]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-scop-detection.c
Fix PR number in the changelog entry.
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
CommitLineData
2abae5f1
SP
1/* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "ggc.h"
27#include "tree.h"
28#include "rtl.h"
29#include "basic-block.h"
30#include "diagnostic.h"
31#include "tree-flow.h"
32#include "toplev.h"
33#include "tree-dump.h"
34#include "timevar.h"
35#include "cfgloop.h"
36#include "tree-chrec.h"
37#include "tree-data-ref.h"
38#include "tree-scalar-evolution.h"
39#include "tree-pass.h"
40#include "domwalk.h"
41#include "value-prof.h"
42#include "pointer-set.h"
43#include "gimple.h"
44#include "sese.h"
45
46#ifdef HAVE_cloog
47#include "cloog/cloog.h"
48#include "ppl_c.h"
49#include "graphite-ppl.h"
50#include "graphite.h"
51#include "graphite-poly.h"
52#include "graphite-scop-detection.h"
53
54/* The type of the analyzed basic block. */
55
56typedef enum gbb_type {
57 GBB_UNKNOWN,
58 GBB_LOOP_SING_EXIT_HEADER,
59 GBB_LOOP_MULT_EXIT_HEADER,
60 GBB_LOOP_EXIT,
61 GBB_COND_HEADER,
62 GBB_SIMPLE,
63 GBB_LAST
64} gbb_type;
65
66/* Detect the type of BB. Loop headers are only marked, if they are
67 new. This means their loop_father is different to LAST_LOOP.
68 Otherwise they are treated like any other bb and their type can be
69 any other type. */
70
71static gbb_type
72get_bb_type (basic_block bb, struct loop *last_loop)
73{
74 VEC (basic_block, heap) *dom;
75 int nb_dom, nb_suc;
76 struct loop *loop = bb->loop_father;
77
78 /* Check, if we entry into a new loop. */
79 if (loop != last_loop)
80 {
81 if (single_exit (loop) != NULL)
82 return GBB_LOOP_SING_EXIT_HEADER;
83 else if (loop->num != 0)
84 return GBB_LOOP_MULT_EXIT_HEADER;
85 else
86 return GBB_COND_HEADER;
87 }
88
89 dom = get_dominated_by (CDI_DOMINATORS, bb);
90 nb_dom = VEC_length (basic_block, dom);
91 VEC_free (basic_block, heap, dom);
92
93 if (nb_dom == 0)
94 return GBB_LAST;
95
96 nb_suc = VEC_length (edge, bb->succs);
97
98 if (nb_dom == 1 && nb_suc == 1)
99 return GBB_SIMPLE;
100
101 return GBB_COND_HEADER;
102}
103
104/* A SCoP detection region, defined using bbs as borders.
105
106 All control flow touching this region, comes in passing basic_block
107 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
108 edges for the borders we are able to represent also regions that do
109 not have a single entry or exit edge.
110
111 But as they have a single entry basic_block and a single exit
112 basic_block, we are able to generate for every sd_region a single
113 entry and exit edge.
114
115 1 2
116 \ /
117 3 <- entry
118 |
119 4
120 / \ This region contains: {3, 4, 5, 6, 7, 8}
121 5 6
122 | |
123 7 8
124 \ /
125 9 <- exit */
126
127
128typedef struct sd_region_p
129{
130 /* The entry bb dominates all bbs in the sd_region. It is part of
131 the region. */
132 basic_block entry;
133
134 /* The exit bb postdominates all bbs in the sd_region, but is not
135 part of the region. */
136 basic_block exit;
137} sd_region;
138
139DEF_VEC_O(sd_region);
140DEF_VEC_ALLOC_O(sd_region, heap);
141
142
143/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
144
145static void
146move_sd_regions (VEC (sd_region, heap) **source,
147 VEC (sd_region, heap) **target)
148{
149 sd_region *s;
150 int i;
151
152 for (i = 0; VEC_iterate (sd_region, *source, i, s); i++)
153 VEC_safe_push (sd_region, heap, *target, s);
154
155 VEC_free (sd_region, heap, *source);
156}
157
158/* Something like "n * m" is not allowed. */
159
160static bool
161graphite_can_represent_init (tree e)
162{
163 switch (TREE_CODE (e))
164 {
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
168
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
d505015a
SP
171 return graphite_can_represent_init (TREE_OPERAND (e, 0))
172 && host_integerp (TREE_OPERAND (e, 1), 0);
2abae5f1 173 else
d505015a
SP
174 return graphite_can_represent_init (TREE_OPERAND (e, 1))
175 && host_integerp (TREE_OPERAND (e, 0), 0);
2abae5f1
SP
176
177 case PLUS_EXPR:
178 case POINTER_PLUS_EXPR:
179 case MINUS_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0))
181 && graphite_can_represent_init (TREE_OPERAND (e, 1));
182
183 case NEGATE_EXPR:
184 case BIT_NOT_EXPR:
185 CASE_CONVERT:
186 case NON_LVALUE_EXPR:
187 return graphite_can_represent_init (TREE_OPERAND (e, 0));
188
189 default:
190 break;
191 }
192
193 return true;
194}
195
196/* Return true when SCEV can be represented in the polyhedral model.
