]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-scop-detection.c
Revert:
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
CommitLineData
c6bb733d 1/* Detection of Static Control Parts (SCoP) for Graphite.
3aea1f79 2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
c6bb733d 3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
87e20041 23
24#ifdef HAVE_cloog
25#include <isl/set.h>
26#include <isl/map.h>
27#include <isl/union_map.h>
28#include <cloog/cloog.h>
29#include <cloog/isl/domain.h>
30#endif
31
c6bb733d 32#include "system.h"
33#include "coretypes.h"
41a8aa41 34#include "tree.h"
bc61cadb 35#include "basic-block.h"
36#include "tree-ssa-alias.h"
37#include "internal-fn.h"
38#include "gimple-expr.h"
39#include "is-a.h"
073c1fd5 40#include "gimple.h"
dcf1a1ec 41#include "gimple-iterator.h"
073c1fd5 42#include "gimple-ssa.h"
43#include "tree-phinodes.h"
44#include "ssa-iterators.h"
05d9c18a 45#include "tree-ssa-loop-manip.h"
46#include "tree-ssa-loop-niter.h"
073c1fd5 47#include "tree-ssa-loop.h"
48#include "tree-into-ssa.h"
69ee5dbb 49#include "tree-ssa.h"
c6bb733d 50#include "cfgloop.h"
51#include "tree-chrec.h"
52#include "tree-data-ref.h"
53#include "tree-scalar-evolution.h"
54#include "tree-pass.h"
c6bb733d 55#include "sese.h"
f8ba3083 56#include "tree-ssa-propagate.h"
c6bb733d 57
58#ifdef HAVE_cloog
c6bb733d 59#include "graphite-poly.h"
60#include "graphite-scop-detection.h"
61
c9722991 62/* Forward declarations. */
63static void make_close_phi_nodes_unique (basic_block);
64
c6bb733d 65/* The type of the analyzed basic block. */
66
67typedef enum gbb_type {
68 GBB_UNKNOWN,
69 GBB_LOOP_SING_EXIT_HEADER,
70 GBB_LOOP_MULT_EXIT_HEADER,
71 GBB_LOOP_EXIT,
72 GBB_COND_HEADER,
73 GBB_SIMPLE,
74 GBB_LAST
75} gbb_type;
76
77/* Detect the type of BB. Loop headers are only marked, if they are
78 new. This means their loop_father is different to LAST_LOOP.
79 Otherwise they are treated like any other bb and their type can be
80 any other type. */
81
82static gbb_type
83get_bb_type (basic_block bb, struct loop *last_loop)
84{
f1f41a6c 85 vec<basic_block> dom;
7bf60644 86 int nb_dom;
c6bb733d 87 struct loop *loop = bb->loop_father;
88
89 /* Check, if we entry into a new loop. */
90 if (loop != last_loop)
91 {
92 if (single_exit (loop) != NULL)
93 return GBB_LOOP_SING_EXIT_HEADER;
94 else if (loop->num != 0)
95 return GBB_LOOP_MULT_EXIT_HEADER;
96 else
97 return GBB_COND_HEADER;
98 }
99
100 dom = get_dominated_by (CDI_DOMINATORS, bb);
f1f41a6c 101 nb_dom = dom.length ();
102 dom.release ();
c6bb733d 103
104 if (nb_dom == 0)
105 return GBB_LAST;
106
7bf60644 107 if (nb_dom == 1 && single_succ_p (bb))
c6bb733d 108 return GBB_SIMPLE;
109
110 return GBB_COND_HEADER;
111}
112
113/* A SCoP detection region, defined using bbs as borders.
114
115 All control flow touching this region, comes in passing basic_block
116 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
117 edges for the borders we are able to represent also regions that do
118 not have a single entry or exit edge.
119
120 But as they have a single entry basic_block and a single exit
121 basic_block, we are able to generate for every sd_region a single
122 entry and exit edge.
123
124 1 2
125 \ /
126 3 <- entry
127 |
128 4
129 / \ This region contains: {3, 4, 5, 6, 7, 8}
130 5 6
131 | |
132 7 8
133 \ /
134 9 <- exit */
135
136
137typedef struct sd_region_p
138{
139 /* The entry bb dominates all bbs in the sd_region. It is part of
140 the region. */
141 basic_block entry;
142
143 /* The exit bb postdominates all bbs in the sd_region, but is not
144 part of the region. */
145 basic_block exit;
146} sd_region;
147
c6bb733d 148
149
150/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
151
152static void
f1f41a6c 153move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
c6bb733d 154{
155 sd_region *s;
156 int i;
157
f1f41a6c 158 FOR_EACH_VEC_ELT (*source, i, s)
159 target->safe_push (*s);
c6bb733d 160
f1f41a6c 161 source->release ();
c6bb733d 162}
163
164/* Something like "n * m" is not allowed. */
165
166static bool
167graphite_can_represent_init (tree e)
168{
169 switch (TREE_CODE (e))
170 {
171 case POLYNOMIAL_CHREC:
172 return graphite_can_represent_init (CHREC_LEFT (e))
173 && graphite_can_represent_init (CHREC_RIGHT (e));
174
175 case MULT_EXPR:
176 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
7464e753 177 return graphite_can_represent_init (TREE_OPERAND (e, 0))
35ec552a 178 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
c6bb733d 179 else
7464e753 180 return graphite_can_represent_init (TREE_OPERAND (e, 1))
35ec552a 181 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
c6bb733d 182
183 case PLUS_EXPR:
184 case POINTER_PLUS_EXPR:
185 case MINUS_EXPR:
186 return graphite_can_represent_init (TREE_OPERAND (e, 0))
187 && graphite_can_represent_init (TREE_OPERAND (e, 1));
188
189 case NEGATE_EXPR:
190 case BIT_NOT_EXPR:
191 CASE_CONVERT:
192 case NON_LVALUE_EXPR:
193 return graphite_can_represent_init (TREE_OPERAND (e, 0));
194
195 default:
196 break;
197 }
198
199 return true;
200}
201
202/* Return true when SCEV can be represented in the polyhedral model.
