]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-scop-detection.c
Use urandom in gcc.c too
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
CommitLineData
2abae5f1 1/* Detection of Static Control Parts (SCoP) for Graphite.
c75c517d 2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
2abae5f1
SP
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
2abae5f1 25#include "tree-flow.h"
2abae5f1
SP
26#include "cfgloop.h"
27#include "tree-chrec.h"
28#include "tree-data-ref.h"
29#include "tree-scalar-evolution.h"
30#include "tree-pass.h"
2abae5f1
SP
31#include "sese.h"
32
33#ifdef HAVE_cloog
2abae5f1
SP
34#include "ppl_c.h"
35#include "graphite-ppl.h"
2abae5f1
SP
36#include "graphite-poly.h"
37#include "graphite-scop-detection.h"
38
39/* The type of the analyzed basic block. */
40
41typedef enum gbb_type {
42 GBB_UNKNOWN,
43 GBB_LOOP_SING_EXIT_HEADER,
44 GBB_LOOP_MULT_EXIT_HEADER,
45 GBB_LOOP_EXIT,
46 GBB_COND_HEADER,
47 GBB_SIMPLE,
48 GBB_LAST
49} gbb_type;
50
51/* Detect the type of BB. Loop headers are only marked, if they are
52 new. This means their loop_father is different to LAST_LOOP.
53 Otherwise they are treated like any other bb and their type can be
54 any other type. */
55
56static gbb_type
57get_bb_type (basic_block bb, struct loop *last_loop)
58{
59 VEC (basic_block, heap) *dom;
60 int nb_dom, nb_suc;
61 struct loop *loop = bb->loop_father;
62
63 /* Check, if we entry into a new loop. */
64 if (loop != last_loop)
65 {
66 if (single_exit (loop) != NULL)
67 return GBB_LOOP_SING_EXIT_HEADER;
68 else if (loop->num != 0)
69 return GBB_LOOP_MULT_EXIT_HEADER;
70 else
71 return GBB_COND_HEADER;
72 }
73
74 dom = get_dominated_by (CDI_DOMINATORS, bb);
75 nb_dom = VEC_length (basic_block, dom);
76 VEC_free (basic_block, heap, dom);
77
78 if (nb_dom == 0)
79 return GBB_LAST;
80
81 nb_suc = VEC_length (edge, bb->succs);
82
83 if (nb_dom == 1 && nb_suc == 1)
84 return GBB_SIMPLE;
85
86 return GBB_COND_HEADER;
87}
88
89/* A SCoP detection region, defined using bbs as borders.
90
91 All control flow touching this region, comes in passing basic_block
92 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
93 edges for the borders we are able to represent also regions that do
94 not have a single entry or exit edge.
95
96 But as they have a single entry basic_block and a single exit
97 basic_block, we are able to generate for every sd_region a single
98 entry and exit edge.
99
100 1 2
101 \ /
102 3 <- entry
103 |
104 4
105 / \ This region contains: {3, 4, 5, 6, 7, 8}
106 5 6
107 | |
108 7 8
109 \ /
110 9 <- exit */
111
112
113typedef struct sd_region_p
114{
115 /* The entry bb dominates all bbs in the sd_region. It is part of
116 the region. */
117 basic_block entry;
118
119 /* The exit bb postdominates all bbs in the sd_region, but is not
120 part of the region. */
121 basic_block exit;
122} sd_region;
123
124DEF_VEC_O(sd_region);
125DEF_VEC_ALLOC_O(sd_region, heap);
126
127
128/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
129
130static void
131move_sd_regions (VEC (sd_region, heap) **source,
132 VEC (sd_region, heap) **target)
133{
134 sd_region *s;
135 int i;
136
ac47786e 137 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
2abae5f1
SP
138 VEC_safe_push (sd_region, heap, *target, s);
139
140 VEC_free (sd_region, heap, *source);
141}
142
143/* Something like "n * m" is not allowed. */
144
145static bool
146graphite_can_represent_init (tree e)
147{
148 switch (TREE_CODE (e))
149 {
150 case POLYNOMIAL_CHREC:
151 return graphite_can_represent_init (CHREC_LEFT (e))
152 && graphite_can_represent_init (CHREC_RIGHT (e));
153
154 case MULT_EXPR:
155 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
d505015a
SP
156 return graphite_can_represent_init (TREE_OPERAND (e, 0))
157 && host_integerp (TREE_OPERAND (e, 1), 0);
2abae5f1 158 else
d505015a
SP
159 return graphite_can_represent_init (TREE_OPERAND (e, 1))
160 && host_integerp (TREE_OPERAND (e, 0), 0);
2abae5f1
SP
161
162 case PLUS_EXPR:
163 case POINTER_PLUS_EXPR:
164 case MINUS_EXPR:
165 return graphite_can_represent_init (TREE_OPERAND (e, 0))
166 && graphite_can_represent_init (TREE_OPERAND (e, 1));
167
168 case NEGATE_EXPR:
169 case BIT_NOT_EXPR:
170 CASE_CONVERT:
171 case NON_LVALUE_EXPR:
172 return graphite_can_represent_init (TREE_OPERAND (e, 0));
173
174 default:
175 break;
176 }
177
178 return true;
179}
180
181/* Return true when SCEV can be represented in the polyhedral model.
