11252 else if (type->array_type() != NULL)
11253 return this->lower_array(type);
11254 else if (type->map_type() != NULL)
a287720d 11255 return this->lower_map(gogo, function, type);
e440a328 11256 else
11257 {
11258 error_at(this->location(),
11259 ("expected struct, slice, array, or map type "
11260 "for composite literal"));
11261 return Expression::make_error(this->location());
11262 }
11263}
11264
11265// Lower a struct composite literal.
11266
11267Expression*
11268Composite_literal_expression::lower_struct(Type* type)
11269{
11270 source_location location = this->location();
11271 Struct_type* st = type->struct_type();
11272 if (this->vals_ == NULL || !this->has_keys_)
11273 return new Struct_construction_expression(type, this->vals_, location);
11274
11275 size_t field_count = st->field_count();
11276 std::vector<Expression*> vals(field_count);
11277 Expression_list::const_iterator p = this->vals_->begin();
11278 while (p != this->vals_->end())
11279 {
11280 Expression* name_expr = *p;
11281
11282 ++p;
11283 gcc_assert(p != this->vals_->end());
11284 Expression* val = *p;
11285
11286 ++p;
11287
11288 if (name_expr == NULL)
11289 {
11290 error_at(val->location(), "mixture of field and value initializers");
11291 return Expression::make_error(location);
11292 }
11293
11294 bool bad_key = false;
11295 std::string name;
11296 switch (name_expr->classification())
11297 {
11298 case EXPRESSION_UNKNOWN_REFERENCE:
11299 name = name_expr->unknown_expression()->name();
11300 break;
11301
11302 case EXPRESSION_CONST_REFERENCE:
11303 name = static_cast<Const_expression*>(name_expr)->name();
11304 break;
11305
11306 case EXPRESSION_TYPE:
11307 {
11308 Type* t = name_expr->type();
11309 Named_type* nt = t->named_type();
11310 if (nt == NULL)
11311 bad_key = true;
11312 else
11313 name = nt->name();
11314 }
11315 break;
11316
11317 case EXPRESSION_VAR_REFERENCE:
11318 name = name_expr->var_expression()->name();
11319 break;
11320
11321 case EXPRESSION_FUNC_REFERENCE:
11322 name = name_expr->func_expression()->name();
11323 break;
11324
11325 case EXPRESSION_UNARY:
11326 // If there is a local variable around with the same name as
11327 // the field, and this occurs in the closure, then the
11328 // parser may turn the field reference into an indirection
11329 // through the closure. FIXME: This is a mess.
11330 {
11331 bad_key = true;
11332 Unary_expression* ue = static_cast<Unary_expression*>(name_expr);
11333 if (ue->op() == OPERATOR_MULT)
11334 {
11335 Field_reference_expression* fre =
11336 ue->operand()->field_reference_expression();
11337 if (fre != NULL)
11338 {
11339 Struct_type* st =
11340 fre->expr()->type()->deref()->struct_type();
11341 if (st != NULL)
11342 {
11343 const Struct_field* sf = st->field(fre->field_index());
11344 name = sf->field_name();
11345 char buf[20];
11346 snprintf(buf, sizeof buf, "%u", fre->field_index());
11347 size_t buflen = strlen(buf);
11348 if (name.compare(name.length() - buflen, buflen, buf)
11349 == 0)
11350 {
11351 name = name.substr(0, name.length() - buflen);
11352 bad_key = false;
11353 }
11354 }
11355 }
11356 }
11357 }
11358 break;
11359
11360 default:
11361 bad_key = true;
11362 break;
11363 }
11364 if (bad_key)
11365 {
11366 error_at(name_expr->location(), "expected struct field name");
11367 return Expression::make_error(location);
11368 }
11369
11370 unsigned int index;
11371 const Struct_field* sf = st->find_local_field(name, &index);
11372 if (sf == NULL)
11373 {
11374 error_at(name_expr->location(), "unknown field %qs in %qs",
11375 Gogo::message_name(name).c_str(),
11376 (type->named_type() != NULL
11377 ? type->named_type()->message_name().c_str()
11378 : "unnamed struct"));
11379 return Expression::make_error(location);
11380 }
11381 if (vals[index] != NULL)
11382 {
11383 error_at(name_expr->location(),
11384 "duplicate value for field %qs in %qs",
11385 Gogo::message_name(name).c_str(),
11386 (type->named_type() != NULL
11387 ? type->named_type()->message_name().c_str()
11388 : "unnamed struct"));
11389 return Expression::make_error(location);
11390 }
11391
11392 vals[index] = val;
11393 }
11394
11395 Expression_list* list = new Expression_list;
11396 list->reserve(field_count);
11397 for (size_t i = 0; i < field_count; ++i)
11398 list->push_back(vals[i]);
11399
11400 return new Struct_construction_expression(type, list, location);
11401}
11402
11403// Lower an array composite literal.