203
204 An expression can be represented, if it can be expressed as an
205 affine expression. For loops (i, j) and parameters (m, n) all
206 affine expressions are of the form:
207
208 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
209
210 1 i + 20 j + (-2) m + 25
211
e3135850 212 Something like "i * n" or "n * m" is not allowed. */
c6bb733d 213
214static bool
e3135850 215graphite_can_represent_scev (tree scev)
c6bb733d 216{
217 if (chrec_contains_undetermined (scev))
218 return false;
219
99c136a5 220 switch (TREE_CODE (scev))
221 {
222 case PLUS_EXPR:
223 case MINUS_EXPR:
e3135850 224 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
225 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
c6bb733d 226
99c136a5 227 case MULT_EXPR:
228 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
229 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
230 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
231 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
ce0ae3b6 232 && graphite_can_represent_init (scev)
e3135850 233 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
234 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
c6bb733d 235
99c136a5 236 case POLYNOMIAL_CHREC:
237 /* Check for constant strides. With a non constant stride of
238 'n' we would have a value of 'iv * n'. Also check that the
239 initial value can represented: for example 'n * m' cannot be
240 represented. */
241 if (!evolution_function_right_is_integer_cst (scev)
242 || !graphite_can_represent_init (scev))
243 return false;
244
245 default:
246 break;
247 }
c6bb733d 248
249 /* Only affine functions can be represented. */
250 if (!scev_is_linear_expression (scev))
251 return false;
252
629787af 253 return true;
c6bb733d 254}
255
256
257/* Return true when EXPR can be represented in the polyhedral model.
258
259 This means an expression can be represented, if it is linear with
260 respect to the loops and the strides are non parametric.
e3135850 261 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
c6bb733d 262 entry of the region we analyse. */
263
264static bool
265graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
e3135850 266 tree expr)
c6bb733d 267{
268 tree scev = analyze_scalar_evolution (loop, expr);
269
270 scev = instantiate_scev (scop_entry, loop, scev);
271
e3135850 272 return graphite_can_represent_scev (scev);
c6bb733d 273}
274
c6bb733d 275/* Return true if the data references of STMT can be represented by
276 Graphite. */
277
278static bool
e97c4b0d 279stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
280 gimple stmt)
c6bb733d 281{
282 data_reference_p dr;
283 unsigned i;
284 int j;
285 bool res = true;
1e094109 286 vec<data_reference_p> drs = vNULL;
e97c4b0d 287 loop_p outer;
288
289 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
290 {
291 graphite_find_data_references_in_stmt (outer,
292 loop_containing_stmt (stmt),
293 stmt, &drs);
294
f1f41a6c 295 FOR_EACH_VEC_ELT (drs, j, dr)
e97c4b0d 296 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
297 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
298 {
299 res = false;
300 goto done;
301 }
302
303 free_data_refs (drs);
f1f41a6c 304 drs.create (0);
e97c4b0d 305 }
c6bb733d 306
307 done:
308 free_data_refs (drs);
309 return res;
310}
311
c6bb733d 312/* Return true only when STMT is simple enough for being handled by
313 Graphite. This depends on SCOP_ENTRY, as the parameters are
314 initialized relatively to this basic block, the linear functions
315 are initialized to OUTERMOST_LOOP and BB is the place where we try
316 to evaluate the STMT. */
317
318static bool
319stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
320 gimple stmt, basic_block bb)
321{
322 loop_p loop = bb->loop_father;
323
324 gcc_assert (scop_entry);
325
326 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
327 Calls have side-effects, except those to const or pure
328 functions. */
329 if (gimple_has_volatile_ops (stmt)
330 || (gimple_code (stmt) == GIMPLE_CALL
331 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
332 || (gimple_code (stmt) == GIMPLE_ASM))
333 return false;
334
3f6c0a40 335 if (is_gimple_debug (stmt))
336 return true;
337
c6bb733d 338 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
339 return false;
340
341 switch (gimple_code (stmt))
342 {
343 case GIMPLE_RETURN:
344 case GIMPLE_LABEL:
345 return true;
346
347 case GIMPLE_COND:
348 {
c6bb733d 349 /* We can handle all binary comparisons. Inequalities are
350 also supported as they can be represented with union of
351 polyhedra. */
5da4c394 352 enum tree_code code = gimple_cond_code (stmt);
c6bb733d 353 if (!(code == LT_EXPR
354 || code == GT_EXPR
355 || code == LE_EXPR
356 || code == GE_EXPR
357 || code == EQ_EXPR
358 || code == NE_EXPR))
359 return false;
360
5da4c394 361 for (unsigned i = 0; i < 2; ++i)
362 {
363 tree op = gimple_op (stmt, i);
364 if (!graphite_can_represent_expr (scop_entry, loop, op)
365 /* We can not handle REAL_TYPE. Failed for pr39260. */
366 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
367 return false;
368 }
c6bb733d 369
370 return true;
371 }
372
373 case GIMPLE_ASSIGN:
c6bb733d 374 case GIMPLE_CALL:
01e31b4b 375 return true;
c6bb733d 376
377 default:
378 /* These nodes cut a new scope. */
379 return false;
380 }
381
382 return false;
383}
384
385/* Returns the statement of BB that contains a harmful operation: that
