]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/graphite-scop-detection.c
This patch rewrites the old VEC macro-based interface into a new one
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
CommitLineData
c6bb733d 1/* Detection of Static Control Parts (SCoP) for Graphite.
87e20041 2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
c6bb733d 3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 3, or (at your option)
11any later version.
12
13GCC is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
87e20041 23
24#ifdef HAVE_cloog
25#include <isl/set.h>
26#include <isl/map.h>
27#include <isl/union_map.h>
28#include <cloog/cloog.h>
29#include <cloog/isl/domain.h>
30#endif
31
c6bb733d 32#include "system.h"
33#include "coretypes.h"
c6bb733d 34#include "tree-flow.h"
c6bb733d 35#include "cfgloop.h"
36#include "tree-chrec.h"
37#include "tree-data-ref.h"
38#include "tree-scalar-evolution.h"
39#include "tree-pass.h"
c6bb733d 40#include "sese.h"
41
42#ifdef HAVE_cloog
c6bb733d 43#include "graphite-poly.h"
44#include "graphite-scop-detection.h"
45
c9722991 46/* Forward declarations. */
47static void make_close_phi_nodes_unique (basic_block);
48
c6bb733d 49/* The type of the analyzed basic block. */
50
51typedef enum gbb_type {
52 GBB_UNKNOWN,
53 GBB_LOOP_SING_EXIT_HEADER,
54 GBB_LOOP_MULT_EXIT_HEADER,
55 GBB_LOOP_EXIT,
56 GBB_COND_HEADER,
57 GBB_SIMPLE,
58 GBB_LAST
59} gbb_type;
60
61/* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
64 any other type. */
65
66static gbb_type
67get_bb_type (basic_block bb, struct loop *last_loop)
68{
f1f41a6c 69 vec<basic_block> dom;
7bf60644 70 int nb_dom;
c6bb733d 71 struct loop *loop = bb->loop_father;
72
73 /* Check, if we entry into a new loop. */
74 if (loop != last_loop)
75 {
76 if (single_exit (loop) != NULL)
77 return GBB_LOOP_SING_EXIT_HEADER;
78 else if (loop->num != 0)
79 return GBB_LOOP_MULT_EXIT_HEADER;
80 else
81 return GBB_COND_HEADER;
82 }
83
84 dom = get_dominated_by (CDI_DOMINATORS, bb);
f1f41a6c 85 nb_dom = dom.length ();
86 dom.release ();
c6bb733d 87
88 if (nb_dom == 0)
89 return GBB_LAST;
90
7bf60644 91 if (nb_dom == 1 && single_succ_p (bb))
c6bb733d 92 return GBB_SIMPLE;
93
94 return GBB_COND_HEADER;
95}
96
97/* A SCoP detection region, defined using bbs as borders.
98
99 All control flow touching this region, comes in passing basic_block
100 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
101 edges for the borders we are able to represent also regions that do
102 not have a single entry or exit edge.
103
104 But as they have a single entry basic_block and a single exit
105 basic_block, we are able to generate for every sd_region a single
106 entry and exit edge.
107
108 1 2
109 \ /
110 3 <- entry
111 |
112 4
113 / \ This region contains: {3, 4, 5, 6, 7, 8}
114 5 6
115 | |
116 7 8
117 \ /
118 9 <- exit */
119
120
121typedef struct sd_region_p
122{
123 /* The entry bb dominates all bbs in the sd_region. It is part of
124 the region. */
125 basic_block entry;
126
127 /* The exit bb postdominates all bbs in the sd_region, but is not
128 part of the region. */
129 basic_block exit;
130} sd_region;
131
c6bb733d 132
133
134/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
135
136static void
f1f41a6c 137move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
c6bb733d 138{
139 sd_region *s;
140 int i;
141
f1f41a6c 142 FOR_EACH_VEC_ELT (*source, i, s)
143 target->safe_push (*s);
c6bb733d 144
f1f41a6c 145 source->release ();
c6bb733d 146}
147
148/* Something like "n * m" is not allowed. */
149
150static bool
151graphite_can_represent_init (tree e)
152{
153 switch (TREE_CODE (e))
154 {
155 case POLYNOMIAL_CHREC:
156 return graphite_can_represent_init (CHREC_LEFT (e))
157 && graphite_can_represent_init (CHREC_RIGHT (e));
158
159 case MULT_EXPR:
160 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
7464e753 161 return graphite_can_represent_init (TREE_OPERAND (e, 0))
162 && host_integerp (TREE_OPERAND (e, 1), 0);
c6bb733d 163 else
7464e753 164 return graphite_can_represent_init (TREE_OPERAND (e, 1))
165 && host_integerp (TREE_OPERAND (e, 0), 0);
c6bb733d 166
167 case PLUS_EXPR:
168 case POINTER_PLUS_EXPR:
169 case MINUS_EXPR:
170 return graphite_can_represent_init (TREE_OPERAND (e, 0))
171 && graphite_can_represent_init (TREE_OPERAND (e, 1));
172
173 case NEGATE_EXPR:
174 case BIT_NOT_EXPR:
175 CASE_CONVERT:
176 case NON_LVALUE_EXPR:
177 return graphite_can_represent_init (TREE_OPERAND (e, 0));
178
179 default:
180 break;
181 }
182
183 return true;
184}
185
186/* Return true when SCEV can be represented in the polyhedral model.
