]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/haifa-sched.c
asan.c (create_cond_insert_point): Maintain profile.
[thirdparty/gcc.git] / gcc / haifa-sched.c
CommitLineData
8c660648 1/* Instruction scheduling pass.
cbe34bb5 2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
8c660648
JL
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
1322177d 6This file is part of GCC.
5d14e356 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
5d14e356 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
5d14e356
RK
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
8c660648 21
b4ead7d4 22/* Instruction scheduling pass. This file, along with sched-deps.c,
151e9aac 23 contains the generic parts. The actual entry point for
b4ead7d4 24 the normal instruction scheduling pass is found in sched-rgn.c.
8c660648
JL
25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
8c660648
JL
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
2db45993
JL
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
8c660648
JL
70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
151e9aac 80 compute_block_dependences ().
8c660648
JL
81
82 Dependencies set up by memory references are treated in exactly the
b198261f
MK
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
151e9aac 85 INSN_FORW_DEPS for the purpose of forward list scheduling.
8c660648
JL
86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
a813c111 117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
8c660648
JL
118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
b4ead7d4 123 beginning of basic blocks and regions that have been scheduled. */
8c660648 124\f
8c660648 125#include "config.h"
5835e573 126#include "system.h"
4977bab6 127#include "coretypes.h"
c7131fb2 128#include "backend.h"
957060b5 129#include "target.h"
8c660648 130#include "rtl.h"
957060b5 131#include "cfghooks.h"
c7131fb2 132#include "df.h"
4d0cdd0c 133#include "memmodel.h"
6baf1cc8 134#include "tm_p.h"
957060b5 135#include "insn-config.h"
8c660648 136#include "regs.h"
957060b5
AM
137#include "ira.h"
138#include "recog.h"
8c660648 139#include "insn-attr.h"
60393bbc
AM
140#include "cfgrtl.h"
141#include "cfgbuild.h"
1708fd40 142#include "sched-int.h"
677f3fa8 143#include "common/common-target.h"
496d7bb0 144#include "params.h"
6fb5fa3c 145#include "dbgcnt.h"
e855c69d 146#include "cfgloop.h"
7ee2468b 147#include "dumpfile.h"
013a8899 148#include "print-rtl.h"
8c660648 149
8c660648
JL
150#ifdef INSN_SCHEDULING
151
f20f2613
VM
152/* True if we do register pressure relief through live-range
153 shrinkage. */
154static bool live_range_shrinkage_p;
155
156/* Switch on live range shrinkage. */
157void
158initialize_live_range_shrinkage (void)
159{
160 live_range_shrinkage_p = true;
161}
162
163/* Switch off live range shrinkage. */
164void
165finish_live_range_shrinkage (void)
166{
167 live_range_shrinkage_p = false;
168}
169
8c660648
JL
170/* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
173
e855c69d 174int issue_rate;
8c660648 175
26965010
BS
176/* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178bool sched_no_dce;
179
06d7e8e7
BS
180/* The current initiation interval used when modulo scheduling. */
181static int modulo_ii;
182
183/* The maximum number of stages we are prepared to handle. */
184static int modulo_max_stages;
185
186/* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188static int modulo_n_insns;
189
190/* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192static int modulo_insns_scheduled;
193
194/* The maximum uid of insns from the first iteration of the loop. */
195static int modulo_iter0_max_uid;
196
197/* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199static int modulo_backtracks_left;
200
201/* The stage in which the last insn from the original loop was
202 scheduled. */
203static int modulo_last_stage;
204
cc132865 205/* sched-verbose controls the amount of debugging output the
409f8483 206 scheduler prints. It is controlled by -fsched-verbose=N:
4111f1c9
NB
207 N=0: no debugging output.
208 N=1: default value.
8c660648
JL
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
cc132865 211 N=5: dependences info. */
b4ead7d4 212int sched_verbose = 0;
8c660648 213
4111f1c9 214/* Debugging file. All printouts are sent to dump. */
c62c2659 215FILE *sched_dump = 0;
a88f02e7 216
b8698a0f 217/* This is a placeholder for the scheduler parameters common
e855c69d
AB
218 to all schedulers. */
219struct common_sched_info_def *common_sched_info;
f66d83e1 220
e855c69d 221#define INSN_TICK(INSN) (HID (INSN)->tick)
26965010
BS
222#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
e855c69d 224#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
26965010
BS
225#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
e2724e63 227#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
ffc1ded5 228/* Cached cost of the instruction. Use insn_sched_cost to get cost of the
1a83e602
BS
229 insn. -1 here means that the field is not initialized. */
230#define INSN_COST(INSN) (HID (INSN)->cost)
63f54b1a
MK
231
232/* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234#define INVALID_TICK (-(max_insn_queue_index + 1))
235/* The minimal value of the INSN_TICK of an instruction. */
236#define MIN_TICK (-max_insn_queue_index)
8c660648 237
63387a85
MK
238/* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240#define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
241
b75ae7f4
MK
242/* The deciding reason for INSN's place in the ready list. */
243#define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
244
8c660648
JL
245/* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
ce1ce33a 247rtx_insn *note_list;
8c660648 248
496d7bb0
MK
249static struct spec_info_def spec_info_var;
250/* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
e855c69d 252spec_info_t spec_info = NULL;
496d7bb0
MK
253
254/* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
e2f6ff94
MK
256static bool haifa_recovery_bb_recently_added_p;
257
258/* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261bool haifa_recovery_bb_ever_added_p;
496d7bb0 262
917f1b7e 263/* Counters of different types of speculative instructions. */
496d7bb0
MK
264static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
265
496d7bb0 266/* Array used in {unlink, restore}_bb_notes. */
9b517712 267static rtx_insn **bb_header = 0;
496d7bb0 268
496d7bb0
MK
269/* Basic block after which recovery blocks will be created. */
270static basic_block before_recovery;
271
e855c69d
AB
272/* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274basic_block after_recovery;
275
276/* FALSE if we add bb to another region, so we don't need to initialize it. */
277bool adding_bb_to_current_region_p = true;
278
8c660648
JL
279/* Queues, etc. */
280
281/* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
285
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
292
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
295
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
fa0aee89 301 insns move from the "Queued" set to the "Ready" list.
8c660648 302
b198261f
MK
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
8c660648
JL
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
309
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
8c660648
JL
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
316
317/* Implement a circular buffer to delay instructions until sufficient
fa0aee89 318 time has passed. For the new pipeline description interface,
63f54b1a 319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
fa0aee89
PB
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
fae15c93 323
3dc99c19 324static rtx_insn_list **insn_queue;
8c660648
JL
325static int q_ptr = 0;
326static int q_size = 0;
fa0aee89
PB
327#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
fae15c93 329
63f54b1a
MK
330#define QUEUE_SCHEDULED (-3)
331#define QUEUE_NOWHERE (-2)
332#define QUEUE_READY (-1)
333/* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
b8698a0f 338
e855c69d 339#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
63f54b1a 340
fae15c93
VM
341/* The following variable value refers for all current and future
342 reservations of the processor units. */
343state_t curr_state;
344
345/* The following variable value is size of memory representing all
fa0aee89 346 current and future reservations of the processor units. */
e855c69d 347size_t dfa_state_size;
fae15c93
VM
348
349/* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
4960a0cb 351signed char *ready_try = NULL;
8c660648 352
e855c69d 353/* The ready list. */
b5b8b0ac 354struct ready_list ready = {NULL, 0, 0, 0, 0};
176f9a7b 355
e855c69d
AB
356/* The pointer to the ready list (to be removed). */
357static struct ready_list *readyp = &ready;
63f54b1a
MK
358
359/* Scheduling clock. */
360static int clock_var;
361
26965010
BS
362/* Clock at which the previous instruction was issued. */
363static int last_clock_var;
364
365/* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367static bool must_backtrack;
368
369/* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372int cycle_issued_insns;
373
86014d07
BS
374/* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
ce1ce33a 376static vec<rtx_insn *> scheduled_insns;
86014d07 377
9678086d 378static int may_trap_exp (const_rtx, int);
15aab9c0
VM
379
380/* Nonzero iff the address is comprised from at most 1 register. */
381#define CONST_BASED_ADDRESS_P(x) \
f8cfc6aa 382 (REG_P (x) \
15aab9c0
VM
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
387
388/* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
390
e855c69d
AB
391\f
392static int haifa_luid_for_non_insn (rtx x);
393
394/* Haifa version of sched_info hooks common to all headers. */
b8698a0f 395const struct common_sched_info_def haifa_common_sched_info =
e855c69d
AB
396 {
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
402 };
403
e855c69d 404/* Mapping from instruction UID to its Logical UID. */
7de76362 405vec<int> sched_luids;
e855c69d
AB
406
407/* Next LUID to assign to an instruction. */
408int sched_max_luid = 1;
409
410/* Haifa Instruction Data. */
7de76362 411vec<haifa_insn_data_def> h_i_d;
e855c69d
AB
412
413void (* sched_init_only_bb) (basic_block, basic_block);
414
415/* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417basic_block (* sched_split_block) (basic_block, rtx);
418
419/* Create empty basic block after the specified block. */
420basic_block (* sched_create_empty_bb) (basic_block);
421
7a1aca9c
RS
422/* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424static int
f57aa6b0 425insn_delay (rtx_insn *insn)
7a1aca9c
RS
426{
427 return MAX (INSN_TICK (insn) - clock_var, 0);
428}
429
15aab9c0 430static int
9678086d 431may_trap_exp (const_rtx x, int is_store)
15aab9c0
VM
432{
433 enum rtx_code code;
434
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
439 {
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
444 }
445 if (code == MEM)
446 {
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
458 }
459 else
460 {
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
463
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
470 {
471 if (fmt[i] == 'e')
472 {
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 {
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
485 }
486 }
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
489 }
490 return insn_class;
491 }
492}
493
ac4a7e21
AM
494/* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
15aab9c0
VM
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
a98ebe2e 499 IFREE: load from a globally safe location.
15aab9c0
VM
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
503
ac4a7e21
AM
504static int
505haifa_classify_rtx (const_rtx x)
15aab9c0 506{
15aab9c0
VM
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
510
ac4a7e21 511 if (GET_CODE (x) == PARALLEL)
15aab9c0 512 {
ac4a7e21 513 int i, len = XVECLEN (x, 0);
15aab9c0
VM
514
515 for (i = len - 1; i >= 0; i--)
516 {
ac4a7e21 517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
15aab9c0
VM
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
521 }
522 }
523 else
524 {
ac4a7e21 525 code = GET_CODE (x);
15aab9c0
VM
526 switch (code)
527 {
528 case CLOBBER:
529 /* Test if it is a 'store'. */
ac4a7e21 530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
15aab9c0
VM
531 break;
532 case SET:
533 /* Test if it is a store. */
ac4a7e21 534 tmp_class = may_trap_exp (SET_DEST (x), 1);
15aab9c0
VM
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
ac4a7e21 540 may_trap_exp (SET_SRC (x), 0));
15aab9c0
VM
541 break;
542 case COND_EXEC:
ac4a7e21
AM
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
15aab9c0
VM
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
553 }
554 insn_class = tmp_class;
555 }
556
557 return insn_class;
558}
559
ac4a7e21
AM
560int
561haifa_classify_insn (const_rtx insn)
562{
563 return haifa_classify_rtx (PATTERN (insn));
564}
06d7e8e7
BS
565\f
566/* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
570
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
574
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579void
580set_modulo_params (int ii, int max_stages, int insns, int max_uid)
581{
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
587}
ac4a7e21 588
26965010
BS
589/* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594struct delay_pair
595{
596 struct delay_pair *next_same_i1;
ce1ce33a 597 rtx_insn *i1, *i2;
26965010 598 int cycles;
06d7e8e7
BS
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
26965010
BS
603};
604
4a8fb1a1
LC
605/* Helpers for delay hashing. */
606
8d67ee55 607struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
4a8fb1a1 608{
67f58944
TS
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
4a8fb1a1
LC
612};
613
614/* Returns a hash value for X, based on hashing just I1. */
615
616inline hashval_t
67f58944 617delay_i1_hasher::hash (const delay_pair *x)
4a8fb1a1
LC
618{
619 return htab_hash_pointer (x->i1);
620}
621
622/* Return true if I1 of pair X is the same as that of pair Y. */
623
624inline bool
67f58944 625delay_i1_hasher::equal (const delay_pair *x, const void *y)
4a8fb1a1
LC
626{
627 return x->i1 == y;
628}
629
95fbe13e 630struct delay_i2_hasher : free_ptr_hash <delay_pair>
4a8fb1a1 631{
67f58944
TS
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
4a8fb1a1
LC
635};
636
637/* Returns a hash value for X, based on hashing just I2. */
638
639inline hashval_t
67f58944 640delay_i2_hasher::hash (const delay_pair *x)
4a8fb1a1
LC
641{
642 return htab_hash_pointer (x->i2);
643}
644
645/* Return true if I2 of pair X is the same as that of pair Y. */
646
647inline bool
67f58944 648delay_i2_hasher::equal (const delay_pair *x, const void *y)
4a8fb1a1
LC
649{
650 return x->i2 == y;
651}
652
26965010
BS
653/* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
c203e8a7
TS
655static hash_table<delay_i1_hasher> *delay_htab;
656static hash_table<delay_i2_hasher> *delay_htab_i2;
26965010 657
06d7e8e7
BS
658/* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
4a8fb1a1
LC
661int
662haifa_htab_i2_traverse (delay_pair **slot, int *data)
06d7e8e7 663{
4a8fb1a1
LC
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
06d7e8e7
BS
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 {
c203e8a7 668 delay_htab_i2->clear_slot (slot);
06d7e8e7
BS
669 }
670 return 1;
671}
672
673/* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
4a8fb1a1
LC
676int
677haifa_htab_i1_traverse (delay_pair **pslot, int *data)
06d7e8e7 678{
4a8fb1a1 679 int maxuid = *data;
06d7e8e7
BS
680 struct delay_pair *p, *first, **pprev;
681
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 {
c203e8a7 684 delay_htab->clear_slot (pslot);
06d7e8e7
BS
685 return 1;
686 }
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
689 {
690 if (INSN_UID (p->i2) < maxuid)
691 {
692 *pprev = p;
693 pprev = &p->next_same_i1;
694 }
695 }
696 *pprev = NULL;
697 if (first == NULL)
c203e8a7 698 delay_htab->clear_slot (pslot);
06d7e8e7
BS
699 else
700 *pslot = first;
701 return 1;
702}
703
704/* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706void
707discard_delay_pairs_above (int max_uid)
708{
c203e8a7
TS
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
26965010
BS
711}
712
06d7e8e7
BS
713/* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
721
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
26965010
BS
728
729void
ce1ce33a 730record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
26965010
BS
731{
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
734
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
06d7e8e7 738 p->stages = stages;
26965010 739
c203e8a7 740 if (!delay_htab)
26965010 741 {
c203e8a7
TS
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
26965010 744 }
c203e8a7 745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
26965010
BS
746 p->next_same_i1 = *slot;
747 *slot = p;
c203e8a7 748 slot = delay_htab_i2->find_slot (p, INSERT);
26965010
BS
749 *slot = p;
750}
751
e2724e63
BS
752/* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
f57aa6b0
DM
754rtx_insn *
755real_insn_for_shadow (rtx_insn *insn)
e2724e63
BS
756{
757 struct delay_pair *pair;
758
c203e8a7 759 if (!delay_htab)
f57aa6b0 760 return NULL;
e2724e63 761
c203e8a7 762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
e2724e63 763 if (!pair || pair->stages > 0)
f57aa6b0 764 return NULL;
e2724e63
BS
765 return pair->i1;
766}
767
26965010
BS
768/* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770static int
771pair_delay (struct delay_pair *p)
772{
06d7e8e7
BS
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
26965010
BS
777}
778
779/* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783void
ce1ce33a 784add_delay_dependencies (rtx_insn *insn)
26965010
BS
785{
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
789
c203e8a7 790 if (!delay_htab)
26965010
BS
791 return;
792
c203e8a7 793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
26965010
BS
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
06d7e8e7
BS
797 if (pair->stages)
798 return;
26965010
BS
799
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 {
9b517712 802 rtx_insn *pro = DEP_PRO (dep);
26965010 803 struct delay_pair *other_pair
c203e8a7 804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
06d7e8e7 805 if (!other_pair || other_pair->stages)
26965010
BS
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
808 {
809 if (sched_verbose >= 4)
810 {
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
822 }
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
824 }
825 }
826}
827\f
8c660648 828/* Forward declarations. */
fae15c93 829
0e0ce50d 830static int priority (rtx_insn *);
340c7904 831static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
1d088dee 832static int rank_for_schedule (const void *, const void *);
ce1ce33a
DM
833static void swap_sort (rtx_insn **, int);
834static void queue_insn (rtx_insn *, int, const char *);
835static int schedule_insn (rtx_insn *);
f57aa6b0 836static void adjust_priority (rtx_insn *);
1d088dee 837static void advance_one_cycle (void);
e855c69d
AB
838static void extend_h_i_d (void);
839
8c660648 840
8c660648
JL
841/* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
07c02828 844 The scheduler distinguishes between two types of notes:
8c660648 845
6039a0c7 846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
8c660648
JL
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
851
6039a0c7 852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
8c660648
JL
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
856
ce1ce33a
DM
857static void ready_add (struct ready_list *, rtx_insn *, bool);
858static rtx_insn *ready_remove_first (struct ready_list *);
859static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
3fe41456 860
1d088dee 861static void queue_to_ready (struct ready_list *);
569fa502 862static int early_queue_to_ready (state_t, struct ready_list *);
176f9a7b 863
fae15c93 864/* The following functions are used to implement multi-pass scheduling
fa0aee89 865 on the first cycle. */
ce1ce33a 866static rtx_insn *ready_remove (struct ready_list *, int);
90831096 867static void ready_remove_insn (rtx_insn *);
fae15c93 868
f57aa6b0 869static void fix_inter_tick (rtx_insn *, rtx_insn *);
ce1ce33a
DM
870static int fix_tick_ready (rtx_insn *);
871static void change_queue_index (rtx_insn *, int);
63f54b1a 872
496d7bb0
MK
873/* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876static void extend_h_i_d (void);
f57aa6b0
DM
877static void init_h_i_d (rtx_insn *);
878static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
ce1ce33a 879static void generate_recovery_code (rtx_insn *);
90831096 880static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
ce1ce33a 881static void begin_speculative_block (rtx_insn *);
6144a836 882static void add_to_speculative_block (rtx_insn *);
e855c69d 883static void init_before_recovery (basic_block *);
ce1ce33a 884static void create_check_block_twin (rtx_insn *, bool);
496d7bb0 885static void fix_recovery_deps (basic_block);
f57aa6b0
DM
886static bool haifa_change_pattern (rtx_insn *, rtx);
887static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
496d7bb0 888static void restore_bb_notes (basic_block);
f57aa6b0
DM
889static void fix_jump_move (rtx_insn *);
890static void move_block_after_check (rtx_insn *);
9771b263 891static void move_succs (vec<edge, va_gc> **, basic_block);
ce1ce33a 892static void sched_remove_insn (rtx_insn *);
6144a836 893static void clear_priorities (rtx_insn *, rtx_vec_t *);
916fa4f0 894static void calc_priorities (rtx_vec_t);
0e0ce50d 895static void add_jump_dependencies (rtx_insn *, rtx_insn *);
496d7bb0 896
8c660648
JL
897#endif /* INSN_SCHEDULING */
898\f
1708fd40 899/* Point to state used for the current scheduling pass. */
e855c69d 900struct haifa_sched_info *current_sched_info;
8c660648
JL
901\f
902#ifndef INSN_SCHEDULING
903void
10d22567 904schedule_insns (void)
8c660648
JL
905{
906}
907#else
cbb13457 908
ce18efcb
VM
909/* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
60867e8c 911enum sched_pressure_algorithm sched_pressure;
ce18efcb 912
1756cb66 913/* Map regno -> its pressure class. The map defined only when
7a1aca9c 914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
1756cb66 915enum reg_class *sched_regno_pressure_class;
ce18efcb 916
1756cb66 917/* The current register pressure. Only elements corresponding pressure
ce18efcb
VM
918 classes are defined. */
919static int curr_reg_pressure[N_REG_CLASSES];
920
921/* Saved value of the previous array. */
922static int saved_reg_pressure[N_REG_CLASSES];
923
924/* Register living at given scheduling point. */
925static bitmap curr_reg_live;
926
927/* Saved value of the previous array. */
928static bitmap saved_reg_live;
929
930/* Registers mentioned in the current region. */
931static bitmap region_ref_regs;
932
f380f608
RS
933/* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934static bitmap tmp_bitmap;
935
4dd9ac6c
MK
936/* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938static int sched_class_regs_num[N_REG_CLASSES];
6d5c37d0 939/* Number of call_saved_regs and fixed_regs. Helpers for calculating of
4dd9ac6c 940 sched_class_regs_num. */
6d5c37d0
PH
941static int call_saved_regs_num[N_REG_CLASSES];
942static int fixed_regs_num[N_REG_CLASSES];
4dd9ac6c 943
ce18efcb
VM
944/* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947void
948sched_init_region_reg_pressure_info (void)
949{
950 bitmap_clear (region_ref_regs);
951}
952
7a1aca9c
RS
953/* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957static inline void
958mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
ce18efcb 959{
1756cb66 960 enum reg_class pressure_class;
ce18efcb 961
1756cb66 962 pressure_class = sched_regno_pressure_class[regno];
ce18efcb
VM
963 if (regno >= FIRST_PSEUDO_REGISTER)
964 {
1756cb66 965 if (pressure_class != NO_REGS)
ce18efcb
VM
966 {
967 if (birth_p)
968 {
7a1aca9c
RS
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
ce18efcb
VM
973 }
974 else
975 {
7a1aca9c
RS
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
ce18efcb
VM
980 }
981 }
982 }
1756cb66 983 else if (pressure_class != NO_REGS
ce18efcb
VM
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
985 {
986 if (birth_p)
987 {
7a1aca9c
RS
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
ce18efcb
VM
990 }
991 else
992 {
7a1aca9c
RS
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
ce18efcb
VM
995 }
996 }
997}
998
999/* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001static void
1002initiate_reg_pressure_info (bitmap live)
1003{
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1007
1756cb66
VM
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
ce18efcb
VM
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
7a1aca9c
RS
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
ce18efcb
VM
1016}
1017
1018/* Mark registers in X as mentioned in the current region. */
1019static void
1020setup_ref_regs (rtx x)
1021{
07a737f3 1022 int i, j;
ce18efcb
VM
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1025
1026 if (REG_P (x))
1027 {
07a737f3 1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
ce18efcb
VM
1029 return;
1030 }
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1036 {
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1039 }
1040}
1041
1042/* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044static void
1045initiate_bb_reg_pressure_info (basic_block bb)
1046{
6ab31ade 1047 unsigned int i ATTRIBUTE_UNUSED;
dc01c3d1 1048 rtx_insn *insn;
ce18efcb
VM
1049
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
69b45d71 1052 if (NONDEBUG_INSN_P (insn))
ce18efcb
VM
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
ce18efcb
VM
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1057 {
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
b8698a0f 1059
ce18efcb
VM
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
7a1aca9c
RS
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
ce18efcb 1065 }
ce18efcb
VM
1066}
1067
1068/* Save current register pressure related info. */
1069static void
1070save_reg_pressure (void)
1071{
1072 int i;
b8698a0f 1073
1756cb66
VM
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1078}
1079
1080/* Restore saved register pressure related info. */
1081static void
1082restore_reg_pressure (void)
1083{
1084 int i;
b8698a0f 1085
1756cb66
VM
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1090}
1091
1092/* Return TRUE if the register is dying after its USE. */
1093static bool
1094dying_use_p (struct reg_use_data *use)
1095{
1096 struct reg_use_data *next;
1097
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
bb956f3e
AO
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
ce18efcb
VM
1101 return false;
1102 return true;
1103}
1104
1105/* Print info about the current register pressure and its excess for
1756cb66 1106 each pressure class. */
ce18efcb
VM
1107static void
1108print_curr_reg_pressure (void)
1109{
1110 int i;
1111 enum reg_class cl;
1112
1113 fprintf (sched_dump, ";;\t");
1756cb66 1114 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 1115 {
1756cb66 1116 cl = ira_pressure_classes[i];
ce18efcb
VM
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
4dd9ac6c 1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
ce18efcb
VM
1121 }
1122 fprintf (sched_dump, "\n");
1123}
e2724e63
BS
1124\f
1125/* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127static bool
ce1ce33a 1128cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
e2724e63
BS
1129{
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1133 {
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1145 }
1146
1147 return false;
1148}
1149
1a83e602
BS
1150/* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152static void
f57aa6b0 1153update_insn_after_change (rtx_insn *insn)
1a83e602
BS
1154{
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1157
1158 dfa_clear_single_insn_cache (insn);
1159
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1163 {
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1166 }
1167
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
340c7904
MK
1172
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1a83e602
BS
1178}
1179
1a83e602
BS
1180
1181/* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
9771b263
DN
1185static vec<dep_t> next_cycle_replace_deps;
1186static vec<int> next_cycle_apply;
1a83e602
BS
1187
1188static void apply_replacement (dep_t, bool);
1189static void restore_pattern (dep_t, bool);
1190
e2724e63
BS
1191/* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1a83e602
BS
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
ce18efcb 1197
e2724e63 1198static ds_t
f57aa6b0 1199recompute_todo_spec (rtx_insn *next, bool for_backtrack)
e2724e63
BS
1200{
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1a83e602 1203 dep_t dep, modify_dep = NULL;
e2724e63
BS
1204 int n_spec = 0;
1205 int n_control = 0;
1a83e602 1206 int n_replace = 0;
e2724e63
BS
1207 bool first_p = true;
1208
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1212
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1215
61a17dca
JG
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1220
e2724e63
BS
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1225
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1227 {
9b517712 1228 rtx_insn *pro = DEP_PRO (dep);
e2724e63
BS
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1230
1a83e602 1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
e2724e63
BS
1232 continue;
1233
1234 if (ds)
1235 {
1236 n_spec++;
1237 if (first_p)
1238 {
1239 first_p = false;
1240
1241 new_ds = ds;
1242 }
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1245 }
1a83e602 1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
e2724e63 1247 {
1a83e602
BS
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1249 {
1250 n_control++;
1251 modify_dep = dep;
1252 }
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1254 }
1255 else if (DEP_REPLACE (dep) != NULL)
1256 {
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1258 {
1259 n_replace++;
1260 modify_dep = dep;
1261 }
e2724e63
BS
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1263 }
1264 }
1265
1a83e602
BS
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1267 {
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1271 {
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1274 {
1275 if (desc->insn == next && !for_backtrack)
1276 {
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1279 }
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1281 }
1282 }
1283 return 0;
1284 }
1285
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
e2724e63 1287 {
f57aa6b0
DM
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
e2724e63
BS
1290 rtx cond = NULL_RTX;
1291 bool success;
ce1ce33a 1292 rtx_insn *prev = NULL;
e2724e63
BS
1293 int i;
1294 unsigned regno;
1295
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1300
1a83e602 1301 pro = DEP_PRO (modify_dep);
e2724e63
BS
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1305
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1308
1309 /* Find the last scheduled insn that modifies the condition register.
89ff14c2
BS
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
9771b263 1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
89ff14c2
BS
1315 {
1316 HARD_REG_SET t;
1317
356bf593 1318 find_all_hard_reg_sets (prev, &t, true);
89ff14c2
BS
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1323 }
e2724e63
BS
1324 if (ORIG_PAT (next) == NULL_RTX)
1325 {
1326 ORIG_PAT (next) = PATTERN (next);
1327
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1333 }
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1335 {
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1339 }
1a83e602 1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
e2724e63
BS
1341 return DEP_CONTROL;
1342 }
1343
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1345 {
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1351 }
1352
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1a83e602 1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
e2724e63
BS
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1a83e602
BS
1361 || n_control > 0
1362 || n_replace > 0)
e2724e63
BS
1363 return HARD_DEP;
1364
1365 return new_ds;
1366}
1367\f
9b69cf83 1368/* Pointer to the last instruction scheduled. */
ce1ce33a 1369static rtx_insn *last_scheduled_insn;
8c660648 1370
5c24671b
AO
1371/* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
90831096 1375static rtx_insn *last_nondebug_scheduled_insn;
5c24671b 1376
9b69cf83
BS
1377/* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
ce1ce33a 1380static rtx_insn *nonscheduled_insns_begin;
9b69cf83 1381
b198261f 1382/* Compute cost of executing INSN.