182
183 An expression can be represented, if it can be expressed as an
184 affine expression. For loops (i, j) and parameters (m, n) all
185 affine expressions are of the form:
186
187 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
188
189 1 i + 20 j + (-2) m + 25
190
56f30f65 191 Something like "i * n" or "n * m" is not allowed. */
2abae5f1
SP
192
193static bool
56f30f65 194graphite_can_represent_scev (tree scev)
2abae5f1
SP
195{
196 if (chrec_contains_undetermined (scev))
197 return false;
198
4b216ab0
SP
199 switch (TREE_CODE (scev))
200 {
201 case PLUS_EXPR:
202 case MINUS_EXPR:
56f30f65
VK
203 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
204 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
2abae5f1 205
4b216ab0
SP
206 case MULT_EXPR:
207 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
208 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
209 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
210 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
c4c4983e 211 && graphite_can_represent_init (scev)
56f30f65
VK
212 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
213 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
2abae5f1 214
4b216ab0
SP
215 case POLYNOMIAL_CHREC:
216 /* Check for constant strides. With a non constant stride of
217 'n' we would have a value of 'iv * n'. Also check that the
218 initial value can represented: for example 'n * m' cannot be
219 represented. */
220 if (!evolution_function_right_is_integer_cst (scev)
221 || !graphite_can_represent_init (scev))
222 return false;
223
224 default:
225 break;
226 }
2abae5f1
SP
227
228 /* Only affine functions can be represented. */
229 if (!scev_is_linear_expression (scev))
230 return false;
231
d9ae7906 232 return true;
2abae5f1
SP
233}
234
235
236/* Return true when EXPR can be represented in the polyhedral model.
237
238 This means an expression can be represented, if it is linear with
239 respect to the loops and the strides are non parametric.
56f30f65 240 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
2abae5f1
SP
241 entry of the region we analyse. */
242
243static bool
244graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
56f30f65 245 tree expr)
2abae5f1
SP
246{
247 tree scev = analyze_scalar_evolution (loop, expr);
248
249 scev = instantiate_scev (scop_entry, loop, scev);
250
56f30f65 251 return graphite_can_represent_scev (scev);
2abae5f1
SP
252}
253
2abae5f1
SP
254/* Return true if the data references of STMT can be represented by
255 Graphite. */
256
257static bool
258stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
259{
260 data_reference_p dr;
261 unsigned i;
262 int j;
263 bool res = true;
2abae5f1
SP
264 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
265
5c640e29
SP
266 graphite_find_data_references_in_stmt (outermost_loop,
267 loop_containing_stmt (stmt),
268 stmt, &drs);
2abae5f1 269
ac47786e 270 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
2abae5f1 271 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
56f30f65 272 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
2abae5f1
SP
273 {
274 res = false;
275 goto done;
276 }
277
278 done:
279 free_data_refs (drs);
280 return res;
281}
282
2abae5f1
SP
283/* Return true only when STMT is simple enough for being handled by
284 Graphite. This depends on SCOP_ENTRY, as the parameters are
285 initialized relatively to this basic block, the linear functions
286 are initialized to OUTERMOST_LOOP and BB is the place where we try
287 to evaluate the STMT. */
288
289static bool
290stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
291 gimple stmt, basic_block bb)
292{
293 loop_p loop = bb->loop_father;
294
295 gcc_assert (scop_entry);
296
297 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
298 Calls have side-effects, except those to const or pure
299 functions. */
300 if (gimple_has_volatile_ops (stmt)
301 || (gimple_code (stmt) == GIMPLE_CALL
302 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
303 || (gimple_code (stmt) == GIMPLE_ASM))
304 return false;
305
a3201927
AO
306 if (is_gimple_debug (stmt))
307 return true;
308
2abae5f1
SP
309 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
310 return false;
311
312 switch (gimple_code (stmt))
313 {
314 case GIMPLE_RETURN:
315 case GIMPLE_LABEL:
316 return true;
317
318 case GIMPLE_COND:
319 {
320 tree op;
321 ssa_op_iter op_iter;
322 enum tree_code code = gimple_cond_code (stmt);
323
324 /* We can handle all binary comparisons. Inequalities are
325 also supported as they can be represented with union of
326 polyhedra. */
327 if (!(code == LT_EXPR
328 || code == GT_EXPR
329 || code == LE_EXPR
330 || code == GE_EXPR
331 || code == EQ_EXPR
332 || code == NE_EXPR))
333 return false;
334
335 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
56f30f65 336 if (!graphite_can_represent_expr (scop_entry, loop, op)
2abae5f1
SP
337 /* We can not handle REAL_TYPE. Failed for pr39260. */
338 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
339 return false;
340
341 return true;
342 }
343
344 case GIMPLE_ASSIGN:
2abae5f1 345 case GIMPLE_CALL:
c8ae0613 346 return true;
2abae5f1
SP
347
348 default:
349 /* These nodes cut a new scope. */
350 return false;
351 }
352
353 return false;
354}
355
356/* Returns the statement of BB that contains a harmful operation: that
357 can be a function call with side effects, the induction variables
358 are not linear with respect to SCOP_ENTRY, etc. The current open
359 scop should end before this statement. The evaluation is limited using
360 OUTERMOST_LOOP as outermost loop that may change. */
361
362static gimple
363harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
364{
365 gimple_stmt_iterator gsi;
366
367 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
368 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
369 return gsi_stmt (gsi);
370
371 return NULL;
372}
373
45fc26fc
VK
374/* Return true if LOOP can be represented in the polyhedral
375 representation. This is evaluated taking SCOP_ENTRY and
376 OUTERMOST_LOOP in mind. */
2abae5f1
SP
377
378static bool
56f30f65 379graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
2abae5f1 380{
cbc1994b
SP
381 tree niter;
382 struct tree_niter_desc niter_desc;
2abae5f1 383
cbc1994b
SP
384 /* FIXME: For the moment, graphite cannot be used on loops that
385 iterate using induction variables that wrap. */
2abae5f1 386
cbc1994b
SP
387 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
388 && niter_desc.control.no_overflow
