]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/haifa-sched.c
Eliminate last_basic_block macro.
[thirdparty/gcc.git] / gcc / haifa-sched.c
CommitLineData
3eb9a99d 1/* Instruction scheduling pass.
711789cc 2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3eb9a99d 3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
f12b58b3 6This file is part of GCC.
b1820f75 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
f12b58b3 11version.
b1820f75 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
b1820f75 15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
3eb9a99d 21
7a31a7bd 22/* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point is found for
24 the normal instruction scheduling pass is found in sched-rgn.c.
3eb9a99d 25
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
34
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
39
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
54
3eb9a99d 55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
57
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
02aef853 68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
3eb9a99d 70
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
77
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_backward_dependences ().
81
82 Dependencies set up by memory references are treated in exactly the
9997bd27 83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS the purpose of forward list scheduling.
3eb9a99d 86
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
95
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
100
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
105
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
109
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
114
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
5496dbfc 117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
3eb9a99d 118
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
7a31a7bd 123 beginning of basic blocks and regions that have been scheduled. */
3eb9a99d 124\f
3eb9a99d 125#include "config.h"
46c1a957 126#include "system.h"
805e22b2 127#include "coretypes.h"
128#include "tm.h"
0b205f4c 129#include "diagnostic-core.h"
effd1640 130#include "hard-reg-set.h"
3eb9a99d 131#include "rtl.h"
7953c610 132#include "tm_p.h"
3eb9a99d 133#include "regs.h"
0a893c29 134#include "function.h"
3eb9a99d 135#include "flags.h"
136#include "insn-config.h"
137#include "insn-attr.h"
138#include "except.h"
ba1c8484 139#include "recog.h"
c2069298 140#include "sched-int.h"
747af5e7 141#include "target.h"
218e3e4e 142#include "common/common-target.h"
6a1cdb4d 143#include "params.h"
3072d30e 144#include "dbgcnt.h"
e1ab7874 145#include "cfgloop.h"
a7dcf969 146#include "ira.h"
06f9d6ef 147#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
d9dd21a8 148#include "hash-table.h"
b9ed1410 149#include "dumpfile.h"
3eb9a99d 150
3eb9a99d 151#ifdef INSN_SCHEDULING
152
57a8bf1b 153/* True if we do register pressure relief through live-range
154 shrinkage. */
155static bool live_range_shrinkage_p;
156
157/* Switch on live range shrinkage. */
158void
159initialize_live_range_shrinkage (void)
160{
161 live_range_shrinkage_p = true;
162}
163
164/* Switch off live range shrinkage. */
165void
166finish_live_range_shrinkage (void)
167{
168 live_range_shrinkage_p = false;
169}
170
3eb9a99d 171/* issue_rate is the number of insns that can be scheduled in the same
172 machine cycle. It can be defined in the config/mach/mach.h file,
173 otherwise we set it to 1. */
174
e1ab7874 175int issue_rate;
3eb9a99d 176
e2f4a6ff 177/* This can be set to true by a backend if the scheduler should not
178 enable a DCE pass. */
179bool sched_no_dce;
180
c0457559 181/* The current initiation interval used when modulo scheduling. */
182static int modulo_ii;
183
184/* The maximum number of stages we are prepared to handle. */
185static int modulo_max_stages;
186
187/* The number of insns that exist in each iteration of the loop. We use this
188 to detect when we've scheduled all insns from the first iteration. */
189static int modulo_n_insns;
190
191/* The current count of insns in the first iteration of the loop that have
192 already been scheduled. */
193static int modulo_insns_scheduled;
194
195/* The maximum uid of insns from the first iteration of the loop. */
196static int modulo_iter0_max_uid;
197
198/* The number of times we should attempt to backtrack when modulo scheduling.
199 Decreased each time we have to backtrack. */
200static int modulo_backtracks_left;
201
202/* The stage in which the last insn from the original loop was
203 scheduled. */
204static int modulo_last_stage;
205
cc13a078 206/* sched-verbose controls the amount of debugging output the
5c69f8a7 207 scheduler prints. It is controlled by -fsched-verbose=N:
3eb9a99d 208 N>0 and no -DSR : the output is directed to stderr.
209 N>=10 will direct the printouts to stderr (regardless of -dSR).
210 N=1: same as -dSR.
211 N=2: bb's probabilities, detailed ready list info, unit/insn info.
212 N=3: rtl at abort point, control-flow, regions info.
cc13a078 213 N=5: dependences info. */
3eb9a99d 214
7a31a7bd 215int sched_verbose = 0;
3eb9a99d 216
c4cd519a 217/* Debugging file. All printouts are sent to dump, which is always set,
3eb9a99d 218 either to stderr, or to the dump listing file (-dRS). */
10c06114 219FILE *sched_dump = 0;
d0768316 220
48e1416a 221/* This is a placeholder for the scheduler parameters common
e1ab7874 222 to all schedulers. */
223struct common_sched_info_def *common_sched_info;
d28d5327 224
e1ab7874 225#define INSN_TICK(INSN) (HID (INSN)->tick)
e2f4a6ff 226#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
227#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
e1ab7874 228#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
e2f4a6ff 229#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
230#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
effd1640 231#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
d452a169 232/* Cached cost of the instruction. Use insn_cost to get cost of the
233 insn. -1 here means that the field is not initialized. */
234#define INSN_COST(INSN) (HID (INSN)->cost)
e4897000 235
236/* If INSN_TICK of an instruction is equal to INVALID_TICK,
237 then it should be recalculated from scratch. */
238#define INVALID_TICK (-(max_insn_queue_index + 1))
239/* The minimal value of the INSN_TICK of an instruction. */
240#define MIN_TICK (-max_insn_queue_index)
3eb9a99d 241
3eb9a99d 242/* List of important notes we must keep around. This is a pointer to the
243 last element in the list. */
e1ab7874 244rtx note_list;
3eb9a99d 245
6a1cdb4d 246static struct spec_info_def spec_info_var;
247/* Description of the speculative part of the scheduling.
248 If NULL - no speculation. */
e1ab7874 249spec_info_t spec_info = NULL;
6a1cdb4d 250
251/* True, if recovery block was added during scheduling of current block.
252 Used to determine, if we need to fix INSN_TICKs. */
93f6b030 253static bool haifa_recovery_bb_recently_added_p;
254
255/* True, if recovery block was added during this scheduling pass.
256 Used to determine if we should have empty memory pools of dependencies
257 after finishing current region. */
258bool haifa_recovery_bb_ever_added_p;
6a1cdb4d 259
9ca2c29a 260/* Counters of different types of speculative instructions. */
6a1cdb4d 261static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
262
6a1cdb4d 263/* Array used in {unlink, restore}_bb_notes. */
264static rtx *bb_header = 0;
265
6a1cdb4d 266/* Basic block after which recovery blocks will be created. */
267static basic_block before_recovery;
268
e1ab7874 269/* Basic block just before the EXIT_BLOCK and after recovery, if we have
270 created it. */
271basic_block after_recovery;
272
273/* FALSE if we add bb to another region, so we don't need to initialize it. */
274bool adding_bb_to_current_region_p = true;
275
3eb9a99d 276/* Queues, etc. */
277
278/* An instruction is ready to be scheduled when all insns preceding it
279 have already been scheduled. It is important to ensure that all
280 insns which use its result will not be executed until its result
281 has been computed. An insn is maintained in one of four structures:
282
283 (P) the "Pending" set of insns which cannot be scheduled until
284 their dependencies have been satisfied.
285 (Q) the "Queued" set of insns that can be scheduled when sufficient
286 time has passed.
287 (R) the "Ready" list of unscheduled, uncommitted insns.
288 (S) the "Scheduled" list of insns.
289
290 Initially, all insns are either "Pending" or "Ready" depending on
291 whether their dependencies are satisfied.
292
293 Insns move from the "Ready" list to the "Scheduled" list as they
294 are committed to the schedule. As this occurs, the insns in the
295 "Pending" list have their dependencies satisfied and move to either
296 the "Ready" list or the "Queued" set depending on whether
297 sufficient time has passed to make them ready. As time passes,
67900a4f 298 insns move from the "Queued" set to the "Ready" list.
3eb9a99d 299
9997bd27 300 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
301 unscheduled insns, i.e., those that are ready, queued, and pending.
3eb9a99d 302 The "Queued" set (Q) is implemented by the variable `insn_queue'.
303 The "Ready" list (R) is implemented by the variables `ready' and
304 `n_ready'.
305 The "Scheduled" list (S) is the new insn chain built by this pass.
306
307 The transition (R->S) is implemented in the scheduling loop in
308 `schedule_block' when the best insn to schedule is chosen.
3eb9a99d 309 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
310 insns move from the ready list to the scheduled list.
311 The transition (Q->R) is implemented in 'queue_to_insn' as time
312 passes or stalls are introduced. */
313
314/* Implement a circular buffer to delay instructions until sufficient
67900a4f 315 time has passed. For the new pipeline description interface,
e4897000 316 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
67900a4f 317 than maximal time of instruction execution computed by genattr.c on
318 the base maximal time of functional unit reservations and getting a
319 result. This is the longest time an insn may be queued. */
bea4bad2 320
321static rtx *insn_queue;
3eb9a99d 322static int q_ptr = 0;
323static int q_size = 0;
67900a4f 324#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
325#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
bea4bad2 326
e4897000 327#define QUEUE_SCHEDULED (-3)
328#define QUEUE_NOWHERE (-2)
329#define QUEUE_READY (-1)
330/* QUEUE_SCHEDULED - INSN is scheduled.
331 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
332 queue or ready list.
333 QUEUE_READY - INSN is in ready list.
334 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
48e1416a 335
e1ab7874 336#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
e4897000 337
bea4bad2 338/* The following variable value refers for all current and future
339 reservations of the processor units. */
340state_t curr_state;
341
342/* The following variable value is size of memory representing all
67900a4f 343 current and future reservations of the processor units. */
e1ab7874 344size_t dfa_state_size;
bea4bad2 345
346/* The following array is used to find the best insn from ready when
347 the automaton pipeline interface is used. */
e1ab7874 348char *ready_try = NULL;
3eb9a99d 349
e1ab7874 350/* The ready list. */
9845d120 351struct ready_list ready = {NULL, 0, 0, 0, 0};
30b1ec30 352
e1ab7874 353/* The pointer to the ready list (to be removed). */
354static struct ready_list *readyp = &ready;
e4897000 355
356/* Scheduling clock. */
357static int clock_var;
358
e2f4a6ff 359/* Clock at which the previous instruction was issued. */
360static int last_clock_var;
361
362/* Set to true if, when queuing a shadow insn, we discover that it would be
363 scheduled too late. */
364static bool must_backtrack;
365
366/* The following variable value is number of essential insns issued on
367 the current cycle. An insn is essential one if it changes the
368 processors state. */
369int cycle_issued_insns;
370
d2412f57 371/* This records the actual schedule. It is built up during the main phase
372 of schedule_block, and afterwards used to reorder the insns in the RTL. */
f1f41a6c 373static vec<rtx> scheduled_insns;
d2412f57 374
5493cb9a 375static int may_trap_exp (const_rtx, int);
9b7c6f02 376
377/* Nonzero iff the address is comprised from at most 1 register. */
378#define CONST_BASED_ADDRESS_P(x) \
8ad4c111 379 (REG_P (x) \
9b7c6f02 380 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
381 || (GET_CODE (x) == LO_SUM)) \
382 && (CONSTANT_P (XEXP (x, 0)) \
383 || CONSTANT_P (XEXP (x, 1)))))
384
385/* Returns a class that insn with GET_DEST(insn)=x may belong to,
386 as found by analyzing insn's expression. */
387
e1ab7874 388\f
389static int haifa_luid_for_non_insn (rtx x);
390
391/* Haifa version of sched_info hooks common to all headers. */
48e1416a 392const struct common_sched_info_def haifa_common_sched_info =
e1ab7874 393 {
394 NULL, /* fix_recovery_cfg */
395 NULL, /* add_block */
396 NULL, /* estimate_number_of_insns */
397 haifa_luid_for_non_insn, /* luid_for_non_insn */
398 SCHED_PASS_UNKNOWN /* sched_pass_id */
399 };
400
e1ab7874 401/* Mapping from instruction UID to its Logical UID. */
1e094109 402vec<int> sched_luids = vNULL;
e1ab7874 403
404/* Next LUID to assign to an instruction. */
405int sched_max_luid = 1;
406
407/* Haifa Instruction Data. */
1e094109 408vec<haifa_insn_data_def> h_i_d = vNULL;
e1ab7874 409
410void (* sched_init_only_bb) (basic_block, basic_block);
411
412/* Split block function. Different schedulers might use different functions
413 to handle their internal data consistent. */
414basic_block (* sched_split_block) (basic_block, rtx);
415
416/* Create empty basic block after the specified block. */
417basic_block (* sched_create_empty_bb) (basic_block);
418
b30b031c 419/* Return the number of cycles until INSN is expected to be ready.
420 Return zero if it already is. */
421static int
422insn_delay (rtx insn)
423{
424 return MAX (INSN_TICK (insn) - clock_var, 0);
425}
426
9b7c6f02 427static int
5493cb9a 428may_trap_exp (const_rtx x, int is_store)
9b7c6f02 429{
430 enum rtx_code code;
431
432 if (x == 0)
433 return TRAP_FREE;
434 code = GET_CODE (x);
435 if (is_store)
436 {
437 if (code == MEM && may_trap_p (x))
438 return TRAP_RISKY;
439 else
440 return TRAP_FREE;
441 }
442 if (code == MEM)
443 {
444 /* The insn uses memory: a volatile load. */
445 if (MEM_VOLATILE_P (x))
446 return IRISKY;
447 /* An exception-free load. */
448 if (!may_trap_p (x))
449 return IFREE;
450 /* A load with 1 base register, to be further checked. */
451 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
452 return PFREE_CANDIDATE;
453 /* No info on the load, to be further checked. */
454 return PRISKY_CANDIDATE;
455 }
456 else
457 {
458 const char *fmt;
459 int i, insn_class = TRAP_FREE;
460
461 /* Neither store nor load, check if it may cause a trap. */
462 if (may_trap_p (x))
463 return TRAP_RISKY;
464 /* Recursive step: walk the insn... */
465 fmt = GET_RTX_FORMAT (code);
466 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
467 {
468 if (fmt[i] == 'e')
469 {
470 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
471 insn_class = WORST_CLASS (insn_class, tmp_class);
472 }
473 else if (fmt[i] == 'E')
474 {
475 int j;
476 for (j = 0; j < XVECLEN (x, i); j++)
477 {
478 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
479 insn_class = WORST_CLASS (insn_class, tmp_class);
480 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
481 break;
482 }
483 }
484 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
485 break;
486 }
487 return insn_class;
488 }
489}
490
f1b700e6 491/* Classifies rtx X of an insn for the purpose of verifying that X can be
492 executed speculatively (and consequently the insn can be moved
493 speculatively), by examining X, returning:
9b7c6f02 494 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
495 TRAP_FREE: non-load insn.
91c82c20 496 IFREE: load from a globally safe location.
9b7c6f02 497 IRISKY: volatile load.
498 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
499 being either PFREE or PRISKY. */
500
f1b700e6 501static int
502haifa_classify_rtx (const_rtx x)
9b7c6f02 503{
9b7c6f02 504 int tmp_class = TRAP_FREE;
505 int insn_class = TRAP_FREE;
506 enum rtx_code code;
507
f1b700e6 508 if (GET_CODE (x) == PARALLEL)
9b7c6f02 509 {
f1b700e6 510 int i, len = XVECLEN (x, 0);
9b7c6f02 511
512 for (i = len - 1; i >= 0; i--)
513 {
f1b700e6 514 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
9b7c6f02 515 insn_class = WORST_CLASS (insn_class, tmp_class);
516 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
517 break;
518 }
519 }
520 else
521 {
f1b700e6 522 code = GET_CODE (x);
9b7c6f02 523 switch (code)
524 {
525 case CLOBBER:
526 /* Test if it is a 'store'. */
f1b700e6 527 tmp_class = may_trap_exp (XEXP (x, 0), 1);
9b7c6f02 528 break;
529 case SET:
530 /* Test if it is a store. */
f1b700e6 531 tmp_class = may_trap_exp (SET_DEST (x), 1);
9b7c6f02 532 if (tmp_class == TRAP_RISKY)
533 break;
534 /* Test if it is a load. */
535 tmp_class =
536 WORST_CLASS (tmp_class,
f1b700e6 537 may_trap_exp (SET_SRC (x), 0));
9b7c6f02 538 break;
539 case COND_EXEC:
f1b700e6 540 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
541 if (tmp_class == TRAP_RISKY)
542 break;
543 tmp_class = WORST_CLASS (tmp_class,
544 may_trap_exp (COND_EXEC_TEST (x), 0));
545 break;
9b7c6f02 546 case TRAP_IF:
547 tmp_class = TRAP_RISKY;
548 break;
549 default:;
550 }
551 insn_class = tmp_class;
552 }
553
554 return insn_class;
555}
556
f1b700e6 557int
558haifa_classify_insn (const_rtx insn)
559{
560 return haifa_classify_rtx (PATTERN (insn));
561}
c0457559 562\f
563/* After the scheduler initialization function has been called, this function
564 can be called to enable modulo scheduling. II is the initiation interval
565 we should use, it affects the delays for delay_pairs that were recorded as
566 separated by a given number of stages.
567
568 MAX_STAGES provides us with a limit
569 after which we give up scheduling; the caller must have unrolled at least
570 as many copies of the loop body and recorded delay_pairs for them.
571
572 INSNS is the number of real (non-debug) insns in one iteration of
573 the loop. MAX_UID can be used to test whether an insn belongs to
574 the first iteration of the loop; all of them have a uid lower than
575 MAX_UID. */
576void
577set_modulo_params (int ii, int max_stages, int insns, int max_uid)
578{
579 modulo_ii = ii;
580 modulo_max_stages = max_stages;
581 modulo_n_insns = insns;
582 modulo_iter0_max_uid = max_uid;
583 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
584}
f1b700e6 585
e2f4a6ff 586/* A structure to record a pair of insns where the first one is a real
587 insn that has delay slots, and the second is its delayed shadow.
588 I1 is scheduled normally and will emit an assembly instruction,
589 while I2 describes the side effect that takes place at the
590 transition between cycles CYCLES and (CYCLES + 1) after I1. */
591struct delay_pair
592{
593 struct delay_pair *next_same_i1;
594 rtx i1, i2;
595 int cycles;
c0457559 596 /* When doing modulo scheduling, we a delay_pair can also be used to
597 show that I1 and I2 are the same insn in a different stage. If that
598 is the case, STAGES will be nonzero. */
599 int stages;
e2f4a6ff 600};
601
d9dd21a8 602/* Helpers for delay hashing. */
603
604struct delay_i1_hasher : typed_noop_remove <delay_pair>
605{
606 typedef delay_pair value_type;
607 typedef void compare_type;
608 static inline hashval_t hash (const value_type *);
609 static inline bool equal (const value_type *, const compare_type *);
610};
611
612/* Returns a hash value for X, based on hashing just I1. */
613
614inline hashval_t
615delay_i1_hasher::hash (const value_type *x)
616{
617 return htab_hash_pointer (x->i1);
618}
619
620/* Return true if I1 of pair X is the same as that of pair Y. */
621
622inline bool
623delay_i1_hasher::equal (const value_type *x, const compare_type *y)
624{
625 return x->i1 == y;
626}
627
628struct delay_i2_hasher : typed_free_remove <delay_pair>
629{
630 typedef delay_pair value_type;
631 typedef void compare_type;
632 static inline hashval_t hash (const value_type *);
633 static inline bool equal (const value_type *, const compare_type *);
634};
635
636/* Returns a hash value for X, based on hashing just I2. */
637
638inline hashval_t
639delay_i2_hasher::hash (const value_type *x)
640{
641 return htab_hash_pointer (x->i2);
642}
643
644/* Return true if I2 of pair X is the same as that of pair Y. */
645
646inline bool
647delay_i2_hasher::equal (const value_type *x, const compare_type *y)
648{
649 return x->i2 == y;
650}
651
e2f4a6ff 652/* Two hash tables to record delay_pairs, one indexed by I1 and the other
653 indexed by I2. */
d9dd21a8 654static hash_table <delay_i1_hasher> delay_htab;
655static hash_table <delay_i2_hasher> delay_htab_i2;
e2f4a6ff 656
c0457559 657/* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
d9dd21a8 660int
661haifa_htab_i2_traverse (delay_pair **slot, int *data)
c0457559 662{
d9dd21a8 663 int maxuid = *data;
664 struct delay_pair *p = *slot;
c0457559 665 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
666 {
d9dd21a8 667 delay_htab_i2.clear_slot (slot);
c0457559 668 }
669 return 1;
670}
671
672/* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
d9dd21a8 675int
676haifa_htab_i1_traverse (delay_pair **pslot, int *data)
c0457559 677{
d9dd21a8 678 int maxuid = *data;
c0457559 679 struct delay_pair *p, *first, **pprev;
680
681 if (INSN_UID ((*pslot)->i1) >= maxuid)
682 {
d9dd21a8 683 delay_htab.clear_slot (pslot);
c0457559 684 return 1;
685 }
686 pprev = &first;
687 for (p = *pslot; p; p = p->next_same_i1)
688 {
689 if (INSN_UID (p->i2) < maxuid)
690 {
691 *pprev = p;
692 pprev = &p->next_same_i1;
693 }
694 }
695 *pprev = NULL;
696 if (first == NULL)
d9dd21a8 697 delay_htab.clear_slot (pslot);
c0457559 698 else
699 *pslot = first;
700 return 1;
701}
702
703/* Discard all delay pairs which involve an insn with an UID higher
704 than MAX_UID. */
705void
706discard_delay_pairs_above (int max_uid)
707{
d9dd21a8 708 delay_htab.traverse <int *, haifa_htab_i1_traverse> (&max_uid);
709 delay_htab_i2.traverse <int *, haifa_htab_i2_traverse> (&max_uid);
e2f4a6ff 710}
711
c0457559 712/* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
720
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
726 scheduling. */
e2f4a6ff 727
728void
c0457559 729record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
e2f4a6ff 730{
731 struct delay_pair *p = XNEW (struct delay_pair);
732 struct delay_pair **slot;
733
734 p->i1 = i1;
735 p->i2 = i2;
736 p->cycles = cycles;
c0457559 737 p->stages = stages;
e2f4a6ff 738
d9dd21a8 739 if (!delay_htab.is_created ())
e2f4a6ff 740 {
d9dd21a8 741 delay_htab.create (10);
742 delay_htab_i2.create (10);
e2f4a6ff 743 }
d9dd21a8 744 slot = delay_htab.find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
e2f4a6ff 745 p->next_same_i1 = *slot;
746 *slot = p;
d9dd21a8 747 slot = delay_htab_i2.find_slot_with_hash (i2, htab_hash_pointer (i2), INSERT);
e2f4a6ff 748 *slot = p;
749}
750
effd1640 751/* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
753rtx
754real_insn_for_shadow (rtx insn)
755{
756 struct delay_pair *pair;
757
d9dd21a8 758 if (!delay_htab.is_created ())
effd1640 759 return NULL_RTX;
760
d9dd21a8 761 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
effd1640 762 if (!pair || pair->stages > 0)
763 return NULL_RTX;
764 return pair->i1;
765}
766
e2f4a6ff 767/* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
769static int
770pair_delay (struct delay_pair *p)
771{
c0457559 772 if (p->stages == 0)
773 return p->cycles;
774 else
775 return p->stages * modulo_ii;
e2f4a6ff 776}
777
778/* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
781 needed. */
782void
783add_delay_dependencies (rtx insn)
784{
785 struct delay_pair *pair;
786 sd_iterator_def sd_it;
787 dep_t dep;
788
d9dd21a8 789 if (!delay_htab.is_created ())
e2f4a6ff 790 return;
791
d9dd21a8 792 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
e2f4a6ff 793 if (!pair)
794 return;
795 add_dependence (insn, pair->i1, REG_DEP_ANTI);
c0457559 796 if (pair->stages)
797 return;
e2f4a6ff 798
799 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
800 {
801 rtx pro = DEP_PRO (dep);
802 struct delay_pair *other_pair
d9dd21a8 803 = delay_htab_i2.find_with_hash (pro, htab_hash_pointer (pro));
c0457559 804 if (!other_pair || other_pair->stages)
e2f4a6ff 805 continue;
806 if (pair_delay (other_pair) >= pair_delay (pair))
807 {
808 if (sched_verbose >= 4)
809 {
810 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair->i1),
812 INSN_UID (pair->i1));
813 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
814 INSN_UID (pair->i1),
815 INSN_UID (pair->i2),
816 pair_delay (pair));
817 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair->i1),
819 INSN_UID (other_pair->i2),
820 pair_delay (other_pair));
821 }
822 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
823 }
824 }
825}
826\f
3eb9a99d 827/* Forward declarations. */
bea4bad2 828
952f0048 829static int priority (rtx);
830static int rank_for_schedule (const void *, const void *);
831static void swap_sort (rtx *, int);
b49b2e5c 832static void queue_insn (rtx, int, const char *);
e4897000 833static int schedule_insn (rtx);
952f0048 834static void adjust_priority (rtx);
835static void advance_one_cycle (void);
e1ab7874 836static void extend_h_i_d (void);
837
3eb9a99d 838
3eb9a99d 839/* Notes handling mechanism:
840 =========================
841 Generally, NOTES are saved before scheduling and restored after scheduling.
3953ee1c 842 The scheduler distinguishes between two types of notes:
3eb9a99d 843
f2aa2401 844 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
3eb9a99d 845 Before scheduling a region, a pointer to the note is added to the insn
846 that follows or precedes it. (This happens as part of the data dependence
847 computation). After scheduling an insn, the pointer contained in it is
848 used for regenerating the corresponding note (in reemit_notes).
849
f2aa2401 850 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
3eb9a99d 851 these notes are put in a list (in rm_other_notes() and
852 unlink_other_notes ()). After scheduling the block, these notes are
853 inserted at the beginning of the block (in schedule_block()). */
854
e4897000 855static void ready_add (struct ready_list *, rtx, bool);
952f0048 856static rtx ready_remove_first (struct ready_list *);
0ac9454e 857static rtx ready_remove_first_dispatch (struct ready_list *ready);
38b9004f 858
952f0048 859static void queue_to_ready (struct ready_list *);
52c4b43f 860static int early_queue_to_ready (state_t, struct ready_list *);
30b1ec30 861
952f0048 862static void debug_ready_list (struct ready_list *);
38b9004f 863
bea4bad2 864/* The following functions are used to implement multi-pass scheduling
67900a4f 865 on the first cycle. */
952f0048 866static rtx ready_remove (struct ready_list *, int);
e4897000 867static void ready_remove_insn (rtx);
bea4bad2 868
e4897000 869static void fix_inter_tick (rtx, rtx);
870static int fix_tick_ready (rtx);
871static void change_queue_index (rtx, int);
e4897000 872
6a1cdb4d 873/* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
875
876static void extend_h_i_d (void);
6a1cdb4d 877static void init_h_i_d (rtx);
effd1640 878static int haifa_speculate_insn (rtx, ds_t, rtx *);
6a1cdb4d 879static void generate_recovery_code (rtx);
93f6b030 880static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
6a1cdb4d 881static void begin_speculative_block (rtx);
882static void add_to_speculative_block (rtx);
e1ab7874 883static void init_before_recovery (basic_block *);
6a1cdb4d 884static void create_check_block_twin (rtx, bool);
885static void fix_recovery_deps (basic_block);
effd1640 886static bool haifa_change_pattern (rtx, rtx);
6a1cdb4d 887static void dump_new_block_header (int, basic_block, rtx, rtx);
888static void restore_bb_notes (basic_block);
6a1cdb4d 889static void fix_jump_move (rtx);
890static void move_block_after_check (rtx);
f1f41a6c 891static void move_succs (vec<edge, va_gc> **, basic_block);
6a1cdb4d 892static void sched_remove_insn (rtx);
3588ab9c 893static void clear_priorities (rtx, rtx_vec_t *);
894static void calc_priorities (rtx_vec_t);
6a1cdb4d 895static void add_jump_dependencies (rtx, rtx);
6a1cdb4d 896
3eb9a99d 897#endif /* INSN_SCHEDULING */
898\f
c2069298 899/* Point to state used for the current scheduling pass. */
e1ab7874 900struct haifa_sched_info *current_sched_info;
3eb9a99d 901\f
902#ifndef INSN_SCHEDULING
903void
3f5be5f4 904schedule_insns (void)
3eb9a99d 905{
906}
907#else
3e016693 908
a7dcf969 909/* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
11189c7a 911enum sched_pressure_algorithm sched_pressure;
a7dcf969 912
66d9a7b9 913/* Map regno -> its pressure class. The map defined only when
b30b031c 914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
66d9a7b9 915enum reg_class *sched_regno_pressure_class;
a7dcf969 916
66d9a7b9 917/* The current register pressure. Only elements corresponding pressure
a7dcf969 918 classes are defined. */
919static int curr_reg_pressure[N_REG_CLASSES];
920
921/* Saved value of the previous array. */
922static int saved_reg_pressure[N_REG_CLASSES];
923
924/* Register living at given scheduling point. */
925static bitmap curr_reg_live;
926
927/* Saved value of the previous array. */
928static bitmap saved_reg_live;
929
930/* Registers mentioned in the current region. */
931static bitmap region_ref_regs;
932
933/* Initiate register pressure relative info for scheduling the current
934 region. Currently it is only clearing register mentioned in the
935 current region. */
936void
937sched_init_region_reg_pressure_info (void)
938{
939 bitmap_clear (region_ref_regs);
940}
941
b30b031c 942/* PRESSURE[CL] describes the pressure on register class CL. Update it
943 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
944 LIVE tracks the set of live registers; if it is null, assume that
945 every birth or death is genuine. */
946static inline void
947mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
a7dcf969 948{
66d9a7b9 949 enum reg_class pressure_class;
a7dcf969 950
66d9a7b9 951 pressure_class = sched_regno_pressure_class[regno];
a7dcf969 952 if (regno >= FIRST_PSEUDO_REGISTER)
953 {
66d9a7b9 954 if (pressure_class != NO_REGS)
a7dcf969 955 {
956 if (birth_p)
957 {
b30b031c 958 if (!live || bitmap_set_bit (live, regno))
959 pressure[pressure_class]
960 += (ira_reg_class_max_nregs
961 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
a7dcf969 962 }
963 else
964 {
b30b031c 965 if (!live || bitmap_clear_bit (live, regno))
966 pressure[pressure_class]
967 -= (ira_reg_class_max_nregs
968 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
a7dcf969 969 }
970 }
971 }
66d9a7b9 972 else if (pressure_class != NO_REGS
a7dcf969 973 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
974 {
975 if (birth_p)
976 {
b30b031c 977 if (!live || bitmap_set_bit (live, regno))
978 pressure[pressure_class]++;
a7dcf969 979 }
980 else
981 {
b30b031c 982 if (!live || bitmap_clear_bit (live, regno))
983 pressure[pressure_class]--;
a7dcf969 984 }
985 }
986}
987
988/* Initiate current register pressure related info from living
989 registers given by LIVE. */
990static void
991initiate_reg_pressure_info (bitmap live)
992{
993 int i;
994 unsigned int j;
995 bitmap_iterator bi;
996
66d9a7b9 997 for (i = 0; i < ira_pressure_classes_num; i++)
998 curr_reg_pressure[ira_pressure_classes[i]] = 0;
a7dcf969 999 bitmap_clear (curr_reg_live);
1000 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
b30b031c 1001 if (sched_pressure == SCHED_PRESSURE_MODEL
1002 || current_nr_blocks == 1
1003 || bitmap_bit_p (region_ref_regs, j))
1004 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
a7dcf969 1005}
1006
1007/* Mark registers in X as mentioned in the current region. */
1008static void
1009setup_ref_regs (rtx x)
1010{
1011 int i, j, regno;
1012 const RTX_CODE code = GET_CODE (x);
1013 const char *fmt;
1014
1015 if (REG_P (x))
1016 {
1017 regno = REGNO (x);
771d4616 1018 if (HARD_REGISTER_NUM_P (regno))
1019 bitmap_set_range (region_ref_regs, regno,
1020 hard_regno_nregs[regno][GET_MODE (x)]);
a7dcf969 1021 else
771d4616 1022 bitmap_set_bit (region_ref_regs, REGNO (x));
a7dcf969 1023 return;
1024 }
1025 fmt = GET_RTX_FORMAT (code);
1026 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1027 if (fmt[i] == 'e')
1028 setup_ref_regs (XEXP (x, i));
1029 else if (fmt[i] == 'E')
1030 {
1031 for (j = 0; j < XVECLEN (x, i); j++)
1032 setup_ref_regs (XVECEXP (x, i, j));
1033 }
1034}
1035
1036/* Initiate current register pressure related info at the start of
1037 basic block BB. */
1038static void
1039initiate_bb_reg_pressure_info (basic_block bb)
1040{
d92517d3 1041 unsigned int i ATTRIBUTE_UNUSED;
a7dcf969 1042 rtx insn;
1043
1044 if (current_nr_blocks > 1)
1045 FOR_BB_INSNS (bb, insn)
20f8d64b 1046 if (NONDEBUG_INSN_P (insn))
a7dcf969 1047 setup_ref_regs (PATTERN (insn));
1048 initiate_reg_pressure_info (df_get_live_in (bb));
1049#ifdef EH_RETURN_DATA_REGNO
1050 if (bb_has_eh_pred (bb))
1051 for (i = 0; ; ++i)
1052 {
1053 unsigned int regno = EH_RETURN_DATA_REGNO (i);
48e1416a 1054
a7dcf969 1055 if (regno == INVALID_REGNUM)
1056 break;
1057 if (! bitmap_bit_p (df_get_live_in (bb), regno))
b30b031c 1058 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1059 regno, true);
a7dcf969 1060 }
1061#endif
1062}
1063
1064/* Save current register pressure related info. */
1065static void
1066save_reg_pressure (void)
1067{
1068 int i;
48e1416a 1069
66d9a7b9 1070 for (i = 0; i < ira_pressure_classes_num; i++)
1071 saved_reg_pressure[ira_pressure_classes[i]]
1072 = curr_reg_pressure[ira_pressure_classes[i]];
a7dcf969 1073 bitmap_copy (saved_reg_live, curr_reg_live);
1074}
1075
1076/* Restore saved register pressure related info. */
1077static void
1078restore_reg_pressure (void)
1079{
1080 int i;
48e1416a 1081
66d9a7b9 1082 for (i = 0; i < ira_pressure_classes_num; i++)
1083 curr_reg_pressure[ira_pressure_classes[i]]
1084 = saved_reg_pressure[ira_pressure_classes[i]];
a7dcf969 1085 bitmap_copy (curr_reg_live, saved_reg_live);
1086}
1087
1088/* Return TRUE if the register is dying after its USE. */
1089static bool
1090dying_use_p (struct reg_use_data *use)
1091{
1092 struct reg_use_data *next;
1093
1094 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
08f2a34b 1095 if (NONDEBUG_INSN_P (next->insn)
1096 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
a7dcf969 1097 return false;
1098 return true;
1099}
1100
1101/* Print info about the current register pressure and its excess for
66d9a7b9 1102 each pressure class. */
a7dcf969 1103static void
1104print_curr_reg_pressure (void)
1105{
1106 int i;
1107 enum reg_class cl;
1108
1109 fprintf (sched_dump, ";;\t");
66d9a7b9 1110 for (i = 0; i < ira_pressure_classes_num; i++)
a7dcf969 1111 {
66d9a7b9 1112 cl = ira_pressure_classes[i];
a7dcf969 1113 gcc_assert (curr_reg_pressure[cl] >= 0);
1114 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1115 curr_reg_pressure[cl],
1072fecf 1116 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
a7dcf969 1117 }
1118 fprintf (sched_dump, "\n");
1119}
effd1640 1120\f
1121/* Determine if INSN has a condition that is clobbered if a register
1122 in SET_REGS is modified. */
1123static bool
1124cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1125{
1126 rtx pat = PATTERN (insn);
1127 gcc_assert (GET_CODE (pat) == COND_EXEC);
1128 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1129 {
1130 sd_iterator_def sd_it;
1131 dep_t dep;
1132 haifa_change_pattern (insn, ORIG_PAT (insn));
1133 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1134 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1135 TODO_SPEC (insn) = HARD_DEP;
1136 if (sched_verbose >= 2)
1137 fprintf (sched_dump,
1138 ";;\t\tdequeue insn %s because of clobbered condition\n",
1139 (*current_sched_info->print_insn) (insn, 0));
1140 return true;
1141 }
1142
1143 return false;
1144}
1145
d452a169 1146/* This function should be called after modifying the pattern of INSN,
1147 to update scheduler data structures as needed. */
1148static void
1149update_insn_after_change (rtx insn)
1150{
1151 sd_iterator_def sd_it;
1152 dep_t dep;
1153
1154 dfa_clear_single_insn_cache (insn);
1155
1156 sd_it = sd_iterator_start (insn,
1157 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1158 while (sd_iterator_cond (&sd_it, &dep))
1159 {
1160 DEP_COST (dep) = UNKNOWN_DEP_COST;
1161 sd_iterator_next (&sd_it);
1162 }
1163
1164 /* Invalidate INSN_COST, so it'll be recalculated. */
1165 INSN_COST (insn) = -1;
1166 /* Invalidate INSN_TICK, so it'll be recalculated. */
1167 INSN_TICK (insn) = INVALID_TICK;
1168}
1169
d452a169 1170
1171/* Two VECs, one to hold dependencies for which pattern replacements
1172 need to be applied or restored at the start of the next cycle, and
1173 another to hold an integer that is either one, to apply the
1174 corresponding replacement, or zero to restore it. */
f1f41a6c 1175static vec<dep_t> next_cycle_replace_deps;
1176static vec<int> next_cycle_apply;
d452a169 1177
1178static void apply_replacement (dep_t, bool);
1179static void restore_pattern (dep_t, bool);
1180
effd1640 1181/* Look at the remaining dependencies for insn NEXT, and compute and return
1182 the TODO_SPEC value we should use for it. This is called after one of
d452a169 1183 NEXT's dependencies has been resolved.