496d7bb0
MK
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
5fd8300b 1385int
ffc1ded5 1386insn_sched_cost (rtx_insn *insn)
8c660648 1387{
e855c69d
AB
1388 int cost;
1389
b16abbcb
BC
1390 if (sched_fusion)
1391 return 0;
1392
e855c69d
AB
1393 if (sel_sched_p ())
1394 {
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1397
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1401
1402 return cost;
1403 }
1404
1405 cost = INSN_COST (insn);
8c660648 1406
fae15c93 1407 if (cost < 0)
8c660648 1408 {
fae15c93
VM
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
8c660648 1414 {
fae15c93
VM
1415 INSN_COST (insn) = 0;
1416 return 0;
8c660648
JL
1417 }
1418 else
1419 {
fa0aee89 1420 cost = insn_default_latency (insn);
fae15c93
VM
1421 if (cost < 0)
1422 cost = 0;
1d088dee 1423
8c660648
JL
1424 INSN_COST (insn) = cost;
1425 }
1426 }
1427
b198261f
MK
1428 return cost;
1429}
1430
1431/* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
078a70a1
AN
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
b198261f 1435int
e855c69d 1436dep_cost_1 (dep_t link, dw_t dw)
b198261f 1437{
9b517712
DM
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
b198261f 1440 int cost;
8c660648 1441
a19af9c4
BS
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1444
c203e8a7 1445 if (delay_htab)
26965010
BS
1446 {
1447 struct delay_pair *delay_entry;
1448 delay_entry
c203e8a7 1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
26965010
BS
1450 if (delay_entry)
1451 {
1452 if (delay_entry->i1 == insn)
1453 {
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1456 }
1457 }
1458 }
1459
fae15c93
VM
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
ce18efcb 1462 values to overlap the return and call. We don't care about the
dd5a833e 1463 dependence cost when only decreasing register pressure. */
fae15c93 1464 if (recog_memoized (used) < 0)
078a70a1
AN
1465 {
1466 cost = 0;
1467 recog_memoized (insn);
1468 }
fae15c93 1469 else
8c660648 1470 {
e2f6ff94 1471 enum reg_note dep_type = DEP_TYPE (link);
b198261f 1472
ffc1ded5 1473 cost = insn_sched_cost (insn);
496d7bb0 1474
fa0aee89 1475 if (INSN_CODE (insn) >= 0)
197043f5 1476 {
496d7bb0 1477 if (dep_type == REG_DEP_ANTI)
fa0aee89 1478 cost = 0;
496d7bb0 1479 else if (dep_type == REG_DEP_OUTPUT)
fae15c93 1480 {
fa0aee89
PB
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
fae15c93 1485 }
fa0aee89
PB
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
197043f5 1488 }
b8698a0f 1489
b8ec5764 1490
b505225b
TS
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
fae15c93
VM
1494
1495 if (cost < 0)
1496 cost = 0;
1497 }
1d088dee 1498
a19af9c4 1499 DEP_COST (link) = cost;
8c660648
JL
1500 return cost;
1501}
1502
e855c69d
AB
1503/* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1506int
1507dep_cost (dep_t link)
1508{
1509 return dep_cost_1 (link, 0);
1510}
1511
1512/* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514void
f57aa6b0 1515increase_insn_priority (rtx_insn *insn, int amount)
e855c69d
AB
1516{
1517 if (!sel_sched_p ())
1518 {
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1522 }
1523 else
1524 {
b8698a0f 1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
e855c69d
AB
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1528 }
1529}
1530
916fa4f0
MK
1531/* Return 'true' if DEP should be included in priority calculations. */
1532static bool
1533contributes_to_priority_p (dep_t dep)
1534{
b5b8b0ac
AO
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1538
916fa4f0
MK
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1543
1a83e602
BS
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1546
916fa4f0
MK
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
e855c69d 1553 if (sched_deps_info->generate_spec_deps
916fa4f0
MK
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
8c660648 1557
916fa4f0
MK
1558 return true;
1559}
1560
7a1aca9c 1561/* Compute the number of nondebug deps in list LIST for INSN. */
b5b8b0ac
AO
1562
1563static int
90831096 1564dep_list_size (rtx_insn *insn, sd_list_types_def list)
b5b8b0ac
AO
1565{
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1569
1570 if (!MAY_HAVE_DEBUG_INSNS)
7a1aca9c 1571 return sd_lists_size (insn, list);
b5b8b0ac 1572
7a1aca9c 1573 FOR_EACH_DEP (insn, list, sd_it, dep)
b5b8b0ac
AO
1574 {
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
f49b295a 1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
b5b8b0ac
AO
1578 nodbgcount++;
1579 }
1580
7a1aca9c 1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
b5b8b0ac
AO
1582
1583 return nodbgcount;
1584}
1585
b16abbcb
BC
1586bool sched_fusion;
1587
916fa4f0 1588/* Compute the priority number for INSN. */
8c660648 1589static int
0e0ce50d 1590priority (rtx_insn *insn)
8c660648 1591{
2c3c49de 1592 if (! INSN_P (insn))
8c660648
JL
1593 return 0;
1594
c80b4100 1595 /* We should not be interested in priority of an already scheduled insn. */
916fa4f0
MK
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1597
1598 if (!INSN_PRIORITY_KNOWN (insn))
8c660648 1599 {
e855c69d 1600 int this_priority = -1;
21e4c9a8 1601
b16abbcb
BC
1602 if (sched_fusion)
1603 {
1604 int this_fusion_priority;
1605
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1609 }
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
ffc1ded5
SB
1611 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1612 has some forward deps but all of them are ignored by
b198261f
MK
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
ffc1ded5 1615 this_priority = insn_sched_cost (insn);
8c660648 1616 else
21e4c9a8 1617 {
dc01c3d1 1618 rtx_insn *prev_first, *twin;
496d7bb0 1619 basic_block rec;
8c660648 1620
496d7bb0
MK
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
b198261f
MK
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
b8698a0f 1625 recovery block. */
8c660648 1626
e855c69d
AB
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
fefa31b5 1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
1630 {
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1633 }
1634 else
1635 {
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1638 }
8c660648 1639
496d7bb0
MK
1640 do
1641 {
e2f6ff94
MK
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1644
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
496d7bb0 1646 {
0e0ce50d 1647 rtx_insn *next;
496d7bb0 1648 int next_priority;
b198261f
MK
1649
1650 next = DEP_CON (dep);
1651
496d7bb0
MK
1652 if (BLOCK_FOR_INSN (next) != rec)
1653 {
b198261f
MK
1654 int cost;
1655
916fa4f0 1656 if (!contributes_to_priority_p (dep))
496d7bb0 1657 continue;
b198261f
MK
1658
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1662 {
1663 struct _dep _dep1, *dep1 = &_dep1;
1664
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1666
1667 cost = dep_cost (dep1);
1668 }
1669
1670 next_priority = cost + priority (next);
496d7bb0
MK
1671
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1674 }
1675 }
b8698a0f 1676
496d7bb0 1677 twin = PREV_INSN (twin);
21e4c9a8 1678 }
496d7bb0 1679 while (twin != prev_first);
21e4c9a8 1680 }
e855c69d
AB
1681
1682 if (this_priority < 0)
1683 {
1684 gcc_assert (this_priority == -1);
1685
ffc1ded5 1686 this_priority = insn_sched_cost (insn);
e855c69d
AB
1687 }
1688
8c660648 1689 INSN_PRIORITY (insn) = this_priority;
916fa4f0 1690 INSN_PRIORITY_STATUS (insn) = 1;
8c660648 1691 }
21e4c9a8
BS
1692
1693 return INSN_PRIORITY (insn);
8c660648
JL
1694}
1695\f
8c660648 1696/* Macros and functions for keeping the priority queue sorted, and
d91edf86 1697 dealing with queuing and dequeuing of instructions. */
8c660648 1698
7a1aca9c
RS
1699/* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1701
1702static void
f57aa6b0 1703calculate_reg_deaths (rtx_insn *insn, int *death)
7a1aca9c
RS
1704{
1705 int i;
1706 struct reg_use_data *use;
1707
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1713}
1714
ce18efcb
VM
1715/* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717static void
f57aa6b0 1718setup_insn_reg_pressure_info (rtx_insn *insn)
ce18efcb
VM
1719{
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
ef4bddc2 1722 machine_mode mode;
ce18efcb
VM
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
ce18efcb
VM
1726 static int death[N_REG_CLASSES];
1727
c11b0b3b
AO
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1729
ce18efcb 1730 excess_cost_change = 0;
7a1aca9c 1731 calculate_reg_deaths (insn, death);
ce18efcb
VM
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1756cb66 1735 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 1736 {
1756cb66 1737 cl = ira_pressure_classes[i];
ce18efcb
VM
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
4dd9ac6c 1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
ce18efcb 1741 after = MAX (0, max_reg_pressure[i] + change
4dd9ac6c 1742 - sched_class_regs_num[cl]);
ce18efcb
VM
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1749 }
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1751}
7a1aca9c
RS
1752\f
1753/* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1757
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1764
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1773
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1777
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1780
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1782
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1785
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1790
1791 - rank_for_schedule ranks instructions based on:
1792
1793 ECC (insn) + insn_delay (insn)
1794
1795 then as:
1796
1797 insn_delay (insn)
1798
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1803
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1808
1809/* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811#define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1813
1814/* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1821
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1824};
1825
1826/* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829struct model_insn_info {
1830 /* The instruction itself. */
40a243d4 1831 rtx_insn *insn;
7a1aca9c
RS
1832
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1838
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1845
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1849
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1853
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1857
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1860};
1861
1862/* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1868
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1872
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1876};
1877
1878/* Describes a particular way of measuring register pressure. */
1879struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1882
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1888};
1889
1890/* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
f57aa6b0 1892static vec<rtx_insn *> model_schedule;
7a1aca9c
RS
1893
1894/* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896static struct model_insn_info *model_worklist;
1897
1898/* Index I describes the instruction with INSN_LUID I. */
1899static struct model_insn_info *model_insns;
1900
1901/* The number of instructions in the model schedule. */
1902static int model_num_insns;
1903
1904/* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906static int model_curr_point;
1907
1908/* Describes the pressure before each instruction in the model schedule. */
1909static struct model_pressure_group model_before_pressure;
1910
1911/* The first unused model_priority value (as used in model_insn_info). */
1912static unsigned int model_next_priority;
1913
1914
1915/* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917#define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1919
1920/* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922#define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1924
1925/* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927#define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1929
1930/* Information about INSN that is used when creating the model schedule. */
1931#define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1933
1934/* The instruction at point POINT of the model schedule. */
1935#define MODEL_INSN(POINT) \
9771b263 1936 (model_schedule[POINT])
7a1aca9c
RS
1937
1938
1939/* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1941
1942static int
f57aa6b0 1943model_index (rtx_insn *insn)
7a1aca9c
RS
1944{
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1948}
1949
1950/* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1952
1953static void
1954model_update_limit_points_in_group (struct model_pressure_group *group)
1955{
1956 int pci, max_pressure, point;
1957
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1959 {
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1964
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1967
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1970
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1975
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1984
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1987 }
1988}
1989
1990/* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1992
1993static void
1994model_update_limit_points (void)
1995{
1996 model_update_limit_points_in_group (&model_before_pressure);
1997}
1998
1999/* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2002
2003static int
2004model_last_use_except (struct reg_use_data *use)
2005{
2006 struct reg_use_data *next;
2007 int last, index;
2008
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2013 {
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2019 }
2020 return last;
2021}
2022
2023/* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2027
2028static void
2029model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2031{
2032 int next_max_pressure;
2033
2034 if (point == model_num_insns)
2035 {
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2041 }
2042 else
2043 {
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2051 {
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2055 }
2056 }
2057}
2058
2059/* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2063
2064static int
2065model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2067{
2068 int ref_pressure, max_pressure, next_max_pressure;
2069
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2073 {
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2076
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
4dd9ac6c 2079 every point <= POINT will need to increase too; see below.) */
7a1aca9c
RS
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2082
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2089
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2095 }
2096
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2102 {
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2105 }
2106 return 0;
2107}
2108
2109/* INSN has just been scheduled. Update the model schedule accordingly. */
2110
2111static void
f57aa6b0 2112model_recompute (rtx_insn *insn)
7a1aca9c
RS
2113{
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2124
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2130 {
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2133 }
2134
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
f380f608 2141 bitmap_clear (tmp_bitmap);
7a1aca9c
RS
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2143 {
2144 new_last = model_last_use_except (use);
f380f608 2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
7a1aca9c
RS
2146 {
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2155 }
2156 }
2157
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2161 {
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2165 }
2166
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2170 do
2171 {
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2175
2176 if (queue != QUEUE_SCHEDULED)
2177 {
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2183 {
2184 if (uses[i].last_use == point)
2185 {
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2189
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2194 }
2195 else
2196 i++;
2197 }
2198
2199 if (sched_verbose >= 5)
2200 {
7a1aca9c
RS
2201 if (!print_p)
2202 {
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2208 }
2209
7a1aca9c 2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
7eba871a
SB
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
7a1aca9c
RS
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2214 {
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2221 }
2222 fprintf (sched_dump, "\n");
2223 }
2224 }
2225
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2230 {
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2235 }
2236 }
2237 while (mix && point > model_curr_point);
2238
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2241}
1a83e602
BS
2242
2243/* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245static bool
f57aa6b0 2246must_restore_pattern_p (rtx_insn *next, dep_t dep)
1a83e602
BS
2247{
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2250
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2252 {
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2255 }
2256 else
2257 {
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2260 {
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2263 }
2264 }
2265 return true;
2266}
7a1aca9c
RS
2267\f
2268/* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2273
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2276
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2278
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2285
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2292
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2297
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2300
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2302
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2308
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2311
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
ce18efcb 2313
7a1aca9c
RS
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2318
2319 * otherwise,
2320
2321 baseECC (CL, X) = 0
2322
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2325
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2328
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2335
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2338
2339 Then:
2340
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2342
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2348
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2353
2354/* Return the cost of increasing the pressure in class CL from FROM to TO.
2355
2356 Here we use the very simplistic cost model that every register above
4dd9ac6c 2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
7a1aca9c
RS
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2359
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2365
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2371
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2377
2378static int
2379model_spill_cost (int cl, int from, int to)
2380{
4dd9ac6c 2381 from = MAX (from, sched_class_regs_num[cl]);
7a1aca9c
RS
2382 return MAX (to, from) - from;
2383}
2384
2385/* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2388
2389static int
2390model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2392{
2393 int pressure, cl;
2394
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2397 {
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2401 }
2402
2403 if (delta > 0)
2404 {
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2409
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2413 }
2414
2415 return 0;
2416}
2417
2418/* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2420
2421static int
f57aa6b0 2422model_excess_cost (rtx_insn *insn, bool print_p)
7a1aca9c
RS
2423{
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2427
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2432
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2436
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2439 {
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2448 }
2449
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2452
2453 return cost;
2454}
2455
2456/* Dump the next points of maximum pressure for GROUP. */
2457
2458static void
2459model_dump_pressure_points (struct model_pressure_group *group)
2460{
2461 int pci, cl;
2462
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2465 {
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2474 }
2475 fprintf (sched_dump, "\n");
2476}
2477
2478/* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2479
2480static void
ce1ce33a 2481model_set_excess_costs (rtx_insn **insns, int count)
7a1aca9c
RS
2482{
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2485
2486 /* Record the baseECC value for each instruction in the model schedule,
4dd9ac6c 2487 except that negative costs are converted to zero ones now rather than
7a1aca9c
RS
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2492
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2500 {
2501 if (sched_verbose >= 6 && !print_p)
2502 {
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2508 }
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2511 {
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2515 }
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2517 }
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2520
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2524 {
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2528 {
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2531 }
2532 }
2533}
2534\f
4bd12f3d
MK
2535
2536/* Enum of rank_for_schedule heuristic decisions. */
2537enum rfs_decision {
696d5fa1 2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
4bd12f3d
MK
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
b16abbcb 2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
4bd12f3d
MK
2543
2544/* Corresponding strings for print outs. */
2545static const char *rfs_str[RFS_N] = {
696d5fa1 2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
4bd12f3d
MK
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
b16abbcb 2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
4bd12f3d
MK
2551
2552/* Statistical breakdown of rank_for_schedule decisions. */
50686850 2553struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
4bd12f3d
MK
2554static rank_for_schedule_stats_t rank_for_schedule_stats;
2555
b75ae7f4
MK
2556/* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
4bd12f3d 2558static int
b75ae7f4 2559rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
4bd12f3d
MK
2560{
2561 ++rank_for_schedule_stats.stats[decision];
b75ae7f4
MK
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
4bd12f3d
MK
2568 return result;
2569}
2570
63387a85
MK
2571/* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2573
2574static int
2575rank_for_schedule_debug (const void *x, const void *y)
2576{
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2579
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
696d5fa1 2582 return -1;
63387a85 2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
696d5fa1 2584 return 1;
63387a85 2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
696d5fa1 2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
63387a85
MK
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2589}
2590
8c660648
JL
2591/* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2594
2595static int
1d088dee 2596rank_for_schedule (const void *x, const void *y)
8c660648 2597{
ce1ce33a
DM
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
b198261f 2600 int tmp_class, tmp2_class;
f20f2613 2601 int val, priority_val, info_val, diff;
8c660648 2602
f20f2613
VM
2603 if (live_range_shrinkage_p)
2604 {
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
b75ae7f4 2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
f20f2613
VM
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
4bd12f3d 2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
b75ae7f4 2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
f20f2613
VM
2618 }
2619
58fb7809 2620 /* The insn in a schedule group should be issued the first. */
b8698a0f 2621 if (flag_sched_group_heuristic &&
ee4764a8 2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
b75ae7f4
MK
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
58fb7809 2625
916fa4f0
MK
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2628
b16abbcb
BC
2629 if (sched_fusion)
2630 {
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2638
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2644
2645 if (a != last && b != last)
2646 {
2647 if (a == b)
2648 {
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2651 }
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2657 }
2658 else if (a == b)
2659 {
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2663
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2671 }
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2676 }
2677
7a1aca9c 2678 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb 2679 {
ce18efcb
VM
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
7a1aca9c 2683 + insn_delay (tmp)
ce18efcb 2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
7a1aca9c 2685 - insn_delay (tmp2))))
b75ae7f4 2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
ce18efcb
VM
2687 }
2688
7a1aca9c 2689 if (sched_pressure != SCHED_PRESSURE_NONE
88366b18
MK
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
ce18efcb 2692 {
88366b18 2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
b75ae7f4 2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
ce18efcb 2695 }
26965010
BS
2696
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2701 {
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
b75ae7f4 2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
26965010
BS
2705 }
2706
63de6c74 2707 /* Prefer insn with higher priority. */
8c660648 2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
30028c85 2709
ee4764a8 2710 if (flag_sched_critical_path_heuristic && priority_val)
b75ae7f4 2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
b8698a0f 2712
340c7904
MK
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2714 {
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2718 }
2719
496d7bb0 2720 /* Prefer speculative insn with greater dependencies weakness. */
ee4764a8 2721 if (flag_sched_spec_insn_heuristic && spec_info)
496d7bb0
MK
2722 {
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2726
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
e855c69d 2729 dw1 = ds_weak (ds1);
496d7bb0
MK
2730 else
2731 dw1 = NO_DEP_WEAK;
b8698a0f 2732
496d7bb0
MK
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
e855c69d 2735 dw2 = ds_weak (ds2);
496d7bb0
MK
2736 else
2737 dw2 = NO_DEP_WEAK;
2738
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
b75ae7f4 2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
496d7bb0
MK
2742 }
2743
1708fd40 2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
c3284718 2745 if (flag_sched_rank_heuristic && info_val)
b75ae7f4 2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
8c660648 2747
b5b8b0ac
AO
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
5c24671b 2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
8c660648 2751 {
e2f6ff94
MK
2752 dep_t dep1;
2753 dep_t dep2;
90831096 2754 rtx_insn *last = last_nondebug_scheduled_insn;
e2f6ff94 2755
8c660648
JL
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
b5b8b0ac 2761 dep1 = sd_find_dep_between (last, tmp, true);
b198261f 2762
e2f6ff94 2763 if (dep1 == NULL || dep_cost (dep1) == 1)
8c660648 2764 tmp_class = 3;
b198261f 2765 else if (/* Data dependence. */
e2f6ff94 2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
8c660648
JL
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2770
b5b8b0ac 2771 dep2 = sd_find_dep_between (last, tmp2, true);
b198261f 2772
e2f6ff94 2773 if (dep2 == NULL || dep_cost (dep2) == 1)
8c660648 2774 tmp2_class = 3;
b198261f 2775 else if (/* Data dependence. */
e2f6ff94 2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
8c660648
JL
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2780
2781 if ((val = tmp2_class - tmp_class))
b75ae7f4 2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
8c660648
JL
2783 }
2784
7a1aca9c 2785 /* Prefer instructions that occur earlier in the model schedule. */
88366b18
MK
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
7a1aca9c 2788 {
7a1aca9c 2789 diff = model_index (tmp) - model_index (tmp2);
4bd12f3d 2790 gcc_assert (diff != 0);
b75ae7f4 2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
7a1aca9c
RS
2792 }
2793
7a403706 2794 /* Prefer the insn which has more later insns that depend on it.
2db45993
JL
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2db45993 2797
7a1aca9c
RS
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2db45993 2800
ee4764a8 2801 if (flag_sched_dep_count_heuristic && val != 0)
b75ae7f4 2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
7a403706 2803
8c660648
JL
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
b75ae7f4 2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
8c660648
JL
2808}
2809
2810/* Resort the array A in which only element at index N may be out of order. */
2811
cbb13457 2812HAIFA_INLINE static void
ce1ce33a 2813swap_sort (rtx_insn **a, int n)
8c660648 2814{
ce1ce33a 2815 rtx_insn *insn = a[n - 1];
8c660648
JL
2816 int i = n - 2;
2817
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2819 {
2820 a[i + 1] = a[i];
2821 i -= 1;
2822 }
2823 a[i + 1] = insn;
2824}
2825
8c660648
JL
2826/* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
ec4efea9
BS
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
8c660648 2830
cbb13457 2831HAIFA_INLINE static void
ce1ce33a 2832queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
8c660648
JL
2833{
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
3dc99c19 2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
26965010 2836 int new_tick;
63f54b1a
MK
2837
2838 gcc_assert (n_cycles <= max_insn_queue_index);
b5b8b0ac 2839 gcc_assert (!DEBUG_INSN_P (insn));
63f54b1a 2840
8c660648
JL
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2843
2844 if (sched_verbose >= 2)
2845 {
1708fd40
BS
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
8c660648 2848
ec4efea9 2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
8c660648 2850 }
e855c69d 2851
63f54b1a 2852 QUEUE_INDEX (insn) = next_q;
26965010
BS
2853
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2855 {
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2859
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2862 {
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2866 }
2867 }
63f54b1a
MK
2868}
2869
2870/* Remove INSN from queue. */
2871static void
f57aa6b0 2872queue_remove (rtx_insn *insn)
63f54b1a
MK
2873{
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
176f9a7b
BS
2878}
2879
2880/* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2882
ce1ce33a 2883rtx_insn **
1d088dee 2884ready_lastpos (struct ready_list *ready)
176f9a7b 2885{
63f54b1a 2886 gcc_assert (ready->n_ready >= 1);
176f9a7b
BS
2887 return ready->vec + ready->first - ready->n_ready + 1;
2888}
2889
63f54b1a 2890/* Add an element INSN to the ready list so that it ends up with the
917f1b7e 2891 lowest/highest priority depending on FIRST_P. */
176f9a7b 2892
63f54b1a 2893HAIFA_INLINE static void
ce1ce33a 2894ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
176f9a7b 2895{
63f54b1a 2896 if (!first_p)
176f9a7b 2897 {
63f54b1a
MK
2898 if (ready->first == ready->n_ready)
2899 {
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2904 }
2905 ready->vec[ready->first - ready->n_ready] = insn;
176f9a7b 2906 }
63f54b1a
MK
2907 else
2908 {
2909 if (ready->first == ready->veclen - 1)
2910 {
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2917 }
2918 ready->vec[++(ready->first)] = insn;
2919 }
2920
176f9a7b 2921 ready->n_ready++;
b5b8b0ac
AO
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
63f54b1a
MK
2924
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
26965010
BS
2927
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2930 {
2931 must_backtrack = true;
2932 }
176f9a7b 2933}
8c660648 2934
176f9a7b
BS
2935/* Remove the element with the highest priority from the ready list and
2936 return it. */
2937
ce1ce33a 2938HAIFA_INLINE static rtx_insn *
1d088dee 2939ready_remove_first (struct ready_list *ready)
176f9a7b 2940{
ce1ce33a 2941 rtx_insn *t;
b8698a0f 2942
535a42b1 2943 gcc_assert (ready->n_ready);
176f9a7b
BS
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
b5b8b0ac
AO
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
176f9a7b
BS
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
63f54b1a
MK
2951
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2954
176f9a7b
BS
2955 return t;
2956}
2957
fae15c93
VM
2958/* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2961
2962/* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2965
ce1ce33a 2966rtx_insn *
1d088dee 2967ready_element (struct ready_list *ready, int index)
fae15c93 2968{
535a42b1 2969 gcc_assert (ready->n_ready && index < ready->n_ready);
b8698a0f 2970
fae15c93
VM
2971 return ready->vec[ready->first - index];
2972}
2973
2974/* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2977
ce1ce33a 2978HAIFA_INLINE static rtx_insn *
1d088dee 2979ready_remove (struct ready_list *ready, int index)
fae15c93 2980{
ce1ce33a 2981 rtx_insn *t;
fae15c93
VM
2982 int i;
2983
2984 if (index == 0)
2985 return ready_remove_first (ready);
535a42b1 2986 gcc_assert (ready->n_ready && index < ready->n_ready);
fae15c93
VM
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
b5b8b0ac
AO
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
fae15c93
VM
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
63f54b1a 2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
fae15c93
VM
2994 return t;
2995}
2996
63f54b1a
MK
2997/* Remove INSN from the ready list. */
2998static void
90831096 2999ready_remove_insn (rtx_insn *insn)
63f54b1a
MK
3000{
3001 int i;
3002
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3005 {
3006 ready_remove (readyp, i);
3007 return;
3008 }
3009 gcc_unreachable ();
3010}
fae15c93 3011
4bd12f3d
MK
3012/* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014static void
3015rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3017{
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3020}
3021
3022/* Print rank_for_schedule statistics. */
3023static void
3024print_rank_for_schedule_stats (const char *prefix,
b75ae7f4
MK
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
4bd12f3d
MK
3027{
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
b75ae7f4
MK
3030 {
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3032
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3035 {
3036 rtx_insn **p = ready_lastpos (ready);
3037
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3044 }
3045 fprintf (sched_dump, "\n");
3046 }
4bd12f3d
MK
3047}
3048
696d5fa1
MK
3049/* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051static void
3052ready_sort_debug (struct ready_list *ready)
176f9a7b 3053{
ce18efcb 3054 int i;
ce1ce33a 3055 rtx_insn **first = ready_lastpos (ready);
ce18efcb 3056
63387a85 3057 for (i = 0; i < ready->n_ready; ++i)
696d5fa1
MK
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
63387a85 3060
696d5fa1
MK
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3062}
63387a85 3063
696d5fa1
MK
3064/* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066static void
3067ready_sort_real (struct ready_list *ready)
3068{
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3072
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
4bd12f3d
MK
3079
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3083
696d5fa1
MK
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
f9f43fb3 3087 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
4bd12f3d
MK
3088
3089 if (sched_verbose >= 4)
3090 {
3091 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
b75ae7f4 3092 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
4bd12f3d 3093 }
8c660648
JL
3094}
3095
696d5fa1
MK
3096/* Sort the ready list READY by ascending priority. */
3097static void
3098ready_sort (struct ready_list *ready)
3099{
3100 if (ready->n_debug > 0)
3101 ready_sort_debug (ready);
3102 else
3103 ready_sort_real (ready);
3104}
3105
8c660648 3106/* PREV is an insn that is ready to execute. Adjust its priority if that
c46a37c4 3107 will help shorten or lengthen register lifetimes as appropriate. Also
fa10beec 3108 provide a hook for the target to tweak itself. */
8c660648 3109
cbb13457 3110HAIFA_INLINE static void
f57aa6b0 3111adjust_priority (rtx_insn *prev)
8c660648 3112{
c46a37c4
RH
3113 /* ??? There used to be code here to try and estimate how an insn
3114 affected register lifetimes, but it did it by looking at REG_DEAD
7a403706 3115 notes, which we removed in schedule_region. Nor did it try to
c46a37c4 3116 take into account register pressure or anything useful like that.
8c660648 3117
c46a37c4 3118 Revisit when we have a machine model to work with and not before. */
197043f5 3119
c237e94a
ZW
3120 if (targetm.sched.adjust_priority)
3121 INSN_PRIORITY (prev) =
5fd9b178 3122 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
8c660648
JL
3123}
3124
e855c69d
AB
3125/* Advance DFA state STATE on one cycle. */
3126void
3127advance_state (state_t state)
fae15c93 3128{
1c3d0d93
MK
3129 if (targetm.sched.dfa_pre_advance_cycle)
3130 targetm.sched.dfa_pre_advance_cycle ();
3131
fa0aee89 3132 if (targetm.sched.dfa_pre_cycle_insn)
e855c69d 3133 state_transition (state,
fa0aee89
PB
3134 targetm.sched.dfa_pre_cycle_insn ());
3135
e855c69d 3136 state_transition (state, NULL);
b8698a0f 3137
fa0aee89 3138 if (targetm.sched.dfa_post_cycle_insn)
e855c69d 3139 state_transition (state,
fa0aee89 3140 targetm.sched.dfa_post_cycle_insn ());
1c3d0d93
MK
3141
3142 if (targetm.sched.dfa_post_advance_cycle)
3143 targetm.sched.dfa_post_advance_cycle ();
fae15c93
VM
3144}
3145
e855c69d
AB
3146/* Advance time on one cycle. */
3147HAIFA_INLINE static void
3148advance_one_cycle (void)
3149{
3150 advance_state (curr_state);
d5c67efd 3151 if (sched_verbose >= 4)
f50d71ec 3152 fprintf (sched_dump, ";;\tAdvance the current state.\n");
e855c69d
AB
3153}
3154
ce18efcb
VM
3155/* Update register pressure after scheduling INSN. */
3156static void
f57aa6b0 3157update_register_pressure (rtx_insn *insn)
ce18efcb
VM
3158{
3159 struct reg_use_data *use;
3160 struct reg_set_data *set;
3161
c11b0b3b
AO
3162 gcc_checking_assert (!DEBUG_INSN_P (insn));
3163
ce18efcb 3164 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
7a1aca9c
RS
3165 if (dying_use_p (use))
3166 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3167 use->regno, false);
ce18efcb 3168 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
7a1aca9c
RS
3169 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3170 set->regno, true);
ce18efcb
VM
3171}
3172
3173/* Set up or update (if UPDATE_P) max register pressure (see its
3174 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3175 after insn AFTER. */
3176static void
dc01c3d1 3177setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
ce18efcb
VM
3178{
3179 int i, p;
3180 bool eq_p;
f57aa6b0 3181 rtx_insn *insn;
ce18efcb
VM
3182 static int max_reg_pressure[N_REG_CLASSES];
3183
3184 save_reg_pressure ();
1756cb66
VM
3185 for (i = 0; i < ira_pressure_classes_num; i++)
3186 max_reg_pressure[ira_pressure_classes[i]]
3187 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb 3188 for (insn = NEXT_INSN (after);
0495bafc
VM
3189 insn != NULL_RTX && ! BARRIER_P (insn)
3190 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
ce18efcb
VM
3191 insn = NEXT_INSN (insn))
3192 if (NONDEBUG_INSN_P (insn))
3193 {
3194 eq_p = true;
1756cb66 3195 for (i = 0; i < ira_pressure_classes_num; i++)
ce18efcb 3196 {
1756cb66 3197 p = max_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3198 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3199 {
3200 eq_p = false;
3201 INSN_MAX_REG_PRESSURE (insn)[i]
1756cb66 3202 = max_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3203 }
3204 }
3205 if (update_p && eq_p)
3206 break;
3207 update_register_pressure (insn);
1756cb66
VM
3208 for (i = 0; i < ira_pressure_classes_num; i++)
3209 if (max_reg_pressure[ira_pressure_classes[i]]
3210 < curr_reg_pressure[ira_pressure_classes[i]])
3211 max_reg_pressure[ira_pressure_classes[i]]
3212 = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb
VM
3213 }
3214 restore_reg_pressure ();
3215}
3216
3217/* Update the current register pressure after scheduling INSN. Update
3218 also max register pressure for unscheduled insns of the current
3219 BB. */
3220static void
f57aa6b0 3221update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
ce18efcb
VM
3222{
3223 int i;
3224 int before[N_REG_CLASSES];
3225
1756cb66
VM
3226 for (i = 0; i < ira_pressure_classes_num; i++)
3227 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
ce18efcb 3228 update_register_pressure (insn);
1756cb66
VM
3229 for (i = 0; i < ira_pressure_classes_num; i++)
3230 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
ce18efcb 3231 break;
1756cb66 3232 if (i < ira_pressure_classes_num)
ce18efcb
VM
3233 setup_insn_max_reg_pressure (insn, true);
3234}
3235
3236/* Set up register pressure at the beginning of basic block BB whose
3237 insns starting after insn AFTER. Set up also max register pressure
3238 for all insns of the basic block. */
3239void
dc01c3d1 3240sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
ce18efcb 3241{
60867e8c 3242 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
ce18efcb
VM
3243 initiate_bb_reg_pressure_info (bb);
3244 setup_insn_max_reg_pressure (after, false);
3245}
51564684 3246\f
e2724e63
BS
3247/* If doing predication while scheduling, verify whether INSN, which
3248 has just been scheduled, clobbers the conditions of any
3249 instructions that must be predicated in order to break their
3250 dependencies. If so, remove them from the queues so that they will
3251 only be scheduled once their control dependency is resolved. */
3252
3253static void
90831096 3254check_clobbered_conditions (rtx_insn *insn)
e2724e63
BS
3255{
3256 HARD_REG_SET t;
3257 int i;
3258
3259 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3260 return;
3261
356bf593 3262 find_all_hard_reg_sets (insn, &t, true);
e2724e63
BS
3263
3264 restart:
3265 for (i = 0; i < ready.n_ready; i++)
3266 {
ce1ce33a 3267 rtx_insn *x = ready_element (&ready, i);
e2724e63
BS
3268 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3269 {
3270 ready_remove_insn (x);
3271 goto restart;
3272 }
3273 }
3274 for (i = 0; i <= max_insn_queue_index; i++)
3275 {
96b70414 3276 rtx_insn_list *link;
e2724e63
BS
3277 int q = NEXT_Q_AFTER (q_ptr, i);
3278
3279 restart_queue:
96b70414 3280 for (link = insn_queue[q]; link; link = link->next ())
e2724e63 3281 {
96b70414 3282 rtx_insn *x = link->insn ();
e2724e63
BS
3283 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3284 {
3285 queue_remove (x);
3286 goto restart_queue;
3287 }
3288 }
3289 }
3290}
3291\f
7a1aca9c
RS
3292/* Return (in order):
3293
3294 - positive if INSN adversely affects the pressure on one
3295 register class
3296
3297 - negative if INSN reduces the pressure on one register class
3298
3299 - 0 if INSN doesn't affect the pressure on any register class. */
3300
3301static int
3302model_classify_pressure (struct model_insn_info *insn)
3303{
3304 struct reg_pressure_data *reg_pressure;
3305 int death[N_REG_CLASSES];
3306 int pci, cl, sum;
3307
3308 calculate_reg_deaths (insn->insn, death);
3309 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3310 sum = 0;
3311 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3312 {
3313 cl = ira_pressure_classes[pci];
3314 if (death[cl] < reg_pressure[pci].set_increase)
3315 return 1;
3316 sum += reg_pressure[pci].set_increase - death[cl];
3317 }
3318 return sum;
3319}
3320
3321/* Return true if INSN1 should come before INSN2 in the model schedule. */
3322
3323static int
3324model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3325{
3326 unsigned int height1, height2;
3327 unsigned int priority1, priority2;
3328
3329 /* Prefer instructions with a higher model priority. */
3330 if (insn1->model_priority != insn2->model_priority)
3331 return insn1->model_priority > insn2->model_priority;
3332
3333 /* Combine the length of the longest path of satisfied true dependencies
3334 that leads to each instruction (depth) with the length of the longest
3335 path of any dependencies that leads from the instruction (alap).
3336 Prefer instructions with the greatest combined length. If the combined
3337 lengths are equal, prefer instructions with the greatest depth.
3338
3339 The idea is that, if we have a set S of "equal" instructions that each
3340 have ALAP value X, and we pick one such instruction I, any true-dependent
3341 successors of I that have ALAP value X - 1 should be preferred over S.