197
198 An expression can be represented, if it can be expressed as an
199 affine expression. For loops (i, j) and parameters (m, n) all
200 affine expressions are of the form:
201
202 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
203
204 1 i + 20 j + (-2) m + 25
205
206 Something like "i * n" or "n * m" is not allowed.
207
208 OUTERMOST_LOOP defines the outermost loop that can variate. */
209
210static bool
211graphite_can_represent_scev (tree scev, int outermost_loop)
212{
213 if (chrec_contains_undetermined (scev))
214 return false;
215
4b216ab0
SP
216 switch (TREE_CODE (scev))
217 {
218 case PLUS_EXPR:
219 case MINUS_EXPR:
220 return graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
221 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
2abae5f1 222
4b216ab0
SP
223 case MULT_EXPR:
224 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
225 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
226 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
227 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
c4c4983e 228 && graphite_can_represent_init (scev)
4b216ab0
SP
229 && graphite_can_represent_scev (TREE_OPERAND (scev, 0), outermost_loop)
230 && graphite_can_represent_scev (TREE_OPERAND (scev, 1), outermost_loop);
2abae5f1 231
4b216ab0
SP
232 case POLYNOMIAL_CHREC:
233 /* Check for constant strides. With a non constant stride of
234 'n' we would have a value of 'iv * n'. Also check that the
235 initial value can represented: for example 'n * m' cannot be
236 represented. */
237 if (!evolution_function_right_is_integer_cst (scev)
238 || !graphite_can_represent_init (scev))
239 return false;
240
241 default:
242 break;
243 }
2abae5f1
SP
244
245 /* Only affine functions can be represented. */
246 if (!scev_is_linear_expression (scev))
247 return false;
248
249 return evolution_function_is_invariant_p (scev, outermost_loop)
250 || evolution_function_is_affine_multivariate_p (scev, outermost_loop);
251}
252
253
254/* Return true when EXPR can be represented in the polyhedral model.
255
256 This means an expression can be represented, if it is linear with
257 respect to the loops and the strides are non parametric.
258 LOOP is the place where the expr will be evaluated and OUTERMOST_LOOP
259 defindes the outermost loop that can variate. SCOP_ENTRY defines the
260 entry of the region we analyse. */
261
262static bool
263graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
264 loop_p outermost_loop, tree expr)
265{
266 tree scev = analyze_scalar_evolution (loop, expr);
267
268 scev = instantiate_scev (scop_entry, loop, scev);
269
270 return graphite_can_represent_scev (scev, outermost_loop->num);
271}
272
2abae5f1
SP
273/* Return true if the data references of STMT can be represented by
274 Graphite. */
275
276static bool
277stmt_has_simple_data_refs_p (loop_p outermost_loop, gimple stmt)
278{
279 data_reference_p dr;
280 unsigned i;
281 int j;
282 bool res = true;
283 int loop = outermost_loop->num;
284 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
285
286 graphite_find_data_references_in_stmt (outermost_loop, stmt, &drs);
287
288 for (j = 0; VEC_iterate (data_reference_p, drs, j, dr); j++)
289 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
290 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i), loop))
291 {
292 res = false;
293 goto done;
294 }
295
296 done:
297 free_data_refs (drs);
298 return res;
299}
300
2abae5f1
SP
301/* Return true only when STMT is simple enough for being handled by
302 Graphite. This depends on SCOP_ENTRY, as the parameters are
303 initialized relatively to this basic block, the linear functions
304 are initialized to OUTERMOST_LOOP and BB is the place where we try
305 to evaluate the STMT. */
306
307static bool
308stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
309 gimple stmt, basic_block bb)
310{
311 loop_p loop = bb->loop_father;
312
313 gcc_assert (scop_entry);
314
315 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
316 Calls have side-effects, except those to const or pure
317 functions. */
318 if (gimple_has_volatile_ops (stmt)
319 || (gimple_code (stmt) == GIMPLE_CALL
320 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
321 || (gimple_code (stmt) == GIMPLE_ASM))
322 return false;
323
a3201927
AO
324 if (is_gimple_debug (stmt))
325 return true;
326
2abae5f1
SP
327 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
328 return false;
329
330 switch (gimple_code (stmt))
331 {
332 case GIMPLE_RETURN:
333 case GIMPLE_LABEL:
334 return true;
335
336 case GIMPLE_COND:
337 {
338 tree op;
339 ssa_op_iter op_iter;
340 enum tree_code code = gimple_cond_code (stmt);
341
342 /* We can handle all binary comparisons. Inequalities are
343 also supported as they can be represented with union of
344 polyhedra. */
345 if (!(code == LT_EXPR
346 || code == GT_EXPR
347 || code == LE_EXPR
348 || code == GE_EXPR
349 || code == EQ_EXPR
350 || code == NE_EXPR))
351 return false;
352
353 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
354 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop,
355 op)
356 /* We can not handle REAL_TYPE. Failed for pr39260. */
357 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
358 return false;
359
360 return true;
361 }
362
363 case GIMPLE_ASSIGN:
2abae5f1 364 case GIMPLE_CALL:
c8ae0613 365 return true;
2abae5f1
SP
366
367 default:
368 /* These nodes cut a new scope. */