1184 We also perform pattern replacements for predication, and for broken
1185 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1186 false. */
a7dcf969 1187
effd1640 1188static ds_t
d452a169 1189recompute_todo_spec (rtx next, bool for_backtrack)
effd1640 1190{
1191 ds_t new_ds;
1192 sd_iterator_def sd_it;
d452a169 1193 dep_t dep, modify_dep = NULL;
effd1640 1194 int n_spec = 0;
1195 int n_control = 0;
d452a169 1196 int n_replace = 0;
effd1640 1197 bool first_p = true;
1198
1199 if (sd_lists_empty_p (next, SD_LIST_BACK))
1200 /* NEXT has all its dependencies resolved. */
1201 return 0;
1202
1203 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1204 return HARD_DEP;
1205
1206 /* Now we've got NEXT with speculative deps only.
1207 1. Look at the deps to see what we have to do.
1208 2. Check if we can do 'todo'. */
1209 new_ds = 0;
1210
1211 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1212 {
d452a169 1213 rtx pro = DEP_PRO (dep);
effd1640 1214 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1215
d452a169 1216 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
effd1640 1217 continue;
1218
1219 if (ds)
1220 {
1221 n_spec++;
1222 if (first_p)
1223 {
1224 first_p = false;
1225
1226 new_ds = ds;
1227 }
1228 else
1229 new_ds = ds_merge (new_ds, ds);
1230 }
d452a169 1231 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
effd1640 1232 {
d452a169 1233 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1234 {
1235 n_control++;
1236 modify_dep = dep;
1237 }
1238 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1239 }
1240 else if (DEP_REPLACE (dep) != NULL)
1241 {
1242 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1243 {
1244 n_replace++;
1245 modify_dep = dep;
1246 }
effd1640 1247 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1248 }
1249 }
1250
d452a169 1251 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1252 {
1253 if (!dbg_cnt (sched_breakdep))
1254 return HARD_DEP;
1255 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1256 {
1257 struct dep_replacement *desc = DEP_REPLACE (dep);
1258 if (desc != NULL)
1259 {
1260 if (desc->insn == next && !for_backtrack)
1261 {
1262 gcc_assert (n_replace == 1);
1263 apply_replacement (dep, true);
1264 }
1265 DEP_STATUS (dep) |= DEP_CANCELLED;
1266 }
1267 }
1268 return 0;
1269 }
1270
1271 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
effd1640 1272 {
1273 rtx pro, other, new_pat;
1274 rtx cond = NULL_RTX;
1275 bool success;
1276 rtx prev = NULL_RTX;
1277 int i;
1278 unsigned regno;
1279
1280 if ((current_sched_info->flags & DO_PREDICATION) == 0
1281 || (ORIG_PAT (next) != NULL_RTX
1282 && PREDICATED_PAT (next) == NULL_RTX))
1283 return HARD_DEP;
1284
d452a169 1285 pro = DEP_PRO (modify_dep);
effd1640 1286 other = real_insn_for_shadow (pro);
1287 if (other != NULL_RTX)
1288 pro = other;
1289
1290 cond = sched_get_reverse_condition_uncached (pro);
1291 regno = REGNO (XEXP (cond, 0));
1292
1293 /* Find the last scheduled insn that modifies the condition register.
7aa6606c 1294 We can stop looking once we find the insn we depend on through the
1295 REG_DEP_CONTROL; if the condition register isn't modified after it,
1296 we know that it still has the right value. */
1297 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
f1f41a6c 1298 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
7aa6606c 1299 {
1300 HARD_REG_SET t;
1301
1302 find_all_hard_reg_sets (prev, &t);
1303 if (TEST_HARD_REG_BIT (t, regno))
1304 return HARD_DEP;
1305 if (prev == pro)
1306 break;
1307 }
effd1640 1308 if (ORIG_PAT (next) == NULL_RTX)
1309 {
1310 ORIG_PAT (next) = PATTERN (next);
1311
1312 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1313 success = haifa_change_pattern (next, new_pat);
1314 if (!success)
1315 return HARD_DEP;
1316 PREDICATED_PAT (next) = new_pat;
1317 }
1318 else if (PATTERN (next) != PREDICATED_PAT (next))
1319 {
1320 bool success = haifa_change_pattern (next,
1321 PREDICATED_PAT (next));
1322 gcc_assert (success);
1323 }
d452a169 1324 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
effd1640 1325 return DEP_CONTROL;
1326 }
1327
1328 if (PREDICATED_PAT (next) != NULL_RTX)
1329 {
1330 int tick = INSN_TICK (next);
1331 bool success = haifa_change_pattern (next,
1332 ORIG_PAT (next));
1333 INSN_TICK (next) = tick;
1334 gcc_assert (success);
1335 }
1336
1337 /* We can't handle the case where there are both speculative and control
1338 dependencies, so we return HARD_DEP in such a case. Also fail if
1339 we have speculative dependencies with not enough points, or more than
1340 one control dependency. */
d452a169 1341 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
effd1640 1342 || (n_spec > 0
1343 /* Too few points? */
1344 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
d452a169 1345 || n_control > 0
1346 || n_replace > 0)
effd1640 1347 return HARD_DEP;
1348
1349 return new_ds;
1350}
1351\f
b5f4bfde 1352/* Pointer to the last instruction scheduled. */
3eb9a99d 1353static rtx last_scheduled_insn;
1354
d0aa45d0 1355/* Pointer to the last nondebug instruction scheduled within the
1356 block, or the prev_head of the scheduling block. Used by
1357 rank_for_schedule, so that insns independent of the last scheduled
1358 insn will be preferred over dependent instructions. */
1359static rtx last_nondebug_scheduled_insn;
1360
b5f4bfde 1361/* Pointer that iterates through the list of unscheduled insns if we
1362 have a dbg_cnt enabled. It always points at an insn prior to the
1363 first unscheduled one. */
1364static rtx nonscheduled_insns_begin;
1365
9997bd27 1366/* Compute cost of executing INSN.
6a1cdb4d 1367 This is the number of cycles between instruction issue and
1368 instruction results. */
c623bf22 1369int
9997bd27 1370insn_cost (rtx insn)
3eb9a99d 1371{
e1ab7874 1372 int cost;
1373
1374 if (sel_sched_p ())
1375 {
1376 if (recog_memoized (insn) < 0)
1377 return 0;
1378
1379 cost = insn_default_latency (insn);
1380 if (cost < 0)
1381 cost = 0;
1382
1383 return cost;
1384 }
1385
1386 cost = INSN_COST (insn);
3eb9a99d 1387
bea4bad2 1388 if (cost < 0)
3eb9a99d 1389 {
bea4bad2 1390 /* A USE insn, or something else we don't need to
1391 understand. We can't pass these directly to
1392 result_ready_cost or insn_default_latency because it will
1393 trigger a fatal error for unrecognizable insns. */
1394 if (recog_memoized (insn) < 0)
3eb9a99d 1395 {
bea4bad2 1396 INSN_COST (insn) = 0;
1397 return 0;
3eb9a99d 1398 }
1399 else
1400 {
67900a4f 1401 cost = insn_default_latency (insn);
bea4bad2 1402 if (cost < 0)
1403 cost = 0;
952f0048 1404
3eb9a99d 1405 INSN_COST (insn) = cost;
1406 }
1407 }
1408
9997bd27 1409 return cost;
1410}
1411
1412/* Compute cost of dependence LINK.
1413 This is the number of cycles between instruction issue and
cdf13311 1414 instruction results.
1415 ??? We also use this function to call recog_memoized on all insns. */
9997bd27 1416int
e1ab7874 1417dep_cost_1 (dep_t link, dw_t dw)
9997bd27 1418{
cdf13311 1419 rtx insn = DEP_PRO (link);
9997bd27 1420 rtx used = DEP_CON (link);
1421 int cost;
3eb9a99d 1422
38354bb6 1423 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1424 return DEP_COST (link);
1425
d9dd21a8 1426 if (delay_htab.is_created ())
e2f4a6ff 1427 {
1428 struct delay_pair *delay_entry;
1429 delay_entry
d9dd21a8 1430 = delay_htab_i2.find_with_hash (used, htab_hash_pointer (used));
e2f4a6ff 1431 if (delay_entry)
1432 {
1433 if (delay_entry->i1 == insn)
1434 {
1435 DEP_COST (link) = pair_delay (delay_entry);
1436 return DEP_COST (link);
1437 }
1438 }
1439 }
1440
bea4bad2 1441 /* A USE insn should never require the value used to be computed.
1442 This allows the computation of a function's result and parameter
a7dcf969 1443 values to overlap the return and call. We don't care about the
851d9296 1444 dependence cost when only decreasing register pressure. */
bea4bad2 1445 if (recog_memoized (used) < 0)
cdf13311 1446 {
1447 cost = 0;
1448 recog_memoized (insn);
1449 }
bea4bad2 1450 else
3eb9a99d 1451 {
93f6b030 1452 enum reg_note dep_type = DEP_TYPE (link);
9997bd27 1453
1454 cost = insn_cost (insn);
6a1cdb4d 1455
67900a4f 1456 if (INSN_CODE (insn) >= 0)
de206697 1457 {
6a1cdb4d 1458 if (dep_type == REG_DEP_ANTI)
67900a4f 1459 cost = 0;
6a1cdb4d 1460 else if (dep_type == REG_DEP_OUTPUT)
bea4bad2 1461 {
67900a4f 1462 cost = (insn_default_latency (insn)
1463 - insn_default_latency (used));
1464 if (cost <= 0)
1465 cost = 1;
bea4bad2 1466 }
67900a4f 1467 else if (bypass_p (insn))
1468 cost = insn_latency (insn, used);
de206697 1469 }
48e1416a 1470
17c7a04d 1471
e1ab7874 1472 if (targetm.sched.adjust_cost_2)
a7dcf969 1473 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1474 dw);
e1ab7874 1475 else if (targetm.sched.adjust_cost != NULL)
6a1cdb4d 1476 {
9997bd27 1477 /* This variable is used for backward compatibility with the
1478 targets. */
1479 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1480
1481 /* Make it self-cycled, so that if some tries to walk over this
f2b32076 1482 incomplete list he/she will be caught in an endless loop. */
9997bd27 1483 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1484
1485 /* Targets use only REG_NOTE_KIND of the link. */
93f6b030 1486 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
9997bd27 1487
1488 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1489 insn, cost);
1490
1491 free_INSN_LIST_node (dep_cost_rtx_link);
6a1cdb4d 1492 }
bea4bad2 1493
1494 if (cost < 0)
1495 cost = 0;
1496 }
952f0048 1497
38354bb6 1498 DEP_COST (link) = cost;
3eb9a99d 1499 return cost;
1500}
1501
e1ab7874 1502/* Compute cost of dependence LINK.
1503 This is the number of cycles between instruction issue and
1504 instruction results. */
1505int
1506dep_cost (dep_t link)
1507{
1508 return dep_cost_1 (link, 0);
1509}
1510
1511/* Use this sel-sched.c friendly function in reorder2 instead of increasing
1512 INSN_PRIORITY explicitly. */
1513void
1514increase_insn_priority (rtx insn, int amount)
1515{
1516 if (!sel_sched_p ())
1517 {
1518 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1519 if (INSN_PRIORITY_KNOWN (insn))
1520 INSN_PRIORITY (insn) += amount;
1521 }
1522 else
1523 {
48e1416a 1524 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
e1ab7874 1525 Use EXPR_PRIORITY instead. */
1526 sel_add_to_insn_priority (insn, amount);
1527 }
1528}
1529
3588ab9c 1530/* Return 'true' if DEP should be included in priority calculations. */
1531static bool
1532contributes_to_priority_p (dep_t dep)
1533{
9845d120 1534 if (DEBUG_INSN_P (DEP_CON (dep))
1535 || DEBUG_INSN_P (DEP_PRO (dep)))
1536 return false;
1537
3588ab9c 1538 /* Critical path is meaningful in block boundaries only. */
1539 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1540 DEP_PRO (dep)))
1541 return false;
1542
d452a169 1543 if (DEP_REPLACE (dep) != NULL)
1544 return false;
1545
3588ab9c 1546 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1547 then speculative instructions will less likely be
1548 scheduled. That is because the priority of
1549 their producers will increase, and, thus, the
1550 producers will more likely be scheduled, thus,
1551 resolving the dependence. */
e1ab7874 1552 if (sched_deps_info->generate_spec_deps
3588ab9c 1553 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1554 && (DEP_STATUS (dep) & SPECULATIVE))
1555 return false;
3eb9a99d 1556
3588ab9c 1557 return true;
1558}
1559
b30b031c 1560/* Compute the number of nondebug deps in list LIST for INSN. */
9845d120 1561
1562static int
b30b031c 1563dep_list_size (rtx insn, sd_list_types_def list)
9845d120 1564{
1565 sd_iterator_def sd_it;
1566 dep_t dep;
1567 int dbgcount = 0, nodbgcount = 0;
1568
1569 if (!MAY_HAVE_DEBUG_INSNS)
b30b031c 1570 return sd_lists_size (insn, list);
9845d120 1571
b30b031c 1572 FOR_EACH_DEP (insn, list, sd_it, dep)
9845d120 1573 {
1574 if (DEBUG_INSN_P (DEP_CON (dep)))
1575 dbgcount++;
c971b445 1576 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
9845d120 1577 nodbgcount++;
1578 }
1579
b30b031c 1580 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
9845d120 1581
1582 return nodbgcount;
1583}
1584
3588ab9c 1585/* Compute the priority number for INSN. */
3eb9a99d 1586static int
952f0048 1587priority (rtx insn)
3eb9a99d 1588{
9204e736 1589 if (! INSN_P (insn))
3eb9a99d 1590 return 0;
1591
310d2511 1592 /* We should not be interested in priority of an already scheduled insn. */
3588ab9c 1593 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1594
1595 if (!INSN_PRIORITY_KNOWN (insn))
3eb9a99d 1596 {
e1ab7874 1597 int this_priority = -1;
89beeed3 1598
b30b031c 1599 if (dep_list_size (insn, SD_LIST_FORW) == 0)
9997bd27 1600 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1601 some forward deps but all of them are ignored by
1602 contributes_to_priority hook. At the moment we set priority of
1603 such insn to 0. */
1604 this_priority = insn_cost (insn);
3eb9a99d 1605 else
89beeed3 1606 {
6a1cdb4d 1607 rtx prev_first, twin;
1608 basic_block rec;
3eb9a99d 1609
6a1cdb4d 1610 /* For recovery check instructions we calculate priority slightly
1611 different than that of normal instructions. Instead of walking
9997bd27 1612 through INSN_FORW_DEPS (check) list, we walk through
1613 INSN_FORW_DEPS list of each instruction in the corresponding
48e1416a 1614 recovery block. */
3eb9a99d 1615
e1ab7874 1616 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1617 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
34154e27 1618 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 1619 {
1620 prev_first = PREV_INSN (insn);
1621 twin = insn;
1622 }
1623 else
1624 {
1625 prev_first = NEXT_INSN (BB_HEAD (rec));
1626 twin = PREV_INSN (BB_END (rec));
1627 }
3eb9a99d 1628
6a1cdb4d 1629 do
1630 {
93f6b030 1631 sd_iterator_def sd_it;
1632 dep_t dep;
1633
1634 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
6a1cdb4d 1635 {
1636 rtx next;
1637 int next_priority;
9997bd27 1638
1639 next = DEP_CON (dep);
1640
6a1cdb4d 1641 if (BLOCK_FOR_INSN (next) != rec)
1642 {
9997bd27 1643 int cost;
1644
3588ab9c 1645 if (!contributes_to_priority_p (dep))
6a1cdb4d 1646 continue;
9997bd27 1647
1648 if (twin == insn)
1649 cost = dep_cost (dep);
1650 else
1651 {
1652 struct _dep _dep1, *dep1 = &_dep1;
1653
1654 init_dep (dep1, insn, next, REG_DEP_ANTI);
1655
1656 cost = dep_cost (dep1);
1657 }
1658
1659 next_priority = cost + priority (next);
6a1cdb4d 1660
1661 if (next_priority > this_priority)
1662 this_priority = next_priority;
1663 }
1664 }
48e1416a 1665
6a1cdb4d 1666 twin = PREV_INSN (twin);
89beeed3 1667 }
6a1cdb4d 1668 while (twin != prev_first);
89beeed3 1669 }
e1ab7874 1670
1671 if (this_priority < 0)
1672 {
1673 gcc_assert (this_priority == -1);
1674
1675 this_priority = insn_cost (insn);
1676 }
1677
3eb9a99d 1678 INSN_PRIORITY (insn) = this_priority;
3588ab9c 1679 INSN_PRIORITY_STATUS (insn) = 1;
3eb9a99d 1680 }
89beeed3 1681
1682 return INSN_PRIORITY (insn);
3eb9a99d 1683}
1684\f
3eb9a99d 1685/* Macros and functions for keeping the priority queue sorted, and
40e55fbb 1686 dealing with queuing and dequeuing of instructions. */
3eb9a99d 1687
1688#define SCHED_SORT(READY, N_READY) \
1689do { if ((N_READY) == 2) \
1690 swap_sort (READY, N_READY); \
1691 else if ((N_READY) > 2) \
1692 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1693while (0)
1694
b30b031c 1695/* For each pressure class CL, set DEATH[CL] to the number of registers
1696 in that class that die in INSN. */
1697
1698static void
1699calculate_reg_deaths (rtx insn, int *death)
1700{
1701 int i;
1702 struct reg_use_data *use;
1703
1704 for (i = 0; i < ira_pressure_classes_num; i++)
1705 death[ira_pressure_classes[i]] = 0;
1706 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1707 if (dying_use_p (use))
1708 mark_regno_birth_or_death (0, death, use->regno, true);
1709}
1710
a7dcf969 1711/* Setup info about the current register pressure impact of scheduling
1712 INSN at the current scheduling point. */
1713static void
1714setup_insn_reg_pressure_info (rtx insn)
1715{
1716 int i, change, before, after, hard_regno;
1717 int excess_cost_change;
1718 enum machine_mode mode;
1719 enum reg_class cl;
1720 struct reg_pressure_data *pressure_info;
1721 int *max_reg_pressure;
a7dcf969 1722 static int death[N_REG_CLASSES];
1723
10272f4e 1724 gcc_checking_assert (!DEBUG_INSN_P (insn));
1725
a7dcf969 1726 excess_cost_change = 0;
b30b031c 1727 calculate_reg_deaths (insn, death);
a7dcf969 1728 pressure_info = INSN_REG_PRESSURE (insn);
1729 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1730 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
66d9a7b9 1731 for (i = 0; i < ira_pressure_classes_num; i++)
a7dcf969 1732 {
66d9a7b9 1733 cl = ira_pressure_classes[i];
a7dcf969 1734 gcc_assert (curr_reg_pressure[cl] >= 0);
1735 change = (int) pressure_info[i].set_increase - death[cl];
1072fecf 1736 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
a7dcf969 1737 after = MAX (0, max_reg_pressure[i] + change
1072fecf 1738 - ira_class_hard_regs_num[cl]);
a7dcf969 1739 hard_regno = ira_class_hard_regs[cl][0];
1740 gcc_assert (hard_regno >= 0);
1741 mode = reg_raw_mode[hard_regno];
1742 excess_cost_change += ((after - before)
1743 * (ira_memory_move_cost[mode][cl][0]
1744 + ira_memory_move_cost[mode][cl][1]));
1745 }
1746 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1747}
b30b031c 1748\f
1749/* This is the first page of code related to SCHED_PRESSURE_MODEL.
1750 It tries to make the scheduler take register pressure into account
1751 without introducing too many unnecessary stalls. It hooks into the
1752 main scheduling algorithm at several points:
1753
1754 - Before scheduling starts, model_start_schedule constructs a
1755 "model schedule" for the current block. This model schedule is
1756 chosen solely to keep register pressure down. It does not take the
1757 target's pipeline or the original instruction order into account,
1758 except as a tie-breaker. It also doesn't work to a particular
1759 pressure limit.
1760
1761 This model schedule gives us an idea of what pressure can be
1762 achieved for the block and gives us an example of a schedule that
1763 keeps to that pressure. It also makes the final schedule less
1764 dependent on the original instruction order. This is important
1765 because the original order can either be "wide" (many values live
1766 at once, such as in user-scheduled code) or "narrow" (few values
1767 live at once, such as after loop unrolling, where several
1768 iterations are executed sequentially).
1769
1770 We do not apply this model schedule to the rtx stream. We simply
1771 record it in model_schedule. We also compute the maximum pressure,
1772 MP, that was seen during this schedule.
1773
1774 - Instructions are added to the ready queue even if they require
1775 a stall. The length of the stall is instead computed as:
1776
1777 MAX (INSN_TICK (INSN) - clock_var, 0)
1778
1779 (= insn_delay). This allows rank_for_schedule to choose between
1780 introducing a deliberate stall or increasing pressure.
1781
1782 - Before sorting the ready queue, model_set_excess_costs assigns
1783 a pressure-based cost to each ready instruction in the queue.
1784 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1785 (ECC for short) and is effectively measured in cycles.
1786
1787 - rank_for_schedule ranks instructions based on:
1788
1789 ECC (insn) + insn_delay (insn)
1790
1791 then as:
1792
1793 insn_delay (insn)
1794
1795 So, for example, an instruction X1 with an ECC of 1 that can issue
1796 now will win over an instruction X0 with an ECC of zero that would
1797 introduce a stall of one cycle. However, an instruction X2 with an
1798 ECC of 2 that can issue now will lose to both X0 and X1.
1799
1800 - When an instruction is scheduled, model_recompute updates the model
1801 schedule with the new pressures (some of which might now exceed the
1802 original maximum pressure MP). model_update_limit_points then searches
1803 for the new point of maximum pressure, if not already known. */
1804
1805/* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1806 from surrounding debug information. */
1807#define MODEL_BAR \
1808 ";;\t\t+------------------------------------------------------\n"
1809
1810/* Information about the pressure on a particular register class at a
1811 particular point of the model schedule. */
1812struct model_pressure_data {
1813 /* The pressure at this point of the model schedule, or -1 if the
1814 point is associated with an instruction that has already been
1815 scheduled. */
1816 int ref_pressure;
1817
1818 /* The maximum pressure during or after this point of the model schedule. */
1819 int max_pressure;
1820};
1821
1822/* Per-instruction information that is used while building the model
1823 schedule. Here, "schedule" refers to the model schedule rather
1824 than the main schedule. */
1825struct model_insn_info {
1826 /* The instruction itself. */
1827 rtx insn;
1828
1829 /* If this instruction is in model_worklist, these fields link to the
1830 previous (higher-priority) and next (lower-priority) instructions
1831 in the list. */
1832 struct model_insn_info *prev;
1833 struct model_insn_info *next;
1834
1835 /* While constructing the schedule, QUEUE_INDEX describes whether an
1836 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1837 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1838 old_queue records the value that QUEUE_INDEX had before scheduling
1839 started, so that we can restore it once the schedule is complete. */
1840 int old_queue;
1841
1842 /* The relative importance of an unscheduled instruction. Higher
1843 values indicate greater importance. */
1844 unsigned int model_priority;
1845
1846 /* The length of the longest path of satisfied true dependencies
1847 that leads to this instruction. */
1848 unsigned int depth;
1849
1850 /* The length of the longest path of dependencies of any kind
1851 that leads from this instruction. */
1852 unsigned int alap;
1853
1854 /* The number of predecessor nodes that must still be scheduled. */
1855 int unscheduled_preds;
1856};
1857
1858/* Information about the pressure limit for a particular register class.
1859 This structure is used when applying a model schedule to the main
1860 schedule. */
1861struct model_pressure_limit {
1862 /* The maximum register pressure seen in the original model schedule. */
1863 int orig_pressure;
1864
1865 /* The maximum register pressure seen in the current model schedule
1866 (which excludes instructions that have already been scheduled). */
1867 int pressure;
1868
1869 /* The point of the current model schedule at which PRESSURE is first
1870 reached. It is set to -1 if the value needs to be recomputed. */
1871 int point;
1872};
1873
1874/* Describes a particular way of measuring register pressure. */
1875struct model_pressure_group {
1876 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1877 struct model_pressure_limit limits[N_REG_CLASSES];
1878
1879 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1880 on register class ira_pressure_classes[PCI] at point POINT of the
1881 current model schedule. A POINT of model_num_insns describes the
1882 pressure at the end of the schedule. */
1883 struct model_pressure_data *model;
1884};
1885
1886/* Index POINT gives the instruction at point POINT of the model schedule.
1887 This array doesn't change during main scheduling. */
f1f41a6c 1888static vec<rtx> model_schedule;
b30b031c 1889
1890/* The list of instructions in the model worklist, sorted in order of
1891 decreasing priority. */
1892static struct model_insn_info *model_worklist;
1893
1894/* Index I describes the instruction with INSN_LUID I. */
1895static struct model_insn_info *model_insns;
1896
1897/* The number of instructions in the model schedule. */
1898static int model_num_insns;
1899
1900/* The index of the first instruction in model_schedule that hasn't yet been
1901 added to the main schedule, or model_num_insns if all of them have. */
1902static int model_curr_point;
1903
1904/* Describes the pressure before each instruction in the model schedule. */
1905static struct model_pressure_group model_before_pressure;
1906
1907/* The first unused model_priority value (as used in model_insn_info). */
1908static unsigned int model_next_priority;
1909
1910
1911/* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1912 at point POINT of the model schedule. */
1913#define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1914 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1915
1916/* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1917 after point POINT of the model schedule. */
1918#define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1919 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1920
1921/* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1922 of the model schedule. */
1923#define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1924 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1925
1926/* Information about INSN that is used when creating the model schedule. */
1927#define MODEL_INSN_INFO(INSN) \
1928 (&model_insns[INSN_LUID (INSN)])
1929
1930/* The instruction at point POINT of the model schedule. */
1931#define MODEL_INSN(POINT) \
f1f41a6c 1932 (model_schedule[POINT])
b30b031c 1933
1934
1935/* Return INSN's index in the model schedule, or model_num_insns if it
1936 doesn't belong to that schedule. */
1937
1938static int
1939model_index (rtx insn)
1940{
1941 if (INSN_MODEL_INDEX (insn) == 0)
1942 return model_num_insns;
1943 return INSN_MODEL_INDEX (insn) - 1;
1944}
1945
1946/* Make sure that GROUP->limits is up-to-date for the current point
1947 of the model schedule. */
1948
1949static void
1950model_update_limit_points_in_group (struct model_pressure_group *group)
1951{
1952 int pci, max_pressure, point;
1953
1954 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1955 {
1956 /* We may have passed the final point at which the pressure in
1957 group->limits[pci].pressure was reached. Update the limit if so. */
1958 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1959 group->limits[pci].pressure = max_pressure;
1960
1961 /* Find the point at which MAX_PRESSURE is first reached. We need
1962 to search in three cases:
1963
1964 - We've already moved past the previous pressure point.
1965 In this case we search forward from model_curr_point.
1966
1967 - We scheduled the previous point of maximum pressure ahead of
1968 its position in the model schedule, but doing so didn't bring
1969 the pressure point earlier. In this case we search forward
1970 from that previous pressure point.
1971
1972 - Scheduling an instruction early caused the maximum pressure
1973 to decrease. In this case we will have set the pressure
1974 point to -1, and we search forward from model_curr_point. */
1975 point = MAX (group->limits[pci].point, model_curr_point);
1976 while (point < model_num_insns
1977 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1978 point++;
1979 group->limits[pci].point = point;
1980
1981 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1982 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1983 }
1984}
1985
1986/* Make sure that all register-pressure limits are up-to-date for the
1987 current position in the model schedule. */
1988
1989static void
1990model_update_limit_points (void)
1991{
1992 model_update_limit_points_in_group (&model_before_pressure);
1993}
1994
1995/* Return the model_index of the last unscheduled use in chain USE
1996 outside of USE's instruction. Return -1 if there are no other uses,
1997 or model_num_insns if the register is live at the end of the block. */
1998
1999static int
2000model_last_use_except (struct reg_use_data *use)
2001{
2002 struct reg_use_data *next;
2003 int last, index;
2004
2005 last = -1;
2006 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2007 if (NONDEBUG_INSN_P (next->insn)
2008 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2009 {
2010 index = model_index (next->insn);
2011 if (index == model_num_insns)
2012 return model_num_insns;
2013 if (last < index)
2014 last = index;
2015 }
2016 return last;
2017}
2018
2019/* An instruction with model_index POINT has just been scheduled, and it
2020 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2021 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2022 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2023
2024static void
2025model_start_update_pressure (struct model_pressure_group *group,
2026 int point, int pci, int delta)
2027{
2028 int next_max_pressure;
2029
2030 if (point == model_num_insns)
2031 {
2032 /* The instruction wasn't part of the model schedule; it was moved
2033 from a different block. Update the pressure for the end of
2034 the model schedule. */
2035 MODEL_REF_PRESSURE (group, point, pci) += delta;
2036 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2037 }
2038 else
2039 {
2040 /* Record that this instruction has been scheduled. Nothing now
2041 changes between POINT and POINT + 1, so get the maximum pressure
2042 from the latter. If the maximum pressure decreases, the new
2043 pressure point may be before POINT. */
2044 MODEL_REF_PRESSURE (group, point, pci) = -1;
2045 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2046 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2047 {
2048 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2049 if (group->limits[pci].point == point)
2050 group->limits[pci].point = -1;
2051 }
2052 }
2053}
2054
2055/* Record that scheduling a later instruction has changed the pressure
2056 at point POINT of the model schedule by DELTA (which might be 0).
2057 Update GROUP accordingly. Return nonzero if these changes might
2058 trigger changes to previous points as well. */
2059
2060static int
2061model_update_pressure (struct model_pressure_group *group,
2062 int point, int pci, int delta)
2063{
2064 int ref_pressure, max_pressure, next_max_pressure;
2065
2066 /* If POINT hasn't yet been scheduled, update its pressure. */
2067 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2068 if (ref_pressure >= 0 && delta != 0)
2069 {
2070 ref_pressure += delta;
2071 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2072
2073 /* Check whether the maximum pressure in the overall schedule
2074 has increased. (This means that the MODEL_MAX_PRESSURE of
2075 every point <= POINT will need to increae too; see below.) */
2076 if (group->limits[pci].pressure < ref_pressure)
2077 group->limits[pci].pressure = ref_pressure;
2078
2079 /* If we are at maximum pressure, and the maximum pressure
2080 point was previously unknown or later than POINT,
2081 bring it forward. */
2082 if (group->limits[pci].pressure == ref_pressure
2083 && !IN_RANGE (group->limits[pci].point, 0, point))
2084 group->limits[pci].point = point;
2085
2086 /* If POINT used to be the point of maximum pressure, but isn't
2087 any longer, we need to recalculate it using a forward walk. */
2088 if (group->limits[pci].pressure > ref_pressure
2089 && group->limits[pci].point == point)
2090 group->limits[pci].point = -1;
2091 }
2092
2093 /* Update the maximum pressure at POINT. Changes here might also
2094 affect the maximum pressure at POINT - 1. */
2095 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2096 max_pressure = MAX (ref_pressure, next_max_pressure);
2097 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2098 {
2099 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2100 return 1;
2101 }
2102 return 0;
2103}
2104
2105/* INSN has just been scheduled. Update the model schedule accordingly. */
2106
2107static void
2108model_recompute (rtx insn)
2109{
2110 struct {
2111 int last_use;
2112 int regno;
2113 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2114 struct reg_use_data *use;
2115 struct reg_pressure_data *reg_pressure;
2116 int delta[N_REG_CLASSES];
2117 int pci, point, mix, new_last, cl, ref_pressure, queue;
2118 unsigned int i, num_uses, num_pending_births;
2119 bool print_p;
2120
2121 /* The destinations of INSN were previously live from POINT onwards, but are
2122 now live from model_curr_point onwards. Set up DELTA accordingly. */
2123 point = model_index (insn);
2124 reg_pressure = INSN_REG_PRESSURE (insn);
2125 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2126 {
2127 cl = ira_pressure_classes[pci];
2128 delta[cl] = reg_pressure[pci].set_increase;
2129 }
2130
2131 /* Record which registers previously died at POINT, but which now die
2132 before POINT. Adjust DELTA so that it represents the effect of
2133 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2134 registers that will be born in the range [model_curr_point, POINT). */
2135 num_uses = 0;
2136 num_pending_births = 0;
2137 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2138 {
2139 new_last = model_last_use_except (use);
2140 if (new_last < point)
2141 {
2142 gcc_assert (num_uses < ARRAY_SIZE (uses));
2143 uses[num_uses].last_use = new_last;
2144 uses[num_uses].regno = use->regno;
2145 /* This register is no longer live after POINT - 1. */
2146 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2147 num_uses++;
2148 if (new_last >= 0)
2149 num_pending_births++;
2150 }
2151 }
2152
2153 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2154 Also set each group pressure limit for POINT. */
2155 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2156 {
2157 cl = ira_pressure_classes[pci];
2158 model_start_update_pressure (&model_before_pressure,
2159 point, pci, delta[cl]);
2160 }
2161
2162 /* Walk the model schedule backwards, starting immediately before POINT. */
2163 print_p = false;
2164 if (point != model_curr_point)
2165 do
2166 {
2167 point--;
2168 insn = MODEL_INSN (point);
2169 queue = QUEUE_INDEX (insn);
2170
2171 if (queue != QUEUE_SCHEDULED)
2172 {
2173 /* DELTA describes the effect of the move on the register pressure
2174 after POINT. Make it describe the effect on the pressure
2175 before POINT. */
2176 i = 0;
2177 while (i < num_uses)
2178 {
2179 if (uses[i].last_use == point)
2180 {
2181 /* This register is now live again. */
2182 mark_regno_birth_or_death (NULL, delta,
2183 uses[i].regno, true);
2184
2185 /* Remove this use from the array. */
2186 uses[i] = uses[num_uses - 1];
2187 num_uses--;
2188 num_pending_births--;
2189 }
2190 else
2191 i++;
2192 }
2193
2194 if (sched_verbose >= 5)
2195 {
b30b031c 2196 if (!print_p)
2197 {
2198 fprintf (sched_dump, MODEL_BAR);
2199 fprintf (sched_dump, ";;\t\t| New pressure for model"
2200 " schedule\n");
2201 fprintf (sched_dump, MODEL_BAR);
2202 print_p = true;
2203 }
2204
b30b031c 2205 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
3d9a4504 2206 point, INSN_UID (insn),
2207 str_pattern_slim (PATTERN (insn)));
b30b031c 2208 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2209 {
2210 cl = ira_pressure_classes[pci];
2211 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2212 point, pci);
2213 fprintf (sched_dump, " %s:[%d->%d]",
2214 reg_class_names[ira_pressure_classes[pci]],
2215 ref_pressure, ref_pressure + delta[cl]);
2216 }
2217 fprintf (sched_dump, "\n");
2218 }
2219 }
2220
2221 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2222 might have changed as well. */
2223 mix = num_pending_births;
2224 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2225 {
2226 cl = ira_pressure_classes[pci];
2227 mix |= delta[cl];
2228 mix |= model_update_pressure (&model_before_pressure,
2229 point, pci, delta[cl]);
2230 }
2231 }
2232 while (mix && point > model_curr_point);
2233
2234 if (print_p)
2235 fprintf (sched_dump, MODEL_BAR);
2236}
d452a169 2237
2238/* After DEP, which was cancelled, has been resolved for insn NEXT,
2239 check whether the insn's pattern needs restoring. */
2240static bool
2241must_restore_pattern_p (rtx next, dep_t dep)
2242{
2243 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2244 return false;
2245
2246 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2247 {
2248 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2249 gcc_assert (next == DEP_CON (dep));
2250 }
2251 else
2252 {
2253 struct dep_replacement *desc = DEP_REPLACE (dep);
2254 if (desc->insn != next)
2255 {
2256 gcc_assert (*desc->loc == desc->orig);
2257 return false;
2258 }
2259 }
2260 return true;
2261}
b30b031c 2262\f
2263/* model_spill_cost (CL, P, P') returns the cost of increasing the
2264 pressure on CL from P to P'. We use this to calculate a "base ECC",
2265 baseECC (CL, X), for each pressure class CL and each instruction X.