389 && (niter = number_of_latch_executions (loop))
390 && !chrec_contains_undetermined (niter)
391 && graphite_can_represent_expr (scop_entry, loop, niter);
2abae5f1
SP
392}
393
394/* Store information needed by scopdet_* functions. */
395
396struct scopdet_info
397{
398 /* Exit of the open scop would stop if the current BB is harmful. */
399 basic_block exit;
400
401 /* Where the next scop would start if the current BB is harmful. */
402 basic_block next;
403
404 /* The bb or one of its children contains open loop exits. That means
405 loop exit nodes that are not surrounded by a loop dominated by bb. */
406 bool exits;
407
408 /* The bb or one of its children contains only structures we can handle. */
409 bool difficult;
410};
411
412static struct scopdet_info build_scops_1 (basic_block, loop_p,
413 VEC (sd_region, heap) **, loop_p);
414
415/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
416 to SCOPS. TYPE is the gbb_type of BB. */
417
418static struct scopdet_info
419scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
420 VEC (sd_region, heap) **scops, gbb_type type)
421{
422 loop_p loop = bb->loop_father;
423 struct scopdet_info result;
424 gimple stmt;
425
426 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
427 basic_block entry_block = ENTRY_BLOCK_PTR;
428 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
429 result.difficult = (stmt != NULL);
430 result.exit = NULL;
431
432 switch (type)
433 {
434 case GBB_LAST:
435 result.next = NULL;
436 result.exits = false;
437
438 /* Mark bbs terminating a SESE region difficult, if they start
439 a condition. */
440 if (!single_succ_p (bb))
441 result.difficult = true;
442 else
443 result.exit = single_succ (bb);
444
445 break;
446
447 case GBB_SIMPLE:
448 result.next = single_succ (bb);
449 result.exits = false;
450 result.exit = single_succ (bb);
451 break;
452
453 case GBB_LOOP_SING_EXIT_HEADER:
454 {
455 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
456 struct scopdet_info sinfo;
457 edge exit_e = single_exit (loop);
458
459 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
460
56f30f65 461 if (!graphite_can_represent_loop (entry_block, loop))
2abae5f1
SP
462 result.difficult = true;
463
464 result.difficult |= sinfo.difficult;
465
466 /* Try again with another loop level. */
467 if (result.difficult
468 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
469 {
470 outermost_loop = loop;
471
472 VEC_free (sd_region, heap, regions);
473 regions = VEC_alloc (sd_region, heap, 3);
474
475 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
476
477 result = sinfo;
478 result.difficult = true;
479
480 if (sinfo.difficult)
481 move_sd_regions (&regions, scops);
482 else
483 {
484 sd_region open_scop;
485 open_scop.entry = bb;
486 open_scop.exit = exit_e->dest;
487 VEC_safe_push (sd_region, heap, *scops, &open_scop);
488 VEC_free (sd_region, heap, regions);
489 }
490 }
491 else
492 {
493 result.exit = exit_e->dest;
494 result.next = exit_e->dest;
495
496 /* If we do not dominate result.next, remove it. It's either
497 the EXIT_BLOCK_PTR, or another bb dominates it and will
498 call the scop detection for this bb. */
499 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
500 result.next = NULL;
501
502 if (exit_e->src->loop_father != loop)
503 result.next = NULL;
504
505 result.exits = false;
506
507 if (result.difficult)
508 move_sd_regions (&regions, scops);
509 else
510 VEC_free (sd_region, heap, regions);
511 }
512
513 break;
514 }
515
516 case GBB_LOOP_MULT_EXIT_HEADER:
517 {
518 /* XXX: For now we just do not join loops with multiple exits. If the
519 exits lead to the same bb it may be possible to join the loop. */
520 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
521 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
522 edge e;
523 int i;
524 build_scops_1 (bb, loop, &regions, loop);
525
526 /* Scan the code dominated by this loop. This means all bbs, that are
527 are dominated by a bb in this loop, but are not part of this loop.
528
529 The easiest case:
530 - The loop exit destination is dominated by the exit sources.
531
532 TODO: We miss here the more complex cases:
533 - The exit destinations are dominated by another bb inside
534 the loop.
535 - The loop dominates bbs, that are not exit destinations. */
ac47786e 536 FOR_EACH_VEC_ELT (edge, exits, i, e)
2abae5f1
SP
537 if (e->src->loop_father == loop
538 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
539 {
540 if (loop_outer (outermost_loop))
541 outermost_loop = loop_outer (outermost_loop);
542
543 /* Pass loop_outer to recognize e->dest as loop header in
544 build_scops_1. */
545 if (e->dest->loop_father->header == e->dest)
546 build_scops_1 (e->dest, outermost_loop, &regions,
547 loop_outer (e->dest->loop_father));
548 else
549 build_scops_1 (e->dest, outermost_loop, &regions,
550 e->dest->loop_father);
551 }
552
553 result.next = NULL;
554 result.exit = NULL;
555 result.difficult = true;
556 result.exits = false;
557 move_sd_regions (&regions, scops);
558 VEC_free (edge, heap, exits);
559 break;
560 }
561 case GBB_COND_HEADER:
562 {
563 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
564 struct scopdet_info sinfo;
565 VEC (basic_block, heap) *dominated;
566 int i;
567 basic_block dom_bb;
568 basic_block last_exit = NULL;
569 edge e;
570 result.exits = false;
571
572 /* First check the successors of BB, and check if it is
573 possible to join the different branches. */
ac47786e 574 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
2abae5f1
SP
575 {
576 /* Ignore loop exits. They will be handled after the loop
577 body. */
f4ce375d 578 if (loop_exits_to_bb_p (loop, e->dest))
2abae5f1
SP
579 {
580 result.exits = true;
581 continue;
582 }
583
584 /* Do not follow edges that lead to the end of the
585 conditions block. For example, in
586
587 | 0
588 | /|\
589 | 1 2 |
590 | | | |
591 | 3 4 |
592 | \|/
593 | 6
594
595 the edge from 0 => 6. Only check if all paths lead to
596 the same node 6. */
597
598 if (!single_pred_p (e->dest))
599 {
600 /* Check, if edge leads directly to the end of this
601 condition. */
602 if (!last_exit)
603 last_exit = e->dest;
604
605 if (e->dest != last_exit)
606 result.difficult = true;
607
608 continue;
609 }
610
611 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
612 {
613 result.difficult = true;
614 continue;
615 }
616
617 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
618
619 result.exits |= sinfo.exits;
620 result.difficult |= sinfo.difficult;
621
622 /* Checks, if all branches end at the same point.