11404
11405Expression*
11406Composite_literal_expression::lower_array(Type* type)
11407{
11408 source_location location = this->location();
11409 if (this->vals_ == NULL || !this->has_keys_)
11410 return this->make_array(type, this->vals_);
11411
11412 std::vector<Expression*> vals;
11413 vals.reserve(this->vals_->size());
11414 unsigned long index = 0;
11415 Expression_list::const_iterator p = this->vals_->begin();
11416 while (p != this->vals_->end())
11417 {
11418 Expression* index_expr = *p;
11419
11420 ++p;
11421 gcc_assert(p != this->vals_->end());
11422 Expression* val = *p;
11423
11424 ++p;
11425
11426 if (index_expr != NULL)
11427 {
11428 mpz_t ival;
11429 mpz_init(ival);
11430 Type* dummy;
11431 if (!index_expr->integer_constant_value(true, ival, &dummy))
11432 {
11433 mpz_clear(ival);
11434 error_at(index_expr->location(),
11435 "index expression is not integer constant");
11436 return Expression::make_error(location);
11437 }
11438 if (mpz_sgn(ival) < 0)
11439 {
11440 mpz_clear(ival);
11441 error_at(index_expr->location(), "index expression is negative");
11442 return Expression::make_error(location);
11443 }
11444 index = mpz_get_ui(ival);
11445 if (mpz_cmp_ui(ival, index) != 0)
11446 {
11447 mpz_clear(ival);
11448 error_at(index_expr->location(), "index value overflow");
11449 return Expression::make_error(location);
11450 }
11451 mpz_clear(ival);
11452 }
11453
11454 if (index == vals.size())
11455 vals.push_back(val);
11456 else
11457 {
11458 if (index > vals.size())
11459 {
11460 vals.reserve(index + 32);
11461 vals.resize(index + 1, static_cast<Expression*>(NULL));
11462 }
11463 if (vals[index] != NULL)
11464 {
11465 error_at((index_expr != NULL
11466 ? index_expr->location()
11467 : val->location()),
11468 "duplicate value for index %lu",
11469 index);
11470 return Expression::make_error(location);
11471 }
11472 vals[index] = val;
11473 }
11474
11475 ++index;
11476 }
11477
11478 size_t size = vals.size();
11479 Expression_list* list = new Expression_list;
11480 list->reserve(size);
11481 for (size_t i = 0; i < size; ++i)
11482 list->push_back(vals[i]);
11483
11484 return this->make_array(type, list);
11485}
11486
11487// Actually build the array composite literal. This handles
11488// [...]{...}.
11489
11490Expression*
11491Composite_literal_expression::make_array(Type* type, Expression_list* vals)
11492{
11493 source_location location = this->location();
11494 Array_type* at = type->array_type();
11495 if (at->length() != NULL && at->length()->is_nil_expression())
11496 {
11497 size_t size = vals == NULL ? 0 : vals->size();
11498 mpz_t vlen;
11499 mpz_init_set_ui(vlen, size);
11500 Expression* elen = Expression::make_integer(&vlen, NULL, location);
11501 mpz_clear(vlen);
11502 at = Type::make_array_type(at->element_type(), elen);
11503 type = at;
11504 }
11505 if (at->length() != NULL)
11506 return new Fixed_array_construction_expression(type, vals, location);
11507 else
11508 return new Open_array_construction_expression(type, vals, location);
11509}
11510
11511// Lower a map composite literal.