2266 Supposing X changes the pressure on CL from P to P', and that the
2267 maximum pressure on CL in the current model schedule is MP', then:
2268
2269 * if X occurs before or at the next point of maximum pressure in
2270 the model schedule and P' > MP', then:
2271
2272 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2273
2274 The idea is that the pressure after scheduling a fixed set of
2275 instructions -- in this case, the set up to and including the
2276 next maximum pressure point -- is going to be the same regardless
2277 of the order; we simply want to keep the intermediate pressure
2278 under control. Thus X has a cost of zero unless scheduling it
2279 now would exceed MP'.
2280
2281 If all increases in the set are by the same amount, no zero-cost
2282 instruction will ever cause the pressure to exceed MP'. However,
2283 if X is instead moved past an instruction X' with pressure in the
2284 range (MP' - (P' - P), MP'), the pressure at X' will increase
2285 beyond MP'. Since baseECC is very much a heuristic anyway,
2286 it doesn't seem worth the overhead of tracking cases like these.
2287
2288 The cost of exceeding MP' is always based on the original maximum
2289 pressure MP. This is so that going 2 registers over the original
2290 limit has the same cost regardless of whether it comes from two
2291 separate +1 deltas or from a single +2 delta.
2292
2293 * if X occurs after the next point of maximum pressure in the model
2294 schedule and P' > P, then:
2295
2296 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2297
2298 That is, if we move X forward across a point of maximum pressure,
2299 and if X increases the pressure by P' - P, then we conservatively
2300 assume that scheduling X next would increase the maximum pressure
2301 by P' - P. Again, the cost of doing this is based on the original
2302 maximum pressure MP, for the same reason as above.
2303
2304 * if P' < P, P > MP, and X occurs at or after the next point of
2305 maximum pressure, then:
2306
2307 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
a7dcf969 2308
b30b031c 2309 That is, if we have already exceeded the original maximum pressure MP,
2310 and if X might reduce the maximum pressure again -- or at least push
2311 it further back, and thus allow more scheduling freedom -- it is given
2312 a negative cost to reflect the improvement.
2313
2314 * otherwise,
2315
2316 baseECC (CL, X) = 0
2317
2318 In this case, X is not expected to affect the maximum pressure MP',
2319 so it has zero cost.
2320
2321 We then create a combined value baseECC (X) that is the sum of
2322 baseECC (CL, X) for each pressure class CL.
2323
2324 baseECC (X) could itself be used as the ECC value described above.
2325 However, this is often too conservative, in the sense that it
2326 tends to make high-priority instructions that increase pressure
2327 wait too long in cases where introducing a spill would be better.
2328 For this reason the final ECC is a priority-adjusted form of
2329 baseECC (X). Specifically, we calculate:
2330
2331 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2332 baseP = MAX { P (X) | baseECC (X) <= 0 }
2333
2334 Then:
2335
2336 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2337
2338 Thus an instruction's effect on pressure is ignored if it has a high
2339 enough priority relative to the ones that don't increase pressure.
2340 Negative values of baseECC (X) do not increase the priority of X
2341 itself, but they do make it harder for other instructions to
2342 increase the pressure further.
2343
2344 This pressure cost is deliberately timid. The intention has been
2345 to choose a heuristic that rarely interferes with the normal list
2346 scheduler in cases where that scheduler would produce good code.
2347 We simply want to curb some of its worst excesses. */
2348
2349/* Return the cost of increasing the pressure in class CL from FROM to TO.
2350
2351 Here we use the very simplistic cost model that every register above
1072fecf 2352 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
b30b031c 2353 measures instead, such as one based on MEMORY_MOVE_COST. However:
2354
2355 (1) In order for an instruction to be scheduled, the higher cost
2356 would need to be justified in a single saving of that many stalls.
2357 This is overly pessimistic, because the benefit of spilling is
2358 often to avoid a sequence of several short stalls rather than
2359 a single long one.
2360
2361 (2) The cost is still arbitrary. Because we are not allocating
2362 registers during scheduling, we have no way of knowing for
2363 sure how many memory accesses will be required by each spill,
2364 where the spills will be placed within the block, or even
2365 which block(s) will contain the spills.
2366
2367 So a higher cost than 1 is often too conservative in practice,
2368 forcing blocks to contain unnecessary stalls instead of spill code.
2369 The simple cost below seems to be the best compromise. It reduces
2370 the interference with the normal list scheduler, which helps make
2371 it more suitable for a default-on option. */
2372
2373static int
2374model_spill_cost (int cl, int from, int to)
2375{
1072fecf 2376 from = MAX (from, ira_class_hard_regs_num[cl]);
b30b031c 2377 return MAX (to, from) - from;
2378}
2379
2380/* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2381 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2382 P' = P + DELTA. */
2383
2384static int
2385model_excess_group_cost (struct model_pressure_group *group,
2386 int point, int pci, int delta)
2387{
2388 int pressure, cl;
2389
2390 cl = ira_pressure_classes[pci];
2391 if (delta < 0 && point >= group->limits[pci].point)
2392 {
2393 pressure = MAX (group->limits[pci].orig_pressure,
2394 curr_reg_pressure[cl] + delta);
2395 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2396 }
2397
2398 if (delta > 0)
2399 {
2400 if (point > group->limits[pci].point)
2401 pressure = group->limits[pci].pressure + delta;
2402 else
2403 pressure = curr_reg_pressure[cl] + delta;
2404
2405 if (pressure > group->limits[pci].pressure)
2406 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2407 pressure);
2408 }
2409
2410 return 0;
2411}
2412
2413/* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2414 if PRINT_P. */
2415
2416static int
2417model_excess_cost (rtx insn, bool print_p)
2418{
2419 int point, pci, cl, cost, this_cost, delta;
2420 struct reg_pressure_data *insn_reg_pressure;
2421 int insn_death[N_REG_CLASSES];
2422
2423 calculate_reg_deaths (insn, insn_death);
2424 point = model_index (insn);
2425 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2426 cost = 0;
2427
2428 if (print_p)
2429 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2430 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2431
2432 /* Sum up the individual costs for each register class. */
2433 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2434 {
2435 cl = ira_pressure_classes[pci];
2436 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2437 this_cost = model_excess_group_cost (&model_before_pressure,
2438 point, pci, delta);
2439 cost += this_cost;
2440 if (print_p)
2441 fprintf (sched_dump, " %s:[%d base cost %d]",
2442 reg_class_names[cl], delta, this_cost);
2443 }
2444
2445 if (print_p)
2446 fprintf (sched_dump, "\n");
2447
2448 return cost;
2449}
2450
2451/* Dump the next points of maximum pressure for GROUP. */
2452
2453static void
2454model_dump_pressure_points (struct model_pressure_group *group)
2455{
2456 int pci, cl;
2457
2458 fprintf (sched_dump, ";;\t\t| pressure points");
2459 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2460 {
2461 cl = ira_pressure_classes[pci];
2462 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2463 curr_reg_pressure[cl], group->limits[pci].pressure);
2464 if (group->limits[pci].point < model_num_insns)
2465 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2466 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2467 else
2468 fprintf (sched_dump, "end]");
2469 }
2470 fprintf (sched_dump, "\n");
2471}
2472
2473/* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2474
2475static void
2476model_set_excess_costs (rtx *insns, int count)
2477{
2478 int i, cost, priority_base, priority;
2479 bool print_p;
2480
2481 /* Record the baseECC value for each instruction in the model schedule,
2482 except that negative costs are converted to zero ones now rather thatn
2483 later. Do not assign a cost to debug instructions, since they must
2484 not change code-generation decisions. Experiments suggest we also
2485 get better results by not assigning a cost to instructions from
2486 a different block.
2487
2488 Set PRIORITY_BASE to baseP in the block comment above. This is the
2489 maximum priority of the "cheap" instructions, which should always
2490 include the next model instruction. */
2491 priority_base = 0;
2492 print_p = false;
2493 for (i = 0; i < count; i++)
2494 if (INSN_MODEL_INDEX (insns[i]))
2495 {
2496 if (sched_verbose >= 6 && !print_p)
2497 {
2498 fprintf (sched_dump, MODEL_BAR);
2499 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2500 model_dump_pressure_points (&model_before_pressure);
2501 fprintf (sched_dump, MODEL_BAR);
2502 print_p = true;
2503 }
2504 cost = model_excess_cost (insns[i], print_p);
2505 if (cost <= 0)
2506 {
2507 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2508 priority_base = MAX (priority_base, priority);
2509 cost = 0;
2510 }
2511 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2512 }
2513 if (print_p)
2514 fprintf (sched_dump, MODEL_BAR);
2515
2516 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2517 instruction. */
2518 for (i = 0; i < count; i++)
2519 {
2520 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2521 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2522 if (cost > 0 && priority > priority_base)
2523 {
2524 cost += priority_base - priority;
2525 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2526 }
2527 }
2528}
2529\f
3eb9a99d 2530/* Returns a positive value if x is preferred; returns a negative value if
2531 y is preferred. Should never return 0, since that will make the sort
2532 unstable. */
2533
2534static int
952f0048 2535rank_for_schedule (const void *x, const void *y)
3eb9a99d 2536{
896c2bfe 2537 rtx tmp = *(const rtx *) y;
2538 rtx tmp2 = *(const rtx *) x;
9997bd27 2539 int tmp_class, tmp2_class;
57a8bf1b 2540 int val, priority_val, info_val, diff;
3eb9a99d 2541
9845d120 2542 if (MAY_HAVE_DEBUG_INSNS)
2543 {
2544 /* Schedule debug insns as early as possible. */
2545 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2546 return -1;
148868c2 2547 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
9845d120 2548 return 1;
148868c2 2549 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2550 return INSN_LUID (tmp) - INSN_LUID (tmp2);
9845d120 2551 }
2552
57a8bf1b 2553 if (live_range_shrinkage_p)
2554 {
2555 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2556 code. */
2557 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2558 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2559 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2560 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2561 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2562 return diff;
2563 /* Sort by INSN_LUID (original insn order), so that we make the
2564 sort stable. This minimizes instruction movement, thus
2565 minimizing sched's effect on debugging and cross-jumping. */
2566 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2567 }
2568
e26579fc 2569 /* The insn in a schedule group should be issued the first. */
48e1416a 2570 if (flag_sched_group_heuristic &&
4d569386 2571 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
e26579fc 2572 return SCHED_GROUP_P (tmp2) ? 1 : -1;
2573
3588ab9c 2574 /* Make sure that priority of TMP and TMP2 are initialized. */
2575 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2576
b30b031c 2577 if (sched_pressure != SCHED_PRESSURE_NONE)
a7dcf969 2578 {
a7dcf969 2579 /* Prefer insn whose scheduling results in the smallest register
2580 pressure excess. */
2581 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
b30b031c 2582 + insn_delay (tmp)
a7dcf969 2583 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
b30b031c 2584 - insn_delay (tmp2))))
a7dcf969 2585 return diff;
2586 }
2587
b30b031c 2588 if (sched_pressure != SCHED_PRESSURE_NONE
a7dcf969 2589 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
2590 {
2591 if (INSN_TICK (tmp) <= clock_var)
2592 return -1;
2593 else if (INSN_TICK (tmp2) <= clock_var)
2594 return 1;
2595 else
2596 return INSN_TICK (tmp) - INSN_TICK (tmp2);
2597 }
e2f4a6ff 2598
2599 /* If we are doing backtracking in this schedule, prefer insns that
2600 have forward dependencies with negative cost against an insn that
2601 was already scheduled. */
2602 if (current_sched_info->flags & DO_BACKTRACKING)
2603 {
2604 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2605 if (priority_val)
2606 return priority_val;
2607 }
2608
c4cd519a 2609 /* Prefer insn with higher priority. */
3eb9a99d 2610 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
58ada791 2611
4d569386 2612 if (flag_sched_critical_path_heuristic && priority_val)
3eb9a99d 2613 return priority_val;
48e1416a 2614
6a1cdb4d 2615 /* Prefer speculative insn with greater dependencies weakness. */
4d569386 2616 if (flag_sched_spec_insn_heuristic && spec_info)
6a1cdb4d 2617 {
2618 ds_t ds1, ds2;
2619 dw_t dw1, dw2;
2620 int dw;
2621
2622 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2623 if (ds1)
e1ab7874 2624 dw1 = ds_weak (ds1);
6a1cdb4d 2625 else
2626 dw1 = NO_DEP_WEAK;
48e1416a 2627
6a1cdb4d 2628 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2629 if (ds2)
e1ab7874 2630 dw2 = ds_weak (ds2);
6a1cdb4d 2631 else
2632 dw2 = NO_DEP_WEAK;
2633
2634 dw = dw2 - dw1;
2635 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2636 return dw;
2637 }
2638
c2069298 2639 info_val = (*current_sched_info->rank) (tmp, tmp2);
9af5ce0c 2640 if (flag_sched_rank_heuristic && info_val)
c2069298 2641 return info_val;
3eb9a99d 2642
9845d120 2643 /* Compare insns based on their relation to the last scheduled
2644 non-debug insn. */
d0aa45d0 2645 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
3eb9a99d 2646 {
93f6b030 2647 dep_t dep1;
2648 dep_t dep2;
d0aa45d0 2649 rtx last = last_nondebug_scheduled_insn;
93f6b030 2650
3eb9a99d 2651 /* Classify the instructions into three classes:
2652 1) Data dependent on last schedule insn.
2653 2) Anti/Output dependent on last scheduled insn.
2654 3) Independent of last scheduled insn, or has latency of one.
2655 Choose the insn from the highest numbered class if different. */
9845d120 2656 dep1 = sd_find_dep_between (last, tmp, true);
9997bd27 2657
93f6b030 2658 if (dep1 == NULL || dep_cost (dep1) == 1)
3eb9a99d 2659 tmp_class = 3;
9997bd27 2660 else if (/* Data dependence. */
93f6b030 2661 DEP_TYPE (dep1) == REG_DEP_TRUE)
3eb9a99d 2662 tmp_class = 1;
2663 else
2664 tmp_class = 2;
2665
9845d120 2666 dep2 = sd_find_dep_between (last, tmp2, true);
9997bd27 2667
93f6b030 2668 if (dep2 == NULL || dep_cost (dep2) == 1)
3eb9a99d 2669 tmp2_class = 3;
9997bd27 2670 else if (/* Data dependence. */
93f6b030 2671 DEP_TYPE (dep2) == REG_DEP_TRUE)
3eb9a99d 2672 tmp2_class = 1;
2673 else
2674 tmp2_class = 2;
2675
2676 if ((val = tmp2_class - tmp_class))
2677 return val;
2678 }
2679
b30b031c 2680 /* Prefer instructions that occur earlier in the model schedule. */
2681 if (sched_pressure == SCHED_PRESSURE_MODEL)
2682 {
2683 int diff;
2684
2685 diff = model_index (tmp) - model_index (tmp2);
2686 if (diff != 0)
2687 return diff;
2688 }
2689
896c2bfe 2690 /* Prefer the insn which has more later insns that depend on it.
02aef853 2691 This gives the scheduler more freedom when scheduling later
2692 instructions at the expense of added register pressure. */
02aef853 2693
b30b031c 2694 val = (dep_list_size (tmp2, SD_LIST_FORW)
2695 - dep_list_size (tmp, SD_LIST_FORW));
02aef853 2696
4d569386 2697 if (flag_sched_dep_count_heuristic && val != 0)
93f6b030 2698 return val;
896c2bfe 2699
3eb9a99d 2700 /* If insns are equally good, sort by INSN_LUID (original insn order),
2701 so that we make the sort stable. This minimizes instruction movement,
2702 thus minimizing sched's effect on debugging and cross-jumping. */
2703 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2704}
2705
2706/* Resort the array A in which only element at index N may be out of order. */
2707
3e016693 2708HAIFA_INLINE static void
952f0048 2709swap_sort (rtx *a, int n)
3eb9a99d 2710{
2711 rtx insn = a[n - 1];
2712 int i = n - 2;
2713
2714 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2715 {
2716 a[i + 1] = a[i];
2717 i -= 1;
2718 }
2719 a[i + 1] = insn;
2720}
2721
3eb9a99d 2722/* Add INSN to the insn queue so that it can be executed at least
2723 N_CYCLES after the currently executing insn. Preserve insns
b49b2e5c 2724 chain for debugging purposes. REASON will be printed in debugging
2725 output. */
3eb9a99d 2726
3e016693 2727HAIFA_INLINE static void
b49b2e5c 2728queue_insn (rtx insn, int n_cycles, const char *reason)
3eb9a99d 2729{
2730 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
7ce0700a 2731 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
e2f4a6ff 2732 int new_tick;
e4897000 2733
2734 gcc_assert (n_cycles <= max_insn_queue_index);
9845d120 2735 gcc_assert (!DEBUG_INSN_P (insn));
e4897000 2736
3eb9a99d 2737 insn_queue[next_q] = link;
2738 q_size += 1;
2739
2740 if (sched_verbose >= 2)
2741 {
c2069298 2742 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2743 (*current_sched_info->print_insn) (insn, 0));
3eb9a99d 2744
b49b2e5c 2745 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
3eb9a99d 2746 }
e1ab7874 2747
e4897000 2748 QUEUE_INDEX (insn) = next_q;
e2f4a6ff 2749
2750 if (current_sched_info->flags & DO_BACKTRACKING)
2751 {
2752 new_tick = clock_var + n_cycles;
2753 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2754 INSN_TICK (insn) = new_tick;
2755
2756 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2757 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2758 {
2759 must_backtrack = true;
2760 if (sched_verbose >= 2)
2761 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2762 }
2763 }
e4897000 2764}
2765
2766/* Remove INSN from queue. */
2767static void
2768queue_remove (rtx insn)
2769{
2770 gcc_assert (QUEUE_INDEX (insn) >= 0);
2771 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2772 q_size--;
2773 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
30b1ec30 2774}
2775
2776/* Return a pointer to the bottom of the ready list, i.e. the insn
2777 with the lowest priority. */
2778
e1ab7874 2779rtx *
952f0048 2780ready_lastpos (struct ready_list *ready)
30b1ec30 2781{
e4897000 2782 gcc_assert (ready->n_ready >= 1);
30b1ec30 2783 return ready->vec + ready->first - ready->n_ready + 1;
2784}
2785
e4897000 2786/* Add an element INSN to the ready list so that it ends up with the
9ca2c29a 2787 lowest/highest priority depending on FIRST_P. */
30b1ec30 2788
e4897000 2789HAIFA_INLINE static void
2790ready_add (struct ready_list *ready, rtx insn, bool first_p)
30b1ec30 2791{
e4897000 2792 if (!first_p)
30b1ec30 2793 {
e4897000 2794 if (ready->first == ready->n_ready)
2795 {
2796 memmove (ready->vec + ready->veclen - ready->n_ready,
2797 ready_lastpos (ready),
2798 ready->n_ready * sizeof (rtx));
2799 ready->first = ready->veclen - 1;
2800 }
2801 ready->vec[ready->first - ready->n_ready] = insn;
30b1ec30 2802 }
e4897000 2803 else
2804 {
2805 if (ready->first == ready->veclen - 1)
2806 {
2807 if (ready->n_ready)
2808 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2809 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2810 ready_lastpos (ready),
2811 ready->n_ready * sizeof (rtx));
2812 ready->first = ready->veclen - 2;
2813 }
2814 ready->vec[++(ready->first)] = insn;
2815 }
2816
30b1ec30 2817 ready->n_ready++;
9845d120 2818 if (DEBUG_INSN_P (insn))
2819 ready->n_debug++;
e4897000 2820
2821 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2822 QUEUE_INDEX (insn) = QUEUE_READY;
e2f4a6ff 2823
2824 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2825 && INSN_EXACT_TICK (insn) < clock_var)
2826 {
2827 must_backtrack = true;
2828 }
30b1ec30 2829}
3eb9a99d 2830
30b1ec30 2831/* Remove the element with the highest priority from the ready list and
2832 return it. */
2833
2834HAIFA_INLINE static rtx
952f0048 2835ready_remove_first (struct ready_list *ready)
30b1ec30 2836{
2837 rtx t;
48e1416a 2838
89f18f73 2839 gcc_assert (ready->n_ready);
30b1ec30 2840 t = ready->vec[ready->first--];
2841 ready->n_ready--;
9845d120 2842 if (DEBUG_INSN_P (t))
2843 ready->n_debug--;
30b1ec30 2844 /* If the queue becomes empty, reset it. */
2845 if (ready->n_ready == 0)
2846 ready->first = ready->veclen - 1;
e4897000 2847
2848 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2849 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2850
30b1ec30 2851 return t;
2852}
2853
bea4bad2 2854/* The following code implements multi-pass scheduling for the first
2855 cycle. In other words, we will try to choose ready insn which
2856 permits to start maximum number of insns on the same cycle. */
2857
2858/* Return a pointer to the element INDEX from the ready. INDEX for
2859 insn with the highest priority is 0, and the lowest priority has
2860 N_READY - 1. */
2861
e1ab7874 2862rtx
952f0048 2863ready_element (struct ready_list *ready, int index)
bea4bad2 2864{
89f18f73 2865 gcc_assert (ready->n_ready && index < ready->n_ready);
48e1416a 2866
bea4bad2 2867 return ready->vec[ready->first - index];
2868}
2869
2870/* Remove the element INDEX from the ready list and return it. INDEX
2871 for insn with the highest priority is 0, and the lowest priority
2872 has N_READY - 1. */
2873
2874HAIFA_INLINE static rtx
952f0048 2875ready_remove (struct ready_list *ready, int index)
bea4bad2 2876{
2877 rtx t;
2878 int i;
2879
2880 if (index == 0)
2881 return ready_remove_first (ready);
89f18f73 2882 gcc_assert (ready->n_ready && index < ready->n_ready);
bea4bad2 2883 t = ready->vec[ready->first - index];
2884 ready->n_ready--;
9845d120 2885 if (DEBUG_INSN_P (t))
2886 ready->n_debug--;
bea4bad2 2887 for (i = index; i < ready->n_ready; i++)
2888 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
e4897000 2889 QUEUE_INDEX (t) = QUEUE_NOWHERE;
bea4bad2 2890 return t;
2891}
2892
e4897000 2893/* Remove INSN from the ready list. */
2894static void
2895ready_remove_insn (rtx insn)
2896{
2897 int i;
2898
2899 for (i = 0; i < readyp->n_ready; i++)
2900 if (ready_element (readyp, i) == insn)
2901 {
2902 ready_remove (readyp, i);
2903 return;
2904 }
2905 gcc_unreachable ();
2906}
bea4bad2 2907
30b1ec30 2908/* Sort the ready list READY by ascending priority, using the SCHED_SORT
2909 macro. */
2910
e1ab7874 2911void
952f0048 2912ready_sort (struct ready_list *ready)
30b1ec30 2913{
a7dcf969 2914 int i;
30b1ec30 2915 rtx *first = ready_lastpos (ready);
a7dcf969 2916
11189c7a 2917 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
a7dcf969 2918 {
2919 for (i = 0; i < ready->n_ready; i++)
10272f4e 2920 if (!DEBUG_INSN_P (first[i]))
2921 setup_insn_reg_pressure_info (first[i]);
a7dcf969 2922 }
b30b031c 2923 if (sched_pressure == SCHED_PRESSURE_MODEL
2924 && model_curr_point < model_num_insns)
2925 model_set_excess_costs (first, ready->n_ready);
30b1ec30 2926 SCHED_SORT (first, ready->n_ready);
3eb9a99d 2927}
2928
3eb9a99d 2929/* PREV is an insn that is ready to execute. Adjust its priority if that
ba57cb24 2930 will help shorten or lengthen register lifetimes as appropriate. Also
f0b5f617 2931 provide a hook for the target to tweak itself. */
3eb9a99d 2932
3e016693 2933HAIFA_INLINE static void
952f0048 2934adjust_priority (rtx prev)
3eb9a99d 2935{
ba57cb24 2936 /* ??? There used to be code here to try and estimate how an insn
2937 affected register lifetimes, but it did it by looking at REG_DEAD
896c2bfe 2938 notes, which we removed in schedule_region. Nor did it try to
ba57cb24 2939 take into account register pressure or anything useful like that.
3eb9a99d 2940
ba57cb24 2941 Revisit when we have a machine model to work with and not before. */
de206697 2942
747af5e7 2943 if (targetm.sched.adjust_priority)
2944 INSN_PRIORITY (prev) =
883b2e73 2945 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3eb9a99d 2946}
2947
e1ab7874 2948/* Advance DFA state STATE on one cycle. */
2949void
2950advance_state (state_t state)
bea4bad2 2951{
07317795 2952 if (targetm.sched.dfa_pre_advance_cycle)
2953 targetm.sched.dfa_pre_advance_cycle ();
2954
67900a4f 2955 if (targetm.sched.dfa_pre_cycle_insn)
e1ab7874 2956 state_transition (state,
67900a4f 2957 targetm.sched.dfa_pre_cycle_insn ());
2958
e1ab7874 2959 state_transition (state, NULL);
48e1416a 2960
67900a4f 2961 if (targetm.sched.dfa_post_cycle_insn)
e1ab7874 2962 state_transition (state,
67900a4f 2963 targetm.sched.dfa_post_cycle_insn ());
07317795 2964
2965 if (targetm.sched.dfa_post_advance_cycle)
2966 targetm.sched.dfa_post_advance_cycle ();
bea4bad2 2967}
2968
e1ab7874 2969/* Advance time on one cycle. */
2970HAIFA_INLINE static void
2971advance_one_cycle (void)
2972{
2973 advance_state (curr_state);
2974 if (sched_verbose >= 6)
76f8cfc9 2975 fprintf (sched_dump, ";;\tAdvanced a state.\n");
e1ab7874 2976}
2977
a7dcf969 2978/* Update register pressure after scheduling INSN. */
2979static void
2980update_register_pressure (rtx insn)
2981{
2982 struct reg_use_data *use;
2983 struct reg_set_data *set;
2984
10272f4e 2985 gcc_checking_assert (!DEBUG_INSN_P (insn));
2986
a7dcf969 2987 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
b30b031c 2988 if (dying_use_p (use))
2989 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2990 use->regno, false);
a7dcf969 2991 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
b30b031c 2992 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2993 set->regno, true);
a7dcf969 2994}
2995
2996/* Set up or update (if UPDATE_P) max register pressure (see its
2997 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2998 after insn AFTER. */
2999static void
3000setup_insn_max_reg_pressure (rtx after, bool update_p)
3001{
3002 int i, p;
3003 bool eq_p;
3004 rtx insn;
3005 static int max_reg_pressure[N_REG_CLASSES];
3006
3007 save_reg_pressure ();
66d9a7b9 3008 for (i = 0; i < ira_pressure_classes_num; i++)
3009 max_reg_pressure[ira_pressure_classes[i]]
3010 = curr_reg_pressure[ira_pressure_classes[i]];
a7dcf969 3011 for (insn = NEXT_INSN (after);
3a16ebc2 3012 insn != NULL_RTX && ! BARRIER_P (insn)
3013 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
a7dcf969 3014 insn = NEXT_INSN (insn))
3015 if (NONDEBUG_INSN_P (insn))
3016 {
3017 eq_p = true;
66d9a7b9 3018 for (i = 0; i < ira_pressure_classes_num; i++)
a7dcf969 3019 {
66d9a7b9 3020 p = max_reg_pressure[ira_pressure_classes[i]];
a7dcf969 3021 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3022 {
3023 eq_p = false;
3024 INSN_MAX_REG_PRESSURE (insn)[i]
66d9a7b9 3025 = max_reg_pressure[ira_pressure_classes[i]];
a7dcf969 3026 }
3027 }
3028 if (update_p && eq_p)
3029 break;
3030 update_register_pressure (insn);
66d9a7b9 3031 for (i = 0; i < ira_pressure_classes_num; i++)
3032 if (max_reg_pressure[ira_pressure_classes[i]]
3033 < curr_reg_pressure[ira_pressure_classes[i]])
3034 max_reg_pressure[ira_pressure_classes[i]]
3035 = curr_reg_pressure[ira_pressure_classes[i]];
a7dcf969 3036 }
3037 restore_reg_pressure ();
3038}
3039
3040/* Update the current register pressure after scheduling INSN. Update
3041 also max register pressure for unscheduled insns of the current
3042 BB. */
3043static void
3044update_reg_and_insn_max_reg_pressure (rtx insn)
3045{
3046 int i;
3047 int before[N_REG_CLASSES];
3048
66d9a7b9 3049 for (i = 0; i < ira_pressure_classes_num; i++)
3050 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
a7dcf969 3051 update_register_pressure (insn);
66d9a7b9 3052 for (i = 0; i < ira_pressure_classes_num; i++)
3053 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
a7dcf969 3054 break;
66d9a7b9 3055 if (i < ira_pressure_classes_num)
a7dcf969 3056 setup_insn_max_reg_pressure (insn, true);
3057}
3058
3059/* Set up register pressure at the beginning of basic block BB whose
3060 insns starting after insn AFTER. Set up also max register pressure
3061 for all insns of the basic block. */
3062void
3063sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
3064{
11189c7a 3065 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
a7dcf969 3066 initiate_bb_reg_pressure_info (bb);
3067 setup_insn_max_reg_pressure (after, false);
3068}
0c775e95 3069\f
effd1640 3070/* If doing predication while scheduling, verify whether INSN, which
3071 has just been scheduled, clobbers the conditions of any
3072 instructions that must be predicated in order to break their
3073 dependencies. If so, remove them from the queues so that they will
3074 only be scheduled once their control dependency is resolved. */
3075
3076static void
3077check_clobbered_conditions (rtx insn)
3078{
3079 HARD_REG_SET t;
3080 int i;
3081
3082 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3083 return;
3084
3085 find_all_hard_reg_sets (insn, &t);
3086
3087 restart:
3088 for (i = 0; i < ready.n_ready; i++)
3089 {
3090 rtx x = ready_element (&ready, i);
3091 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3092 {
3093 ready_remove_insn (x);
3094 goto restart;
3095 }
3096 }
3097 for (i = 0; i <= max_insn_queue_index; i++)
3098 {
3099 rtx link;
3100 int q = NEXT_Q_AFTER (q_ptr, i);
3101
3102 restart_queue:
3103 for (link = insn_queue[q]; link; link = XEXP (link, 1))
3104 {
3105 rtx x = XEXP (link, 0);
3106 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3107 {
3108 queue_remove (x);
3109 goto restart_queue;
3110 }
3111 }
3112 }
3113}
3114\f
b30b031c 3115/* Return (in order):
3116
3117 - positive if INSN adversely affects the pressure on one
3118 register class
3119
3120 - negative if INSN reduces the pressure on one register class
3121
3122 - 0 if INSN doesn't affect the pressure on any register class. */
3123
3124static int
3125model_classify_pressure (struct model_insn_info *insn)
3126{
3127 struct reg_pressure_data *reg_pressure;
3128 int death[N_REG_CLASSES];
3129 int pci, cl, sum;
3130
3131 calculate_reg_deaths (insn->insn, death);
3132 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3133 sum = 0;
3134 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3135 {
3136 cl = ira_pressure_classes[pci];
3137 if (death[cl] < reg_pressure[pci].set_increase)
3138 return 1;
3139 sum += reg_pressure[pci].set_increase - death[cl];
3140 }
3141 return sum;
3142}
3143
3144/* Return true if INSN1 should come before INSN2 in the model schedule. */
3145
3146static int
3147model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3148{
3149 unsigned int height1, height2;
3150 unsigned int priority1, priority2;
3151
3152 /* Prefer instructions with a higher model priority. */
3153 if (insn1->model_priority != insn2->model_priority)
3154 return insn1->model_priority > insn2->model_priority;
3155
3156 /* Combine the length of the longest path of satisfied true dependencies
3157 that leads to each instruction (depth) with the length of the longest
3158 path of any dependencies that leads from the instruction (alap).
3159 Prefer instructions with the greatest combined length. If the combined
3160 lengths are equal, prefer instructions with the greatest depth.
3161
3162 The idea is that, if we have a set S of "equal" instructions that each
3163 have ALAP value X, and we pick one such instruction I, any true-dependent
3164 successors of I that have ALAP value X - 1 should be preferred over S.