623 If that is true, the condition stays joinable.
624 Have a look at the example above. */
625 if (sinfo.exit)
626 {
627 if (!last_exit)
628 last_exit = sinfo.exit;
629
630 if (sinfo.exit != last_exit)
631 result.difficult = true;
632 }
633 else
634 result.difficult = true;
635 }
636
637 if (!last_exit)
638 result.difficult = true;
639
640 /* Join the branches of the condition if possible. */
641 if (!result.exits && !result.difficult)
642 {
643 /* Only return a next pointer if we dominate this pointer.
644 Otherwise it will be handled by the bb dominating it. */
645 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
646 && last_exit != bb)
647 result.next = last_exit;
648 else
649 result.next = NULL;
650
651 result.exit = last_exit;
652
653 VEC_free (sd_region, heap, regions);
654 break;
655 }
656
657 /* Scan remaining bbs dominated by BB. */
658 dominated = get_dominated_by (CDI_DOMINATORS, bb);
659
ac47786e 660 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
2abae5f1
SP
661 {
662 /* Ignore loop exits: they will be handled after the loop body. */
663 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
664 < loop_depth (loop))
665 {
666 result.exits = true;
667 continue;
668 }
669
670 /* Ignore the bbs processed above. */
671 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
672 continue;
673
674 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
675 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
676 loop_outer (loop));
677 else
678 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
679
680 result.exits |= sinfo.exits;
681 result.difficult = true;
682 result.exit = NULL;
683 }
684
685 VEC_free (basic_block, heap, dominated);
686
687 result.next = NULL;
688 move_sd_regions (&regions, scops);
689
690 break;
691 }
692
693 default:
694 gcc_unreachable ();
695 }
696
697 return result;
698}
699
700/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
701 SCOPS. The analyse if a sd_region can be handled is based on the value
702 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
703 is the loop in which CURRENT is handled.
704
705 TODO: These functions got a little bit big. They definitely should be cleaned
706 up. */
707
708static struct scopdet_info
709build_scops_1 (basic_block current, loop_p outermost_loop,
710 VEC (sd_region, heap) **scops, loop_p loop)
711{
712 bool in_scop = false;
713 sd_region open_scop;
714 struct scopdet_info sinfo;
715
716 /* Initialize result. */
717 struct scopdet_info result;
718 result.exits = false;
719 result.difficult = false;
720 result.next = NULL;
721 result.exit = NULL;
722 open_scop.entry = NULL;
723 open_scop.exit = NULL;
724 sinfo.exit = NULL;
725
726 /* Loop over the dominance tree. If we meet a difficult bb, close
727 the current SCoP. Loop and condition header start a new layer,
728 and can only be added if all bbs in deeper layers are simple. */
729 while (current != NULL)
730 {
731 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
732 get_bb_type (current, loop));
733
734 if (!in_scop && !(sinfo.exits || sinfo.difficult))
735 {
736 open_scop.entry = current;
737 open_scop.exit = NULL;
738 in_scop = true;
739 }
740 else if (in_scop && (sinfo.exits || sinfo.difficult))
741 {
742 open_scop.exit = current;
743 VEC_safe_push (sd_region, heap, *scops, &open_scop);
744 in_scop = false;
745 }
746
747 result.difficult |= sinfo.difficult;
748 result.exits |= sinfo.exits;
749
750 current = sinfo.next;
751 }
752
753 /* Try to close open_scop, if we are still in an open SCoP. */
754 if (in_scop)
755 {
756 open_scop.exit = sinfo.exit;
757 gcc_assert (open_scop.exit);
758 VEC_safe_push (sd_region, heap, *scops, &open_scop);
759 }
760
761 result.exit = sinfo.exit;
762 return result;
763}
764
765/* Checks if a bb is contained in REGION. */
766
767static bool
768bb_in_sd_region (basic_block bb, sd_region *region)
769{
770 return bb_in_region (bb, region->entry, region->exit);
771}
772
773/* Returns the single entry edge of REGION, if it does not exits NULL. */
774
775static edge
776find_single_entry_edge (sd_region *region)
777{
778 edge e;
779 edge_iterator ei;
780 edge entry = NULL;
781
782 FOR_EACH_EDGE (e, ei, region->entry->preds)
783 if (!bb_in_sd_region (e->src, region))
784 {
785 if (entry)
786 {
787 entry = NULL;
788 break;
789 }
790
791 else
792 entry = e;
793 }
794
795 return entry;
796}
797
798/* Returns the single exit edge of REGION, if it does not exits NULL. */
799
800static edge
801find_single_exit_edge (sd_region *region)
802{
803 edge e;
804 edge_iterator ei;
805 edge exit = NULL;
806
807 FOR_EACH_EDGE (e, ei, region->exit->preds)
808 if (bb_in_sd_region (e->src, region))
809 {
810 if (exit)
811 {
812 exit = NULL;
813 break;
814 }
815
816 else
817 exit = e;
818 }
819
820 return exit;
821}
822
823/* Create a single entry edge for REGION. */
824
825static void
826create_single_entry_edge (sd_region *region)
827{
828 if (find_single_entry_edge (region))
829 return;
830
831 /* There are multiple predecessors for bb_3
832
833 | 1 2
834 | | /
835 | |/
836 | 3 <- entry
837 | |\
838 | | |
839 | 4 ^
840 | | |
841 | |/
842 | 5
843
844 There are two edges (1->3, 2->3), that point from outside into the region,
845 and another one (5->3), a loop latch, lead to bb_3.