11512
11513Expression*
a287720d 11514Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
11515 Type* type)
e440a328 11516{
11517 source_location location = this->location();
11518 if (this->vals_ != NULL)
11519 {
11520 if (!this->has_keys_)
11521 {
11522 error_at(location, "map composite literal must have keys");
11523 return Expression::make_error(location);
11524 }
11525
a287720d 11526 for (Expression_list::iterator p = this->vals_->begin();
e440a328 11527 p != this->vals_->end();
11528 p += 2)
11529 {
11530 if (*p == NULL)
11531 {
11532 ++p;
11533 error_at((*p)->location(),
11534 "map composite literal must have keys for every value");
11535 return Expression::make_error(location);
11536 }
a287720d 11537 // Make sure we have lowered the key; it may not have been
11538 // lowered in order to handle keys for struct composite
11539 // literals. Lower it now to get the right error message.
11540 if ((*p)->unknown_expression() != NULL)
11541 {
11542 (*p)->unknown_expression()->clear_is_composite_literal_key();
11543 gogo->lower_expression(function, &*p);
11544 gcc_assert((*p)->is_error_expression());
11545 return Expression::make_error(location);
11546 }
e440a328 11547 }
11548 }
11549
11550 return new Map_construction_expression(type, this->vals_, location);
11551}
11552
11553// Make a composite literal expression.
11554
11555Expression*
11556Expression::make_composite_literal(Type* type, int depth, bool has_keys,
11557 Expression_list* vals,
11558 source_location location)
11559{
11560 return new Composite_literal_expression(type, depth, has_keys, vals,
11561 location);
11562}
11563
11564// Return whether this expression is a composite literal.
11565
11566bool
11567Expression::is_composite_literal() const
11568{
11569 switch (this->classification_)
11570 {
11571 case EXPRESSION_COMPOSITE_LITERAL:
11572 case EXPRESSION_STRUCT_CONSTRUCTION:
11573 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11574 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11575 case EXPRESSION_MAP_CONSTRUCTION:
11576 return true;
11577 default:
11578 return false;
11579 }
11580}
11581
11582// Return whether this expression is a composite literal which is not
11583// constant.
11584
11585bool
11586Expression::is_nonconstant_composite_literal() const
11587{
11588 switch (this->classification_)
11589 {
11590 case EXPRESSION_STRUCT_CONSTRUCTION:
11591 {
11592 const Struct_construction_expression *psce =
11593 static_cast<const Struct_construction_expression*>(this);
11594 return !psce->is_constant_struct();
11595 }
11596 case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
11597 {
11598 const Fixed_array_construction_expression *pace =
11599 static_cast<const Fixed_array_construction_expression*>(this);
11600 return !pace->is_constant_array();
11601 }
11602 case EXPRESSION_OPEN_ARRAY_CONSTRUCTION:
11603 {
11604 const Open_array_construction_expression *pace =
11605 static_cast<const Open_array_construction_expression*>(this);
11606 return !pace->is_constant_array();
11607 }
11608 case EXPRESSION_MAP_CONSTRUCTION:
11609 return true;
11610 default:
11611 return false;
11612 }
11613}
11614
11615// Return true if this is a reference to a local variable.
11616
11617bool
11618Expression::is_local_variable() const
11619{
11620 const Var_expression* ve = this->var_expression();
11621 if (ve == NULL)
11622 return false;
11623 const Named_object* no = ve->named_object();
11624 return (no->is_result_variable()
11625 || (no->is_variable() && !no->var_value()->is_global()));
11626}
11627
11628// Class Type_guard_expression.
11629
11630// Traversal.
11631
11632int
11633Type_guard_expression::do_traverse(Traverse* traverse)
11634{
11635 if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
11636 || Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
11637 return TRAVERSE_EXIT;
11638 return TRAVERSE_CONTINUE;
11639}
11640
11641// Check types of a type guard expression. The expression must have
11642// an interface type, but the actual type conversion is checked at run
11643// time.