3165 This encourages the schedule to be "narrow" rather than "wide".
3166 However, if I is a low-priority instruction that we decided to
3167 schedule because of its model_classify_pressure, and if there
3168 is a set of higher-priority instructions T, the aforementioned
3169 successors of I should not have the edge over T. */
3170 height1 = insn1->depth + insn1->alap;
3171 height2 = insn2->depth + insn2->alap;
3172 if (height1 != height2)
3173 return height1 > height2;
3174 if (insn1->depth != insn2->depth)
3175 return insn1->depth > insn2->depth;
3176
3177 /* We have no real preference between INSN1 an INSN2 as far as attempts
3178 to reduce pressure go. Prefer instructions with higher priorities. */
3179 priority1 = INSN_PRIORITY (insn1->insn);
3180 priority2 = INSN_PRIORITY (insn2->insn);
3181 if (priority1 != priority2)
3182 return priority1 > priority2;
3183
3184 /* Use the original rtl sequence as a tie-breaker. */
3185 return insn1 < insn2;
3186}
3187
3188/* Add INSN to the model worklist immediately after PREV. Add it to the
3189 beginning of the list if PREV is null. */
3190
3191static void
3192model_add_to_worklist_at (struct model_insn_info *insn,
3193 struct model_insn_info *prev)
3194{
3195 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3196 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3197
3198 insn->prev = prev;
3199 if (prev)
3200 {
3201 insn->next = prev->next;
3202 prev->next = insn;
3203 }
3204 else
3205 {
3206 insn->next = model_worklist;
3207 model_worklist = insn;
3208 }
3209 if (insn->next)
3210 insn->next->prev = insn;
3211}
3212
3213/* Remove INSN from the model worklist. */
3214
3215static void
3216model_remove_from_worklist (struct model_insn_info *insn)
3217{
3218 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3219 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3220
3221 if (insn->prev)
3222 insn->prev->next = insn->next;
3223 else
3224 model_worklist = insn->next;
3225 if (insn->next)
3226 insn->next->prev = insn->prev;
3227}
3228
3229/* Add INSN to the model worklist. Start looking for a suitable position
3230 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3231 insns either side. A null PREV indicates the beginning of the list and
3232 a null NEXT indicates the end. */
3233
3234static void
3235model_add_to_worklist (struct model_insn_info *insn,
3236 struct model_insn_info *prev,
3237 struct model_insn_info *next)
3238{
3239 int count;
3240
3241 count = MAX_SCHED_READY_INSNS;
3242 if (count > 0 && prev && model_order_p (insn, prev))
3243 do
3244 {
3245 count--;
3246 prev = prev->prev;
3247 }
3248 while (count > 0 && prev && model_order_p (insn, prev));
3249 else
3250 while (count > 0 && next && model_order_p (next, insn))
3251 {
3252 count--;
3253 prev = next;
3254 next = next->next;
3255 }
3256 model_add_to_worklist_at (insn, prev);
3257}
3258
3259/* INSN may now have a higher priority (in the model_order_p sense)
3260 than before. Move it up the worklist if necessary. */
3261
3262static void
3263model_promote_insn (struct model_insn_info *insn)
3264{
3265 struct model_insn_info *prev;
3266 int count;
3267
3268 prev = insn->prev;
3269 count = MAX_SCHED_READY_INSNS;
3270 while (count > 0 && prev && model_order_p (insn, prev))
3271 {
3272 count--;
3273 prev = prev->prev;
3274 }
3275 if (prev != insn->prev)
3276 {
3277 model_remove_from_worklist (insn);
3278 model_add_to_worklist_at (insn, prev);
3279 }
3280}
3281
3282/* Add INSN to the end of the model schedule. */
3283
3284static void
3285model_add_to_schedule (rtx insn)
3286{
3287 unsigned int point;
3288
3289 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3290 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3291
f1f41a6c 3292 point = model_schedule.length ();
3293 model_schedule.quick_push (insn);
b30b031c 3294 INSN_MODEL_INDEX (insn) = point + 1;
3295}
3296
3297/* Analyze the instructions that are to be scheduled, setting up
3298 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3299 instructions to model_worklist. */
3300
3301static void
3302model_analyze_insns (void)
3303{
3304 rtx start, end, iter;
3305 sd_iterator_def sd_it;
3306 dep_t dep;
3307 struct model_insn_info *insn, *con;
3308
3309 model_num_insns = 0;
3310 start = PREV_INSN (current_sched_info->next_tail);
3311 end = current_sched_info->prev_head;
3312 for (iter = start; iter != end; iter = PREV_INSN (iter))
3313 if (NONDEBUG_INSN_P (iter))
3314 {
3315 insn = MODEL_INSN_INFO (iter);
3316 insn->insn = iter;
3317 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3318 {
3319 con = MODEL_INSN_INFO (DEP_CON (dep));
3320 if (con->insn && insn->alap < con->alap + 1)
3321 insn->alap = con->alap + 1;
3322 }
3323
3324 insn->old_queue = QUEUE_INDEX (iter);
3325 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3326
3327 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3328 if (insn->unscheduled_preds == 0)
3329 model_add_to_worklist (insn, NULL, model_worklist);
3330
3331 model_num_insns++;
3332 }
3333}
3334
3335/* The global state describes the register pressure at the start of the
3336 model schedule. Initialize GROUP accordingly. */
3337
3338static void
3339model_init_pressure_group (struct model_pressure_group *group)
3340{
3341 int pci, cl;
3342
3343 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3344 {
3345 cl = ira_pressure_classes[pci];
3346 group->limits[pci].pressure = curr_reg_pressure[cl];
3347 group->limits[pci].point = 0;
3348 }
3349 /* Use index model_num_insns to record the state after the last
3350 instruction in the model schedule. */
3351 group->model = XNEWVEC (struct model_pressure_data,
3352 (model_num_insns + 1) * ira_pressure_classes_num);
3353}
3354
3355/* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3356 Update the maximum pressure for the whole schedule. */
3357
3358static void
3359model_record_pressure (struct model_pressure_group *group,
3360 int point, int pci, int pressure)
3361{
3362 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3363 if (group->limits[pci].pressure < pressure)
3364 {
3365 group->limits[pci].pressure = pressure;
3366 group->limits[pci].point = point;
3367 }
3368}
3369
3370/* INSN has just been added to the end of the model schedule. Record its
3371 register-pressure information. */
3372
3373static void
3374model_record_pressures (struct model_insn_info *insn)
3375{
3376 struct reg_pressure_data *reg_pressure;
3377 int point, pci, cl, delta;
3378 int death[N_REG_CLASSES];
3379
3380 point = model_index (insn->insn);
3381 if (sched_verbose >= 2)
3382 {
b30b031c 3383 if (point == 0)
3384 {
3385 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3386 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3387 }
b30b031c 3388 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3389 point, INSN_UID (insn->insn), insn->model_priority,
3390 insn->depth + insn->alap, insn->depth,
3d9a4504 3391 INSN_PRIORITY (insn->insn),
3392 str_pattern_slim (PATTERN (insn->insn)));
b30b031c 3393 }
3394 calculate_reg_deaths (insn->insn, death);
3395 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3396 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3397 {
3398 cl = ira_pressure_classes[pci];
3399 delta = reg_pressure[pci].set_increase - death[cl];
3400 if (sched_verbose >= 2)
3401 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3402 curr_reg_pressure[cl], delta);
3403 model_record_pressure (&model_before_pressure, point, pci,
3404 curr_reg_pressure[cl]);
3405 }
3406 if (sched_verbose >= 2)
3407 fprintf (sched_dump, "\n");
3408}
3409
3410/* All instructions have been added to the model schedule. Record the
3411 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3412
3413static void
3414model_record_final_pressures (struct model_pressure_group *group)
3415{
3416 int point, pci, max_pressure, ref_pressure, cl;
3417
3418 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3419 {
3420 /* Record the final pressure for this class. */
3421 cl = ira_pressure_classes[pci];
3422 point = model_num_insns;
3423 ref_pressure = curr_reg_pressure[cl];
3424 model_record_pressure (group, point, pci, ref_pressure);
3425
3426 /* Record the original maximum pressure. */
3427 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3428
3429 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3430 max_pressure = ref_pressure;
3431 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3432 while (point > 0)
3433 {
3434 point--;
3435 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3436 max_pressure = MAX (max_pressure, ref_pressure);
3437 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3438 }
3439 }
3440}
3441
3442/* Update all successors of INSN, given that INSN has just been scheduled. */
3443
3444static void
3445model_add_successors_to_worklist (struct model_insn_info *insn)
3446{
3447 sd_iterator_def sd_it;
3448 struct model_insn_info *con;
3449 dep_t dep;
3450
3451 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3452 {
3453 con = MODEL_INSN_INFO (DEP_CON (dep));
3454 /* Ignore debug instructions, and instructions from other blocks. */
3455 if (con->insn)
3456 {
3457 con->unscheduled_preds--;
3458
3459 /* Update the depth field of each true-dependent successor.
3460 Increasing the depth gives them a higher priority than
3461 before. */
3462 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3463 {
3464 con->depth = insn->depth + 1;
3465 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3466 model_promote_insn (con);
3467 }
3468
3469 /* If this is a true dependency, or if there are no remaining
3470 dependencies for CON (meaning that CON only had non-true
3471 dependencies), make sure that CON is on the worklist.
3472 We don't bother otherwise because it would tend to fill the
3473 worklist with a lot of low-priority instructions that are not
3474 yet ready to issue. */
3475 if ((con->depth > 0 || con->unscheduled_preds == 0)
3476 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3477 model_add_to_worklist (con, insn, insn->next);
3478 }
3479 }
3480}
3481
3482/* Give INSN a higher priority than any current instruction, then give
3483 unscheduled predecessors of INSN a higher priority still. If any of
3484 those predecessors are not on the model worklist, do the same for its
3485 predecessors, and so on. */
3486
3487static void
3488model_promote_predecessors (struct model_insn_info *insn)
3489{
3490 struct model_insn_info *pro, *first;
3491 sd_iterator_def sd_it;
3492 dep_t dep;
3493
3494 if (sched_verbose >= 7)
3495 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3496 INSN_UID (insn->insn), model_next_priority);
3497 insn->model_priority = model_next_priority++;
3498 model_remove_from_worklist (insn);
3499 model_add_to_worklist_at (insn, NULL);
3500
3501 first = NULL;
3502 for (;;)
3503 {
3504 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3505 {
3506 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3507 /* The first test is to ignore debug instructions, and instructions
3508 from other blocks. */
3509 if (pro->insn
3510 && pro->model_priority != model_next_priority
3511 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3512 {
3513 pro->model_priority = model_next_priority;
3514 if (sched_verbose >= 7)
3515 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3516 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3517 {
3518 /* PRO is already in the worklist, but it now has
3519 a higher priority than before. Move it at the
3520 appropriate place. */
3521 model_remove_from_worklist (pro);
3522 model_add_to_worklist (pro, NULL, model_worklist);
3523 }
3524 else
3525 {
3526 /* PRO isn't in the worklist. Recursively process
3527 its predecessors until we find one that is. */
3528 pro->next = first;
3529 first = pro;
3530 }
3531 }
3532 }
3533 if (!first)
3534 break;
3535 insn = first;
3536 first = insn->next;
3537 }
3538 if (sched_verbose >= 7)
3539 fprintf (sched_dump, " = %d\n", model_next_priority);
3540 model_next_priority++;
3541}
3542
3543/* Pick one instruction from model_worklist and process it. */
3544
3545static void
3546model_choose_insn (void)
3547{
3548 struct model_insn_info *insn, *fallback;
3549 int count;
3550
3551 if (sched_verbose >= 7)
3552 {
3553 fprintf (sched_dump, ";;\t+--- worklist:\n");
3554 insn = model_worklist;
3555 count = MAX_SCHED_READY_INSNS;
3556 while (count > 0 && insn)
3557 {
3558 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3559 INSN_UID (insn->insn), insn->model_priority,
3560 insn->depth + insn->alap, insn->depth,
3561 INSN_PRIORITY (insn->insn));
3562 count--;
3563 insn = insn->next;
3564 }
3565 }
3566
3567 /* Look for a ready instruction whose model_classify_priority is zero
3568 or negative, picking the highest-priority one. Adding such an
3569 instruction to the schedule now should do no harm, and may actually
3570 do some good.
3571
3572 Failing that, see whether there is an instruction with the highest
3573 extant model_priority that is not yet ready, but which would reduce
3574 pressure if it became ready. This is designed to catch cases like:
3575
3576 (set (mem (reg R1)) (reg R2))
3577
3578 where the instruction is the last remaining use of R1 and where the
3579 value of R2 is not yet available (or vice versa). The death of R1
3580 means that this instruction already reduces pressure. It is of
3581 course possible that the computation of R2 involves other registers
3582 that are hard to kill, but such cases are rare enough for this
3583 heuristic to be a win in general.
3584
3585 Failing that, just pick the highest-priority instruction in the
3586 worklist. */
3587 count = MAX_SCHED_READY_INSNS;
3588 insn = model_worklist;
3589 fallback = 0;
3590 for (;;)
3591 {
3592 if (count == 0 || !insn)
3593 {
3594 insn = fallback ? fallback : model_worklist;
3595 break;
3596 }
3597 if (insn->unscheduled_preds)
3598 {
3599 if (model_worklist->model_priority == insn->model_priority
3600 && !fallback
3601 && model_classify_pressure (insn) < 0)
3602 fallback = insn;
3603 }
3604 else
3605 {
3606 if (model_classify_pressure (insn) <= 0)
3607 break;
3608 }
3609 count--;
3610 insn = insn->next;
3611 }
3612
3613 if (sched_verbose >= 7 && insn != model_worklist)
3614 {
3615 if (insn->unscheduled_preds)
3616 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3617 INSN_UID (insn->insn));
3618 else
3619 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3620 INSN_UID (insn->insn));
3621 }
3622 if (insn->unscheduled_preds)
3623 /* INSN isn't yet ready to issue. Give all its predecessors the
3624 highest priority. */
3625 model_promote_predecessors (insn);
3626 else
3627 {
3628 /* INSN is ready. Add it to the end of model_schedule and
3629 process its successors. */
3630 model_add_successors_to_worklist (insn);
3631 model_remove_from_worklist (insn);
3632 model_add_to_schedule (insn->insn);
3633 model_record_pressures (insn);
3634 update_register_pressure (insn->insn);
3635 }
3636}
3637
3638/* Restore all QUEUE_INDEXs to the values that they had before
3639 model_start_schedule was called. */
3640
3641static void
3642model_reset_queue_indices (void)
3643{
3644 unsigned int i;
3645 rtx insn;
3646
f1f41a6c 3647 FOR_EACH_VEC_ELT (model_schedule, i, insn)
b30b031c 3648 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3649}
3650
3651/* We have calculated the model schedule and spill costs. Print a summary
3652 to sched_dump. */
3653
3654static void
3655model_dump_pressure_summary (void)
3656{
3657 int pci, cl;
3658
3659 fprintf (sched_dump, ";; Pressure summary:");
3660 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3661 {
3662 cl = ira_pressure_classes[pci];
3663 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3664 model_before_pressure.limits[pci].pressure);
3665 }
3666 fprintf (sched_dump, "\n\n");
3667}
3668
3669/* Initialize the SCHED_PRESSURE_MODEL information for the current
3670 scheduling region. */
3671
3672static void
3673model_start_schedule (void)
3674{
3675 basic_block bb;
3676
3677 model_next_priority = 1;
f1f41a6c 3678 model_schedule.create (sched_max_luid);
b30b031c 3679 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3680
3681 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3682 initiate_reg_pressure_info (df_get_live_in (bb));
3683
3684 model_analyze_insns ();
3685 model_init_pressure_group (&model_before_pressure);
3686 while (model_worklist)
3687 model_choose_insn ();
f1f41a6c 3688 gcc_assert (model_num_insns == (int) model_schedule.length ());
b30b031c 3689 if (sched_verbose >= 2)
3690 fprintf (sched_dump, "\n");
3691
3692 model_record_final_pressures (&model_before_pressure);
3693 model_reset_queue_indices ();
3694
3695 XDELETEVEC (model_insns);
3696
3697 model_curr_point = 0;
3698 initiate_reg_pressure_info (df_get_live_in (bb));
3699 if (sched_verbose >= 1)
3700 model_dump_pressure_summary ();
3701}
3702
3703/* Free the information associated with GROUP. */
3704
3705static void
3706model_finalize_pressure_group (struct model_pressure_group *group)
3707{
3708 XDELETEVEC (group->model);
3709}
3710
3711/* Free the information created by model_start_schedule. */
3712
3713static void
3714model_end_schedule (void)
3715{
3716 model_finalize_pressure_group (&model_before_pressure);
f1f41a6c 3717 model_schedule.release ();
b30b031c 3718}
3719\f
0c775e95 3720/* A structure that holds local state for the loop in schedule_block. */
3721struct sched_block_state
3722{
3723 /* True if no real insns have been scheduled in the current cycle. */
3724 bool first_cycle_insn_p;
e2f4a6ff 3725 /* True if a shadow insn has been scheduled in the current cycle, which
3726 means that no more normal insns can be issued. */
3727 bool shadows_only_p;
c0457559 3728 /* True if we're winding down a modulo schedule, which means that we only
3729 issue insns with INSN_EXACT_TICK set. */
3730 bool modulo_epilogue;
0c775e95 3731 /* Initialized with the machine's issue rate every cycle, and updated
3732 by calls to the variable_issue hook. */
3733 int can_issue_more;
3734};
a7dcf969 3735
3eb9a99d 3736/* INSN is the "currently executing insn". Launch each insn which was
30b1ec30 3737 waiting on INSN. READY is the ready list which contains the insns
e26579fc 3738 that are ready to fire. CLOCK is the current cycle. The function
3739 returns necessary cycle advance after issuing the insn (it is not
3740 zero for insns in a schedule group). */
3eb9a99d 3741
e26579fc 3742static int
e4897000 3743schedule_insn (rtx insn)
3eb9a99d 3744{
93f6b030 3745 sd_iterator_def sd_it;
3746 dep_t dep;
a7dcf969 3747 int i;
e26579fc 3748 int advance = 0;
3eb9a99d 3749
67900a4f 3750 if (sched_verbose >= 1)
3eb9a99d 3751 {
a7dcf969 3752 struct reg_pressure_data *pressure_info;
6dde9719 3753 fprintf (sched_dump, ";;\t%3i--> %s%-40s:",
3d9a4504 3754 clock_var, (*current_sched_info->print_insn) (insn, 1),
3755 str_pattern_slim (PATTERN (insn)));
bea4bad2 3756
0bc18d66 3757 if (recog_memoized (insn) < 0)
3758 fprintf (sched_dump, "nothing");
3759 else
3760 print_reservation (sched_dump, insn);
a7dcf969 3761 pressure_info = INSN_REG_PRESSURE (insn);
3762 if (pressure_info != NULL)
3763 {
3764 fputc (':', sched_dump);
66d9a7b9 3765 for (i = 0; i < ira_pressure_classes_num; i++)
57a8bf1b 3766 fprintf (sched_dump, "%s%s%+d(%d)",
3767 scheduled_insns.length () > 1
3768 && INSN_LUID (insn)
3769 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
66d9a7b9 3770 reg_class_names[ira_pressure_classes[i]],
a7dcf969 3771 pressure_info[i].set_increase, pressure_info[i].change);
3772 }
b30b031c 3773 if (sched_pressure == SCHED_PRESSURE_MODEL
3774 && model_curr_point < model_num_insns
3775 && model_index (insn) == model_curr_point)
3776 fprintf (sched_dump, ":model %d", model_curr_point);
0bc18d66 3777 fputc ('\n', sched_dump);
3778 }
3eb9a99d 3779
11189c7a 3780 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
a7dcf969 3781 update_reg_and_insn_max_reg_pressure (insn);
3782
e4897000 3783 /* Scheduling instruction should have all its dependencies resolved and
3784 should have been removed from the ready list. */
effd1640 3785 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
52c4b43f 3786
c971b445 3787 /* Reset debug insns invalidated by moving this insn. */
3788 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3789 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3790 sd_iterator_cond (&sd_it, &dep);)
3791 {
3792 rtx dbg = DEP_PRO (dep);
f145fac4 3793 struct reg_use_data *use, *next;
c971b445 3794
effd1640 3795 if (DEP_STATUS (dep) & DEP_CANCELLED)
3796 {
3797 sd_iterator_next (&sd_it);
3798 continue;
3799 }
3800
c971b445 3801 gcc_assert (DEBUG_INSN_P (dbg));
3802
3803 if (sched_verbose >= 6)
3804 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3805 INSN_UID (dbg));
3806
3807 /* ??? Rather than resetting the debug insn, we might be able
3808 to emit a debug temp before the just-scheduled insn, but
3809 this would involve checking that the expression at the
3810 point of the debug insn is equivalent to the expression
3811 before the just-scheduled insn. They might not be: the
3812 expression in the debug insn may depend on other insns not
3813 yet scheduled that set MEMs, REGs or even other debug
3814 insns. It's not clear that attempting to preserve debug
3815 information in these cases is worth the effort, given how
3816 uncommon these resets are and the likelihood that the debug
3817 temps introduced won't survive the schedule change. */
3818 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3819 df_insn_rescan (dbg);
3820
f145fac4 3821 /* Unknown location doesn't use any registers. */
3822 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3823 {
47086a61 3824 struct reg_use_data *prev = use;
3825
3826 /* Remove use from the cyclic next_regno_use chain first. */
3827 while (prev->next_regno_use != use)
3828 prev = prev->next_regno_use;
3829 prev->next_regno_use = use->next_regno_use;
f145fac4 3830 next = use->next_insn_use;
3831 free (use);
3832 }
3833 INSN_REG_USE_LIST (dbg) = NULL;
3834
c971b445 3835 /* We delete rather than resolve these deps, otherwise we
3836 crash in sched_free_deps(), because forward deps are
3837 expected to be released before backward deps. */
3838 sd_delete_dep (sd_it);
3839 }
3840
9997bd27 3841 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
e4897000 3842 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
9997bd27 3843
b30b031c 3844 if (sched_pressure == SCHED_PRESSURE_MODEL
3845 && model_curr_point < model_num_insns
3846 && NONDEBUG_INSN_P (insn))
3847 {
3848 if (model_index (insn) == model_curr_point)
3849 do
3850 model_curr_point++;
3851 while (model_curr_point < model_num_insns
3852 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3853 == QUEUE_SCHEDULED));
3854 else
3855 model_recompute (insn);
3856 model_update_limit_points ();
3857 update_register_pressure (insn);
3858 if (sched_verbose >= 2)
3859 print_curr_reg_pressure ();
3860 }
3861
e4897000 3862 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3863 if (INSN_TICK (insn) > clock_var)
3864 /* INSN has been prematurely moved from the queue to the ready list.
3865 This is possible only if following flag is set. */
48e1416a 3866 gcc_assert (flag_sched_stalled_insns);
e4897000 3867
3868 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3869 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3870 INSN_TICK (insn) = clock_var;
3871
effd1640 3872 check_clobbered_conditions (insn);
3873
d452a169 3874 /* Update dependent instructions. First, see if by scheduling this insn
3875 now we broke a dependence in a way that requires us to change another
3876 insn. */
3877 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3878 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
3879 {
3880 struct dep_replacement *desc = DEP_REPLACE (dep);
3881 rtx pro = DEP_PRO (dep);
3882 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
3883 && desc != NULL && desc->insn == pro)
3884 apply_replacement (dep, false);
3885 }
3886
3887 /* Go through and resolve forward dependencies. */
93f6b030 3888 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3889 sd_iterator_cond (&sd_it, &dep);)
3eb9a99d 3890 {
93f6b030 3891 rtx next = DEP_CON (dep);
effd1640 3892 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3eb9a99d 3893
93f6b030 3894 /* Resolve the dependence between INSN and NEXT.
3895 sd_resolve_dep () moves current dep to another list thus
3896 advancing the iterator. */
3897 sd_resolve_dep (sd_it);
3eb9a99d 3898
effd1640 3899 if (cancelled)
3900 {
d452a169 3901 if (must_restore_pattern_p (next, dep))
3902 restore_pattern (dep, false);
effd1640 3903 continue;
3904 }
3905
c971b445 3906 /* Don't bother trying to mark next as ready if insn is a debug
3907 insn. If insn is the last hard dependency, it will have
3908 already been discounted. */
3909 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3910 continue;
3911
fd27912f 3912 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
6a1cdb4d 3913 {
48e1416a 3914 int effective_cost;
3915
6a1cdb4d 3916 effective_cost = try_ready (next);
48e1416a 3917
6a1cdb4d 3918 if (effective_cost >= 0
3919 && SCHED_GROUP_P (next)
3920 && advance < effective_cost)
3921 advance = effective_cost;
3922 }
3923 else
3924 /* Check always has only one forward dependence (to the first insn in
3925 the recovery block), therefore, this will be executed only once. */
3926 {
93f6b030 3927 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
6a1cdb4d 3928 fix_recovery_deps (RECOVERY_BLOCK (insn));
3929 }
3eb9a99d 3930 }
3931
896c2bfe 3932 /* Annotate the instruction with issue information -- TImode
8da6595b 3933 indicates that the instruction is expected not to be able
3934 to issue on the same cycle as the previous insn. A machine
3935 may use this information to decide how the instruction should
3936 be aligned. */
58ada791 3937 if (issue_rate > 1
bea4bad2 3938 && GET_CODE (PATTERN (insn)) != USE
9845d120 3939 && GET_CODE (PATTERN (insn)) != CLOBBER
3940 && !DEBUG_INSN_P (insn))
8da6595b 3941 {
58ada791 3942 if (reload_completed)
e4897000 3943 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3944 last_clock_var = clock_var;
8da6595b 3945 }
e4897000 3946
e26579fc 3947 return advance;
3eb9a99d 3948}
3949
c4cd519a 3950/* Functions for handling of notes. */
3eb9a99d 3951
e1ab7874 3952/* Add note list that ends on FROM_END to the end of TO_ENDP. */
3953void
3954concat_note_lists (rtx from_end, rtx *to_endp)
3955{
3956 rtx from_start;
3957
15a03e56 3958 /* It's easy when have nothing to concat. */
e1ab7874 3959 if (from_end == NULL)
e1ab7874 3960 return;
3961
15a03e56 3962 /* It's also easy when destination is empty. */
e1ab7874 3963 if (*to_endp == NULL)
e1ab7874 3964 {
3965 *to_endp = from_end;
3966 return;
3967 }
3968
3969 from_start = from_end;
48e1416a 3970 while (PREV_INSN (from_start) != NULL)
e1ab7874 3971 from_start = PREV_INSN (from_start);
3972
15a03e56 3973 PREV_INSN (from_start) = *to_endp;
3974 NEXT_INSN (*to_endp) = from_start;
e1ab7874 3975 *to_endp = from_end;
3976}
3977
15a03e56 3978/* Delete notes between HEAD and TAIL and put them in the chain
3979 of notes ended by NOTE_LIST. */
3980void
3981remove_notes (rtx head, rtx tail)
3eb9a99d 3982{
57ab8ec3 3983 rtx next_tail, insn, next;
3eb9a99d 3984
15a03e56 3985 note_list = 0;
3986 if (head == tail && !INSN_P (head))
3987 return;
3988
3989 next_tail = NEXT_INSN (tail);
15a03e56 3990 for (insn = head; insn != next_tail; insn = next)
3eb9a99d 3991 {
15a03e56 3992 next = NEXT_INSN (insn);
3993 if (!NOTE_P (insn))
57ab8ec3 3994 continue;
792f1838 3995
15a03e56 3996 switch (NOTE_KIND (insn))
3997 {
3998 case NOTE_INSN_BASIC_BLOCK:
15a03e56 3999 continue;
3eb9a99d 4000
15a03e56 4001 case NOTE_INSN_EPILOGUE_BEG:
4002 if (insn != tail)
4003 {
4004 remove_insn (insn);
4005 add_reg_note (next, REG_SAVE_NOTE,
4006 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4007 break;
4008 }
4009 /* FALLTHRU */
e1ab7874 4010
15a03e56 4011 default:
4012 remove_insn (insn);
e1ab7874 4013
15a03e56 4014 /* Add the note to list that ends at NOTE_LIST. */
4015 PREV_INSN (insn) = note_list;
4016 NEXT_INSN (insn) = NULL_RTX;
4017 if (note_list)
4018 NEXT_INSN (note_list) = insn;
4019 note_list = insn;
4020 break;
4021 }
4022
4023 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4024 }
3eb9a99d 4025}
4026
e2f4a6ff 4027/* A structure to record enough data to allow us to backtrack the scheduler to
4028 a previous state. */
4029struct haifa_saved_data
4030{
4031 /* Next entry on the list. */
4032 struct haifa_saved_data *next;
4033
4034 /* Backtracking is associated with scheduling insns that have delay slots.
4035 DELAY_PAIR points to the structure that contains the insns involved, and
4036 the number of cycles between them. */
4037 struct delay_pair *delay_pair;
4038
4039 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4040 void *fe_saved_data;
4041 /* Data used by the backend. */
4042 void *be_saved_data;
4043
4044 /* Copies of global state. */
4045 int clock_var, last_clock_var;
4046 struct ready_list ready;
4047 state_t curr_state;
4048
4049 rtx last_scheduled_insn;
4050 rtx last_nondebug_scheduled_insn;
4051 int cycle_issued_insns;
4052
4053 /* Copies of state used in the inner loop of schedule_block. */
4054 struct sched_block_state sched_block;
4055
4056 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4057 to 0 when restoring. */
4058 int q_size;
4059 rtx *insn_queue;
d452a169 4060
4061 /* Describe pattern replacements that occurred since this backtrack point
4062 was queued. */
f1f41a6c 4063 vec<dep_t> replacement_deps;
4064 vec<int> replace_apply;
d452a169 4065
4066 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4067 point. */
f1f41a6c 4068 vec<dep_t> next_cycle_deps;
4069 vec<int> next_cycle_apply;
e2f4a6ff 4070};
4071
4072/* A record, in reverse order, of all scheduled insns which have delay slots
4073 and may require backtracking. */
4074static struct haifa_saved_data *backtrack_queue;
4075
4076/* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4077 to SET_P. */
4078static void
4079mark_backtrack_feeds (rtx insn, int set_p)
4080{
4081 sd_iterator_def sd_it;
4082 dep_t dep;
4083 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4084 {
4085 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4086 }
4087}
4088
e2f4a6ff 4089/* Save the current scheduler state so that we can backtrack to it
4090 later if necessary. PAIR gives the insns that make it necessary to
4091 save this point. SCHED_BLOCK is the local state of schedule_block
4092 that need to be saved. */
4093static void
4094save_backtrack_point (struct delay_pair *pair,
4095 struct sched_block_state sched_block)
4096{
4097 int i;
4098 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4099
4100 save->curr_state = xmalloc (dfa_state_size);
4101 memcpy (save->curr_state, curr_state, dfa_state_size);
4102
4103 save->ready.first = ready.first;
4104 save->ready.n_ready = ready.n_ready;
4105 save->ready.n_debug = ready.n_debug;
4106 save->ready.veclen = ready.veclen;
4107 save->ready.vec = XNEWVEC (rtx, ready.veclen);
4108 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4109
4110 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
4111 save->q_size = q_size;
4112 for (i = 0; i <= max_insn_queue_index; i++)
4113 {
4114 int q = NEXT_Q_AFTER (q_ptr, i);
effd1640 4115 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
e2f4a6ff 4116 }
4117
4118 save->clock_var = clock_var;
4119 save->last_clock_var = last_clock_var;
4120 save->cycle_issued_insns = cycle_issued_insns;
4121 save->last_scheduled_insn = last_scheduled_insn;
4122 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4123
4124 save->sched_block = sched_block;
4125
f1f41a6c 4126 save->replacement_deps.create (0);
4127 save->replace_apply.create (0);
4128 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4129 save->next_cycle_apply = next_cycle_apply.copy ();
d452a169 4130
e2f4a6ff 4131 if (current_sched_info->save_state)
4132 save->fe_saved_data = (*current_sched_info->save_state) ();
4133
4134 if (targetm.sched.alloc_sched_context)
4135 {
4136 save->be_saved_data = targetm.sched.alloc_sched_context ();
4137 targetm.sched.init_sched_context (save->be_saved_data, false);
4138 }
4139 else
4140 save->be_saved_data = NULL;
4141
4142 save->delay_pair = pair;
4143
4144 save->next = backtrack_queue;
4145 backtrack_queue = save;
4146
4147 while (pair)
4148 {
4149 mark_backtrack_feeds (pair->i2, 1);
4150 INSN_TICK (pair->i2) = INVALID_TICK;
4151 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
c0457559 4152 SHADOW_P (pair->i2) = pair->stages == 0;
e2f4a6ff 4153 pair = pair->next_same_i1;
4154 }
4155}
4156
effd1640 4157/* Walk the ready list and all queues. If any insns have unresolved backwards
4158 dependencies, these must be cancelled deps, broken by predication. Set or
4159 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4160
4161static void
4162toggle_cancelled_flags (bool set)
4163{
4164 int i;
4165 sd_iterator_def sd_it;
4166 dep_t dep;
4167
4168 if (ready.n_ready > 0)
4169 {
4170 rtx *first = ready_lastpos (&ready);
4171 for (i = 0; i < ready.n_ready; i++)
4172 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4173 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4174 {
4175 if (set)
4176 DEP_STATUS (dep) |= DEP_CANCELLED;
4177 else
4178 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4179 }
4180 }
4181 for (i = 0; i <= max_insn_queue_index; i++)
4182 {
4183 int q = NEXT_Q_AFTER (q_ptr, i);
4184 rtx link;
4185 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4186 {
4187 rtx insn = XEXP (link, 0);
4188 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4189 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4190 {
4191 if (set)
4192 DEP_STATUS (dep) |= DEP_CANCELLED;
4193 else
4194 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4195 }
4196 }
4197 }
4198}
4199
d452a169 4200/* Undo the replacements that have occurred after backtrack point SAVE
4201 was placed. */
4202static void
4203undo_replacements_for_backtrack (struct haifa_saved_data *save)
4204{
f1f41a6c 4205 while (!save->replacement_deps.is_empty ())
d452a169 4206 {
f1f41a6c 4207 dep_t dep = save->replacement_deps.pop ();
4208 int apply_p = save->replace_apply.pop ();
d452a169 4209
4210 if (apply_p)
4211 restore_pattern (dep, true);
4212 else
4213 apply_replacement (dep, true);
4214 }
f1f41a6c 4215 save->replacement_deps.release ();
4216 save->replace_apply.release ();
d452a169 4217}
4218
e2f4a6ff 4219/* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4220 Restore their dependencies to an unresolved state, and mark them as
4221 queued nowhere. */
4222
4223static void
4224unschedule_insns_until (rtx insn)
4225{
c2078b80 4226 auto_vec<rtx> recompute_vec;
effd1640 4227
4228 /* Make two passes over the insns to be unscheduled. First, we clear out
4229 dependencies and other trivial bookkeeping. */
e2f4a6ff 4230 for (;;)
4231 {
4232 rtx last;
4233 sd_iterator_def sd_it;
4234 dep_t dep;
4235
f1f41a6c 4236 last = scheduled_insns.pop ();
e2f4a6ff 4237
4238 /* This will be changed by restore_backtrack_point if the insn is in
4239 any queue. */
4240 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4241 if (last != insn)
4242 INSN_TICK (last) = INVALID_TICK;
4243
c0457559 4244 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4245 modulo_insns_scheduled--;
4246
e2f4a6ff 4247 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4248 sd_iterator_cond (&sd_it, &dep);)
4249 {
4250 rtx con = DEP_CON (dep);
e2f4a6ff 4251 sd_unresolve_dep (sd_it);
effd1640 4252 if (!MUST_RECOMPUTE_SPEC_P (con))
4253 {
4254 MUST_RECOMPUTE_SPEC_P (con) = 1;
f1f41a6c 4255 recompute_vec.safe_push (con);
effd1640 4256 }
e2f4a6ff 4257 }
4258
4259 if (last == insn)
4260 break;
4261 }
effd1640 4262
4263 /* A second pass, to update ready and speculation status for insns
4264 depending on the unscheduled ones. The first pass must have
4265 popped the scheduled_insns vector up to the point where we
4266 restart scheduling, as recompute_todo_spec requires it to be
4267 up-to-date. */
f1f41a6c 4268 while (!recompute_vec.is_empty ())
effd1640 4269 {
4270 rtx con;
4271
f1f41a6c 4272 con = recompute_vec.pop ();
effd1640 4273 MUST_RECOMPUTE_SPEC_P (con) = 0;
4274 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4275 {
4276 TODO_SPEC (con) = HARD_DEP;
4277 INSN_TICK (con) = INVALID_TICK;
4278 if (PREDICATED_PAT (con) != NULL_RTX)
4279 haifa_change_pattern (con, ORIG_PAT (con));
4280 }
4281 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
d452a169 4282 TODO_SPEC (con) = recompute_todo_spec (con, true);
effd1640 4283 }
e2f4a6ff 4284}
4285
4286/* Restore scheduler state from the topmost entry on the backtracking queue.
4287 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4288 overwrite with the saved data.
4289 The caller must already have called unschedule_insns_until. */
4290
4291static void
4292restore_last_backtrack_point (struct sched_block_state *psched_block)
e2f4a6ff 4293{
4294 rtx link;
4295 int i;
4296 struct haifa_saved_data *save = backtrack_queue;
4297
4298 backtrack_queue = save->next;
4299
4300 if (current_sched_info->restore_state)
4301 (*current_sched_info->restore_state) (save->fe_saved_data);
4302
4303 if (targetm.sched.alloc_sched_context)
4304 {
4305 targetm.sched.set_sched_context (save->be_saved_data);
4306 targetm.sched.free_sched_context (save->be_saved_data);
4307 }
4308
d452a169 4309 /* Do this first since it clobbers INSN_TICK of the involved
4310 instructions. */
4311 undo_replacements_for_backtrack (save);
4312
e2f4a6ff 4313 /* Clear the QUEUE_INDEX of everything in the ready list or one
4314 of the queues. */
4315 if (ready.n_ready > 0)
4316 {
4317 rtx *first = ready_lastpos (&ready);
4318 for (i = 0; i < ready.n_ready; i++)
4319 {
effd1640 4320 rtx insn = first[i];
4321 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4322 INSN_TICK (insn) = INVALID_TICK;
e2f4a6ff 4323 }
4324 }
4325 for (i = 0; i <= max_insn_queue_index; i++)
4326 {
4327 int q = NEXT_Q_AFTER (q_ptr, i);
4328
4329 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4330 {
4331 rtx x = XEXP (link, 0);
4332 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4333 INSN_TICK (x) = INVALID_TICK;
4334 }
4335 free_INSN_LIST_list (&insn_queue[q]);
4336 }
4337
4338 free (ready.vec);
4339 ready = save->ready;
4340
4341 if (ready.n_ready > 0)
4342 {
4343 rtx *first = ready_lastpos (&ready);
4344 for (i = 0; i < ready.n_ready; i++)
4345 {
effd1640 4346 rtx insn = first[i];
4347 QUEUE_INDEX (insn) = QUEUE_READY;
d452a169 4348 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
effd1640 4349 INSN_TICK (insn) = save->clock_var;
e2f4a6ff 4350 }
4351 }
4352
4353 q_ptr = 0;
4354 q_size = save->q_size;
4355 for (i = 0; i <= max_insn_queue_index; i++)
4356 {
4357 int q = NEXT_Q_AFTER (q_ptr, i);
4358
4359 insn_queue[q] = save->insn_queue[q];
4360
4361 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4362 {
4363 rtx x = XEXP (link, 0);
4364 QUEUE_INDEX (x) = i;
d452a169 4365 TODO_SPEC (x) = recompute_todo_spec (x, true);
e2f4a6ff 4366 INSN_TICK (x) = save->clock_var + i;
4367 }
4368 }
4369 free (save->insn_queue);
4370
effd1640 4371 toggle_cancelled_flags (true);
4372
e2f4a6ff 4373 clock_var = save->clock_var;
4374 last_clock_var = save->last_clock_var;
4375 cycle_issued_insns = save->cycle_issued_insns;
4376 last_scheduled_insn = save->last_scheduled_insn;
4377 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4378
4379 *psched_block = save->sched_block;
4380
4381 memcpy (curr_state, save->curr_state, dfa_state_size);
4382 free (save->curr_state);
4383
4384 mark_backtrack_feeds (save->delay_pair->i2, 0);
4385
f1f41a6c 4386 gcc_assert (next_cycle_replace_deps.is_empty ());
4387 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4388 next_cycle_apply = save->next_cycle_apply.copy ();
d452a169 4389
e2f4a6ff 4390 free (save);
4391
4392 for (save = backtrack_queue; save; save = save->next)
4393 {
4394 mark_backtrack_feeds (save->delay_pair->i2, 1);
4395 }
4396}
4397
4398/* Discard all data associated with the topmost entry in the backtrack
4399 queue. If RESET_TICK is false, we just want to free the data. If true,
4400 we are doing this because we discovered a reason to backtrack. In the
4401 latter case, also reset the INSN_TICK for the shadow insn. */
4402static void
4403free_topmost_backtrack_point (bool reset_tick)
4404{
4405 struct haifa_saved_data *save = backtrack_queue;
4406 int i;
4407
4408 backtrack_queue = save->next;
4409
4410 if (reset_tick)
4411 {
4412 struct delay_pair *pair = save->delay_pair;
4413 while (pair)
4414 {
4415 INSN_TICK (pair->i2) = INVALID_TICK;
4416 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4417 pair = pair->next_same_i1;
4418 }
d452a169 4419 undo_replacements_for_backtrack (save);
4420 }
4421 else
4422 {
f1f41a6c 4423 save->replacement_deps.release ();
4424 save->replace_apply.release ();
e2f4a6ff 4425 }
d452a169 4426
e2f4a6ff 4427 if (targetm.sched.free_sched_context)
4428 targetm.sched.free_sched_context (save->be_saved_data);
4429 if (current_sched_info->restore_state)
4430 free (save->fe_saved_data);
4431 for (i = 0; i <= max_insn_queue_index; i++)
4432 free_INSN_LIST_list (&save->insn_queue[i]);
4433 free (save->insn_queue);
4434 free (save->curr_state);
4435 free (save->ready.vec);
4436 free (save);
4437}
4438
4439/* Free the entire backtrack queue. */
4440static void
4441free_backtrack_queue (void)
4442{
4443 while (backtrack_queue)
4444 free_topmost_backtrack_point (false);
4445}
4446
d452a169 4447/* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4448 may have to postpone the replacement until the start of the next cycle,
4449 at which point we will be called again with IMMEDIATELY true. This is
4450 only done for machines which have instruction packets with explicit
4451 parallelism however. */
4452static void
4453apply_replacement (dep_t dep, bool immediately)
4454{
4455 struct dep_replacement *desc = DEP_REPLACE (dep);
4456 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4457 {
f1f41a6c 4458 next_cycle_replace_deps.safe_push (dep);
4459 next_cycle_apply.safe_push (1);
d452a169 4460 }
4461 else
4462 {
4463 bool success;
4464
4465 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4466 return;
4467
4468 if (sched_verbose >= 5)
4469 fprintf (sched_dump, "applying replacement for insn %d\n",
4470 INSN_UID (desc->insn));
4471
4472 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4473 gcc_assert (success);
4474
4475 update_insn_after_change (desc->insn);
4476 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4477 fix_tick_ready (desc->insn);
4478
4479 if (backtrack_queue != NULL)
4480 {
f1f41a6c 4481 backtrack_queue->replacement_deps.safe_push (dep);
4482 backtrack_queue->replace_apply.safe_push (1);
d452a169 4483 }
4484 }
4485}
4486
4487/* We have determined that a pattern involved in DEP must be restored.