187
188 An expression can be represented, if it can be expressed as an
189 affine expression. For loops (i, j) and parameters (m, n) all
190 affine expressions are of the form:
191
192 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
193
194 1 i + 20 j + (-2) m + 25
195
e3135850 196 Something like "i * n" or "n * m" is not allowed. */
c6bb733d 197
198static bool
e3135850 199graphite_can_represent_scev (tree scev)
c6bb733d 200{
201 if (chrec_contains_undetermined (scev))
202 return false;
203
99c136a5 204 switch (TREE_CODE (scev))
205 {
206 case PLUS_EXPR:
207 case MINUS_EXPR:
e3135850 208 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
209 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
c6bb733d 210
99c136a5 211 case MULT_EXPR:
212 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
213 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
214 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
215 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
ce0ae3b6 216 && graphite_can_represent_init (scev)
e3135850 217 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
218 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
c6bb733d 219
99c136a5 220 case POLYNOMIAL_CHREC:
221 /* Check for constant strides. With a non constant stride of
222 'n' we would have a value of 'iv * n'. Also check that the
223 initial value can represented: for example 'n * m' cannot be
224 represented. */
225 if (!evolution_function_right_is_integer_cst (scev)
226 || !graphite_can_represent_init (scev))
227 return false;
228
229 default:
230 break;
231 }
c6bb733d 232
233 /* Only affine functions can be represented. */
234 if (!scev_is_linear_expression (scev))
235 return false;
236
629787af 237 return true;
c6bb733d 238}
239
240
241/* Return true when EXPR can be represented in the polyhedral model.
242
243 This means an expression can be represented, if it is linear with
244 respect to the loops and the strides are non parametric.
e3135850 245 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
c6bb733d 246 entry of the region we analyse. */
247
248static bool
249graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
e3135850 250 tree expr)
c6bb733d 251{
252 tree scev = analyze_scalar_evolution (loop, expr);
253
254 scev = instantiate_scev (scop_entry, loop, scev);
255
e3135850 256 return graphite_can_represent_scev (scev);
c6bb733d 257}
258
c6bb733d 259/* Return true if the data references of STMT can be represented by
260 Graphite. */
261
262static bool
e97c4b0d 263stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
264 gimple stmt)
c6bb733d 265{
266 data_reference_p dr;
267 unsigned i;
268 int j;
269 bool res = true;
f1f41a6c 270 vec<data_reference_p> drs = vec<data_reference_p>();
e97c4b0d 271 loop_p outer;
272
273 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
274 {
275 graphite_find_data_references_in_stmt (outer,
276 loop_containing_stmt (stmt),
277 stmt, &drs);
278
f1f41a6c 279 FOR_EACH_VEC_ELT (drs, j, dr)
e97c4b0d 280 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
281 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
282 {
283 res = false;
284 goto done;
285 }
286
287 free_data_refs (drs);
f1f41a6c 288 drs.create (0);
e97c4b0d 289 }
c6bb733d 290
291 done:
292 free_data_refs (drs);
293 return res;
294}
295
c6bb733d 296/* Return true only when STMT is simple enough for being handled by
297 Graphite. This depends on SCOP_ENTRY, as the parameters are
298 initialized relatively to this basic block, the linear functions
299 are initialized to OUTERMOST_LOOP and BB is the place where we try
300 to evaluate the STMT. */
301
302static bool
303stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
304 gimple stmt, basic_block bb)
305{
306 loop_p loop = bb->loop_father;
307
308 gcc_assert (scop_entry);
309
310 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
311 Calls have side-effects, except those to const or pure
312 functions. */
313 if (gimple_has_volatile_ops (stmt)
314 || (gimple_code (stmt) == GIMPLE_CALL
315 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
316 || (gimple_code (stmt) == GIMPLE_ASM))
317 return false;
318
3f6c0a40 319 if (is_gimple_debug (stmt))
320 return true;
321
c6bb733d 322 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
323 return false;
324
325 switch (gimple_code (stmt))
326 {
327 case GIMPLE_RETURN:
328 case GIMPLE_LABEL:
329 return true;
330
331 case GIMPLE_COND:
332 {
333 tree op;
334 ssa_op_iter op_iter;
335 enum tree_code code = gimple_cond_code (stmt);
336
337 /* We can handle all binary comparisons. Inequalities are
338 also supported as they can be represented with union of
339 polyhedra. */
340 if (!(code == LT_EXPR
341 || code == GT_EXPR
342 || code == LE_EXPR
343 || code == GE_EXPR
344 || code == EQ_EXPR
345 || code == NE_EXPR))
346 return false;
347
348 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
e3135850 349 if (!graphite_can_represent_expr (scop_entry, loop, op)
c6bb733d 350 /* We can not handle REAL_TYPE. Failed for pr39260. */
351 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
352 return false;
353
354 return true;
355 }
356
357 case GIMPLE_ASSIGN:
c6bb733d 358 case GIMPLE_CALL:
01e31b4b 359 return true;
c6bb733d 360
361 default:
362 /* These nodes cut a new scope. */
363 return false;
364 }
365
366 return false;
367}
368
369/* Returns the statement of BB that contains a harmful operation: that
370 can be a function call with side effects, the induction variables
371 are not linear with respect to SCOP_ENTRY, etc. The current open
372 scop should end before this statement. The evaluation is limited using
373 OUTERMOST_LOOP as outermost loop that may change. */
374
375static gimple
376harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
377{
378 gimple_stmt_iterator gsi;
379
380 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
381 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
382 return gsi_stmt (gsi);
383
384 return NULL;
385}
386
168e8fc0 387/* Return true if LOOP can be represented in the polyhedral
388 representation. This is evaluated taking SCOP_ENTRY and
389 OUTERMOST_LOOP in mind. */
c6bb733d 390
391static bool
e3135850 392graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
c6bb733d 393{
afad2061 394 tree niter;
395 struct tree_niter_desc niter_desc;
c6bb733d 396
afad2061 397 /* FIXME: For the moment, graphite cannot be used on loops that
398 iterate using induction variables that wrap. */
c6bb733d 399
afad2061 400 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
401 && niter_desc.control.no_overflow