369 return false;
370 }
371
372 return false;
373}
374
375/* Returns the statement of BB that contains a harmful operation: that
376 can be a function call with side effects, the induction variables
377 are not linear with respect to SCOP_ENTRY, etc. The current open
378 scop should end before this statement. The evaluation is limited using
379 OUTERMOST_LOOP as outermost loop that may change. */
380
381static gimple
382harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
383{
384 gimple_stmt_iterator gsi;
385
386 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
387 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
388 return gsi_stmt (gsi);
389
390 return NULL;
391}
392
393/* Return true when it is not possible to represent LOOP in the
394 polyhedral representation. This is evaluated taking SCOP_ENTRY and
395 OUTERMOST_LOOP in mind. */
396
397static bool
398graphite_can_represent_loop (basic_block scop_entry, loop_p outermost_loop,
399 loop_p loop)
400{
401 tree niter = number_of_latch_executions (loop);
402
403 /* Number of iterations unknown. */
404 if (chrec_contains_undetermined (niter))
405 return false;
406
407 /* Number of iterations not affine. */
408 if (!graphite_can_represent_expr (scop_entry, loop, outermost_loop, niter))
409 return false;
410
411 return true;
412}
413
414/* Store information needed by scopdet_* functions. */
415
416struct scopdet_info
417{
418 /* Exit of the open scop would stop if the current BB is harmful. */
419 basic_block exit;
420
421 /* Where the next scop would start if the current BB is harmful. */
422 basic_block next;
423
424 /* The bb or one of its children contains open loop exits. That means
425 loop exit nodes that are not surrounded by a loop dominated by bb. */
426 bool exits;
427
428 /* The bb or one of its children contains only structures we can handle. */
429 bool difficult;
430};
431
432static struct scopdet_info build_scops_1 (basic_block, loop_p,
433 VEC (sd_region, heap) **, loop_p);
434
435/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
436 to SCOPS. TYPE is the gbb_type of BB. */
437
438static struct scopdet_info
439scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
440 VEC (sd_region, heap) **scops, gbb_type type)
441{
442 loop_p loop = bb->loop_father;
443 struct scopdet_info result;
444 gimple stmt;
445
446 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
447 basic_block entry_block = ENTRY_BLOCK_PTR;
448 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
449 result.difficult = (stmt != NULL);
450 result.exit = NULL;
451
452 switch (type)
453 {
454 case GBB_LAST:
455 result.next = NULL;
456 result.exits = false;
457
458 /* Mark bbs terminating a SESE region difficult, if they start
459 a condition. */
460 if (!single_succ_p (bb))
461 result.difficult = true;
462 else
463 result.exit = single_succ (bb);
464
465 break;
466
467 case GBB_SIMPLE:
468 result.next = single_succ (bb);
469 result.exits = false;
470 result.exit = single_succ (bb);
471 break;
472
473 case GBB_LOOP_SING_EXIT_HEADER:
474 {
475 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
476 struct scopdet_info sinfo;
477 edge exit_e = single_exit (loop);
478
479 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
480
481 if (!graphite_can_represent_loop (entry_block, outermost_loop, loop))
482 result.difficult = true;
483
484 result.difficult |= sinfo.difficult;
485
486 /* Try again with another loop level. */
487 if (result.difficult
488 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
489 {
490 outermost_loop = loop;
491
492 VEC_free (sd_region, heap, regions);
493 regions = VEC_alloc (sd_region, heap, 3);
494
495 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
496
497 result = sinfo;
498 result.difficult = true;
499
500 if (sinfo.difficult)
501 move_sd_regions (&regions, scops);
502 else
503 {
504 sd_region open_scop;
505 open_scop.entry = bb;
506 open_scop.exit = exit_e->dest;
507 VEC_safe_push (sd_region, heap, *scops, &open_scop);
508 VEC_free (sd_region, heap, regions);
509 }
510 }
511 else
512 {
513 result.exit = exit_e->dest;
514 result.next = exit_e->dest;
515
516 /* If we do not dominate result.next, remove it. It's either
517 the EXIT_BLOCK_PTR, or another bb dominates it and will
518 call the scop detection for this bb. */
519 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
520 result.next = NULL;
521
522 if (exit_e->src->loop_father != loop)
523 result.next = NULL;
524
525 result.exits = false;
526
527 if (result.difficult)
528 move_sd_regions (&regions, scops);
529 else
530 VEC_free (sd_region, heap, regions);
531 }
532
533 break;
534 }
535
536 case GBB_LOOP_MULT_EXIT_HEADER:
537 {
538 /* XXX: For now we just do not join loops with multiple exits. If the
539 exits lead to the same bb it may be possible to join the loop. */
540 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
541 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
542 edge e;
543 int i;
544 build_scops_1 (bb, loop, &regions, loop);
545
546 /* Scan the code dominated by this loop. This means all bbs, that are
547 are dominated by a bb in this loop, but are not part of this loop.
548
549 The easiest case:
550 - The loop exit destination is dominated by the exit sources.
551
552 TODO: We miss here the more complex cases:
553 - The exit destinations are dominated by another bb inside
554 the loop.