4488 If IMMEDIATELY is false, we may have to postpone the replacement
4489 until the start of the next cycle, at which point we will be called
4490 again with IMMEDIATELY true. */
4491static void
4492restore_pattern (dep_t dep, bool immediately)
4493{
4494 rtx next = DEP_CON (dep);
4495 int tick = INSN_TICK (next);
4496
4497 /* If we already scheduled the insn, the modified version is
4498 correct. */
4499 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4500 return;
4501
4502 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4503 {
f1f41a6c 4504 next_cycle_replace_deps.safe_push (dep);
4505 next_cycle_apply.safe_push (0);
d452a169 4506 return;
4507 }
4508
4509
4510 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4511 {
4512 if (sched_verbose >= 5)
4513 fprintf (sched_dump, "restoring pattern for insn %d\n",
4514 INSN_UID (next));
4515 haifa_change_pattern (next, ORIG_PAT (next));
4516 }
4517 else
4518 {
4519 struct dep_replacement *desc = DEP_REPLACE (dep);
4520 bool success;
4521
4522 if (sched_verbose >= 5)
4523 fprintf (sched_dump, "restoring pattern for insn %d\n",
4524 INSN_UID (desc->insn));
4525 tick = INSN_TICK (desc->insn);
4526
4527 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4528 gcc_assert (success);
4529 update_insn_after_change (desc->insn);
4530 if (backtrack_queue != NULL)
4531 {
f1f41a6c 4532 backtrack_queue->replacement_deps.safe_push (dep);
4533 backtrack_queue->replace_apply.safe_push (0);
d452a169 4534 }
4535 }
4536 INSN_TICK (next) = tick;
4537 if (TODO_SPEC (next) == DEP_POSTPONED)
4538 return;
4539
4540 if (sd_lists_empty_p (next, SD_LIST_BACK))
4541 TODO_SPEC (next) = 0;
4542 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4543 TODO_SPEC (next) = HARD_DEP;
4544}
4545
4546/* Perform pattern replacements that were queued up until the next
4547 cycle. */
4548static void
4549perform_replacements_new_cycle (void)
4550{
4551 int i;
4552 dep_t dep;
f1f41a6c 4553 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
d452a169 4554 {
f1f41a6c 4555 int apply_p = next_cycle_apply[i];
d452a169 4556 if (apply_p)
4557 apply_replacement (dep, true);
4558 else
4559 restore_pattern (dep, true);
4560 }
f1f41a6c 4561 next_cycle_replace_deps.truncate (0);
4562 next_cycle_apply.truncate (0);
d452a169 4563}
4564
e2f4a6ff 4565/* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4566 instructions we've previously encountered, a set bit prevents
4567 recursion. BUDGET is a limit on how far ahead we look, it is
4568 reduced on recursive calls. Return true if we produced a good
4569 estimate, or false if we exceeded the budget. */
4570static bool
4571estimate_insn_tick (bitmap processed, rtx insn, int budget)
4572{
4573 sd_iterator_def sd_it;
4574 dep_t dep;
4575 int earliest = INSN_TICK (insn);
4576
4577 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4578 {
4579 rtx pro = DEP_PRO (dep);
4580 int t;
4581
effd1640 4582 if (DEP_STATUS (dep) & DEP_CANCELLED)
4583 continue;
4584
e2f4a6ff 4585 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4586 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4587 else
4588 {
4589 int cost = dep_cost (dep);
4590 if (cost >= budget)
4591 return false;
4592 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4593 {
4594 if (!estimate_insn_tick (processed, pro, budget - cost))
4595 return false;
4596 }
4597 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4598 t = INSN_TICK_ESTIMATE (pro) + cost;
4599 if (earliest == INVALID_TICK || t > earliest)
4600 earliest = t;
4601 }
4602 }
4603 bitmap_set_bit (processed, INSN_LUID (insn));
4604 INSN_TICK_ESTIMATE (insn) = earliest;
4605 return true;
4606}
4607
4608/* Examine the pair of insns in P, and estimate (optimistically, assuming
4609 infinite resources) the cycle in which the delayed shadow can be issued.
4610 Return the number of cycles that must pass before the real insn can be
4611 issued in order to meet this constraint. */
4612static int
4613estimate_shadow_tick (struct delay_pair *p)
4614{
4615 bitmap_head processed;
4616 int t;
4617 bool cutoff;
4618 bitmap_initialize (&processed, 0);
4619
4620 cutoff = !estimate_insn_tick (&processed, p->i2,
4621 max_insn_queue_index + pair_delay (p));
4622 bitmap_clear (&processed);
4623 if (cutoff)
4624 return max_insn_queue_index;
4625 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4626 if (t > 0)
4627 return t;
4628 return 0;
4629}
15a03e56 4630
c0457559 4631/* If INSN has no unresolved backwards dependencies, add it to the schedule and
4632 recursively resolve all its forward dependencies. */
4633static void
4634resolve_dependencies (rtx insn)
4635{
4636 sd_iterator_def sd_it;
4637 dep_t dep;
4638
4639 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4640 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4641 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4642 return;
4643
4644 if (sched_verbose >= 4)
4645 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4646
4647 if (QUEUE_INDEX (insn) >= 0)
4648 queue_remove (insn);
4649
f1f41a6c 4650 scheduled_insns.safe_push (insn);
c0457559 4651
4652 /* Update dependent instructions. */
4653 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4654 sd_iterator_cond (&sd_it, &dep);)
4655 {
4656 rtx next = DEP_CON (dep);
4657
4658 if (sched_verbose >= 4)
4659 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4660 INSN_UID (next));
4661
4662 /* Resolve the dependence between INSN and NEXT.
4663 sd_resolve_dep () moves current dep to another list thus
4664 advancing the iterator. */
4665 sd_resolve_dep (sd_it);
4666
4667 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4668 {
4669 resolve_dependencies (next);
4670 }
4671 else
4672 /* Check always has only one forward dependence (to the first insn in
4673 the recovery block), therefore, this will be executed only once. */
4674 {
4675 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4676 }
4677 }
4678}
4679
4680
6a1cdb4d 4681/* Return the head and tail pointers of ebb starting at BEG and ending
4682 at END. */
7a31a7bd 4683void
6a1cdb4d 4684get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4685{
4686 rtx beg_head = BB_HEAD (beg);
4687 rtx beg_tail = BB_END (beg);
4688 rtx end_head = BB_HEAD (end);
4689 rtx end_tail = BB_END (end);
4690
4691 /* Don't include any notes or labels at the beginning of the BEG
4692 basic block, or notes at the end of the END basic blocks. */
4693
4694 if (LABEL_P (beg_head))
4695 beg_head = NEXT_INSN (beg_head);
4696
4697 while (beg_head != beg_tail)
9221ec44 4698 if (NOTE_P (beg_head))
6a1cdb4d 4699 beg_head = NEXT_INSN (beg_head);
9221ec44 4700 else if (DEBUG_INSN_P (beg_head))
4701 {
4702 rtx note, next;
4703
4704 for (note = NEXT_INSN (beg_head);
4705 note != beg_tail;
4706 note = next)
4707 {
4708 next = NEXT_INSN (note);
4709 if (NOTE_P (note))
4710 {
4711 if (sched_verbose >= 9)
4712 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4713
4714 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4715
4716 if (BLOCK_FOR_INSN (note) != beg)
4717 df_insn_change_bb (note, beg);
4718 }
4719 else if (!DEBUG_INSN_P (note))
4720 break;
4721 }
4722
4723 break;
4724 }
6a1cdb4d 4725 else
4726 break;
4727
4728 *headp = beg_head;
4729
4730 if (beg == end)
4731 end_head = beg_head;
4732 else if (LABEL_P (end_head))
4733 end_head = NEXT_INSN (end_head);
4734
4735 while (end_head != end_tail)
9221ec44 4736 if (NOTE_P (end_tail))
6a1cdb4d 4737 end_tail = PREV_INSN (end_tail);
9221ec44 4738 else if (DEBUG_INSN_P (end_tail))
4739 {
4740 rtx note, prev;
4741
4742 for (note = PREV_INSN (end_tail);
4743 note != end_head;
4744 note = prev)
4745 {
4746 prev = PREV_INSN (note);
4747 if (NOTE_P (note))
4748 {
4749 if (sched_verbose >= 9)
4750 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4751
4752 reorder_insns_nobb (note, note, end_tail);
4753
4754 if (end_tail == BB_END (end))
4755 BB_END (end) = note;
4756
4757 if (BLOCK_FOR_INSN (note) != end)
4758 df_insn_change_bb (note, end);
4759 }
4760 else if (!DEBUG_INSN_P (note))
4761 break;
4762 }
4763
4764 break;
4765 }
6a1cdb4d 4766 else
4767 break;
3eb9a99d 4768
6a1cdb4d 4769 *tailp = end_tail;
3eb9a99d 4770}
4771
c2069298 4772/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4773
7a31a7bd 4774int
5493cb9a 4775no_real_insns_p (const_rtx head, const_rtx tail)
c2069298 4776{
4777 while (head != NEXT_INSN (tail))
4778 {
9221ec44 4779 if (!NOTE_P (head) && !LABEL_P (head))
c2069298 4780 return 0;
4781 head = NEXT_INSN (head);
4782 }
4783 return 1;
4784}
4785
e1ab7874 4786/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4787 previously found among the insns. Insert them just before HEAD. */
4788rtx
4789restore_other_notes (rtx head, basic_block head_bb)
4790{
4791 if (note_list != 0)
4792 {
4793 rtx note_head = note_list;
4794
4795 if (head)
4796 head_bb = BLOCK_FOR_INSN (head);
4797 else
4798 head = NEXT_INSN (bb_note (head_bb));
4799
4800 while (PREV_INSN (note_head))
4801 {
4802 set_block_for_insn (note_head, head_bb);
4803 note_head = PREV_INSN (note_head);
3eb9a99d 4804 }
e1ab7874 4805 /* In the above cycle we've missed this note. */
4806 set_block_for_insn (note_head, head_bb);
4807
4808 PREV_INSN (note_head) = PREV_INSN (head);
4809 NEXT_INSN (PREV_INSN (head)) = note_head;
4810 PREV_INSN (head) = note_list;
4811 NEXT_INSN (note_list) = head;
4812
4813 if (BLOCK_FOR_INSN (head) != head_bb)
4814 BB_END (head_bb) = note_list;
4815
4816 head = note_head;
3eb9a99d 4817 }
e1ab7874 4818
4819 return head;
3eb9a99d 4820}
4821
d452a169 4822/* When we know we are going to discard the schedule due to a failed attempt
4823 at modulo scheduling, undo all replacements. */
4824static void
4825undo_all_replacements (void)
4826{
4827 rtx insn;
4828 int i;
4829
f1f41a6c 4830 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
d452a169 4831 {
4832 sd_iterator_def sd_it;
4833 dep_t dep;
4834
4835 /* See if we must undo a replacement. */
4836 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4837 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4838 {
4839 struct dep_replacement *desc = DEP_REPLACE (dep);
4840 if (desc != NULL)
4841 validate_change (desc->insn, desc->loc, desc->orig, 0);
4842 }
4843 }
4844}
4845
3eb9a99d 4846/* Move insns that became ready to fire from queue to ready list. */
4847
30b1ec30 4848static void
952f0048 4849queue_to_ready (struct ready_list *ready)
3eb9a99d 4850{
4851 rtx insn;
4852 rtx link;
bdeaf25e 4853 rtx skip_insn;
3eb9a99d 4854
4855 q_ptr = NEXT_Q (q_ptr);
4856
bdeaf25e 4857 if (dbg_cnt (sched_insn) == false)
b5f4bfde 4858 {
4859 /* If debug counter is activated do not requeue the first
4860 nonscheduled insn. */
4861 skip_insn = nonscheduled_insns_begin;
4862 do
4863 {
4864 skip_insn = next_nonnote_nondebug_insn (skip_insn);
4865 }
4866 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
4867 }
bdeaf25e 4868 else
4869 skip_insn = NULL_RTX;
4870
3eb9a99d 4871 /* Add all pending insns that can be scheduled without stalls to the
7a31a7bd 4872 ready list. */
4873 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4874 {
4875 insn = XEXP (link, 0);
4876 q_size -= 1;
c2069298 4877
7a31a7bd 4878 if (sched_verbose >= 2)
4879 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4880 (*current_sched_info->print_insn) (insn, 0));
c2069298 4881
23df5e5b 4882 /* If the ready list is full, delay the insn for 1 cycle.
4883 See the comment in schedule_block for the rationale. */
4884 if (!reload_completed
b30b031c 4885 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4886 || (sched_pressure == SCHED_PRESSURE_MODEL
4887 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4888 instructions too. */
4889 && model_index (insn) > (model_curr_point
4890 + MAX_SCHED_READY_INSNS)))
4891 && !(sched_pressure == SCHED_PRESSURE_MODEL
4892 && model_curr_point < model_num_insns
4893 /* Always allow the next model instruction to issue. */
4894 && model_index (insn) == model_curr_point)
bdeaf25e 4895 && !SCHED_GROUP_P (insn)
4896 && insn != skip_insn)
b49b2e5c 4897 queue_insn (insn, 1, "ready full");
23df5e5b 4898 else
4899 {
4900 ready_add (ready, insn, false);
4901 if (sched_verbose >= 2)
4902 fprintf (sched_dump, "moving to ready without stalls\n");
4903 }
c2069298 4904 }
e4897000 4905 free_INSN_LIST_list (&insn_queue[q_ptr]);
7a31a7bd 4906
4907 /* If there are no ready insns, stall until one is ready and add all
4908 of the pending insns at that point to the ready list. */
4909 if (ready->n_ready == 0)
c2069298 4910 {
19cb6b50 4911 int stalls;
c2069298 4912
67900a4f 4913 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
7a31a7bd 4914 {
4915 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4916 {
4917 for (; link; link = XEXP (link, 1))
4918 {
4919 insn = XEXP (link, 0);
4920 q_size -= 1;
c2069298 4921
7a31a7bd 4922 if (sched_verbose >= 2)
4923 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4924 (*current_sched_info->print_insn) (insn, 0));
c2069298 4925
e4897000 4926 ready_add (ready, insn, false);
7a31a7bd 4927 if (sched_verbose >= 2)
4928 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
4929 }
e4897000 4930 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
c2069298 4931
bea4bad2 4932 advance_one_cycle ();
4933
4934 break;
7a31a7bd 4935 }
bea4bad2 4936
4937 advance_one_cycle ();
7a31a7bd 4938 }
c2069298 4939
7a31a7bd 4940 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
4941 clock_var += stalls;
c2069298 4942 }
c2069298 4943}
4944
52c4b43f 4945/* Used by early_queue_to_ready. Determines whether it is "ok" to
48e1416a 4946 prematurely move INSN from the queue to the ready list. Currently,
4947 if a target defines the hook 'is_costly_dependence', this function
52c4b43f 4948 uses the hook to check whether there exist any dependences which are
48e1416a 4949 considered costly by the target, between INSN and other insns that
52c4b43f 4950 have already been scheduled. Dependences are checked up to Y cycles
4951 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
48e1416a 4952 controlling this value.
4953 (Other considerations could be taken into account instead (or in
52c4b43f 4954 addition) depending on user flags and target hooks. */
4955
48e1416a 4956static bool
52c4b43f 4957ok_for_early_queue_removal (rtx insn)
4958{
52c4b43f 4959 if (targetm.sched.is_costly_dependence)
4960 {
b5f4bfde 4961 rtx prev_insn;
4962 int n_cycles;
f1f41a6c 4963 int i = scheduled_insns.length ();
52c4b43f 4964 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
4965 {
b5f4bfde 4966 while (i-- > 0)
52c4b43f 4967 {
9997bd27 4968 int cost;
52c4b43f 4969
f1f41a6c 4970 prev_insn = scheduled_insns[i];
305799d4 4971
6d7dc5b9 4972 if (!NOTE_P (prev_insn))
52c4b43f 4973 {
93f6b030 4974 dep_t dep;
9997bd27 4975
93f6b030 4976 dep = sd_find_dep_between (prev_insn, insn, true);
9997bd27 4977
93f6b030 4978 if (dep != NULL)
52c4b43f 4979 {
9997bd27 4980 cost = dep_cost (dep);
4981
4982 if (targetm.sched.is_costly_dependence (dep, cost,
52c4b43f 4983 flag_sched_stalled_insns_dep - n_cycles))
4984 return false;
4985 }
4986 }
4987
4988 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
4989 break;
4990 }
4991
b5f4bfde 4992 if (i == 0)
52c4b43f 4993 break;
52c4b43f 4994 }
4995 }
4996
4997 return true;
4998}
4999
5000
5001/* Remove insns from the queue, before they become "ready" with respect
8b332087 5002 to FU latency considerations. */
52c4b43f 5003
48e1416a 5004static int
52c4b43f 5005early_queue_to_ready (state_t state, struct ready_list *ready)
5006{
5007 rtx insn;
5008 rtx link;
5009 rtx next_link;
5010 rtx prev_link;
5011 bool move_to_ready;
5012 int cost;
5013 state_t temp_state = alloca (dfa_state_size);
5014 int stalls;
5015 int insns_removed = 0;
5016
5017 /*
48e1416a 5018 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5019 function:
52c4b43f 5020
48e1416a 5021 X == 0: There is no limit on how many queued insns can be removed
52c4b43f 5022 prematurely. (flag_sched_stalled_insns = -1).
5023
48e1416a 5024 X >= 1: Only X queued insns can be removed prematurely in each
52c4b43f 5025 invocation. (flag_sched_stalled_insns = X).
5026
5027 Otherwise: Early queue removal is disabled.
5028 (flag_sched_stalled_insns = 0)
5029 */
5030
48e1416a 5031 if (! flag_sched_stalled_insns)
52c4b43f 5032 return 0;
5033
67900a4f 5034 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
52c4b43f 5035 {
5036 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5037 {
5038 if (sched_verbose > 6)
5039 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5040
5041 prev_link = 0;
5042 while (link)
5043 {
5044 next_link = XEXP (link, 1);
5045 insn = XEXP (link, 0);
5046 if (insn && sched_verbose > 6)
5047 print_rtl_single (sched_dump, insn);
5048
5049 memcpy (temp_state, state, dfa_state_size);
48e1416a 5050 if (recog_memoized (insn) < 0)
52c4b43f 5051 /* non-negative to indicate that it's not ready
5052 to avoid infinite Q->R->Q->R... */
5053 cost = 0;
5054 else
5055 cost = state_transition (temp_state, insn);
5056
5057 if (sched_verbose >= 6)
5058 fprintf (sched_dump, "transition cost = %d\n", cost);
5059
5060 move_to_ready = false;
48e1416a 5061 if (cost < 0)
52c4b43f 5062 {
5063 move_to_ready = ok_for_early_queue_removal (insn);
5064 if (move_to_ready == true)
5065 {
5066 /* move from Q to R */
5067 q_size -= 1;
e4897000 5068 ready_add (ready, insn, false);
52c4b43f 5069
48e1416a 5070 if (prev_link)
52c4b43f 5071 XEXP (prev_link, 1) = next_link;
5072 else
5073 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5074
5075 free_INSN_LIST_node (link);
5076
5077 if (sched_verbose >= 2)
5078 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5079 (*current_sched_info->print_insn) (insn, 0));
5080
5081 insns_removed++;
5082 if (insns_removed == flag_sched_stalled_insns)
e4897000 5083 /* Remove no more than flag_sched_stalled_insns insns
5084 from Q at a time. */
52c4b43f 5085 return insns_removed;
5086 }
5087 }
5088
5089 if (move_to_ready == false)
5090 prev_link = link;
5091
5092 link = next_link;
5093 } /* while link */
48e1416a 5094 } /* if link */
52c4b43f 5095
5096 } /* for stalls.. */
5097
48e1416a 5098 return insns_removed;
52c4b43f 5099}
5100
5101
7a31a7bd 5102/* Print the ready list for debugging purposes. Callable from debugger. */
c2069298 5103
7a31a7bd 5104static void
952f0048 5105debug_ready_list (struct ready_list *ready)
c2069298 5106{
7a31a7bd 5107 rtx *p;
5108 int i;
c2069298 5109
7a31a7bd 5110 if (ready->n_ready == 0)
bea4bad2 5111 {
5112 fprintf (sched_dump, "\n");
5113 return;
5114 }
c2069298 5115
7a31a7bd 5116 p = ready_lastpos (ready);
5117 for (i = 0; i < ready->n_ready; i++)
a7dcf969 5118 {
5119 fprintf (sched_dump, " %s:%d",
5120 (*current_sched_info->print_insn) (p[i], 0),
5121 INSN_LUID (p[i]));
b30b031c 5122 if (sched_pressure != SCHED_PRESSURE_NONE)
a7dcf969 5123 fprintf (sched_dump, "(cost=%d",
5124 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5125 if (INSN_TICK (p[i]) > clock_var)
5126 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
b30b031c 5127 if (sched_pressure != SCHED_PRESSURE_NONE)
a7dcf969 5128 fprintf (sched_dump, ")");
5129 }
7a31a7bd 5130 fprintf (sched_dump, "\n");
5131}
c2069298 5132
15a03e56 5133/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5134 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5135 replaces the epilogue note in the correct basic block. */
e1ab7874 5136void
6a1cdb4d 5137reemit_notes (rtx insn)
3eb9a99d 5138{
6a1cdb4d 5139 rtx note, last = insn;
3eb9a99d 5140
3eb9a99d 5141 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5142 {
ba57cb24 5143 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
3eb9a99d 5144 {
bc620c5c 5145 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
87e9bf87 5146
f16b6102 5147 last = emit_note_before (note_type, last);
5148 remove_note (insn, note);
3eb9a99d 5149 }
5150 }
3eb9a99d 5151}
5152
6a1cdb4d 5153/* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5154static void
e1ab7874 5155move_insn (rtx insn, rtx last, rtx nt)
6a1cdb4d 5156{
6a1cdb4d 5157 if (PREV_INSN (insn) != last)
5158 {
5159 basic_block bb;
5160 rtx note;
5161 int jump_p = 0;
3eb9a99d 5162
6a1cdb4d 5163 bb = BLOCK_FOR_INSN (insn);
48e1416a 5164
6a1cdb4d 5165 /* BB_HEAD is either LABEL or NOTE. */
48e1416a 5166 gcc_assert (BB_HEAD (bb) != insn);
6a1cdb4d 5167
5168 if (BB_END (bb) == insn)
5169 /* If this is last instruction in BB, move end marker one
5170 instruction up. */
5171 {
5172 /* Jumps are always placed at the end of basic block. */
5173 jump_p = control_flow_insn_p (insn);
5174
5175 gcc_assert (!jump_p
e1ab7874 5176 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
fd27912f 5177 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
e1ab7874 5178 || (common_sched_info->sched_pass_id
5179 == SCHED_EBB_PASS));
48e1416a 5180
6a1cdb4d 5181 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5182
5183 BB_END (bb) = PREV_INSN (insn);
5184 }
3eb9a99d 5185
6a1cdb4d 5186 gcc_assert (BB_END (bb) != last);
44f831ee 5187
6a1cdb4d 5188 if (jump_p)
5189 /* We move the block note along with jump. */
5190 {
e1ab7874 5191 gcc_assert (nt);
6a1cdb4d 5192
5193 note = NEXT_INSN (insn);
5194 while (NOTE_NOT_BB_P (note) && note != nt)
5195 note = NEXT_INSN (note);
5196
5197 if (note != nt
5198 && (LABEL_P (note)
5199 || BARRIER_P (note)))
5200 note = NEXT_INSN (note);
48e1416a 5201
6a1cdb4d 5202 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5203 }
5204 else
5205 note = insn;
5206
5207 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5208 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5209
5210 NEXT_INSN (note) = NEXT_INSN (last);
5211 PREV_INSN (NEXT_INSN (last)) = note;
44f831ee 5212
6a1cdb4d 5213 NEXT_INSN (last) = insn;
5214 PREV_INSN (insn) = last;
5215
5216 bb = BLOCK_FOR_INSN (last);
5217
5218 if (jump_p)
5219 {
5220 fix_jump_move (insn);
5221
5222 if (BLOCK_FOR_INSN (insn) != bb)
5223 move_block_after_check (insn);
5224
5225 gcc_assert (BB_END (bb) == last);
5226 }
5227
a2bdd643 5228 df_insn_change_bb (insn, bb);
48e1416a 5229
6a1cdb4d 5230 /* Update BB_END, if needed. */
5231 if (BB_END (bb) == last)
48e1416a 5232 BB_END (bb) = insn;
6a1cdb4d 5233 }
e26579fc 5234
48e1416a 5235 SCHED_GROUP_P (insn) = 0;
3eb9a99d 5236}
5237
4db82bc9 5238/* Return true if scheduling INSN will finish current clock cycle. */
5239static bool
5240insn_finishes_cycle_p (rtx insn)
5241{
5242 if (SCHED_GROUP_P (insn))
5243 /* After issuing INSN, rest of the sched_group will be forced to issue
5244 in order. Don't make any plans for the rest of cycle. */
5245 return true;
5246
5247 /* Finishing the block will, apparently, finish the cycle. */
5248 if (current_sched_info->insn_finishes_block_p
5249 && current_sched_info->insn_finishes_block_p (insn))
5250 return true;
5251
5252 return false;
5253}
5254
44ad1e56 5255/* Define type for target data used in multipass scheduling. */
5256#ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5257# define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5258#endif
5259typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5260
58ada791 5261/* The following structure describe an entry of the stack of choices. */
5262struct choice_entry
5263{
5264 /* Ordinal number of the issued insn in the ready queue. */
5265 int index;
5266 /* The number of the rest insns whose issues we should try. */
5267 int rest;
5268 /* The number of issued essential insns. */
5269 int n;
5270 /* State after issuing the insn. */
5271 state_t state;
44ad1e56 5272 /* Target-specific data. */
5273 first_cycle_multipass_data_t target_data;
58ada791 5274};
5275
5276/* The following array is used to implement a stack of choices used in
5277 function max_issue. */
5278static struct choice_entry *choice_stack;
5279
e1ab7874 5280/* This holds the value of the target dfa_lookahead hook. */
5281int dfa_lookahead;
58ada791 5282
29fde7f1 5283/* The following variable value is maximal number of tries of issuing
5284 insns for the first cycle multipass insn scheduling. We define
5285 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5286 need this constraint if all real insns (with non-negative codes)
5287 had reservations because in this case the algorithm complexity is
5288 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5289 might be incomplete and such insn might occur. For such
5290 descriptions, the complexity of algorithm (without the constraint)
5291 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5292static int max_lookahead_tries;
5293
5294/* The following value is value of hook
5295 `first_cycle_multipass_dfa_lookahead' at the last call of
5296 `max_issue'. */
5297static int cached_first_cycle_multipass_dfa_lookahead = 0;
5298
5299/* The following value is value of `issue_rate' at the last call of
5300 `sched_init'. */
5301static int cached_issue_rate = 0;
5302
bea4bad2 5303/* The following function returns maximal (or close to maximal) number
5304 of insns which can be issued on the same cycle and one of which
58ada791 5305 insns is insns with the best rank (the first insn in READY). To
bea4bad2 5306 make this function tries different samples of ready insns. READY
5307 is current queue `ready'. Global array READY_TRY reflects what
7db79429 5308 insns are already issued in this try. The function stops immediately,
6a1cdb4d 5309 if it reached the such a solution, that all instruction can be issued.
5310 INDEX will contain index of the best insn in READY. The following
e1ab7874 5311 function is used only for first cycle multipass scheduling.
5312
5313 PRIVILEGED_N >= 0
5314
5315 This function expects recognized insns only. All USEs,
5316 CLOBBERs, etc must be filtered elsewhere. */
5317int
5318max_issue (struct ready_list *ready, int privileged_n, state_t state,
44ad1e56 5319 bool first_cycle_insn_p, int *index)
bea4bad2 5320{
7db79429 5321 int n, i, all, n_ready, best, delay, tries_num;
e1ab7874 5322 int more_issue;
58ada791 5323 struct choice_entry *top;
bea4bad2 5324 rtx insn;
bea4bad2 5325
e1ab7874 5326 n_ready = ready->n_ready;
5327 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5328 && privileged_n <= n_ready);
5329
5330 /* Init MAX_LOOKAHEAD_TRIES. */
5331 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5332 {
5333 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5334 max_lookahead_tries = 100;
5335 for (i = 0; i < issue_rate; i++)
5336 max_lookahead_tries *= dfa_lookahead;
5337 }
5338
5339 /* Init max_points. */
e1ab7874 5340 more_issue = issue_rate - cycle_issued_insns;
8658e086 5341 gcc_assert (more_issue >= 0);
e1ab7874 5342
e1ab7874 5343 /* The number of the issued insns in the best solution. */
bea4bad2 5344 best = 0;
e1ab7874 5345
58ada791 5346 top = choice_stack;
e1ab7874 5347
5348 /* Set initial state of the search. */
5349 memcpy (top->state, state, dfa_state_size);
5350 top->rest = dfa_lookahead;
58ada791 5351 top->n = 0;
44ad1e56 5352 if (targetm.sched.first_cycle_multipass_begin)
5353 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5354 ready_try, n_ready,
5355 first_cycle_insn_p);
e1ab7874 5356
5357 /* Count the number of the insns to search among. */
58ada791 5358 for (all = i = 0; i < n_ready; i++)
bea4bad2 5359 if (!ready_try [i])
58ada791 5360 all++;
e1ab7874 5361
5362 /* I is the index of the insn to try next. */
58ada791 5363 i = 0;
29fde7f1 5364 tries_num = 0;
58ada791 5365 for (;;)
5366 {
e1ab7874 5367 if (/* If we've reached a dead end or searched enough of what we have
5368 been asked... */
5369 top->rest == 0
7db79429 5370 /* or have nothing else to try... */
5371 || i >= n_ready
5372 /* or should not issue more. */
5373 || top->n >= more_issue)
58ada791 5374 {
e1ab7874 5375 /* ??? (... || i == n_ready). */
5376 gcc_assert (i <= n_ready);
5377
7db79429 5378 /* We should not issue more than issue_rate instructions. */
5379 gcc_assert (top->n <= more_issue);
5380
58ada791 5381 if (top == choice_stack)
5382 break;
e1ab7874 5383
5384 if (best < top - choice_stack)
58ada791 5385 {
e1ab7874 5386 if (privileged_n)
5387 {
5388 n = privileged_n;
5389 /* Try to find issued privileged insn. */
3c802a1e 5390 while (n && !ready_try[--n])
5391 ;
e1ab7874 5392 }
5393
5394 if (/* If all insns are equally good... */
5395 privileged_n == 0
5396 /* Or a privileged insn will be issued. */
5397 || ready_try[n])
5398 /* Then we have a solution. */
5399 {
5400 best = top - choice_stack;
5401 /* This is the index of the insn issued first in this
5402 solution. */
5403 *index = choice_stack [1].index;
7db79429 5404 if (top->n == more_issue || best == all)
e1ab7874 5405 break;
5406 }
58ada791 5407 }
e1ab7874 5408
5409 /* Set ready-list index to point to the last insn
5410 ('i++' below will advance it to the next insn). */
58ada791 5411 i = top->index;
e1ab7874 5412
5413 /* Backtrack. */
58ada791 5414 ready_try [i] = 0;
44ad1e56 5415
5416 if (targetm.sched.first_cycle_multipass_backtrack)
5417 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5418 ready_try, n_ready);
5419
58ada791 5420 top--;
e1ab7874 5421 memcpy (state, top->state, dfa_state_size);
58ada791 5422 }
5423 else if (!ready_try [i])
5424 {
29fde7f1 5425 tries_num++;
5426 if (tries_num > max_lookahead_tries)
5427 break;
58ada791 5428 insn = ready_element (ready, i);
e1ab7874 5429 delay = state_transition (state, insn);
58ada791 5430 if (delay < 0)
5431 {
4db82bc9 5432 if (state_dead_lock_p (state)
5433 || insn_finishes_cycle_p (insn))
a0fc5ef1 5434 /* We won't issue any more instructions in the next
5435 choice_state. */
58ada791 5436 top->rest = 0;
5437 else
5438 top->rest--;
e1ab7874 5439
58ada791 5440 n = top->n;
e1ab7874 5441 if (memcmp (top->state, state, dfa_state_size) != 0)
7db79429 5442 n++;
e1ab7874 5443
5444 /* Advance to the next choice_entry. */
58ada791 5445 top++;
e1ab7874 5446 /* Initialize it. */
5447 top->rest = dfa_lookahead;
58ada791 5448 top->index = i;
5449 top->n = n;
e1ab7874 5450 memcpy (top->state, state, dfa_state_size);
58ada791 5451 ready_try [i] = 1;
44ad1e56 5452
5453 if (targetm.sched.first_cycle_multipass_issue)
5454 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5455 ready_try, n_ready,
5456 insn,
5457 &((top - 1)
5458 ->target_data));
5459
58ada791 5460 i = -1;
5461 }
5462 }
e1ab7874 5463
5464 /* Increase ready-list index. */
58ada791 5465 i++;
5466 }
6a1cdb4d 5467
44ad1e56 5468 if (targetm.sched.first_cycle_multipass_end)
5469 targetm.sched.first_cycle_multipass_end (best != 0
5470 ? &choice_stack[1].target_data
5471 : NULL);
5472
e1ab7874 5473 /* Restore the original state of the DFA. */
48e1416a 5474 memcpy (state, choice_stack->state, dfa_state_size);
e1ab7874 5475
bea4bad2 5476 return best;
5477}
5478
5479/* The following function chooses insn from READY and modifies
e1ab7874 5480 READY. The following function is used only for first
bdeaf25e 5481 cycle multipass scheduling.