11644
11645void
11646Type_guard_expression::do_check_types(Gogo*)
11647{
11648 // 6g permits using a type guard with unsafe.pointer; we are
11649 // compatible.
11650 Type* expr_type = this->expr_->type();
11651 if (expr_type->is_unsafe_pointer_type())
11652 {
11653 if (this->type_->points_to() == NULL
11654 && (this->type_->integer_type() == NULL
11655 || (this->type_->forwarded()
11656 != Type::lookup_integer_type("uintptr"))))
11657 this->report_error(_("invalid unsafe.Pointer conversion"));
11658 }
11659 else if (this->type_->is_unsafe_pointer_type())
11660 {
11661 if (expr_type->points_to() == NULL
11662 && (expr_type->integer_type() == NULL
11663 || (expr_type->forwarded()
11664 != Type::lookup_integer_type("uintptr"))))
11665 this->report_error(_("invalid unsafe.Pointer conversion"));
11666 }
11667 else if (expr_type->interface_type() == NULL)
f725ade8 11668 {
11669 if (!expr_type->is_error_type() && !this->type_->is_error_type())
11670 this->report_error(_("type assertion only valid for interface types"));
11671 this->set_is_error();
11672 }
e440a328 11673 else if (this->type_->interface_type() == NULL)
11674 {
11675 std::string reason;
11676 if (!expr_type->interface_type()->implements_interface(this->type_,
11677 &reason))
11678 {
f725ade8 11679 if (!this->type_->is_error_type())
e440a328 11680 {
f725ade8 11681 if (reason.empty())
11682 this->report_error(_("impossible type assertion: "
11683 "type does not implement interface"));
11684 else
11685 error_at(this->location(),
11686 ("impossible type assertion: "
11687 "type does not implement interface (%s)"),
11688 reason.c_str());
e440a328 11689 }
f725ade8 11690 this->set_is_error();
e440a328 11691 }
11692 }
11693}
11694
11695// Return a tree for a type guard expression.
11696
11697tree
11698Type_guard_expression::do_get_tree(Translate_context* context)
11699{
11700 Gogo* gogo = context->gogo();
11701 tree expr_tree = this->expr_->get_tree(context);
11702 if (expr_tree == error_mark_node)
11703 return error_mark_node;
11704 Type* expr_type = this->expr_->type();
11705 if ((this->type_->is_unsafe_pointer_type()
11706 && (expr_type->points_to() != NULL
11707 || expr_type->integer_type() != NULL))
11708 || (expr_type->is_unsafe_pointer_type()
11709 && this->type_->points_to() != NULL))
11710 return convert_to_pointer(this->type_->get_tree(gogo), expr_tree);
11711 else if (expr_type->is_unsafe_pointer_type()
11712 && this->type_->integer_type() != NULL)
11713 return convert_to_integer(this->type_->get_tree(gogo), expr_tree);
11714 else if (this->type_->interface_type() != NULL)
11715 return Expression::convert_interface_to_interface(context, this->type_,
11716 this->expr_->type(),
11717 expr_tree, true,
11718 this->location());
11719 else
11720 return Expression::convert_for_assignment(context, this->type_,
11721 this->expr_->type(), expr_tree,
11722 this->location());
11723}
11724
11725// Make a type guard expression.
11726
11727Expression*
11728Expression::make_type_guard(Expression* expr, Type* type,
11729 source_location location)
11730{
11731 return new Type_guard_expression(expr, type, location);
11732}
11733
11734// Class Heap_composite_expression.
11735
11736// When you take the address of a composite literal, it is allocated
11737// on the heap. This class implements that.