3342 This encourages the schedule to be "narrow" rather than "wide".
3343 However, if I is a low-priority instruction that we decided to
3344 schedule because of its model_classify_pressure, and if there
3345 is a set of higher-priority instructions T, the aforementioned
3346 successors of I should not have the edge over T. */
3347 height1 = insn1->depth + insn1->alap;
3348 height2 = insn2->depth + insn2->alap;
3349 if (height1 != height2)
3350 return height1 > height2;
3351 if (insn1->depth != insn2->depth)
3352 return insn1->depth > insn2->depth;
3353
3354 /* We have no real preference between INSN1 an INSN2 as far as attempts
3355 to reduce pressure go. Prefer instructions with higher priorities. */
3356 priority1 = INSN_PRIORITY (insn1->insn);
3357 priority2 = INSN_PRIORITY (insn2->insn);
3358 if (priority1 != priority2)
3359 return priority1 > priority2;
3360
3361 /* Use the original rtl sequence as a tie-breaker. */
3362 return insn1 < insn2;
3363}
3364
3365/* Add INSN to the model worklist immediately after PREV. Add it to the
3366 beginning of the list if PREV is null. */
3367
3368static void
3369model_add_to_worklist_at (struct model_insn_info *insn,
3370 struct model_insn_info *prev)
3371{
3372 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3373 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3374
3375 insn->prev = prev;
3376 if (prev)
3377 {
3378 insn->next = prev->next;
3379 prev->next = insn;
3380 }
3381 else
3382 {
3383 insn->next = model_worklist;
3384 model_worklist = insn;
3385 }
3386 if (insn->next)
3387 insn->next->prev = insn;
3388}
3389
3390/* Remove INSN from the model worklist. */
3391
3392static void
3393model_remove_from_worklist (struct model_insn_info *insn)
3394{
3395 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3396 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3397
3398 if (insn->prev)
3399 insn->prev->next = insn->next;
3400 else
3401 model_worklist = insn->next;
3402 if (insn->next)
3403 insn->next->prev = insn->prev;
3404}
3405
3406/* Add INSN to the model worklist. Start looking for a suitable position
3407 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3408 insns either side. A null PREV indicates the beginning of the list and
3409 a null NEXT indicates the end. */
3410
3411static void
3412model_add_to_worklist (struct model_insn_info *insn,
3413 struct model_insn_info *prev,
3414 struct model_insn_info *next)
3415{
3416 int count;
3417
3418 count = MAX_SCHED_READY_INSNS;
3419 if (count > 0 && prev && model_order_p (insn, prev))
3420 do
3421 {
3422 count--;
3423 prev = prev->prev;
3424 }
3425 while (count > 0 && prev && model_order_p (insn, prev));
3426 else
3427 while (count > 0 && next && model_order_p (next, insn))
3428 {
3429 count--;
3430 prev = next;
3431 next = next->next;
3432 }
3433 model_add_to_worklist_at (insn, prev);
3434}
3435
3436/* INSN may now have a higher priority (in the model_order_p sense)
3437 than before. Move it up the worklist if necessary. */
3438
3439static void
3440model_promote_insn (struct model_insn_info *insn)
3441{
3442 struct model_insn_info *prev;
3443 int count;
3444
3445 prev = insn->prev;
3446 count = MAX_SCHED_READY_INSNS;
3447 while (count > 0 && prev && model_order_p (insn, prev))
3448 {
3449 count--;
3450 prev = prev->prev;
3451 }
3452 if (prev != insn->prev)
3453 {
3454 model_remove_from_worklist (insn);
3455 model_add_to_worklist_at (insn, prev);
3456 }
3457}
3458
3459/* Add INSN to the end of the model schedule. */
3460
3461static void
f57aa6b0 3462model_add_to_schedule (rtx_insn *insn)
7a1aca9c
RS
3463{
3464 unsigned int point;
3465
3466 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3467 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3468
9771b263
DN
3469 point = model_schedule.length ();
3470 model_schedule.quick_push (insn);
7a1aca9c
RS
3471 INSN_MODEL_INDEX (insn) = point + 1;
3472}
3473
3474/* Analyze the instructions that are to be scheduled, setting up
3475 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3476 instructions to model_worklist. */
3477
3478static void
3479model_analyze_insns (void)
3480{
40a243d4 3481 rtx_insn *start, *end, *iter;
7a1aca9c
RS
3482 sd_iterator_def sd_it;
3483 dep_t dep;
3484 struct model_insn_info *insn, *con;
3485
3486 model_num_insns = 0;
3487 start = PREV_INSN (current_sched_info->next_tail);
3488 end = current_sched_info->prev_head;
3489 for (iter = start; iter != end; iter = PREV_INSN (iter))
3490 if (NONDEBUG_INSN_P (iter))
3491 {
3492 insn = MODEL_INSN_INFO (iter);
3493 insn->insn = iter;
3494 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3495 {
3496 con = MODEL_INSN_INFO (DEP_CON (dep));
3497 if (con->insn && insn->alap < con->alap + 1)
3498 insn->alap = con->alap + 1;
3499 }
3500
3501 insn->old_queue = QUEUE_INDEX (iter);
3502 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3503
3504 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3505 if (insn->unscheduled_preds == 0)
3506 model_add_to_worklist (insn, NULL, model_worklist);
3507
3508 model_num_insns++;
3509 }
3510}
3511
3512/* The global state describes the register pressure at the start of the
3513 model schedule. Initialize GROUP accordingly. */
3514
3515static void
3516model_init_pressure_group (struct model_pressure_group *group)
3517{
3518 int pci, cl;
3519
3520 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3521 {
3522 cl = ira_pressure_classes[pci];
3523 group->limits[pci].pressure = curr_reg_pressure[cl];
3524 group->limits[pci].point = 0;
3525 }
3526 /* Use index model_num_insns to record the state after the last
3527 instruction in the model schedule. */
3528 group->model = XNEWVEC (struct model_pressure_data,
3529 (model_num_insns + 1) * ira_pressure_classes_num);
3530}
3531
3532/* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3533 Update the maximum pressure for the whole schedule. */
3534
3535static void
3536model_record_pressure (struct model_pressure_group *group,
3537 int point, int pci, int pressure)
3538{
3539 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3540 if (group->limits[pci].pressure < pressure)
3541 {
3542 group->limits[pci].pressure = pressure;
3543 group->limits[pci].point = point;
3544 }
3545}
3546
3547/* INSN has just been added to the end of the model schedule. Record its
3548 register-pressure information. */
3549
3550static void
3551model_record_pressures (struct model_insn_info *insn)
3552{
3553 struct reg_pressure_data *reg_pressure;
3554 int point, pci, cl, delta;
3555 int death[N_REG_CLASSES];
3556
3557 point = model_index (insn->insn);
3558 if (sched_verbose >= 2)
3559 {
7a1aca9c
RS
3560 if (point == 0)
3561 {
3562 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3563 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3564 }
7a1aca9c
RS
3565 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3566 point, INSN_UID (insn->insn), insn->model_priority,
3567 insn->depth + insn->alap, insn->depth,
7eba871a
SB
3568 INSN_PRIORITY (insn->insn),
3569 str_pattern_slim (PATTERN (insn->insn)));
7a1aca9c
RS
3570 }
3571 calculate_reg_deaths (insn->insn, death);
3572 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3573 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3574 {
3575 cl = ira_pressure_classes[pci];
3576 delta = reg_pressure[pci].set_increase - death[cl];
3577 if (sched_verbose >= 2)
3578 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3579 curr_reg_pressure[cl], delta);
3580 model_record_pressure (&model_before_pressure, point, pci,
3581 curr_reg_pressure[cl]);
3582 }
3583 if (sched_verbose >= 2)
3584 fprintf (sched_dump, "\n");
3585}
3586
3587/* All instructions have been added to the model schedule. Record the
3588 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3589
3590static void
3591model_record_final_pressures (struct model_pressure_group *group)
3592{
3593 int point, pci, max_pressure, ref_pressure, cl;
3594
3595 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3596 {
3597 /* Record the final pressure for this class. */
3598 cl = ira_pressure_classes[pci];
3599 point = model_num_insns;
3600 ref_pressure = curr_reg_pressure[cl];
3601 model_record_pressure (group, point, pci, ref_pressure);
3602
3603 /* Record the original maximum pressure. */
3604 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3605
3606 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3607 max_pressure = ref_pressure;
3608 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3609 while (point > 0)
3610 {
3611 point--;
3612 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3613 max_pressure = MAX (max_pressure, ref_pressure);
3614 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3615 }
3616 }
3617}
3618
3619/* Update all successors of INSN, given that INSN has just been scheduled. */
3620
3621static void
3622model_add_successors_to_worklist (struct model_insn_info *insn)
3623{
3624 sd_iterator_def sd_it;
3625 struct model_insn_info *con;
3626 dep_t dep;
3627
3628 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3629 {
3630 con = MODEL_INSN_INFO (DEP_CON (dep));
3631 /* Ignore debug instructions, and instructions from other blocks. */
3632 if (con->insn)
3633 {
3634 con->unscheduled_preds--;
3635
3636 /* Update the depth field of each true-dependent successor.
3637 Increasing the depth gives them a higher priority than
3638 before. */
3639 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3640 {
3641 con->depth = insn->depth + 1;
3642 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3643 model_promote_insn (con);
3644 }
3645
3646 /* If this is a true dependency, or if there are no remaining
3647 dependencies for CON (meaning that CON only had non-true
3648 dependencies), make sure that CON is on the worklist.
3649 We don't bother otherwise because it would tend to fill the
3650 worklist with a lot of low-priority instructions that are not
3651 yet ready to issue. */
3652 if ((con->depth > 0 || con->unscheduled_preds == 0)
3653 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3654 model_add_to_worklist (con, insn, insn->next);
3655 }
3656 }
3657}
3658
3659/* Give INSN a higher priority than any current instruction, then give
3660 unscheduled predecessors of INSN a higher priority still. If any of
3661 those predecessors are not on the model worklist, do the same for its
3662 predecessors, and so on. */
3663
3664static void
3665model_promote_predecessors (struct model_insn_info *insn)
3666{
3667 struct model_insn_info *pro, *first;
3668 sd_iterator_def sd_it;
3669 dep_t dep;
3670
3671 if (sched_verbose >= 7)
3672 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3673 INSN_UID (insn->insn), model_next_priority);
3674 insn->model_priority = model_next_priority++;
3675 model_remove_from_worklist (insn);
3676 model_add_to_worklist_at (insn, NULL);
3677
3678 first = NULL;
3679 for (;;)
3680 {
3681 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3682 {
3683 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3684 /* The first test is to ignore debug instructions, and instructions
3685 from other blocks. */
3686 if (pro->insn
3687 && pro->model_priority != model_next_priority
3688 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3689 {
3690 pro->model_priority = model_next_priority;
3691 if (sched_verbose >= 7)
3692 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3693 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3694 {
3695 /* PRO is already in the worklist, but it now has
3696 a higher priority than before. Move it at the
3697 appropriate place. */
3698 model_remove_from_worklist (pro);
3699 model_add_to_worklist (pro, NULL, model_worklist);
3700 }
3701 else
3702 {
3703 /* PRO isn't in the worklist. Recursively process
3704 its predecessors until we find one that is. */
3705 pro->next = first;
3706 first = pro;
3707 }
3708 }
3709 }
3710 if (!first)
3711 break;
3712 insn = first;
3713 first = insn->next;
3714 }
3715 if (sched_verbose >= 7)
3716 fprintf (sched_dump, " = %d\n", model_next_priority);
3717 model_next_priority++;
3718}
3719
3720/* Pick one instruction from model_worklist and process it. */
3721
3722static void
3723model_choose_insn (void)
3724{
3725 struct model_insn_info *insn, *fallback;
3726 int count;
3727
3728 if (sched_verbose >= 7)
3729 {
3730 fprintf (sched_dump, ";;\t+--- worklist:\n");
3731 insn = model_worklist;
3732 count = MAX_SCHED_READY_INSNS;
3733 while (count > 0 && insn)
3734 {
3735 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3736 INSN_UID (insn->insn), insn->model_priority,
3737 insn->depth + insn->alap, insn->depth,
3738 INSN_PRIORITY (insn->insn));
3739 count--;
3740 insn = insn->next;
3741 }
3742 }
3743
3744 /* Look for a ready instruction whose model_classify_priority is zero
3745 or negative, picking the highest-priority one. Adding such an
3746 instruction to the schedule now should do no harm, and may actually
3747 do some good.
3748
3749 Failing that, see whether there is an instruction with the highest
3750 extant model_priority that is not yet ready, but which would reduce
3751 pressure if it became ready. This is designed to catch cases like:
3752
3753 (set (mem (reg R1)) (reg R2))
3754
3755 where the instruction is the last remaining use of R1 and where the
3756 value of R2 is not yet available (or vice versa). The death of R1
3757 means that this instruction already reduces pressure. It is of
3758 course possible that the computation of R2 involves other registers
3759 that are hard to kill, but such cases are rare enough for this
3760 heuristic to be a win in general.
3761
3762 Failing that, just pick the highest-priority instruction in the
3763 worklist. */
3764 count = MAX_SCHED_READY_INSNS;
3765 insn = model_worklist;
3766 fallback = 0;
3767 for (;;)
3768 {
3769 if (count == 0 || !insn)
3770 {
3771 insn = fallback ? fallback : model_worklist;
3772 break;
3773 }
3774 if (insn->unscheduled_preds)
3775 {
3776 if (model_worklist->model_priority == insn->model_priority
3777 && !fallback
3778 && model_classify_pressure (insn) < 0)
3779 fallback = insn;
3780 }
3781 else
3782 {
3783 if (model_classify_pressure (insn) <= 0)
3784 break;
3785 }
3786 count--;
3787 insn = insn->next;
3788 }
3789
3790 if (sched_verbose >= 7 && insn != model_worklist)
3791 {
3792 if (insn->unscheduled_preds)
3793 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3794 INSN_UID (insn->insn));
3795 else
3796 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3797 INSN_UID (insn->insn));
3798 }
3799 if (insn->unscheduled_preds)
3800 /* INSN isn't yet ready to issue. Give all its predecessors the
3801 highest priority. */
3802 model_promote_predecessors (insn);
3803 else
3804 {
3805 /* INSN is ready. Add it to the end of model_schedule and
3806 process its successors. */
3807 model_add_successors_to_worklist (insn);
3808 model_remove_from_worklist (insn);
3809 model_add_to_schedule (insn->insn);
3810 model_record_pressures (insn);
3811 update_register_pressure (insn->insn);
3812 }
3813}
3814
3815/* Restore all QUEUE_INDEXs to the values that they had before
3816 model_start_schedule was called. */
3817
3818static void
3819model_reset_queue_indices (void)
3820{
3821 unsigned int i;
f57aa6b0 3822 rtx_insn *insn;
7a1aca9c 3823
9771b263 3824 FOR_EACH_VEC_ELT (model_schedule, i, insn)
7a1aca9c
RS
3825 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3826}
3827
3828/* We have calculated the model schedule and spill costs. Print a summary
3829 to sched_dump. */
3830
3831static void
3832model_dump_pressure_summary (void)
3833{
3834 int pci, cl;
3835
3836 fprintf (sched_dump, ";; Pressure summary:");
3837 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3838 {
3839 cl = ira_pressure_classes[pci];
3840 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3841 model_before_pressure.limits[pci].pressure);
3842 }
3843 fprintf (sched_dump, "\n\n");
3844}
3845
3846/* Initialize the SCHED_PRESSURE_MODEL information for the current
3847 scheduling region. */
3848
3849static void
4dd9ac6c 3850model_start_schedule (basic_block bb)
7a1aca9c 3851{
7a1aca9c 3852 model_next_priority = 1;
9771b263 3853 model_schedule.create (sched_max_luid);
7a1aca9c
RS
3854 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3855
4dd9ac6c 3856 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
7a1aca9c
RS
3857 initiate_reg_pressure_info (df_get_live_in (bb));
3858
3859 model_analyze_insns ();
3860 model_init_pressure_group (&model_before_pressure);
3861 while (model_worklist)
3862 model_choose_insn ();
9771b263 3863 gcc_assert (model_num_insns == (int) model_schedule.length ());
7a1aca9c
RS
3864 if (sched_verbose >= 2)
3865 fprintf (sched_dump, "\n");
3866
3867 model_record_final_pressures (&model_before_pressure);
3868 model_reset_queue_indices ();
3869
3870 XDELETEVEC (model_insns);
3871
3872 model_curr_point = 0;
3873 initiate_reg_pressure_info (df_get_live_in (bb));
3874 if (sched_verbose >= 1)
3875 model_dump_pressure_summary ();
3876}
3877
3878/* Free the information associated with GROUP. */
3879
3880static void
3881model_finalize_pressure_group (struct model_pressure_group *group)
3882{
3883 XDELETEVEC (group->model);
3884}
3885
3886/* Free the information created by model_start_schedule. */
3887
3888static void
3889model_end_schedule (void)
3890{
3891 model_finalize_pressure_group (&model_before_pressure);
9771b263 3892 model_schedule.release ();
7a1aca9c 3893}
4dd9ac6c
MK
3894
3895/* Prepare reg pressure scheduling for basic block BB. */
3896static void
3897sched_pressure_start_bb (basic_block bb)
3898{
3899 /* Set the number of available registers for each class taking into account
3900 relative probability of current basic block versus function prologue and
3901 epilogue.
3902 * If the basic block executes much more often than the prologue/epilogue
3903 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3904 nil, so the effective number of available registers is
6d5c37d0 3905 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
4dd9ac6c
MK
3906 * If the basic block executes as often as the prologue/epilogue,
3907 then spill in the block is as costly as in the prologue, so the effective
3908 number of available registers is
6d5c37d0
PH
3909 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3910 - call_saved_regs_num[cl]).
4dd9ac6c
MK
3911 Note that all-else-equal, we prefer to spill in the prologue, since that
3912 allows "extra" registers for other basic blocks of the function.
3913 * If the basic block is on the cold path of the function and executes
3914 rarely, then we should always prefer to spill in the block, rather than
3915 in the prologue/epilogue. The effective number of available register is
6d5c37d0
PH
3916 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3917 - call_saved_regs_num[cl]). */
4dd9ac6c
MK
3918 {
3919 int i;
e7a74006
JH
3920 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3921 int bb_freq = bb->count.to_frequency (cfun);
4dd9ac6c
MK
3922
3923 if (bb_freq == 0)
3924 {
3925 if (entry_freq == 0)
3926 entry_freq = bb_freq = 1;
3927 }
3928 if (bb_freq < entry_freq)
3929 bb_freq = entry_freq;
3930
3931 for (i = 0; i < ira_pressure_classes_num; ++i)
3932 {
3933 enum reg_class cl = ira_pressure_classes[i];
6d5c37d0
PH
3934 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3935 - fixed_regs_num[cl];
4dd9ac6c 3936 sched_class_regs_num[cl]
6d5c37d0 3937 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
4dd9ac6c
MK
3938 }
3939 }
3940
3941 if (sched_pressure == SCHED_PRESSURE_MODEL)
3942 model_start_schedule (bb);
3943}
7a1aca9c 3944\f
51564684
BS
3945/* A structure that holds local state for the loop in schedule_block. */
3946struct sched_block_state
3947{
3948 /* True if no real insns have been scheduled in the current cycle. */
3949 bool first_cycle_insn_p;
26965010
BS
3950 /* True if a shadow insn has been scheduled in the current cycle, which
3951 means that no more normal insns can be issued. */
3952 bool shadows_only_p;
06d7e8e7
BS
3953 /* True if we're winding down a modulo schedule, which means that we only
3954 issue insns with INSN_EXACT_TICK set. */
3955 bool modulo_epilogue;
51564684
BS
3956 /* Initialized with the machine's issue rate every cycle, and updated
3957 by calls to the variable_issue hook. */
3958 int can_issue_more;
3959};
ce18efcb 3960
8c660648 3961/* INSN is the "currently executing insn". Launch each insn which was
176f9a7b 3962 waiting on INSN. READY is the ready list which contains the insns
58fb7809
VM
3963 that are ready to fire. CLOCK is the current cycle. The function
3964 returns necessary cycle advance after issuing the insn (it is not
3965 zero for insns in a schedule group). */
8c660648 3966
58fb7809 3967static int
ce1ce33a 3968schedule_insn (rtx_insn *insn)
8c660648 3969{
e2f6ff94
MK
3970 sd_iterator_def sd_it;
3971 dep_t dep;
ce18efcb 3972 int i;
58fb7809 3973 int advance = 0;
8c660648 3974
fa0aee89 3975 if (sched_verbose >= 1)
8c660648 3976 {
ce18efcb 3977 struct reg_pressure_data *pressure_info;
d5c67efd 3978 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
7eba871a
SB
3979 clock_var, (*current_sched_info->print_insn) (insn, 1),
3980 str_pattern_slim (PATTERN (insn)));
fae15c93 3981
6d0de005
JH
3982 if (recog_memoized (insn) < 0)
3983 fprintf (sched_dump, "nothing");
3984 else
3985 print_reservation (sched_dump, insn);
ce18efcb
VM
3986 pressure_info = INSN_REG_PRESSURE (insn);
3987 if (pressure_info != NULL)
3988 {
3989 fputc (':', sched_dump);
1756cb66 3990 for (i = 0; i < ira_pressure_classes_num; i++)
f20f2613
VM
3991 fprintf (sched_dump, "%s%s%+d(%d)",
3992 scheduled_insns.length () > 1
3993 && INSN_LUID (insn)
3994 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
1756cb66 3995 reg_class_names[ira_pressure_classes[i]],
ce18efcb
VM
3996 pressure_info[i].set_increase, pressure_info[i].change);
3997 }
7a1aca9c
RS
3998 if (sched_pressure == SCHED_PRESSURE_MODEL
3999 && model_curr_point < model_num_insns
4000 && model_index (insn) == model_curr_point)
4001 fprintf (sched_dump, ":model %d", model_curr_point);
6d0de005
JH
4002 fputc ('\n', sched_dump);
4003 }
8c660648 4004
60867e8c 4005 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
ce18efcb
VM
4006 update_reg_and_insn_max_reg_pressure (insn);
4007
63f54b1a
MK
4008 /* Scheduling instruction should have all its dependencies resolved and
4009 should have been removed from the ready list. */
e2724e63 4010 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
569fa502 4011
f49b295a
AO
4012 /* Reset debug insns invalidated by moving this insn. */
4013 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4014 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4015 sd_iterator_cond (&sd_it, &dep);)
4016 {
9b517712 4017 rtx_insn *dbg = DEP_PRO (dep);
1de12eab 4018 struct reg_use_data *use, *next;
f49b295a 4019
e2724e63
BS
4020 if (DEP_STATUS (dep) & DEP_CANCELLED)
4021 {
4022 sd_iterator_next (&sd_it);
4023 continue;
4024 }
4025
f49b295a
AO
4026 gcc_assert (DEBUG_INSN_P (dbg));
4027
4028 if (sched_verbose >= 6)
4029 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4030 INSN_UID (dbg));
4031
4032 /* ??? Rather than resetting the debug insn, we might be able
4033 to emit a debug temp before the just-scheduled insn, but
4034 this would involve checking that the expression at the
4035 point of the debug insn is equivalent to the expression
4036 before the just-scheduled insn. They might not be: the
4037 expression in the debug insn may depend on other insns not
4038 yet scheduled that set MEMs, REGs or even other debug
4039 insns. It's not clear that attempting to preserve debug
4040 information in these cases is worth the effort, given how
4041 uncommon these resets are and the likelihood that the debug
4042 temps introduced won't survive the schedule change. */
4043 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4044 df_insn_rescan (dbg);
4045
1de12eab
JJ
4046 /* Unknown location doesn't use any registers. */
4047 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4048 {
14db98d4
JJ
4049 struct reg_use_data *prev = use;
4050
4051 /* Remove use from the cyclic next_regno_use chain first. */
4052 while (prev->next_regno_use != use)
4053 prev = prev->next_regno_use;
4054 prev->next_regno_use = use->next_regno_use;
1de12eab
JJ
4055 next = use->next_insn_use;
4056 free (use);
4057 }
4058 INSN_REG_USE_LIST (dbg) = NULL;
4059
f49b295a
AO
4060 /* We delete rather than resolve these deps, otherwise we
4061 crash in sched_free_deps(), because forward deps are
4062 expected to be released before backward deps. */
4063 sd_delete_dep (sd_it);
4064 }
4065
b198261f 4066 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
63f54b1a 4067 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
b198261f 4068
7a1aca9c
RS
4069 if (sched_pressure == SCHED_PRESSURE_MODEL
4070 && model_curr_point < model_num_insns
4071 && NONDEBUG_INSN_P (insn))
4072 {
4073 if (model_index (insn) == model_curr_point)
4074 do
4075 model_curr_point++;
4076 while (model_curr_point < model_num_insns
4077 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4078 == QUEUE_SCHEDULED));
4079 else
4080 model_recompute (insn);
4081 model_update_limit_points ();
4082 update_register_pressure (insn);
4083 if (sched_verbose >= 2)
4084 print_curr_reg_pressure ();
4085 }
4086
63f54b1a
MK
4087 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4088 if (INSN_TICK (insn) > clock_var)
4089 /* INSN has been prematurely moved from the queue to the ready list.
b16abbcb
BC
4090 This is possible only if following flags are set. */
4091 gcc_assert (flag_sched_stalled_insns || sched_fusion);
63f54b1a
MK
4092
4093 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4094 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4095 INSN_TICK (insn) = clock_var;
4096
e2724e63
BS
4097 check_clobbered_conditions (insn);
4098
1a83e602
BS
4099 /* Update dependent instructions. First, see if by scheduling this insn
4100 now we broke a dependence in a way that requires us to change another
4101 insn. */
4102 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4103 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4104 {
4105 struct dep_replacement *desc = DEP_REPLACE (dep);
9b517712 4106 rtx_insn *pro = DEP_PRO (dep);
1a83e602
BS
4107 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4108 && desc != NULL && desc->insn == pro)
4109 apply_replacement (dep, false);
4110 }
4111
4112 /* Go through and resolve forward dependencies. */
e2f6ff94
MK
4113 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4114 sd_iterator_cond (&sd_it, &dep);)
8c660648 4115 {
9b517712 4116 rtx_insn *next = DEP_CON (dep);
e2724e63 4117 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
8c660648 4118
e2f6ff94
MK
4119 /* Resolve the dependence between INSN and NEXT.
4120 sd_resolve_dep () moves current dep to another list thus
4121 advancing the iterator. */
4122 sd_resolve_dep (sd_it);
8c660648 4123
e2724e63
BS
4124 if (cancelled)
4125 {
1a83e602
BS
4126 if (must_restore_pattern_p (next, dep))
4127 restore_pattern (dep, false);
e2724e63
BS
4128 continue;
4129 }
4130
f49b295a
AO
4131 /* Don't bother trying to mark next as ready if insn is a debug
4132 insn. If insn is the last hard dependency, it will have
4133 already been discounted. */
4134 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4135 continue;
4136
d7bfd907 4137 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
496d7bb0 4138 {
b8698a0f
L
4139 int effective_cost;
4140
496d7bb0 4141 effective_cost = try_ready (next);
b8698a0f 4142
496d7bb0
MK
4143 if (effective_cost >= 0
4144 && SCHED_GROUP_P (next)
4145 && advance < effective_cost)
4146 advance = effective_cost;
4147 }
4148 else
4149 /* Check always has only one forward dependence (to the first insn in
4150 the recovery block), therefore, this will be executed only once. */
4151 {
e2f6ff94 4152 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
496d7bb0
MK
4153 fix_recovery_deps (RECOVERY_BLOCK (insn));
4154 }
8c660648
JL
4155 }
4156
7a403706 4157 /* Annotate the instruction with issue information -- TImode
4bdc8810
RH
4158 indicates that the instruction is expected not to be able
4159 to issue on the same cycle as the previous insn. A machine
4160 may use this information to decide how the instruction should
4161 be aligned. */
30028c85 4162 if (issue_rate > 1
fae15c93 4163 && GET_CODE (PATTERN (insn)) != USE
b5b8b0ac
AO
4164 && GET_CODE (PATTERN (insn)) != CLOBBER
4165 && !DEBUG_INSN_P (insn))
4bdc8810 4166 {
30028c85 4167 if (reload_completed)
63f54b1a
MK
4168 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4169 last_clock_var = clock_var;
4bdc8810 4170 }
63f54b1a 4171
06bc63d1
MK
4172 if (nonscheduled_insns_begin != NULL_RTX)
4173 /* Indicate to debug counters that INSN is scheduled. */
4174 nonscheduled_insns_begin = insn;
4175
58fb7809 4176 return advance;
8c660648
JL
4177}
4178
63de6c74 4179/* Functions for handling of notes. */
8c660648 4180
e855c69d
AB
4181/* Add note list that ends on FROM_END to the end of TO_ENDP. */
4182void
b311fd0f 4183concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
e855c69d 4184{
b311fd0f 4185 rtx_insn *from_start;
e855c69d 4186
e67271bd 4187 /* It's easy when have nothing to concat. */
e855c69d 4188 if (from_end == NULL)
e855c69d
AB
4189 return;
4190
e67271bd 4191 /* It's also easy when destination is empty. */
e855c69d 4192 if (*to_endp == NULL)
e855c69d
AB
4193 {
4194 *to_endp = from_end;
4195 return;
4196 }
4197
4198 from_start = from_end;
b8698a0f 4199 while (PREV_INSN (from_start) != NULL)
e855c69d
AB
4200 from_start = PREV_INSN (from_start);
4201
0f82e5c9
DM
4202 SET_PREV_INSN (from_start) = *to_endp;
4203 SET_NEXT_INSN (*to_endp) = from_start;
e855c69d
AB
4204 *to_endp = from_end;
4205}
4206
e67271bd
RH
4207/* Delete notes between HEAD and TAIL and put them in the chain
4208 of notes ended by NOTE_LIST. */
4209void
ce1ce33a 4210remove_notes (rtx_insn *head, rtx_insn *tail)
8c660648 4211{
ce1ce33a 4212 rtx_insn *next_tail, *insn, *next;
8c660648 4213
e67271bd
RH
4214 note_list = 0;
4215 if (head == tail && !INSN_P (head))
4216 return;
4217
4218 next_tail = NEXT_INSN (tail);
e67271bd 4219 for (insn = head; insn != next_tail; insn = next)
8c660648 4220 {
e67271bd
RH
4221 next = NEXT_INSN (insn);
4222 if (!NOTE_P (insn))
1124098b 4223 continue;
f70b22c9 4224
e67271bd
RH
4225 switch (NOTE_KIND (insn))
4226 {
4227 case NOTE_INSN_BASIC_BLOCK:
e67271bd 4228 continue;
8c660648 4229
e67271bd
RH
4230 case NOTE_INSN_EPILOGUE_BEG:
4231 if (insn != tail)
4232 {
4233 remove_insn (insn);
4234 add_reg_note (next, REG_SAVE_NOTE,
4235 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4236 break;
4237 }
4238 /* FALLTHRU */
e855c69d 4239
e67271bd
RH
4240 default:
4241 remove_insn (insn);
e855c69d 4242
e67271bd 4243 /* Add the note to list that ends at NOTE_LIST. */
0f82e5c9
DM
4244 SET_PREV_INSN (insn) = note_list;
4245 SET_NEXT_INSN (insn) = NULL_RTX;
e67271bd 4246 if (note_list)
0f82e5c9 4247 SET_NEXT_INSN (note_list) = insn;
e67271bd
RH
4248 note_list = insn;
4249 break;
4250 }
4251
4252 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4253 }
8c660648
JL
4254}
4255
26965010
BS
4256/* A structure to record enough data to allow us to backtrack the scheduler to
4257 a previous state. */
4258struct haifa_saved_data
4259{
4260 /* Next entry on the list. */
4261 struct haifa_saved_data *next;
4262
4263 /* Backtracking is associated with scheduling insns that have delay slots.
4264 DELAY_PAIR points to the structure that contains the insns involved, and
4265 the number of cycles between them. */
4266 struct delay_pair *delay_pair;
4267
4268 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4269 void *fe_saved_data;
4270 /* Data used by the backend. */
4271 void *be_saved_data;
4272
4273 /* Copies of global state. */
4274 int clock_var, last_clock_var;
4275 struct ready_list ready;
4276 state_t curr_state;
4277
ce1ce33a 4278 rtx_insn *last_scheduled_insn;
90831096 4279 rtx_insn *last_nondebug_scheduled_insn;
ce1ce33a 4280 rtx_insn *nonscheduled_insns_begin;
26965010
BS
4281 int cycle_issued_insns;
4282
4283 /* Copies of state used in the inner loop of schedule_block. */
4284 struct sched_block_state sched_block;
4285
4286 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4287 to 0 when restoring. */
4288 int q_size;
3dc99c19 4289 rtx_insn_list **insn_queue;
1a83e602
BS
4290
4291 /* Describe pattern replacements that occurred since this backtrack point
4292 was queued. */
9771b263
DN
4293 vec<dep_t> replacement_deps;
4294 vec<int> replace_apply;
1a83e602
BS
4295
4296 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4297 point. */
9771b263
DN
4298 vec<dep_t> next_cycle_deps;
4299 vec<int> next_cycle_apply;
26965010
BS
4300};
4301
4302/* A record, in reverse order, of all scheduled insns which have delay slots
4303 and may require backtracking. */
4304static struct haifa_saved_data *backtrack_queue;
4305
4306/* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4307 to SET_P. */
4308static void
90831096 4309mark_backtrack_feeds (rtx_insn *insn, int set_p)
26965010
BS
4310{
4311 sd_iterator_def sd_it;
4312 dep_t dep;
4313 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4314 {
4315 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4316 }
4317}
4318
26965010
BS
4319/* Save the current scheduler state so that we can backtrack to it
4320 later if necessary. PAIR gives the insns that make it necessary to
4321 save this point. SCHED_BLOCK is the local state of schedule_block
4322 that need to be saved. */
4323static void
4324save_backtrack_point (struct delay_pair *pair,
4325 struct sched_block_state sched_block)
4326{
4327 int i;
4328 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4329
4330 save->curr_state = xmalloc (dfa_state_size);
4331 memcpy (save->curr_state, curr_state, dfa_state_size);
4332
4333 save->ready.first = ready.first;
4334 save->ready.n_ready = ready.n_ready;
4335 save->ready.n_debug = ready.n_debug;
4336 save->ready.veclen = ready.veclen;
ce1ce33a 4337 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
26965010
BS
4338 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4339
3dc99c19 4340 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
26965010
BS
4341 save->q_size = q_size;
4342 for (i = 0; i <= max_insn_queue_index; i++)
4343 {
4344 int q = NEXT_Q_AFTER (q_ptr, i);
e2724e63 4345 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
26965010
BS
4346 }
4347
4348 save->clock_var = clock_var;
4349 save->last_clock_var = last_clock_var;
4350 save->cycle_issued_insns = cycle_issued_insns;
4351 save->last_scheduled_insn = last_scheduled_insn;
4352 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
06bc63d1 4353 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
26965010
BS
4354
4355 save->sched_block = sched_block;
4356
9771b263
DN
4357 save->replacement_deps.create (0);
4358 save->replace_apply.create (0);
4359 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4360 save->next_cycle_apply = next_cycle_apply.copy ();
1a83e602 4361
26965010
BS
4362 if (current_sched_info->save_state)
4363 save->fe_saved_data = (*current_sched_info->save_state) ();
4364
4365 if (targetm.sched.alloc_sched_context)
4366 {
4367 save->be_saved_data = targetm.sched.alloc_sched_context ();
4368 targetm.sched.init_sched_context (save->be_saved_data, false);
4369 }
4370 else
4371 save->be_saved_data = NULL;
4372
4373 save->delay_pair = pair;
4374
4375 save->next = backtrack_queue;
4376 backtrack_queue = save;
4377
4378 while (pair)
4379 {
4380 mark_backtrack_feeds (pair->i2, 1);
4381 INSN_TICK (pair->i2) = INVALID_TICK;
4382 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
06d7e8e7 4383 SHADOW_P (pair->i2) = pair->stages == 0;
26965010
BS
4384 pair = pair->next_same_i1;
4385 }
4386}
4387
e2724e63
BS
4388/* Walk the ready list and all queues. If any insns have unresolved backwards
4389 dependencies, these must be cancelled deps, broken by predication. Set or
4390 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4391
4392static void
4393toggle_cancelled_flags (bool set)
4394{
4395 int i;
4396 sd_iterator_def sd_it;
4397 dep_t dep;
4398
4399 if (ready.n_ready > 0)
4400 {
ce1ce33a 4401 rtx_insn **first = ready_lastpos (&ready);
e2724e63
BS
4402 for (i = 0; i < ready.n_ready; i++)
4403 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4404 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4405 {
4406 if (set)
4407 DEP_STATUS (dep) |= DEP_CANCELLED;
4408 else
4409 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4410 }
4411 }
4412 for (i = 0; i <= max_insn_queue_index; i++)
4413 {
4414 int q = NEXT_Q_AFTER (q_ptr, i);
96b70414
DM
4415 rtx_insn_list *link;
4416 for (link = insn_queue[q]; link; link = link->next ())
e2724e63 4417 {
96b70414 4418 rtx_insn *insn = link->insn ();
e2724e63
BS
4419 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4420 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4421 {
4422 if (set)
4423 DEP_STATUS (dep) |= DEP_CANCELLED;
4424 else
4425 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4426 }
4427 }
4428 }
4429}
4430
1a83e602
BS
4431/* Undo the replacements that have occurred after backtrack point SAVE
4432 was placed. */
4433static void
4434undo_replacements_for_backtrack (struct haifa_saved_data *save)
4435{
9771b263 4436 while (!save->replacement_deps.is_empty ())
1a83e602 4437 {
9771b263
DN
4438 dep_t dep = save->replacement_deps.pop ();
4439 int apply_p = save->replace_apply.pop ();
1a83e602
BS
4440
4441 if (apply_p)
4442 restore_pattern (dep, true);
4443 else
4444 apply_replacement (dep, true);
4445 }
9771b263
DN
4446 save->replacement_deps.release ();
4447 save->replace_apply.release ();
1a83e602
BS
4448}
4449
26965010
BS
4450/* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4451 Restore their dependencies to an unresolved state, and mark them as
4452 queued nowhere. */
4453
4454static void
90831096 4455unschedule_insns_until (rtx_insn *insn)
26965010 4456{
f57aa6b0 4457 auto_vec<rtx_insn *> recompute_vec;
e2724e63
BS
4458
4459 /* Make two passes over the insns to be unscheduled. First, we clear out
4460 dependencies and other trivial bookkeeping. */
26965010
BS
4461 for (;;)
4462 {
f57aa6b0 4463 rtx_insn *last;
26965010
BS
4464 sd_iterator_def sd_it;
4465 dep_t dep;
4466
9771b263 4467 last = scheduled_insns.pop ();
26965010
BS
4468
4469 /* This will be changed by restore_backtrack_point if the insn is in
4470 any queue. */
4471 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4472 if (last != insn)
4473 INSN_TICK (last) = INVALID_TICK;
4474
06d7e8e7
BS
4475 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4476 modulo_insns_scheduled--;
4477
26965010
BS
4478 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4479 sd_iterator_cond (&sd_it, &dep);)
4480 {
9b517712 4481 rtx_insn *con = DEP_CON (dep);
26965010 4482 sd_unresolve_dep (sd_it);
e2724e63
BS
4483 if (!MUST_RECOMPUTE_SPEC_P (con))
4484 {
4485 MUST_RECOMPUTE_SPEC_P (con) = 1;
9771b263 4486 recompute_vec.safe_push (con);
e2724e63 4487 }
26965010
BS
4488 }
4489
4490 if (last == insn)
4491 break;
4492 }
e2724e63
BS
4493
4494 /* A second pass, to update ready and speculation status for insns
4495 depending on the unscheduled ones. The first pass must have
4496 popped the scheduled_insns vector up to the point where we
4497 restart scheduling, as recompute_todo_spec requires it to be
4498 up-to-date. */
9771b263 4499 while (!recompute_vec.is_empty ())
e2724e63 4500 {
f57aa6b0 4501 rtx_insn *con;
e2724e63 4502
9771b263 4503 con = recompute_vec.pop ();
e2724e63
BS
4504 MUST_RECOMPUTE_SPEC_P (con) = 0;
4505 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4506 {
4507 TODO_SPEC (con) = HARD_DEP;
4508 INSN_TICK (con) = INVALID_TICK;
4509 if (PREDICATED_PAT (con) != NULL_RTX)
4510 haifa_change_pattern (con, ORIG_PAT (con));
4511 }
4512 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
1a83e602 4513 TODO_SPEC (con) = recompute_todo_spec (con, true);
e2724e63 4514 }
26965010
BS
4515}
4516
4517/* Restore scheduler state from the topmost entry on the backtracking queue.