5482 Return:
5483 -1 if cycle should be advanced,
5484 0 if INSN_PTR is set to point to the desirable insn,
5485 1 if choose_ready () should be restarted without advancing the cycle. */
5486static int
44ad1e56 5487choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5488 rtx *insn_ptr)
bea4bad2 5489{
bdeaf25e 5490 int lookahead;
5491
5492 if (dbg_cnt (sched_insn) == false)
5493 {
b5f4bfde 5494 rtx insn = nonscheduled_insns_begin;
5495 do
5496 {
5497 insn = next_nonnote_insn (insn);
5498 }
5499 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
bdeaf25e 5500
5501 if (QUEUE_INDEX (insn) == QUEUE_READY)
5502 /* INSN is in the ready_list. */
5503 {
b5f4bfde 5504 nonscheduled_insns_begin = insn;
bdeaf25e 5505 ready_remove_insn (insn);
5506 *insn_ptr = insn;
5507 return 0;
5508 }
5509
5510 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5511 return -1;
5512 }
5513
5514 lookahead = 0;
29fde7f1 5515
5516 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
883b2e73 5517 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
9845d120 5518 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5519 || DEBUG_INSN_P (ready_element (ready, 0)))
bdeaf25e 5520 {
0ac9454e 5521 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5522 *insn_ptr = ready_remove_first_dispatch (ready);
5523 else
5524 *insn_ptr = ready_remove_first (ready);
5525
bdeaf25e 5526 return 0;
5527 }
bea4bad2 5528 else
5529 {
5530 /* Try to choose the better insn. */
6a1cdb4d 5531 int index = 0, i, n;
58ada791 5532 rtx insn;
e1ab7874 5533 int try_data = 1, try_control = 1;
5534 ds_t ts;
48e1416a 5535
58ada791 5536 insn = ready_element (ready, 0);
5537 if (INSN_CODE (insn) < 0)
bdeaf25e 5538 {
5539 *insn_ptr = ready_remove_first (ready);
5540 return 0;
5541 }
6a1cdb4d 5542
5543 if (spec_info
5544 && spec_info->flags & (PREFER_NON_DATA_SPEC
5545 | PREFER_NON_CONTROL_SPEC))
5546 {
6a1cdb4d 5547 for (i = 0, n = ready->n_ready; i < n; i++)
5548 {
e5f7d6da 5549 rtx x;
5550 ds_t s;
5551
6a1cdb4d 5552 x = ready_element (ready, i);
5553 s = TODO_SPEC (x);
48e1416a 5554
6a1cdb4d 5555 if (spec_info->flags & PREFER_NON_DATA_SPEC
5556 && !(s & DATA_SPEC))
48e1416a 5557 {
6a1cdb4d 5558 try_data = 0;
5559 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
5560 || !try_control)
5561 break;
5562 }
48e1416a 5563
6a1cdb4d 5564 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
5565 && !(s & CONTROL_SPEC))
5566 {
5567 try_control = 0;
5568 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
5569 break;
5570 }
5571 }
5572 }
5573
e1ab7874 5574 ts = TODO_SPEC (insn);
5575 if ((ts & SPECULATIVE)
5576 && (((!try_data && (ts & DATA_SPEC))
5577 || (!try_control && (ts & CONTROL_SPEC)))
5578 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
5579 && !targetm.sched
5580 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
e5f7d6da 5581 /* Discard speculative instruction that stands first in the ready
5582 list. */
6a1cdb4d 5583 {
5584 change_queue_index (insn, 1);
bdeaf25e 5585 return 1;
6a1cdb4d 5586 }
5587
e1ab7874 5588 ready_try[0] = 0;
6a1cdb4d 5589
58ada791 5590 for (i = 1; i < ready->n_ready; i++)
5591 {
5592 insn = ready_element (ready, i);
e1ab7874 5593
58ada791 5594 ready_try [i]
e1ab7874 5595 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
5596 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
58ada791 5597 }
6a1cdb4d 5598
e1ab7874 5599 /* Let the target filter the search space. */
5600 for (i = 1; i < ready->n_ready; i++)
5601 if (!ready_try[i])
5602 {
5603 insn = ready_element (ready, i);
5604
cdf13311 5605 /* If this insn is recognizable we should have already
5606 recognized it earlier.
5607 ??? Not very clear where this is supposed to be done.
5608 See dep_cost_1. */
1b4345f7 5609 gcc_checking_assert (INSN_CODE (insn) >= 0
5610 || recog_memoized (insn) < 0);
e1ab7874 5611
5612 ready_try [i]
5613 = (/* INSN_CODE check can be omitted here as it is also done later
5614 in max_issue (). */
5615 INSN_CODE (insn) < 0
5616 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5617 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5618 (insn)));
5619 }
5620
44ad1e56 5621 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
bdeaf25e 5622 {
5623 *insn_ptr = ready_remove_first (ready);
76f8cfc9 5624 if (sched_verbose >= 4)
48e1416a 5625 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
76f8cfc9 5626 (*current_sched_info->print_insn) (*insn_ptr, 0));
bdeaf25e 5627 return 0;
5628 }
bea4bad2 5629 else
bdeaf25e 5630 {
48e1416a 5631 if (sched_verbose >= 4)
e1ab7874 5632 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5633 (*current_sched_info->print_insn)
5634 (ready_element (ready, index), 0));
48e1416a 5635
bdeaf25e 5636 *insn_ptr = ready_remove (ready, index);
5637 return 0;
5638 }
bea4bad2 5639 }
5640}
5641
d2412f57 5642/* This function is called when we have successfully scheduled a
5643 block. It uses the schedule stored in the scheduled_insns vector
5644 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5645 append the scheduled insns; TAIL is the insn after the scheduled
5646 block. TARGET_BB is the argument passed to schedule_block. */
5647
5648static void
5649commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5650{
b5f4bfde 5651 unsigned int i;
5652 rtx insn;
d2412f57 5653
5654 last_scheduled_insn = prev_head;
b5f4bfde 5655 for (i = 0;
f1f41a6c 5656 scheduled_insns.iterate (i, &insn);
b5f4bfde 5657 i++)
d2412f57 5658 {
d2412f57 5659 if (control_flow_insn_p (last_scheduled_insn)
5660 || current_sched_info->advance_target_bb (*target_bb, insn))
5661 {
5662 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5663
5664 if (sched_verbose)
5665 {
5666 rtx x;
5667
5668 x = next_real_insn (last_scheduled_insn);
5669 gcc_assert (x);
5670 dump_new_block_header (1, *target_bb, x, tail);
5671 }
5672
5673 last_scheduled_insn = bb_note (*target_bb);
5674 }
5675
5676 if (current_sched_info->begin_move_insn)
5677 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5678 move_insn (insn, last_scheduled_insn,
5679 current_sched_info->next_tail);
5680 if (!DEBUG_INSN_P (insn))
5681 reemit_notes (insn);
5682 last_scheduled_insn = insn;
5683 }
5684
f1f41a6c 5685 scheduled_insns.truncate (0);
d2412f57 5686}
5687
a0fc5ef1 5688/* Examine all insns on the ready list and queue those which can't be
5689 issued in this cycle. TEMP_STATE is temporary scheduler state we
5690 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5691 have been issued for the current cycle, which means it is valid to
e2f4a6ff 5692 issue an asm statement.
5693
5694 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
c0457559 5695 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5696 we only leave insns which have an INSN_EXACT_TICK. */
a0fc5ef1 5697
5698static void
e2f4a6ff 5699prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
c0457559 5700 bool shadows_only_p, bool modulo_epilogue_p)
a0fc5ef1 5701{
ca5e50e4 5702 int i, pass;
38d8f4bb 5703 bool sched_group_found = false;
ca5e50e4 5704 int min_cost_group = 1;
a0fc5ef1 5705
a0fc5ef1 5706 for (i = 0; i < ready.n_ready; i++)
5707 {
5708 rtx insn = ready_element (&ready, i);
ca5e50e4 5709 if (SCHED_GROUP_P (insn))
38d8f4bb 5710 {
5711 sched_group_found = true;
ca5e50e4 5712 break;
38d8f4bb 5713 }
ca5e50e4 5714 }
38d8f4bb 5715
ca5e50e4 5716 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5717 such an insn first and note its cost, then schedule all other insns
5718 for one cycle later. */
5719 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5720 {
5721 int n = ready.n_ready;
5722 for (i = 0; i < n; i++)
a0fc5ef1 5723 {
ca5e50e4 5724 rtx insn = ready_element (&ready, i);
5725 int cost = 0;
5726 const char *reason = "resource conflict";
e2f4a6ff 5727
ca5e50e4 5728 if (DEBUG_INSN_P (insn))
5729 continue;
5730
5731 if (sched_group_found && !SCHED_GROUP_P (insn))
5732 {
5733 if (pass == 0)
5734 continue;
5735 cost = min_cost_group;
5736 reason = "not in sched group";
5737 }
5738 else if (modulo_epilogue_p
5739 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5740 {
5741 cost = max_insn_queue_index;
5742 reason = "not an epilogue insn";
5743 }
5744 else if (shadows_only_p && !SHADOW_P (insn))
e2f4a6ff 5745 {
ca5e50e4 5746 cost = 1;
5747 reason = "not a shadow";
5748 }
5749 else if (recog_memoized (insn) < 0)
5750 {
5751 if (!first_cycle_insn_p
5752 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5753 || asm_noperands (PATTERN (insn)) >= 0))
5754 cost = 1;
5755 reason = "asm";
5756 }
b30b031c 5757 else if (sched_pressure != SCHED_PRESSURE_NONE)
5758 {
5759 if (sched_pressure == SCHED_PRESSURE_MODEL
5760 && INSN_TICK (insn) <= clock_var)
5761 {
5762 memcpy (temp_state, curr_state, dfa_state_size);
5763 if (state_transition (temp_state, insn) >= 0)
5764 INSN_TICK (insn) = clock_var + 1;
5765 }
5766 cost = 0;
5767 }
ca5e50e4 5768 else
5769 {
5770 int delay_cost = 0;
5771
d9dd21a8 5772 if (delay_htab.is_created ())
e2f4a6ff 5773 {
ca5e50e4 5774 struct delay_pair *delay_entry;
5775 delay_entry
d9dd21a8 5776 = delay_htab.find_with_hash (insn,
5777 htab_hash_pointer (insn));
ca5e50e4 5778 while (delay_entry && delay_cost == 0)
5779 {
5780 delay_cost = estimate_shadow_tick (delay_entry);
5781 if (delay_cost > max_insn_queue_index)
5782 delay_cost = max_insn_queue_index;
5783 delay_entry = delay_entry->next_same_i1;
5784 }
e2f4a6ff 5785 }
e2f4a6ff 5786
ca5e50e4 5787 memcpy (temp_state, curr_state, dfa_state_size);
5788 cost = state_transition (temp_state, insn);
5789 if (cost < 0)
5790 cost = 0;
5791 else if (cost == 0)
5792 cost = 1;
5793 if (cost < delay_cost)
5794 {
5795 cost = delay_cost;
5796 reason = "shadow tick";
5797 }
5798 }
5799 if (cost >= 1)
e2f4a6ff 5800 {
ca5e50e4 5801 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5802 min_cost_group = cost;
5803 ready_remove (&ready, i);
5804 queue_insn (insn, cost, reason);
5805 if (i + 1 < n)
5806 break;
e2f4a6ff 5807 }
a0fc5ef1 5808 }
ca5e50e4 5809 if (i == n)
5810 pass++;
a0fc5ef1 5811 }
5812}
5813
e2f4a6ff 5814/* Called when we detect that the schedule is impossible. We examine the
5815 backtrack queue to find the earliest insn that caused this condition. */
5816
5817static struct haifa_saved_data *
5818verify_shadows (void)
5819{
5820 struct haifa_saved_data *save, *earliest_fail = NULL;
5821 for (save = backtrack_queue; save; save = save->next)
5822 {
5823 int t;
5824 struct delay_pair *pair = save->delay_pair;
5825 rtx i1 = pair->i1;
5826
5827 for (; pair; pair = pair->next_same_i1)
5828 {
5829 rtx i2 = pair->i2;
5830
5831 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5832 continue;
5833
5834 t = INSN_TICK (i1) + pair_delay (pair);
5835 if (t < clock_var)
5836 {
5837 if (sched_verbose >= 2)
5838 fprintf (sched_dump,
5839 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5840 ", not ready\n",
5841 INSN_UID (pair->i1), INSN_UID (pair->i2),
5842 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5843 earliest_fail = save;
5844 break;
5845 }
5846 if (QUEUE_INDEX (i2) >= 0)
5847 {
5848 int queued_for = INSN_TICK (i2);
5849
5850 if (t < queued_for)
5851 {
5852 if (sched_verbose >= 2)
5853 fprintf (sched_dump,
5854 ";;\t\tfailed delay requirements for %d/%d"
5855 " (%d->%d), queued too late\n",
5856 INSN_UID (pair->i1), INSN_UID (pair->i2),
5857 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5858 earliest_fail = save;
5859 break;
5860 }
5861 }
5862 }
5863 }
5864
5865 return earliest_fail;
5866}
5867
6a1cdb4d 5868/* Use forward list scheduling to rearrange insns of block pointed to by
5869 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5870 region. */
3eb9a99d 5871
c0457559 5872bool
0a15667c 5873schedule_block (basic_block *target_bb, state_t init_state)
3eb9a99d 5874{
44ad1e56 5875 int i;
c0457559 5876 bool success = modulo_ii == 0;
0c775e95 5877 struct sched_block_state ls;
bea4bad2 5878 state_t temp_state = NULL; /* It is used for multipass scheduling. */
e26579fc 5879 int sort_p, advance, start_clock_var;
3eb9a99d 5880
c4cd519a 5881 /* Head/tail info for this block. */
c2069298 5882 rtx prev_head = current_sched_info->prev_head;
5883 rtx next_tail = current_sched_info->next_tail;
5884 rtx head = NEXT_INSN (prev_head);
5885 rtx tail = PREV_INSN (next_tail);
3eb9a99d 5886
8058bf10 5887 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
5888 && sched_pressure != SCHED_PRESSURE_MODEL)
d452a169 5889 find_modifiable_mems (head, tail);
5890
6106ad68 5891 /* We used to have code to avoid getting parameters moved from hard
5892 argument registers into pseudos.
3eb9a99d 5893
6106ad68 5894 However, it was removed when it proved to be of marginal benefit
5895 and caused problems because schedule_block and compute_forward_dependences
5896 had different notions of what the "head" insn was. */
3eb9a99d 5897
89f18f73 5898 gcc_assert (head != tail || INSN_P (head));
3eb9a99d 5899
93f6b030 5900 haifa_recovery_bb_recently_added_p = false;
6a1cdb4d 5901
e2f4a6ff 5902 backtrack_queue = NULL;
5903
c4cd519a 5904 /* Debug info. */
3eb9a99d 5905 if (sched_verbose)
6a1cdb4d 5906 dump_new_block_header (0, *target_bb, head, tail);
3eb9a99d 5907
0a15667c 5908 if (init_state == NULL)
5909 state_reset (curr_state);
5910 else
5911 memcpy (curr_state, init_state, dfa_state_size);
3eb9a99d 5912
e1ab7874 5913 /* Clear the ready list. */
30b1ec30 5914 ready.first = ready.veclen - 1;
30b1ec30 5915 ready.n_ready = 0;
9845d120 5916 ready.n_debug = 0;
3eb9a99d 5917
67900a4f 5918 /* It is used for first cycle multipass scheduling. */
5919 temp_state = alloca (dfa_state_size);
bea4bad2 5920
202d6e5f 5921 if (targetm.sched.init)
5922 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
663b9536 5923
0b923690 5924 /* We start inserting insns after PREV_HEAD. */
b5f4bfde 5925 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
d0aa45d0 5926 last_nondebug_scheduled_insn = NULL_RTX;
3eb9a99d 5927
9845d120 5928 gcc_assert ((NOTE_P (last_scheduled_insn)
9221ec44 5929 || DEBUG_INSN_P (last_scheduled_insn))
6a1cdb4d 5930 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
5931
c2069298 5932 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
5933 queue. */
3eb9a99d 5934 q_ptr = 0;
5935 q_size = 0;
bea4bad2 5936
4077bf7a 5937 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
67900a4f 5938 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
3eb9a99d 5939
de206697 5940 /* Start just before the beginning of time. */
5941 clock_var = -1;
e4897000 5942
48e1416a 5943 /* We need queue and ready lists and clock_var be initialized
e4897000 5944 in try_ready () (which is called through init_ready_list ()). */
5945 (*current_sched_info->init_ready_list) ();
5946
b30b031c 5947 if (sched_pressure == SCHED_PRESSURE_MODEL)
5948 model_start_schedule ();
5949
23df5e5b 5950 /* The algorithm is O(n^2) in the number of ready insns at any given
5951 time in the worst case. Before reload we are more likely to have
5952 big lists so truncate them to a reasonable size. */
9845d120 5953 if (!reload_completed
5954 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
23df5e5b 5955 {
5956 ready_sort (&ready);
5957
9845d120 5958 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
5959 If there are debug insns, we know they're first. */
5960 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
23df5e5b 5961 if (!SCHED_GROUP_P (ready_element (&ready, i)))
5962 break;
5963
5964 if (sched_verbose >= 2)
5965 {
5966 fprintf (sched_dump,
5967 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
5968 fprintf (sched_dump,
5969 ";;\t\t before reload => truncated to %d insns\n", i);
5970 }
5971
bdeaf25e 5972 /* Delay all insns past it for 1 cycle. If debug counter is
5973 activated make an exception for the insn right after
b5f4bfde 5974 nonscheduled_insns_begin. */
bdeaf25e 5975 {
5976 rtx skip_insn;
5977
5978 if (dbg_cnt (sched_insn) == false)
b5f4bfde 5979 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
bdeaf25e 5980 else
5981 skip_insn = NULL_RTX;
5982
5983 while (i < ready.n_ready)
5984 {
5985 rtx insn;
5986
5987 insn = ready_remove (&ready, i);
5988
5989 if (insn != skip_insn)
b49b2e5c 5990 queue_insn (insn, 1, "list truncated");
bdeaf25e 5991 }
b5f4bfde 5992 if (skip_insn)
5993 ready_add (&ready, skip_insn, true);
bdeaf25e 5994 }
23df5e5b 5995 }
5996
6a1cdb4d 5997 /* Now we can restore basic block notes and maintain precise cfg. */
5998 restore_bb_notes (*target_bb);
5999
e4897000 6000 last_clock_var = -1;
6001
e26579fc 6002 advance = 0;
de206697 6003
f1f41a6c 6004 gcc_assert (scheduled_insns.length () == 0);
58ada791 6005 sort_p = TRUE;
e2f4a6ff 6006 must_backtrack = false;
c0457559 6007 modulo_insns_scheduled = 0;
6008
6009 ls.modulo_epilogue = false;
e2f4a6ff 6010
c4cd519a 6011 /* Loop until all the insns in BB are scheduled. */
c2069298 6012 while ((*current_sched_info->schedule_more_p) ())
3eb9a99d 6013 {
d452a169 6014 perform_replacements_new_cycle ();
e26579fc 6015 do
3eb9a99d 6016 {
e26579fc 6017 start_clock_var = clock_var;
6018
6019 clock_var++;
952f0048 6020
e26579fc 6021 advance_one_cycle ();
952f0048 6022
e26579fc 6023 /* Add to the ready list all pending insns that can be issued now.
6024 If there are no ready insns, increment clock until one
6025 is ready and add all pending insns at that point to the ready
6026 list. */
6027 queue_to_ready (&ready);
952f0048 6028
89f18f73 6029 gcc_assert (ready.n_ready);
952f0048 6030
e26579fc 6031 if (sched_verbose >= 2)
6032 {
6033 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
6034 debug_ready_list (&ready);
6035 }
6036 advance -= clock_var - start_clock_var;
3eb9a99d 6037 }
e26579fc 6038 while (advance > 0);
3eb9a99d 6039
c0457559 6040 if (ls.modulo_epilogue)
6041 {
6042 int stage = clock_var / modulo_ii;
6043 if (stage > modulo_last_stage * 2 + 2)
6044 {
6045 if (sched_verbose >= 2)
6046 fprintf (sched_dump,
6047 ";;\t\tmodulo scheduled succeeded at II %d\n",
6048 modulo_ii);
6049 success = true;
6050 goto end_schedule;
6051 }
6052 }
6053 else if (modulo_ii > 0)
6054 {
6055 int stage = clock_var / modulo_ii;
6056 if (stage > modulo_max_stages)
6057 {
6058 if (sched_verbose >= 2)
6059 fprintf (sched_dump,
6060 ";;\t\tfailing schedule due to excessive stages\n");
6061 goto end_schedule;
6062 }
6063 if (modulo_n_insns == modulo_insns_scheduled
6064 && stage > modulo_last_stage)
6065 {
6066 if (sched_verbose >= 2)
6067 fprintf (sched_dump,
6068 ";;\t\tfound kernel after %d stages, II %d\n",
6069 stage, modulo_ii);
6070 ls.modulo_epilogue = true;
6071 }
6072 }
6073
6074 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
a0fc5ef1 6075 if (ready.n_ready == 0)
8a83ab3e 6076 continue;
e2f4a6ff 6077 if (must_backtrack)
6078 goto do_backtrack;
a0fc5ef1 6079
0c775e95 6080 ls.first_cycle_insn_p = true;
e2f4a6ff 6081 ls.shadows_only_p = false;
8a83ab3e 6082 cycle_issued_insns = 0;
0c775e95 6083 ls.can_issue_more = issue_rate;
8a83ab3e 6084 for (;;)
58ada791 6085 {
8a83ab3e 6086 rtx insn;
6087 int cost;
e2f4a6ff 6088 bool asm_p;
952f0048 6089
8a83ab3e 6090 if (sort_p && ready.n_ready > 0)
58ada791 6091 {
8a83ab3e 6092 /* Sort the ready list based on priority. This must be
6093 done every iteration through the loop, as schedule_insn
6094 may have readied additional insns that will not be
6095 sorted correctly. */
6096 ready_sort (&ready);
6097
6098 if (sched_verbose >= 2)
6099 {
6100 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
6101 debug_ready_list (&ready);
6102 }
58ada791 6103 }
de206697 6104
8a83ab3e 6105 /* We don't want md sched reorder to even see debug isns, so put
6106 them out right away. */
6107 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6108 && (*current_sched_info->schedule_more_p) ())
9845d120 6109 {
8a83ab3e 6110 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6111 {
6112 rtx insn = ready_remove_first (&ready);
6113 gcc_assert (DEBUG_INSN_P (insn));
6114 (*current_sched_info->begin_schedule_ready) (insn);
f1f41a6c 6115 scheduled_insns.safe_push (insn);
8a83ab3e 6116 last_scheduled_insn = insn;
6117 advance = schedule_insn (insn);
6118 gcc_assert (advance == 0);
6119 if (ready.n_ready > 0)
6120 ready_sort (&ready);
6121 }
9845d120 6122 }
6123
0c775e95 6124 if (ls.first_cycle_insn_p && !ready.n_ready)
8a83ab3e 6125 break;
9bf1996d 6126
e2f4a6ff 6127 resume_after_backtrack:
8a83ab3e 6128 /* Allow the target to reorder the list, typically for
6129 better instruction bundling. */
6130 if (sort_p
6131 && (ready.n_ready == 0
6132 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6133 {
0c775e95 6134 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6135 ls.can_issue_more
8a83ab3e 6136 = targetm.sched.reorder (sched_dump, sched_verbose,
6137 ready_lastpos (&ready),
6138 &ready.n_ready, clock_var);
0c775e95 6139 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6140 ls.can_issue_more
8a83ab3e 6141 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6142 ready.n_ready
6143 ? ready_lastpos (&ready) : NULL,
6144 &ready.n_ready, clock_var);
6145 }
bea4bad2 6146
8a83ab3e 6147 restart_choose_ready:
0bc18d66 6148 if (sched_verbose >= 2)
bea4bad2 6149 {
6a1cdb4d 6150 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
bea4bad2 6151 clock_var);
6152 debug_ready_list (&ready);
11189c7a 6153 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
a7dcf969 6154 print_curr_reg_pressure ();
bea4bad2 6155 }
6156
48e1416a 6157 if (ready.n_ready == 0
0c775e95 6158 && ls.can_issue_more
48e1416a 6159 && reload_completed)
bea4bad2 6160 {
67900a4f 6161 /* Allow scheduling insns directly from the queue in case
6162 there's nothing better to do (ready list is empty) but
6163 there are still vacant dispatch slots in the current cycle. */
6164 if (sched_verbose >= 6)
d4473c84 6165 fprintf (sched_dump,";;\t\tSecond chance\n");
67900a4f 6166 memcpy (temp_state, curr_state, dfa_state_size);
6167 if (early_queue_to_ready (temp_state, &ready))
6168 ready_sort (&ready);
bea4bad2 6169 }
52c4b43f 6170
9845d120 6171 if (ready.n_ready == 0
0c775e95 6172 || !ls.can_issue_more
67900a4f 6173 || state_dead_lock_p (curr_state)
6174 || !(*current_sched_info->schedule_more_p) ())
6175 break;
952f0048 6176
67900a4f 6177 /* Select and remove the insn from the ready list. */
6178 if (sort_p)
6a1cdb4d 6179 {
bdeaf25e 6180 int res;
6181
6182 insn = NULL_RTX;
0c775e95 6183 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
bdeaf25e 6184
6185 if (res < 0)
6186 /* Finish cycle. */
6187 break;
6188 if (res > 0)
8a83ab3e 6189 goto restart_choose_ready;
bdeaf25e 6190
6191 gcc_assert (insn != NULL_RTX);
6a1cdb4d 6192 }
67900a4f 6193 else
6194 insn = ready_remove_first (&ready);
952f0048 6195
b30b031c 6196 if (sched_pressure != SCHED_PRESSURE_NONE
11189c7a 6197 && INSN_TICK (insn) > clock_var)
a7dcf969 6198 {
6199 ready_add (&ready, insn, true);
6200 advance = 1;
6201 break;
6202 }
6203
67900a4f 6204 if (targetm.sched.dfa_new_cycle
6205 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6206 insn, last_clock_var,
6207 clock_var, &sort_p))
e4897000 6208 /* SORT_P is used by the target to override sorting
6209 of the ready list. This is needed when the target
6210 has modified its internal structures expecting that
6211 the insn will be issued next. As we need the insn
6212 to have the highest priority (so it will be returned by
6213 the ready_remove_first call above), we invoke
6214 ready_add (&ready, insn, true).
48e1416a 6215 But, still, there is one issue: INSN can be later
6216 discarded by scheduler's front end through
e4897000 6217 current_sched_info->can_schedule_ready_p, hence, won't
48e1416a 6218 be issued next. */
67900a4f 6219 {
e4897000 6220 ready_add (&ready, insn, true);
6221 break;
67900a4f 6222 }
952f0048 6223
67900a4f 6224 sort_p = TRUE;
9bf1996d 6225
6a1cdb4d 6226 if (current_sched_info->can_schedule_ready_p
6227 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6228 /* We normally get here only if we don't want to move
6229 insn from the split block. */
6230 {
d452a169 6231 TODO_SPEC (insn) = DEP_POSTPONED;
8a83ab3e 6232 goto restart_choose_ready;
6a1cdb4d 6233 }
6234
d9dd21a8 6235 if (delay_htab.is_created ())
e2f4a6ff 6236 {
6237 /* If this insn is the first part of a delay-slot pair, record a
6238 backtrack point. */
6239 struct delay_pair *delay_entry;
6240 delay_entry
d9dd21a8 6241 = delay_htab.find_with_hash (insn, htab_hash_pointer (insn));
e2f4a6ff 6242 if (delay_entry)
6243 {
6244 save_backtrack_point (delay_entry, ls);
6245 if (sched_verbose >= 2)
6246 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6247 }
6248 }
6249
48e1416a 6250 /* DECISION is made. */
6251
c0457559 6252 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6253 {
6254 modulo_insns_scheduled++;
6255 modulo_last_stage = clock_var / modulo_ii;
6256 }
6a1cdb4d 6257 if (TODO_SPEC (insn) & SPECULATIVE)
6258 generate_recovery_code (insn);
6259
0ac9454e 6260 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6261 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6262
d2412f57 6263 /* Update counters, etc in the scheduler's front end. */
6264 (*current_sched_info->begin_schedule_ready) (insn);
f1f41a6c 6265 scheduled_insns.safe_push (insn);
d0aa45d0 6266 gcc_assert (NONDEBUG_INSN_P (insn));
6267 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
48e1416a 6268
a0fc5ef1 6269 if (recog_memoized (insn) >= 0)
6270 {
2cd04cca 6271 memcpy (temp_state, curr_state, dfa_state_size);
a0fc5ef1 6272 cost = state_transition (curr_state, insn);
11189c7a 6273 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
a0fc5ef1 6274 gcc_assert (cost < 0);
2cd04cca 6275 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6276 cycle_issued_insns++;
a0fc5ef1 6277 asm_p = false;
6278 }
6279 else
6280 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6281 || asm_noperands (PATTERN (insn)) >= 0);
952f0048 6282
747af5e7 6283 if (targetm.sched.variable_issue)
0c775e95 6284 ls.can_issue_more =
883b2e73 6285 targetm.sched.variable_issue (sched_dump, sched_verbose,
0c775e95 6286 insn, ls.can_issue_more);
37cde9fb 6287 /* A naked CLOBBER or USE generates no instruction, so do
6288 not count them against the issue rate. */
6289 else if (GET_CODE (PATTERN (insn)) != USE
6290 && GET_CODE (PATTERN (insn)) != CLOBBER)
0c775e95 6291 ls.can_issue_more--;
e4897000 6292 advance = schedule_insn (insn);
deeb83d6 6293
e2f4a6ff 6294 if (SHADOW_P (insn))
6295 ls.shadows_only_p = true;
6296
deeb83d6 6297 /* After issuing an asm insn we should start a new cycle. */
6298 if (advance == 0 && asm_p)
6299 advance = 1;
e2f4a6ff 6300
6301 if (must_backtrack)
6302 break;
6303
e26579fc 6304 if (advance != 0)
6305 break;
3eb9a99d 6306
0c775e95 6307 ls.first_cycle_insn_p = false;
58ada791 6308 if (ready.n_ready > 0)
c0457559 6309 prune_ready_list (temp_state, false, ls.shadows_only_p,
6310 ls.modulo_epilogue);
7a31a7bd 6311 }
3eb9a99d 6312
e2f4a6ff 6313 do_backtrack:
6314 if (!must_backtrack)
6315 for (i = 0; i < ready.n_ready; i++)
6316 {
6317 rtx insn = ready_element (&ready, i);
6318 if (INSN_EXACT_TICK (insn) == clock_var)
6319 {
6320 must_backtrack = true;
6321 clock_var++;
6322 break;
6323 }
6324 }
c0457559 6325 if (must_backtrack && modulo_ii > 0)
6326 {
6327 if (modulo_backtracks_left == 0)
6328 goto end_schedule;
6329 modulo_backtracks_left--;
6330 }
e2f4a6ff 6331 while (must_backtrack)
6332 {
6333 struct haifa_saved_data *failed;
6334 rtx failed_insn;
6335
6336 must_backtrack = false;
6337 failed = verify_shadows ();
6338 gcc_assert (failed);
6339
6340 failed_insn = failed->delay_pair->i1;
d452a169 6341 /* Clear these queues. */
6342 perform_replacements_new_cycle ();
effd1640 6343 toggle_cancelled_flags (false);
e2f4a6ff 6344 unschedule_insns_until (failed_insn);
6345 while (failed != backtrack_queue)
6346 free_topmost_backtrack_point (true);
6347 restore_last_backtrack_point (&ls);
6348 if (sched_verbose >= 2)
6349 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6350 /* Delay by at least a cycle. This could cause additional
6351 backtracking. */
6352 queue_insn (failed_insn, 1, "backtracked");
6353 advance = 0;
6354 if (must_backtrack)
6355 continue;
6356 if (ready.n_ready > 0)
6357 goto resume_after_backtrack;
6358 else
6359 {
6360 if (clock_var == 0 && ls.first_cycle_insn_p)
6361 goto end_schedule;
6362 advance = 1;
6363 break;
6364 }
6365 }
6366 }
c0457559 6367 if (ls.modulo_epilogue)
6368 success = true;
e2f4a6ff 6369 end_schedule:
0a15667c 6370 advance_one_cycle ();
d452a169 6371 perform_replacements_new_cycle ();
c0457559 6372 if (modulo_ii > 0)
6373 {
6374 /* Once again, debug insn suckiness: they can be on the ready list
6375 even if they have unresolved dependencies. To make our view
6376 of the world consistent, remove such "ready" insns. */
6377 restart_debug_insn_loop:
6378 for (i = ready.n_ready - 1; i >= 0; i--)
6379 {
6380 rtx x;
6381
6382 x = ready_element (&ready, i);
6383 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6384 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6385 {
6386 ready_remove (&ready, i);
6387 goto restart_debug_insn_loop;
6388 }
6389 }
6390 for (i = ready.n_ready - 1; i >= 0; i--)
6391 {
6392 rtx x;
6393
6394 x = ready_element (&ready, i);
6395 resolve_dependencies (x);
6396 }
6397 for (i = 0; i <= max_insn_queue_index; i++)
6398 {
6399 rtx link;
6400 while ((link = insn_queue[i]) != NULL)
6401 {
6402 rtx x = XEXP (link, 0);
6403 insn_queue[i] = XEXP (link, 1);
6404 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6405 free_INSN_LIST_node (link);
6406 resolve_dependencies (x);
6407 }
6408 }
6409 }
6410
d452a169 6411 if (!success)
6412 undo_all_replacements ();
6413
7a31a7bd 6414 /* Debug info. */
6415 if (sched_verbose)
6416 {
6417 fprintf (sched_dump, ";;\tReady list (final): ");
6418 debug_ready_list (&ready);
7a31a7bd 6419 }
3eb9a99d 6420
c0457559 6421 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
e4897000 6422 /* Sanity check -- queue must be empty now. Meaningless if region has
6423 multiple bbs. */
9845d120 6424 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
c0457559 6425 else if (modulo_ii == 0)
58ada791 6426 {
e4897000 6427 /* We must maintain QUEUE_INDEX between blocks in region. */
6428 for (i = ready.n_ready - 1; i >= 0; i--)
6a1cdb4d 6429 {
6430 rtx x;
48e1416a 6431
6a1cdb4d 6432 x = ready_element (&ready, i);
6433 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2261c559 6434 TODO_SPEC (x) = HARD_DEP;
6a1cdb4d 6435 }
e4897000 6436
48e1416a 6437 if (q_size)
e4897000 6438 for (i = 0; i <= max_insn_queue_index; i++)
6439 {
6440 rtx link;
6441 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6a1cdb4d 6442 {
6443 rtx x;
6444
6445 x = XEXP (link, 0);
6446 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2261c559 6447 TODO_SPEC (x) = HARD_DEP;
6a1cdb4d 6448 }
e4897000 6449 free_INSN_LIST_list (&insn_queue[i]);
6450 }
6a1cdb4d 6451 }
952f0048 6452
b30b031c 6453 if (sched_pressure == SCHED_PRESSURE_MODEL)
6454 model_end_schedule ();
6455
c0457559 6456 if (success)
6457 {
6458 commit_schedule (prev_head, tail, target_bb);
6459 if (sched_verbose)
6460 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6461 }
6462 else
6463 last_scheduled_insn = tail;
6464
f1f41a6c 6465 scheduled_insns.truncate (0);
e1ab7874 6466
6a1cdb4d 6467 if (!current_sched_info->queue_must_finish_empty
93f6b030 6468 || haifa_recovery_bb_recently_added_p)
6a1cdb4d 6469 {
58ada791 6470 /* INSN_TICK (minimum clock tick at which the insn becomes
6471 ready) may be not correct for the insn in the subsequent
6472 blocks of the region. We should use a correct value of
6473 `clock_var' or modify INSN_TICK. It is better to keep
6474 clock_var value equal to 0 at the start of a basic block.