11738
11739class Heap_composite_expression : public Expression
11740{
11741 public:
11742 Heap_composite_expression(Expression* expr, source_location location)
11743 : Expression(EXPRESSION_HEAP_COMPOSITE, location),
11744 expr_(expr)
11745 { }
11746
11747 protected:
11748 int
11749 do_traverse(Traverse* traverse)
11750 { return Expression::traverse(&this->expr_, traverse); }
11751
11752 Type*
11753 do_type()
11754 { return Type::make_pointer_type(this->expr_->type()); }
11755
11756 void
11757 do_determine_type(const Type_context*)
11758 { this->expr_->determine_type_no_context(); }
11759
11760 Expression*
11761 do_copy()
11762 {
11763 return Expression::make_heap_composite(this->expr_->copy(),
11764 this->location());
11765 }
11766
11767 tree
11768 do_get_tree(Translate_context*);
11769
11770 // We only export global objects, and the parser does not generate
11771 // this in global scope.
11772 void
11773 do_export(Export*) const
11774 { gcc_unreachable(); }
11775
11776 private:
11777 // The composite literal which is being put on the heap.
11778 Expression* expr_;
11779};
11780
11781// Return a tree which allocates a composite literal on the heap.
11782
11783tree
11784Heap_composite_expression::do_get_tree(Translate_context* context)
11785{
11786 tree expr_tree = this->expr_->get_tree(context);
11787 if (expr_tree == error_mark_node)
11788 return error_mark_node;
11789 tree expr_size = TYPE_SIZE_UNIT(TREE_TYPE(expr_tree));
11790 gcc_assert(TREE_CODE(expr_size) == INTEGER_CST);
11791 tree space = context->gogo()->allocate_memory(this->expr_->type(),
11792 expr_size, this->location());
11793 space = fold_convert(build_pointer_type(TREE_TYPE(expr_tree)), space);
11794 space = save_expr(space);
11795 tree ref = build_fold_indirect_ref_loc(this->location(), space);
11796 TREE_THIS_NOTRAP(ref) = 1;
11797 tree ret = build2(COMPOUND_EXPR, TREE_TYPE(space),
11798 build2(MODIFY_EXPR, void_type_node, ref, expr_tree),
11799 space);
11800 SET_EXPR_LOCATION(ret, this->location());
11801 return ret;
11802}
11803
11804// Allocate a composite literal on the heap.
11805
11806Expression*
11807Expression::make_heap_composite(Expression* expr, source_location location)
11808{
11809 return new Heap_composite_expression(expr, location);
11810}
11811
11812// Class Receive_expression.
11813
11814// Return the type of a receive expression.
11815
11816Type*
11817Receive_expression::do_type()
11818{
11819 Channel_type* channel_type = this->channel_->type()->channel_type();
11820 if (channel_type == NULL)
11821 return Type::make_error_type();
11822 return channel_type->element_type();
11823}
11824
11825// Check types for a receive expression.
11826
11827void
11828Receive_expression::do_check_types(Gogo*)
11829{
11830 Type* type = this->channel_->type();
11831 if (type->is_error_type())
11832 {
11833 this->set_is_error();
11834 return;
11835 }
11836 if (type->channel_type() == NULL)
11837 {
11838 this->report_error(_("expected channel"));
11839 return;
11840 }
11841 if (!type->channel_type()->may_receive())
11842 {
11843 this->report_error(_("invalid receive on send-only channel"));
11844 return;
11845 }
11846}
11847
11848// Get a tree for a receive expression.
11849
11850tree
11851Receive_expression::do_get_tree(Translate_context* context)
11852{
11853 Channel_type* channel_type = this->channel_->type()->channel_type();
11854 gcc_assert(channel_type != NULL);
11855 Type* element_type = channel_type->element_type();
11856 tree element_type_tree = element_type->get_tree(context->gogo());
11857
11858 tree channel = this->channel_->get_tree(context);
11859 if (element_type_tree == error_mark_node || channel == error_mark_node)
11860 return error_mark_node;
11861
11862 return Gogo::receive_from_channel(element_type_tree, channel,
11863 this->for_select_, this->location());
11864}
11865
11866// Make a receive expression.
11867
11868Receive_expression*
11869Expression::make_receive(Expression* channel, source_location location)
11870{
11871 return new Receive_expression(channel, location);
11872}
11873
11874// Class Send_expression.
11875
11876// Traversal.