4518 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4519 overwrite with the saved data.
4520 The caller must already have called unschedule_insns_until. */
4521
4522static void
4523restore_last_backtrack_point (struct sched_block_state *psched_block)
26965010 4524{
26965010
BS
4525 int i;
4526 struct haifa_saved_data *save = backtrack_queue;
4527
4528 backtrack_queue = save->next;
4529
4530 if (current_sched_info->restore_state)
4531 (*current_sched_info->restore_state) (save->fe_saved_data);
4532
4533 if (targetm.sched.alloc_sched_context)
4534 {
4535 targetm.sched.set_sched_context (save->be_saved_data);
4536 targetm.sched.free_sched_context (save->be_saved_data);
4537 }
4538
1a83e602
BS
4539 /* Do this first since it clobbers INSN_TICK of the involved
4540 instructions. */
4541 undo_replacements_for_backtrack (save);
4542
26965010
BS
4543 /* Clear the QUEUE_INDEX of everything in the ready list or one
4544 of the queues. */
4545 if (ready.n_ready > 0)
4546 {
ce1ce33a 4547 rtx_insn **first = ready_lastpos (&ready);
26965010
BS
4548 for (i = 0; i < ready.n_ready; i++)
4549 {
ce1ce33a 4550 rtx_insn *insn = first[i];
e2724e63
BS
4551 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4552 INSN_TICK (insn) = INVALID_TICK;
26965010
BS
4553 }
4554 }
4555 for (i = 0; i <= max_insn_queue_index; i++)
4556 {
4557 int q = NEXT_Q_AFTER (q_ptr, i);
4558
96b70414 4559 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
26965010 4560 {
96b70414 4561 rtx_insn *x = link->insn ();
26965010
BS
4562 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4563 INSN_TICK (x) = INVALID_TICK;
4564 }
4565 free_INSN_LIST_list (&insn_queue[q]);
4566 }
4567
4568 free (ready.vec);
4569 ready = save->ready;
4570
4571 if (ready.n_ready > 0)
4572 {
ce1ce33a 4573 rtx_insn **first = ready_lastpos (&ready);
26965010
BS
4574 for (i = 0; i < ready.n_ready; i++)
4575 {
ce1ce33a 4576 rtx_insn *insn = first[i];
e2724e63 4577 QUEUE_INDEX (insn) = QUEUE_READY;
1a83e602 4578 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
e2724e63 4579 INSN_TICK (insn) = save->clock_var;
26965010
BS
4580 }
4581 }
4582
4583 q_ptr = 0;
4584 q_size = save->q_size;
4585 for (i = 0; i <= max_insn_queue_index; i++)
4586 {
4587 int q = NEXT_Q_AFTER (q_ptr, i);
4588
4589 insn_queue[q] = save->insn_queue[q];
4590
96b70414 4591 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
26965010 4592 {
96b70414 4593 rtx_insn *x = link->insn ();
26965010 4594 QUEUE_INDEX (x) = i;
1a83e602 4595 TODO_SPEC (x) = recompute_todo_spec (x, true);
26965010
BS
4596 INSN_TICK (x) = save->clock_var + i;
4597 }
4598 }
4599 free (save->insn_queue);
4600
e2724e63
BS
4601 toggle_cancelled_flags (true);
4602
26965010
BS
4603 clock_var = save->clock_var;
4604 last_clock_var = save->last_clock_var;
4605 cycle_issued_insns = save->cycle_issued_insns;
4606 last_scheduled_insn = save->last_scheduled_insn;
4607 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
06bc63d1 4608 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
26965010
BS
4609
4610 *psched_block = save->sched_block;
4611
4612 memcpy (curr_state, save->curr_state, dfa_state_size);
4613 free (save->curr_state);
4614
4615 mark_backtrack_feeds (save->delay_pair->i2, 0);
4616
9771b263
DN
4617 gcc_assert (next_cycle_replace_deps.is_empty ());
4618 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4619 next_cycle_apply = save->next_cycle_apply.copy ();
1a83e602 4620
26965010
BS
4621 free (save);
4622
4623 for (save = backtrack_queue; save; save = save->next)
4624 {
4625 mark_backtrack_feeds (save->delay_pair->i2, 1);
4626 }
4627}
4628
4629/* Discard all data associated with the topmost entry in the backtrack
4630 queue. If RESET_TICK is false, we just want to free the data. If true,
4631 we are doing this because we discovered a reason to backtrack. In the
4632 latter case, also reset the INSN_TICK for the shadow insn. */
4633static void
4634free_topmost_backtrack_point (bool reset_tick)
4635{
4636 struct haifa_saved_data *save = backtrack_queue;
4637 int i;
4638
4639 backtrack_queue = save->next;
4640
4641 if (reset_tick)
4642 {
4643 struct delay_pair *pair = save->delay_pair;
4644 while (pair)
4645 {
4646 INSN_TICK (pair->i2) = INVALID_TICK;
4647 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4648 pair = pair->next_same_i1;
4649 }
1a83e602
BS
4650 undo_replacements_for_backtrack (save);
4651 }
4652 else
4653 {
9771b263
DN
4654 save->replacement_deps.release ();
4655 save->replace_apply.release ();
26965010 4656 }
1a83e602 4657
26965010
BS
4658 if (targetm.sched.free_sched_context)
4659 targetm.sched.free_sched_context (save->be_saved_data);
4660 if (current_sched_info->restore_state)
4661 free (save->fe_saved_data);
4662 for (i = 0; i <= max_insn_queue_index; i++)
4663 free_INSN_LIST_list (&save->insn_queue[i]);
4664 free (save->insn_queue);
4665 free (save->curr_state);
4666 free (save->ready.vec);
4667 free (save);
4668}
4669
4670/* Free the entire backtrack queue. */
4671static void
4672free_backtrack_queue (void)
4673{
4674 while (backtrack_queue)
4675 free_topmost_backtrack_point (false);
4676}
4677
1a83e602
BS
4678/* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4679 may have to postpone the replacement until the start of the next cycle,
4680 at which point we will be called again with IMMEDIATELY true. This is
4681 only done for machines which have instruction packets with explicit
4682 parallelism however. */
4683static void
4684apply_replacement (dep_t dep, bool immediately)
4685{
4686 struct dep_replacement *desc = DEP_REPLACE (dep);
4687 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4688 {
9771b263
DN
4689 next_cycle_replace_deps.safe_push (dep);
4690 next_cycle_apply.safe_push (1);
1a83e602
BS
4691 }
4692 else
4693 {
4694 bool success;
4695
4696 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4697 return;
4698
4699 if (sched_verbose >= 5)
4700 fprintf (sched_dump, "applying replacement for insn %d\n",
4701 INSN_UID (desc->insn));
4702
4703 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4704 gcc_assert (success);
4705
4706 update_insn_after_change (desc->insn);
4707 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4708 fix_tick_ready (desc->insn);
4709
4710 if (backtrack_queue != NULL)
4711 {
9771b263
DN
4712 backtrack_queue->replacement_deps.safe_push (dep);
4713 backtrack_queue->replace_apply.safe_push (1);
1a83e602
BS
4714 }
4715 }
4716}
4717
4718/* We have determined that a pattern involved in DEP must be restored.
4719 If IMMEDIATELY is false, we may have to postpone the replacement
4720 until the start of the next cycle, at which point we will be called
4721 again with IMMEDIATELY true. */
4722static void
4723restore_pattern (dep_t dep, bool immediately)
4724{
9b517712 4725 rtx_insn *next = DEP_CON (dep);
1a83e602
BS
4726 int tick = INSN_TICK (next);
4727
4728 /* If we already scheduled the insn, the modified version is
4729 correct. */
4730 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4731 return;
4732
4733 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4734 {
9771b263
DN
4735 next_cycle_replace_deps.safe_push (dep);
4736 next_cycle_apply.safe_push (0);
1a83e602
BS
4737 return;
4738 }
4739
4740
4741 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4742 {
4743 if (sched_verbose >= 5)
4744 fprintf (sched_dump, "restoring pattern for insn %d\n",
4745 INSN_UID (next));
4746 haifa_change_pattern (next, ORIG_PAT (next));
4747 }
4748 else
4749 {
4750 struct dep_replacement *desc = DEP_REPLACE (dep);
4751 bool success;
4752
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (desc->insn));
4756 tick = INSN_TICK (desc->insn);
4757
4758 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4759 gcc_assert (success);
4760 update_insn_after_change (desc->insn);
4761 if (backtrack_queue != NULL)
4762 {
9771b263
DN
4763 backtrack_queue->replacement_deps.safe_push (dep);
4764 backtrack_queue->replace_apply.safe_push (0);
1a83e602
BS
4765 }
4766 }
4767 INSN_TICK (next) = tick;
4768 if (TODO_SPEC (next) == DEP_POSTPONED)
4769 return;
4770
4771 if (sd_lists_empty_p (next, SD_LIST_BACK))
4772 TODO_SPEC (next) = 0;
4773 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4774 TODO_SPEC (next) = HARD_DEP;
4775}
4776
4777/* Perform pattern replacements that were queued up until the next
4778 cycle. */
4779static void
4780perform_replacements_new_cycle (void)
4781{
4782 int i;
4783 dep_t dep;
9771b263 4784 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
1a83e602 4785 {
9771b263 4786 int apply_p = next_cycle_apply[i];
1a83e602
BS
4787 if (apply_p)
4788 apply_replacement (dep, true);
4789 else
4790 restore_pattern (dep, true);
4791 }
9771b263
DN
4792 next_cycle_replace_deps.truncate (0);
4793 next_cycle_apply.truncate (0);
1a83e602
BS
4794}
4795
26965010
BS
4796/* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4797 instructions we've previously encountered, a set bit prevents
4798 recursion. BUDGET is a limit on how far ahead we look, it is
4799 reduced on recursive calls. Return true if we produced a good
4800 estimate, or false if we exceeded the budget. */
4801static bool
f57aa6b0 4802estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
26965010
BS
4803{
4804 sd_iterator_def sd_it;
4805 dep_t dep;
4806 int earliest = INSN_TICK (insn);
4807
4808 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4809 {
9b517712 4810 rtx_insn *pro = DEP_PRO (dep);
26965010
BS
4811 int t;
4812
e2724e63
BS
4813 if (DEP_STATUS (dep) & DEP_CANCELLED)
4814 continue;
4815
26965010
BS
4816 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4817 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4818 else
4819 {
4820 int cost = dep_cost (dep);
4821 if (cost >= budget)
4822 return false;
4823 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4824 {
4825 if (!estimate_insn_tick (processed, pro, budget - cost))
4826 return false;
4827 }
4828 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4829 t = INSN_TICK_ESTIMATE (pro) + cost;
4830 if (earliest == INVALID_TICK || t > earliest)
4831 earliest = t;
4832 }
4833 }
4834 bitmap_set_bit (processed, INSN_LUID (insn));
4835 INSN_TICK_ESTIMATE (insn) = earliest;
4836 return true;
4837}
4838
4839/* Examine the pair of insns in P, and estimate (optimistically, assuming
4840 infinite resources) the cycle in which the delayed shadow can be issued.
4841 Return the number of cycles that must pass before the real insn can be
4842 issued in order to meet this constraint. */
4843static int
4844estimate_shadow_tick (struct delay_pair *p)
4845{
8f9b31f7 4846 auto_bitmap processed;
26965010
BS
4847 int t;
4848 bool cutoff;
26965010 4849
8f9b31f7 4850 cutoff = !estimate_insn_tick (processed, p->i2,
26965010 4851 max_insn_queue_index + pair_delay (p));
26965010
BS
4852 if (cutoff)
4853 return max_insn_queue_index;
4854 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4855 if (t > 0)
4856 return t;
4857 return 0;
4858}
e67271bd 4859
06d7e8e7
BS
4860/* If INSN has no unresolved backwards dependencies, add it to the schedule and
4861 recursively resolve all its forward dependencies. */
4862static void
ce1ce33a 4863resolve_dependencies (rtx_insn *insn)
06d7e8e7
BS
4864{
4865 sd_iterator_def sd_it;
4866 dep_t dep;
4867
4868 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4869 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4870 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4871 return;
4872
4873 if (sched_verbose >= 4)
4874 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4875
4876 if (QUEUE_INDEX (insn) >= 0)
4877 queue_remove (insn);
4878
9771b263 4879 scheduled_insns.safe_push (insn);
06d7e8e7
BS
4880
4881 /* Update dependent instructions. */
4882 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4883 sd_iterator_cond (&sd_it, &dep);)
4884 {
9b517712 4885 rtx_insn *next = DEP_CON (dep);
06d7e8e7
BS
4886
4887 if (sched_verbose >= 4)
4888 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4889 INSN_UID (next));
4890
4891 /* Resolve the dependence between INSN and NEXT.
4892 sd_resolve_dep () moves current dep to another list thus
4893 advancing the iterator. */
4894 sd_resolve_dep (sd_it);
4895
4896 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4897 {
4898 resolve_dependencies (next);
4899 }
4900 else
4901 /* Check always has only one forward dependence (to the first insn in
4902 the recovery block), therefore, this will be executed only once. */
4903 {
4904 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4905 }
4906 }
4907}
4908
4909
496d7bb0
MK
4910/* Return the head and tail pointers of ebb starting at BEG and ending
4911 at END. */
b4ead7d4 4912void
52d251b5
DM
4913get_ebb_head_tail (basic_block beg, basic_block end,
4914 rtx_insn **headp, rtx_insn **tailp)
496d7bb0 4915{
52d251b5
DM
4916 rtx_insn *beg_head = BB_HEAD (beg);
4917 rtx_insn * beg_tail = BB_END (beg);
4918 rtx_insn * end_head = BB_HEAD (end);
4919 rtx_insn * end_tail = BB_END (end);
496d7bb0
MK
4920
4921 /* Don't include any notes or labels at the beginning of the BEG
4922 basic block, or notes at the end of the END basic blocks. */
4923
4924 if (LABEL_P (beg_head))
4925 beg_head = NEXT_INSN (beg_head);
4926
4927 while (beg_head != beg_tail)
a59d15cf 4928 if (NOTE_P (beg_head))
496d7bb0 4929 beg_head = NEXT_INSN (beg_head);
a59d15cf
AO
4930 else if (DEBUG_INSN_P (beg_head))
4931 {
52d251b5 4932 rtx_insn * note, *next;
a59d15cf
AO
4933
4934 for (note = NEXT_INSN (beg_head);
4935 note != beg_tail;
4936 note = next)
4937 {
4938 next = NEXT_INSN (note);
4939 if (NOTE_P (note))
4940 {
4941 if (sched_verbose >= 9)
4942 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4943
4944 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4945
4946 if (BLOCK_FOR_INSN (note) != beg)
4947 df_insn_change_bb (note, beg);
4948 }
4949 else if (!DEBUG_INSN_P (note))
4950 break;
4951 }
4952
4953 break;
4954 }
496d7bb0
MK
4955 else
4956 break;
4957
4958 *headp = beg_head;
4959
4960 if (beg == end)
4961 end_head = beg_head;
4962 else if (LABEL_P (end_head))
4963 end_head = NEXT_INSN (end_head);
4964
4965 while (end_head != end_tail)
a59d15cf 4966 if (NOTE_P (end_tail))
496d7bb0 4967 end_tail = PREV_INSN (end_tail);
a59d15cf
AO
4968 else if (DEBUG_INSN_P (end_tail))
4969 {
52d251b5 4970 rtx_insn * note, *prev;
a59d15cf
AO
4971
4972 for (note = PREV_INSN (end_tail);
4973 note != end_head;
4974 note = prev)
4975 {
4976 prev = PREV_INSN (note);
4977 if (NOTE_P (note))
4978 {
4979 if (sched_verbose >= 9)
4980 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4981
4982 reorder_insns_nobb (note, note, end_tail);
4983
4984 if (end_tail == BB_END (end))
1130d5e3 4985 BB_END (end) = note;
a59d15cf
AO
4986
4987 if (BLOCK_FOR_INSN (note) != end)
4988 df_insn_change_bb (note, end);
4989 }
4990 else if (!DEBUG_INSN_P (note))
4991 break;
4992 }
4993
4994 break;
4995 }
496d7bb0
MK
4996 else
4997 break;
8c660648 4998
496d7bb0 4999 *tailp = end_tail;
8c660648
JL
5000}
5001
1708fd40
BS
5002/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5003
b4ead7d4 5004int
dc01c3d1 5005no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
1708fd40
BS
5006{
5007 while (head != NEXT_INSN (tail))
5008 {
a59d15cf 5009 if (!NOTE_P (head) && !LABEL_P (head))
1708fd40
BS
5010 return 0;
5011 head = NEXT_INSN (head);
5012 }
5013 return 1;
5014}
5015
e855c69d
AB
5016/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5017 previously found among the insns. Insert them just before HEAD. */
ce1ce33a
DM
5018rtx_insn *
5019restore_other_notes (rtx_insn *head, basic_block head_bb)
e855c69d
AB
5020{
5021 if (note_list != 0)
5022 {
ce1ce33a 5023 rtx_insn *note_head = note_list;
e855c69d
AB
5024
5025 if (head)
5026 head_bb = BLOCK_FOR_INSN (head);
5027 else
5028 head = NEXT_INSN (bb_note (head_bb));
5029
5030 while (PREV_INSN (note_head))
5031 {
5032 set_block_for_insn (note_head, head_bb);
5033 note_head = PREV_INSN (note_head);
8c660648 5034 }
e855c69d
AB
5035 /* In the above cycle we've missed this note. */
5036 set_block_for_insn (note_head, head_bb);
5037
0f82e5c9
DM
5038 SET_PREV_INSN (note_head) = PREV_INSN (head);
5039 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5040 SET_PREV_INSN (head) = note_list;
5041 SET_NEXT_INSN (note_list) = head;
e855c69d
AB
5042
5043 if (BLOCK_FOR_INSN (head) != head_bb)
1130d5e3 5044 BB_END (head_bb) = note_list;
e855c69d
AB
5045
5046 head = note_head;
8c660648 5047 }
e855c69d
AB
5048
5049 return head;
8c660648
JL
5050}
5051
1a83e602
BS
5052/* When we know we are going to discard the schedule due to a failed attempt
5053 at modulo scheduling, undo all replacements. */
5054static void
5055undo_all_replacements (void)
5056{
ce1ce33a 5057 rtx_insn *insn;
1a83e602
BS
5058 int i;
5059
9771b263 5060 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
1a83e602
BS
5061 {
5062 sd_iterator_def sd_it;
5063 dep_t dep;
5064
5065 /* See if we must undo a replacement. */
5066 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5067 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5068 {
5069 struct dep_replacement *desc = DEP_REPLACE (dep);
5070 if (desc != NULL)
5071 validate_change (desc->insn, desc->loc, desc->orig, 0);
5072 }
5073 }
5074}
5075
06bc63d1
MK
5076/* Return first non-scheduled insn in the current scheduling block.
5077 This is mostly used for debug-counter purposes. */
ce1ce33a 5078static rtx_insn *
06bc63d1
MK
5079first_nonscheduled_insn (void)
5080{
ce1ce33a
DM
5081 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5082 ? nonscheduled_insns_begin
5083 : current_sched_info->prev_head);
06bc63d1
MK
5084
5085 do
5086 {
5087 insn = next_nonnote_nondebug_insn (insn);
5088 }
5089 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5090
5091 return insn;
5092}
5093
8c660648
JL
5094/* Move insns that became ready to fire from queue to ready list. */
5095
176f9a7b 5096static void
1d088dee 5097queue_to_ready (struct ready_list *ready)
8c660648 5098{
ce1ce33a 5099 rtx_insn *insn;
3dc99c19 5100 rtx_insn_list *link;
90831096 5101 rtx_insn *skip_insn;
8c660648
JL
5102
5103 q_ptr = NEXT_Q (q_ptr);
5104
b631c5f7 5105 if (dbg_cnt (sched_insn) == false)
06bc63d1
MK
5106 /* If debug counter is activated do not requeue the first
5107 nonscheduled insn. */
5108 skip_insn = first_nonscheduled_insn ();
b631c5f7 5109 else
90831096 5110 skip_insn = NULL;
b631c5f7 5111
8c660648 5112 /* Add all pending insns that can be scheduled without stalls to the
b4ead7d4 5113 ready list. */
3dc99c19 5114 for (link = insn_queue[q_ptr]; link; link = link->next ())
b4ead7d4 5115 {
3dc99c19 5116 insn = link->insn ();
b4ead7d4 5117 q_size -= 1;
1708fd40 5118
b4ead7d4
BS
5119 if (sched_verbose >= 2)
5120 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5121 (*current_sched_info->print_insn) (insn, 0));
1708fd40 5122
6f8dd94b
EB
5123 /* If the ready list is full, delay the insn for 1 cycle.
5124 See the comment in schedule_block for the rationale. */
5125 if (!reload_completed
7a1aca9c
RS
5126 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5127 || (sched_pressure == SCHED_PRESSURE_MODEL
5128 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5129 instructions too. */
5130 && model_index (insn) > (model_curr_point
5131 + MAX_SCHED_READY_INSNS)))
5132 && !(sched_pressure == SCHED_PRESSURE_MODEL
5133 && model_curr_point < model_num_insns
5134 /* Always allow the next model instruction to issue. */
5135 && model_index (insn) == model_curr_point)
b631c5f7
SP
5136 && !SCHED_GROUP_P (insn)
5137 && insn != skip_insn)
d5c67efd
MK
5138 {
5139 if (sched_verbose >= 2)
5140 fprintf (sched_dump, "keeping in queue, ready full\n");
5141 queue_insn (insn, 1, "ready full");
5142 }
6f8dd94b
EB
5143 else
5144 {
5145 ready_add (ready, insn, false);
5146 if (sched_verbose >= 2)
5147 fprintf (sched_dump, "moving to ready without stalls\n");
5148 }
1708fd40 5149 }
63f54b1a 5150 free_INSN_LIST_list (&insn_queue[q_ptr]);
b4ead7d4
BS
5151
5152 /* If there are no ready insns, stall until one is ready and add all
5153 of the pending insns at that point to the ready list. */
5154 if (ready->n_ready == 0)
1708fd40 5155 {
b3694847 5156 int stalls;
1708fd40 5157
fa0aee89 5158 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
b4ead7d4
BS
5159 {
5160 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5161 {
3dc99c19 5162 for (; link; link = link->next ())
b4ead7d4 5163 {
96b70414 5164 insn = link->insn ();
b4ead7d4 5165 q_size -= 1;
1708fd40 5166
b4ead7d4
BS
5167 if (sched_verbose >= 2)
5168 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5169 (*current_sched_info->print_insn) (insn, 0));
1708fd40 5170
63f54b1a 5171 ready_add (ready, insn, false);
b4ead7d4
BS
5172 if (sched_verbose >= 2)
5173 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5174 }
63f54b1a 5175 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1708fd40 5176
fae15c93
VM
5177 advance_one_cycle ();
5178
5179 break;
b4ead7d4 5180 }
fae15c93
VM
5181
5182 advance_one_cycle ();
b4ead7d4 5183 }
1708fd40 5184
b4ead7d4
BS
5185 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5186 clock_var += stalls;
d5c67efd
MK
5187 if (sched_verbose >= 2)
5188 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5189 stalls, clock_var);
1708fd40 5190 }
1708fd40
BS
5191}
5192
569fa502 5193/* Used by early_queue_to_ready. Determines whether it is "ok" to
b8698a0f
L
5194 prematurely move INSN from the queue to the ready list. Currently,
5195 if a target defines the hook 'is_costly_dependence', this function
569fa502 5196 uses the hook to check whether there exist any dependences which are
b8698a0f 5197 considered costly by the target, between INSN and other insns that
569fa502
DN
5198 have already been scheduled. Dependences are checked up to Y cycles
5199 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
b8698a0f
L
5200 controlling this value.
5201 (Other considerations could be taken into account instead (or in
569fa502
DN
5202 addition) depending on user flags and target hooks. */
5203
b8698a0f 5204static bool
90831096 5205ok_for_early_queue_removal (rtx_insn *insn)
569fa502 5206{
569fa502
DN
5207 if (targetm.sched.is_costly_dependence)
5208 {
9b69cf83 5209 int n_cycles;
9771b263 5210 int i = scheduled_insns.length ();
569fa502
DN
5211 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5212 {
9b69cf83 5213 while (i-- > 0)
569fa502 5214 {
b198261f 5215 int cost;
569fa502 5216
21afc57d 5217 rtx_insn *prev_insn = scheduled_insns[i];
ec8628e8 5218
4b4bf941 5219 if (!NOTE_P (prev_insn))
569fa502 5220 {
e2f6ff94 5221 dep_t dep;
b198261f 5222
e2f6ff94 5223 dep = sd_find_dep_between (prev_insn, insn, true);
b198261f 5224
e2f6ff94 5225 if (dep != NULL)
569fa502 5226 {
b198261f
MK
5227 cost = dep_cost (dep);
5228
5229 if (targetm.sched.is_costly_dependence (dep, cost,
569fa502
DN
5230 flag_sched_stalled_insns_dep - n_cycles))
5231 return false;
5232 }
5233 }
5234
5235 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5236 break;
5237 }
5238
9b69cf83 5239 if (i == 0)
569fa502 5240 break;
569fa502
DN
5241 }
5242 }
5243
5244 return true;
5245}
5246
5247
5248/* Remove insns from the queue, before they become "ready" with respect
6614fd40 5249 to FU latency considerations. */
569fa502 5250
b8698a0f 5251static int
569fa502
DN
5252early_queue_to_ready (state_t state, struct ready_list *ready)
5253{
ce1ce33a 5254 rtx_insn *insn;
3dc99c19
DM
5255 rtx_insn_list *link;
5256 rtx_insn_list *next_link;
5257 rtx_insn_list *prev_link;
569fa502
DN
5258 bool move_to_ready;
5259 int cost;
5260 state_t temp_state = alloca (dfa_state_size);
5261 int stalls;
5262 int insns_removed = 0;
5263
5264 /*
b8698a0f
L
5265 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5266 function:
569fa502 5267
b8698a0f 5268 X == 0: There is no limit on how many queued insns can be removed
569fa502
DN
5269 prematurely. (flag_sched_stalled_insns = -1).
5270
b8698a0f 5271 X >= 1: Only X queued insns can be removed prematurely in each
569fa502
DN
5272 invocation. (flag_sched_stalled_insns = X).
5273
5274 Otherwise: Early queue removal is disabled.
5275 (flag_sched_stalled_insns = 0)
5276 */
5277
b8698a0f 5278 if (! flag_sched_stalled_insns)
569fa502
DN
5279 return 0;
5280
fa0aee89 5281 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
569fa502
DN
5282 {
5283 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5284 {
5285 if (sched_verbose > 6)
5286 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5287
5288 prev_link = 0;
5289 while (link)
5290 {
3dc99c19
DM
5291 next_link = link->next ();
5292 insn = link->insn ();
569fa502
DN
5293 if (insn && sched_verbose > 6)
5294 print_rtl_single (sched_dump, insn);
5295
5296 memcpy (temp_state, state, dfa_state_size);
b8698a0f 5297 if (recog_memoized (insn) < 0)
569fa502
DN
5298 /* non-negative to indicate that it's not ready
5299 to avoid infinite Q->R->Q->R... */
5300 cost = 0;
5301 else
5302 cost = state_transition (temp_state, insn);
5303
5304 if (sched_verbose >= 6)
5305 fprintf (sched_dump, "transition cost = %d\n", cost);
5306
5307 move_to_ready = false;
b8698a0f 5308 if (cost < 0)
569fa502
DN
5309 {
5310 move_to_ready = ok_for_early_queue_removal (insn);
5311 if (move_to_ready == true)
5312 {
5313 /* move from Q to R */
5314 q_size -= 1;
63f54b1a 5315 ready_add (ready, insn, false);
569fa502 5316
b8698a0f 5317 if (prev_link)
569fa502
DN
5318 XEXP (prev_link, 1) = next_link;
5319 else
5320 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5321
5322 free_INSN_LIST_node (link);
5323
5324 if (sched_verbose >= 2)
5325 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5326 (*current_sched_info->print_insn) (insn, 0));
5327
5328 insns_removed++;
5329 if (insns_removed == flag_sched_stalled_insns)
63f54b1a
MK
5330 /* Remove no more than flag_sched_stalled_insns insns
5331 from Q at a time. */
569fa502
DN
5332 return insns_removed;
5333 }
5334 }
5335
5336 if (move_to_ready == false)
5337 prev_link = link;
5338
5339 link = next_link;
5340 } /* while link */
b8698a0f 5341 } /* if link */
569fa502
DN
5342
5343 } /* for stalls.. */
5344
b8698a0f 5345 return insns_removed;
569fa502
DN
5346}
5347
5348
d5c67efd
MK
5349/* Print the ready list for debugging purposes.
5350 If READY_TRY is non-zero then only print insns that max_issue
5351 will consider. */
b4ead7d4 5352static void
4960a0cb 5353debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
1708fd40 5354{
ce1ce33a 5355 rtx_insn **p;
b4ead7d4 5356 int i;
1708fd40 5357
b4ead7d4 5358 if (ready->n_ready == 0)
fae15c93
VM
5359 {
5360 fprintf (sched_dump, "\n");
5361 return;
5362 }
1708fd40 5363
b4ead7d4
BS
5364 p = ready_lastpos (ready);
5365 for (i = 0; i < ready->n_ready; i++)
ce18efcb 5366 {
d5c67efd
MK
5367 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5368 continue;
5369
ce18efcb
VM
5370 fprintf (sched_dump, " %s:%d",
5371 (*current_sched_info->print_insn) (p[i], 0),
5372 INSN_LUID (p[i]));
7a1aca9c 5373 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb
VM
5374 fprintf (sched_dump, "(cost=%d",
5375 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
d5c67efd 5376 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
ce18efcb
VM
5377 if (INSN_TICK (p[i]) > clock_var)
5378 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
b75ae7f4
MK
5379 if (sched_pressure == SCHED_PRESSURE_MODEL)
5380 fprintf (sched_dump, ":idx=%d",
5381 model_index (p[i]));
7a1aca9c 5382 if (sched_pressure != SCHED_PRESSURE_NONE)
ce18efcb
VM
5383 fprintf (sched_dump, ")");
5384 }
b4ead7d4
BS
5385 fprintf (sched_dump, "\n");
5386}
1708fd40 5387
d5c67efd
MK
5388/* Print the ready list. Callable from debugger. */
5389static void
5390debug_ready_list (struct ready_list *ready)
5391{
5392 debug_ready_list_1 (ready, NULL);
5393}
5394
e67271bd
RH
5395/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5396 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5397 replaces the epilogue note in the correct basic block. */
e855c69d 5398void
b2908ba6 5399reemit_notes (rtx_insn *insn)
8c660648 5400{
b2908ba6
DM
5401 rtx note;
5402 rtx_insn *last = insn;
8c660648 5403
8c660648
JL
5404 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5405 {
c46a37c4 5406 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
8c660648 5407 {
81f40b79 5408 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
b3b42a4d 5409
63f4a88e
JH
5410 last = emit_note_before (note_type, last);
5411 remove_note (insn, note);
8c660648
JL
5412 }
5413 }
8c660648
JL
5414}
5415
496d7bb0
MK
5416/* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5417static void
e6eda746 5418move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
496d7bb0 5419{
496d7bb0
MK
5420 if (PREV_INSN (insn) != last)
5421 {
5422 basic_block bb;
ce1ce33a 5423 rtx_insn *note;
496d7bb0 5424 int jump_p = 0;
8c660648 5425
496d7bb0 5426 bb = BLOCK_FOR_INSN (insn);
b8698a0f 5427
496d7bb0 5428 /* BB_HEAD is either LABEL or NOTE. */
b8698a0f 5429 gcc_assert (BB_HEAD (bb) != insn);
496d7bb0
MK
5430
5431 if (BB_END (bb) == insn)
5432 /* If this is last instruction in BB, move end marker one
5433 instruction up. */
5434 {
5435 /* Jumps are always placed at the end of basic block. */
5436 jump_p = control_flow_insn_p (insn);
5437
5438 gcc_assert (!jump_p
e855c69d 5439 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
d7bfd907 5440 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
e855c69d
AB
5441 || (common_sched_info->sched_pass_id
5442 == SCHED_EBB_PASS));
b8698a0f 5443
496d7bb0
MK
5444 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5445
1130d5e3 5446 BB_END (bb) = PREV_INSN (insn);
496d7bb0 5447 }
8c660648 5448
496d7bb0 5449 gcc_assert (BB_END (bb) != last);
c9e03727 5450
496d7bb0
MK
5451 if (jump_p)
5452 /* We move the block note along with jump. */
5453 {
e855c69d 5454 gcc_assert (nt);
496d7bb0
MK
5455
5456 note = NEXT_INSN (insn);
5457 while (NOTE_NOT_BB_P (note) && note != nt)
5458 note = NEXT_INSN (note);
5459
5460 if (note != nt
5461 && (LABEL_P (note)
5462 || BARRIER_P (note)))
5463 note = NEXT_INSN (note);
b8698a0f 5464
496d7bb0
MK
5465 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5466 }
5467 else
5468 note = insn;
5469
0f82e5c9
DM
5470 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5471 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
496d7bb0 5472
0f82e5c9
DM
5473 SET_NEXT_INSN (note) = NEXT_INSN (last);
5474 SET_PREV_INSN (NEXT_INSN (last)) = note;
c9e03727 5475
0f82e5c9
DM
5476 SET_NEXT_INSN (last) = insn;
5477 SET_PREV_INSN (insn) = last;
496d7bb0
MK
5478
5479 bb = BLOCK_FOR_INSN (last);
5480
5481 if (jump_p)
5482 {
5483 fix_jump_move (insn);
5484
5485 if (BLOCK_FOR_INSN (insn) != bb)
5486 move_block_after_check (insn);
5487
5488 gcc_assert (BB_END (bb) == last);
5489 }
5490
63642d5a 5491 df_insn_change_bb (insn, bb);
b8698a0f 5492
496d7bb0
MK
5493 /* Update BB_END, if needed. */
5494 if (BB_END (bb) == last)
1130d5e3 5495 BB_END (bb) = insn;
496d7bb0 5496 }
58fb7809 5497
b8698a0f 5498 SCHED_GROUP_P (insn) = 0;
8c660648
JL
5499}
5500
356c23b3
MK
5501/* Return true if scheduling INSN will finish current clock cycle. */
5502static bool
ce1ce33a 5503insn_finishes_cycle_p (rtx_insn *insn)
356c23b3
MK
5504{
5505 if (SCHED_GROUP_P (insn))
5506 /* After issuing INSN, rest of the sched_group will be forced to issue
5507 in order. Don't make any plans for the rest of cycle. */
5508 return true;
5509
5510 /* Finishing the block will, apparently, finish the cycle. */
5511 if (current_sched_info->insn_finishes_block_p
5512 && current_sched_info->insn_finishes_block_p (insn))
5513 return true;
5514
5515 return false;
5516}
5517
613743a2
KT
5518/* Helper for autopref_multipass_init. Given a SET in PAT and whether
5519 we're expecting a memory WRITE or not, check that the insn is relevant to
5520 the autoprefetcher modelling code. Return true iff that is the case.