386 can be a function call with side effects, the induction variables
387 are not linear with respect to SCOP_ENTRY, etc. The current open
388 scop should end before this statement. The evaluation is limited using
389 OUTERMOST_LOOP as outermost loop that may change. */
390
391static gimple
392harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
393{
394 gimple_stmt_iterator gsi;
395
396 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
397 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
398 return gsi_stmt (gsi);
399
400 return NULL;
401}
402
168e8fc0 403/* Return true if LOOP can be represented in the polyhedral
404 representation. This is evaluated taking SCOP_ENTRY and
405 OUTERMOST_LOOP in mind. */
c6bb733d 406
407static bool
e3135850 408graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
c6bb733d 409{
afad2061 410 tree niter;
411 struct tree_niter_desc niter_desc;
c6bb733d 412
afad2061 413 /* FIXME: For the moment, graphite cannot be used on loops that
414 iterate using induction variables that wrap. */
c6bb733d 415
afad2061 416 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
417 && niter_desc.control.no_overflow
418 && (niter = number_of_latch_executions (loop))
419 && !chrec_contains_undetermined (niter)
420 && graphite_can_represent_expr (scop_entry, loop, niter);
c6bb733d 421}
422
423/* Store information needed by scopdet_* functions. */
424
425struct scopdet_info
426{
427 /* Exit of the open scop would stop if the current BB is harmful. */
428 basic_block exit;
429
430 /* Where the next scop would start if the current BB is harmful. */
431 basic_block next;
432
433 /* The bb or one of its children contains open loop exits. That means
434 loop exit nodes that are not surrounded by a loop dominated by bb. */
435 bool exits;
436
437 /* The bb or one of its children contains only structures we can handle. */
438 bool difficult;
439};
440
441static struct scopdet_info build_scops_1 (basic_block, loop_p,
f1f41a6c 442 vec<sd_region> *, loop_p);
c6bb733d 443
444/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
445 to SCOPS. TYPE is the gbb_type of BB. */
446
447static struct scopdet_info
448scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
f1f41a6c 449 vec<sd_region> *scops, gbb_type type)
c6bb733d 450{
451 loop_p loop = bb->loop_father;
452 struct scopdet_info result;
453 gimple stmt;
454
455 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
34154e27 456 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
c6bb733d 457 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
458 result.difficult = (stmt != NULL);
459 result.exit = NULL;
460
461 switch (type)
462 {
463 case GBB_LAST:
464 result.next = NULL;
465 result.exits = false;
466
467 /* Mark bbs terminating a SESE region difficult, if they start
468 a condition. */
469 if (!single_succ_p (bb))
470 result.difficult = true;
471 else
472 result.exit = single_succ (bb);
473
474 break;
475
476 case GBB_SIMPLE:
477 result.next = single_succ (bb);
478 result.exits = false;
479 result.exit = single_succ (bb);
480 break;
481
482 case GBB_LOOP_SING_EXIT_HEADER:
483 {
4997014d 484 auto_vec<sd_region, 3> regions;
c6bb733d 485 struct scopdet_info sinfo;
486 edge exit_e = single_exit (loop);
487
488 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
489
e3135850 490 if (!graphite_can_represent_loop (entry_block, loop))
c6bb733d 491 result.difficult = true;
492
493 result.difficult |= sinfo.difficult;
494
495 /* Try again with another loop level. */
496 if (result.difficult
497 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
498 {
499 outermost_loop = loop;
500
f1f41a6c 501 regions.release ();
502 regions.create (3);
c6bb733d 503
504 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
505
506 result = sinfo;
507 result.difficult = true;
508
509 if (sinfo.difficult)
510 move_sd_regions (&regions, scops);
511 else
512 {
513 sd_region open_scop;
514 open_scop.entry = bb;
515 open_scop.exit = exit_e->dest;
f1f41a6c 516 scops->safe_push (open_scop);
517 regions.release ();
c6bb733d 518 }
519 }
520 else
521 {
522 result.exit = exit_e->dest;
523 result.next = exit_e->dest;
524
525 /* If we do not dominate result.next, remove it. It's either
efee62d1 526 the exit block, or another bb dominates it and will
c6bb733d 527 call the scop detection for this bb. */
528 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
529 result.next = NULL;
530
531 if (exit_e->src->loop_father != loop)
532 result.next = NULL;
533
534 result.exits = false;
535
536 if (result.difficult)
537 move_sd_regions (&regions, scops);
538 else
f1f41a6c 539 regions.release ();
c6bb733d 540 }
541
542 break;
543 }
544
545 case GBB_LOOP_MULT_EXIT_HEADER:
546 {
547 /* XXX: For now we just do not join loops with multiple exits. If the
548 exits lead to the same bb it may be possible to join the loop. */
4997014d 549 auto_vec<sd_region, 3> regions;
f1f41a6c 550 vec<edge> exits = get_loop_exit_edges (loop);
c6bb733d 551 edge e;
552 int i;
553 build_scops_1 (bb, loop, &regions, loop);
554
555 /* Scan the code dominated by this loop. This means all bbs, that are
556 are dominated by a bb in this loop, but are not part of this loop.
557
558 The easiest case:
559 - The loop exit destination is dominated by the exit sources.
560
561 TODO: We miss here the more complex cases:
562 - The exit destinations are dominated by another bb inside
563 the loop.