555 - The loop dominates bbs, that are not exit destinations. */
556 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
557 if (e->src->loop_father == loop
558 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
559 {
560 if (loop_outer (outermost_loop))
561 outermost_loop = loop_outer (outermost_loop);
562
563 /* Pass loop_outer to recognize e->dest as loop header in
564 build_scops_1. */
565 if (e->dest->loop_father->header == e->dest)
566 build_scops_1 (e->dest, outermost_loop, &regions,
567 loop_outer (e->dest->loop_father));
568 else
569 build_scops_1 (e->dest, outermost_loop, &regions,
570 e->dest->loop_father);
571 }
572
573 result.next = NULL;
574 result.exit = NULL;
575 result.difficult = true;
576 result.exits = false;
577 move_sd_regions (&regions, scops);
578 VEC_free (edge, heap, exits);
579 break;
580 }
581 case GBB_COND_HEADER:
582 {
583 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
584 struct scopdet_info sinfo;
585 VEC (basic_block, heap) *dominated;
586 int i;
587 basic_block dom_bb;
588 basic_block last_exit = NULL;
589 edge e;
590 result.exits = false;
591
592 /* First check the successors of BB, and check if it is
593 possible to join the different branches. */
594 for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++)
595 {
596 /* Ignore loop exits. They will be handled after the loop
597 body. */
598 if (is_loop_exit (loop, e->dest))
599 {
600 result.exits = true;
601 continue;
602 }
603
604 /* Do not follow edges that lead to the end of the
605 conditions block. For example, in
606
607 | 0
608 | /|\
609 | 1 2 |
610 | | | |
611 | 3 4 |
612 | \|/
613 | 6
614
615 the edge from 0 => 6. Only check if all paths lead to
616 the same node 6. */
617
618 if (!single_pred_p (e->dest))
619 {
620 /* Check, if edge leads directly to the end of this
621 condition. */
622 if (!last_exit)
623 last_exit = e->dest;
624
625 if (e->dest != last_exit)
626 result.difficult = true;
627
628 continue;
629 }
630
631 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
632 {
633 result.difficult = true;
634 continue;
635 }
636
637 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
638
639 result.exits |= sinfo.exits;
640 result.difficult |= sinfo.difficult;
641
642 /* Checks, if all branches end at the same point.
643 If that is true, the condition stays joinable.
644 Have a look at the example above. */
645 if (sinfo.exit)
646 {
647 if (!last_exit)
648 last_exit = sinfo.exit;
649
650 if (sinfo.exit != last_exit)
651 result.difficult = true;
652 }
653 else
654 result.difficult = true;
655 }
656
657 if (!last_exit)
658 result.difficult = true;
659
660 /* Join the branches of the condition if possible. */
661 if (!result.exits && !result.difficult)
662 {
663 /* Only return a next pointer if we dominate this pointer.
664 Otherwise it will be handled by the bb dominating it. */
665 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
666 && last_exit != bb)
667 result.next = last_exit;
668 else
669 result.next = NULL;
670
671 result.exit = last_exit;
672
673 VEC_free (sd_region, heap, regions);
674 break;
675 }
676
677 /* Scan remaining bbs dominated by BB. */
678 dominated = get_dominated_by (CDI_DOMINATORS, bb);
679
680 for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++)
681 {
682 /* Ignore loop exits: they will be handled after the loop body. */
683 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
684 < loop_depth (loop))
685 {
686 result.exits = true;
687 continue;
688 }
689
690 /* Ignore the bbs processed above. */
691 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
692 continue;
693
694 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
695 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
696 loop_outer (loop));
697 else
698 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
699
700 result.exits |= sinfo.exits;
701 result.difficult = true;
702 result.exit = NULL;
703 }
704
705 VEC_free (basic_block, heap, dominated);
706
707 result.next = NULL;
708 move_sd_regions (&regions, scops);
709
710 break;
711 }
712
713 default:
714 gcc_unreachable ();
715 }
716
717 return result;
718}
719
720/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
721 SCOPS. The analyse if a sd_region can be handled is based on the value
722 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
723 is the loop in which CURRENT is handled.