402 && (niter = number_of_latch_executions (loop))
403 && !chrec_contains_undetermined (niter)
404 && graphite_can_represent_expr (scop_entry, loop, niter);
c6bb733d 405}
406
407/* Store information needed by scopdet_* functions. */
408
409struct scopdet_info
410{
411 /* Exit of the open scop would stop if the current BB is harmful. */
412 basic_block exit;
413
414 /* Where the next scop would start if the current BB is harmful. */
415 basic_block next;
416
417 /* The bb or one of its children contains open loop exits. That means
418 loop exit nodes that are not surrounded by a loop dominated by bb. */
419 bool exits;
420
421 /* The bb or one of its children contains only structures we can handle. */
422 bool difficult;
423};
424
425static struct scopdet_info build_scops_1 (basic_block, loop_p,
f1f41a6c 426 vec<sd_region> *, loop_p);
c6bb733d 427
428/* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
429 to SCOPS. TYPE is the gbb_type of BB. */
430
431static struct scopdet_info
432scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
f1f41a6c 433 vec<sd_region> *scops, gbb_type type)
c6bb733d 434{
435 loop_p loop = bb->loop_father;
436 struct scopdet_info result;
437 gimple stmt;
438
439 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
440 basic_block entry_block = ENTRY_BLOCK_PTR;
441 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
442 result.difficult = (stmt != NULL);
443 result.exit = NULL;
444
445 switch (type)
446 {
447 case GBB_LAST:
448 result.next = NULL;
449 result.exits = false;
450
451 /* Mark bbs terminating a SESE region difficult, if they start
452 a condition. */
453 if (!single_succ_p (bb))
454 result.difficult = true;
455 else
456 result.exit = single_succ (bb);
457
458 break;
459
460 case GBB_SIMPLE:
461 result.next = single_succ (bb);
462 result.exits = false;
463 result.exit = single_succ (bb);
464 break;
465
466 case GBB_LOOP_SING_EXIT_HEADER:
467 {
f1f41a6c 468 vec<sd_region> regions;
469 regions.create (3);
c6bb733d 470 struct scopdet_info sinfo;
471 edge exit_e = single_exit (loop);
472
473 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
474
e3135850 475 if (!graphite_can_represent_loop (entry_block, loop))
c6bb733d 476 result.difficult = true;
477
478 result.difficult |= sinfo.difficult;
479
480 /* Try again with another loop level. */
481 if (result.difficult
482 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
483 {
484 outermost_loop = loop;
485
f1f41a6c 486 regions.release ();
487 regions.create (3);
c6bb733d 488
489 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
490
491 result = sinfo;
492 result.difficult = true;
493
494 if (sinfo.difficult)
495 move_sd_regions (&regions, scops);
496 else
497 {
498 sd_region open_scop;
499 open_scop.entry = bb;
500 open_scop.exit = exit_e->dest;
f1f41a6c 501 scops->safe_push (open_scop);
502 regions.release ();
c6bb733d 503 }
504 }
505 else
506 {
507 result.exit = exit_e->dest;
508 result.next = exit_e->dest;
509
510 /* If we do not dominate result.next, remove it. It's either
511 the EXIT_BLOCK_PTR, or another bb dominates it and will
512 call the scop detection for this bb. */
513 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
514 result.next = NULL;
515
516 if (exit_e->src->loop_father != loop)
517 result.next = NULL;
518
519 result.exits = false;
520
521 if (result.difficult)
522 move_sd_regions (&regions, scops);
523 else
f1f41a6c 524 regions.release ();
c6bb733d 525 }
526
527 break;
528 }
529
530 case GBB_LOOP_MULT_EXIT_HEADER:
531 {
532 /* XXX: For now we just do not join loops with multiple exits. If the
533 exits lead to the same bb it may be possible to join the loop. */
f1f41a6c 534 vec<sd_region> regions;
535 regions.create (3);
536 vec<edge> exits = get_loop_exit_edges (loop);
c6bb733d 537 edge e;
538 int i;
539 build_scops_1 (bb, loop, &regions, loop);
540
541 /* Scan the code dominated by this loop. This means all bbs, that are
542 are dominated by a bb in this loop, but are not part of this loop.
543
544 The easiest case:
545 - The loop exit destination is dominated by the exit sources.
546
547 TODO: We miss here the more complex cases:
548 - The exit destinations are dominated by another bb inside
549 the loop.
550 - The loop dominates bbs, that are not exit destinations. */
f1f41a6c 551 FOR_EACH_VEC_ELT (exits, i, e)
c6bb733d 552 if (e->src->loop_father == loop
553 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
554 {
555 if (loop_outer (outermost_loop))
556 outermost_loop = loop_outer (outermost_loop);
557
558 /* Pass loop_outer to recognize e->dest as loop header in
559 build_scops_1. */
560 if (e->dest->loop_father->header == e->dest)
561 build_scops_1 (e->dest, outermost_loop, &regions,
562 loop_outer (e->dest->loop_father));
563 else
564 build_scops_1 (e->dest, outermost_loop, &regions,
565 e->dest->loop_father);
566 }
567
568 result.next = NULL;
569 result.exit = NULL;
570 result.difficult = true;
571 result.exits = false;
572 move_sd_regions (&regions, scops);
f1f41a6c 573 exits.release ();
c6bb733d 574 break;
575 }
576 case GBB_COND_HEADER:
577 {
f1f41a6c 578 vec<sd_region> regions;
579 regions.create (3);
c6bb733d 580 struct scopdet_info sinfo;
f1f41a6c 581 vec<basic_block> dominated;
c6bb733d 582 int i;
583 basic_block dom_bb;
584 basic_block last_exit = NULL;
585 edge e;
586 result.exits = false;
587
588 /* First check the successors of BB, and check if it is
589 possible to join the different branches. */
f1f41a6c 590 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
c6bb733d 591 {
592 /* Ignore loop exits. They will be handled after the loop
593 body. */
259c0e44 594 if (loop_exits_to_bb_p (loop, e->dest))
c6bb733d 595 {
596 result.exits = true;
597 continue;
598 }
599
600 /* Do not follow edges that lead to the end of the
601 conditions block. For example, in
602
603 | 0
604 | /|\
605 | 1 2 |
606 | | | |
607 | 3 4 |
608 | \|/
609 | 6
610
611 the edge from 0 => 6. Only check if all paths lead to
612 the same node 6. */
613
614 if (!single_pred_p (e->dest))
615 {
616 /* Check, if edge leads directly to the end of this
617 condition. */
618 if (!last_exit)
619 last_exit = e->dest;
620
621 if (e->dest != last_exit)
622 result.difficult = true;
623
624 continue;
625 }
626
627 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
628 {
629 result.difficult = true;
630 continue;
631 }
632
633 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
634
635 result.exits |= sinfo.exits;
636 result.difficult |= sinfo.difficult;
637
638 /* Checks, if all branches end at the same point.