846
847 We split bb_3.
848
849 | 1 2
850 | | /
851 | |/
852 |3.0
853 | |\ (3.0 -> 3.1) = single entry edge
854 |3.1 | <- entry
855 | | |
856 | | |
857 | 4 ^
858 | | |
859 | |/
860 | 5
861
862 If the loop is part of the SCoP, we have to redirect the loop latches.
863
864 | 1 2
865 | | /
866 | |/
867 |3.0
868 | | (3.0 -> 3.1) = entry edge
869 |3.1 <- entry
870 | |\
871 | | |
872 | 4 ^
873 | | |
874 | |/
875 | 5 */
876
877 if (region->entry->loop_father->header != region->entry
878 || dominated_by_p (CDI_DOMINATORS,
879 loop_latch_edge (region->entry->loop_father)->src,
880 region->exit))
881 {
882 edge forwarder = split_block_after_labels (region->entry);
883 region->entry = forwarder->dest;
884 }
885 else
886 /* This case is never executed, as the loop headers seem always to have a
887 single edge pointing from outside into the loop. */
888 gcc_unreachable ();
889
77a74ed7 890 gcc_checking_assert (find_single_entry_edge (region));
2abae5f1
SP
891}
892
893/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
894
895static bool
896sd_region_without_exit (edge e)
897{
898 sd_region *r = (sd_region *) e->aux;
899
900 if (r)
901 return r->exit == NULL;
902 else
903 return false;
904}
905
906/* Create a single exit edge for REGION. */
907
908static void
909create_single_exit_edge (sd_region *region)
910{
911 edge e;
912 edge_iterator ei;
913 edge forwarder = NULL;
914 basic_block exit;
915
2abae5f1
SP
916 /* We create a forwarder bb (5) for all edges leaving this region
917 (3->5, 4->5). All other edges leading to the same bb, are moved
918 to a new bb (6). If these edges where part of another region (2->5)
919 we update the region->exit pointer, of this region.
920
921 To identify which edge belongs to which region we depend on the e->aux
922 pointer in every edge. It points to the region of the edge or to NULL,
923 if the edge is not part of any region.
924
925 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
926 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
927 5 <- exit
928
929 changes to
930
931 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
932 | | \/ 3->5 no region, 4->5 no region,
933 | | 5
934 \| / 5->6 region->exit = 6
935 6
936
937 Now there is only a single exit edge (5->6). */
938 exit = region->exit;
939 region->exit = NULL;
940 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
941
942 /* Unmark the edges, that are no longer exit edges. */
943 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
944 if (e->aux)
945 e->aux = NULL;
946
947 /* Mark the new exit edge. */
948 single_succ_edge (forwarder->src)->aux = region;
949
950 /* Update the exit bb of all regions, where exit edges lead to
951 forwarder->dest. */
952 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
953 if (e->aux)
954 ((sd_region *) e->aux)->exit = forwarder->dest;
955
77a74ed7 956 gcc_checking_assert (find_single_exit_edge (region));
2abae5f1
SP
957}
958
959/* Unmark the exit edges of all REGIONS.
960 See comment in "create_single_exit_edge". */
961
962static void
963unmark_exit_edges (VEC (sd_region, heap) *regions)
964{
965 int i;
966 sd_region *s;
967 edge e;
968 edge_iterator ei;
969
ac47786e 970 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
971 FOR_EACH_EDGE (e, ei, s->exit->preds)
972 e->aux = NULL;
973}
974
975
976/* Mark the exit edges of all REGIONS.