724
725 TODO: These functions got a little bit big. They definitely should be cleaned
726 up. */
727
728static struct scopdet_info
729build_scops_1 (basic_block current, loop_p outermost_loop,
730 VEC (sd_region, heap) **scops, loop_p loop)
731{
732 bool in_scop = false;
733 sd_region open_scop;
734 struct scopdet_info sinfo;
735
736 /* Initialize result. */
737 struct scopdet_info result;
738 result.exits = false;
739 result.difficult = false;
740 result.next = NULL;
741 result.exit = NULL;
742 open_scop.entry = NULL;
743 open_scop.exit = NULL;
744 sinfo.exit = NULL;
745
746 /* Loop over the dominance tree. If we meet a difficult bb, close
747 the current SCoP. Loop and condition header start a new layer,
748 and can only be added if all bbs in deeper layers are simple. */
749 while (current != NULL)
750 {
751 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
752 get_bb_type (current, loop));
753
754 if (!in_scop && !(sinfo.exits || sinfo.difficult))
755 {
756 open_scop.entry = current;
757 open_scop.exit = NULL;
758 in_scop = true;
759 }
760 else if (in_scop && (sinfo.exits || sinfo.difficult))
761 {
762 open_scop.exit = current;
763 VEC_safe_push (sd_region, heap, *scops, &open_scop);
764 in_scop = false;
765 }
766
767 result.difficult |= sinfo.difficult;
768 result.exits |= sinfo.exits;
769
770 current = sinfo.next;
771 }
772
773 /* Try to close open_scop, if we are still in an open SCoP. */
774 if (in_scop)
775 {
776 open_scop.exit = sinfo.exit;
777 gcc_assert (open_scop.exit);
778 VEC_safe_push (sd_region, heap, *scops, &open_scop);
779 }
780
781 result.exit = sinfo.exit;
782 return result;
783}
784
785/* Checks if a bb is contained in REGION. */
786
787static bool
788bb_in_sd_region (basic_block bb, sd_region *region)
789{
790 return bb_in_region (bb, region->entry, region->exit);
791}
792
793/* Returns the single entry edge of REGION, if it does not exits NULL. */
794
795static edge
796find_single_entry_edge (sd_region *region)
797{
798 edge e;
799 edge_iterator ei;
800 edge entry = NULL;
801
802 FOR_EACH_EDGE (e, ei, region->entry->preds)
803 if (!bb_in_sd_region (e->src, region))
804 {
805 if (entry)
806 {
807 entry = NULL;
808 break;
809 }
810
811 else
812 entry = e;
813 }
814
815 return entry;
816}
817
818/* Returns the single exit edge of REGION, if it does not exits NULL. */
819
820static edge
821find_single_exit_edge (sd_region *region)
822{
823 edge e;
824 edge_iterator ei;
825 edge exit = NULL;
826
827 FOR_EACH_EDGE (e, ei, region->exit->preds)
828 if (bb_in_sd_region (e->src, region))
829 {
830 if (exit)
831 {
832 exit = NULL;
833 break;
834 }
835
836 else
837 exit = e;
838 }
839
840 return exit;
841}
842
843/* Create a single entry edge for REGION. */
844
845static void
846create_single_entry_edge (sd_region *region)
847{
848 if (find_single_entry_edge (region))
849 return;
850
851 /* There are multiple predecessors for bb_3
852
853 | 1 2
854 | | /
855 | |/
856 | 3 <- entry
857 | |\
858 | | |
859 | 4 ^
860 | | |
861 | |/
862 | 5
863
864 There are two edges (1->3, 2->3), that point from outside into the region,
865 and another one (5->3), a loop latch, lead to bb_3.
866
867 We split bb_3.
868
869 | 1 2
870 | | /
871 | |/
872 |3.0
873 | |\ (3.0 -> 3.1) = single entry edge
874 |3.1 | <- entry
875 | | |
876 | | |
877 | 4 ^
878 | | |
879 | |/
880 | 5
881
882 If the loop is part of the SCoP, we have to redirect the loop latches.
883
884 | 1 2
885 | | /
886 | |/
887 |3.0
888 | | (3.0 -> 3.1) = entry edge
889 |3.1 <- entry
890 | |\
891 | | |
892 | 4 ^
893 | | |
894 | |/
895 | 5 */
896
897 if (region->entry->loop_father->header != region->entry
898 || dominated_by_p (CDI_DOMINATORS,
899 loop_latch_edge (region->entry->loop_father)->src,
900 region->exit))
901 {
902 edge forwarder = split_block_after_labels (region->entry);
903 region->entry = forwarder->dest;
904 }
905 else
906 /* This case is never executed, as the loop headers seem always to have a
907 single edge pointing from outside into the loop. */
908 gcc_unreachable ();
909
910#ifdef ENABLE_CHECKING
911 gcc_assert (find_single_entry_edge (region));
912#endif
913}
914
915/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
916
917static bool
918sd_region_without_exit (edge e)
919{
920 sd_region *r = (sd_region *) e->aux;
921
922 if (r)
923 return r->exit == NULL;
924 else
925 return false;
926}
927
928/* Create a single exit edge for REGION. */
929
930static void
931create_single_exit_edge (sd_region *region)
932{
933 edge e;
934 edge_iterator ei;
935 edge forwarder = NULL;
936 basic_block exit;
937
938 if (find_single_exit_edge (region))
939 return;
940
941 /* We create a forwarder bb (5) for all edges leaving this region
942 (3->5, 4->5). All other edges leading to the same bb, are moved
943 to a new bb (6). If these edges where part of another region (2->5)
944 we update the region->exit pointer, of this region.
945
946 To identify which edge belongs to which region we depend on the e->aux
947 pointer in every edge. It points to the region of the edge or to NULL,
948 if the edge is not part of any region.
949
950 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
951 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
952 5 <- exit
953
954 changes to
955
956 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
957 | | \/ 3->5 no region, 4->5 no region,
958 | | 5
959 \| / 5->6 region->exit = 6
960 6
961
962 Now there is only a single exit edge (5->6). */
963 exit = region->exit;
964 region->exit = NULL;
965 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
966
967 /* Unmark the edges, that are no longer exit edges. */
968 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
969 if (e->aux)
970 e->aux = NULL;
971
972 /* Mark the new exit edge. */
973 single_succ_edge (forwarder->src)->aux = region;
974
975 /* Update the exit bb of all regions, where exit edges lead to
976 forwarder->dest. */
977 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
978 if (e->aux)
979 ((sd_region *) e->aux)->exit = forwarder->dest;
980
981#ifdef ENABLE_CHECKING
982 gcc_assert (find_single_exit_edge (region));
983#endif
984}
985
986/* Unmark the exit edges of all REGIONS.