639 If that is true, the condition stays joinable.
640 Have a look at the example above. */
641 if (sinfo.exit)
642 {
643 if (!last_exit)
644 last_exit = sinfo.exit;
645
646 if (sinfo.exit != last_exit)
647 result.difficult = true;
648 }
649 else
650 result.difficult = true;
651 }
652
653 if (!last_exit)
654 result.difficult = true;
655
656 /* Join the branches of the condition if possible. */
657 if (!result.exits && !result.difficult)
658 {
659 /* Only return a next pointer if we dominate this pointer.
660 Otherwise it will be handled by the bb dominating it. */
661 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
662 && last_exit != bb)
663 result.next = last_exit;
664 else
665 result.next = NULL;
666
667 result.exit = last_exit;
668
f1f41a6c 669 regions.release ();
c6bb733d 670 break;
671 }
672
673 /* Scan remaining bbs dominated by BB. */
674 dominated = get_dominated_by (CDI_DOMINATORS, bb);
675
f1f41a6c 676 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
c6bb733d 677 {
678 /* Ignore loop exits: they will be handled after the loop body. */
679 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
680 < loop_depth (loop))
681 {
682 result.exits = true;
683 continue;
684 }
685
686 /* Ignore the bbs processed above. */
687 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
688 continue;
689
690 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
691 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
692 loop_outer (loop));
693 else
694 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
695
696 result.exits |= sinfo.exits;
697 result.difficult = true;
698 result.exit = NULL;
699 }
700
f1f41a6c 701 dominated.release ();
c6bb733d 702
703 result.next = NULL;
704 move_sd_regions (&regions, scops);
705
706 break;
707 }
708
709 default:
710 gcc_unreachable ();
711 }
712
713 return result;
714}
715
716/* Starting from CURRENT we walk the dominance tree and add new sd_regions to
717 SCOPS. The analyse if a sd_region can be handled is based on the value
718 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
719 is the loop in which CURRENT is handled.
720
721 TODO: These functions got a little bit big. They definitely should be cleaned
722 up. */
723
724static struct scopdet_info
725build_scops_1 (basic_block current, loop_p outermost_loop,
f1f41a6c 726 vec<sd_region> *scops, loop_p loop)
c6bb733d 727{
728 bool in_scop = false;
729 sd_region open_scop;
730 struct scopdet_info sinfo;
731
732 /* Initialize result. */
733 struct scopdet_info result;
734 result.exits = false;
735 result.difficult = false;
736 result.next = NULL;
737 result.exit = NULL;
738 open_scop.entry = NULL;
739 open_scop.exit = NULL;
740 sinfo.exit = NULL;
741
742 /* Loop over the dominance tree. If we meet a difficult bb, close
743 the current SCoP. Loop and condition header start a new layer,
744 and can only be added if all bbs in deeper layers are simple. */
745 while (current != NULL)
746 {
747 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
748 get_bb_type (current, loop));
749
750 if (!in_scop && !(sinfo.exits || sinfo.difficult))
751 {
752 open_scop.entry = current;
753 open_scop.exit = NULL;
754 in_scop = true;
755 }
756 else if (in_scop && (sinfo.exits || sinfo.difficult))
757 {
758 open_scop.exit = current;
f1f41a6c 759 scops->safe_push (open_scop);
c6bb733d 760 in_scop = false;
761 }
762
763 result.difficult |= sinfo.difficult;
764 result.exits |= sinfo.exits;
765
766 current = sinfo.next;
767 }
768
769 /* Try to close open_scop, if we are still in an open SCoP. */
770 if (in_scop)
771 {
772 open_scop.exit = sinfo.exit;
773 gcc_assert (open_scop.exit);
f1f41a6c 774 scops->safe_push (open_scop);
c6bb733d 775 }
776
777 result.exit = sinfo.exit;
778 return result;
779}
780
781/* Checks if a bb is contained in REGION. */
782
783static bool
784bb_in_sd_region (basic_block bb, sd_region *region)
785{
786 return bb_in_region (bb, region->entry, region->exit);
787}
788
789/* Returns the single entry edge of REGION, if it does not exits NULL. */
790
791static edge
792find_single_entry_edge (sd_region *region)
793{
794 edge e;
795 edge_iterator ei;
796 edge entry = NULL;
797
798 FOR_EACH_EDGE (e, ei, region->entry->preds)
799 if (!bb_in_sd_region (e->src, region))
800 {
801 if (entry)
802 {
803 entry = NULL;
804 break;
805 }
806
807 else
808 entry = e;
809 }
810
811 return entry;
812}
813
814/* Returns the single exit edge of REGION, if it does not exits NULL. */
815
816static edge
817find_single_exit_edge (sd_region *region)
818{
819 edge e;
820 edge_iterator ei;
821 edge exit = NULL;
822
823 FOR_EACH_EDGE (e, ei, region->exit->preds)
824 if (bb_in_sd_region (e->src, region))
825 {
826 if (exit)
827 {
828 exit = NULL;
829 break;
830 }
831
832 else
833 exit = e;
834 }
835
836 return exit;
837}
838
839/* Create a single entry edge for REGION. */
840
841static void
842create_single_entry_edge (sd_region *region)
843{
844 if (find_single_entry_edge (region))
845 return;
846
847 /* There are multiple predecessors for bb_3
848
849 | 1 2
850 | | /
851 | |/
852 | 3 <- entry
853 | |\
854 | | |
855 | 4 ^
856 | | |
857 | |/
858 | 5
859
860 There are two edges (1->3, 2->3), that point from outside into the region,
861 and another one (5->3), a loop latch, lead to bb_3.