5521 If it is relevant, record the base register of the memory op in BASE and
5522 the offset in OFFSET. */
5523
5524static bool
5525analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5526{
5527 if (GET_CODE (pat) != SET)
5528 return false;
5529
5530 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5531 if (!MEM_P (mem))
5532 return false;
5533
5534 struct address_info info;
5535 decompose_mem_address (&info, mem);
5536
5537 /* TODO: Currently only (base+const) addressing is supported. */
5538 if (info.base == NULL || !REG_P (*info.base)
5539 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5540 return false;
5541
5542 *base = *info.base;
5543 *offset = info.disp ? INTVAL (*info.disp) : 0;
5544 return true;
5545}
5546
340c7904
MK
5547/* Functions to model cache auto-prefetcher.
5548
5549 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5550 memory prefetches if it sees instructions with consequitive memory accesses
5551 in the instruction stream. Details of such hardware units are not published,
5552 so we can only guess what exactly is going on there.
5553 In the scheduler, we model abstract auto-prefetcher. If there are memory
5554 insns in the ready list (or the queue) that have same memory base, but
5555 different offsets, then we delay the insns with larger offsets until insns
5556 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5557 is "1", then we look at the ready list; if it is N>1, then we also look
5558 through N-1 queue entries.
5559 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5560 among its heuristics.
5561 Param value of "-1" disables modelling of the auto-prefetcher. */
5562
5563/* Initialize autoprefetcher model data for INSN. */
5564static void
5565autopref_multipass_init (const rtx_insn *insn, int write)
5566{
5567 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5568
5569 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5570 data->base = NULL_RTX;
f9f43fb3 5571 data->offset = 0;
340c7904
MK
5572 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5573 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5574
613743a2
KT
5575 rtx pat = PATTERN (insn);
5576
5577 /* We have a multi-set insn like a load-multiple or store-multiple.
5578 We care about these as long as all the memory ops inside the PARALLEL
5579 have the same base register. We care about the minimum and maximum
5580 offsets from that base but don't check for the order of those offsets
5581 within the PARALLEL insn itself. */
5582 if (GET_CODE (pat) == PARALLEL)
5583 {
5584 int n_elems = XVECLEN (pat, 0);
5585
f9f43fb3
WD
5586 int i, offset;
5587 rtx base, prev_base = NULL_RTX;
5588 int min_offset = INT_MAX;
613743a2
KT
5589
5590 for (i = 0; i < n_elems; i++)
5591 {
5592 rtx set = XVECEXP (pat, 0, i);
5593 if (GET_CODE (set) != SET)
5594 return;
5595
613743a2
KT
5596 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5597 return;
5598
613743a2
KT
5599 /* Ensure that all memory operations in the PARALLEL use the same
5600 base register. */
f9f43fb3 5601 if (i > 0 && REGNO (base) != REGNO (prev_base))
613743a2 5602 return;
f9f43fb3
WD
5603 prev_base = base;
5604 min_offset = MIN (min_offset, offset);
613743a2
KT
5605 }
5606
f9f43fb3
WD
5607 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5608 with prev_base as the base and min_offset containing the offset. */
613743a2
KT
5609 gcc_assert (prev_base);
5610 data->base = prev_base;
f9f43fb3 5611 data->offset = min_offset;
613743a2 5612 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
613743a2
KT
5613 return;
5614 }
5615
5616 /* Otherwise this is a single set memory operation. */
340c7904
MK
5617 rtx set = single_set (insn);
5618 if (set == NULL_RTX)
5619 return;
5620
613743a2 5621 if (!analyze_set_insn_for_autopref (set, write, &data->base,
f9f43fb3 5622 &data->offset))
340c7904
MK
5623 return;
5624
613743a2
KT
5625 /* This insn is relevant for the auto-prefetcher.
5626 The base and offset fields will have been filled in the
5627 analyze_set_insn_for_autopref call above. */
5628 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5629}
340c7904 5630
340c7904
MK
5631/* Helper function for rank_for_schedule sorting. */
5632static int
5633autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5634{
ab90c27b
AM
5635 int r = 0;
5636 for (int write = 0; write < 2 && !r; ++write)
340c7904
MK
5637 {
5638 autopref_multipass_data_t data1
5639 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5640 autopref_multipass_data_t data2
5641 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5642
5643 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5644 autopref_multipass_init (insn1, write);
340c7904
MK
5645
5646 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5647 autopref_multipass_init (insn2, write);
340c7904 5648
ab90c27b
AM
5649 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5650 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
340c7904 5651
ab90c27b 5652 if (!irrel1 && !irrel2)
f9f43fb3 5653 r = data1->offset - data2->offset;
ab90c27b
AM
5654 else
5655 r = irrel2 - irrel1;
340c7904
MK
5656 }
5657
ab90c27b 5658 return r;
340c7904
MK
5659}
5660
5661/* True if header of debug dump was printed. */
5662static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5663
5664/* Helper for autopref_multipass_dfa_lookahead_guard.
5665 Return "1" if INSN1 should be delayed in favor of INSN2. */
5666static int
5667autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5668 const rtx_insn *insn2, int write)
5669{
5670 autopref_multipass_data_t data1
5671 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5672 autopref_multipass_data_t data2
5673 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5674
5675 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5676 autopref_multipass_init (insn2, write);
5677 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5678 return 0;
5679
5680 if (rtx_equal_p (data1->base, data2->base)
f9f43fb3 5681 && data1->offset > data2->offset)
340c7904
MK
5682 {
5683 if (sched_verbose >= 2)
5684 {
5685 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5686 {
5687 fprintf (sched_dump,
5688 ";;\t\tnot trying in max_issue due to autoprefetch "
5689 "model: ");
5690 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5691 }
5692
5693 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5694 }
5695
5696 return 1;
5697 }
5698
5699 return 0;
5700}
5701
5702/* General note:
5703
5704 We could have also hooked autoprefetcher model into
5705 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5706 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5707 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5708 unblocked). We don't bother about this yet because target of interest
5709 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5710
5711/* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5712 Return "1" if INSN1 should not be considered in max_issue due to
5713 auto-prefetcher considerations. */
5714int
5715autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5716{
5717 int r = 0;
5718
df554b0e
KT
5719 /* Exit early if the param forbids this or if we're not entering here through
5720 normal haifa scheduling. This can happen if selective scheduling is
5721 explicitly enabled. */
5722 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
340c7904
MK
5723 return 0;
5724
5725 if (sched_verbose >= 2 && ready_index == 0)
5726 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5727
5728 for (int write = 0; write < 2; ++write)
5729 {
5730 autopref_multipass_data_t data1
5731 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5732
5733 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5734 autopref_multipass_init (insn1, write);
5735 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5736 continue;
5737
5738 if (ready_index == 0
5739 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5740 /* We allow only a single delay on priviledged instructions.
5741 Doing otherwise would cause infinite loop. */
5742 {
5743 if (sched_verbose >= 2)
5744 {
5745 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5746 {
5747 fprintf (sched_dump,
5748 ";;\t\tnot trying in max_issue due to autoprefetch "
5749 "model: ");
5750 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5751 }
5752
5753 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5754 }
5755 continue;
5756 }
5757
5758 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5759 {
5760 rtx_insn *insn2 = get_ready_element (i2);
5761 if (insn1 == insn2)
5762 continue;
5763 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5764 if (r)
5765 {
5766 if (ready_index == 0)
5767 {
5768 r = -1;
5769 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5770 }
5771 goto finish;
5772 }
5773 }
5774
5775 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5776 continue;
5777
5778 /* Everything from the current queue slot should have been moved to
5779 the ready list. */
5780 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5781
5782 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5783 if (n_stalls > max_insn_queue_index)
5784 n_stalls = max_insn_queue_index;
5785
5786 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5787 {
5788 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5789 link != NULL_RTX;
5790 link = link->next ())
5791 {
5792 rtx_insn *insn2 = link->insn ();
5793 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5794 write);
5795 if (r)
5796 {
5797 /* Queue INSN1 until INSN2 can issue. */
5798 r = -stalls;
5799 if (ready_index == 0)
5800 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5801 goto finish;
5802 }
5803 }
5804 }
5805 }
5806
5807 finish:
5808 if (sched_verbose >= 2
5809 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5810 && (ready_index == ready.n_ready - 1 || r < 0))
5811 /* This does not /always/ trigger. We don't output EOL if the last
5812 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5813 called. We can live with this. */
5814 fprintf (sched_dump, "\n");
5815
5816 return r;
5817}
5818
894fd6f2
MK
5819/* Define type for target data used in multipass scheduling. */
5820#ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5821# define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5822#endif
5823typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5824
30028c85
VM
5825/* The following structure describe an entry of the stack of choices. */
5826struct choice_entry
5827{
5828 /* Ordinal number of the issued insn in the ready queue. */
5829 int index;
5830 /* The number of the rest insns whose issues we should try. */
5831 int rest;
5832 /* The number of issued essential insns. */
5833 int n;
5834 /* State after issuing the insn. */
5835 state_t state;
894fd6f2
MK
5836 /* Target-specific data. */
5837 first_cycle_multipass_data_t target_data;
30028c85
VM
5838};
5839
5840/* The following array is used to implement a stack of choices used in
5841 function max_issue. */
5842static struct choice_entry *choice_stack;
5843
e855c69d
AB
5844/* This holds the value of the target dfa_lookahead hook. */
5845int dfa_lookahead;
30028c85 5846
880efc46
VM
5847/* The following variable value is maximal number of tries of issuing
5848 insns for the first cycle multipass insn scheduling. We define
5849 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5850 need this constraint if all real insns (with non-negative codes)
5851 had reservations because in this case the algorithm complexity is
5852 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5853 might be incomplete and such insn might occur. For such
5854 descriptions, the complexity of algorithm (without the constraint)
5855 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5856static int max_lookahead_tries;
5857
fae15c93
VM
5858/* The following function returns maximal (or close to maximal) number
5859 of insns which can be issued on the same cycle and one of which
30028c85 5860 insns is insns with the best rank (the first insn in READY). To
fae15c93
VM
5861 make this function tries different samples of ready insns. READY
5862 is current queue `ready'. Global array READY_TRY reflects what
84fabdde 5863 insns are already issued in this try. The function stops immediately,
496d7bb0
MK
5864 if it reached the such a solution, that all instruction can be issued.
5865 INDEX will contain index of the best insn in READY. The following
e855c69d
AB
5866 function is used only for first cycle multipass scheduling.
5867
5868 PRIVILEGED_N >= 0
5869
5870 This function expects recognized insns only. All USEs,
5871 CLOBBERs, etc must be filtered elsewhere. */
5872int
5873max_issue (struct ready_list *ready, int privileged_n, state_t state,
894fd6f2 5874 bool first_cycle_insn_p, int *index)
fae15c93 5875{
84fabdde 5876 int n, i, all, n_ready, best, delay, tries_num;
e855c69d 5877 int more_issue;
30028c85 5878 struct choice_entry *top;
ce1ce33a 5879 rtx_insn *insn;
fae15c93 5880
b16abbcb
BC
5881 if (sched_fusion)
5882 return 0;
5883
e855c69d
AB
5884 n_ready = ready->n_ready;
5885 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5886 && privileged_n <= n_ready);
5887
5888 /* Init MAX_LOOKAHEAD_TRIES. */
8aec463b 5889 if (max_lookahead_tries == 0)
e855c69d 5890 {
e855c69d
AB
5891 max_lookahead_tries = 100;
5892 for (i = 0; i < issue_rate; i++)
5893 max_lookahead_tries *= dfa_lookahead;
5894 }
5895
5896 /* Init max_points. */
e855c69d 5897 more_issue = issue_rate - cycle_issued_insns;
646e6f41 5898 gcc_assert (more_issue >= 0);
e855c69d 5899
e855c69d 5900 /* The number of the issued insns in the best solution. */
fae15c93 5901 best = 0;
e855c69d 5902
30028c85 5903 top = choice_stack;
e855c69d
AB
5904
5905 /* Set initial state of the search. */
5906 memcpy (top->state, state, dfa_state_size);
5907 top->rest = dfa_lookahead;
30028c85 5908 top->n = 0;
894fd6f2
MK
5909 if (targetm.sched.first_cycle_multipass_begin)
5910 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5911 ready_try, n_ready,
5912 first_cycle_insn_p);
e855c69d
AB
5913
5914 /* Count the number of the insns to search among. */
30028c85 5915 for (all = i = 0; i < n_ready; i++)
fae15c93 5916 if (!ready_try [i])
30028c85 5917 all++;
e855c69d 5918
d5c67efd
MK
5919 if (sched_verbose >= 2)
5920 {
5921 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5922 debug_ready_list_1 (ready, ready_try);
5923 }
5924
e855c69d 5925 /* I is the index of the insn to try next. */
30028c85 5926 i = 0;
880efc46 5927 tries_num = 0;
30028c85
VM
5928 for (;;)
5929 {
e855c69d
AB
5930 if (/* If we've reached a dead end or searched enough of what we have
5931 been asked... */
5932 top->rest == 0
84fabdde
JZ
5933 /* or have nothing else to try... */
5934 || i >= n_ready
5935 /* or should not issue more. */
5936 || top->n >= more_issue)
30028c85 5937 {
e855c69d
AB
5938 /* ??? (... || i == n_ready). */
5939 gcc_assert (i <= n_ready);
5940
84fabdde
JZ
5941 /* We should not issue more than issue_rate instructions. */
5942 gcc_assert (top->n <= more_issue);
5943
30028c85
VM
5944 if (top == choice_stack)
5945 break;
e855c69d
AB
5946
5947 if (best < top - choice_stack)
30028c85 5948 {
e855c69d
AB
5949 if (privileged_n)
5950 {
5951 n = privileged_n;
5952 /* Try to find issued privileged insn. */
e84a58ff
EB
5953 while (n && !ready_try[--n])
5954 ;
e855c69d
AB
5955 }
5956
5957 if (/* If all insns are equally good... */
5958 privileged_n == 0
5959 /* Or a privileged insn will be issued. */
5960 || ready_try[n])
5961 /* Then we have a solution. */
5962 {
5963 best = top - choice_stack;
5964 /* This is the index of the insn issued first in this
5965 solution. */
5966 *index = choice_stack [1].index;
84fabdde 5967 if (top->n == more_issue || best == all)
e855c69d
AB
5968 break;
5969 }
30028c85 5970 }
e855c69d
AB
5971
5972 /* Set ready-list index to point to the last insn
5973 ('i++' below will advance it to the next insn). */
30028c85 5974 i = top->index;
e855c69d
AB
5975
5976 /* Backtrack. */
30028c85 5977 ready_try [i] = 0;
894fd6f2
MK
5978
5979 if (targetm.sched.first_cycle_multipass_backtrack)
5980 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5981 ready_try, n_ready);
5982
30028c85 5983 top--;
e855c69d 5984 memcpy (state, top->state, dfa_state_size);
30028c85
VM
5985 }
5986 else if (!ready_try [i])
5987 {
880efc46
VM
5988 tries_num++;
5989 if (tries_num > max_lookahead_tries)
5990 break;
30028c85 5991 insn = ready_element (ready, i);
e855c69d 5992 delay = state_transition (state, insn);
30028c85
VM
5993 if (delay < 0)
5994 {
356c23b3
MK
5995 if (state_dead_lock_p (state)
5996 || insn_finishes_cycle_p (insn))
9d701248
BS
5997 /* We won't issue any more instructions in the next
5998 choice_state. */
30028c85
VM
5999 top->rest = 0;
6000 else
6001 top->rest--;
e855c69d 6002
30028c85 6003 n = top->n;
e855c69d 6004 if (memcmp (top->state, state, dfa_state_size) != 0)
84fabdde 6005 n++;
e855c69d
AB
6006
6007 /* Advance to the next choice_entry. */
30028c85 6008 top++;
e855c69d
AB
6009 /* Initialize it. */
6010 top->rest = dfa_lookahead;
30028c85
VM
6011 top->index = i;
6012 top->n = n;
e855c69d 6013 memcpy (top->state, state, dfa_state_size);
30028c85 6014 ready_try [i] = 1;
894fd6f2
MK
6015
6016 if (targetm.sched.first_cycle_multipass_issue)
6017 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6018 ready_try, n_ready,
6019 insn,
6020 &((top - 1)
6021 ->target_data));
6022
30028c85
VM
6023 i = -1;
6024 }
6025 }
e855c69d
AB
6026
6027 /* Increase ready-list index. */
30028c85
VM
6028 i++;
6029 }
496d7bb0 6030
894fd6f2
MK
6031 if (targetm.sched.first_cycle_multipass_end)
6032 targetm.sched.first_cycle_multipass_end (best != 0
6033 ? &choice_stack[1].target_data
6034 : NULL);
6035
e855c69d 6036 /* Restore the original state of the DFA. */
b8698a0f 6037 memcpy (state, choice_stack->state, dfa_state_size);
e855c69d 6038
fae15c93
VM
6039 return best;
6040}
6041
6042/* The following function chooses insn from READY and modifies
e855c69d 6043 READY. The following function is used only for first
b631c5f7
SP
6044 cycle multipass scheduling.
6045 Return:
6046 -1 if cycle should be advanced,
6047 0 if INSN_PTR is set to point to the desirable insn,
6048 1 if choose_ready () should be restarted without advancing the cycle. */
6049static int
894fd6f2 6050choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
ce1ce33a 6051 rtx_insn **insn_ptr)
fae15c93 6052{
b631c5f7
SP
6053 if (dbg_cnt (sched_insn) == false)
6054 {
06bc63d1
MK
6055 if (nonscheduled_insns_begin == NULL_RTX)
6056 nonscheduled_insns_begin = current_sched_info->prev_head;
6057
ce1ce33a 6058 rtx_insn *insn = first_nonscheduled_insn ();
b631c5f7
SP
6059
6060 if (QUEUE_INDEX (insn) == QUEUE_READY)
6061 /* INSN is in the ready_list. */
6062 {
6063 ready_remove_insn (insn);
6064 *insn_ptr = insn;
6065 return 0;
6066 }
6067
6068 /* INSN is in the queue. Advance cycle to move it to the ready list. */
06bc63d1 6069 gcc_assert (QUEUE_INDEX (insn) >= 0);
b631c5f7
SP
6070 return -1;
6071 }
6072
8aec463b 6073 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
b5b8b0ac 6074 || DEBUG_INSN_P (ready_element (ready, 0)))
b631c5f7 6075 {
ac44248e 6076 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7942e47e
RY
6077 *insn_ptr = ready_remove_first_dispatch (ready);
6078 else
6079 *insn_ptr = ready_remove_first (ready);
6080
b631c5f7
SP
6081 return 0;
6082 }
fae15c93
VM
6083 else
6084 {
4960a0cb 6085 /* Try to choose the best insn. */
16d83dd6 6086 int index = 0, i;
ce1ce33a 6087 rtx_insn *insn;
b8698a0f 6088
30028c85
VM
6089 insn = ready_element (ready, 0);
6090 if (INSN_CODE (insn) < 0)
b631c5f7
SP
6091 {
6092 *insn_ptr = ready_remove_first (ready);
6093 return 0;
6094 }
496d7bb0 6095
4960a0cb
MK
6096 /* Filter the search space. */
6097 for (i = 0; i < ready->n_ready; i++)
496d7bb0 6098 {
4960a0cb 6099 ready_try[i] = 0;
496d7bb0 6100
4960a0cb 6101 insn = ready_element (ready, i);
496d7bb0 6102
4960a0cb
MK
6103 /* If this insn is recognizable we should have already
6104 recognized it earlier.
6105 ??? Not very clear where this is supposed to be done.
6106 See dep_cost_1. */
6107 gcc_checking_assert (INSN_CODE (insn) >= 0
6108 || recog_memoized (insn) < 0);
6109 if (INSN_CODE (insn) < 0)
6110 {
6111 /* Non-recognized insns at position 0 are handled above. */
6112 gcc_assert (i > 0);
6113 ready_try[i] = 1;
6114 continue;
6115 }
6116
6117 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6118 {
6119 ready_try[i]
6120 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6121 (insn, i));
6122
6123 if (ready_try[i] < 0)
6124 /* Queue instruction for several cycles.
6125 We need to restart choose_ready as we have changed
6126 the ready list. */
6127 {
6128 change_queue_index (insn, -ready_try[i]);
6129 return 1;
6130 }
6131
6132 /* Make sure that we didn't end up with 0'th insn filtered out.
6133 Don't be tempted to make life easier for backends and just
6134 requeue 0'th insn if (ready_try[0] == 0) and restart
6135 choose_ready. Backends should be very considerate about
6136 requeueing instructions -- especially the highest priority
6137 one at position 0. */
6138 gcc_assert (ready_try[i] == 0 || i > 0);
6139 if (ready_try[i])
6140 continue;
6141 }
6142
6143 gcc_assert (ready_try[i] == 0);
6144 /* INSN made it through the scrutiny of filters! */
6145 }
e855c69d 6146
894fd6f2 6147 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
b631c5f7
SP
6148 {
6149 *insn_ptr = ready_remove_first (ready);
9c575182 6150 if (sched_verbose >= 4)
b8698a0f 6151 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
9c575182 6152 (*current_sched_info->print_insn) (*insn_ptr, 0));
b631c5f7
SP
6153 return 0;
6154 }
fae15c93 6155 else
b631c5f7 6156 {
b8698a0f 6157 if (sched_verbose >= 4)
e855c69d
AB
6158 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6159 (*current_sched_info->print_insn)
6160 (ready_element (ready, index), 0));
b8698a0f 6161
b631c5f7
SP
6162 *insn_ptr = ready_remove (ready, index);
6163 return 0;
6164 }
fae15c93
VM
6165 }
6166}
6167
86014d07
BS
6168/* This function is called when we have successfully scheduled a
6169 block. It uses the schedule stored in the scheduled_insns vector
6170 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6171 append the scheduled insns; TAIL is the insn after the scheduled
6172 block. TARGET_BB is the argument passed to schedule_block. */
6173
6174static void
f57aa6b0 6175commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
86014d07 6176{
9b69cf83 6177 unsigned int i;
ce1ce33a 6178 rtx_insn *insn;
86014d07
BS
6179
6180 last_scheduled_insn = prev_head;
9b69cf83 6181 for (i = 0;
9771b263 6182 scheduled_insns.iterate (i, &insn);
9b69cf83 6183 i++)
86014d07 6184 {
86014d07
BS
6185 if (control_flow_insn_p (last_scheduled_insn)
6186 || current_sched_info->advance_target_bb (*target_bb, insn))
6187 {
6188 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6189
6190 if (sched_verbose)
6191 {
f57aa6b0 6192 rtx_insn *x;
86014d07
BS
6193
6194 x = next_real_insn (last_scheduled_insn);
6195 gcc_assert (x);
6196 dump_new_block_header (1, *target_bb, x, tail);
6197 }
6198
6199 last_scheduled_insn = bb_note (*target_bb);
6200 }
6201
6202 if (current_sched_info->begin_move_insn)
6203 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6204 move_insn (insn, last_scheduled_insn,
6205 current_sched_info->next_tail);
6206 if (!DEBUG_INSN_P (insn))
6207 reemit_notes (insn);
6208 last_scheduled_insn = insn;
6209 }
6210
9771b263 6211 scheduled_insns.truncate (0);
86014d07
BS
6212}
6213
9d701248
BS
6214/* Examine all insns on the ready list and queue those which can't be
6215 issued in this cycle. TEMP_STATE is temporary scheduler state we
6216 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6217 have been issued for the current cycle, which means it is valid to
26965010
BS
6218 issue an asm statement.
6219
6220 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
06d7e8e7
BS
6221 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6222 we only leave insns which have an INSN_EXACT_TICK. */
9d701248
BS
6223
6224static void
26965010 6225prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
06d7e8e7 6226 bool shadows_only_p, bool modulo_epilogue_p)
9d701248 6227{
05641603 6228 int i, pass;
b75f962c 6229 bool sched_group_found = false;
e9593da8 6230 int min_cost_group = 0;
9d701248 6231
b16abbcb
BC
6232 if (sched_fusion)
6233 return;
6234
9d701248
BS
6235 for (i = 0; i < ready.n_ready; i++)
6236 {
ce1ce33a 6237 rtx_insn *insn = ready_element (&ready, i);
05641603 6238 if (SCHED_GROUP_P (insn))
b75f962c
BS
6239 {
6240 sched_group_found = true;
05641603 6241 break;
b75f962c 6242 }
05641603 6243 }
b75f962c 6244
05641603 6245 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
e9593da8
JW
6246 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6247 gets queued, then all other insns get queued for one cycle later. */
05641603
BS
6248 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6249 {
6250 int n = ready.n_ready;
6251 for (i = 0; i < n; i++)
9d701248 6252 {
ce1ce33a 6253 rtx_insn *insn = ready_element (&ready, i);
05641603
BS
6254 int cost = 0;
6255 const char *reason = "resource conflict";
26965010 6256
05641603
BS
6257 if (DEBUG_INSN_P (insn))
6258 continue;
6259
e9593da8
JW
6260 if (sched_group_found && !SCHED_GROUP_P (insn)
6261 && ((pass == 0) || (min_cost_group >= 1)))
05641603
BS
6262 {
6263 if (pass == 0)
6264 continue;
6265 cost = min_cost_group;
6266 reason = "not in sched group";
6267 }
6268 else if (modulo_epilogue_p
6269 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6270 {
6271 cost = max_insn_queue_index;
6272 reason = "not an epilogue insn";
6273 }
6274 else if (shadows_only_p && !SHADOW_P (insn))
26965010 6275 {
05641603
BS
6276 cost = 1;
6277 reason = "not a shadow";
6278 }
6279 else if (recog_memoized (insn) < 0)
6280 {
6281 if (!first_cycle_insn_p
6282 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6283 || asm_noperands (PATTERN (insn)) >= 0))
6284 cost = 1;
6285 reason = "asm";
6286 }
7a1aca9c
RS
6287 else if (sched_pressure != SCHED_PRESSURE_NONE)
6288 {
6289 if (sched_pressure == SCHED_PRESSURE_MODEL
6290 && INSN_TICK (insn) <= clock_var)
6291 {
6292 memcpy (temp_state, curr_state, dfa_state_size);
6293 if (state_transition (temp_state, insn) >= 0)
6294 INSN_TICK (insn) = clock_var + 1;
6295 }
6296 cost = 0;
6297 }
05641603
BS
6298 else
6299 {
6300 int delay_cost = 0;
6301
c203e8a7 6302 if (delay_htab)
26965010 6303 {
05641603
BS
6304 struct delay_pair *delay_entry;
6305 delay_entry
c203e8a7
TS
6306 = delay_htab->find_with_hash (insn,
6307 htab_hash_pointer (insn));
05641603
BS
6308 while (delay_entry && delay_cost == 0)
6309 {
6310 delay_cost = estimate_shadow_tick (delay_entry);
6311 if (delay_cost > max_insn_queue_index)
6312 delay_cost = max_insn_queue_index;
6313 delay_entry = delay_entry->next_same_i1;
6314 }
26965010 6315 }
26965010 6316
05641603
BS
6317 memcpy (temp_state, curr_state, dfa_state_size);
6318 cost = state_transition (temp_state, insn);
6319 if (cost < 0)
6320 cost = 0;
6321 else if (cost == 0)
6322 cost = 1;
6323 if (cost < delay_cost)
6324 {
6325 cost = delay_cost;
6326 reason = "shadow tick";
6327 }
6328 }
6329 if (cost >= 1)
26965010 6330 {
05641603
BS
6331 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6332 min_cost_group = cost;
6333 ready_remove (&ready, i);
3f9b5ffb
JL
6334 /* Normally we'd want to queue INSN for COST cycles. However,
6335 if SCHED_GROUP_P is set, then we must ensure that nothing
6336 else comes between INSN and its predecessor. If there is
6337 some other insn ready to fire on the next cycle, then that
6338 invariant would be broken.
6339
6340 So when SCHED_GROUP_P is set, just queue this insn for a
6341 single cycle. */
6342 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
05641603
BS
6343 if (i + 1 < n)
6344 break;
26965010 6345 }
9d701248 6346 }
05641603
BS
6347 if (i == n)
6348 pass++;
9d701248
BS
6349 }
6350}
6351
26965010
BS
6352/* Called when we detect that the schedule is impossible. We examine the
6353 backtrack queue to find the earliest insn that caused this condition. */
6354
6355static struct haifa_saved_data *
6356verify_shadows (void)
6357{
6358 struct haifa_saved_data *save, *earliest_fail = NULL;
6359 for (save = backtrack_queue; save; save = save->next)
6360 {
6361 int t;
6362 struct delay_pair *pair = save->delay_pair;
f57aa6b0 6363 rtx_insn *i1 = pair->i1;
26965010
BS
6364
6365 for (; pair; pair = pair->next_same_i1)
6366 {
f57aa6b0 6367 rtx_insn *i2 = pair->i2;
26965010
BS
6368
6369 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6370 continue;
6371
6372 t = INSN_TICK (i1) + pair_delay (pair);
6373 if (t < clock_var)
6374 {
6375 if (sched_verbose >= 2)
6376 fprintf (sched_dump,
6377 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6378 ", not ready\n",
6379 INSN_UID (pair->i1), INSN_UID (pair->i2),
6380 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6381 earliest_fail = save;
6382 break;
6383 }
6384 if (QUEUE_INDEX (i2) >= 0)
6385 {
6386 int queued_for = INSN_TICK (i2);
6387
6388 if (t < queued_for)
6389 {
6390 if (sched_verbose >= 2)
6391 fprintf (sched_dump,
6392 ";;\t\tfailed delay requirements for %d/%d"
6393 " (%d->%d), queued too late\n",
6394 INSN_UID (pair->i1), INSN_UID (pair->i2),
6395 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6396 earliest_fail = save;
6397 break;
6398 }
6399 }
6400 }
6401 }
6402
6403 return earliest_fail;
6404}
6405
d5c67efd
MK
6406/* Print instructions together with useful scheduling information between
6407 HEAD and TAIL (inclusive). */
6408static void
f57aa6b0 6409dump_insn_stream (rtx_insn *head, rtx_insn *tail)
d5c67efd
MK
6410{
6411 fprintf (sched_dump, ";;\t| insn | prio |\n");
6412
f57aa6b0
DM
6413 rtx_insn *next_tail = NEXT_INSN (tail);
6414 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
d5c67efd
MK
6415 {
6416 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6417 const char *pattern = (NOTE_P (insn)
6418 ? "note"
6419 : str_pattern_slim (PATTERN (insn)));
6420
6421 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6422 INSN_UID (insn), priority, pattern);
6423
6424 if (sched_verbose >= 4)
6425 {
81e63b63 6426 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
d5c67efd
MK
6427 fprintf (sched_dump, "nothing");
6428 else
6429 print_reservation (sched_dump, insn);
6430 }
6431 fprintf (sched_dump, "\n");
6432 }
6433}
6434
496d7bb0
MK
6435/* Use forward list scheduling to rearrange insns of block pointed to by
6436 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6437 region. */
8c660648 6438
06d7e8e7 6439bool
975ccf22 6440schedule_block (basic_block *target_bb, state_t init_state)
8c660648 6441{
894fd6f2 6442 int i;
06d7e8e7 6443 bool success = modulo_ii == 0;
51564684 6444 struct sched_block_state ls;
fae15c93 6445 state_t temp_state = NULL; /* It is used for multipass scheduling. */
58fb7809 6446 int sort_p, advance, start_clock_var;
8c660648 6447
63de6c74 6448 /* Head/tail info for this block. */
ce1ce33a 6449 rtx_insn *prev_head = current_sched_info->prev_head;
dc01c3d1 6450 rtx_insn *next_tail = current_sched_info->next_tail;
ce1ce33a
DM
6451 rtx_insn *head = NEXT_INSN (prev_head);
6452 rtx_insn *tail = PREV_INSN (next_tail);
8c660648 6453
4f66c9bc 6454 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
b16abbcb 6455 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
1a83e602
BS
6456 find_modifiable_mems (head, tail);
6457
484df988
JL
6458 /* We used to have code to avoid getting parameters moved from hard
6459 argument registers into pseudos.