987 See comment in "create_single_exit_edge". */
988
989static void
990unmark_exit_edges (VEC (sd_region, heap) *regions)
991{
992 int i;
993 sd_region *s;
994 edge e;
995 edge_iterator ei;
996
997 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
998 FOR_EACH_EDGE (e, ei, s->exit->preds)
999 e->aux = NULL;
1000}
1001
1002
1003/* Mark the exit edges of all REGIONS.
1004 See comment in "create_single_exit_edge". */
1005
1006static void
1007mark_exit_edges (VEC (sd_region, heap) *regions)
1008{
1009 int i;
1010 sd_region *s;
1011 edge e;
1012 edge_iterator ei;
1013
1014 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1015 FOR_EACH_EDGE (e, ei, s->exit->preds)
1016 if (bb_in_sd_region (e->src, s))
1017 e->aux = s;
1018}
1019
1020/* Create for all scop regions a single entry and a single exit edge. */
1021
1022static void
1023create_sese_edges (VEC (sd_region, heap) *regions)
1024{
1025 int i;
1026 sd_region *s;
1027
1028 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1029 create_single_entry_edge (s);
1030
1031 mark_exit_edges (regions);
1032
1033 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1034 create_single_exit_edge (s);
1035
1036 unmark_exit_edges (regions);
1037
1038 fix_loop_structure (NULL);
1039
1040#ifdef ENABLE_CHECKING
1041 verify_loop_structure ();
1042 verify_dominators (CDI_DOMINATORS);
1043 verify_ssa (false);
1044#endif
1045}
1046
1047/* Create graphite SCoPs from an array of scop detection REGIONS. */
1048
1049static void
1050build_graphite_scops (VEC (sd_region, heap) *regions,
1051 VEC (scop_p, heap) **scops)
1052{
1053 int i;
1054 sd_region *s;
1055
1056 for (i = 0; VEC_iterate (sd_region, regions, i, s); i++)
1057 {
1058 edge entry = find_single_entry_edge (s);
1059 edge exit = find_single_exit_edge (s);
1060 scop_p scop = new_scop (new_sese (entry, exit));
1061 VEC_safe_push (scop_p, heap, *scops, scop);
1062
1063 /* Are there overlapping SCoPs? */
1064#ifdef ENABLE_CHECKING
1065 {
1066 int j;
1067 sd_region *s2;
1068
1069 for (j = 0; VEC_iterate (sd_region, regions, j, s2); j++)
1070 if (s != s2)
1071 gcc_assert (!bb_in_sd_region (s->entry, s2));
1072 }
1073#endif
1074 }
1075}
1076
1077/* Returns true when BB contains only close phi nodes. */
1078
1079static bool
1080contains_only_close_phi_nodes (basic_block bb)
1081{
1082 gimple_stmt_iterator gsi;
1083
1084 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1085 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1086 return false;
1087
1088 return true;
1089}
1090
1091/* Print statistics for SCOP to FILE. */
1092
1093static void
1094print_graphite_scop_statistics (FILE* file, scop_p scop)
1095{
1096 long n_bbs = 0;
1097 long n_loops = 0;
1098 long n_stmts = 0;
1099 long n_conditions = 0;
1100 long n_p_bbs = 0;
1101 long n_p_loops = 0;
1102 long n_p_stmts = 0;
1103 long n_p_conditions = 0;
1104
1105 basic_block bb;
1106
1107 FOR_ALL_BB (bb)
1108 {
1109 gimple_stmt_iterator psi;
1110 loop_p loop = bb->loop_father;
1111
1112 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1113 continue;
1114
1115 n_bbs++;
1116 n_p_bbs += bb->count;
1117
1118 if (VEC_length (edge, bb->succs) > 1)
1119 {
1120 n_conditions++;
1121 n_p_conditions += bb->count;
1122 }
1123
1124 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1125 {
1126 n_stmts++;
1127 n_p_stmts += bb->count;
1128 }
1129
1130 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1131 {
1132 n_loops++;
1133 n_p_loops += bb->count;
1134 }
1135
1136 }
1137
1138 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1139 fprintf (file, "BBS:%ld, ", n_bbs);
1140 fprintf (file, "LOOPS:%ld, ", n_loops);
1141 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1142 fprintf (file, "STMTS:%ld)\n", n_stmts);
1143 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1144 fprintf (file, "BBS:%ld, ", n_p_bbs);
1145 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1146 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1147 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1148}
1149
1150/* Print statistics for SCOPS to FILE. */
1151
1152static void
1153print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1154{
1155 int i;
1156 scop_p scop;
1157
1158 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1159 print_graphite_scop_statistics (file, scop);
1160}
1161
2abae5f1
SP
1162/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1163
1164 Example:
1165
1166 for (i |
1167 { |
1168 for (j | SCoP 1
1169 for (k |
1170 } |
1171
1172 * SCoP frontier, as this line is not surrounded by any loop. *
1173
1174 for (l | SCoP 2
1175
1176 This is necessary as scalar evolution and parameter detection need a
1177 outermost loop to initialize parameters correctly.