862
863 We split bb_3.
864
865 | 1 2
866 | | /
867 | |/
868 |3.0
869 | |\ (3.0 -> 3.1) = single entry edge
870 |3.1 | <- entry
871 | | |
872 | | |
873 | 4 ^
874 | | |
875 | |/
876 | 5
877
878 If the loop is part of the SCoP, we have to redirect the loop latches.
879
880 | 1 2
881 | | /
882 | |/
883 |3.0
884 | | (3.0 -> 3.1) = entry edge
885 |3.1 <- entry
886 | |\
887 | | |
888 | 4 ^
889 | | |
890 | |/
891 | 5 */
892
893 if (region->entry->loop_father->header != region->entry
894 || dominated_by_p (CDI_DOMINATORS,
895 loop_latch_edge (region->entry->loop_father)->src,
896 region->exit))
897 {
898 edge forwarder = split_block_after_labels (region->entry);
899 region->entry = forwarder->dest;
900 }
901 else
902 /* This case is never executed, as the loop headers seem always to have a
903 single edge pointing from outside into the loop. */
904 gcc_unreachable ();
905
1b4345f7 906 gcc_checking_assert (find_single_entry_edge (region));
c6bb733d 907}
908
909/* Check if the sd_region, mentioned in EDGE, has no exit bb. */
910
911static bool
912sd_region_without_exit (edge e)
913{
914 sd_region *r = (sd_region *) e->aux;
915
916 if (r)
917 return r->exit == NULL;
918 else
919 return false;
920}
921
922/* Create a single exit edge for REGION. */
923
924static void
925create_single_exit_edge (sd_region *region)
926{
927 edge e;
928 edge_iterator ei;
929 edge forwarder = NULL;
930 basic_block exit;
931
c6bb733d 932 /* We create a forwarder bb (5) for all edges leaving this region
933 (3->5, 4->5). All other edges leading to the same bb, are moved
934 to a new bb (6). If these edges where part of another region (2->5)
935 we update the region->exit pointer, of this region.
936
937 To identify which edge belongs to which region we depend on the e->aux
938 pointer in every edge. It points to the region of the edge or to NULL,
939 if the edge is not part of any region.
940
941 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
942 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
943 5 <- exit
944
945 changes to
946
947 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
948 | | \/ 3->5 no region, 4->5 no region,
949 | | 5
950 \| / 5->6 region->exit = 6
951 6
952
953 Now there is only a single exit edge (5->6). */
954 exit = region->exit;
955 region->exit = NULL;
956 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
957
958 /* Unmark the edges, that are no longer exit edges. */
959 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
960 if (e->aux)
961 e->aux = NULL;
962
963 /* Mark the new exit edge. */
964 single_succ_edge (forwarder->src)->aux = region;
965
966 /* Update the exit bb of all regions, where exit edges lead to
967 forwarder->dest. */
968 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
969 if (e->aux)
970 ((sd_region *) e->aux)->exit = forwarder->dest;
971
1b4345f7 972 gcc_checking_assert (find_single_exit_edge (region));
c6bb733d 973}
974
975/* Unmark the exit edges of all REGIONS.
976 See comment in "create_single_exit_edge". */
977
978static void
f1f41a6c 979unmark_exit_edges (vec<sd_region> regions)
c6bb733d 980{
981 int i;
982 sd_region *s;
983 edge e;
984 edge_iterator ei;
985
f1f41a6c 986 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 987 FOR_EACH_EDGE (e, ei, s->exit->preds)
988 e->aux = NULL;
989}
990
991
992/* Mark the exit edges of all REGIONS.
993 See comment in "create_single_exit_edge". */
994
995static void
f1f41a6c 996mark_exit_edges (vec<sd_region> regions)
c6bb733d 997{
998 int i;
999 sd_region *s;
1000 edge e;
1001 edge_iterator ei;
1002
f1f41a6c 1003 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1004 FOR_EACH_EDGE (e, ei, s->exit->preds)
1005 if (bb_in_sd_region (e->src, s))
1006 e->aux = s;
1007}
1008
1009/* Create for all scop regions a single entry and a single exit edge. */
1010
1011static void
f1f41a6c 1012create_sese_edges (vec<sd_region> regions)
c6bb733d 1013{
1014 int i;
1015 sd_region *s;
1016
f1f41a6c 1017 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1018 create_single_entry_edge (s);
1019
1020 mark_exit_edges (regions);
1021
f1f41a6c 1022 FOR_EACH_VEC_ELT (regions, i, s)
bbf92068 1023 /* Don't handle multiple edges exiting the function. */
1024 if (!find_single_exit_edge (s)
1025 && s->exit != EXIT_BLOCK_PTR)
1026 create_single_exit_edge (s);
c6bb733d 1027
1028 unmark_exit_edges (regions);
1029
4e976818 1030 calculate_dominance_info (CDI_DOMINATORS);
c6bb733d 1031 fix_loop_structure (NULL);
1032
1033#ifdef ENABLE_CHECKING
1034 verify_loop_structure ();
c6bb733d 1035 verify_ssa (false);
1036#endif
1037}
1038
1039/* Create graphite SCoPs from an array of scop detection REGIONS. */
1040
1041static void
f1f41a6c 1042build_graphite_scops (vec<sd_region> regions,
1043 vec<scop_p> *scops)
c6bb733d 1044{
1045 int i;
1046 sd_region *s;
1047
f1f41a6c 1048 FOR_EACH_VEC_ELT (regions, i, s)
c6bb733d 1049 {
1050 edge entry = find_single_entry_edge (s);
1051 edge exit = find_single_exit_edge (s);
bbf92068 1052 scop_p scop;
1053
1054 if (!exit)
1055 continue;
1056
1057 scop = new_scop (new_sese (entry, exit));
f1f41a6c 1058 scops->safe_push (scop);