8c660648 6460
484df988
JL
6461 However, it was removed when it proved to be of marginal benefit
6462 and caused problems because schedule_block and compute_forward_dependences
6463 had different notions of what the "head" insn was. */
8c660648 6464
535a42b1 6465 gcc_assert (head != tail || INSN_P (head));
8c660648 6466
e2f6ff94 6467 haifa_recovery_bb_recently_added_p = false;
496d7bb0 6468
26965010
BS
6469 backtrack_queue = NULL;
6470
63de6c74 6471 /* Debug info. */
8c660648 6472 if (sched_verbose)
d5c67efd
MK
6473 {
6474 dump_new_block_header (0, *target_bb, head, tail);
6475
6476 if (sched_verbose >= 2)
4bd12f3d
MK
6477 {
6478 dump_insn_stream (head, tail);
6479 memset (&rank_for_schedule_stats, 0,
6480 sizeof (rank_for_schedule_stats));
6481 }
d5c67efd 6482 }
8c660648 6483
975ccf22
BS
6484 if (init_state == NULL)
6485 state_reset (curr_state);
6486 else
6487 memcpy (curr_state, init_state, dfa_state_size);
8c660648 6488
e855c69d 6489 /* Clear the ready list. */
176f9a7b 6490 ready.first = ready.veclen - 1;
176f9a7b 6491 ready.n_ready = 0;
b5b8b0ac 6492 ready.n_debug = 0;
8c660648 6493
fa0aee89
PB
6494 /* It is used for first cycle multipass scheduling. */
6495 temp_state = alloca (dfa_state_size);
fae15c93 6496
38f8b050
JR
6497 if (targetm.sched.init)
6498 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
e4da5f6d 6499
89076bb3 6500 /* We start inserting insns after PREV_HEAD. */
06bc63d1 6501 last_scheduled_insn = prev_head;
90831096 6502 last_nondebug_scheduled_insn = NULL;
ce1ce33a 6503 nonscheduled_insns_begin = NULL;
8c660648 6504
b5b8b0ac 6505 gcc_assert ((NOTE_P (last_scheduled_insn)
a59d15cf 6506 || DEBUG_INSN_P (last_scheduled_insn))
496d7bb0
MK
6507 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6508
1708fd40
BS
6509 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6510 queue. */
8c660648
JL
6511 q_ptr = 0;
6512 q_size = 0;
fae15c93 6513
3dc99c19 6514 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
fa0aee89 6515 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
8c660648 6516
197043f5
RH
6517 /* Start just before the beginning of time. */
6518 clock_var = -1;
63f54b1a 6519
b8698a0f 6520 /* We need queue and ready lists and clock_var be initialized
63f54b1a
MK
6521 in try_ready () (which is called through init_ready_list ()). */
6522 (*current_sched_info->init_ready_list) ();
6523
4dd9ac6c
MK
6524 if (sched_pressure)
6525 sched_pressure_start_bb (*target_bb);
7a1aca9c 6526
6f8dd94b
EB
6527 /* The algorithm is O(n^2) in the number of ready insns at any given
6528 time in the worst case. Before reload we are more likely to have
6529 big lists so truncate them to a reasonable size. */
b5b8b0ac
AO
6530 if (!reload_completed
6531 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6f8dd94b 6532 {
696d5fa1
MK
6533 ready_sort_debug (&ready);
6534 ready_sort_real (&ready);
6f8dd94b 6535
b5b8b0ac
AO
6536 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6537 If there are debug insns, we know they're first. */
6538 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6f8dd94b
EB
6539 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6540 break;
6541
6542 if (sched_verbose >= 2)
6543 {
6544 fprintf (sched_dump,
696d5fa1
MK
6545 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6546 debug_ready_list (&ready);
6f8dd94b
EB
6547 fprintf (sched_dump,
6548 ";;\t\t before reload => truncated to %d insns\n", i);
6549 }
6550
b631c5f7
SP
6551 /* Delay all insns past it for 1 cycle. If debug counter is
6552 activated make an exception for the insn right after
9b69cf83 6553 nonscheduled_insns_begin. */
b631c5f7 6554 {
ce1ce33a 6555 rtx_insn *skip_insn;
b631c5f7
SP
6556
6557 if (dbg_cnt (sched_insn) == false)
06bc63d1 6558 skip_insn = first_nonscheduled_insn ();
b631c5f7 6559 else
ce1ce33a 6560 skip_insn = NULL;
b631c5f7
SP
6561
6562 while (i < ready.n_ready)
6563 {
ce1ce33a 6564 rtx_insn *insn;
b631c5f7
SP
6565
6566 insn = ready_remove (&ready, i);
6567
6568 if (insn != skip_insn)
ec4efea9 6569 queue_insn (insn, 1, "list truncated");
b631c5f7 6570 }
9b69cf83
BS
6571 if (skip_insn)
6572 ready_add (&ready, skip_insn, true);
b631c5f7 6573 }
6f8dd94b
EB
6574 }
6575
496d7bb0
MK
6576 /* Now we can restore basic block notes and maintain precise cfg. */
6577 restore_bb_notes (*target_bb);
6578
63f54b1a
MK
6579 last_clock_var = -1;
6580
58fb7809 6581 advance = 0;
197043f5 6582
9771b263 6583 gcc_assert (scheduled_insns.length () == 0);
30028c85 6584 sort_p = TRUE;
26965010 6585 must_backtrack = false;
06d7e8e7
BS
6586 modulo_insns_scheduled = 0;
6587
6588 ls.modulo_epilogue = false;
f50d71ec 6589 ls.first_cycle_insn_p = true;
26965010 6590
63de6c74 6591 /* Loop until all the insns in BB are scheduled. */
1708fd40 6592 while ((*current_sched_info->schedule_more_p) ())
8c660648 6593 {
1a83e602 6594 perform_replacements_new_cycle ();
58fb7809 6595 do
8c660648 6596 {
58fb7809
VM
6597 start_clock_var = clock_var;
6598
6599 clock_var++;
1d088dee 6600
58fb7809 6601 advance_one_cycle ();
1d088dee 6602
58fb7809
VM
6603 /* Add to the ready list all pending insns that can be issued now.
6604 If there are no ready insns, increment clock until one
6605 is ready and add all pending insns at that point to the ready
6606 list. */
6607 queue_to_ready (&ready);
1d088dee 6608
535a42b1 6609 gcc_assert (ready.n_ready);
1d088dee 6610
58fb7809
VM
6611 if (sched_verbose >= 2)
6612 {
d5c67efd 6613 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
58fb7809
VM
6614 debug_ready_list (&ready);
6615 }
6616 advance -= clock_var - start_clock_var;
8c660648 6617 }
58fb7809 6618 while (advance > 0);
8c660648 6619
06d7e8e7
BS
6620 if (ls.modulo_epilogue)
6621 {
6622 int stage = clock_var / modulo_ii;
6623 if (stage > modulo_last_stage * 2 + 2)
6624 {
6625 if (sched_verbose >= 2)
6626 fprintf (sched_dump,
6627 ";;\t\tmodulo scheduled succeeded at II %d\n",
6628 modulo_ii);
6629 success = true;
6630 goto end_schedule;
6631 }
6632 }
6633 else if (modulo_ii > 0)
6634 {
6635 int stage = clock_var / modulo_ii;
6636 if (stage > modulo_max_stages)
6637 {
6638 if (sched_verbose >= 2)
6639 fprintf (sched_dump,
6640 ";;\t\tfailing schedule due to excessive stages\n");
6641 goto end_schedule;
6642 }
6643 if (modulo_n_insns == modulo_insns_scheduled
6644 && stage > modulo_last_stage)
6645 {
6646 if (sched_verbose >= 2)
6647 fprintf (sched_dump,
6648 ";;\t\tfound kernel after %d stages, II %d\n",
6649 stage, modulo_ii);
6650 ls.modulo_epilogue = true;
6651 }
6652 }
6653
6654 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
9d701248 6655 if (ready.n_ready == 0)
7b1ac803 6656 continue;
26965010
BS
6657 if (must_backtrack)
6658 goto do_backtrack;
9d701248 6659
26965010 6660 ls.shadows_only_p = false;
7b1ac803 6661 cycle_issued_insns = 0;
51564684 6662 ls.can_issue_more = issue_rate;
7b1ac803 6663 for (;;)
30028c85 6664 {
ce1ce33a 6665 rtx_insn *insn;
7b1ac803 6666 int cost;
26965010 6667 bool asm_p;
1d088dee 6668
7b1ac803 6669 if (sort_p && ready.n_ready > 0)
30028c85 6670 {
7b1ac803
BS
6671 /* Sort the ready list based on priority. This must be
6672 done every iteration through the loop, as schedule_insn
6673 may have readied additional insns that will not be
6674 sorted correctly. */
6675 ready_sort (&ready);
6676
6677 if (sched_verbose >= 2)
6678 {
d5c67efd
MK
6679 fprintf (sched_dump,
6680 ";;\t\tReady list after ready_sort: ");
7b1ac803
BS
6681 debug_ready_list (&ready);
6682 }
30028c85 6683 }
197043f5 6684
7b1ac803
BS
6685 /* We don't want md sched reorder to even see debug isns, so put
6686 them out right away. */
6687 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6688 && (*current_sched_info->schedule_more_p) ())
b5b8b0ac 6689 {
7b1ac803
BS
6690 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6691 {
ce1ce33a 6692 rtx_insn *insn = ready_remove_first (&ready);
7b1ac803
BS
6693 gcc_assert (DEBUG_INSN_P (insn));
6694 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 6695 scheduled_insns.safe_push (insn);
7b1ac803
BS
6696 last_scheduled_insn = insn;
6697 advance = schedule_insn (insn);
6698 gcc_assert (advance == 0);
6699 if (ready.n_ready > 0)
6700 ready_sort (&ready);
6701 }
b5b8b0ac
AO
6702 }
6703
51564684 6704 if (ls.first_cycle_insn_p && !ready.n_ready)
7b1ac803 6705 break;
e1306f49 6706
26965010 6707 resume_after_backtrack:
7b1ac803
BS
6708 /* Allow the target to reorder the list, typically for
6709 better instruction bundling. */
6710 if (sort_p
6711 && (ready.n_ready == 0
6712 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6713 {
51564684
BS
6714 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6715 ls.can_issue_more
7b1ac803
BS
6716 = targetm.sched.reorder (sched_dump, sched_verbose,
6717 ready_lastpos (&ready),
6718 &ready.n_ready, clock_var);
51564684
BS
6719 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6720 ls.can_issue_more
7b1ac803
BS
6721 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6722 ready.n_ready
6723 ? ready_lastpos (&ready) : NULL,
6724 &ready.n_ready, clock_var);
6725 }
fae15c93 6726
7b1ac803 6727 restart_choose_ready:
6d0de005 6728 if (sched_verbose >= 2)
fae15c93 6729 {
496d7bb0 6730 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
fae15c93
VM
6731 clock_var);
6732 debug_ready_list (&ready);
60867e8c 6733 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
ce18efcb 6734 print_curr_reg_pressure ();
fae15c93
VM
6735 }
6736
b8698a0f 6737 if (ready.n_ready == 0
51564684 6738 && ls.can_issue_more
b8698a0f 6739 && reload_completed)
fae15c93 6740 {
fa0aee89
PB
6741 /* Allow scheduling insns directly from the queue in case
6742 there's nothing better to do (ready list is empty) but
6743 there are still vacant dispatch slots in the current cycle. */
6744 if (sched_verbose >= 6)
62e5bf5d 6745 fprintf (sched_dump,";;\t\tSecond chance\n");
fa0aee89
PB
6746 memcpy (temp_state, curr_state, dfa_state_size);
6747 if (early_queue_to_ready (temp_state, &ready))
6748 ready_sort (&ready);
fae15c93 6749 }
569fa502 6750
b5b8b0ac 6751 if (ready.n_ready == 0
51564684 6752 || !ls.can_issue_more
fa0aee89
PB
6753 || state_dead_lock_p (curr_state)
6754 || !(*current_sched_info->schedule_more_p) ())
6755 break;
1d088dee 6756
fa0aee89
PB
6757 /* Select and remove the insn from the ready list. */
6758 if (sort_p)
496d7bb0 6759 {
b631c5f7
SP
6760 int res;
6761
ce1ce33a 6762 insn = NULL;
51564684 6763 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
b631c5f7
SP
6764
6765 if (res < 0)
6766 /* Finish cycle. */
6767 break;
6768 if (res > 0)
7b1ac803 6769 goto restart_choose_ready;
b631c5f7
SP
6770
6771 gcc_assert (insn != NULL_RTX);
496d7bb0 6772 }
fa0aee89
PB
6773 else
6774 insn = ready_remove_first (&ready);
1d088dee 6775
7a1aca9c 6776 if (sched_pressure != SCHED_PRESSURE_NONE
60867e8c 6777 && INSN_TICK (insn) > clock_var)
ce18efcb
VM
6778 {
6779 ready_add (&ready, insn, true);
6780 advance = 1;
6781 break;
6782 }
6783
fa0aee89
PB
6784 if (targetm.sched.dfa_new_cycle
6785 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6786 insn, last_clock_var,
6787 clock_var, &sort_p))
63f54b1a
MK
6788 /* SORT_P is used by the target to override sorting
6789 of the ready list. This is needed when the target
6790 has modified its internal structures expecting that
6791 the insn will be issued next. As we need the insn
6792 to have the highest priority (so it will be returned by
6793 the ready_remove_first call above), we invoke
6794 ready_add (&ready, insn, true).
b8698a0f
L
6795 But, still, there is one issue: INSN can be later
6796 discarded by scheduler's front end through
63f54b1a 6797 current_sched_info->can_schedule_ready_p, hence, won't
b8698a0f 6798 be issued next. */
fa0aee89 6799 {
63f54b1a
MK
6800 ready_add (&ready, insn, true);
6801 break;
fa0aee89 6802 }
1d088dee 6803
fa0aee89 6804 sort_p = TRUE;
e1306f49 6805
496d7bb0
MK
6806 if (current_sched_info->can_schedule_ready_p
6807 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6808 /* We normally get here only if we don't want to move
6809 insn from the split block. */
6810 {
1a83e602 6811 TODO_SPEC (insn) = DEP_POSTPONED;
7b1ac803 6812 goto restart_choose_ready;
496d7bb0
MK
6813 }
6814
c203e8a7 6815 if (delay_htab)
26965010
BS
6816 {
6817 /* If this insn is the first part of a delay-slot pair, record a
6818 backtrack point. */
6819 struct delay_pair *delay_entry;
6820 delay_entry
c203e8a7 6821 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
26965010
BS
6822 if (delay_entry)
6823 {
6824 save_backtrack_point (delay_entry, ls);
6825 if (sched_verbose >= 2)
6826 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6827 }
6828 }
6829
b8698a0f
L
6830 /* DECISION is made. */
6831
06d7e8e7
BS
6832 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6833 {
6834 modulo_insns_scheduled++;
6835 modulo_last_stage = clock_var / modulo_ii;
6836 }
496d7bb0
MK
6837 if (TODO_SPEC (insn) & SPECULATIVE)
6838 generate_recovery_code (insn);
6839
ac44248e 6840 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7942e47e
RY
6841 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6842
86014d07
BS
6843 /* Update counters, etc in the scheduler's front end. */
6844 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 6845 scheduled_insns.safe_push (insn);
5c24671b
AO
6846 gcc_assert (NONDEBUG_INSN_P (insn));
6847 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
b8698a0f 6848
9d701248
BS
6849 if (recog_memoized (insn) >= 0)
6850 {
fca96842 6851 memcpy (temp_state, curr_state, dfa_state_size);
9d701248 6852 cost = state_transition (curr_state, insn);
b16abbcb 6853 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
9d701248 6854 gcc_assert (cost < 0);
fca96842
BS
6855 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6856 cycle_issued_insns++;
9d701248
BS
6857 asm_p = false;
6858 }
6859 else
6860 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6861 || asm_noperands (PATTERN (insn)) >= 0);
1d088dee 6862
c237e94a 6863 if (targetm.sched.variable_issue)
51564684 6864 ls.can_issue_more =
5fd9b178 6865 targetm.sched.variable_issue (sched_dump, sched_verbose,
51564684 6866 insn, ls.can_issue_more);
85d69216
JL
6867 /* A naked CLOBBER or USE generates no instruction, so do
6868 not count them against the issue rate. */
6869 else if (GET_CODE (PATTERN (insn)) != USE
6870 && GET_CODE (PATTERN (insn)) != CLOBBER)
51564684 6871 ls.can_issue_more--;
63f54b1a 6872 advance = schedule_insn (insn);
d57f1617 6873
26965010
BS
6874 if (SHADOW_P (insn))
6875 ls.shadows_only_p = true;
6876
d57f1617
VM
6877 /* After issuing an asm insn we should start a new cycle. */
6878 if (advance == 0 && asm_p)
6879 advance = 1;
26965010
BS
6880
6881 if (must_backtrack)
6882 break;
6883
58fb7809
VM
6884 if (advance != 0)
6885 break;
8c660648 6886
51564684 6887 ls.first_cycle_insn_p = false;
30028c85 6888 if (ready.n_ready > 0)
06d7e8e7
BS
6889 prune_ready_list (temp_state, false, ls.shadows_only_p,
6890 ls.modulo_epilogue);
b4ead7d4 6891 }
8c660648 6892
26965010
BS
6893 do_backtrack:
6894 if (!must_backtrack)
6895 for (i = 0; i < ready.n_ready; i++)
6896 {
f57aa6b0 6897 rtx_insn *insn = ready_element (&ready, i);
26965010
BS
6898 if (INSN_EXACT_TICK (insn) == clock_var)
6899 {
6900 must_backtrack = true;
6901 clock_var++;
6902 break;
6903 }
6904 }
06d7e8e7
BS
6905 if (must_backtrack && modulo_ii > 0)
6906 {
6907 if (modulo_backtracks_left == 0)
6908 goto end_schedule;
6909 modulo_backtracks_left--;
6910 }
26965010
BS
6911 while (must_backtrack)
6912 {
6913 struct haifa_saved_data *failed;
ce1ce33a 6914 rtx_insn *failed_insn;
26965010
BS
6915
6916 must_backtrack = false;
6917 failed = verify_shadows ();
6918 gcc_assert (failed);
6919
6920 failed_insn = failed->delay_pair->i1;
1a83e602
BS
6921 /* Clear these queues. */
6922 perform_replacements_new_cycle ();
e2724e63 6923 toggle_cancelled_flags (false);
26965010
BS
6924 unschedule_insns_until (failed_insn);
6925 while (failed != backtrack_queue)
6926 free_topmost_backtrack_point (true);
6927 restore_last_backtrack_point (&ls);
6928 if (sched_verbose >= 2)
6929 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6930 /* Delay by at least a cycle. This could cause additional
6931 backtracking. */
6932 queue_insn (failed_insn, 1, "backtracked");
6933 advance = 0;
6934 if (must_backtrack)
6935 continue;
6936 if (ready.n_ready > 0)
6937 goto resume_after_backtrack;
6938 else
6939 {
6940 if (clock_var == 0 && ls.first_cycle_insn_p)
6941 goto end_schedule;
6942 advance = 1;
6943 break;
6944 }
6945 }
f50d71ec 6946 ls.first_cycle_insn_p = true;
26965010 6947 }
06d7e8e7
BS
6948 if (ls.modulo_epilogue)
6949 success = true;
26965010 6950 end_schedule:
2fb5f0da 6951 if (!ls.first_cycle_insn_p || advance)
f50d71ec 6952 advance_one_cycle ();
1a83e602 6953 perform_replacements_new_cycle ();
06d7e8e7
BS
6954 if (modulo_ii > 0)
6955 {
6956 /* Once again, debug insn suckiness: they can be on the ready list
6957 even if they have unresolved dependencies. To make our view
6958 of the world consistent, remove such "ready" insns. */
6959 restart_debug_insn_loop:
6960 for (i = ready.n_ready - 1; i >= 0; i--)
6961 {
f57aa6b0 6962 rtx_insn *x;
06d7e8e7
BS
6963
6964 x = ready_element (&ready, i);
6965 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6966 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6967 {
6968 ready_remove (&ready, i);
6969 goto restart_debug_insn_loop;
6970 }
6971 }
6972 for (i = ready.n_ready - 1; i >= 0; i--)
6973 {
ce1ce33a 6974 rtx_insn *x;
06d7e8e7
BS
6975
6976 x = ready_element (&ready, i);
6977 resolve_dependencies (x);
6978 }
6979 for (i = 0; i <= max_insn_queue_index; i++)
6980 {
3dc99c19 6981 rtx_insn_list *link;
06d7e8e7
BS
6982 while ((link = insn_queue[i]) != NULL)
6983 {
3dc99c19
DM
6984 rtx_insn *x = link->insn ();
6985 insn_queue[i] = link->next ();
06d7e8e7
BS
6986 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6987 free_INSN_LIST_node (link);
6988 resolve_dependencies (x);
6989 }
6990 }
6991 }
6992
1a83e602
BS
6993 if (!success)
6994 undo_all_replacements ();
6995
b4ead7d4
BS
6996 /* Debug info. */
6997 if (sched_verbose)
6998 {
6999 fprintf (sched_dump, ";;\tReady list (final): ");
7000 debug_ready_list (&ready);
b4ead7d4 7001 }
8c660648 7002
06d7e8e7 7003 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
63f54b1a
MK
7004 /* Sanity check -- queue must be empty now. Meaningless if region has
7005 multiple bbs. */
b5b8b0ac 7006 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
06d7e8e7 7007 else if (modulo_ii == 0)
30028c85 7008 {
63f54b1a
MK
7009 /* We must maintain QUEUE_INDEX between blocks in region. */
7010 for (i = ready.n_ready - 1; i >= 0; i--)
496d7bb0 7011 {
f57aa6b0 7012 rtx_insn *x;
b8698a0f 7013
496d7bb0
MK
7014 x = ready_element (&ready, i);
7015 QUEUE_INDEX (x) = QUEUE_NOWHERE;
b953c2b8 7016 TODO_SPEC (x) = HARD_DEP;
496d7bb0 7017 }
63f54b1a 7018
b8698a0f 7019 if (q_size)
63f54b1a
MK
7020 for (i = 0; i <= max_insn_queue_index; i++)
7021 {
96b70414
DM
7022 rtx_insn_list *link;
7023 for (link = insn_queue[i]; link; link = link->next ())
496d7bb0 7024 {
f57aa6b0 7025 rtx_insn *x;
496d7bb0 7026
96b70414 7027 x = link->insn ();
496d7bb0 7028 QUEUE_INDEX (x) = QUEUE_NOWHERE;
b953c2b8 7029 TODO_SPEC (x) = HARD_DEP;
496d7bb0 7030 }
63f54b1a
MK
7031 free_INSN_LIST_list (&insn_queue[i]);
7032 }
496d7bb0 7033 }
1d088dee 7034
7a1aca9c
RS
7035 if (sched_pressure == SCHED_PRESSURE_MODEL)
7036 model_end_schedule ();
7037
06d7e8e7
BS
7038 if (success)
7039 {
7040 commit_schedule (prev_head, tail, target_bb);
7041 if (sched_verbose)
7042 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7043 }
7044 else
7045 last_scheduled_insn = tail;
7046
9771b263 7047 scheduled_insns.truncate (0);
e855c69d 7048
496d7bb0 7049 if (!current_sched_info->queue_must_finish_empty
e2f6ff94 7050 || haifa_recovery_bb_recently_added_p)
496d7bb0 7051 {
30028c85
VM
7052 /* INSN_TICK (minimum clock tick at which the insn becomes
7053 ready) may be not correct for the insn in the subsequent
7054 blocks of the region. We should use a correct value of
7055 `clock_var' or modify INSN_TICK. It is better to keep
7056 clock_var value equal to 0 at the start of a basic block.
7057 Therefore we modify INSN_TICK here. */
63f54b1a 7058 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
30028c85
VM
7059 }
7060
38f8b050 7061 if (targetm.sched.finish)
e2f6ff94 7062 {
38f8b050 7063 targetm.sched.finish (sched_dump, sched_verbose);
fa10beec 7064 /* Target might have added some instructions to the scheduled block
e2f6ff94
MK
7065 in its md_finish () hook. These new insns don't have any data
7066 initialized and to identify them we extend h_i_d so that they'll
e855c69d 7067 get zero luids. */
a95b23b4 7068 sched_extend_luids ();
e2f6ff94 7069 }
63f54b1a
MK
7070
7071 /* Update head/tail boundaries. */
7072 head = NEXT_INSN (prev_head);
7073 tail = last_scheduled_insn;
7074
d5c67efd
MK
7075 if (sched_verbose)
7076 {
7077 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7078 INSN_UID (head), INSN_UID (tail));
7079
7080 if (sched_verbose >= 2)
4bd12f3d
MK
7081 {
7082 dump_insn_stream (head, tail);
b75ae7f4
MK
7083 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7084 NULL);
4bd12f3d 7085 }
d5c67efd
MK
7086
7087 fprintf (sched_dump, "\n");
7088 }
7089
e855c69d 7090 head = restore_other_notes (head, NULL);
8c660648 7091
b4ead7d4
BS
7092 current_sched_info->head = head;
7093 current_sched_info->tail = tail;
26965010
BS
7094
7095 free_backtrack_queue ();
06d7e8e7
BS
7096
7097 return success;
8c660648 7098}
b4ead7d4 7099\f
63de6c74 7100/* Set_priorities: compute priority of each insn in the block. */
8c660648 7101
b4ead7d4 7102int
0e0ce50d 7103set_priorities (rtx_insn *head, rtx_insn *tail)
8c660648 7104{
0e0ce50d 7105 rtx_insn *insn;
8c660648 7106 int n_insn;
b8698a0f 7107 int sched_max_insns_priority =
79ae11c4 7108 current_sched_info->sched_max_insns_priority;
ce1ce33a 7109 rtx_insn *prev_head;
8c660648 7110
a59d15cf 7111 if (head == tail && ! INSN_P (head))
b5b8b0ac 7112 gcc_unreachable ();
8c660648
JL
7113
7114 n_insn = 0;
63f54b1a
MK
7115
7116 prev_head = PREV_INSN (head);
8c660648
JL
7117 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7118 {
63f54b1a 7119 if (!INSN_P (insn))
8c660648
JL
7120 continue;
7121
58fb7809 7122 n_insn++;
8c660648 7123 (void) priority (insn);
79ae11c4 7124
916fa4f0
MK
7125 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7126
7127 sched_max_insns_priority = MAX (sched_max_insns_priority,
7128 INSN_PRIORITY (insn));
8c660648 7129 }
63f54b1a
MK
7130
7131 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
8c660648
JL
7132
7133 return n_insn;
7134}
7135
4111f1c9 7136/* Set sched_dump and sched_verbose for the desired debugging output. */
e855c69d
AB
7137void
7138setup_sched_dump (void)
7139{
7140 sched_verbose = sched_verbose_param;
4111f1c9
NB
7141 sched_dump = dump_file;
7142 if (!dump_file)
7143 sched_verbose = 0;
e855c69d 7144}
496d7bb0 7145
c4cd7435
AB
7146/* Allocate data for register pressure sensitive scheduling. */
7147static void
7148alloc_global_sched_pressure_data (void)
7149{
7150 if (sched_pressure != SCHED_PRESSURE_NONE)
7151 {
7152 int i, max_regno = max_reg_num ();
7153
7154 if (sched_dump != NULL)
7155 /* We need info about pseudos for rtl dumps about pseudo
7156 classes and costs. */
7157 regstat_init_n_sets_and_refs ();
7158 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7159 sched_regno_pressure_class
7160 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7161 for (i = 0; i < max_regno; i++)
7162 sched_regno_pressure_class[i]
7163 = (i < FIRST_PSEUDO_REGISTER
7164 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7165 : ira_pressure_class_translate[reg_allocno_class (i)]);
7166 curr_reg_live = BITMAP_ALLOC (NULL);
7167 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7168 {
7169 saved_reg_live = BITMAP_ALLOC (NULL);
7170 region_ref_regs = BITMAP_ALLOC (NULL);
7171 }
f380f608
RS
7172 if (sched_pressure == SCHED_PRESSURE_MODEL)
7173 tmp_bitmap = BITMAP_ALLOC (NULL);
4dd9ac6c 7174
6d5c37d0
PH
7175 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7176 that we calculate register pressure for. */
4dd9ac6c
MK
7177 for (int c = 0; c < ira_pressure_classes_num; ++c)
7178 {
7179 enum reg_class cl = ira_pressure_classes[c];
7180
6d5c37d0
PH
7181 call_saved_regs_num[cl] = 0;
7182 fixed_regs_num[cl] = 0;
4dd9ac6c
MK
7183
7184 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
6d5c37d0
PH
7185 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7186 ++call_saved_regs_num[cl];
7187 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7188 ++fixed_regs_num[cl];
4dd9ac6c 7189 }
c4cd7435
AB
7190 }
7191}
7192
7193/* Free data for register pressure sensitive scheduling. Also called
7194 from schedule_region when stopping sched-pressure early. */
7195void
7196free_global_sched_pressure_data (void)
7197{
7198 if (sched_pressure != SCHED_PRESSURE_NONE)
7199 {
7200 if (regstat_n_sets_and_refs != NULL)
7201 regstat_free_n_sets_and_refs ();
7202 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7203 {
7204 BITMAP_FREE (region_ref_regs);
7205 BITMAP_FREE (saved_reg_live);
7206 }
f380f608
RS
7207 if (sched_pressure == SCHED_PRESSURE_MODEL)
7208 BITMAP_FREE (tmp_bitmap);
c4cd7435
AB
7209 BITMAP_FREE (curr_reg_live);
7210 free (sched_regno_pressure_class);
7211 }
7212}
7213
b8698a0f 7214/* Initialize some global state for the scheduler. This function works
e855c69d
AB
7215 with the common data shared between all the schedulers. It is called
7216 from the scheduler specific initialization routine. */
8c660648 7217
b4ead7d4 7218void
10d22567 7219sched_init (void)
8c660648 7220{
63de6c74 7221 /* Disable speculative loads in their presence if cc0 defined. */
058eb3b0 7222 if (HAVE_cc0)
8c660648 7223 flag_schedule_speculative_load = 0;
8c660648 7224
ac44248e
DM
7225 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7226 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7942e47e 7227
f20f2613
VM
7228 if (live_range_shrinkage_p)
7229 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7230 else if (flag_sched_pressure
7231 && !reload_completed
7232 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
c881de02
RS
7233 sched_pressure = ((enum sched_pressure_algorithm)
7234 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
60867e8c
RS
7235 else
7236 sched_pressure = SCHED_PRESSURE_NONE;
7942e47e 7237
7a1aca9c 7238 if (sched_pressure != SCHED_PRESSURE_NONE)
8d49e7ef 7239 ira_setup_eliminable_regset ();
ce18efcb 7240
496d7bb0
MK
7241 /* Initialize SPEC_INFO. */
7242 if (targetm.sched.set_sched_flags)
7243 {
7244 spec_info = &spec_info_var;
7245 targetm.sched.set_sched_flags (spec_info);
e855c69d
AB
7246
7247 if (spec_info->mask != 0)
7248 {
7249 spec_info->data_weakness_cutoff =
7250 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7251 spec_info->control_weakness_cutoff =
7252 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7253 * REG_BR_PROB_BASE) / 100;
7254 }
496d7bb0 7255 else
6fc0bb99 7256 /* So we won't read anything accidentally. */
e855c69d
AB
7257 spec_info = NULL;
7258
496d7bb0
MK
7259 }
7260 else
6fc0bb99 7261 /* So we won't read anything accidentally. */
496d7bb0
MK
7262 spec_info = 0;
7263
63de6c74 7264 /* Initialize issue_rate. */
c237e94a 7265 if (targetm.sched.issue_rate)
5fd9b178 7266 issue_rate = targetm.sched.issue_rate ();
c237e94a
ZW
7267 else
7268 issue_rate = 1;
8c660648 7269
d205caad
MK
7270 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7271 /* Don't use max_issue with reg_pressure scheduling. Multipass
7272 scheduling and reg_pressure scheduling undo each other's decisions. */
7273 && sched_pressure == SCHED_PRESSURE_NONE)
e855c69d
AB
7274 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7275 else
7276 dfa_lookahead = 0;
fae15c93 7277
8aec463b
MK
7278 /* Set to "0" so that we recalculate. */
7279 max_lookahead_tries = 0;
7280
fa0aee89
PB
7281 if (targetm.sched.init_dfa_pre_cycle_insn)
7282 targetm.sched.init_dfa_pre_cycle_insn ();
1d088dee 7283
fa0aee89
PB
7284 if (targetm.sched.init_dfa_post_cycle_insn)
7285 targetm.sched.init_dfa_post_cycle_insn ();
1d088dee 7286
fa0aee89
PB
7287 dfa_start ();
7288 dfa_state_size = state_size ();
fae15c93 7289
e855c69d 7290 init_alias_analysis ();
f77e39fc 7291
26965010
BS
7292 if (!sched_no_dce)
7293 df_set_flags (DF_LR_RUN_DCE);
e855c69d 7294 df_note_add_problem ();
f77e39fc 7295
e855c69d
AB
7296 /* More problems needed for interloop dep calculation in SMS. */
7297 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7298 {
7299 df_rd_add_problem ();
7300 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7301 }
7a403706 7302
e855c69d 7303 df_analyze ();
b8698a0f
L
7304
7305 /* Do not run DCE after reload, as this can kill nops inserted
e855c69d
AB
7306 by bundling. */
7307 if (reload_completed)
7308 df_clear_flags (DF_LR_RUN_DCE);
a88f02e7 7309
e855c69d 7310 regstat_compute_calls_crossed ();
a88f02e7 7311
38f8b050
JR
7312 if (targetm.sched.init_global)
7313 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
a88f02e7 7314
c4cd7435 7315 alloc_global_sched_pressure_data ();
b8698a0f 7316
e855c69d
AB
7317 curr_state = xmalloc (dfa_state_size);
7318}
58565a33 7319
e855c69d 7320static void haifa_init_only_bb (basic_block, basic_block);
496d7bb0 7321
e855c69d
AB
7322/* Initialize data structures specific to the Haifa scheduler. */
7323void
7324haifa_sched_init (void)
7325{
7326 setup_sched_dump ();
7327 sched_init ();
7328
9771b263 7329 scheduled_insns.create (0);
9b69cf83 7330
e855c69d
AB
7331 if (spec_info != NULL)
7332 {
7333 sched_deps_info->use_deps_list = 1;
7334 sched_deps_info->generate_spec_deps = 1;
7335 }
7336
7337 /* Initialize luids, dependency caches, target and h_i_d for the
7338 whole function. */
7339 {
e855c69d
AB
7340 sched_init_bbs ();
7341
8c681247
TS
7342 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7343 basic_block bb;
11cd3bed 7344 FOR_EACH_BB_FN (bb, cfun)
9771b263 7345 bbs.quick_push (bb);
a95b23b4 7346 sched_init_luids (bbs);
e855c69d
AB
7347 sched_deps_init (true);
7348 sched_extend_target ();
a95b23b4 7349 haifa_init_h_i_d (bbs);
e855c69d
AB
7350 }
7351
7352 sched_init_only_bb = haifa_init_only_bb;
7353 sched_split_block = sched_split_block_1;
7354 sched_create_empty_bb = sched_create_empty_bb_1;
e2f6ff94
MK
7355 haifa_recovery_bb_ever_added_p = false;
7356
e855c69d
AB
7357 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7358 before_recovery = 0;
7359 after_recovery = 0;
06d7e8e7
BS
7360
7361 modulo_ii = 0;
e855c69d 7362}
8c660648 7363
e855c69d 7364/* Finish work with the data specific to the Haifa scheduler. */
a88f02e7 7365void
e855c69d 7366haifa_sched_finish (void)
a88f02e7 7367{
e855c69d
AB
7368 sched_create_empty_bb = NULL;
7369 sched_split_block = NULL;
7370 sched_init_only_bb = NULL;
58565a33 7371
496d7bb0
MK
7372 if (spec_info && spec_info->dump)
7373 {
7374 char c = reload_completed ? 'a' : 'b';
7375
7376 fprintf (spec_info->dump,
7377 ";; %s:\n", current_function_name ());
7378
7379 fprintf (spec_info->dump,
7380 ";; Procedure %cr-begin-data-spec motions == %d\n",
7381 c, nr_begin_data);
7382 fprintf (spec_info->dump,
7383 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7384 c, nr_be_in_data);
7385 fprintf (spec_info->dump,
7386 ";; Procedure %cr-begin-control-spec motions == %d\n",
7387 c, nr_begin_control);
7388 fprintf (spec_info->dump,
7389 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7390 c, nr_be_in_control);
7391 }
7392
9771b263 7393 scheduled_insns.release ();
9b69cf83 7394
e855c69d
AB
7395 /* Finalize h_i_d, dependency caches, and luids for the whole
7396 function. Target will be finalized in md_global_finish (). */
7397 sched_deps_finish ();
7398 sched_finish_luids ();
7399 current_sched_info = NULL;
df554b0e 7400 insn_queue = NULL;
e855c69d
AB
7401 sched_finish ();
7402}
7403
b8698a0f 7404/* Free global data used during insn scheduling. This function works with
e855c69d
AB
7405 the common data shared between the schedulers. */
7406
7407void
7408sched_finish (void)
7409{
7410 haifa_finish_h_i_d ();
c4cd7435 7411 free_global_sched_pressure_data ();
e855c69d
AB
7412 free (curr_state);
7413
38f8b050
JR
7414 if (targetm.sched.finish_global)
7415 targetm.sched.finish_global (sched_dump, sched_verbose);
e855c69d
AB
7416
7417 end_alias_analysis ();
7418
7419 regstat_free_calls_crossed ();
7420
7421 dfa_finish ();
8c660648 7422}
63f54b1a 7423
26965010
BS
7424/* Free all delay_pair structures that were recorded. */
7425void
7426free_delay_pairs (void)
7427{
c203e8a7 7428 if (delay_htab)
26965010 7429 {
c203e8a7
TS
7430 delay_htab->empty ();
7431 delay_htab_i2->empty ();
26965010
BS
7432 }
7433}
7434
63f54b1a 7435/* Fix INSN_TICKs of the instructions in the current block as well as
917f1b7e 7436 INSN_TICKs of their dependents.