11877
11878int
11879Send_expression::do_traverse(Traverse* traverse)
11880{
11881 if (Expression::traverse(&this->channel_, traverse) == TRAVERSE_EXIT)
11882 return TRAVERSE_EXIT;
11883 return Expression::traverse(&this->val_, traverse);
11884}
11885
11886// Get the type.
11887
11888Type*
11889Send_expression::do_type()
11890{
11891 return Type::lookup_bool_type();
11892}
11893
11894// Set types.
11895
11896void
11897Send_expression::do_determine_type(const Type_context*)
11898{
11899 this->channel_->determine_type_no_context();
11900
11901 Type* type = this->channel_->type();
11902 Type_context subcontext;
11903 if (type->channel_type() != NULL)
11904 subcontext.type = type->channel_type()->element_type();
11905 this->val_->determine_type(&subcontext);
11906}
11907
11908// Check types.
11909
11910void
11911Send_expression::do_check_types(Gogo*)
11912{
11913 Type* type = this->channel_->type();
11914 if (type->is_error_type())
11915 {
11916 this->set_is_error();
11917 return;
11918 }
11919 Channel_type* channel_type = type->channel_type();
11920 if (channel_type == NULL)
11921 {
11922 error_at(this->location(), "left operand of %<<-%> must be channel");
11923 this->set_is_error();
11924 return;
11925 }
11926 Type* element_type = channel_type->element_type();
11927 if (element_type != NULL
11928 && !Type::are_assignable(element_type, this->val_->type(), NULL))
11929 {
11930 this->report_error(_("incompatible types in send"));
11931 return;
11932 }
11933 if (!channel_type->may_send())
11934 {
11935 this->report_error(_("invalid send on receive-only channel"));
11936 return;
11937 }
11938}
11939
11940// Get a tree for a send expression.
11941
11942tree
11943Send_expression::do_get_tree(Translate_context* context)
11944{
11945 tree channel = this->channel_->get_tree(context);
11946 tree val = this->val_->get_tree(context);
11947 if (channel == error_mark_node || val == error_mark_node)
11948 return error_mark_node;
11949 Channel_type* channel_type = this->channel_->type()->channel_type();
11950 val = Expression::convert_for_assignment(context,
11951 channel_type->element_type(),
11952 this->val_->type(),
11953 val,
11954 this->location());
11955 return Gogo::send_on_channel(channel, val, this->is_value_discarded_,
11956 this->for_select_, this->location());
11957}
11958
11959// Make a send expression
11960
11961Send_expression*
11962Expression::make_send(Expression* channel, Expression* val,
11963 source_location location)
11964{
11965 return new Send_expression(channel, val, location);
11966}
11967
11968// An expression which evaluates to a pointer to the type descriptor
11969// of a type.
11970
11971class Type_descriptor_expression : public Expression
11972{
11973 public:
11974 Type_descriptor_expression(Type* type, source_location location)
11975 : Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
11976 type_(type)
11977 { }
11978
11979 protected:
11980 Type*
11981 do_type()
11982 { return Type::make_type_descriptor_ptr_type(); }
11983
11984 void
11985 do_determine_type(const Type_context*)
11986 { }
11987
11988 Expression*
11989 do_copy()
11990 { return this; }
11991
11992 tree
11993 do_get_tree(Translate_context* context)
11994 { return this->type_->type_descriptor_pointer(context->gogo()); }
11995
11996 private:
11997 // The type for which this is the descriptor.
11998 Type* type_;
11999};
12000
12001// Make a type descriptor expression.
12002
12003Expression*
12004Expression::make_type_descriptor(Type* type, source_location location)
12005{
12006 return new Type_descriptor_expression(type, location);
12007}
12008
12009// An expression which evaluates to some characteristic of a type.
12010// This is only used to initialize fields of a type descriptor. Using
12011// a new expression class is slightly inefficient but gives us a good
12012// separation between the frontend and the middle-end with regard to
12013// how types are laid out.