c6bb733d 1059
1060 /* Are there overlapping SCoPs? */
1061#ifdef ENABLE_CHECKING
1062 {
1063 int j;
1064 sd_region *s2;
1065
f1f41a6c 1066 FOR_EACH_VEC_ELT (regions, j, s2)
c6bb733d 1067 if (s != s2)
1068 gcc_assert (!bb_in_sd_region (s->entry, s2));
1069 }
1070#endif
1071 }
1072}
1073
1074/* Returns true when BB contains only close phi nodes. */
1075
1076static bool
1077contains_only_close_phi_nodes (basic_block bb)
1078{
1079 gimple_stmt_iterator gsi;
1080
1081 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1082 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1083 return false;
1084
1085 return true;
1086}
1087
1088/* Print statistics for SCOP to FILE. */
1089
1090static void
1091print_graphite_scop_statistics (FILE* file, scop_p scop)
1092{
1093 long n_bbs = 0;
1094 long n_loops = 0;
1095 long n_stmts = 0;
1096 long n_conditions = 0;
1097 long n_p_bbs = 0;
1098 long n_p_loops = 0;
1099 long n_p_stmts = 0;
1100 long n_p_conditions = 0;
1101
1102 basic_block bb;
1103
1104 FOR_ALL_BB (bb)
1105 {
1106 gimple_stmt_iterator psi;
1107 loop_p loop = bb->loop_father;
1108
1109 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1110 continue;
1111
1112 n_bbs++;
1113 n_p_bbs += bb->count;
1114
7bf60644 1115 if (EDGE_COUNT (bb->succs) > 1)
c6bb733d 1116 {
1117 n_conditions++;
1118 n_p_conditions += bb->count;
1119 }
1120
1121 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1122 {
1123 n_stmts++;
1124 n_p_stmts += bb->count;
1125 }
1126
1127 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1128 {
1129 n_loops++;
1130 n_p_loops += bb->count;
1131 }
1132
1133 }
1134
1135 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1136 fprintf (file, "BBS:%ld, ", n_bbs);
1137 fprintf (file, "LOOPS:%ld, ", n_loops);
1138 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1139 fprintf (file, "STMTS:%ld)\n", n_stmts);
1140 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1141 fprintf (file, "BBS:%ld, ", n_p_bbs);
1142 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1143 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1144 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1145}
1146
1147/* Print statistics for SCOPS to FILE. */
1148
1149static void
f1f41a6c 1150print_graphite_statistics (FILE* file, vec<scop_p> scops)
c6bb733d 1151{
1152 int i;
1153 scop_p scop;
1154
f1f41a6c 1155 FOR_EACH_VEC_ELT (scops, i, scop)
c6bb733d 1156 print_graphite_scop_statistics (file, scop);
1157}
1158
c6bb733d 1159/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1160
1161 Example:
1162
1163 for (i |
1164 { |
1165 for (j | SCoP 1
1166 for (k |
1167 } |
1168
1169 * SCoP frontier, as this line is not surrounded by any loop. *
1170
1171 for (l | SCoP 2
1172
1173 This is necessary as scalar evolution and parameter detection need a
1174 outermost loop to initialize parameters correctly.
1175
1176 TODO: FIX scalar evolution and parameter detection to allow more flexible
1177 SCoP frontiers. */
1178
1179static void
f1f41a6c 1180limit_scops (vec<scop_p> *scops)
c6bb733d 1181{
f1f41a6c 1182 vec<sd_region> regions;
1183 regions.create (3);
c6bb733d 1184
1185 int i;
1186 scop_p scop;
1187
f1f41a6c 1188 FOR_EACH_VEC_ELT (*scops, i, scop)
c6bb733d 1189 {
1190 int j;
1191 loop_p loop;
1192 sese region = SCOP_REGION (scop);
c6bb733d 1193 build_sese_loop_nests (region);
1194
f1f41a6c 1195 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
c6bb733d 1196 if (!loop_in_sese_p (loop_outer (loop), region)
1197 && single_exit (loop))
1198 {
1199 sd_region open_scop;
1200 open_scop.entry = loop->header;
1201 open_scop.exit = single_exit (loop)->dest;
1202
1203 /* This is a hack on top of the limit_scops hack. The
1204 limit_scops hack should disappear all together. */
1205 if (single_succ_p (open_scop.exit)
1206 && contains_only_close_phi_nodes (open_scop.exit))
1207 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1208
f1f41a6c 1209 regions.safe_push (open_scop);
c6bb733d 1210 }
1211 }
1212
c9ef6b0e 1213 free_scops (*scops);
f1f41a6c 1214 scops->create (3);
c6bb733d 1215
1216 create_sese_edges (regions);
1217 build_graphite_scops (regions, scops);
f1f41a6c 1218 regions.release ();
c6bb733d 1219}
1220
3225ff53 1221/* Returns true when P1 and P2 are close phis with the same
1222 argument. */
1223
1224static inline bool
1225same_close_phi_node (gimple p1, gimple p2)
1226{
1227 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1228 gimple_phi_arg_def (p2, 0), 0);
1229}
1230
1231/* Remove the close phi node at GSI and replace its rhs with the rhs
1232 of PHI. */
1233
1234static void
1235remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1236{
1237 gimple use_stmt;
1238 use_operand_p use_p;
1239 imm_use_iterator imm_iter;
1240 tree res = gimple_phi_result (phi);
1241 tree def = gimple_phi_result (gsi_stmt (*gsi));
1242
1243 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1244
1245 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1246 {
1247 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1248 SET_USE (use_p, res);
1249
1250 update_stmt (use_stmt);
c9722991 1251