977 See comment in "create_single_exit_edge". */
978
979static void
980mark_exit_edges (VEC (sd_region, heap) *regions)
981{
982 int i;
983 sd_region *s;
984 edge e;
985 edge_iterator ei;
986
ac47786e 987 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
988 FOR_EACH_EDGE (e, ei, s->exit->preds)
989 if (bb_in_sd_region (e->src, s))
990 e->aux = s;
991}
992
993/* Create for all scop regions a single entry and a single exit edge. */
994
995static void
996create_sese_edges (VEC (sd_region, heap) *regions)
997{
998 int i;
999 sd_region *s;
1000
ac47786e 1001 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
1002 create_single_entry_edge (s);
1003
1004 mark_exit_edges (regions);
1005
ac47786e 1006 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
4caa8e21
SP
1007 /* Don't handle multiple edges exiting the function. */
1008 if (!find_single_exit_edge (s)
1009 && s->exit != EXIT_BLOCK_PTR)
1010 create_single_exit_edge (s);
2abae5f1
SP
1011
1012 unmark_exit_edges (regions);
1013
1014 fix_loop_structure (NULL);
1015
1016#ifdef ENABLE_CHECKING
1017 verify_loop_structure ();
1018 verify_dominators (CDI_DOMINATORS);
1019 verify_ssa (false);
1020#endif
1021}
1022
1023/* Create graphite SCoPs from an array of scop detection REGIONS. */
1024
1025static void
1026build_graphite_scops (VEC (sd_region, heap) *regions,
1027 VEC (scop_p, heap) **scops)
1028{
1029 int i;
1030 sd_region *s;
1031
ac47786e 1032 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
2abae5f1
SP
1033 {
1034 edge entry = find_single_entry_edge (s);
1035 edge exit = find_single_exit_edge (s);
4caa8e21
SP
1036 scop_p scop;
1037
1038 if (!exit)
1039 continue;
1040
1041 scop = new_scop (new_sese (entry, exit));
2abae5f1
SP
1042 VEC_safe_push (scop_p, heap, *scops, scop);
1043
1044 /* Are there overlapping SCoPs? */
1045#ifdef ENABLE_CHECKING
1046 {
1047 int j;
1048 sd_region *s2;
1049
ac47786e 1050 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
2abae5f1
SP
1051 if (s != s2)
1052 gcc_assert (!bb_in_sd_region (s->entry, s2));
1053 }
1054#endif
1055 }
1056}
1057
1058/* Returns true when BB contains only close phi nodes. */
1059
1060static bool
1061contains_only_close_phi_nodes (basic_block bb)
1062{
1063 gimple_stmt_iterator gsi;
1064
1065 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1067 return false;
1068
1069 return true;
1070}
1071
1072/* Print statistics for SCOP to FILE. */
1073
1074static void
1075print_graphite_scop_statistics (FILE* file, scop_p scop)
1076{
1077 long n_bbs = 0;
1078 long n_loops = 0;
1079 long n_stmts = 0;
1080 long n_conditions = 0;
1081 long n_p_bbs = 0;
1082 long n_p_loops = 0;
1083 long n_p_stmts = 0;
1084 long n_p_conditions = 0;
1085
1086 basic_block bb;
1087
1088 FOR_ALL_BB (bb)
1089 {
1090 gimple_stmt_iterator psi;
1091 loop_p loop = bb->loop_father;
1092
1093 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1094 continue;
1095
1096 n_bbs++;
1097 n_p_bbs += bb->count;
1098
1099 if (VEC_length (edge, bb->succs) > 1)
1100 {
1101 n_conditions++;
1102 n_p_conditions += bb->count;
1103 }
1104
1105 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1106 {
1107 n_stmts++;
1108 n_p_stmts += bb->count;
1109 }
1110
1111 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1112 {
1113 n_loops++;
1114 n_p_loops += bb->count;
1115 }
1116
1117 }
1118
1119 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1120 fprintf (file, "BBS:%ld, ", n_bbs);
1121 fprintf (file, "LOOPS:%ld, ", n_loops);
1122 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1123 fprintf (file, "STMTS:%ld)\n", n_stmts);
1124 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1125 fprintf (file, "BBS:%ld, ", n_p_bbs);
1126 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1127 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1128 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1129}
1130
1131/* Print statistics for SCOPS to FILE. */
1132
1133static void
1134print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1135{
1136 int i;
1137 scop_p scop;
1138
ac47786e 1139 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
2abae5f1
SP
1140 print_graphite_scop_statistics (file, scop);
1141}
1142
2abae5f1
SP
1143/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1144
1145 Example:
1146
1147 for (i |
1148 { |
1149 for (j | SCoP 1
1150 for (k |
1151 } |
1152
1153 * SCoP frontier, as this line is not surrounded by any loop. *
1154
1155 for (l | SCoP 2
1156
1157 This is necessary as scalar evolution and parameter detection need a
1158 outermost loop to initialize parameters correctly.
1159
1160 TODO: FIX scalar evolution and parameter detection to allow more flexible
1161 SCoP frontiers. */
1162
1163static void
1164limit_scops (VEC (scop_p, heap) **scops)
1165{
1166 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1167
1168 int i;
1169 scop_p scop;
1170
ac47786e 1171 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
2abae5f1
SP
1172 {
1173 int j;
1174 loop_p loop;
1175 sese region = SCOP_REGION (scop);
2abae5f1
SP
1176 build_sese_loop_nests (region);
1177
ac47786e 1178 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
2abae5f1
SP
1179 if (!loop_in_sese_p (loop_outer (loop), region)
1180 && single_exit (loop))
1181 {
1182 sd_region open_scop;
1183 open_scop.entry = loop->header;
1184 open_scop.exit = single_exit (loop)->dest;
1185
1186 /* This is a hack on top of the limit_scops hack. The
1187 limit_scops hack should disappear all together. */
1188 if (single_succ_p (open_scop.exit)
1189 && contains_only_close_phi_nodes (open_scop.exit))
1190 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1191
1192 VEC_safe_push (sd_region, heap, regions, &open_scop);
1193 }
1194 }
1195
7a521ff2 1196 free_scops (*scops);
2abae5f1
SP
1197 *scops = VEC_alloc (scop_p, heap, 3);
1198
1199 create_sese_edges (regions);