564 - The loop dominates bbs, that are not exit destinations. */
f1f41a6c 565 FOR_EACH_VEC_ELT (exits, i, e)
c6bb733d 566 if (e->src->loop_father == loop
567 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
568 {
569 if (loop_outer (outermost_loop))
570 outermost_loop = loop_outer (outermost_loop);
571
572 /* Pass loop_outer to recognize e->dest as loop header in
573 build_scops_1. */
574 if (e->dest->loop_father->header == e->dest)
575 build_scops_1 (e->dest, outermost_loop, &regions,
576 loop_outer (e->dest->loop_father));
577 else
578 build_scops_1 (e->dest, outermost_loop, &regions,
579 e->dest->loop_father);
580 }
581
582 result.next = NULL;
583 result.exit = NULL;
584 result.difficult = true;
585 result.exits = false;
586 move_sd_regions (&regions, scops);
f1f41a6c 587 exits.release ();
c6bb733d 588 break;
589 }
590 case GBB_COND_HEADER:
591 {
4997014d 592 auto_vec<sd_region, 3> regions;
c6bb733d 593 struct scopdet_info sinfo;
f1f41a6c 594 vec<basic_block> dominated;
c6bb733d 595 int i;
596 basic_block dom_bb;
597 basic_block last_exit = NULL;
598 edge e;
599 result.exits = false;
600
601 /* First check the successors of BB, and check if it is
602 possible to join the different branches. */
f1f41a6c 603 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
c6bb733d 604 {
605 /* Ignore loop exits. They will be handled after the loop
606 body. */
259c0e44 607 if (loop_exits_to_bb_p (loop, e->dest))
c6bb733d 608 {
609 result.exits = true;
610 continue;
611 }
612
613 /* Do not follow edges that lead to the end of the
614 conditions block. For example, in
615
616 | 0
617 | /|\
618 | 1 2 |
619 | | | |
620 | 3 4 |
621 | \|/
622 | 6
623
624 the edge from 0 => 6. Only check if all paths lead to
625 the same node 6. */
626
627 if (!single_pred_p (e->dest))
628 {
629 /* Check, if edge leads directly to the end of this
630 condition. */
631 if (!last_exit)
632 last_exit = e->dest;
633
634 if (e->dest != last_exit)
635 result.difficult = true;
636
637 continue;
638 }
639
640 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
641 {
642 result.difficult = true;
643 continue;
644 }
645
646 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
647
648 result.exits |= sinfo.exits;
649 result.difficult |= sinfo.difficult;
650
651 /* Checks, if all branches end at the same point.
652 If that is true, the condition stays joinable.
653 Have a look at the example above. */
654 if (sinfo.exit)
655 {
656 if (!last_exit)
657 last_exit = sinfo.exit;
658
659 if (sinfo.exit != last_exit)
660 result.difficult = true;
661 }
662 else
663 result.difficult = true;
664 }
665
666 if (!last_exit)
667 result.difficult = true;
668
669 /* Join the branches of the condition if possible. */
670 if (!result.exits && !result.difficult)
671 {
672 /* Only return a next pointer if we dominate this pointer.
673 Otherwise it will be handled by the bb dominating it. */
674 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
675 && last_exit != bb)
676 result.next = last_exit;
677 else
678 result.next = NULL;
679
680 result.exit = last_exit;
681
f1f41a6c 682 regions.release ();
c6bb733d 683 break;
684 }
685
686 /* Scan remaining bbs dominated by BB. */
687 dominated = get_dominated_by (CDI_DOMINATORS, bb);
688
f1f41a6c 689 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
c6bb733d 690 {
691 /* Ignore loop exits: they will be handled after the loop body. */
692 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
693 < loop_depth (loop))
694 {
695 result.exits = true;
696 continue;
697 }
698
699 /* Ignore the bbs processed above. */
700 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
701 continue;
702
703 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
704 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
705 loop_outer (loop));
706 else
707 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
708
709 result.exits |= sinfo.exits;
710 result.difficult = true;
711 result.exit = NULL;
712 }
713
f1f41a6c 714 dominated.release ();
c6bb733d 715
716 result.next = NULL;
717 move_sd_regions (&regions, scops);
718
719 break;
720 }
721
722 default:
723 gcc_unreachable ();
724 }
725
726 return result;
727}
728
729/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
730 SCOPS. The analyse if a sd_region can be handled is based on the value
731 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
732 is the loop in which CURRENT is handled.
733
734 TODO: These functions got a little bit big. They definitely should be cleaned
735 up. */
736
737static struct scopdet_info
738build_scops_1 (basic_block current, loop_p outermost_loop,
f1f41a6c 739 vec<sd_region> *scops, loop_p loop)
c6bb733d 740{
741 bool in_scop = false;
742 sd_region open_scop;
743 struct scopdet_info sinfo;
744
745 /* Initialize result. */
746 struct scopdet_info result;
747 result.exits = false;
748 result.difficult = false;
749 result.next = NULL;
750 result.exit = NULL;
751 open_scop.entry = NULL;
752 open_scop.exit = NULL;
753 sinfo.exit = NULL;
754
755 /* Loop over the dominance tree. If we meet a difficult bb, close
756 the current SCoP. Loop and condition header start a new layer,
757 and can only be added if all bbs in deeper layers are simple. */
758 while (current != NULL)
759 {
760 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
761 get_bb_type (current, loop));
762
763 if (!in_scop && !(sinfo.exits || sinfo.difficult))
764 {
765 open_scop.entry = current;
766 open_scop.exit = NULL;
767 in_scop = true;
768 }
769 else if (in_scop && (sinfo.exits || sinfo.difficult))
770 {
771 open_scop.exit = current;
f1f41a6c 772 scops->safe_push (open_scop);
c6bb733d 773 in_scop = false;
774 }
775
776 result.difficult |= sinfo.difficult;
777 result.exits |= sinfo.exits;
778
779 current = sinfo.next;
780 }
781
782 /* Try to close open_scop, if we are still in an open SCoP. */
783 if (in_scop)
784 {
785 open_scop.exit = sinfo.exit;
786 gcc_assert (open_scop.exit);
f1f41a6c 787 scops->safe_push (open_scop);
c6bb733d 788 }
789
790 result.exit = sinfo.exit;
791 return result;
792}
793
794/* Checks if a bb is contained in REGION. */
795
796static bool
797bb_in_sd_region (basic_block bb, sd_region *region)
798{
799 return bb_in_region (bb, region->entry, region->exit);
800}
801
802/* Returns the single entry edge of REGION, if it does not exits NULL. */
803
804static edge
805find_single_entry_edge (sd_region *region)
806{
807 edge e;
808 edge_iterator ei;
809 edge entry = NULL;
810
811 FOR_EACH_EDGE (e, ei, region->entry->preds)
812 if (!bb_in_sd_region (e->src, region))
813 {
814 if (entry)
815 {
816 entry = NULL;
817 break;
818 }
819
820 else
821 entry = e;
822 }
823
824 return entry;
825}
826
827/* Returns the single exit edge of REGION, if it does not exits NULL. */
828
829static edge
830find_single_exit_edge (sd_region *region)
831{
832 edge e;
833 edge_iterator ei;
834 edge exit = NULL;
835
836 FOR_EACH_EDGE (e, ei, region->exit->preds)
837 if (bb_in_sd_region (e->src, region))
838 {
839 if (exit)
840 {
841 exit = NULL;
842 break;
843 }
844
845 else
846 exit = e;
847 }
848
849 return exit;
850}
851
852/* Create a single entry edge for REGION. */
853
854static void
855create_single_entry_edge (sd_region *region)
856{
857 if (find_single_entry_edge (region))
858 return;
859
860 /* There are multiple predecessors for bb_3
861
862 | 1 2
863 | | /
864 | |/
865 | 3 <- entry
866 | |\
867 | | |
868 | 4 ^
869 | | |
870 | |/
871 | 5
872
873 There are two edges (1->3, 2->3), that point from outside into the region,
874 and another one (5->3), a loop latch, lead to bb_3.