1252 /* It is possible that we just created a duplicate close-phi
1253 for an already-processed containing loop. Check for this
1254 case and clean it up. */
1255 if (gimple_code (use_stmt) == GIMPLE_PHI
1256 && gimple_phi_num_args (use_stmt) == 1)
1257 make_close_phi_nodes_unique (gimple_bb (use_stmt));
3225ff53 1258 }
1259
1260 remove_phi_node (gsi, true);
1261}
1262
1263/* Removes all the close phi duplicates from BB. */
1264
1265static void
1266make_close_phi_nodes_unique (basic_block bb)
1267{
1268 gimple_stmt_iterator psi;
1269
1270 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1271 {
1272 gimple_stmt_iterator gsi = psi;
1273 gimple phi = gsi_stmt (psi);
1274
1275 /* At this point, PHI should be a close phi in normal form. */
1276 gcc_assert (gimple_phi_num_args (phi) == 1);
1277
1278 /* Iterate over the next phis and remove duplicates. */
1279 gsi_next (&gsi);
1280 while (!gsi_end_p (gsi))
1281 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1282 remove_duplicate_close_phi (phi, &gsi);
1283 else
1284 gsi_next (&gsi);
1285 }
1286}
1287
c6bb733d 1288/* Transforms LOOP to the canonical loop closed SSA form. */
1289
1290static void
1291canonicalize_loop_closed_ssa (loop_p loop)
1292{
1293 edge e = single_exit (loop);
1294 basic_block bb;
1295
1296 if (!e || e->flags & EDGE_ABNORMAL)
1297 return;
1298
1299 bb = e->dest;
1300
7bf60644 1301 if (single_pred_p (bb))
3225ff53 1302 {
1303 e = split_block_after_labels (bb);
1304 make_close_phi_nodes_unique (e->src);
1305 }
c6bb733d 1306 else
1307 {
1308 gimple_stmt_iterator psi;
1309 basic_block close = split_edge (e);
1310
1311 e = single_succ_edge (close);
1312
1313 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1314 {
1315 gimple phi = gsi_stmt (psi);
1316 unsigned i;
1317
1318 for (i = 0; i < gimple_phi_num_args (phi); i++)
1319 if (gimple_phi_arg_edge (phi, i) == e)
1320 {
1321 tree res, arg = gimple_phi_arg_def (phi, i);
1322 use_operand_p use_p;
1323 gimple close_phi;
1324
1325 if (TREE_CODE (arg) != SSA_NAME)
1326 continue;
1327
9c06f260 1328 close_phi = create_phi_node (NULL_TREE, close);
1329 res = create_new_def_for (arg, close_phi,
c6bb733d 1330 gimple_phi_result_ptr (close_phi));
1331 add_phi_arg (close_phi, arg,
1332 gimple_phi_arg_edge (close_phi, 0),
60d535d2 1333 UNKNOWN_LOCATION);
c6bb733d 1334 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1335 replace_exp (use_p, res);
1336 update_stmt (phi);
1337 }
1338 }
3225ff53 1339
1340 make_close_phi_nodes_unique (close);
c6bb733d 1341 }
2acf5550 1342
1343 /* The code above does not properly handle changes in the post dominance
1344 information (yet). */
1345 free_dominance_info (CDI_POST_DOMINATORS);
c6bb733d 1346}
1347
1348/* Converts the current loop closed SSA form to a canonical form
1349 expected by the Graphite code generation.
1350
1351 The loop closed SSA form has the following invariant: a variable
1352 defined in a loop that is used outside the loop appears only in the
1353 phi nodes in the destination of the loop exit. These phi nodes are
1354 called close phi nodes.
1355
1356 The canonical loop closed SSA form contains the extra invariants:
1357
1358 - when the loop contains only one exit, the close phi nodes contain
1359 only one argument. That implies that the basic block that contains
1360 the close phi nodes has only one predecessor, that is a basic block
1361 in the loop.
1362
1363 - the basic block containing the close phi nodes does not contain
1364 other statements.
3225ff53 1365
1366 - there exist only one phi node per definition in the loop.
c6bb733d 1367*/
1368
1369static void
1370canonicalize_loop_closed_ssa_form (void)
1371{
1372 loop_iterator li;
1373 loop_p loop;
1374
1375#ifdef ENABLE_CHECKING
ca77c6ec 1376 verify_loop_closed_ssa (true);
c6bb733d 1377#endif
1378
1379 FOR_EACH_LOOP (li, loop, 0)
1380 canonicalize_loop_closed_ssa (loop);
1381
1382 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1383 update_ssa (TODO_update_ssa);
1384
1385#ifdef ENABLE_CHECKING
ca77c6ec 1386 verify_loop_closed_ssa (true);
c6bb733d 1387#endif
1388}
1389
1390/* Find Static Control Parts (SCoP) in the current function and pushes
1391 them to SCOPS. */
1392
1393void
f1f41a6c 1394build_scops (vec<scop_p> *scops)
c6bb733d 1395{
1396 struct loop *loop = current_loops->tree_root;
f1f41a6c 1397 vec<sd_region> regions;
1398 regions.create (3);
c6bb733d 1399
1400 canonicalize_loop_closed_ssa_form ();
1401 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
bbf92068 1402 &regions, loop);
c6bb733d 1403 create_sese_edges (regions);
1404 build_graphite_scops (regions, scops);
1405
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 print_graphite_statistics (dump_file, *scops);
1408
1409 limit_scops (scops);
f1f41a6c 1410 regions.release ();
c6bb733d 1411
1412 if (dump_file && (dump_flags & TDF_DETAILS))
1413 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
f1f41a6c 1414 scops ? scops->length () : 0);
c6bb733d 1415}
1416
96b6d5d7 1417/* Pretty print to FILE all the SCoPs in DOT format and mark them with
1418 different colors. If there are not enough colors, paint the
1419 remaining SCoPs in gray.