12014
12015class Type_info_expression : public Expression
12016{
12017 public:
12018 Type_info_expression(Type* type, Type_info type_info)
12019 : Expression(EXPRESSION_TYPE_INFO, BUILTINS_LOCATION),
12020 type_(type), type_info_(type_info)
12021 { }
12022
12023 protected:
12024 Type*
12025 do_type();
12026
12027 void
12028 do_determine_type(const Type_context*)
12029 { }
12030
12031 Expression*
12032 do_copy()
12033 { return this; }
12034
12035 tree
12036 do_get_tree(Translate_context* context);
12037
12038 private:
12039 // The type for which we are getting information.
12040 Type* type_;
12041 // What information we want.
12042 Type_info type_info_;
12043};
12044
12045// The type is chosen to match what the type descriptor struct
12046// expects.
12047
12048Type*
12049Type_info_expression::do_type()
12050{
12051 switch (this->type_info_)
12052 {
12053 case TYPE_INFO_SIZE:
12054 return Type::lookup_integer_type("uintptr");
12055 case TYPE_INFO_ALIGNMENT:
12056 case TYPE_INFO_FIELD_ALIGNMENT:
12057 return Type::lookup_integer_type("uint8");
12058 default:
12059 gcc_unreachable();
12060 }
12061}
12062
12063// Return type information in GENERIC.
12064
12065tree
12066Type_info_expression::do_get_tree(Translate_context* context)
12067{
12068 tree type_tree = this->type_->get_tree(context->gogo());
12069 if (type_tree == error_mark_node)
12070 return error_mark_node;
12071
12072 tree val_type_tree = this->type()->get_tree(context->gogo());
12073 gcc_assert(val_type_tree != error_mark_node);
12074
12075 if (this->type_info_ == TYPE_INFO_SIZE)
12076 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12077 TYPE_SIZE_UNIT(type_tree));
12078 else
12079 {
637bd3af 12080 unsigned int val;
e440a328 12081 if (this->type_info_ == TYPE_INFO_ALIGNMENT)
637bd3af 12082 val = go_type_alignment(type_tree);
e440a328 12083 else
637bd3af 12084 val = go_field_alignment(type_tree);
e440a328 12085 return build_int_cstu(val_type_tree, val);
12086 }
12087}
12088
12089// Make a type info expression.
12090
12091Expression*
12092Expression::make_type_info(Type* type, Type_info type_info)
12093{
12094 return new Type_info_expression(type, type_info);
12095}
12096
12097// An expression which evaluates to the offset of a field within a
12098// struct. This, like Type_info_expression, q.v., is only used to
12099// initialize fields of a type descriptor.
12100
12101class Struct_field_offset_expression : public Expression
12102{
12103 public:
12104 Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
12105 : Expression(EXPRESSION_STRUCT_FIELD_OFFSET, BUILTINS_LOCATION),
12106 type_(type), field_(field)
12107 { }
12108
12109 protected:
12110 Type*
12111 do_type()
12112 { return Type::lookup_integer_type("uintptr"); }
12113
12114 void
12115 do_determine_type(const Type_context*)
12116 { }
12117
12118 Expression*
12119 do_copy()
12120 { return this; }
12121
12122 tree
12123 do_get_tree(Translate_context* context);
12124
12125 private:
12126 // The type of the struct.
12127 Struct_type* type_;
12128 // The field.
12129 const Struct_field* field_;
12130};
12131
12132// Return a struct field offset in GENERIC.
12133
12134tree
12135Struct_field_offset_expression::do_get_tree(Translate_context* context)
12136{
12137 tree type_tree = this->type_->get_tree(context->gogo());
12138 if (type_tree == error_mark_node)
12139 return error_mark_node;
12140
12141 tree val_type_tree = this->type()->get_tree(context->gogo());
12142 gcc_assert(val_type_tree != error_mark_node);
12143
12144 const Struct_field_list* fields = this->type_->fields();
12145 tree struct_field_tree = TYPE_FIELDS(type_tree);
12146 Struct_field_list::const_iterator p;
12147 for (p = fields->begin();
12148 p != fields->end();
12149 ++p, struct_field_tree = DECL_CHAIN(struct_field_tree))
12150 {
12151 gcc_assert(struct_field_tree != NULL_TREE);
12152 if (&*p == this->field_)
12153 break;
12154 }
12155 gcc_assert(&*p == this->field_);
12156
12157 return fold_convert_loc(BUILTINS_LOCATION, val_type_tree,
12158 byte_position(struct_field_tree));
12159}
12160
12161// Make an expression for a struct field offset.