875
876 We split bb_3.
877
878 | 1 2
879 | | /
880 | |/
881 |3.0
882 | |\ (3.0 -> 3.1) = single entry edge
883 |3.1 | <- entry
884 | | |
885 | | |
886 | 4 ^
887 | | |
888 | |/
889 | 5
890
891 If the loop is part of the SCoP, we have to redirect the loop latches.
892
893 | 1 2
894 | | /
895 | |/
896 |3.0
897 | | (3.0 -> 3.1) = entry edge
898 |3.1 <- entry
899 | |\
900 | | |
901 | 4 ^
902 | | |
903 | |/
904 | 5 */
905
906 if (region->entry->loop_father->header != region->entry
907 || dominated_by_p (CDI_DOMINATORS,
908 loop_latch_edge (region->entry->loop_father)->src,
909 region->exit))
910 {
911 edge forwarder = split_block_after_labels (region->entry);
912 region->entry = forwarder->dest;
913 }
914 else
915 /* This case is never executed, as the loop headers seem always to have a
916 single edge pointing from outside into the loop. */
917 gcc_unreachable ();
918
1b4345f7 919 gcc_checking_assert (find_single_entry_edge (region));
c6bb733d 920}
921
922/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
923
924static bool
925sd_region_without_exit (edge e)
926{
927 sd_region *r = (sd_region *) e->aux;
928
929 if (r)
930 return r->exit == NULL;
931 else
932 return false;
933}
934
935/* Create a single exit edge for REGION. */
936
937static void
938create_single_exit_edge (sd_region *region)
939{
940 edge e;
941 edge_iterator ei;
942 edge forwarder = NULL;
943 basic_block exit;
944
c6bb733d 945 /* We create a forwarder bb (5) for all edges leaving this region
946 (3->5, 4->5). All other edges leading to the same bb, are moved
947 to a new bb (6). If these edges where part of another region (2->5)
948 we update the region->exit pointer, of this region.
949
950 To identify which edge belongs to which region we depend on the e->aux
951 pointer in every edge. It points to the region of the edge or to NULL,
952 if the edge is not part of any region.
953
954 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
955 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
956 5 <- exit
957
958 changes to
959
960 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
961 | | \/ 3->5 no region, 4->5 no region,
962 | | 5
963 \| / 5->6 region->exit = 6
964 6
965
966 Now there is only a single exit edge (5->6). */
967 exit = region->exit;
968 region->exit = NULL;
969 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
970
971 /* Unmark the edges, that are no longer exit edges. */
972 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
973 if (e->aux)
974 e->aux = NULL;
975
976 /* Mark the new exit edge. */
977 single_succ_edge (forwarder->src)->aux = region;
978
979 /* Update the exit bb of all regions, where exit edges lead to
980 forwarder->dest. */
981 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
982 if (e->aux)
983 ((sd_region *) e->aux)->exit = forwarder->dest;
984
1b4345f7 985 gcc_checking_assert (find_single_exit_edge (region));
c6bb733d 986}
987
988/* Unmark the exit edges of all REGIONS.
989 See comment in "create_single_exit_edge". */
990
991static void
f1f41a6c 992unmark_exit_edges (vec<sd_region> regions)
c6bb733d 993{
994 int i;
995 sd_region *s;
996 edge e;
997 edge_iterator ei;
998
f1f41a6c 999 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1000 FOR_EACH_EDGE (e, ei, s->exit->preds)
1001 e->aux = NULL;
1002}
1003
1004
1005/* Mark the exit edges of all REGIONS.