1420
c6bb733d 1421 Special nodes:
96b6d5d7 1422 - "*" after the node number denotes the entry of a SCoP,
1423 - "#" after the node number denotes the exit of a SCoP,
1424 - "()" around the node number denotes the entry or the
1425 exit nodes of the SCOP. These are not part of SCoP. */
c6bb733d 1426
1427static void
f1f41a6c 1428dot_all_scops_1 (FILE *file, vec<scop_p> scops)
c6bb733d 1429{
1430 basic_block bb;
1431 edge e;
1432 edge_iterator ei;
1433 scop_p scop;
1434 const char* color;
1435 int i;
1436
1437 /* Disable debugging while printing graph. */
1438 int tmp_dump_flags = dump_flags;
1439 dump_flags = 0;
1440
1441 fprintf (file, "digraph all {\n");
1442
1443 FOR_ALL_BB (bb)
1444 {
1445 int part_of_scop = false;
1446
1447 /* Use HTML for every bb label. So we are able to print bbs
1448 which are part of two different SCoPs, with two different
1449 background colors. */
1450 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1451 bb->index);
1452 fprintf (file, "CELLSPACING=\"0\">\n");
1453
1454 /* Select color for SCoP. */
f1f41a6c 1455 FOR_EACH_VEC_ELT (scops, i, scop)
c6bb733d 1456 {
1457 sese region = SCOP_REGION (scop);
1458 if (bb_in_sese_p (bb, region)
1459 || (SESE_EXIT_BB (region) == bb)
1460 || (SESE_ENTRY_BB (region) == bb))
1461 {
1462 switch (i % 17)
1463 {
1464 case 0: /* red */
1465 color = "#e41a1c";
1466 break;
1467 case 1: /* blue */
1468 color = "#377eb8";
1469 break;
1470 case 2: /* green */
1471 color = "#4daf4a";
1472 break;
1473 case 3: /* purple */
1474 color = "#984ea3";
1475 break;
1476 case 4: /* orange */
1477 color = "#ff7f00";
1478 break;
1479 case 5: /* yellow */
1480 color = "#ffff33";
1481 break;
1482 case 6: /* brown */
1483 color = "#a65628";
1484 break;
1485 case 7: /* rose */
1486 color = "#f781bf";
1487 break;
1488 case 8:
1489 color = "#8dd3c7";
1490 break;
1491 case 9:
1492 color = "#ffffb3";
1493 break;
1494 case 10:
1495 color = "#bebada";
1496 break;
1497 case 11:
1498 color = "#fb8072";
1499 break;
1500 case 12:
1501 color = "#80b1d3";
1502 break;
1503 case 13:
1504 color = "#fdb462";
1505 break;
1506 case 14:
1507 color = "#b3de69";
1508 break;
1509 case 15:
1510 color = "#fccde5";
1511 break;
1512 case 16:
1513 color = "#bc80bd";
1514 break;
1515 default: /* gray */
1516 color = "#999999";
1517 }
1518
1519 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1520
1521 if (!bb_in_sese_p (bb, region))
1522 fprintf (file, " (");
1523
1524 if (bb == SESE_ENTRY_BB (region)
1525 && bb == SESE_EXIT_BB (region))
1526 fprintf (file, " %d*# ", bb->index);
1527 else if (bb == SESE_ENTRY_BB (region))
1528 fprintf (file, " %d* ", bb->index);
1529 else if (bb == SESE_EXIT_BB (region))
1530 fprintf (file, " %d# ", bb->index);
1531 else
1532 fprintf (file, " %d ", bb->index);
1533
1534 if (!bb_in_sese_p (bb,region))
1535 fprintf (file, ")");
1536
1537 fprintf (file, "</TD></TR>\n");
1538 part_of_scop = true;
1539 }
1540 }
1541
1542 if (!part_of_scop)
1543 {
1544 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1545 fprintf (file, " %d </TD></TR>\n", bb->index);
1546 }
1547 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1548 }
1549
1550 FOR_ALL_BB (bb)
1551 {
1552 FOR_EACH_EDGE (e, ei, bb->succs)
1553 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1554 }
1555
1556 fputs ("}\n\n", file);
1557
1558 /* Enable debugging again. */
1559 dump_flags = tmp_dump_flags;
1560}
1561
1562/* Display all SCoPs using dotty. */
1563
6b5822fe 1564DEBUG_FUNCTION void
f1f41a6c 1565dot_all_scops (vec<scop_p> scops)
c6bb733d 1566{
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569#if 0
1570 int x;
1571 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1572 gcc_assert (stream);
1573
1574 dot_all_scops_1 (stream, scops);
1575 fclose (stream);
1576
ce363cd5 1577 x = system ("dotty /tmp/allscops.dot &");
c6bb733d 1578#else
1579 dot_all_scops_1 (stderr, scops);
1580#endif
1581}
1582
1583/* Display all SCoPs using dotty. */
1584
6b5822fe 1585DEBUG_FUNCTION void
c6bb733d 1586dot_scop (scop_p scop)
1587{
f1f41a6c 1588 vec<scop_p> scops = vec<scop_p>();
c6bb733d 1589
1590 if (scop)
f1f41a6c 1591 scops.safe_push (scop);
c6bb733d 1592
1593 /* When debugging, enable the following code. This cannot be used
1594 in production compilers because it calls "system". */
1595#if 0
1596 {
1597 int x;
1598 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1599 gcc_assert (stream);
1600
1601 dot_all_scops_1 (stream, scops);
1602 fclose (stream);
ce363cd5 1603 x = system ("dotty /tmp/allscops.dot &");
c6bb733d 1604 }
1605#else
1606 dot_all_scops_1 (stderr, scops);
1607#endif
1608
f1f41a6c 1609 scops.release ();
c6bb733d 1610}
1611
1612#endif