12162
12163Expression*
12164Expression::make_struct_field_offset(Struct_type* type,
12165 const Struct_field* field)
12166{
12167 return new Struct_field_offset_expression(type, field);
12168}
12169
12170// An expression which evaluates to the address of an unnamed label.
12171
12172class Label_addr_expression : public Expression
12173{
12174 public:
12175 Label_addr_expression(Label* label, source_location location)
12176 : Expression(EXPRESSION_LABEL_ADDR, location),
12177 label_(label)
12178 { }
12179
12180 protected:
12181 Type*
12182 do_type()
12183 { return Type::make_pointer_type(Type::make_void_type()); }
12184
12185 void
12186 do_determine_type(const Type_context*)
12187 { }
12188
12189 Expression*
12190 do_copy()
12191 { return new Label_addr_expression(this->label_, this->location()); }
12192
12193 tree
12194 do_get_tree(Translate_context*)
12195 { return this->label_->get_addr(this->location()); }
12196
12197 private:
12198 // The label whose address we are taking.
12199 Label* label_;
12200};
12201
12202// Make an expression for the address of an unnamed label.
12203
12204Expression*
12205Expression::make_label_addr(Label* label, source_location location)
12206{
12207 return new Label_addr_expression(label, location);
12208}
12209
12210// Import an expression. This comes at the end in order to see the
12211// various class definitions.
12212
12213Expression*
12214Expression::import_expression(Import* imp)
12215{
12216 int c = imp->peek_char();
12217 if (imp->match_c_string("- ")
12218 || imp->match_c_string("! ")
12219 || imp->match_c_string("^ "))
12220 return Unary_expression::do_import(imp);
12221 else if (c == '(')
12222 return Binary_expression::do_import(imp);
12223 else if (imp->match_c_string("true")
12224 || imp->match_c_string("false"))
12225 return Boolean_expression::do_import(imp);
12226 else if (c == '"')
12227 return String_expression::do_import(imp);
12228 else if (c == '-' || (c >= '0' && c <= '9'))
12229 {
12230 // This handles integers, floats and complex constants.
12231 return Integer_expression::do_import(imp);
12232 }
12233 else if (imp->match_c_string("nil"))
12234 return Nil_expression::do_import(imp);
12235 else if (imp->match_c_string("convert"))
12236 return Type_conversion_expression::do_import(imp);
12237 else
12238 {
12239 error_at(imp->location(), "import error: expected expression");
12240 return Expression::make_error(imp->location());
12241 }
12242}
12243
12244// Class Expression_list.
12245
12246// Traverse the list.
12247
12248int
12249Expression_list::traverse(Traverse* traverse)
12250{
12251 for (Expression_list::iterator p = this->begin();
12252 p != this->end();
12253 ++p)
12254 {
12255 if (*p != NULL)
12256 {
12257 if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
12258 return TRAVERSE_EXIT;
12259 }
12260 }
12261 return TRAVERSE_CONTINUE;
12262}
12263
12264// Copy the list.
12265
12266Expression_list*
12267Expression_list::copy()
12268{
12269 Expression_list* ret = new Expression_list();
12270 for (Expression_list::iterator p = this->begin();
12271 p != this->end();
12272 ++p)
12273 {
12274 if (*p == NULL)
12275 ret->push_back(NULL);
12276 else
12277 ret->push_back((*p)->copy());
12278 }
12279 return ret;
12280}
12281
12282// Return whether an expression list has an error expression.
12283
12284bool
12285Expression_list::contains_error() const
12286{
12287 for (Expression_list::const_iterator p = this->begin();
12288 p != this->end();
12289 ++p)
12290 if (*p != NULL && (*p)->is_error_expression())
12291 return true;
12292 return false;
12293}