1006 See comment in "create_single_exit_edge". */
1007
1008static void
f1f41a6c 1009mark_exit_edges (vec<sd_region> regions)
c6bb733d 1010{
1011 int i;
1012 sd_region *s;
1013 edge e;
1014 edge_iterator ei;
1015
f1f41a6c 1016 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1017 FOR_EACH_EDGE (e, ei, s->exit->preds)
1018 if (bb_in_sd_region (e->src, s))
1019 e->aux = s;
1020}
1021
1022/* Create for all scop regions a single entry and a single exit edge. */
1023
1024static void
f1f41a6c 1025create_sese_edges (vec<sd_region> regions)
c6bb733d 1026{
1027 int i;
1028 sd_region *s;
1029
f1f41a6c 1030 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1031 create_single_entry_edge (s);
1032
1033 mark_exit_edges (regions);
1034
f1f41a6c 1035 FOR_EACH_VEC_ELT (regions, i, s)
bbf92068 1036 /* Don't handle multiple edges exiting the function. */
1037 if (!find_single_exit_edge (s)
34154e27 1038 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
bbf92068 1039 create_single_exit_edge (s);
c6bb733d 1040
1041 unmark_exit_edges (regions);
1042
4e976818 1043 calculate_dominance_info (CDI_DOMINATORS);
c6bb733d 1044 fix_loop_structure (NULL);
1045
1046#ifdef ENABLE_CHECKING
1047 verify_loop_structure ();
c6bb733d 1048 verify_ssa (false);
1049#endif
1050}
1051
1052/* Create graphite SCoPs from an array of scop detection REGIONS. */
1053
1054static void
f1f41a6c 1055build_graphite_scops (vec<sd_region> regions,
1056 vec<scop_p> *scops)
c6bb733d 1057{
1058 int i;
1059 sd_region *s;
1060
f1f41a6c 1061 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1062 {
1063 edge entry = find_single_entry_edge (s);
1064 edge exit = find_single_exit_edge (s);
bbf92068 1065 scop_p scop;
1066
1067 if (!exit)
1068 continue;
1069
1070 scop = new_scop (new_sese (entry, exit));
f1f41a6c 1071 scops->safe_push (scop);
c6bb733d 1072
1073 /* Are there overlapping SCoPs? */
1074#ifdef ENABLE_CHECKING
1075 {
1076 int j;
1077 sd_region *s2;
1078
f1f41a6c 1079 FOR_EACH_VEC_ELT (regions, j, s2)
c6bb733d 1080 if (s != s2)
1081 gcc_assert (!bb_in_sd_region (s->entry, s2));
1082 }
1083#endif
1084 }
1085}
1086
1087/* Returns true when BB contains only close phi nodes. */
1088
1089static bool
1090contains_only_close_phi_nodes (basic_block bb)
1091{
1092 gimple_stmt_iterator gsi;
1093
1094 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1095 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1096 return false;
1097
1098 return true;
1099}
1100
1101/* Print statistics for SCOP to FILE. */
1102
1103static void
1104print_graphite_scop_statistics (FILE* file, scop_p scop)
1105{
1106 long n_bbs = 0;
1107 long n_loops = 0;
1108 long n_stmts = 0;
1109 long n_conditions = 0;
1110 long n_p_bbs = 0;
1111 long n_p_loops = 0;
1112 long n_p_stmts = 0;
1113 long n_p_conditions = 0;
1114
1115 basic_block bb;
1116
ed7d889a 1117 FOR_ALL_BB_FN (bb, cfun)
c6bb733d 1118 {
1119 gimple_stmt_iterator psi;
1120 loop_p loop = bb->loop_father;
1121
1122 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1123 continue;
1124
1125 n_bbs++;
1126 n_p_bbs += bb->count;
1127
7bf60644 1128 if (EDGE_COUNT (bb->succs) > 1)
c6bb733d 1129 {
1130 n_conditions++;
1131 n_p_conditions += bb->count;
1132 }
1133
1134 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1135 {
1136 n_stmts++;
1137 n_p_stmts += bb->count;
1138 }
1139
1140 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1141 {
1142 n_loops++;
1143 n_p_loops += bb->count;
1144 }
1145
1146 }
1147
1148 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1149 fprintf (file, "BBS:%ld, ", n_bbs);
1150 fprintf (file, "LOOPS:%ld, ", n_loops);
1151 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1152 fprintf (file, "STMTS:%ld)\n", n_stmts);
1153 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1154 fprintf (file, "BBS:%ld, ", n_p_bbs);
1155 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1156 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1157 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1158}
1159
1160/* Print statistics for SCOPS to FILE. */
1161
1162static void
f1f41a6c 1163print_graphite_statistics (FILE* file, vec<scop_p> scops)
c6bb733d 1164{
1165 int i;
1166 scop_p scop;
1167
f1f41a6c 1168 FOR_EACH_VEC_ELT (scops, i, scop)
c6bb733d 1169 print_graphite_scop_statistics (file, scop);
1170}
1171
c6bb733d 1172/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1173
1174 Example:
1175
1176 for (i |
1177 { |
1178 for (j | SCoP 1
1179 for (k |
1180 } |
1181
1182 * SCoP frontier, as this line is not surrounded by any loop. *
1183
1184 for (l | SCoP 2
1185
1186 This is necessary as scalar evolution and parameter detection need a
1187 outermost loop to initialize parameters correctly.
1188
1189 TODO: FIX scalar evolution and parameter detection to allow more flexible
1190 SCoP frontiers. */
1191
1192static void
f1f41a6c 1193limit_scops (vec<scop_p> *scops)
c6bb733d 1194{
4997014d 1195 auto_vec<sd_region, 3> regions;
c6bb733d 1196
1197 int i;
1198 scop_p scop;
1199
f1f41a6c 1200 FOR_EACH_VEC_ELT (*scops, i, scop)
c6bb733d 1201 {
1202 int j;
1203 loop_p loop;
1204 sese region = SCOP_REGION (scop);
c6bb733d 1205 build_sese_loop_nests (region);
1206
f1f41a6c 1207 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
c6bb733d 1208 if (!loop_in_sese_p (loop_outer (loop), region)
1209 && single_exit (loop))
1210 {
1211 sd_region open_scop;
1212 open_scop.entry = loop->header;
1213 open_scop.exit = single_exit (loop)->dest;
1214
1215 /* This is a hack on top of the limit_scops hack. The
1216 limit_scops hack should disappear all together. */
1217 if (single_succ_p (open_scop.exit)
1218 && contains_only_close_phi_nodes (open_scop.exit))
1219 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1220
f1f41a6c 1221 regions.safe_push (open_scop);
c6bb733d 1222 }
1223 }
1224
c9ef6b0e 1225 free_scops (*scops);
f1f41a6c 1226 scops->create (3);
c6bb733d 1227
1228 create_sese_edges (regions);
1229 build_graphite_scops (regions, scops);
c6bb733d 1230}
1231
3225ff53 1232/* Returns true when P1 and P2 are close phis with the same