1178
1179 TODO: FIX scalar evolution and parameter detection to allow more flexible
1180 SCoP frontiers. */
1181
1182static void
1183limit_scops (VEC (scop_p, heap) **scops)
1184{
1185 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1186
1187 int i;
1188 scop_p scop;
1189
1190 for (i = 0; VEC_iterate (scop_p, *scops, i, scop); i++)
1191 {
1192 int j;
1193 loop_p loop;
1194 sese region = SCOP_REGION (scop);
2abae5f1
SP
1195 build_sese_loop_nests (region);
1196
1197 for (j = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), j, loop); j++)
1198 if (!loop_in_sese_p (loop_outer (loop), region)
1199 && single_exit (loop))
1200 {
1201 sd_region open_scop;
1202 open_scop.entry = loop->header;
1203 open_scop.exit = single_exit (loop)->dest;
1204
1205 /* This is a hack on top of the limit_scops hack. The
1206 limit_scops hack should disappear all together. */
1207 if (single_succ_p (open_scop.exit)
1208 && contains_only_close_phi_nodes (open_scop.exit))
1209 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1210
1211 VEC_safe_push (sd_region, heap, regions, &open_scop);
1212 }
1213 }
1214
7a521ff2 1215 free_scops (*scops);
2abae5f1
SP
1216 *scops = VEC_alloc (scop_p, heap, 3);
1217
1218 create_sese_edges (regions);
1219 build_graphite_scops (regions, scops);
1220 VEC_free (sd_region, heap, regions);
1221}
1222
1223/* Transforms LOOP to the canonical loop closed SSA form. */
1224
1225static void
1226canonicalize_loop_closed_ssa (loop_p loop)
1227{
1228 edge e = single_exit (loop);
1229 basic_block bb;
1230
1231 if (!e || e->flags & EDGE_ABNORMAL)
1232 return;
1233
1234 bb = e->dest;
1235
1236 if (VEC_length (edge, bb->preds) == 1)
1237 split_block_after_labels (bb);
1238 else
1239 {
1240 gimple_stmt_iterator psi;
1241 basic_block close = split_edge (e);
1242
1243 e = single_succ_edge (close);
1244
1245 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1246 {
1247 gimple phi = gsi_stmt (psi);
1248 unsigned i;
1249
1250 for (i = 0; i < gimple_phi_num_args (phi); i++)
1251 if (gimple_phi_arg_edge (phi, i) == e)
1252 {
1253 tree res, arg = gimple_phi_arg_def (phi, i);
1254 use_operand_p use_p;
1255 gimple close_phi;
1256
1257 if (TREE_CODE (arg) != SSA_NAME)
1258 continue;
1259
1260 close_phi = create_phi_node (arg, close);
1261 res = create_new_def_for (gimple_phi_result (close_phi),
1262 close_phi,
1263 gimple_phi_result_ptr (close_phi));
1264 add_phi_arg (close_phi, arg,
1265 gimple_phi_arg_edge (close_phi, 0),
1266 UNKNOWN_LOCATION);
1267 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1268 replace_exp (use_p, res);
1269 update_stmt (phi);
1270 }
1271 }
1272 }
1273}
1274
1275/* Converts the current loop closed SSA form to a canonical form
1276 expected by the Graphite code generation.
1277
1278 The loop closed SSA form has the following invariant: a variable
1279 defined in a loop that is used outside the loop appears only in the
1280 phi nodes in the destination of the loop exit. These phi nodes are
1281 called close phi nodes.
1282
1283 The canonical loop closed SSA form contains the extra invariants:
1284
1285 - when the loop contains only one exit, the close phi nodes contain
1286 only one argument. That implies that the basic block that contains
1287 the close phi nodes has only one predecessor, that is a basic block
1288 in the loop.
1289
1290 - the basic block containing the close phi nodes does not contain
1291 other statements.
1292*/
1293
1294static void
1295canonicalize_loop_closed_ssa_form (void)
1296{
1297 loop_iterator li;
1298 loop_p loop;
1299
1300#ifdef ENABLE_CHECKING
1301 verify_loop_closed_ssa ();
1302#endif
1303
1304 FOR_EACH_LOOP (li, loop, 0)
1305 canonicalize_loop_closed_ssa (loop);
1306
1307 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1308 update_ssa (TODO_update_ssa);
1309
1310#ifdef ENABLE_CHECKING
1311 verify_loop_closed_ssa ();
1312#endif
1313}
1314
1315/* Find Static Control Parts (SCoP) in the current function and pushes
1316 them to SCOPS. */
1317
1318void
1319build_scops (VEC (scop_p, heap) **scops)
1320{
1321 struct loop *loop = current_loops->tree_root;
1322 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1323
1324 canonicalize_loop_closed_ssa_form ();
1325 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1326 &regions, loop);
1327 create_sese_edges (regions);
1328 build_graphite_scops (regions, scops);
1329
1330 if (dump_file && (dump_flags & TDF_DETAILS))
1331 print_graphite_statistics (dump_file, *scops);
1332
1333 limit_scops (scops);
1334 VEC_free (sd_region, heap, regions);
1335
1336 if (dump_file && (dump_flags & TDF_DETAILS))
1337 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1338 VEC_length (scop_p, *scops));
1339}
1340
afae0207
SP
1341/* Pretty print to FILE all the SCoPs in DOT format and mark them with
1342 different colors. If there are not enough colors, paint the
1343 remaining SCoPs in gray.