6475 Therefore we modify INSN_TICK here. */
e4897000 6476 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
58ada791 6477 }
6478
202d6e5f 6479 if (targetm.sched.finish)
93f6b030 6480 {
202d6e5f 6481 targetm.sched.finish (sched_dump, sched_verbose);
f0b5f617 6482 /* Target might have added some instructions to the scheduled block
93f6b030 6483 in its md_finish () hook. These new insns don't have any data
6484 initialized and to identify them we extend h_i_d so that they'll
e1ab7874 6485 get zero luids. */
52d7e28c 6486 sched_extend_luids ();
93f6b030 6487 }
e4897000 6488
e1ab7874 6489 if (sched_verbose)
6490 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
6491 INSN_UID (head), INSN_UID (tail));
6492
e4897000 6493 /* Update head/tail boundaries. */
6494 head = NEXT_INSN (prev_head);
6495 tail = last_scheduled_insn;
6496
e1ab7874 6497 head = restore_other_notes (head, NULL);
3eb9a99d 6498
7a31a7bd 6499 current_sched_info->head = head;
6500 current_sched_info->tail = tail;
e2f4a6ff 6501
6502 free_backtrack_queue ();
c0457559 6503
6504 return success;
3eb9a99d 6505}
7a31a7bd 6506\f
c4cd519a 6507/* Set_priorities: compute priority of each insn in the block. */
3eb9a99d 6508
7a31a7bd 6509int
952f0048 6510set_priorities (rtx head, rtx tail)
3eb9a99d 6511{
6512 rtx insn;
6513 int n_insn;
48e1416a 6514 int sched_max_insns_priority =
09542196 6515 current_sched_info->sched_max_insns_priority;
3eb9a99d 6516 rtx prev_head;
3eb9a99d 6517
9221ec44 6518 if (head == tail && ! INSN_P (head))
9845d120 6519 gcc_unreachable ();
3eb9a99d 6520
6521 n_insn = 0;
e4897000 6522
6523 prev_head = PREV_INSN (head);
3eb9a99d 6524 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6525 {
e4897000 6526 if (!INSN_P (insn))
3eb9a99d 6527 continue;
6528
e26579fc 6529 n_insn++;
3eb9a99d 6530 (void) priority (insn);
09542196 6531
3588ab9c 6532 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6533
6534 sched_max_insns_priority = MAX (sched_max_insns_priority,
6535 INSN_PRIORITY (insn));
3eb9a99d 6536 }
e4897000 6537
6538 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3eb9a99d 6539
6540 return n_insn;
6541}
6542
e1ab7874 6543/* Set dump and sched_verbose for the desired debugging output. If no
6544 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6545 For -fsched-verbose=N, N>=10, print everything to stderr. */
6546void
6547setup_sched_dump (void)
6548{
6549 sched_verbose = sched_verbose_param;
6550 if (sched_verbose_param == 0 && dump_file)
6551 sched_verbose = 1;
6552 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6553 ? stderr : dump_file);
6554}
6a1cdb4d 6555
48e1416a 6556/* Initialize some global state for the scheduler. This function works
e1ab7874 6557 with the common data shared between all the schedulers. It is called
6558 from the scheduler specific initialization routine. */
3eb9a99d 6559
7a31a7bd 6560void
3f5be5f4 6561sched_init (void)
3eb9a99d 6562{
c4cd519a 6563 /* Disable speculative loads in their presence if cc0 defined. */
3eb9a99d 6564#ifdef HAVE_cc0
6565 flag_schedule_speculative_load = 0;
6566#endif
6567
0ac9454e 6568 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6569 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6570
57a8bf1b 6571 if (live_range_shrinkage_p)
6572 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6573 else if (flag_sched_pressure
6574 && !reload_completed
6575 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
d86dbf92 6576 sched_pressure = ((enum sched_pressure_algorithm)
6577 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
11189c7a 6578 else
6579 sched_pressure = SCHED_PRESSURE_NONE;
0ac9454e 6580
b30b031c 6581 if (sched_pressure != SCHED_PRESSURE_NONE)
3b3a5e5f 6582 ira_setup_eliminable_regset ();
a7dcf969 6583
6a1cdb4d 6584 /* Initialize SPEC_INFO. */
6585 if (targetm.sched.set_sched_flags)
6586 {
6587 spec_info = &spec_info_var;
6588 targetm.sched.set_sched_flags (spec_info);
e1ab7874 6589
6590 if (spec_info->mask != 0)
6591 {
6592 spec_info->data_weakness_cutoff =
6593 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6594 spec_info->control_weakness_cutoff =
6595 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6596 * REG_BR_PROB_BASE) / 100;
6597 }
6a1cdb4d 6598 else
554f2707 6599 /* So we won't read anything accidentally. */
e1ab7874 6600 spec_info = NULL;
6601
6a1cdb4d 6602 }
6603 else
554f2707 6604 /* So we won't read anything accidentally. */
6a1cdb4d 6605 spec_info = 0;
6606
c4cd519a 6607 /* Initialize issue_rate. */
747af5e7 6608 if (targetm.sched.issue_rate)
883b2e73 6609 issue_rate = targetm.sched.issue_rate ();
747af5e7 6610 else
6611 issue_rate = 1;
3eb9a99d 6612
29fde7f1 6613 if (cached_issue_rate != issue_rate)
6614 {
6615 cached_issue_rate = issue_rate;
6616 /* To invalidate max_lookahead_tries: */
6617 cached_first_cycle_multipass_dfa_lookahead = 0;
6618 }
6619
e1ab7874 6620 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6621 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6622 else
6623 dfa_lookahead = 0;
bea4bad2 6624
67900a4f 6625 if (targetm.sched.init_dfa_pre_cycle_insn)
6626 targetm.sched.init_dfa_pre_cycle_insn ();
952f0048 6627
67900a4f 6628 if (targetm.sched.init_dfa_post_cycle_insn)
6629 targetm.sched.init_dfa_post_cycle_insn ();
952f0048 6630
67900a4f 6631 dfa_start ();
6632 dfa_state_size = state_size ();
bea4bad2 6633
e1ab7874 6634 init_alias_analysis ();
62276683 6635
e2f4a6ff 6636 if (!sched_no_dce)
6637 df_set_flags (DF_LR_RUN_DCE);
e1ab7874 6638 df_note_add_problem ();
62276683 6639
e1ab7874 6640 /* More problems needed for interloop dep calculation in SMS. */
6641 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6642 {
6643 df_rd_add_problem ();
6644 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6645 }
896c2bfe 6646
e1ab7874 6647 df_analyze ();
48e1416a 6648
6649 /* Do not run DCE after reload, as this can kill nops inserted
e1ab7874 6650 by bundling. */
6651 if (reload_completed)
6652 df_clear_flags (DF_LR_RUN_DCE);
d0768316 6653
e1ab7874 6654 regstat_compute_calls_crossed ();
d0768316 6655
202d6e5f 6656 if (targetm.sched.init_global)
6657 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
d0768316 6658
b30b031c 6659 if (sched_pressure != SCHED_PRESSURE_NONE)
a7dcf969 6660 {
6661 int i, max_regno = max_reg_num ();
6662
169d9eaf 6663 if (sched_dump != NULL)
6664 /* We need info about pseudos for rtl dumps about pseudo
6665 classes and costs. */
6666 regstat_init_n_sets_and_refs ();
1ec78e16 6667 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
66d9a7b9 6668 sched_regno_pressure_class
a7dcf969 6669 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6670 for (i = 0; i < max_regno; i++)
66d9a7b9 6671 sched_regno_pressure_class[i]
a7dcf969 6672 = (i < FIRST_PSEUDO_REGISTER
66d9a7b9 6673 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6674 : ira_pressure_class_translate[reg_allocno_class (i)]);
a7dcf969 6675 curr_reg_live = BITMAP_ALLOC (NULL);
b30b031c 6676 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6677 {
6678 saved_reg_live = BITMAP_ALLOC (NULL);
6679 region_ref_regs = BITMAP_ALLOC (NULL);
6680 }
a7dcf969 6681 }
48e1416a 6682
e1ab7874 6683 curr_state = xmalloc (dfa_state_size);
6684}
f77a5bb0 6685
e1ab7874 6686static void haifa_init_only_bb (basic_block, basic_block);
6a1cdb4d 6687
e1ab7874 6688/* Initialize data structures specific to the Haifa scheduler. */
6689void
6690haifa_sched_init (void)
6691{
6692 setup_sched_dump ();
6693 sched_init ();
6694
f1f41a6c 6695 scheduled_insns.create (0);
b5f4bfde 6696
e1ab7874 6697 if (spec_info != NULL)
6698 {
6699 sched_deps_info->use_deps_list = 1;
6700 sched_deps_info->generate_spec_deps = 1;
6701 }
6702
6703 /* Initialize luids, dependency caches, target and h_i_d for the
6704 whole function. */
6705 {
f1f41a6c 6706 bb_vec_t bbs;
a28770e1 6707 bbs.create (n_basic_blocks_for_fn (cfun));
e1ab7874 6708 basic_block bb;
6a1cdb4d 6709
e1ab7874 6710 sched_init_bbs ();
6711
6712 FOR_EACH_BB (bb)
f1f41a6c 6713 bbs.quick_push (bb);
52d7e28c 6714 sched_init_luids (bbs);
e1ab7874 6715 sched_deps_init (true);
6716 sched_extend_target ();
52d7e28c 6717 haifa_init_h_i_d (bbs);
e1ab7874 6718
f1f41a6c 6719 bbs.release ();
e1ab7874 6720 }
6721
6722 sched_init_only_bb = haifa_init_only_bb;
6723 sched_split_block = sched_split_block_1;
6724 sched_create_empty_bb = sched_create_empty_bb_1;
93f6b030 6725 haifa_recovery_bb_ever_added_p = false;
6726
e1ab7874 6727 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6728 before_recovery = 0;
6729 after_recovery = 0;
c0457559 6730
6731 modulo_ii = 0;
e1ab7874 6732}
3eb9a99d 6733
e1ab7874 6734/* Finish work with the data specific to the Haifa scheduler. */
d0768316 6735void
e1ab7874 6736haifa_sched_finish (void)
d0768316 6737{
e1ab7874 6738 sched_create_empty_bb = NULL;
6739 sched_split_block = NULL;
6740 sched_init_only_bb = NULL;
f77a5bb0 6741
6a1cdb4d 6742 if (spec_info && spec_info->dump)
6743 {
6744 char c = reload_completed ? 'a' : 'b';
6745
6746 fprintf (spec_info->dump,
6747 ";; %s:\n", current_function_name ());
6748
6749 fprintf (spec_info->dump,
6750 ";; Procedure %cr-begin-data-spec motions == %d\n",
6751 c, nr_begin_data);
6752 fprintf (spec_info->dump,
6753 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6754 c, nr_be_in_data);
6755 fprintf (spec_info->dump,
6756 ";; Procedure %cr-begin-control-spec motions == %d\n",
6757 c, nr_begin_control);
6758 fprintf (spec_info->dump,
6759 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6760 c, nr_be_in_control);
6761 }
6762
f1f41a6c 6763 scheduled_insns.release ();
b5f4bfde 6764
e1ab7874 6765 /* Finalize h_i_d, dependency caches, and luids for the whole
6766 function. Target will be finalized in md_global_finish (). */
6767 sched_deps_finish ();
6768 sched_finish_luids ();
6769 current_sched_info = NULL;
6770 sched_finish ();
6771}
6772
48e1416a 6773/* Free global data used during insn scheduling. This function works with
e1ab7874 6774 the common data shared between the schedulers. */
6775
6776void
6777sched_finish (void)
6778{
6779 haifa_finish_h_i_d ();
b30b031c 6780 if (sched_pressure != SCHED_PRESSURE_NONE)
a7dcf969 6781 {
169d9eaf 6782 if (regstat_n_sets_and_refs != NULL)
6783 regstat_free_n_sets_and_refs ();
b30b031c 6784 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6785 {
6786 BITMAP_FREE (region_ref_regs);
6787 BITMAP_FREE (saved_reg_live);
6788 }
a7dcf969 6789 BITMAP_FREE (curr_reg_live);
b30b031c 6790 free (sched_regno_pressure_class);
a7dcf969 6791 }
e1ab7874 6792 free (curr_state);
6793
202d6e5f 6794 if (targetm.sched.finish_global)
6795 targetm.sched.finish_global (sched_dump, sched_verbose);
e1ab7874 6796
6797 end_alias_analysis ();
6798
6799 regstat_free_calls_crossed ();
6800
6801 dfa_finish ();
3eb9a99d 6802}
e4897000 6803
e2f4a6ff 6804/* Free all delay_pair structures that were recorded. */
6805void
6806free_delay_pairs (void)
6807{
d9dd21a8 6808 if (delay_htab.is_created ())
e2f4a6ff 6809 {
d9dd21a8 6810 delay_htab.empty ();
6811 delay_htab_i2.empty ();
e2f4a6ff 6812 }
6813}
6814
e4897000 6815/* Fix INSN_TICKs of the instructions in the current block as well as
9ca2c29a 6816 INSN_TICKs of their dependents.
e4897000 6817 HEAD and TAIL are the begin and the end of the current scheduled block. */
6818static void
6819fix_inter_tick (rtx head, rtx tail)
6820{
6821 /* Set of instructions with corrected INSN_TICK. */
6822 bitmap_head processed;
93f6b030 6823 /* ??? It is doubtful if we should assume that cycle advance happens on
6824 basic block boundaries. Basically insns that are unconditionally ready
6825 on the start of the block are more preferable then those which have
6826 a one cycle dependency over insn from the previous block. */
e4897000 6827 int next_clock = clock_var + 1;
6828
6829 bitmap_initialize (&processed, 0);
48e1416a 6830
e4897000 6831 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6832 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6833 across different blocks. */
6834 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6835 {
6836 if (INSN_P (head))
6837 {
6838 int tick;
93f6b030 6839 sd_iterator_def sd_it;
6840 dep_t dep;
48e1416a 6841
e4897000 6842 tick = INSN_TICK (head);
6843 gcc_assert (tick >= MIN_TICK);
48e1416a 6844
e4897000 6845 /* Fix INSN_TICK of instruction from just scheduled block. */
6ef9bbe0 6846 if (bitmap_set_bit (&processed, INSN_LUID (head)))
e4897000 6847 {
e4897000 6848 tick -= next_clock;
48e1416a 6849
e4897000 6850 if (tick < MIN_TICK)
6851 tick = MIN_TICK;
48e1416a 6852
6853 INSN_TICK (head) = tick;
e4897000 6854 }
48e1416a 6855
ae3eaa0f 6856 if (DEBUG_INSN_P (head))
6857 continue;
6858
93f6b030 6859 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
e4897000 6860 {
6861 rtx next;
48e1416a 6862
93f6b030 6863 next = DEP_CON (dep);
e4897000 6864 tick = INSN_TICK (next);
6865
6866 if (tick != INVALID_TICK
6867 /* If NEXT has its INSN_TICK calculated, fix it.
6868 If not - it will be properly calculated from
6869 scratch later in fix_tick_ready. */
6ef9bbe0 6870 && bitmap_set_bit (&processed, INSN_LUID (next)))
e4897000 6871 {
e4897000 6872 tick -= next_clock;
48e1416a 6873
e4897000 6874 if (tick < MIN_TICK)
6875 tick = MIN_TICK;
48e1416a 6876
e4897000 6877 if (tick > INTER_TICK (next))
6878 INTER_TICK (next) = tick;
6879 else
6880 tick = INTER_TICK (next);
93f6b030 6881
e4897000 6882 INSN_TICK (next) = tick;
6883 }
6884 }
6885 }
6886 }
6887 bitmap_clear (&processed);
6888}
e1ab7874 6889
e4897000 6890/* Check if NEXT is ready to be added to the ready or queue list.
6891 If "yes", add it to the proper list.
6892 Returns:
6893 -1 - is not ready yet,
6894 0 - added to the ready list,
6895 0 < N - queued for N cycles. */
6896int
6897try_ready (rtx next)
48e1416a 6898{
2261c559 6899 ds_t old_ts, new_ts;
e4897000 6900
2261c559 6901 old_ts = TODO_SPEC (next);
e4897000 6902
d452a169 6903 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
6904 && (old_ts == HARD_DEP
6905 || old_ts == DEP_POSTPONED
effd1640 6906 || (old_ts & SPECULATIVE)
d452a169 6907 || old_ts == DEP_CONTROL));
93f6b030 6908
d452a169 6909 new_ts = recompute_todo_spec (next, false);
9997bd27 6910
d452a169 6911 if (new_ts & (HARD_DEP | DEP_POSTPONED))
effd1640 6912 gcc_assert (new_ts == old_ts
6a1cdb4d 6913 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
6914 else if (current_sched_info->new_ready)
2261c559 6915 new_ts = current_sched_info->new_ready (next, new_ts);
6a1cdb4d 6916
9997bd27 6917 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
6a1cdb4d 6918 have its original pattern or changed (speculative) one. This is due
6919 to changing ebb in region scheduling.
6920 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
6921 has speculative pattern.
9997bd27 6922
2261c559 6923 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
6a1cdb4d 6924 control-speculative NEXT could have been discarded by sched-rgn.c
6925 (the same case as when discarded by can_schedule_ready_p ()). */
9997bd27 6926
2261c559 6927 if ((new_ts & SPECULATIVE)
6928 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
6a1cdb4d 6929 need to change anything. */
2261c559 6930 && new_ts != old_ts)
6a1cdb4d 6931 {
6932 int res;
6933 rtx new_pat;
48e1416a 6934
effd1640 6935 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
48e1416a 6936
2261c559 6937 res = haifa_speculate_insn (next, new_ts, &new_pat);
48e1416a 6938
6a1cdb4d 6939 switch (res)
6940 {
6941 case -1:
6942 /* It would be nice to change DEP_STATUS of all dependences,
2261c559 6943 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
6a1cdb4d 6944 so we won't reanalyze anything. */
2261c559 6945 new_ts = HARD_DEP;
6a1cdb4d 6946 break;
48e1416a 6947
6a1cdb4d 6948 case 0:
6949 /* We follow the rule, that every speculative insn
6950 has non-null ORIG_PAT. */
6951 if (!ORIG_PAT (next))
6952 ORIG_PAT (next) = PATTERN (next);
6953 break;
48e1416a 6954
6955 case 1:
6a1cdb4d 6956 if (!ORIG_PAT (next))
6957 /* If we gonna to overwrite the original pattern of insn,
6958 save it. */
6959 ORIG_PAT (next) = PATTERN (next);
48e1416a 6960
effd1640 6961 res = haifa_change_pattern (next, new_pat);
6962 gcc_assert (res);
6a1cdb4d 6963 break;
48e1416a 6964
6a1cdb4d 6965 default:
6966 gcc_unreachable ();
6967 }
6968 }
48e1416a 6969
2261c559 6970 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
6971 either correct (new_ts & SPECULATIVE),
6972 or we simply don't care (new_ts & HARD_DEP). */
48e1416a 6973
6a1cdb4d 6974 gcc_assert (!ORIG_PAT (next)
fd27912f 6975 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
48e1416a 6976
2261c559 6977 TODO_SPEC (next) = new_ts;
6978
d452a169 6979 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6a1cdb4d 6980 {
6981 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
6982 control-speculative NEXT could have been discarded by sched-rgn.c
6983 (the same case as when discarded by can_schedule_ready_p ()). */
6984 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
48e1416a 6985
6a1cdb4d 6986 change_queue_index (next, QUEUE_NOWHERE);
effd1640 6987
6a1cdb4d 6988 return -1;
6989 }
2261c559 6990 else if (!(new_ts & BEGIN_SPEC)
effd1640 6991 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
6992 && !IS_SPECULATION_CHECK_P (next))
48e1416a 6993 /* We should change pattern of every previously speculative
611a596b 6994 instruction - and we determine if NEXT was speculative by using
fd27912f 6995 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
6996 pat too, so skip them. */
611a596b 6997 {
effd1640 6998 bool success = haifa_change_pattern (next, ORIG_PAT (next));
6999 gcc_assert (success);
611a596b 7000 ORIG_PAT (next) = 0;
7001 }
6a1cdb4d 7002
7003 if (sched_verbose >= 2)
48e1416a 7004 {
6a1cdb4d 7005 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7006 (*current_sched_info->print_insn) (next, 0));
48e1416a 7007
6a1cdb4d 7008 if (spec_info && spec_info->dump)
7009 {
2261c559 7010 if (new_ts & BEGIN_DATA)
6a1cdb4d 7011 fprintf (spec_info->dump, "; data-spec;");
2261c559 7012 if (new_ts & BEGIN_CONTROL)
6a1cdb4d 7013 fprintf (spec_info->dump, "; control-spec;");
2261c559 7014 if (new_ts & BE_IN_CONTROL)
6a1cdb4d 7015 fprintf (spec_info->dump, "; in-control-spec;");
7016 }
effd1640 7017 if (TODO_SPEC (next) & DEP_CONTROL)
7018 fprintf (sched_dump, " predicated");
6a1cdb4d 7019 fprintf (sched_dump, "\n");
48e1416a 7020 }
7021
6a1cdb4d 7022 adjust_priority (next);
48e1416a 7023
6a1cdb4d 7024 return fix_tick_ready (next);
7025}
7026
7027/* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7028static int
e4897000 7029fix_tick_ready (rtx next)
7030{
e4897000 7031 int tick, delay;
7032
82467e60 7033 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
e4897000 7034 {
7035 int full_p;
93f6b030 7036 sd_iterator_def sd_it;
7037 dep_t dep;
e4897000 7038
7039 tick = INSN_TICK (next);
6a1cdb4d 7040 /* if tick is not equal to INVALID_TICK, then update
e4897000 7041 INSN_TICK of NEXT with the most recent resolved dependence
9ca2c29a 7042 cost. Otherwise, recalculate from scratch. */
9997bd27 7043 full_p = (tick == INVALID_TICK);
7044
93f6b030 7045 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
48e1416a 7046 {
9997bd27 7047 rtx pro = DEP_PRO (dep);
e4897000 7048 int tick1;
48e1416a 7049
e4897000 7050 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
6a1cdb4d 7051
9997bd27 7052 tick1 = INSN_TICK (pro) + dep_cost (dep);
e4897000 7053 if (tick1 > tick)
7054 tick = tick1;
9997bd27 7055
7056 if (!full_p)
7057 break;
e4897000 7058 }
e4897000 7059 }
7060 else
7061 tick = -1;
7062
7063 INSN_TICK (next) = tick;
7064
7065 delay = tick - clock_var;
b30b031c 7066 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
e4897000 7067 delay = QUEUE_READY;
7068
7069 change_queue_index (next, delay);
6a1cdb4d 7070
e4897000 7071 return delay;
7072}
7073
7074/* Move NEXT to the proper queue list with (DELAY >= 1),
7075 or add it to the ready list (DELAY == QUEUE_READY),
7076 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7077static void
7078change_queue_index (rtx next, int delay)
7079{
7080 int i = QUEUE_INDEX (next);
7081
48e1416a 7082 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
e4897000 7083 && delay != 0);
7084 gcc_assert (i != QUEUE_SCHEDULED);
48e1416a 7085
e4897000 7086 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7087 || (delay < 0 && delay == i))
7088 /* We have nothing to do. */
7089 return;
7090
9ca2c29a 7091 /* Remove NEXT from wherever it is now. */
e4897000 7092 if (i == QUEUE_READY)
7093 ready_remove_insn (next);
7094 else if (i >= 0)
7095 queue_remove (next);
48e1416a 7096
e4897000 7097 /* Add it to the proper place. */
7098 if (delay == QUEUE_READY)
7099 ready_add (readyp, next, false);
7100 else if (delay >= 1)
b49b2e5c 7101 queue_insn (next, delay, "change queue index");
48e1416a 7102
e4897000 7103 if (sched_verbose >= 2)
48e1416a 7104 {
e4897000 7105 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7106 (*current_sched_info->print_insn) (next, 0));
48e1416a 7107
e4897000 7108 if (delay == QUEUE_READY)
7109 fprintf (sched_dump, " into ready\n");
7110 else if (delay >= 1)
7111 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7112 else
7113 fprintf (sched_dump, " removed from ready or queue lists\n");
7114 }
7115}
7116
e1ab7874 7117static int sched_ready_n_insns = -1;
6a1cdb4d 7118
e1ab7874 7119/* Initialize per region data structures. */
7120void
7121sched_extend_ready_list (int new_sched_ready_n_insns)
6a1cdb4d 7122{
7123 int i;
7124
e1ab7874 7125 if (sched_ready_n_insns == -1)
7126 /* At the first call we need to initialize one more choice_stack
7127 entry. */
7128 {
7129 i = 0;
7130 sched_ready_n_insns = 0;
f1f41a6c 7131 scheduled_insns.reserve (new_sched_ready_n_insns);
e1ab7874 7132 }
7133 else
7134 i = sched_ready_n_insns + 1;
6a1cdb4d 7135
e1ab7874 7136 ready.veclen = new_sched_ready_n_insns + issue_rate;
7137 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
6a1cdb4d 7138
e1ab7874 7139 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
6a1cdb4d 7140
e1ab7874 7141 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7142 sched_ready_n_insns, sizeof (*ready_try));
6a1cdb4d 7143
e1ab7874 7144 /* We allocate +1 element to save initial state in the choice_stack[0]
7145 entry. */
7146 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7147 new_sched_ready_n_insns + 1);
93f6b030 7148
e1ab7874 7149 for (; i <= new_sched_ready_n_insns; i++)
44ad1e56 7150 {
7151 choice_stack[i].state = xmalloc (dfa_state_size);
7152
7153 if (targetm.sched.first_cycle_multipass_init)
7154 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7155 .target_data));
7156 }
6a1cdb4d 7157
e1ab7874 7158 sched_ready_n_insns = new_sched_ready_n_insns;
6a1cdb4d 7159}
7160
e1ab7874 7161/* Free per region data structures. */
7162void
7163sched_finish_ready_list (void)
97ba5522 7164{
e1ab7874 7165 int i;
97ba5522 7166
e1ab7874 7167 free (ready.vec);
7168 ready.vec = NULL;
7169 ready.veclen = 0;
97ba5522 7170
e1ab7874 7171 free (ready_try);
7172 ready_try = NULL;
6a1cdb4d 7173
e1ab7874 7174 for (i = 0; i <= sched_ready_n_insns; i++)
44ad1e56 7175 {
7176 if (targetm.sched.first_cycle_multipass_fini)
7177 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7178 .target_data));
7179
7180 free (choice_stack [i].state);
7181 }
e1ab7874 7182 free (choice_stack);
7183 choice_stack = NULL;
97ba5522 7184
e1ab7874 7185 sched_ready_n_insns = -1;
6a1cdb4d 7186}
7187
e1ab7874 7188static int
7189haifa_luid_for_non_insn (rtx x)
6a1cdb4d 7190{
e1ab7874 7191 gcc_assert (NOTE_P (x) || LABEL_P (x));
7192
7193 return 0;
6a1cdb4d 7194}
7195
7196/* Generates recovery code for INSN. */
7197static void
7198generate_recovery_code (rtx insn)
7199{
7200 if (TODO_SPEC (insn) & BEGIN_SPEC)
7201 begin_speculative_block (insn);
48e1416a 7202
6a1cdb4d 7203 /* Here we have insn with no dependencies to
7204 instructions other then CHECK_SPEC ones. */
48e1416a 7205
6a1cdb4d 7206 if (TODO_SPEC (insn) & BE_IN_SPEC)
7207 add_to_speculative_block (insn);
7208}
7209
7210/* Helper function.
7211 Tries to add speculative dependencies of type FS between instructions
9997bd27 7212 in deps_list L and TWIN. */
6a1cdb4d 7213static void
93f6b030 7214process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
6a1cdb4d 7215{
93f6b030 7216 sd_iterator_def sd_it;
7217 dep_t dep;
9997bd27 7218
93f6b030 7219 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
6a1cdb4d 7220 {
7221 ds_t ds;
7222 rtx consumer;
7223
93f6b030 7224 consumer = DEP_CON (dep);
6a1cdb4d 7225
93f6b030 7226 ds = DEP_STATUS (dep);
6a1cdb4d 7227
611a596b 7228 if (/* If we want to create speculative dep. */
7229 fs
7230 /* And we can do that because this is a true dep. */
7231 && (ds & DEP_TYPES) == DEP_TRUE)
7232 {
7233 gcc_assert (!(ds & BE_IN_SPEC));
7234
9ca2c29a 7235 if (/* If this dep can be overcome with 'begin speculation'. */
611a596b 7236 ds & BEGIN_SPEC)
7237 /* Then we have a choice: keep the dep 'begin speculative'
7238 or transform it into 'be in speculative'. */
7239 {
7240 if (/* In try_ready we assert that if insn once became ready
7241 it can be removed from the ready (or queue) list only
7242 due to backend decision. Hence we can't let the
7243 probability of the speculative dep to decrease. */
e1ab7874 7244 ds_weak (ds) <= ds_weak (fs))
b06b98c8 7245 {
7246 ds_t new_ds;
7247
7248 new_ds = (ds & ~BEGIN_SPEC) | fs;
48e1416a 7249
b06b98c8 7250 if (/* consumer can 'be in speculative'. */
7251 sched_insn_is_legitimate_for_speculation_p (consumer,
7252 new_ds))
7253 /* Transform it to be in speculative. */
7254 ds = new_ds;
7255 }
611a596b 7256 }
7257 else
7258 /* Mark the dep as 'be in speculative'. */
7259 ds |= fs;
7260 }
6a1cdb4d 7261
93f6b030 7262 {
7263 dep_def _new_dep, *new_dep = &_new_dep;
7264
7265 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7266 sd_add_dep (new_dep, false);
7267 }
6a1cdb4d 7268 }
7269}
7270
7271/* Generates recovery code for BEGIN speculative INSN. */
7272static void
7273begin_speculative_block (rtx insn)
7274{
7275 if (TODO_SPEC (insn) & BEGIN_DATA)
48e1416a 7276 nr_begin_data++;
6a1cdb4d 7277 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7278 nr_begin_control++;
7279
7280 create_check_block_twin (insn, false);
7281
7282 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7283}
7284
e1ab7874 7285static void haifa_init_insn (rtx);
7286
6a1cdb4d 7287/* Generates recovery code for BE_IN speculative INSN. */
7288static void
7289add_to_speculative_block (rtx insn)
7290{
7291 ds_t ts;
93f6b030 7292 sd_iterator_def sd_it;
7293 dep_t dep;
9997bd27 7294 rtx twins = NULL;
3588ab9c 7295 rtx_vec_t priorities_roots;
6a1cdb4d 7296
7297 ts = TODO_SPEC (insn);
7298 gcc_assert (!(ts & ~BE_IN_SPEC));
7299
7300 if (ts & BE_IN_DATA)
7301 nr_be_in_data++;
7302 if (ts & BE_IN_CONTROL)
7303 nr_be_in_control++;
7304
7305 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7306 gcc_assert (!TODO_SPEC (insn));
48e1416a 7307
6a1cdb4d 7308 DONE_SPEC (insn) |= ts;
7309
7310 /* First we convert all simple checks to branchy. */
93f6b030 7311 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7312 sd_iterator_cond (&sd_it, &dep);)
6a1cdb4d 7313 {
93f6b030 7314 rtx check = DEP_PRO (dep);
6a1cdb4d 7315
fd27912f 7316 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
6a1cdb4d 7317 {
7318 create_check_block_twin (check, true);
9997bd27 7319
7320 /* Restart search. */
93f6b030 7321 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
6a1cdb4d 7322 }
7323 else
9997bd27 7324 /* Continue search. */
93f6b030 7325 sd_iterator_next (&sd_it);
6a1cdb4d 7326 }
7327
f1f41a6c 7328 priorities_roots.create (0);
3588ab9c 7329 clear_priorities (insn, &priorities_roots);
93f6b030 7330
7331 while (1)
6a1cdb4d 7332 {
9997bd27 7333 rtx check, twin;
6a1cdb4d 7334 basic_block rec;
7335
93f6b030 7336 /* Get the first backward dependency of INSN. */
7337 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7338 if (!sd_iterator_cond (&sd_it, &dep))
7339 /* INSN has no backward dependencies left. */
7340 break;
6a1cdb4d 7341
93f6b030 7342 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7343 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7344 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
9997bd27 7345
93f6b030 7346 check = DEP_PRO (dep);
fd27912f 7347
7348 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
6a1cdb4d 7349 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
93f6b030 7350
6a1cdb4d 7351 rec = BLOCK_FOR_INSN (check);
93f6b030 7352
0f9736f3 7353 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
e1ab7874 7354 haifa_init_insn (twin);
6a1cdb4d 7355
93f6b030 7356 sd_copy_back_deps (twin, insn, true);
6a1cdb4d 7357
7358 if (sched_verbose && spec_info->dump)
7359 /* INSN_BB (insn) isn't determined for twin insns yet.
7360 So we can't use current_sched_info->print_insn. */
7361 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7362 INSN_UID (twin), rec->index);
7363
7364 twins = alloc_INSN_LIST (twin, twins);
7365
9ca2c29a 7366 /* Add dependences between TWIN and all appropriate
6a1cdb4d 7367 instructions from REC. */
93f6b030 7368 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7369 {
7370 rtx pro = DEP_PRO (dep);
9997bd27 7371
93f6b030 7372 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7373
7374 /* INSN might have dependencies from the instructions from
7375 several recovery blocks. At this iteration we process those
7376 producers that reside in REC. */
7377 if (BLOCK_FOR_INSN (pro) == rec)
7378 {
7379 dep_def _new_dep, *new_dep = &_new_dep;
7380
7381 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7382 sd_add_dep (new_dep, false);
6a1cdb4d 7383 }
6a1cdb4d 7384 }
6a1cdb4d 7385
93f6b030 7386 process_insn_forw_deps_be_in_spec (insn, twin, ts);
6a1cdb4d 7387
9997bd27 7388 /* Remove all dependencies between INSN and insns in REC. */
93f6b030 7389 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7390 sd_iterator_cond (&sd_it, &dep);)
6a1cdb4d 7391 {
93f6b030 7392 rtx pro = DEP_PRO (dep);
9997bd27 7393
93f6b030 7394 if (BLOCK_FOR_INSN (pro) == rec)
7395 sd_delete_dep (sd_it);
6a1cdb4d 7396 else
93f6b030 7397 sd_iterator_next (&sd_it);
6a1cdb4d 7398 }
7399 }
6a1cdb4d 7400
9997bd27 7401 /* We couldn't have added the dependencies between INSN and TWINS earlier
7402 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
6a1cdb4d 7403 while (twins)
7404 {
7405 rtx twin;
7406
7407 twin = XEXP (twins, 0);
93f6b030 7408
7409 {
7410 dep_def _new_dep, *new_dep = &_new_dep;
7411
7412 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7413 sd_add_dep (new_dep, false);
7414 }
6a1cdb4d 7415
7416 twin = XEXP (twins, 1);
7417 free_INSN_LIST_node (twins);
48e1416a 7418 twins = twin;
6a1cdb4d 7419 }
3588ab9c 7420
7421 calc_priorities (priorities_roots);
f1f41a6c 7422 priorities_roots.release ();
6a1cdb4d 7423}
7424
7425/* Extends and fills with zeros (only the new part) array pointed to by P. */
7426void *
7427xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7428{
7429 gcc_assert (new_nmemb >= old_nmemb);
7430 p = XRESIZEVAR (void, p, new_nmemb * size);
7431 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7432 return p;
7433}
7434
6a1cdb4d 7435/* Helper function.
7436 Find fallthru edge from PRED. */
e1ab7874 7437edge
7f58c05e 7438find_fallthru_edge_from (basic_block pred)
6a1cdb4d 7439{
7440 edge e;
6a1cdb4d 7441 basic_block succ;
7442
7443 succ = pred->next_bb;
7444 gcc_assert (succ->prev_bb == pred);
7445
7446 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7447 {
7f58c05e 7448 e = find_fallthru_edge (pred->succs);
7449
7450 if (e)
7451 {
7452 gcc_assert (e->dest == succ);
7453 return e;
7454 }
6a1cdb4d 7455 }
7456 else
7457 {
7f58c05e 7458 e = find_fallthru_edge (succ->preds);
7459
7460 if (e)
7461 {
7462 gcc_assert (e->src == pred);
7463 return e;
7464 }
6a1cdb4d 7465 }
7466
7467 return NULL;
7468}
7469
e1ab7874 7470/* Extend per basic block data structures. */
7471static void
7472sched_extend_bb (void)
7473{
e1ab7874 7474 /* The following is done to keep current_sched_info->next_tail non null. */
34154e27 7475 rtx end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
2fdeadc1 7476 rtx insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7477 if (NEXT_INSN (end) == 0
e1ab7874 7478 || (!NOTE_P (insn)
7479 && !LABEL_P (insn)
7480 /* Don't emit a NOTE if it would end up before a BARRIER. */
2fdeadc1 7481 && !BARRIER_P (NEXT_INSN (end))))
e1ab7874 7482 {
2fdeadc1 7483 rtx note = emit_note_after (NOTE_INSN_DELETED, end);
7484 /* Make note appear outside BB. */
e1ab7874 7485 set_block_for_insn (note, NULL);
34154e27 7486 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
e1ab7874 7487 }
7488}
7489
7490/* Init per basic block data structures. */
7491void
7492sched_init_bbs (void)
7493{
7494 sched_extend_bb ();
7495}
7496
6a1cdb4d 7497/* Initialize BEFORE_RECOVERY variable. */
7498static void
e1ab7874 7499init_before_recovery (basic_block *before_recovery_ptr)
6a1cdb4d 7500{
7501 basic_block last;
7502 edge e;
7503
34154e27 7504 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7f58c05e 7505 e = find_fallthru_edge_from (last);
6a1cdb4d 7506
7507 if (e)
7508 {
48e1416a 7509 /* We create two basic blocks:
6a1cdb4d 7510 1. Single instruction block is inserted right after E->SRC
48e1416a 7511 and has jump to
6a1cdb4d 7512 2. Empty block right before EXIT_BLOCK.