1200 build_graphite_scops (regions, scops);
1201 VEC_free (sd_region, heap, regions);
1202}
1203
3a292d59
SP
1204/* Returns true when P1 and P2 are close phis with the same
1205 argument. */
1206
1207static inline bool
1208same_close_phi_node (gimple p1, gimple p2)
1209{
1210 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1211 gimple_phi_arg_def (p2, 0), 0);
1212}
1213
1214/* Remove the close phi node at GSI and replace its rhs with the rhs
1215 of PHI. */
1216
1217static void
1218remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1219{
1220 gimple use_stmt;
1221 use_operand_p use_p;
1222 imm_use_iterator imm_iter;
1223 tree res = gimple_phi_result (phi);
1224 tree def = gimple_phi_result (gsi_stmt (*gsi));
1225
1226 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1227
1228 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1229 {
1230 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1231 SET_USE (use_p, res);
1232
1233 update_stmt (use_stmt);
1234 }
1235
1236 remove_phi_node (gsi, true);
1237}
1238
1239/* Removes all the close phi duplicates from BB. */
1240
1241static void
1242make_close_phi_nodes_unique (basic_block bb)
1243{
1244 gimple_stmt_iterator psi;
1245
1246 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1247 {
1248 gimple_stmt_iterator gsi = psi;
1249 gimple phi = gsi_stmt (psi);
1250
1251 /* At this point, PHI should be a close phi in normal form. */
1252 gcc_assert (gimple_phi_num_args (phi) == 1);
1253
1254 /* Iterate over the next phis and remove duplicates. */
1255 gsi_next (&gsi);
1256 while (!gsi_end_p (gsi))
1257 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1258 remove_duplicate_close_phi (phi, &gsi);
1259 else
1260 gsi_next (&gsi);
1261 }
1262}
1263
2abae5f1
SP
1264/* Transforms LOOP to the canonical loop closed SSA form. */
1265
1266static void
1267canonicalize_loop_closed_ssa (loop_p loop)
1268{
1269 edge e = single_exit (loop);
1270 basic_block bb;
1271
1272 if (!e || e->flags & EDGE_ABNORMAL)
1273 return;
1274
1275 bb = e->dest;
1276
1277 if (VEC_length (edge, bb->preds) == 1)
3a292d59
SP
1278 {
1279 e = split_block_after_labels (bb);
1280 make_close_phi_nodes_unique (e->src);
1281 }
2abae5f1
SP
1282 else
1283 {
1284 gimple_stmt_iterator psi;
1285 basic_block close = split_edge (e);
1286
1287 e = single_succ_edge (close);
1288
1289 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1290 {
1291 gimple phi = gsi_stmt (psi);
1292 unsigned i;
1293
1294 for (i = 0; i < gimple_phi_num_args (phi); i++)
1295 if (gimple_phi_arg_edge (phi, i) == e)
1296 {
1297 tree res, arg = gimple_phi_arg_def (phi, i);
1298 use_operand_p use_p;
1299 gimple close_phi;
1300
1301 if (TREE_CODE (arg) != SSA_NAME)
1302 continue;
1303
1304 close_phi = create_phi_node (arg, close);
1305 res = create_new_def_for (gimple_phi_result (close_phi),
1306 close_phi,
1307 gimple_phi_result_ptr (close_phi));
1308 add_phi_arg (close_phi, arg,
1309 gimple_phi_arg_edge (close_phi, 0),
1310 UNKNOWN_LOCATION);
1311 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1312 replace_exp (use_p, res);
1313 update_stmt (phi);
1314 }
1315 }
3a292d59
SP
1316
1317 make_close_phi_nodes_unique (close);
2abae5f1 1318 }
1c3ba85b
SP
1319
1320 /* The code above does not properly handle changes in the post dominance
1321 information (yet). */
1322 free_dominance_info (CDI_POST_DOMINATORS);
2abae5f1
SP
1323}
1324
1325/* Converts the current loop closed SSA form to a canonical form
1326 expected by the Graphite code generation.
1327
1328 The loop closed SSA form has the following invariant: a variable
1329 defined in a loop that is used outside the loop appears only in the
1330 phi nodes in the destination of the loop exit. These phi nodes are
1331 called close phi nodes.
1332
1333 The canonical loop closed SSA form contains the extra invariants:
1334
1335 - when the loop contains only one exit, the close phi nodes contain
1336 only one argument. That implies that the basic block that contains
1337 the close phi nodes has only one predecessor, that is a basic block
1338 in the loop.
1339
1340 - the basic block containing the close phi nodes does not contain
1341 other statements.
3a292d59
SP
1342
1343 - there exist only one phi node per definition in the loop.
2abae5f1
SP
1344*/
1345
1346static void
1347canonicalize_loop_closed_ssa_form (void)
1348{
1349 loop_iterator li;
1350 loop_p loop;
1351
1352#ifdef ENABLE_CHECKING
a3b9e73c 1353 verify_loop_closed_ssa (true);
2abae5f1
SP
1354#endif
1355
1356 FOR_EACH_LOOP (li, loop, 0)
1357 canonicalize_loop_closed_ssa (loop);
1358
1359 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1360 update_ssa (TODO_update_ssa);
1361
1362#ifdef ENABLE_CHECKING
a3b9e73c 1363 verify_loop_closed_ssa (true);
2abae5f1
SP
1364#endif
1365}
1366
1367/* Find Static Control Parts (SCoP) in the current function and pushes
1368 them to SCOPS. */
1369
1370void
1371build_scops (VEC (scop_p, heap) **scops)
1372{
1373 struct loop *loop = current_loops->tree_root;
1374 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1375
1376 canonicalize_loop_closed_ssa_form ();
1377 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
4caa8e21 1378 &regions, loop);
2abae5f1
SP
1379 create_sese_edges (regions);
1380 build_graphite_scops (regions, scops);
1381
1382 if (dump_file && (dump_flags & TDF_DETAILS))
1383 print_graphite_statistics (dump_file, *scops);
1384
1385 limit_scops (scops);
1386 VEC_free (sd_region, heap, regions);
1387
1388 if (dump_file && (dump_flags & TDF_DETAILS))
1389 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1390 VEC_length (scop_p, *scops));
1391}
1392
afae0207
SP
1393/* Pretty print to FILE all the SCoPs in DOT format and mark them with
1394 different colors. If there are not enough colors, paint the
1395 remaining SCoPs in gray.