1233 argument. */
1234
1235static inline bool
1236same_close_phi_node (gimple p1, gimple p2)
1237{
1238 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1239 gimple_phi_arg_def (p2, 0), 0);
1240}
1241
1242/* Remove the close phi node at GSI and replace its rhs with the rhs
1243 of PHI. */
1244
1245static void
1246remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1247{
1248 gimple use_stmt;
1249 use_operand_p use_p;
1250 imm_use_iterator imm_iter;
1251 tree res = gimple_phi_result (phi);
1252 tree def = gimple_phi_result (gsi_stmt (*gsi));
1253
1254 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1255
1256 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1257 {
1258 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1259 SET_USE (use_p, res);
1260
1261 update_stmt (use_stmt);
c9722991 1262
1263 /* It is possible that we just created a duplicate close-phi
1264 for an already-processed containing loop. Check for this
1265 case and clean it up. */
1266 if (gimple_code (use_stmt) == GIMPLE_PHI
1267 && gimple_phi_num_args (use_stmt) == 1)
1268 make_close_phi_nodes_unique (gimple_bb (use_stmt));
3225ff53 1269 }
1270
1271 remove_phi_node (gsi, true);
1272}
1273
1274/* Removes all the close phi duplicates from BB. */
1275
1276static void
1277make_close_phi_nodes_unique (basic_block bb)
1278{
1279 gimple_stmt_iterator psi;
1280
1281 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1282 {
1283 gimple_stmt_iterator gsi = psi;
1284 gimple phi = gsi_stmt (psi);
1285
1286 /* At this point, PHI should be a close phi in normal form. */
1287 gcc_assert (gimple_phi_num_args (phi) == 1);
1288
1289 /* Iterate over the next phis and remove duplicates. */
1290 gsi_next (&gsi);
1291 while (!gsi_end_p (gsi))
1292 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1293 remove_duplicate_close_phi (phi, &gsi);
1294 else
1295 gsi_next (&gsi);
1296 }
1297}
1298
c6bb733d 1299/* Transforms LOOP to the canonical loop closed SSA form. */
1300
1301static void
1302canonicalize_loop_closed_ssa (loop_p loop)
1303{
1304 edge e = single_exit (loop);
1305 basic_block bb;
1306
1307 if (!e || e->flags & EDGE_ABNORMAL)
1308 return;
1309
1310 bb = e->dest;
1311
7bf60644 1312 if (single_pred_p (bb))
3225ff53 1313 {
1314 e = split_block_after_labels (bb);
1315 make_close_phi_nodes_unique (e->src);
1316 }
c6bb733d 1317 else
1318 {
1319 gimple_stmt_iterator psi;
1320 basic_block close = split_edge (e);
1321
1322 e = single_succ_edge (close);
1323
1324 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1325 {
1326 gimple phi = gsi_stmt (psi);
1327 unsigned i;
1328
1329 for (i = 0; i < gimple_phi_num_args (phi); i++)
1330 if (gimple_phi_arg_edge (phi, i) == e)
1331 {
1332 tree res, arg = gimple_phi_arg_def (phi, i);
1333 use_operand_p use_p;
1334 gimple close_phi;
1335
1336 if (TREE_CODE (arg) != SSA_NAME)
1337 continue;
1338
9c06f260 1339 close_phi = create_phi_node (NULL_TREE, close);
1340 res = create_new_def_for (arg, close_phi,
c6bb733d 1341 gimple_phi_result_ptr (close_phi));
1342 add_phi_arg (close_phi, arg,
1343 gimple_phi_arg_edge (close_phi, 0),
60d535d2 1344 UNKNOWN_LOCATION);
c6bb733d 1345 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1346 replace_exp (use_p, res);
1347 update_stmt (phi);
1348 }
1349 }
3225ff53 1350
1351 make_close_phi_nodes_unique (close);
c6bb733d 1352 }
2acf5550 1353
1354 /* The code above does not properly handle changes in the post dominance
1355 information (yet). */
1356 free_dominance_info (CDI_POST_DOMINATORS);
c6bb733d 1357}
1358
1359/* Converts the current loop closed SSA form to a canonical form
1360 expected by the Graphite code generation.
1361
1362 The loop closed SSA form has the following invariant: a variable
1363 defined in a loop that is used outside the loop appears only in the
1364 phi nodes in the destination of the loop exit. These phi nodes are
1365 called close phi nodes.
1366
1367 The canonical loop closed SSA form contains the extra invariants:
1368
1369 - when the loop contains only one exit, the close phi nodes contain
1370 only one argument. That implies that the basic block that contains
1371 the close phi nodes has only one predecessor, that is a basic block
1372 in the loop.
1373
1374 - the basic block containing the close phi nodes does not contain
1375 other statements.
3225ff53 1376
1377 - there exist only one phi node per definition in the loop.
c6bb733d 1378*/
1379
1380static void
1381canonicalize_loop_closed_ssa_form (void)
1382{
c6bb733d 1383 loop_p loop;
1384
1385#ifdef ENABLE_CHECKING
ca77c6ec 1386 verify_loop_closed_ssa (true);
c6bb733d 1387#endif
1388
f21d4d00 1389 FOR_EACH_LOOP (loop, 0)
c6bb733d 1390 canonicalize_loop_closed_ssa (loop);
1391
1392 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1393 update_ssa (TODO_update_ssa);
1394
1395#ifdef ENABLE_CHECKING
ca77c6ec 1396 verify_loop_closed_ssa (true);
c6bb733d 1397#endif
1398}
1399
1400/* Find Static Control Parts (SCoP) in the current function and pushes
1401 them to SCOPS. */
1402
1403void
f1f41a6c 1404build_scops (vec<scop_p> *scops)
c6bb733d 1405{
1406 struct loop *loop = current_loops->tree_root;
4997014d 1407 auto_vec<sd_region, 3> regions;
c6bb733d 1408
1409 canonicalize_loop_closed_ssa_form ();
34154e27 1410 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1411 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
bbf92068 1412 &regions, loop);
c6bb733d 1413 create_sese_edges (regions);
1414 build_graphite_scops (regions, scops);
1415
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 print_graphite_statistics (dump_file, *scops);
1418
1419 limit_scops (scops);
f1f41a6c 1420 regions.release ();
c6bb733d 1421
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1423 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
f1f41a6c 1424 scops ? scops->length () : 0);
c6bb733d 1425}
1426
96b6d5d7 1427/* Pretty print to FILE all the SCoPs in DOT format and mark them with
1428 different colors. If there are not enough colors, paint the
1429 remaining SCoPs in gray.