7513 Between these two blocks recovery blocks will be emitted. */
7514
7515 basic_block single, empty;
7516 rtx x, label;
7517
48e1416a 7518 /* If the fallthrough edge to exit we've found is from the block we've
e1ab7874 7519 created before, don't do anything more. */
7520 if (last == after_recovery)
7521 return;
6a1cdb4d 7522
e1ab7874 7523 adding_bb_to_current_region_p = false;
7524
7525 single = sched_create_empty_bb (last);
7526 empty = sched_create_empty_bb (single);
7527
7528 /* Add new blocks to the root loop. */
7529 if (current_loops != NULL)
7530 {
f1f41a6c 7531 add_bb_to_loop (single, (*current_loops->larray)[0]);
7532 add_bb_to_loop (empty, (*current_loops->larray)[0]);
e1ab7874 7533 }
7534
7535 single->count = last->count;
6a1cdb4d 7536 empty->count = last->count;
7537 single->frequency = last->frequency;
7538 empty->frequency = last->frequency;
7539 BB_COPY_PARTITION (single, last);
7540 BB_COPY_PARTITION (empty, last);
7541
7542 redirect_edge_succ (e, single);
7543 make_single_succ_edge (single, empty, 0);
34154e27 7544 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7545 EDGE_FALLTHRU);
6a1cdb4d 7546
7547 label = block_label (empty);
7548 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7549 JUMP_LABEL (x) = label;
7550 LABEL_NUSES (label)++;
e1ab7874 7551 haifa_init_insn (x);
48e1416a 7552
6a1cdb4d 7553 emit_barrier_after (x);
7554
e1ab7874 7555 sched_init_only_bb (empty, NULL);
7556 sched_init_only_bb (single, NULL);
7557 sched_extend_bb ();
6a1cdb4d 7558
e1ab7874 7559 adding_bb_to_current_region_p = true;
6a1cdb4d 7560 before_recovery = single;
e1ab7874 7561 after_recovery = empty;
7562
7563 if (before_recovery_ptr)
7564 *before_recovery_ptr = before_recovery;
6a1cdb4d 7565
7566 if (sched_verbose >= 2 && spec_info->dump)
7567 fprintf (spec_info->dump,
48e1416a 7568 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7569 last->index, single->index, empty->index);
6a1cdb4d 7570 }
7571 else
7572 before_recovery = last;
7573}
7574
7575/* Returns new recovery block. */
e1ab7874 7576basic_block
7577sched_create_recovery_block (basic_block *before_recovery_ptr)
6a1cdb4d 7578{
7579 rtx label;
5d65a39c 7580 rtx barrier;
6a1cdb4d 7581 basic_block rec;
48e1416a 7582
93f6b030 7583 haifa_recovery_bb_recently_added_p = true;
7584 haifa_recovery_bb_ever_added_p = true;
6a1cdb4d 7585
e1ab7874 7586 init_before_recovery (before_recovery_ptr);
6a1cdb4d 7587
5d65a39c 7588 barrier = get_last_bb_insn (before_recovery);
7589 gcc_assert (BARRIER_P (barrier));
7590
7591 label = emit_label_after (gen_label_rtx (), barrier);
7592
7593 rec = create_basic_block (label, label, before_recovery);
7594
e1ab7874 7595 /* A recovery block always ends with an unconditional jump. */
6a1cdb4d 7596 emit_barrier_after (BB_END (rec));
7597
7598 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7599 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
48e1416a 7600
7601 if (sched_verbose && spec_info->dump)
6a1cdb4d 7602 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7603 rec->index);
7604
6a1cdb4d 7605 return rec;
7606}
7607
e1ab7874 7608/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7609 and emit necessary jumps. */
7610void
7611sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7612 basic_block second_bb)
7613{
7614 rtx label;
7615 rtx jump;
e1ab7874 7616 int edge_flags;
7617
7618 /* This is fixing of incoming edge. */
48e1416a 7619 /* ??? Which other flags should be specified? */
e1ab7874 7620 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7621 /* Partition type is the same, if it is "unpartitioned". */
7622 edge_flags = EDGE_CROSSING;
7623 else
7624 edge_flags = 0;
48e1416a 7625
d52d7a3a 7626 make_edge (first_bb, rec, edge_flags);
e1ab7874 7627 label = block_label (second_bb);
7628 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7629 JUMP_LABEL (jump) = label;
7630 LABEL_NUSES (label)++;
7631
7632 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7633 /* Partition type is the same, if it is "unpartitioned". */
7634 {
7635 /* Rewritten from cfgrtl.c. */
7636 if (flag_reorder_blocks_and_partition
218e3e4e 7637 && targetm_common.have_named_sections)
e1ab7874 7638 {
5859ee98 7639 /* We don't need the same note for the check because
7640 any_condjump_p (check) == true. */
7641 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
e1ab7874 7642 }
7643 edge_flags = EDGE_CROSSING;
7644 }
7645 else
48e1416a 7646 edge_flags = 0;
e1ab7874 7647
48e1416a 7648 make_single_succ_edge (rec, second_bb, edge_flags);
1a5dbaab 7649 if (dom_info_available_p (CDI_DOMINATORS))
7650 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
e1ab7874 7651}
7652
6a1cdb4d 7653/* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7654 INSN is a simple check, that should be converted to branchy one. */
7655static void
7656create_check_block_twin (rtx insn, bool mutate_p)
7657{
7658 basic_block rec;
9997bd27 7659 rtx label, check, twin;
6a1cdb4d 7660 ds_t fs;
93f6b030 7661 sd_iterator_def sd_it;
7662 dep_t dep;
7663 dep_def _new_dep, *new_dep = &_new_dep;
e1ab7874 7664 ds_t todo_spec;
6a1cdb4d 7665
e1ab7874 7666 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7667
7668 if (!mutate_p)
7669 todo_spec = TODO_SPEC (insn);
7670 else
7671 {
7672 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7673 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7674
7675 todo_spec = CHECK_SPEC (insn);
7676 }
7677
7678 todo_spec &= SPECULATIVE;
6a1cdb4d 7679
7680 /* Create recovery block. */
cf7898a6 7681 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
6a1cdb4d 7682 {
e1ab7874 7683 rec = sched_create_recovery_block (NULL);
6a1cdb4d 7684 label = BB_HEAD (rec);
7685 }
7686 else
7687 {
34154e27 7688 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
e1ab7874 7689 label = NULL_RTX;
6a1cdb4d 7690 }
7691
7692 /* Emit CHECK. */
cf7898a6 7693 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
6a1cdb4d 7694
34154e27 7695 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 7696 {
7697 /* To have mem_reg alive at the beginning of second_bb,
48e1416a 7698 we emit check BEFORE insn, so insn after splitting
6a1cdb4d 7699 insn will be at the beginning of second_bb, which will
7700 provide us with the correct life information. */
7701 check = emit_jump_insn_before (check, insn);
7702 JUMP_LABEL (check) = label;
7703 LABEL_NUSES (label)++;
7704 }
7705 else
7706 check = emit_insn_before (check, insn);
7707
7708 /* Extend data structures. */
e1ab7874 7709 haifa_init_insn (check);
7710
7711 /* CHECK is being added to current region. Extend ready list. */
7712 gcc_assert (sched_ready_n_insns != -1);
7713 sched_extend_ready_list (sched_ready_n_insns + 1);
7714
7715 if (current_sched_info->add_remove_insn)
7716 current_sched_info->add_remove_insn (insn, 0);
7717
6a1cdb4d 7718 RECOVERY_BLOCK (check) = rec;
7719
7720 if (sched_verbose && spec_info->dump)
7721 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7722 (*current_sched_info->print_insn) (check, 0));
7723
7724 gcc_assert (ORIG_PAT (insn));
7725
9ca2c29a 7726 /* Initialize TWIN (twin is a duplicate of original instruction
6a1cdb4d 7727 in the recovery block). */
34154e27 7728 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 7729 {
93f6b030 7730 sd_iterator_def sd_it;
7731 dep_t dep;
7732
7733 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7734 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
6a1cdb4d 7735 {
93f6b030 7736 struct _dep _dep2, *dep2 = &_dep2;
9997bd27 7737
93f6b030 7738 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
9997bd27 7739
93f6b030 7740 sd_add_dep (dep2, true);
6a1cdb4d 7741 }
7742
7743 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
e1ab7874 7744 haifa_init_insn (twin);
6a1cdb4d 7745
7746 if (sched_verbose && spec_info->dump)
7747 /* INSN_BB (insn) isn't determined for twin insns yet.
7748 So we can't use current_sched_info->print_insn. */
7749 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7750 INSN_UID (twin), rec->index);
7751 }
7752 else
7753 {
7754 ORIG_PAT (check) = ORIG_PAT (insn);
7755 HAS_INTERNAL_DEP (check) = 1;
7756 twin = check;
7757 /* ??? We probably should change all OUTPUT dependencies to
7758 (TRUE | OUTPUT). */
7759 }
7760
93f6b030 7761 /* Copy all resolved back dependencies of INSN to TWIN. This will
7762 provide correct value for INSN_TICK (TWIN). */
7763 sd_copy_back_deps (twin, insn, true);
6a1cdb4d 7764
34154e27 7765 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 7766 /* In case of branchy check, fix CFG. */
7767 {
7768 basic_block first_bb, second_bb;
7769 rtx jump;
6a1cdb4d 7770
7771 first_bb = BLOCK_FOR_INSN (check);
e1ab7874 7772 second_bb = sched_split_block (first_bb, check);
6a1cdb4d 7773
e1ab7874 7774 sched_create_recovery_edges (first_bb, rec, second_bb);
6a1cdb4d 7775
48e1416a 7776 sched_init_only_bb (second_bb, first_bb);
34154e27 7777 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
e1ab7874 7778
7779 jump = BB_END (rec);
7780 haifa_init_insn (jump);
6a1cdb4d 7781 }
7782
48e1416a 7783 /* Move backward dependences from INSN to CHECK and
6a1cdb4d 7784 move forward dependences from INSN to TWIN. */
93f6b030 7785
7786 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7787 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
6a1cdb4d 7788 {
93f6b030 7789 rtx pro = DEP_PRO (dep);
6a1cdb4d 7790 ds_t ds;
7791
7792 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7793 check --TRUE--> producer ??? or ANTI ???
7794 twin --TRUE--> producer
7795 twin --ANTI--> check
48e1416a 7796
6a1cdb4d 7797 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7798 check --ANTI--> producer
7799 twin --ANTI--> producer
7800 twin --ANTI--> check
7801
7802 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7803 check ~~TRUE~~> producer
7804 twin ~~TRUE~~> producer
48e1416a 7805 twin --ANTI--> check */
6a1cdb4d 7806
93f6b030 7807 ds = DEP_STATUS (dep);
6a1cdb4d 7808
7809 if (ds & BEGIN_SPEC)
7810 {
7811 gcc_assert (!mutate_p);
7812 ds &= ~BEGIN_SPEC;
7813 }
7814
93f6b030 7815 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7816 sd_add_dep (new_dep, false);
7817
34154e27 7818 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 7819 {
93f6b030 7820 DEP_CON (new_dep) = twin;
7821 sd_add_dep (new_dep, false);
48e1416a 7822 }
6a1cdb4d 7823 }
7824
93f6b030 7825 /* Second, remove backward dependencies of INSN. */
7826 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7827 sd_iterator_cond (&sd_it, &dep);)
7828 {
7829 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7830 || mutate_p)
7831 /* We can delete this dep because we overcome it with
7832 BEGIN_SPECULATION. */
7833 sd_delete_dep (sd_it);
7834 else
7835 sd_iterator_next (&sd_it);
7836 }
6a1cdb4d 7837
93f6b030 7838 /* Future Speculations. Determine what BE_IN speculations will be like. */
6a1cdb4d 7839 fs = 0;
7840
7841 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7842 here. */
48e1416a 7843
6a1cdb4d 7844 gcc_assert (!DONE_SPEC (insn));
48e1416a 7845
6a1cdb4d 7846 if (!mutate_p)
48e1416a 7847 {
6a1cdb4d 7848 ds_t ts = TODO_SPEC (insn);
7849
7850 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7851 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7852
becfaa62 7853 /* Luckiness of future speculations solely depends upon initial
93f6b030 7854 BEGIN speculation. */
6a1cdb4d 7855 if (ts & BEGIN_DATA)
7856 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7857 if (ts & BEGIN_CONTROL)
93f6b030 7858 fs = set_dep_weak (fs, BE_IN_CONTROL,
7859 get_dep_weak (ts, BEGIN_CONTROL));
6a1cdb4d 7860 }
7861 else
7862 CHECK_SPEC (check) = CHECK_SPEC (insn);
7863
7864 /* Future speculations: call the helper. */
93f6b030 7865 process_insn_forw_deps_be_in_spec (insn, twin, fs);
6a1cdb4d 7866
34154e27 7867 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 7868 {
7869 /* Which types of dependencies should we use here is,
7870 generally, machine-dependent question... But, for now,
7871 it is not. */
7872
7873 if (!mutate_p)
7874 {
93f6b030 7875 init_dep (new_dep, insn, check, REG_DEP_TRUE);
7876 sd_add_dep (new_dep, false);
7877
7878 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7879 sd_add_dep (new_dep, false);
6a1cdb4d 7880 }
7881 else
7882 {
48e1416a 7883 if (spec_info->dump)
6a1cdb4d 7884 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
7885 (*current_sched_info->print_insn) (insn, 0));
7886
93f6b030 7887 /* Remove all dependencies of the INSN. */
7888 {
7889 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
7890 | SD_LIST_BACK
7891 | SD_LIST_RES_BACK));
7892 while (sd_iterator_cond (&sd_it, &dep))
7893 sd_delete_dep (sd_it);
7894 }
6a1cdb4d 7895
93f6b030 7896 /* If former check (INSN) already was moved to the ready (or queue)
7897 list, add new check (CHECK) there too. */
6a1cdb4d 7898 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
7899 try_ready (check);
7900
93f6b030 7901 /* Remove old check from instruction stream and free its
7902 data. */
6a1cdb4d 7903 sched_remove_insn (insn);
7904 }
7905
93f6b030 7906 init_dep (new_dep, check, twin, REG_DEP_ANTI);
7907 sd_add_dep (new_dep, false);
6a1cdb4d 7908 }
7909 else
93f6b030 7910 {
7911 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
7912 sd_add_dep (new_dep, false);
7913 }
6a1cdb4d 7914
7915 if (!mutate_p)
9ca2c29a 7916 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
6a1cdb4d 7917 because it'll be done later in add_to_speculative_block. */
7918 {
9af5ce0c 7919 rtx_vec_t priorities_roots = rtx_vec_t ();
3588ab9c 7920
7921 clear_priorities (twin, &priorities_roots);
7922 calc_priorities (priorities_roots);
f1f41a6c 7923 priorities_roots.release ();
6a1cdb4d 7924 }
7925}
7926
7927/* Removes dependency between instructions in the recovery block REC
7928 and usual region instructions. It keeps inner dependences so it
9ca2c29a 7929 won't be necessary to recompute them. */
6a1cdb4d 7930static void
7931fix_recovery_deps (basic_block rec)
7932{
9997bd27 7933 rtx note, insn, jump, ready_list = 0;
6a1cdb4d 7934 bitmap_head in_ready;
93f6b030 7935 rtx link;
6a1cdb4d 7936
7937 bitmap_initialize (&in_ready, 0);
48e1416a 7938
6a1cdb4d 7939 /* NOTE - a basic block note. */
7940 note = NEXT_INSN (BB_HEAD (rec));
7941 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7942 insn = BB_END (rec);
7943 gcc_assert (JUMP_P (insn));
7944 insn = PREV_INSN (insn);
7945
7946 do
93f6b030 7947 {
7948 sd_iterator_def sd_it;
7949 dep_t dep;
6a1cdb4d 7950
93f6b030 7951 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
7952 sd_iterator_cond (&sd_it, &dep);)
7953 {
7954 rtx consumer = DEP_CON (dep);
6a1cdb4d 7955
7956 if (BLOCK_FOR_INSN (consumer) != rec)
7957 {
93f6b030 7958 sd_delete_dep (sd_it);
6a1cdb4d 7959
6ef9bbe0 7960 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
7961 ready_list = alloc_INSN_LIST (consumer, ready_list);
6a1cdb4d 7962 }
7963 else
7964 {
93f6b030 7965 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
6a1cdb4d 7966
93f6b030 7967 sd_iterator_next (&sd_it);
6a1cdb4d 7968 }
7969 }
48e1416a 7970
6a1cdb4d 7971 insn = PREV_INSN (insn);
7972 }
7973 while (insn != note);
7974
7975 bitmap_clear (&in_ready);
7976
7977 /* Try to add instructions to the ready or queue list. */
93f6b030 7978 for (link = ready_list; link; link = XEXP (link, 1))
7979 try_ready (XEXP (link, 0));
6a1cdb4d 7980 free_INSN_LIST_list (&ready_list);
7981
7982 /* Fixing jump's dependences. */
7983 insn = BB_HEAD (rec);
7984 jump = BB_END (rec);
48e1416a 7985
6a1cdb4d 7986 gcc_assert (LABEL_P (insn));
7987 insn = NEXT_INSN (insn);
48e1416a 7988
6a1cdb4d 7989 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
7990 add_jump_dependencies (insn, jump);
7991}
7992
effd1640 7993/* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
7994 instruction data. */
7995static bool
7996haifa_change_pattern (rtx insn, rtx new_pat)
6a1cdb4d 7997{
7998 int t;
7999
8000 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
effd1640 8001 if (!t)
8002 return false;
e1ab7874 8003
d452a169 8004 update_insn_after_change (insn);
effd1640 8005 return true;
6a1cdb4d 8006}
8007
6a1cdb4d 8008/* -1 - can't speculate,
8009 0 - for speculation with REQUEST mode it is OK to use
8010 current instruction pattern,
8011 1 - need to change pattern for *NEW_PAT to be speculative. */
e1ab7874 8012int
8013sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
6a1cdb4d 8014{
8015 gcc_assert (current_sched_info->flags & DO_SPECULATION
93f6b030 8016 && (request & SPECULATIVE)
8017 && sched_insn_is_legitimate_for_speculation_p (insn, request));
6a1cdb4d 8018
93f6b030 8019 if ((request & spec_info->mask) != request)
6a1cdb4d 8020 return -1;
6a1cdb4d 8021
93f6b030 8022 if (request & BE_IN_SPEC
8023 && !(request & BEGIN_SPEC))
8024 return 0;
6a1cdb4d 8025
e1ab7874 8026 return targetm.sched.speculate_insn (insn, request, new_pat);
8027}
8028
8029static int
8030haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
8031{
8032 gcc_assert (sched_deps_info->generate_spec_deps
8033 && !IS_SPECULATION_CHECK_P (insn));
8034
8035 if (HAS_INTERNAL_DEP (insn)
8036 || SCHED_GROUP_P (insn))
8037 return -1;
8038
8039 return sched_speculate_insn (insn, request, new_pat);
6a1cdb4d 8040}
8041
8042/* Print some information about block BB, which starts with HEAD and
8043 ends with TAIL, before scheduling it.
8044 I is zero, if scheduler is about to start with the fresh ebb. */
8045static void
8046dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
8047{
8048 if (!i)
8049 fprintf (sched_dump,
8050 ";; ======================================================\n");
8051 else
8052 fprintf (sched_dump,
8053 ";; =====================ADVANCING TO=====================\n");
8054 fprintf (sched_dump,
8055 ";; -- basic block %d from %d to %d -- %s reload\n",
8056 bb->index, INSN_UID (head), INSN_UID (tail),
8057 (reload_completed ? "after" : "before"));
8058 fprintf (sched_dump,
8059 ";; ======================================================\n");
8060 fprintf (sched_dump, "\n");
8061}
8062
8063/* Unlink basic block notes and labels and saves them, so they
8064 can be easily restored. We unlink basic block notes in EBB to
9ca2c29a 8065 provide back-compatibility with the previous code, as target backends
6a1cdb4d 8066 assume, that there'll be only instructions between
8067 current_sched_info->{head and tail}. We restore these notes as soon
8068 as we can.
8069 FIRST (LAST) is the first (last) basic block in the ebb.
8070 NB: In usual case (FIRST == LAST) nothing is really done. */
8071void
8072unlink_bb_notes (basic_block first, basic_block last)
8073{
8074 /* We DON'T unlink basic block notes of the first block in the ebb. */
8075 if (first == last)
8076 return;
8077
fe672ac0 8078 bb_header = XNEWVEC (rtx, last_basic_block_for_fn (cfun));
6a1cdb4d 8079
8080 /* Make a sentinel. */
34154e27 8081 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
6a1cdb4d 8082 bb_header[last->next_bb->index] = 0;
8083
8084 first = first->next_bb;
8085 do
8086 {
8087 rtx prev, label, note, next;
8088
8089 label = BB_HEAD (last);
8090 if (LABEL_P (label))
8091 note = NEXT_INSN (label);
8092 else
48e1416a 8093 note = label;
6a1cdb4d 8094 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8095
8096 prev = PREV_INSN (label);
8097 next = NEXT_INSN (note);
8098 gcc_assert (prev && next);
8099
8100 NEXT_INSN (prev) = next;
8101 PREV_INSN (next) = prev;
8102
8103 bb_header[last->index] = label;
8104
8105 if (last == first)
8106 break;
48e1416a 8107
6a1cdb4d 8108 last = last->prev_bb;
8109 }
8110 while (1);
8111}
8112
8113/* Restore basic block notes.
8114 FIRST is the first basic block in the ebb. */
8115static void
8116restore_bb_notes (basic_block first)
8117{
8118 if (!bb_header)
8119 return;
8120
8121 /* We DON'T unlink basic block notes of the first block in the ebb. */
48e1416a 8122 first = first->next_bb;
6a1cdb4d 8123 /* Remember: FIRST is actually a second basic block in the ebb. */
8124
34154e27 8125 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
6a1cdb4d 8126 && bb_header[first->index])
8127 {
8128 rtx prev, label, note, next;
48e1416a 8129
6a1cdb4d 8130 label = bb_header[first->index];
8131 prev = PREV_INSN (label);
8132 next = NEXT_INSN (prev);
8133
8134 if (LABEL_P (label))
8135 note = NEXT_INSN (label);
8136 else
48e1416a 8137 note = label;
6a1cdb4d 8138 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8139
8140 bb_header[first->index] = 0;
8141
8142 NEXT_INSN (prev) = label;
8143 NEXT_INSN (note) = next;
8144 PREV_INSN (next) = note;
48e1416a 8145
6a1cdb4d 8146 first = first->next_bb;
8147 }
8148
8149 free (bb_header);
8150 bb_header = 0;
8151}
8152
6a1cdb4d 8153/* Helper function.
8154 Fix CFG after both in- and inter-block movement of
8155 control_flow_insn_p JUMP. */
8156static void
8157fix_jump_move (rtx jump)
8158{
8159 basic_block bb, jump_bb, jump_bb_next;
8160
8161 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8162 jump_bb = BLOCK_FOR_INSN (jump);
8163 jump_bb_next = jump_bb->next_bb;
8164
e1ab7874 8165 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
fd27912f 8166 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
48e1416a 8167
6a1cdb4d 8168 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8169 /* if jump_bb_next is not empty. */
8170 BB_END (jump_bb) = BB_END (jump_bb_next);
8171
8172 if (BB_END (bb) != PREV_INSN (jump))
8173 /* Then there are instruction after jump that should be placed
8174 to jump_bb_next. */
8175 BB_END (jump_bb_next) = BB_END (bb);
8176 else
8177 /* Otherwise jump_bb_next is empty. */
8178 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8179
8180 /* To make assertion in move_insn happy. */
8181 BB_END (bb) = PREV_INSN (jump);
8182
8183 update_bb_for_insn (jump_bb_next);
8184}
8185
8186/* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8187static void
8188move_block_after_check (rtx jump)
8189{
8190 basic_block bb, jump_bb, jump_bb_next;
f1f41a6c 8191 vec<edge, va_gc> *t;
6a1cdb4d 8192
8193 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8194 jump_bb = BLOCK_FOR_INSN (jump);
8195 jump_bb_next = jump_bb->next_bb;
48e1416a 8196
6a1cdb4d 8197 update_bb_for_insn (jump_bb);
48e1416a 8198
fd27912f 8199 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8200 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
6a1cdb4d 8201
8202 unlink_block (jump_bb_next);
8203 link_block (jump_bb_next, bb);
8204
8205 t = bb->succs;
8206 bb->succs = 0;
8207 move_succs (&(jump_bb->succs), bb);
8208 move_succs (&(jump_bb_next->succs), jump_bb);
8209 move_succs (&t, jump_bb_next);
3072d30e 8210
8211 df_mark_solutions_dirty ();
48e1416a 8212
e1ab7874 8213 common_sched_info->fix_recovery_cfg
8214 (bb->index, jump_bb->index, jump_bb_next->index);
6a1cdb4d 8215}
8216
8217/* Helper function for move_block_after_check.
8218 This functions attaches edge vector pointed to by SUCCSP to
8219 block TO. */
8220static void
f1f41a6c 8221move_succs (vec<edge, va_gc> **succsp, basic_block to)
6a1cdb4d 8222{
8223 edge e;
8224 edge_iterator ei;
8225
8226 gcc_assert (to->succs == 0);
8227
8228 to->succs = *succsp;
8229
8230 FOR_EACH_EDGE (e, ei, to->succs)
8231 e->src = to;
8232
8233 *succsp = 0;
8234}
8235
6a1cdb4d 8236/* Remove INSN from the instruction stream.
8237 INSN should have any dependencies. */
8238static void
8239sched_remove_insn (rtx insn)
8240{
93f6b030 8241 sd_finish_insn (insn);
8242
6a1cdb4d 8243 change_queue_index (insn, QUEUE_NOWHERE);
8244 current_sched_info->add_remove_insn (insn, 1);
93ff53d3 8245 delete_insn (insn);
6a1cdb4d 8246}
8247
3588ab9c 8248/* Clear priorities of all instructions, that are forward dependent on INSN.
8249 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8250 be invoked to initialize all cleared priorities. */
6a1cdb4d 8251static void
3588ab9c 8252clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
6a1cdb4d 8253{
93f6b030 8254 sd_iterator_def sd_it;
8255 dep_t dep;
3588ab9c 8256 bool insn_is_root_p = true;
8257
8258 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
6a1cdb4d 8259
93f6b030 8260 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
6a1cdb4d 8261 {
3588ab9c 8262 rtx pro = DEP_PRO (dep);
6a1cdb4d 8263
3588ab9c 8264 if (INSN_PRIORITY_STATUS (pro) >= 0
8265 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
6a1cdb4d 8266 {
3588ab9c 8267 /* If DEP doesn't contribute to priority then INSN itself should
8268 be added to priority roots. */
8269 if (contributes_to_priority_p (dep))
8270 insn_is_root_p = false;
8271
8272 INSN_PRIORITY_STATUS (pro) = -1;
8273 clear_priorities (pro, roots_ptr);
6a1cdb4d 8274 }
8275 }
3588ab9c 8276
8277 if (insn_is_root_p)
f1f41a6c 8278 roots_ptr->safe_push (insn);
6a1cdb4d 8279}
8280
8281/* Recompute priorities of instructions, whose priorities might have been
3588ab9c 8282 changed. ROOTS is a vector of instructions whose priority computation will
8283 trigger initialization of all cleared priorities. */
6a1cdb4d 8284static void
3588ab9c 8285calc_priorities (rtx_vec_t roots)
6a1cdb4d 8286{
3588ab9c 8287 int i;
8288 rtx insn;
6a1cdb4d 8289
f1f41a6c 8290 FOR_EACH_VEC_ELT (roots, i, insn)
3588ab9c 8291 priority (insn);
6a1cdb4d 8292}
8293
8294
8295/* Add dependences between JUMP and other instructions in the recovery
8296 block. INSN is the first insn the recovery block. */
8297static void
8298add_jump_dependencies (rtx insn, rtx jump)
8299{
8300 do
8301 {
8302 insn = NEXT_INSN (insn);
8303 if (insn == jump)
8304 break;
48e1416a 8305
b30b031c 8306 if (dep_list_size (insn, SD_LIST_FORW) == 0)
93f6b030 8307 {
8308 dep_def _new_dep, *new_dep = &_new_dep;
8309
8310 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8311 sd_add_dep (new_dep, false);
8312 }
6a1cdb4d 8313 }
8314 while (1);
9997bd27 8315
93f6b030 8316 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
6a1cdb4d 8317}
8318
e1ab7874 8319/* Extend data structures for logical insn UID. */
52d7e28c 8320void
8321sched_extend_luids (void)
e1ab7874 8322{
8323 int new_luids_max_uid = get_max_uid () + 1;
8324
f1f41a6c 8325 sched_luids.safe_grow_cleared (new_luids_max_uid);
e1ab7874 8326}
8327
8328/* Initialize LUID for INSN. */
52d7e28c 8329void
8330sched_init_insn_luid (rtx insn)
e1ab7874 8331{
8332 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8333 int luid;
8334
8335 if (i >= 0)
8336 {
8337 luid = sched_max_luid;
8338 sched_max_luid += i;
8339 }
8340 else
8341 luid = -1;
8342
8343 SET_INSN_LUID (insn, luid);
8344}
8345
52d7e28c 8346/* Initialize luids for BBS.
e1ab7874 8347 The hook common_sched_info->luid_for_non_insn () is used to determine
8348 if notes, labels, etc. need luids. */
8349void
52d7e28c 8350sched_init_luids (bb_vec_t bbs)
e1ab7874 8351{
52d7e28c 8352 int i;
8353 basic_block bb;
8354
8355 sched_extend_luids ();
f1f41a6c 8356 FOR_EACH_VEC_ELT (bbs, i, bb)
e1ab7874 8357 {
52d7e28c 8358 rtx insn;
e1ab7874 8359
52d7e28c 8360 FOR_BB_INSNS (bb, insn)
8361 sched_init_insn_luid (insn);
8362 }
e1ab7874 8363}
8364
8365/* Free LUIDs. */
8366void
8367sched_finish_luids (void)
8368{
f1f41a6c 8369 sched_luids.release ();
e1ab7874 8370 sched_max_luid = 1;
8371}
8372
8373/* Return logical uid of INSN. Helpful while debugging. */
8374int
8375insn_luid (rtx insn)
8376{
8377 return INSN_LUID (insn);
8378}
8379
8380/* Extend per insn data in the target. */
8381void
8382sched_extend_target (void)
8383{
8384 if (targetm.sched.h_i_d_extended)
8385 targetm.sched.h_i_d_extended ();
8386}
8387
8388/* Extend global scheduler structures (those, that live across calls to
8389 schedule_block) to include information about just emitted INSN. */
8390static void
8391extend_h_i_d (void)
8392{
f1f41a6c 8393 int reserve = (get_max_uid () + 1 - h_i_d.length ());
48e1416a 8394 if (reserve > 0
f1f41a6c 8395 && ! h_i_d.space (reserve))
e1ab7874 8396 {
f1f41a6c 8397 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
e1ab7874 8398 sched_extend_target ();
8399 }
8400}
8401
8402/* Initialize h_i_d entry of the INSN with default values.
8403 Values, that are not explicitly initialized here, hold zero. */
8404static void
8405init_h_i_d (rtx insn)
8406{
8407 if (INSN_LUID (insn) > 0)
8408 {
8409 INSN_COST (insn) = -1;
e1ab7874 8410 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8411 INSN_TICK (insn) = INVALID_TICK;
e2f4a6ff 8412 INSN_EXACT_TICK (insn) = INVALID_TICK;
e1ab7874 8413 INTER_TICK (insn) = INVALID_TICK;
8414 TODO_SPEC (insn) = HARD_DEP;
8415 }
8416}
8417
52d7e28c 8418/* Initialize haifa_insn_data for BBS. */
e1ab7874 8419void
52d7e28c 8420haifa_init_h_i_d (bb_vec_t bbs)
e1ab7874 8421{
52d7e28c 8422 int i;
8423 basic_block bb;
8424
8425 extend_h_i_d ();
f1f41a6c 8426 FOR_EACH_VEC_ELT (bbs, i, bb)
e1ab7874 8427 {
52d7e28c 8428 rtx insn;
e1ab7874 8429
52d7e28c 8430 FOR_BB_INSNS (bb, insn)
8431 init_h_i_d (insn);
8432 }
e1ab7874 8433}
8434
8435/* Finalize haifa_insn_data. */
8436void
8437haifa_finish_h_i_d (void)
8438{
a7dcf969 8439 int i;
8440 haifa_insn_data_t data;
8441 struct reg_use_data *use, *next;
8442
f1f41a6c 8443 FOR_EACH_VEC_ELT (h_i_d, i, data)
a7dcf969 8444 {
b30b031c 8445 free (data->max_reg_pressure);
dd045aee 8446 free (data->reg_pressure);
a7dcf969 8447 for (use = data->reg_use_list; use != NULL; use = next)
8448 {
8449 next = use->next_insn_use;
8450 free (use);
8451 }
8452 }
f1f41a6c 8453 h_i_d.release ();
e1ab7874 8454}
8455
8456/* Init data for the new insn INSN. */
8457static void
8458haifa_init_insn (rtx insn)
8459{
8460 gcc_assert (insn != NULL);
8461
52d7e28c 8462 sched_extend_luids ();
8463 sched_init_insn_luid (insn);
e1ab7874 8464 sched_extend_target ();
8465 sched_deps_init (false);
52d7e28c 8466 extend_h_i_d ();
8467 init_h_i_d (insn);
e1ab7874 8468
8469 if (adding_bb_to_current_region_p)
8470 {
8471 sd_init_insn (insn);
8472
8473 /* Extend dependency caches by one element. */
8474 extend_dependency_caches (1, false);
8475 }
b30b031c 8476 if (sched_pressure != SCHED_PRESSURE_NONE)
c15d7785 8477 init_insn_reg_pressure_info (insn);
e1ab7874 8478}
8479
8480/* Init data for the new basic block BB which comes after AFTER. */
8481static void
8482haifa_init_only_bb (basic_block bb, basic_block after)
8483{
8484 gcc_assert (bb != NULL);
8485
8486 sched_init_bbs ();
8487
8488 if (common_sched_info->add_block)
8489 /* This changes only data structures of the front-end. */
8490 common_sched_info->add_block (bb, after);
8491}
8492
8493/* A generic version of sched_split_block (). */
8494basic_block
8495sched_split_block_1 (basic_block first_bb, rtx after)
8496{
8497 edge e;
8498
8499 e = split_block (first_bb, after);
8500 gcc_assert (e->src == first_bb);
8501
48e1416a 8502 /* sched_split_block emits note if *check == BB_END. Probably it
e1ab7874 8503 is better to rip that note off. */
8504
8505 return e->dest;
8506}
8507
8508/* A generic version of sched_create_empty_bb (). */
8509basic_block
8510sched_create_empty_bb_1 (basic_block after)
8511{
8512 return create_empty_bb (after);
8513}
8514
5a976006 8515/* Insert PAT as an INSN into the schedule and update the necessary data
8516 structures to account for it. */
8517rtx
8518sched_emit_insn (rtx pat)
8519{
c03ae898 8520 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
5a976006 8521 haifa_init_insn (insn);
c03ae898 8522
8523 if (current_sched_info->add_remove_insn)
8524 current_sched_info->add_remove_insn (insn, 0);
8525
8526 (*current_sched_info->begin_schedule_ready) (insn);
f1f41a6c 8527 scheduled_insns.safe_push (insn);
c03ae898 8528
8529 last_scheduled_insn = insn;
5a976006 8530 return insn;
8531}
8532
0ac9454e 8533/* This function returns a candidate satisfying dispatch constraints from
8534 the ready list. */
8535
8536static rtx
8537ready_remove_first_dispatch (struct ready_list *ready)
8538{
8539 int i;
8540 rtx insn = ready_element (ready, 0);
8541
8542 if (ready->n_ready == 1
0ac9454e 8543 || !INSN_P (insn)
cd316116 8544 || INSN_CODE (insn) < 0
0ac9454e 8545 || !active_insn_p (insn)
8546 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8547 return ready_remove_first (ready);
8548
8549 for (i = 1; i < ready->n_ready; i++)
8550 {
8551 insn = ready_element (ready, i);
8552
cd316116 8553 if (!INSN_P (insn)
8554 || INSN_CODE (insn) < 0
0ac9454e 8555 || !active_insn_p (insn))
8556 continue;
8557
8558 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8559 {
8560 /* Return ith element of ready. */
8561 insn = ready_remove (ready, i);
8562 return insn;
8563 }
8564 }
8565
8566 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8567 return ready_remove_first (ready);
8568
8569 for (i = 1; i < ready->n_ready; i++)
8570 {
8571 insn = ready_element (ready, i);
8572
04ed582d 8573 if (!INSN_P (insn)
cd316116 8574 || INSN_CODE (insn) < 0
0ac9454e 8575 || !active_insn_p (insn))
8576 continue;
8577
8578 /* Return i-th element of ready. */
8579 if (targetm.sched.dispatch (insn, IS_CMP))
8580 return ready_remove (ready, i);
8581 }
8582
8583 return ready_remove_first (ready);
8584}
8585
8586/* Get number of ready insn in the ready list. */
8587
8588int
8589number_in_ready (void)
8590{
8591 return ready.n_ready;
8592}
8593
8594/* Get number of ready's in the ready list. */
8595
8596rtx
8597get_ready_element (int i)
8598{
8599 return ready_element (&ready, i);
8600}
8601
3eb9a99d 8602#endif /* INSN_SCHEDULING */