1396
2abae5f1 1397 Special nodes:
afae0207
SP
1398 - "*" after the node number denotes the entry of a SCoP,
1399 - "#" after the node number denotes the exit of a SCoP,
1400 - "()" around the node number denotes the entry or the
1401 exit nodes of the SCOP. These are not part of SCoP. */
2abae5f1
SP
1402
1403static void
1404dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1405{
1406 basic_block bb;
1407 edge e;
1408 edge_iterator ei;
1409 scop_p scop;
1410 const char* color;
1411 int i;
1412
1413 /* Disable debugging while printing graph. */
1414 int tmp_dump_flags = dump_flags;
1415 dump_flags = 0;
1416
1417 fprintf (file, "digraph all {\n");
1418
1419 FOR_ALL_BB (bb)
1420 {
1421 int part_of_scop = false;
1422
1423 /* Use HTML for every bb label. So we are able to print bbs
1424 which are part of two different SCoPs, with two different
1425 background colors. */
1426 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1427 bb->index);
1428 fprintf (file, "CELLSPACING=\"0\">\n");
1429
1430 /* Select color for SCoP. */
ac47786e 1431 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
2abae5f1
SP
1432 {
1433 sese region = SCOP_REGION (scop);
1434 if (bb_in_sese_p (bb, region)
1435 || (SESE_EXIT_BB (region) == bb)
1436 || (SESE_ENTRY_BB (region) == bb))
1437 {
1438 switch (i % 17)
1439 {
1440 case 0: /* red */
1441 color = "#e41a1c";
1442 break;
1443 case 1: /* blue */
1444 color = "#377eb8";
1445 break;
1446 case 2: /* green */
1447 color = "#4daf4a";
1448 break;
1449 case 3: /* purple */
1450 color = "#984ea3";
1451 break;
1452 case 4: /* orange */
1453 color = "#ff7f00";
1454 break;
1455 case 5: /* yellow */
1456 color = "#ffff33";
1457 break;
1458 case 6: /* brown */
1459 color = "#a65628";
1460 break;
1461 case 7: /* rose */
1462 color = "#f781bf";
1463 break;
1464 case 8:
1465 color = "#8dd3c7";
1466 break;
1467 case 9:
1468 color = "#ffffb3";
1469 break;
1470 case 10:
1471 color = "#bebada";
1472 break;
1473 case 11:
1474 color = "#fb8072";
1475 break;
1476 case 12:
1477 color = "#80b1d3";
1478 break;
1479 case 13:
1480 color = "#fdb462";
1481 break;
1482 case 14:
1483 color = "#b3de69";
1484 break;
1485 case 15:
1486 color = "#fccde5";
1487 break;
1488 case 16:
1489 color = "#bc80bd";
1490 break;
1491 default: /* gray */
1492 color = "#999999";
1493 }
1494
1495 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1496
1497 if (!bb_in_sese_p (bb, region))
1498 fprintf (file, " (");
1499
1500 if (bb == SESE_ENTRY_BB (region)
1501 && bb == SESE_EXIT_BB (region))
1502 fprintf (file, " %d*# ", bb->index);
1503 else if (bb == SESE_ENTRY_BB (region))
1504 fprintf (file, " %d* ", bb->index);
1505 else if (bb == SESE_EXIT_BB (region))
1506 fprintf (file, " %d# ", bb->index);
1507 else
1508 fprintf (file, " %d ", bb->index);
1509
1510 if (!bb_in_sese_p (bb,region))
1511 fprintf (file, ")");
1512
1513 fprintf (file, "</TD></TR>\n");
1514 part_of_scop = true;
1515 }
1516 }
1517
1518 if (!part_of_scop)
1519 {
1520 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1521 fprintf (file, " %d </TD></TR>\n", bb->index);
1522 }
1523 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1524 }
1525
1526 FOR_ALL_BB (bb)
1527 {
1528 FOR_EACH_EDGE (e, ei, bb->succs)
1529 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1530 }
1531
1532 fputs ("}\n\n", file);
1533
1534 /* Enable debugging again. */
1535 dump_flags = tmp_dump_flags;
1536}
1537
1538/* Display all SCoPs using dotty. */
1539
1f424006 1540DEBUG_FUNCTION void
2abae5f1
SP
1541dot_all_scops (VEC (scop_p, heap) *scops)
1542{
1543 /* When debugging, enable the following code. This cannot be used
1544 in production compilers because it calls "system". */
1545#if 0
1546 int x;
1547 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1548 gcc_assert (stream);
1549
1550 dot_all_scops_1 (stream, scops);
1551 fclose (stream);
1552
4c8f3c48 1553 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1554#else
1555 dot_all_scops_1 (stderr, scops);
1556#endif
1557}
1558
1559/* Display all SCoPs using dotty. */
1560
1f424006 1561DEBUG_FUNCTION void
2abae5f1
SP
1562dot_scop (scop_p scop)
1563{
1564 VEC (scop_p, heap) *scops = NULL;
1565
1566 if (scop)
1567 VEC_safe_push (scop_p, heap, scops, scop);
1568
1569 /* When debugging, enable the following code. This cannot be used
1570 in production compilers because it calls "system". */
1571#if 0
1572 {
1573 int x;
1574 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1575 gcc_assert (stream);
1576
1577 dot_all_scops_1 (stream, scops);
1578 fclose (stream);
4c8f3c48 1579 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1580 }
1581#else
1582 dot_all_scops_1 (stderr, scops);
1583#endif
1584
1585 VEC_free (scop_p, heap, scops);
1586}
1587
1588#endif