1344
2abae5f1 1345 Special nodes:
afae0207
SP
1346 - "*" after the node number denotes the entry of a SCoP,
1347 - "#" after the node number denotes the exit of a SCoP,
1348 - "()" around the node number denotes the entry or the
1349 exit nodes of the SCOP. These are not part of SCoP. */
2abae5f1
SP
1350
1351static void
1352dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1353{
1354 basic_block bb;
1355 edge e;
1356 edge_iterator ei;
1357 scop_p scop;
1358 const char* color;
1359 int i;
1360
1361 /* Disable debugging while printing graph. */
1362 int tmp_dump_flags = dump_flags;
1363 dump_flags = 0;
1364
1365 fprintf (file, "digraph all {\n");
1366
1367 FOR_ALL_BB (bb)
1368 {
1369 int part_of_scop = false;
1370
1371 /* Use HTML for every bb label. So we are able to print bbs
1372 which are part of two different SCoPs, with two different
1373 background colors. */
1374 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1375 bb->index);
1376 fprintf (file, "CELLSPACING=\"0\">\n");
1377
1378 /* Select color for SCoP. */
1379 for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
1380 {
1381 sese region = SCOP_REGION (scop);
1382 if (bb_in_sese_p (bb, region)
1383 || (SESE_EXIT_BB (region) == bb)
1384 || (SESE_ENTRY_BB (region) == bb))
1385 {
1386 switch (i % 17)
1387 {
1388 case 0: /* red */
1389 color = "#e41a1c";
1390 break;
1391 case 1: /* blue */
1392 color = "#377eb8";
1393 break;
1394 case 2: /* green */
1395 color = "#4daf4a";
1396 break;
1397 case 3: /* purple */
1398 color = "#984ea3";
1399 break;
1400 case 4: /* orange */
1401 color = "#ff7f00";
1402 break;
1403 case 5: /* yellow */
1404 color = "#ffff33";
1405 break;
1406 case 6: /* brown */
1407 color = "#a65628";
1408 break;
1409 case 7: /* rose */
1410 color = "#f781bf";
1411 break;
1412 case 8:
1413 color = "#8dd3c7";
1414 break;
1415 case 9:
1416 color = "#ffffb3";
1417 break;
1418 case 10:
1419 color = "#bebada";
1420 break;
1421 case 11:
1422 color = "#fb8072";
1423 break;
1424 case 12:
1425 color = "#80b1d3";
1426 break;
1427 case 13:
1428 color = "#fdb462";
1429 break;
1430 case 14:
1431 color = "#b3de69";
1432 break;
1433 case 15:
1434 color = "#fccde5";
1435 break;
1436 case 16:
1437 color = "#bc80bd";
1438 break;
1439 default: /* gray */
1440 color = "#999999";
1441 }
1442
1443 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1444
1445 if (!bb_in_sese_p (bb, region))
1446 fprintf (file, " (");
1447
1448 if (bb == SESE_ENTRY_BB (region)
1449 && bb == SESE_EXIT_BB (region))
1450 fprintf (file, " %d*# ", bb->index);
1451 else if (bb == SESE_ENTRY_BB (region))
1452 fprintf (file, " %d* ", bb->index);
1453 else if (bb == SESE_EXIT_BB (region))
1454 fprintf (file, " %d# ", bb->index);
1455 else
1456 fprintf (file, " %d ", bb->index);
1457
1458 if (!bb_in_sese_p (bb,region))
1459 fprintf (file, ")");
1460
1461 fprintf (file, "</TD></TR>\n");
1462 part_of_scop = true;
1463 }
1464 }
1465
1466 if (!part_of_scop)
1467 {
1468 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1469 fprintf (file, " %d </TD></TR>\n", bb->index);
1470 }
1471 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1472 }
1473
1474 FOR_ALL_BB (bb)
1475 {
1476 FOR_EACH_EDGE (e, ei, bb->succs)
1477 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1478 }
1479
1480 fputs ("}\n\n", file);
1481
1482 /* Enable debugging again. */
1483 dump_flags = tmp_dump_flags;
1484}
1485
1486/* Display all SCoPs using dotty. */
1487
1488void
1489dot_all_scops (VEC (scop_p, heap) *scops)
1490{
1491 /* When debugging, enable the following code. This cannot be used
1492 in production compilers because it calls "system". */
1493#if 0
1494 int x;
1495 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1496 gcc_assert (stream);
1497
1498 dot_all_scops_1 (stream, scops);
1499 fclose (stream);
1500
4c8f3c48 1501 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1502#else
1503 dot_all_scops_1 (stderr, scops);
1504#endif
1505}
1506
1507/* Display all SCoPs using dotty. */
1508
1509void
1510dot_scop (scop_p scop)
1511{
1512 VEC (scop_p, heap) *scops = NULL;
1513
1514 if (scop)
1515 VEC_safe_push (scop_p, heap, scops, scop);
1516
1517 /* When debugging, enable the following code. This cannot be used
1518 in production compilers because it calls "system". */
1519#if 0
1520 {
1521 int x;
1522 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1523 gcc_assert (stream);
1524
1525 dot_all_scops_1 (stream, scops);
1526 fclose (stream);
4c8f3c48 1527 x = system ("dotty /tmp/allscops.dot &");
2abae5f1
SP
1528 }
1529#else
1530 dot_all_scops_1 (stderr, scops);
1531#endif
1532
1533 VEC_free (scop_p, heap, scops);
1534}
1535
1536#endif