1430
c6bb733d 1431 Special nodes:
96b6d5d7 1432 - "*" after the node number denotes the entry of a SCoP,
1433 - "#" after the node number denotes the exit of a SCoP,
1434 - "()" around the node number denotes the entry or the
1435 exit nodes of the SCOP. These are not part of SCoP. */
c6bb733d 1436
1437static void
f1f41a6c 1438dot_all_scops_1 (FILE *file, vec<scop_p> scops)
c6bb733d 1439{
1440 basic_block bb;
1441 edge e;
1442 edge_iterator ei;
1443 scop_p scop;
1444 const char* color;
1445 int i;
1446
1447 /* Disable debugging while printing graph. */
1448 int tmp_dump_flags = dump_flags;
1449 dump_flags = 0;
1450
1451 fprintf (file, "digraph all {\n");
1452
ed7d889a 1453 FOR_ALL_BB_FN (bb, cfun)
c6bb733d 1454 {
1455 int part_of_scop = false;
1456
1457 /* Use HTML for every bb label. So we are able to print bbs
1458 which are part of two different SCoPs, with two different
1459 background colors. */
1460 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1461 bb->index);
1462 fprintf (file, "CELLSPACING=\"0\">\n");
1463
1464 /* Select color for SCoP. */
f1f41a6c 1465 FOR_EACH_VEC_ELT (scops, i, scop)
c6bb733d 1466 {
1467 sese region = SCOP_REGION (scop);
1468 if (bb_in_sese_p (bb, region)
1469 || (SESE_EXIT_BB (region) == bb)
1470 || (SESE_ENTRY_BB (region) == bb))
1471 {
1472 switch (i % 17)
1473 {
1474 case 0: /* red */
1475 color = "#e41a1c";
1476 break;
1477 case 1: /* blue */
1478 color = "#377eb8";
1479 break;
1480 case 2: /* green */
1481 color = "#4daf4a";
1482 break;
1483 case 3: /* purple */
1484 color = "#984ea3";
1485 break;
1486 case 4: /* orange */
1487 color = "#ff7f00";
1488 break;
1489 case 5: /* yellow */
1490 color = "#ffff33";
1491 break;
1492 case 6: /* brown */
1493 color = "#a65628";
1494 break;
1495 case 7: /* rose */
1496 color = "#f781bf";
1497 break;
1498 case 8:
1499 color = "#8dd3c7";
1500 break;
1501 case 9:
1502 color = "#ffffb3";
1503 break;
1504 case 10:
1505 color = "#bebada";
1506 break;
1507 case 11:
1508 color = "#fb8072";
1509 break;
1510 case 12:
1511 color = "#80b1d3";
1512 break;
1513 case 13:
1514 color = "#fdb462";
1515 break;
1516 case 14:
1517 color = "#b3de69";
1518 break;
1519 case 15:
1520 color = "#fccde5";
1521 break;
1522 case 16:
1523 color = "#bc80bd";
1524 break;
1525 default: /* gray */
1526 color = "#999999";
1527 }
1528
1529 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1530
1531 if (!bb_in_sese_p (bb, region))
1532 fprintf (file, " (");
1533
1534 if (bb == SESE_ENTRY_BB (region)
1535 && bb == SESE_EXIT_BB (region))
1536 fprintf (file, " %d*# ", bb->index);
1537 else if (bb == SESE_ENTRY_BB (region))
1538 fprintf (file, " %d* ", bb->index);
1539 else if (bb == SESE_EXIT_BB (region))
1540 fprintf (file, " %d# ", bb->index);
1541 else
1542 fprintf (file, " %d ", bb->index);
1543
1544 if (!bb_in_sese_p (bb,region))
1545 fprintf (file, ")");
1546
1547 fprintf (file, "</TD></TR>\n");
1548 part_of_scop = true;
1549 }
1550 }
1551
1552 if (!part_of_scop)
1553 {
1554 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1555 fprintf (file, " %d </TD></TR>\n", bb->index);
1556 }
1557 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1558 }
1559
ed7d889a 1560 FOR_ALL_BB_FN (bb, cfun)
c6bb733d 1561 {
1562 FOR_EACH_EDGE (e, ei, bb->succs)
1563 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1564 }
1565
1566 fputs ("}\n\n", file);
1567
1568 /* Enable debugging again. */
1569 dump_flags = tmp_dump_flags;
1570}
1571
1572/* Display all SCoPs using dotty. */
1573
6b5822fe 1574DEBUG_FUNCTION void
f1f41a6c 1575dot_all_scops (vec<scop_p> scops)
c6bb733d 1576{
1577 /* When debugging, enable the following code. This cannot be used
1578 in production compilers because it calls "system". */
1579#if 0
1580 int x;
1581 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1582 gcc_assert (stream);
1583
1584 dot_all_scops_1 (stream, scops);
1585 fclose (stream);
1586
ce363cd5 1587 x = system ("dotty /tmp/allscops.dot &");
c6bb733d 1588#else
1589 dot_all_scops_1 (stderr, scops);
1590#endif
1591}
1592
1593/* Display all SCoPs using dotty. */
1594
6b5822fe 1595DEBUG_FUNCTION void
c6bb733d 1596dot_scop (scop_p scop)
1597{
4997014d 1598 auto_vec<scop_p, 1> scops;
c6bb733d 1599
1600 if (scop)
f1f41a6c 1601 scops.safe_push (scop);
c6bb733d 1602
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1605#if 0
1606 {
1607 int x;
1608 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1609 gcc_assert (stream);
1610
1611 dot_all_scops_1 (stream, scops);
1612 fclose (stream);
ce363cd5 1613 x = system ("dotty /tmp/allscops.dot &");
c6bb733d 1614 }
1615#else
1616 dot_all_scops_1 (stderr, scops);
1617#endif
c6bb733d 1618}
1619
1620#endif