63f54b1a
MK
7437 HEAD and TAIL are the begin and the end of the current scheduled block. */
7438static void
f57aa6b0 7439fix_inter_tick (rtx_insn *head, rtx_insn *tail)
63f54b1a
MK
7440{
7441 /* Set of instructions with corrected INSN_TICK. */
8f9b31f7 7442 auto_bitmap processed;
e2f6ff94
MK
7443 /* ??? It is doubtful if we should assume that cycle advance happens on
7444 basic block boundaries. Basically insns that are unconditionally ready
7445 on the start of the block are more preferable then those which have
7446 a one cycle dependency over insn from the previous block. */
63f54b1a
MK
7447 int next_clock = clock_var + 1;
7448
63f54b1a
MK
7449 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7450 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7451 across different blocks. */
7452 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7453 {
7454 if (INSN_P (head))
7455 {
7456 int tick;
e2f6ff94
MK
7457 sd_iterator_def sd_it;
7458 dep_t dep;
b8698a0f 7459
63f54b1a
MK
7460 tick = INSN_TICK (head);
7461 gcc_assert (tick >= MIN_TICK);
b8698a0f 7462
63f54b1a 7463 /* Fix INSN_TICK of instruction from just scheduled block. */
8f9b31f7 7464 if (bitmap_set_bit (processed, INSN_LUID (head)))
63f54b1a 7465 {
63f54b1a 7466 tick -= next_clock;
b8698a0f 7467
63f54b1a
MK
7468 if (tick < MIN_TICK)
7469 tick = MIN_TICK;
b8698a0f
L
7470
7471 INSN_TICK (head) = tick;
63f54b1a 7472 }
b8698a0f 7473
35d59da7
UB
7474 if (DEBUG_INSN_P (head))
7475 continue;
7476
e2f6ff94 7477 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
63f54b1a 7478 {
9b517712 7479 rtx_insn *next;
b8698a0f 7480
e2f6ff94 7481 next = DEP_CON (dep);
63f54b1a
MK
7482 tick = INSN_TICK (next);
7483
7484 if (tick != INVALID_TICK
7485 /* If NEXT has its INSN_TICK calculated, fix it.
7486 If not - it will be properly calculated from
7487 scratch later in fix_tick_ready. */
8f9b31f7 7488 && bitmap_set_bit (processed, INSN_LUID (next)))
63f54b1a 7489 {
63f54b1a 7490 tick -= next_clock;
b8698a0f 7491
63f54b1a
MK
7492 if (tick < MIN_TICK)
7493 tick = MIN_TICK;
b8698a0f 7494
63f54b1a
MK
7495 if (tick > INTER_TICK (next))
7496 INTER_TICK (next) = tick;
7497 else
7498 tick = INTER_TICK (next);
e2f6ff94 7499
63f54b1a
MK
7500 INSN_TICK (next) = tick;
7501 }
7502 }
7503 }
7504 }
63f54b1a 7505}
e855c69d 7506
63f54b1a
MK
7507/* Check if NEXT is ready to be added to the ready or queue list.
7508 If "yes", add it to the proper list.
7509 Returns:
7510 -1 - is not ready yet,
7511 0 - added to the ready list,
7512 0 < N - queued for N cycles. */
7513int
ce1ce33a 7514try_ready (rtx_insn *next)
b8698a0f 7515{
b953c2b8 7516 ds_t old_ts, new_ts;
63f54b1a 7517
b953c2b8 7518 old_ts = TODO_SPEC (next);
63f54b1a 7519
1a83e602
BS
7520 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7521 && (old_ts == HARD_DEP
7522 || old_ts == DEP_POSTPONED
e2724e63 7523 || (old_ts & SPECULATIVE)
1a83e602 7524 || old_ts == DEP_CONTROL));
e2f6ff94 7525
1a83e602 7526 new_ts = recompute_todo_spec (next, false);
b198261f 7527
1a83e602 7528 if (new_ts & (HARD_DEP | DEP_POSTPONED))
e2724e63 7529 gcc_assert (new_ts == old_ts
496d7bb0
MK
7530 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7531 else if (current_sched_info->new_ready)
b953c2b8 7532 new_ts = current_sched_info->new_ready (next, new_ts);
496d7bb0 7533
b198261f 7534 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
496d7bb0
MK
7535 have its original pattern or changed (speculative) one. This is due
7536 to changing ebb in region scheduling.
7537 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7538 has speculative pattern.
b198261f 7539
b953c2b8 7540 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
496d7bb0
MK
7541 control-speculative NEXT could have been discarded by sched-rgn.c
7542 (the same case as when discarded by can_schedule_ready_p ()). */
b198261f 7543
b953c2b8
BS
7544 if ((new_ts & SPECULATIVE)
7545 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
496d7bb0 7546 need to change anything. */
b953c2b8 7547 && new_ts != old_ts)
496d7bb0
MK
7548 {
7549 int res;
7550 rtx new_pat;
b8698a0f 7551
e2724e63 7552 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
b8698a0f 7553
b953c2b8 7554 res = haifa_speculate_insn (next, new_ts, &new_pat);
b8698a0f 7555
496d7bb0
MK
7556 switch (res)
7557 {
7558 case -1:
7559 /* It would be nice to change DEP_STATUS of all dependences,
b953c2b8 7560 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
496d7bb0 7561 so we won't reanalyze anything. */
b953c2b8 7562 new_ts = HARD_DEP;
496d7bb0 7563 break;
b8698a0f 7564
496d7bb0
MK
7565 case 0:
7566 /* We follow the rule, that every speculative insn
7567 has non-null ORIG_PAT. */
7568 if (!ORIG_PAT (next))
7569 ORIG_PAT (next) = PATTERN (next);
7570 break;
b8698a0f
L
7571
7572 case 1:
496d7bb0
MK
7573 if (!ORIG_PAT (next))
7574 /* If we gonna to overwrite the original pattern of insn,
7575 save it. */
7576 ORIG_PAT (next) = PATTERN (next);
b8698a0f 7577
e2724e63
BS
7578 res = haifa_change_pattern (next, new_pat);
7579 gcc_assert (res);
496d7bb0 7580 break;
b8698a0f 7581
496d7bb0
MK
7582 default:
7583 gcc_unreachable ();
7584 }
7585 }
b8698a0f 7586
b953c2b8
BS
7587 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7588 either correct (new_ts & SPECULATIVE),
7589 or we simply don't care (new_ts & HARD_DEP). */
b8698a0f 7590
496d7bb0 7591 gcc_assert (!ORIG_PAT (next)
d7bfd907 7592 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
b8698a0f 7593
b953c2b8
BS
7594 TODO_SPEC (next) = new_ts;
7595
1a83e602 7596 if (new_ts & (HARD_DEP | DEP_POSTPONED))
496d7bb0
MK
7597 {
7598 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7599 control-speculative NEXT could have been discarded by sched-rgn.c
7600 (the same case as when discarded by can_schedule_ready_p ()). */
7601 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
b8698a0f 7602
496d7bb0 7603 change_queue_index (next, QUEUE_NOWHERE);
e2724e63 7604
496d7bb0
MK
7605 return -1;
7606 }
b953c2b8 7607 else if (!(new_ts & BEGIN_SPEC)
e2724e63
BS
7608 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7609 && !IS_SPECULATION_CHECK_P (next))
b8698a0f 7610 /* We should change pattern of every previously speculative
682b6a9e 7611 instruction - and we determine if NEXT was speculative by using
d7bfd907
MK
7612 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7613 pat too, so skip them. */
682b6a9e 7614 {
e2724e63
BS
7615 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7616 gcc_assert (success);
682b6a9e
MK
7617 ORIG_PAT (next) = 0;
7618 }
496d7bb0
MK
7619
7620 if (sched_verbose >= 2)
b8698a0f 7621 {
496d7bb0
MK
7622 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7623 (*current_sched_info->print_insn) (next, 0));
b8698a0f 7624
496d7bb0
MK
7625 if (spec_info && spec_info->dump)
7626 {
b953c2b8 7627 if (new_ts & BEGIN_DATA)
496d7bb0 7628 fprintf (spec_info->dump, "; data-spec;");
b953c2b8 7629 if (new_ts & BEGIN_CONTROL)
496d7bb0 7630 fprintf (spec_info->dump, "; control-spec;");
b953c2b8 7631 if (new_ts & BE_IN_CONTROL)
496d7bb0
MK
7632 fprintf (spec_info->dump, "; in-control-spec;");
7633 }
e2724e63
BS
7634 if (TODO_SPEC (next) & DEP_CONTROL)
7635 fprintf (sched_dump, " predicated");
496d7bb0 7636 fprintf (sched_dump, "\n");
b8698a0f
L
7637 }
7638
496d7bb0 7639 adjust_priority (next);
b8698a0f 7640
496d7bb0
MK
7641 return fix_tick_ready (next);
7642}
7643
7644/* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7645static int
ce1ce33a 7646fix_tick_ready (rtx_insn *next)
63f54b1a 7647{
63f54b1a
MK
7648 int tick, delay;
7649
b2cddfc8 7650 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
63f54b1a
MK
7651 {
7652 int full_p;
e2f6ff94
MK
7653 sd_iterator_def sd_it;
7654 dep_t dep;
63f54b1a
MK
7655
7656 tick = INSN_TICK (next);
496d7bb0 7657 /* if tick is not equal to INVALID_TICK, then update
63f54b1a 7658 INSN_TICK of NEXT with the most recent resolved dependence
917f1b7e 7659 cost. Otherwise, recalculate from scratch. */
b198261f
MK
7660 full_p = (tick == INVALID_TICK);
7661
e2f6ff94 7662 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
b8698a0f 7663 {
9b517712 7664 rtx_insn *pro = DEP_PRO (dep);
63f54b1a 7665 int tick1;
b8698a0f 7666
63f54b1a 7667 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
496d7bb0 7668
b198261f 7669 tick1 = INSN_TICK (pro) + dep_cost (dep);
63f54b1a
MK
7670 if (tick1 > tick)
7671 tick = tick1;
b198261f
MK
7672
7673 if (!full_p)
7674 break;
63f54b1a 7675 }
63f54b1a
MK
7676 }
7677 else
7678 tick = -1;
7679
7680 INSN_TICK (next) = tick;
7681
7682 delay = tick - clock_var;
b16abbcb 7683 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
63f54b1a
MK
7684 delay = QUEUE_READY;
7685
7686 change_queue_index (next, delay);
496d7bb0 7687
63f54b1a
MK
7688 return delay;
7689}
7690
7691/* Move NEXT to the proper queue list with (DELAY >= 1),
7692 or add it to the ready list (DELAY == QUEUE_READY),
7693 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7694static void
ce1ce33a 7695change_queue_index (rtx_insn *next, int delay)
63f54b1a
MK
7696{
7697 int i = QUEUE_INDEX (next);
7698
b8698a0f 7699 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
63f54b1a
MK
7700 && delay != 0);
7701 gcc_assert (i != QUEUE_SCHEDULED);
b8698a0f 7702
63f54b1a
MK
7703 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7704 || (delay < 0 && delay == i))
7705 /* We have nothing to do. */
7706 return;
7707
917f1b7e 7708 /* Remove NEXT from wherever it is now. */
63f54b1a
MK
7709 if (i == QUEUE_READY)
7710 ready_remove_insn (next);
7711 else if (i >= 0)
7712 queue_remove (next);
b8698a0f 7713
63f54b1a
MK
7714 /* Add it to the proper place. */
7715 if (delay == QUEUE_READY)
7716 ready_add (readyp, next, false);
7717 else if (delay >= 1)
ec4efea9 7718 queue_insn (next, delay, "change queue index");
b8698a0f 7719
63f54b1a 7720 if (sched_verbose >= 2)
b8698a0f 7721 {
63f54b1a
MK
7722 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7723 (*current_sched_info->print_insn) (next, 0));
b8698a0f 7724
63f54b1a
MK
7725 if (delay == QUEUE_READY)
7726 fprintf (sched_dump, " into ready\n");
7727 else if (delay >= 1)
7728 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7729 else
7730 fprintf (sched_dump, " removed from ready or queue lists\n");
7731 }
7732}
7733
e855c69d 7734static int sched_ready_n_insns = -1;
496d7bb0 7735
e855c69d
AB
7736/* Initialize per region data structures. */
7737void
7738sched_extend_ready_list (int new_sched_ready_n_insns)
496d7bb0
MK
7739{
7740 int i;
7741
e855c69d
AB
7742 if (sched_ready_n_insns == -1)
7743 /* At the first call we need to initialize one more choice_stack
7744 entry. */
7745 {
7746 i = 0;
7747 sched_ready_n_insns = 0;
9771b263 7748 scheduled_insns.reserve (new_sched_ready_n_insns);
e855c69d
AB
7749 }
7750 else
7751 i = sched_ready_n_insns + 1;
496d7bb0 7752
e855c69d 7753 ready.veclen = new_sched_ready_n_insns + issue_rate;
ce1ce33a 7754 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
496d7bb0 7755
e855c69d 7756 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
496d7bb0 7757
4960a0cb
MK
7758 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7759 sched_ready_n_insns,
7760 sizeof (*ready_try));
496d7bb0 7761
e855c69d
AB
7762 /* We allocate +1 element to save initial state in the choice_stack[0]
7763 entry. */
7764 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7765 new_sched_ready_n_insns + 1);
e2f6ff94 7766
e855c69d 7767 for (; i <= new_sched_ready_n_insns; i++)
894fd6f2
MK
7768 {
7769 choice_stack[i].state = xmalloc (dfa_state_size);
7770
7771 if (targetm.sched.first_cycle_multipass_init)
7772 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7773 .target_data));
7774 }
496d7bb0 7775
e855c69d 7776 sched_ready_n_insns = new_sched_ready_n_insns;
496d7bb0
MK
7777}
7778
e855c69d
AB
7779/* Free per region data structures. */
7780void
7781sched_finish_ready_list (void)
a0d33ff8 7782{
e855c69d 7783 int i;
a0d33ff8 7784
e855c69d
AB
7785 free (ready.vec);
7786 ready.vec = NULL;
7787 ready.veclen = 0;
a0d33ff8 7788
e855c69d
AB
7789 free (ready_try);
7790 ready_try = NULL;
496d7bb0 7791
e855c69d 7792 for (i = 0; i <= sched_ready_n_insns; i++)
894fd6f2
MK
7793 {
7794 if (targetm.sched.first_cycle_multipass_fini)
7795 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7796 .target_data));
7797
7798 free (choice_stack [i].state);
7799 }
e855c69d
AB
7800 free (choice_stack);
7801 choice_stack = NULL;
a0d33ff8 7802
e855c69d 7803 sched_ready_n_insns = -1;
496d7bb0
MK
7804}
7805
e855c69d
AB
7806static int
7807haifa_luid_for_non_insn (rtx x)
496d7bb0 7808{
e855c69d
AB
7809 gcc_assert (NOTE_P (x) || LABEL_P (x));
7810
7811 return 0;
496d7bb0
MK
7812}
7813
7814/* Generates recovery code for INSN. */
7815static void
ce1ce33a 7816generate_recovery_code (rtx_insn *insn)
496d7bb0
MK
7817{
7818 if (TODO_SPEC (insn) & BEGIN_SPEC)
7819 begin_speculative_block (insn);
b8698a0f 7820
496d7bb0
MK
7821 /* Here we have insn with no dependencies to
7822 instructions other then CHECK_SPEC ones. */
b8698a0f 7823
496d7bb0
MK
7824 if (TODO_SPEC (insn) & BE_IN_SPEC)
7825 add_to_speculative_block (insn);
7826}
7827
7828/* Helper function.
7829 Tries to add speculative dependencies of type FS between instructions
b198261f 7830 in deps_list L and TWIN. */
496d7bb0 7831static void
90831096 7832process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
496d7bb0 7833{
e2f6ff94
MK
7834 sd_iterator_def sd_it;
7835 dep_t dep;
b198261f 7836
e2f6ff94 7837 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
496d7bb0
MK
7838 {
7839 ds_t ds;
0e0ce50d 7840 rtx_insn *consumer;
496d7bb0 7841
e2f6ff94 7842 consumer = DEP_CON (dep);
496d7bb0 7843
e2f6ff94 7844 ds = DEP_STATUS (dep);
496d7bb0 7845
682b6a9e
MK
7846 if (/* If we want to create speculative dep. */
7847 fs
7848 /* And we can do that because this is a true dep. */
7849 && (ds & DEP_TYPES) == DEP_TRUE)
7850 {
7851 gcc_assert (!(ds & BE_IN_SPEC));
7852
917f1b7e 7853 if (/* If this dep can be overcome with 'begin speculation'. */
682b6a9e
MK
7854 ds & BEGIN_SPEC)
7855 /* Then we have a choice: keep the dep 'begin speculative'
7856 or transform it into 'be in speculative'. */
7857 {
7858 if (/* In try_ready we assert that if insn once became ready
7859 it can be removed from the ready (or queue) list only
7860 due to backend decision. Hence we can't let the
7861 probability of the speculative dep to decrease. */
e855c69d 7862 ds_weak (ds) <= ds_weak (fs))
93b4b4cc
MK
7863 {
7864 ds_t new_ds;
7865
7866 new_ds = (ds & ~BEGIN_SPEC) | fs;
b8698a0f 7867
93b4b4cc
MK
7868 if (/* consumer can 'be in speculative'. */
7869 sched_insn_is_legitimate_for_speculation_p (consumer,
7870 new_ds))
7871 /* Transform it to be in speculative. */
7872 ds = new_ds;
7873 }
682b6a9e
MK
7874 }
7875 else
7876 /* Mark the dep as 'be in speculative'. */
7877 ds |= fs;
7878 }
496d7bb0 7879
e2f6ff94
MK
7880 {
7881 dep_def _new_dep, *new_dep = &_new_dep;
7882
7883 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7884 sd_add_dep (new_dep, false);
7885 }
496d7bb0
MK
7886 }
7887}
7888
7889/* Generates recovery code for BEGIN speculative INSN. */
7890static void
ce1ce33a 7891begin_speculative_block (rtx_insn *insn)
496d7bb0
MK
7892{
7893 if (TODO_SPEC (insn) & BEGIN_DATA)
b8698a0f 7894 nr_begin_data++;
496d7bb0
MK
7895 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7896 nr_begin_control++;
7897
7898 create_check_block_twin (insn, false);
7899
7900 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7901}
7902
f57aa6b0 7903static void haifa_init_insn (rtx_insn *);
e855c69d 7904
496d7bb0
MK
7905/* Generates recovery code for BE_IN speculative INSN. */
7906static void
6144a836 7907add_to_speculative_block (rtx_insn *insn)
496d7bb0
MK
7908{
7909 ds_t ts;
e2f6ff94
MK
7910 sd_iterator_def sd_it;
7911 dep_t dep;
30a7199a 7912 auto_vec<rtx_insn *, 10> twins;
496d7bb0
MK
7913
7914 ts = TODO_SPEC (insn);
7915 gcc_assert (!(ts & ~BE_IN_SPEC));
7916
7917 if (ts & BE_IN_DATA)
7918 nr_be_in_data++;
7919 if (ts & BE_IN_CONTROL)
7920 nr_be_in_control++;
7921
7922 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7923 gcc_assert (!TODO_SPEC (insn));
b8698a0f 7924
496d7bb0
MK
7925 DONE_SPEC (insn) |= ts;
7926
7927 /* First we convert all simple checks to branchy. */
e2f6ff94
MK
7928 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7929 sd_iterator_cond (&sd_it, &dep);)
496d7bb0 7930 {
9b517712 7931 rtx_insn *check = DEP_PRO (dep);
496d7bb0 7932
d7bfd907 7933 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
496d7bb0
MK
7934 {
7935 create_check_block_twin (check, true);
b198261f
MK
7936
7937 /* Restart search. */
e2f6ff94 7938 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
496d7bb0
MK
7939 }
7940 else
b198261f 7941 /* Continue search. */
e2f6ff94 7942 sd_iterator_next (&sd_it);
496d7bb0
MK
7943 }
7944
8c681247 7945 auto_vec<rtx_insn *> priorities_roots;
916fa4f0 7946 clear_priorities (insn, &priorities_roots);
e2f6ff94
MK
7947
7948 while (1)
496d7bb0 7949 {
9b517712 7950 rtx_insn *check, *twin;
496d7bb0
MK
7951 basic_block rec;
7952
e2f6ff94
MK
7953 /* Get the first backward dependency of INSN. */
7954 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7955 if (!sd_iterator_cond (&sd_it, &dep))
7956 /* INSN has no backward dependencies left. */
7957 break;
496d7bb0 7958
e2f6ff94
MK
7959 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7960 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7961 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
b198261f 7962
e2f6ff94 7963 check = DEP_PRO (dep);
d7bfd907
MK
7964
7965 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
496d7bb0 7966 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
e2f6ff94 7967
496d7bb0 7968 rec = BLOCK_FOR_INSN (check);
e2f6ff94 7969
05742530 7970 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
e855c69d 7971 haifa_init_insn (twin);
496d7bb0 7972
e2f6ff94 7973 sd_copy_back_deps (twin, insn, true);
496d7bb0
MK
7974
7975 if (sched_verbose && spec_info->dump)
7976 /* INSN_BB (insn) isn't determined for twin insns yet.
7977 So we can't use current_sched_info->print_insn. */
7978 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7979 INSN_UID (twin), rec->index);
7980
30a7199a 7981 twins.safe_push (twin);
496d7bb0 7982
917f1b7e 7983 /* Add dependences between TWIN and all appropriate
496d7bb0 7984 instructions from REC. */
e2f6ff94
MK
7985 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7986 {
9b517712 7987 rtx_insn *pro = DEP_PRO (dep);
b198261f 7988
e2f6ff94
MK
7989 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7990
7991 /* INSN might have dependencies from the instructions from
7992 several recovery blocks. At this iteration we process those
7993 producers that reside in REC. */
7994 if (BLOCK_FOR_INSN (pro) == rec)
7995 {
7996 dep_def _new_dep, *new_dep = &_new_dep;
7997
7998 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7999 sd_add_dep (new_dep, false);
496d7bb0 8000 }
496d7bb0 8001 }
496d7bb0 8002
e2f6ff94 8003 process_insn_forw_deps_be_in_spec (insn, twin, ts);
496d7bb0 8004
b198261f 8005 /* Remove all dependencies between INSN and insns in REC. */
e2f6ff94
MK
8006 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8007 sd_iterator_cond (&sd_it, &dep);)
496d7bb0 8008 {
9b517712 8009 rtx_insn *pro = DEP_PRO (dep);
b198261f 8010
e2f6ff94
MK
8011 if (BLOCK_FOR_INSN (pro) == rec)
8012 sd_delete_dep (sd_it);
496d7bb0 8013 else
e2f6ff94 8014 sd_iterator_next (&sd_it);
496d7bb0
MK
8015 }
8016 }
496d7bb0 8017
b198261f
MK
8018 /* We couldn't have added the dependencies between INSN and TWINS earlier
8019 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
30a7199a
TS
8020 unsigned int i;
8021 rtx_insn *twin;
8022 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
496d7bb0 8023 {
30a7199a 8024 dep_def _new_dep, *new_dep = &_new_dep;
496d7bb0 8025
30a7199a
TS
8026 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8027 sd_add_dep (new_dep, false);
496d7bb0 8028 }
916fa4f0
MK
8029
8030 calc_priorities (priorities_roots);
496d7bb0
MK
8031}
8032
8033/* Extends and fills with zeros (only the new part) array pointed to by P. */
8034void *
8035xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8036{
8037 gcc_assert (new_nmemb >= old_nmemb);
8038 p = XRESIZEVAR (void, p, new_nmemb * size);
8039 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8040 return p;
8041}
8042
496d7bb0
MK
8043/* Helper function.
8044 Find fallthru edge from PRED. */
e855c69d 8045edge
0fd4b31d 8046find_fallthru_edge_from (basic_block pred)
496d7bb0
MK
8047{
8048 edge e;
496d7bb0
MK
8049 basic_block succ;
8050
8051 succ = pred->next_bb;
8052 gcc_assert (succ->prev_bb == pred);
8053
8054 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8055 {
0fd4b31d
NF
8056 e = find_fallthru_edge (pred->succs);
8057
8058 if (e)
8059 {
8060 gcc_assert (e->dest == succ);
8061 return e;
8062 }
496d7bb0
MK
8063 }
8064 else
8065 {
0fd4b31d
NF
8066 e = find_fallthru_edge (succ->preds);
8067
8068 if (e)
8069 {
8070 gcc_assert (e->src == pred);
8071 return e;
8072 }
496d7bb0
MK
8073 }
8074
8075 return NULL;
8076}
8077
e855c69d
AB
8078/* Extend per basic block data structures. */
8079static void
8080sched_extend_bb (void)
8081{
e855c69d 8082 /* The following is done to keep current_sched_info->next_tail non null. */
9b517712
DM
8083 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8084 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
cb5cb194 8085 if (NEXT_INSN (end) == 0
e855c69d
AB
8086 || (!NOTE_P (insn)
8087 && !LABEL_P (insn)
8088 /* Don't emit a NOTE if it would end up before a BARRIER. */
cb5cb194 8089 && !BARRIER_P (NEXT_INSN (end))))
e855c69d 8090 {
66e8df53 8091 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
cb5cb194 8092 /* Make note appear outside BB. */
e855c69d 8093 set_block_for_insn (note, NULL);
1130d5e3 8094 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
e855c69d
AB
8095 }
8096}
8097
8098/* Init per basic block data structures. */
8099void
8100sched_init_bbs (void)
8101{
8102 sched_extend_bb ();
8103}
8104
496d7bb0
MK
8105/* Initialize BEFORE_RECOVERY variable. */
8106static void
e855c69d 8107init_before_recovery (basic_block *before_recovery_ptr)
496d7bb0
MK
8108{
8109 basic_block last;
8110 edge e;
8111
fefa31b5 8112 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
0fd4b31d 8113 e = find_fallthru_edge_from (last);
496d7bb0
MK
8114
8115 if (e)
8116 {
b8698a0f 8117 /* We create two basic blocks:
496d7bb0 8118 1. Single instruction block is inserted right after E->SRC
b8698a0f 8119 and has jump to
496d7bb0
MK
8120 2. Empty block right before EXIT_BLOCK.
8121 Between these two blocks recovery blocks will be emitted. */
8122
8123 basic_block single, empty;
496d7bb0 8124
b8698a0f 8125 /* If the fallthrough edge to exit we've found is from the block we've
e855c69d
AB
8126 created before, don't do anything more. */
8127 if (last == after_recovery)
8128 return;
496d7bb0 8129
e855c69d
AB
8130 adding_bb_to_current_region_p = false;
8131
8132 single = sched_create_empty_bb (last);
8133 empty = sched_create_empty_bb (single);
8134
8135 /* Add new blocks to the root loop. */
8136 if (current_loops != NULL)
8137 {
9771b263
DN
8138 add_bb_to_loop (single, (*current_loops->larray)[0]);
8139 add_bb_to_loop (empty, (*current_loops->larray)[0]);
e855c69d
AB
8140 }
8141
8142 single->count = last->count;
496d7bb0 8143 empty->count = last->count;
496d7bb0
MK
8144 BB_COPY_PARTITION (single, last);
8145 BB_COPY_PARTITION (empty, last);
8146
8147 redirect_edge_succ (e, single);
8148 make_single_succ_edge (single, empty, 0);
fefa31b5
DM
8149 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8150 EDGE_FALLTHRU);
496d7bb0 8151
e67d1102 8152 rtx_code_label *label = block_label (empty);
ec4a505f 8153 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
e67d1102 8154 BB_END (single));
496d7bb0
MK
8155 JUMP_LABEL (x) = label;
8156 LABEL_NUSES (label)++;
e855c69d 8157 haifa_init_insn (x);
b8698a0f 8158
496d7bb0
MK
8159 emit_barrier_after (x);
8160
e855c69d
AB
8161 sched_init_only_bb (empty, NULL);
8162 sched_init_only_bb (single, NULL);
8163 sched_extend_bb ();
496d7bb0 8164
e855c69d 8165 adding_bb_to_current_region_p = true;
496d7bb0 8166 before_recovery = single;
e855c69d
AB
8167 after_recovery = empty;
8168
8169 if (before_recovery_ptr)
8170 *before_recovery_ptr = before_recovery;
496d7bb0
MK
8171
8172 if (sched_verbose >= 2 && spec_info->dump)
8173 fprintf (spec_info->dump,
b8698a0f
L
8174 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8175 last->index, single->index, empty->index);
496d7bb0
MK
8176 }
8177 else
8178 before_recovery = last;
8179}
8180
8181/* Returns new recovery block. */
e855c69d
AB
8182basic_block
8183sched_create_recovery_block (basic_block *before_recovery_ptr)
496d7bb0 8184{
9b517712 8185 rtx_insn *barrier;
496d7bb0 8186 basic_block rec;
b8698a0f 8187
e2f6ff94
MK
8188 haifa_recovery_bb_recently_added_p = true;
8189 haifa_recovery_bb_ever_added_p = true;
496d7bb0 8190
e855c69d 8191 init_before_recovery (before_recovery_ptr);
496d7bb0 8192
96370780
MK
8193 barrier = get_last_bb_insn (before_recovery);
8194 gcc_assert (BARRIER_P (barrier));
8195
e67d1102 8196 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
96370780
MK
8197
8198 rec = create_basic_block (label, label, before_recovery);
8199
e855c69d 8200 /* A recovery block always ends with an unconditional jump. */
496d7bb0
MK
8201 emit_barrier_after (BB_END (rec));
8202
8203 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8204 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
b8698a0f
L
8205
8206 if (sched_verbose && spec_info->dump)
496d7bb0
MK
8207 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8208 rec->index);
8209
496d7bb0
MK
8210 return rec;
8211}
8212
e855c69d
AB
8213/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8214 and emit necessary jumps. */
8215void
8216sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8217 basic_block second_bb)
8218{
e855c69d
AB
8219 int edge_flags;
8220
8221 /* This is fixing of incoming edge. */
b8698a0f 8222 /* ??? Which other flags should be specified? */
e855c69d
AB
8223 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8224 /* Partition type is the same, if it is "unpartitioned". */
8225 edge_flags = EDGE_CROSSING;
8226 else
8227 edge_flags = 0;
b8698a0f 8228
cea768b0
JH
8229 edge e2 = single_succ_edge (first_bb);
8230 edge e = make_edge (first_bb, rec, edge_flags);
8231
8232 /* TODO: The actual probability can be determined and is computed as
8233 'todo_spec' variable in create_check_block_twin and
8234 in sel-sched.c `check_ds' in create_speculation_check. */
8235 e->probability = profile_probability::very_unlikely ();
ef30ab83 8236 rec->count = e->count ();
cea768b0 8237 e2->probability = e->probability.invert ();
cea768b0 8238
e67d1102 8239 rtx_code_label *label = block_label (second_bb);
ec4a505f
RS
8240 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8241 BB_END (rec));
e855c69d
AB
8242 JUMP_LABEL (jump) = label;
8243 LABEL_NUSES (label)++;
8244
8245 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8246 /* Partition type is the same, if it is "unpartitioned". */
8247 {
8248 /* Rewritten from cfgrtl.c. */
0b6bc904 8249 if (crtl->has_bb_partition && targetm_common.have_named_sections)
e855c69d 8250 {
efc0b2bd
ILT
8251 /* We don't need the same note for the check because
8252 any_condjump_p (check) == true. */
339ba33b 8253 CROSSING_JUMP_P (jump) = 1;
e855c69d
AB
8254 }
8255 edge_flags = EDGE_CROSSING;
8256 }
8257 else
b8698a0f 8258 edge_flags = 0;
e855c69d 8259
b8698a0f 8260 make_single_succ_edge (rec, second_bb, edge_flags);
00c4e97c
AB
8261 if (dom_info_available_p (CDI_DOMINATORS))
8262 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
e855c69d
AB
8263}
8264
496d7bb0
MK
8265/* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8266 INSN is a simple check, that should be converted to branchy one. */
8267static void
ce1ce33a 8268create_check_block_twin (rtx_insn *insn, bool mutate_p)
496d7bb0
MK
8269{
8270 basic_block rec;
ce1ce33a
DM
8271 rtx_insn *label, *check, *twin;
8272 rtx check_pat;
496d7bb0 8273 ds_t fs;
e2f6ff94
MK
8274 sd_iterator_def sd_it;
8275 dep_t dep;
8276 dep_def _new_dep, *new_dep = &_new_dep;
e855c69d 8277 ds_t todo_spec;
496d7bb0 8278
e855c69d
AB
8279 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8280
8281 if (!mutate_p)
8282 todo_spec = TODO_SPEC (insn);
8283 else
8284 {
8285 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8286 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8287
8288 todo_spec = CHECK_SPEC (insn);
8289 }
8290
8291 todo_spec &= SPECULATIVE;
496d7bb0
MK
8292
8293 /* Create recovery block. */
388092d5 8294 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
496d7bb0 8295 {
e855c69d 8296 rec = sched_create_recovery_block (NULL);
496d7bb0
MK
8297 label = BB_HEAD (rec);
8298 }
8299 else
8300 {
fefa31b5 8301 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
ce1ce33a 8302 label = NULL;
496d7bb0
MK
8303 }
8304
8305 /* Emit CHECK. */
ce1ce33a 8306 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
496d7bb0 8307
fefa31b5 8308 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8309 {
8310 /* To have mem_reg alive at the beginning of second_bb,
b8698a0f 8311 we emit check BEFORE insn, so insn after splitting
496d7bb0
MK
8312 insn will be at the beginning of second_bb, which will
8313 provide us with the correct life information. */
ce1ce33a 8314 check = emit_jump_insn_before (check_pat, insn);
496d7bb0
MK
8315 JUMP_LABEL (check) = label;
8316 LABEL_NUSES (label)++;
8317 }
8318 else
ce1ce33a 8319 check = emit_insn_before (check_pat, insn);
496d7bb0
MK
8320
8321 /* Extend data structures. */
e855c69d
AB
8322 haifa_init_insn (check);
8323
8324 /* CHECK is being added to current region. Extend ready list. */
8325 gcc_assert (sched_ready_n_insns != -1);
8326 sched_extend_ready_list (sched_ready_n_insns + 1);
8327
8328 if (current_sched_info->add_remove_insn)
8329 current_sched_info->add_remove_insn (insn, 0);
8330
496d7bb0
MK
8331 RECOVERY_BLOCK (check) = rec;
8332
8333 if (sched_verbose && spec_info->dump)
8334 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8335 (*current_sched_info->print_insn) (check, 0));
8336
8337 gcc_assert (ORIG_PAT (insn));
8338
917f1b7e 8339 /* Initialize TWIN (twin is a duplicate of original instruction
496d7bb0 8340 in the recovery block). */
fefa31b5 8341 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0 8342 {
e2f6ff94
MK
8343 sd_iterator_def sd_it;
8344 dep_t dep;
8345
8346 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8347 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
496d7bb0 8348 {
e2f6ff94 8349 struct _dep _dep2, *dep2 = &_dep2;
b198261f 8350
e2f6ff94 8351 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
b198261f 8352
e2f6ff94 8353 sd_add_dep (dep2, true);
496d7bb0
MK
8354 }
8355
8356 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
e855c69d 8357 haifa_init_insn (twin);
496d7bb0
MK
8358
8359 if (sched_verbose && spec_info->dump)
8360 /* INSN_BB (insn) isn't determined for twin insns yet.
8361 So we can't use current_sched_info->print_insn. */
8362 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8363 INSN_UID (twin), rec->index);
8364 }
8365 else
8366 {
8367 ORIG_PAT (check) = ORIG_PAT (insn);
8368 HAS_INTERNAL_DEP (check) = 1;
8369 twin = check;
8370 /* ??? We probably should change all OUTPUT dependencies to
8371 (TRUE | OUTPUT). */
8372 }
8373
e2f6ff94
MK
8374 /* Copy all resolved back dependencies of INSN to TWIN. This will
8375 provide correct value for INSN_TICK (TWIN). */
8376 sd_copy_back_deps (twin, insn, true);
496d7bb0 8377
fefa31b5 8378 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8379 /* In case of branchy check, fix CFG. */
8380 {
8381 basic_block first_bb, second_bb;
f57aa6b0 8382 rtx_insn *jump;
496d7bb0
MK
8383
8384 first_bb = BLOCK_FOR_INSN (check);
e855c69d 8385 second_bb = sched_split_block (first_bb, check);
496d7bb0 8386
e855c69d 8387 sched_create_recovery_edges (first_bb, rec, second_bb);
496d7bb0 8388
b8698a0f 8389 sched_init_only_bb (second_bb, first_bb);
fefa31b5 8390 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
e855c69d
AB
8391
8392 jump = BB_END (rec);
8393 haifa_init_insn (jump);
496d7bb0
MK
8394 }
8395
b8698a0f 8396 /* Move backward dependences from INSN to CHECK and
496d7bb0 8397 move forward dependences from INSN to TWIN. */
e2f6ff94
MK
8398
8399 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8400 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
496d7bb0 8401 {
9b517712 8402 rtx_insn *pro = DEP_PRO (dep);
496d7bb0
MK
8403 ds_t ds;
8404
8405 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8406 check --TRUE--> producer ??? or ANTI ???
8407 twin --TRUE--> producer
8408 twin --ANTI--> check
b8698a0f 8409
496d7bb0
MK
8410 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8411 check --ANTI--> producer
8412 twin --ANTI--> producer
8413 twin --ANTI--> check
8414
8415 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8416 check ~~TRUE~~> producer
8417 twin ~~TRUE~~> producer
b8698a0f 8418 twin --ANTI--> check */
496d7bb0 8419
e2f6ff94 8420 ds = DEP_STATUS (dep);
496d7bb0
MK
8421
8422 if (ds & BEGIN_SPEC)
8423 {
8424 gcc_assert (!mutate_p);
8425 ds &= ~BEGIN_SPEC;
8426 }
8427
e2f6ff94
MK
8428 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8429 sd_add_dep (new_dep, false);
8430
fefa31b5 8431 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0 8432 {
0e0ce50d 8433 DEP_CON (new_dep) = twin;
e2f6ff94 8434 sd_add_dep (new_dep, false);
b8698a0f 8435 }
496d7bb0
MK
8436 }
8437
e2f6ff94
MK
8438 /* Second, remove backward dependencies of INSN. */
8439 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8440 sd_iterator_cond (&sd_it, &dep);)
8441 {
8442 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8443 || mutate_p)
8444 /* We can delete this dep because we overcome it with
8445 BEGIN_SPECULATION. */
8446 sd_delete_dep (sd_it);
8447 else
8448 sd_iterator_next (&sd_it);
8449 }
496d7bb0 8450
e2f6ff94 8451 /* Future Speculations. Determine what BE_IN speculations will be like. */
496d7bb0
MK
8452 fs = 0;
8453
8454 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8455 here. */
b8698a0f 8456
496d7bb0 8457 gcc_assert (!DONE_SPEC (insn));
b8698a0f 8458
496d7bb0 8459 if (!mutate_p)
b8698a0f 8460 {
496d7bb0
MK
8461 ds_t ts = TODO_SPEC (insn);
8462
8463 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8464 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8465
15dc95cb 8466 /* Luckiness of future speculations solely depends upon initial
e2f6ff94 8467 BEGIN speculation. */
496d7bb0
MK
8468 if (ts & BEGIN_DATA)
8469 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8470 if (ts & BEGIN_CONTROL)
e2f6ff94
MK
8471 fs = set_dep_weak (fs, BE_IN_CONTROL,
8472 get_dep_weak (ts, BEGIN_CONTROL));
496d7bb0
MK
8473 }
8474 else
8475 CHECK_SPEC (check) = CHECK_SPEC (insn);
8476
8477 /* Future speculations: call the helper. */
e2f6ff94 8478 process_insn_forw_deps_be_in_spec (insn, twin, fs);
496d7bb0 8479
fefa31b5 8480 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8481 {
8482 /* Which types of dependencies should we use here is,
8483 generally, machine-dependent question... But, for now,
8484 it is not. */
8485
8486 if (!mutate_p)
8487 {
e2f6ff94
MK
8488 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8489 sd_add_dep (new_dep, false);
8490
8491 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8492 sd_add_dep (new_dep, false);
496d7bb0
MK
8493 }
8494 else
8495 {
b8698a0f 8496 if (spec_info->dump)
496d7bb0
MK
8497 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8498 (*current_sched_info->print_insn) (insn, 0));
8499
e2f6ff94
MK
8500 /* Remove all dependencies of the INSN. */
8501 {
8502 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8503 | SD_LIST_BACK
8504 | SD_LIST_RES_BACK));
8505 while (sd_iterator_cond (&sd_it, &dep))
8506 sd_delete_dep (sd_it);
8507 }
496d7bb0 8508
e2f6ff94
MK
8509 /* If former check (INSN) already was moved to the ready (or queue)
8510 list, add new check (CHECK) there too. */
496d7bb0
MK
8511 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8512 try_ready (check);
8513
e2f6ff94
MK
8514 /* Remove old check from instruction stream and free its
8515 data. */
496d7bb0
MK
8516 sched_remove_insn (insn);
8517 }
8518
e2f6ff94
MK
8519 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8520 sd_add_dep (new_dep, false);
496d7bb0
MK
8521 }
8522 else
e2f6ff94
MK
8523 {
8524 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8525 sd_add_dep (new_dep, false);
8526 }
496d7bb0
MK
8527
8528 if (!mutate_p)
917f1b7e 8529 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
496d7bb0
MK
8530 because it'll be done later in add_to_speculative_block. */
8531 {
8c681247 8532 auto_vec<rtx_insn *> priorities_roots;
916fa4f0
MK
8533
8534 clear_priorities (twin, &priorities_roots);
8535 calc_priorities (priorities_roots);
496d7bb0
MK
8536 }
8537}
8538
8539/* Removes dependency between instructions in the recovery block REC
8540 and usual region instructions. It keeps inner dependences so it
917f1b7e 8541 won't be necessary to recompute them. */
496d7bb0
MK
8542static void
8543fix_recovery_deps (basic_block rec)
8544{
9b517712 8545 rtx_insn *note, *insn, *jump;
9cad8a67 8546 auto_vec<rtx_insn *, 10> ready_list;
8f9b31f7 8547 auto_bitmap in_ready;
b8698a0f 8548
496d7bb0
MK
8549 /* NOTE - a basic block note. */
8550 note = NEXT_INSN (BB_HEAD (rec));
8551 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8552 insn = BB_END (rec);
8553 gcc_assert (JUMP_P (insn));
8554 insn = PREV_INSN (insn);
8555
8556 do
e2f6ff94
MK
8557 {
8558 sd_iterator_def sd_it;
8559 dep_t dep;
496d7bb0 8560
e2f6ff94
MK
8561 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8562 sd_iterator_cond (&sd_it, &dep);)
8563 {
9b517712 8564 rtx_insn *consumer = DEP_CON (dep);
496d7bb0
MK
8565
8566 if (BLOCK_FOR_INSN (consumer) != rec)
8567 {
e2f6ff94 8568 sd_delete_dep (sd_it);
496d7bb0 8569
8f9b31f7 8570 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
9cad8a67 8571 ready_list.safe_push (consumer);
496d7bb0
MK
8572 }
8573 else
8574 {
e2f6ff94 8575 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
496d7bb0 8576
e2f6ff94 8577 sd_iterator_next (&sd_it);
496d7bb0
MK
8578 }
8579 }
b8698a0f 8580
496d7bb0
MK
8581 insn = PREV_INSN (insn);
8582 }
8583 while (insn != note);
8584
496d7bb0 8585 /* Try to add instructions to the ready or queue list. */
9cad8a67
TS
8586 unsigned int i;
8587 rtx_insn *temp;
8588 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8589 try_ready (temp);
496d7bb0
MK
8590
8591 /* Fixing jump's dependences. */
8592 insn = BB_HEAD (rec);
8593 jump = BB_END (rec);
b8698a0f 8594
496d7bb0
MK
8595 gcc_assert (LABEL_P (insn));
8596 insn = NEXT_INSN (insn);
b8698a0f 8597
496d7bb0
MK
8598 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8599 add_jump_dependencies (insn, jump);
8600}
8601
e2724e63
BS
8602/* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8603 instruction data. */
8604static bool
f57aa6b0 8605haifa_change_pattern (rtx_insn *insn, rtx new_pat)
496d7bb0
MK
8606{
8607 int t;
8608
8609 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
e2724e63
BS
8610 if (!t)
8611 return false;
e855c69d 8612
1a83e602 8613 update_insn_after_change (insn);
e2724e63 8614 return true;
496d7bb0
MK
8615}
8616
496d7bb0
MK
8617/* -1 - can't speculate,
8618 0 - for speculation with REQUEST mode it is OK to use
8619 current instruction pattern,
8620 1 - need to change pattern for *NEW_PAT to be speculative. */
e855c69d 8621int
ac44248e 8622sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
496d7bb0
MK
8623{
8624 gcc_assert (current_sched_info->flags & DO_SPECULATION
e2f6ff94
MK
8625 && (request & SPECULATIVE)
8626 && sched_insn_is_legitimate_for_speculation_p (insn, request));
496d7bb0 8627
e2f6ff94 8628 if ((request & spec_info->mask) != request)
496d7bb0 8629 return -1;
496d7bb0 8630
e2f6ff94
MK
8631 if (request & BE_IN_SPEC
8632 && !(request & BEGIN_SPEC))
8633 return 0;
496d7bb0 8634
e855c69d
AB
8635 return targetm.sched.speculate_insn (insn, request, new_pat);
8636}
8637
8638static int
f57aa6b0 8639haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
e855c69d
AB
8640{
8641 gcc_assert (sched_deps_info->generate_spec_deps
8642 && !IS_SPECULATION_CHECK_P (insn));
8643
8644 if (HAS_INTERNAL_DEP (insn)
8645 || SCHED_GROUP_P (insn))
8646 return -1;
8647
8648 return sched_speculate_insn (insn, request, new_pat);
496d7bb0
MK
8649}
8650
8651/* Print some information about block BB, which starts with HEAD and
8652 ends with TAIL, before scheduling it.
8653 I is zero, if scheduler is about to start with the fresh ebb. */
8654static void
f57aa6b0 8655dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
496d7bb0
MK
8656{
8657 if (!i)
8658 fprintf (sched_dump,
8659 ";; ======================================================\n");
8660 else
8661 fprintf (sched_dump,
8662 ";; =====================ADVANCING TO=====================\n");
8663 fprintf (sched_dump,
8664 ";; -- basic block %d from %d to %d -- %s reload\n",
8665 bb->index, INSN_UID (head), INSN_UID (tail),
8666 (reload_completed ? "after" : "before"));
8667 fprintf (sched_dump,
8668 ";; ======================================================\n");
8669 fprintf (sched_dump, "\n");
8670}
8671
8672/* Unlink basic block notes and labels and saves them, so they
8673 can be easily restored. We unlink basic block notes in EBB to
917f1b7e 8674 provide back-compatibility with the previous code, as target backends
496d7bb0
MK
8675 assume, that there'll be only instructions between
8676 current_sched_info->{head and tail}. We restore these notes as soon
8677 as we can.
8678 FIRST (LAST) is the first (last) basic block in the ebb.
8679 NB: In usual case (FIRST == LAST) nothing is really done. */
8680void
8681unlink_bb_notes (basic_block first, basic_block last)
8682{
8683 /* We DON'T unlink basic block notes of the first block in the ebb. */
8684 if (first == last)
8685 return;
8686
9b517712 8687 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
496d7bb0
MK
8688
8689 /* Make a sentinel. */
fefa31b5 8690 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
496d7bb0
MK
8691 bb_header[last->next_bb->index] = 0;
8692
8693 first = first->next_bb;
8694 do
8695 {
9b517712 8696 rtx_insn *prev, *label, *note, *next;
496d7bb0
MK
8697
8698 label = BB_HEAD (last);
8699 if (LABEL_P (label))
8700 note = NEXT_INSN (label);
8701 else
b8698a0f 8702 note = label;
496d7bb0
MK
8703 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8704
8705 prev = PREV_INSN (label);
8706 next = NEXT_INSN (note);
8707 gcc_assert (prev && next);
8708
0f82e5c9
DM
8709 SET_NEXT_INSN (prev) = next;
8710 SET_PREV_INSN (next) = prev;
496d7bb0
MK
8711
8712 bb_header[last->index] = label;
8713
8714 if (last == first)
8715 break;
b8698a0f 8716
496d7bb0
MK
8717 last = last->prev_bb;
8718 }
8719 while (1);
8720}
8721
8722/* Restore basic block notes.
8723 FIRST is the first basic block in the ebb. */
8724static void
8725restore_bb_notes (basic_block first)
8726{
8727 if (!bb_header)
8728 return;
8729
8730 /* We DON'T unlink basic block notes of the first block in the ebb. */
b8698a0f 8731 first = first->next_bb;
496d7bb0
MK
8732 /* Remember: FIRST is actually a second basic block in the ebb. */
8733
fefa31b5 8734 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
496d7bb0
MK
8735 && bb_header[first->index])
8736 {
9b517712 8737 rtx_insn *prev, *label, *note, *next;
b8698a0f 8738
496d7bb0
MK
8739 label = bb_header[first->index];
8740 prev = PREV_INSN (label);
8741 next = NEXT_INSN (prev);
8742
8743 if (LABEL_P (label))
8744 note = NEXT_INSN (label);
8745 else
b8698a0f 8746 note = label;
496d7bb0
MK
8747 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8748
8749 bb_header[first->index] = 0;
8750
0f82e5c9
DM
8751 SET_NEXT_INSN (prev) = label;
8752 SET_NEXT_INSN (note) = next;
8753 SET_PREV_INSN (next) = note;
b8698a0f 8754
496d7bb0
MK
8755 first = first->next_bb;
8756 }
8757
8758 free (bb_header);
8759 bb_header = 0;
8760}
8761
496d7bb0
MK
8762/* Helper function.
8763 Fix CFG after both in- and inter-block movement of
8764 control_flow_insn_p JUMP. */
8765static void
f57aa6b0 8766fix_jump_move (rtx_insn *jump)
496d7bb0
MK
8767{
8768 basic_block bb, jump_bb, jump_bb_next;
8769
8770 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8771 jump_bb = BLOCK_FOR_INSN (jump);
8772 jump_bb_next = jump_bb->next_bb;
8773
e855c69d 8774 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
d7bfd907 8775 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
b8698a0f 8776
496d7bb0
MK
8777 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8778 /* if jump_bb_next is not empty. */
1130d5e3 8779 BB_END (jump_bb) = BB_END (jump_bb_next);
496d7bb0
MK
8780
8781 if (BB_END (bb) != PREV_INSN (jump))
8782 /* Then there are instruction after jump that should be placed
8783 to jump_bb_next. */
1130d5e3 8784 BB_END (jump_bb_next) = BB_END (bb);
496d7bb0
MK
8785 else
8786 /* Otherwise jump_bb_next is empty. */
1130d5e3 8787 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
496d7bb0
MK
8788
8789 /* To make assertion in move_insn happy. */
1130d5e3 8790 BB_END (bb) = PREV_INSN (jump);
496d7bb0
MK
8791
8792 update_bb_for_insn (jump_bb_next);
8793}
8794
8795/* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8796static void
f57aa6b0 8797move_block_after_check (rtx_insn *jump)
496d7bb0
MK
8798{
8799 basic_block bb, jump_bb, jump_bb_next;
9771b263 8800 vec<edge, va_gc> *t;
496d7bb0
MK
8801
8802 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8803 jump_bb = BLOCK_FOR_INSN (jump);
8804 jump_bb_next = jump_bb->next_bb;
b8698a0f 8805
496d7bb0 8806 update_bb_for_insn (jump_bb);
b8698a0f 8807
d7bfd907
MK
8808 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8809 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
496d7bb0
MK
8810
8811 unlink_block (jump_bb_next);
8812 link_block (jump_bb_next, bb);
8813
8814 t = bb->succs;
8815 bb->succs = 0;
8816 move_succs (&(jump_bb->succs), bb);
8817 move_succs (&(jump_bb_next->succs), jump_bb);
8818 move_succs (&t, jump_bb_next);
6fb5fa3c
DB
8819
8820 df_mark_solutions_dirty ();
b8698a0f 8821
e855c69d
AB
8822 common_sched_info->fix_recovery_cfg
8823 (bb->index, jump_bb->index, jump_bb_next->index);
496d7bb0
MK
8824}
8825
8826/* Helper function for move_block_after_check.
8827 This functions attaches edge vector pointed to by SUCCSP to
8828 block TO. */
8829static void
9771b263 8830move_succs (vec<edge, va_gc> **succsp, basic_block to)
496d7bb0
MK
8831{
8832 edge e;
8833 edge_iterator ei;
8834
8835 gcc_assert (to->succs == 0);
8836
8837 to->succs = *succsp;
8838
8839 FOR_EACH_EDGE (e, ei, to->succs)
8840 e->src = to;
8841
8842 *succsp = 0;
8843}
8844
496d7bb0
MK
8845/* Remove INSN from the instruction stream.
8846 INSN should have any dependencies. */
8847static void
ce1ce33a 8848sched_remove_insn (rtx_insn *insn)
496d7bb0 8849{
e2f6ff94
MK
8850 sd_finish_insn (insn);
8851
496d7bb0
MK
8852 change_queue_index (insn, QUEUE_NOWHERE);
8853 current_sched_info->add_remove_insn (insn, 1);
1f397f45 8854 delete_insn (insn);
496d7bb0
MK
8855}
8856
916fa4f0
MK
8857/* Clear priorities of all instructions, that are forward dependent on INSN.
8858 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8859 be invoked to initialize all cleared priorities. */
496d7bb0 8860static void
6144a836 8861clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
496d7bb0 8862{
e2f6ff94
MK
8863 sd_iterator_def sd_it;
8864 dep_t dep;
916fa4f0
MK
8865 bool insn_is_root_p = true;
8866
8867 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
496d7bb0 8868
e2f6ff94 8869 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
496d7bb0 8870 {
9b517712 8871 rtx_insn *pro = DEP_PRO (dep);
496d7bb0 8872
916fa4f0
MK
8873 if (INSN_PRIORITY_STATUS (pro) >= 0
8874 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
496d7bb0 8875 {
916fa4f0
MK
8876 /* If DEP doesn't contribute to priority then INSN itself should
8877 be added to priority roots. */
8878 if (contributes_to_priority_p (dep))
8879 insn_is_root_p = false;
8880
8881 INSN_PRIORITY_STATUS (pro) = -1;
8882 clear_priorities (pro, roots_ptr);
496d7bb0
MK
8883 }
8884 }
916fa4f0
MK
8885
8886 if (insn_is_root_p)
9771b263 8887 roots_ptr->safe_push (insn);
496d7bb0
MK
8888}
8889
8890/* Recompute priorities of instructions, whose priorities might have been
916fa4f0
MK
8891 changed. ROOTS is a vector of instructions whose priority computation will
8892 trigger initialization of all cleared priorities. */
496d7bb0 8893static void
916fa4f0 8894calc_priorities (rtx_vec_t roots)
496d7bb0 8895{
916fa4f0 8896 int i;
6144a836 8897 rtx_insn *insn;
496d7bb0 8898
9771b263 8899 FOR_EACH_VEC_ELT (roots, i, insn)
916fa4f0 8900 priority (insn);
496d7bb0
MK
8901}
8902
8903
8904/* Add dependences between JUMP and other instructions in the recovery
8905 block. INSN is the first insn the recovery block. */
8906static void
0e0ce50d 8907add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
496d7bb0
MK
8908{
8909 do
8910 {
8911 insn = NEXT_INSN (insn);
8912 if (insn == jump)
8913 break;
b8698a0f 8914
7a1aca9c 8915 if (dep_list_size (insn, SD_LIST_FORW) == 0)
e2f6ff94
MK
8916 {
8917 dep_def _new_dep, *new_dep = &_new_dep;
8918
8919 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8920 sd_add_dep (new_dep, false);
8921 }
496d7bb0
MK
8922 }
8923 while (1);
b198261f 8924
e2f6ff94 8925 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
496d7bb0
MK
8926}
8927
e855c69d 8928/* Extend data structures for logical insn UID. */
a95b23b4
BS
8929void
8930sched_extend_luids (void)
e855c69d
AB
8931{
8932 int new_luids_max_uid = get_max_uid () + 1;
8933
9771b263 8934 sched_luids.safe_grow_cleared (new_luids_max_uid);
e855c69d
AB
8935}
8936
8937/* Initialize LUID for INSN. */
a95b23b4 8938void
f57aa6b0 8939sched_init_insn_luid (rtx_insn *insn)
e855c69d
AB
8940{
8941 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8942 int luid;
8943
8944 if (i >= 0)
8945 {
8946 luid = sched_max_luid;
8947 sched_max_luid += i;
8948 }
8949 else
8950 luid = -1;
8951
8952 SET_INSN_LUID (insn, luid);
8953}
8954
a95b23b4 8955/* Initialize luids for BBS.
e855c69d
AB
8956 The hook common_sched_info->luid_for_non_insn () is used to determine
8957 if notes, labels, etc. need luids. */
8958void
a95b23b4 8959sched_init_luids (bb_vec_t bbs)
e855c69d 8960{
a95b23b4
BS
8961 int i;
8962 basic_block bb;
8963
8964 sched_extend_luids ();
9771b263 8965 FOR_EACH_VEC_ELT (bbs, i, bb)
e855c69d 8966 {
f57aa6b0 8967 rtx_insn *insn;
e855c69d 8968
a95b23b4
BS
8969 FOR_BB_INSNS (bb, insn)
8970 sched_init_insn_luid (insn);
8971 }
e855c69d
AB
8972}
8973
8974/* Free LUIDs. */
8975void
8976sched_finish_luids (void)
8977{
9771b263 8978 sched_luids.release ();
e855c69d
AB
8979 sched_max_luid = 1;
8980}
8981
8982/* Return logical uid of INSN. Helpful while debugging. */
8983int
f57aa6b0 8984insn_luid (rtx_insn *insn)
e855c69d
AB
8985{
8986 return INSN_LUID (insn);
8987}
8988
8989/* Extend per insn data in the target. */
8990void
8991sched_extend_target (void)
8992{
8993 if (targetm.sched.h_i_d_extended)
8994 targetm.sched.h_i_d_extended ();
8995}
8996
8997/* Extend global scheduler structures (those, that live across calls to
8998 schedule_block) to include information about just emitted INSN. */
8999static void
9000extend_h_i_d (void)
9001{
9771b263 9002 int reserve = (get_max_uid () + 1 - h_i_d.length ());
b8698a0f 9003 if (reserve > 0
9771b263 9004 && ! h_i_d.space (reserve))
e855c69d 9005 {
9771b263 9006 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
e855c69d
AB
9007 sched_extend_target ();
9008 }
9009}
9010
9011/* Initialize h_i_d entry of the INSN with default values.
9012 Values, that are not explicitly initialized here, hold zero. */
9013static void
f57aa6b0 9014init_h_i_d (rtx_insn *insn)
e855c69d
AB
9015{
9016 if (INSN_LUID (insn) > 0)
9017 {
9018 INSN_COST (insn) = -1;
e855c69d
AB
9019 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9020 INSN_TICK (insn) = INVALID_TICK;
26965010 9021 INSN_EXACT_TICK (insn) = INVALID_TICK;
e855c69d
AB
9022 INTER_TICK (insn) = INVALID_TICK;
9023 TODO_SPEC (insn) = HARD_DEP;
340c7904
MK
9024 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9025 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9026 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9027 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
e855c69d
AB
9028 }
9029}
9030
a95b23b4 9031/* Initialize haifa_insn_data for BBS. */
e855c69d 9032void
a95b23b4 9033haifa_init_h_i_d (bb_vec_t bbs)
e855c69d 9034{
a95b23b4
BS
9035 int i;
9036 basic_block bb;
9037
9038 extend_h_i_d ();
9771b263 9039 FOR_EACH_VEC_ELT (bbs, i, bb)
e855c69d 9040 {
f57aa6b0 9041 rtx_insn *insn;
e855c69d 9042
a95b23b4
BS
9043 FOR_BB_INSNS (bb, insn)
9044 init_h_i_d (insn);
9045 }
e855c69d
AB
9046}
9047
9048/* Finalize haifa_insn_data. */
9049void
9050haifa_finish_h_i_d (void)
9051{
ce18efcb
VM
9052 int i;
9053 haifa_insn_data_t data;
36fb33de
ML
9054 reg_use_data *use, *next_use;
9055 reg_set_data *set, *next_set;
ce18efcb 9056
9771b263 9057 FOR_EACH_VEC_ELT (h_i_d, i, data)
ce18efcb 9058 {
7a1aca9c 9059 free (data->max_reg_pressure);
04695783 9060 free (data->reg_pressure);
36fb33de 9061 for (use = data->reg_use_list; use != NULL; use = next_use)
ce18efcb 9062 {
36fb33de 9063 next_use = use->next_insn_use;
ce18efcb
VM
9064 free (use);
9065 }
36fb33de
ML
9066 for (set = data->reg_set_list; set != NULL; set = next_set)
9067 {
9068 next_set = set->next_insn_set;
9069 free (set);
9070 }
9071
ce18efcb 9072 }
9771b263 9073 h_i_d.release ();
e855c69d
AB
9074}
9075
9076/* Init data for the new insn INSN. */
9077static void
f57aa6b0 9078haifa_init_insn (rtx_insn *insn)
e855c69d
AB
9079{
9080 gcc_assert (insn != NULL);
9081
a95b23b4
BS
9082 sched_extend_luids ();
9083 sched_init_insn_luid (insn);
e855c69d
AB
9084 sched_extend_target ();
9085 sched_deps_init (false);
a95b23b4
BS
9086 extend_h_i_d ();
9087 init_h_i_d (insn);
e855c69d
AB
9088
9089 if (adding_bb_to_current_region_p)
9090 {
9091 sd_init_insn (insn);
9092
9093 /* Extend dependency caches by one element. */
9094 extend_dependency_caches (1, false);
9095 }
7a1aca9c 9096 if (sched_pressure != SCHED_PRESSURE_NONE)
19ac7892 9097 init_insn_reg_pressure_info (insn);
e855c69d
AB
9098}
9099
9100/* Init data for the new basic block BB which comes after AFTER. */
9101static void
9102haifa_init_only_bb (basic_block bb, basic_block after)
9103{
9104 gcc_assert (bb != NULL);
9105
9106 sched_init_bbs ();
9107
9108 if (common_sched_info->add_block)
9109 /* This changes only data structures of the front-end. */
9110 common_sched_info->add_block (bb, after);
9111}
9112
9113/* A generic version of sched_split_block (). */
9114basic_block
9115sched_split_block_1 (basic_block first_bb, rtx after)
9116{
9117 edge e;
9118
9119 e = split_block (first_bb, after);
9120 gcc_assert (e->src == first_bb);
9121
b8698a0f 9122 /* sched_split_block emits note if *check == BB_END. Probably it
e855c69d
AB
9123 is better to rip that note off. */
9124
9125 return e->dest;
9126}
9127
9128/* A generic version of sched_create_empty_bb (). */
9129basic_block
9130sched_create_empty_bb_1 (basic_block after)
9131{
9132 return create_empty_bb (after);
9133}
9134
9dcc2e87
TS
9135/* Insert PAT as an INSN into the schedule and update the necessary data
9136 structures to account for it. */
ce1ce33a 9137rtx_insn *
9dcc2e87
TS
9138sched_emit_insn (rtx pat)
9139{
ce1ce33a 9140 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9dcc2e87 9141 haifa_init_insn (insn);
2dfdcb4b
UW
9142
9143 if (current_sched_info->add_remove_insn)
9144 current_sched_info->add_remove_insn (insn, 0);
9145
9146 (*current_sched_info->begin_schedule_ready) (insn);
9771b263 9147 scheduled_insns.safe_push (insn);
2dfdcb4b
UW
9148
9149 last_scheduled_insn = insn;
9dcc2e87
TS
9150 return insn;
9151}
9152
7942e47e
RY
9153/* This function returns a candidate satisfying dispatch constraints from
9154 the ready list. */
9155
ce1ce33a 9156static rtx_insn *
7942e47e
RY
9157ready_remove_first_dispatch (struct ready_list *ready)
9158{
9159 int i;
ce1ce33a 9160 rtx_insn *insn = ready_element (ready, 0);
7942e47e
RY
9161
9162 if (ready->n_ready == 1
7942e47e 9163 || !INSN_P (insn)
d7b6661b 9164 || INSN_CODE (insn) < 0
7942e47e
RY
9165 || !active_insn_p (insn)
9166 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9167 return ready_remove_first (ready);
9168
9169 for (i = 1; i < ready->n_ready; i++)
9170 {
9171 insn = ready_element (ready, i);
9172
d7b6661b
SB
9173 if (!INSN_P (insn)
9174 || INSN_CODE (insn) < 0
7942e47e
RY
9175 || !active_insn_p (insn))
9176 continue;
9177
9178 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9179 {
9180 /* Return ith element of ready. */
9181 insn = ready_remove (ready, i);
9182 return insn;
9183 }
9184 }
9185
ac44248e 9186 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
7942e47e
RY
9187 return ready_remove_first (ready);
9188
9189 for (i = 1; i < ready->n_ready; i++)
9190 {
9191 insn = ready_element (ready, i);
9192
98eaa66f 9193 if (!INSN_P (insn)
d7b6661b 9194 || INSN_CODE (insn) < 0
7942e47e
RY
9195 || !active_insn_p (insn))
9196 continue;
9197
9198 /* Return i-th element of ready. */
9199 if (targetm.sched.dispatch (insn, IS_CMP))
9200 return ready_remove (ready, i);
9201 }
9202
9203 return ready_remove_first (ready);
9204}
9205
9206/* Get number of ready insn in the ready list. */
9207
9208int
9209number_in_ready (void)
9210{
9211 return ready.n_ready;
9212}
9213
9214/* Get number of ready's in the ready list. */
9215
6a263466 9216rtx_insn *
7942e47e
RY
9217get_ready_element (int i)
9218{
9219 return ready_element (&ready, i);
9220}
9221
8c660648 9222#endif /* INSN_SCHEDULING */