]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/hash-table.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / hash-table.c
CommitLineData
0823efed
DN
1/* A type-safe hash table template.
2 Copyright (C) 2012
3 Free Software Foundation, Inc.
4 Contributed by Lawrence Crowl <crowl@google.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22
23/* This file implements a typed hash table.
24 The implementation borrows from libiberty's hashtab. */
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "hash-table.h"
30
31
32/* Table of primes and multiplicative inverses.
33
34 Note that these are not minimally reduced inverses. Unlike when generating
35 code to divide by a constant, we want to be able to use the same algorithm
36 all the time. All of these inverses (are implied to) have bit 32 set.
37
38 For the record, here's the function that computed the table; it's a
39 vastly simplified version of the function of the same name from gcc. */
40
41#if 0
42unsigned int
43ceil_log2 (unsigned int x)
44{
45 int i;
46 for (i = 31; i >= 0 ; --i)
47 if (x > (1u << i))
48 return i+1;
49 abort ();
50}
51
52unsigned int
53choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
54{
55 unsigned long long mhigh;
56 double nx;
57 int lgup, post_shift;
58 int pow, pow2;
59 int n = 32, precision = 32;
60
61 lgup = ceil_log2 (d);
62 pow = n + lgup;
63 pow2 = n + lgup - precision;
64
65 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
66 mhigh = nx / d;
67
68 *shiftp = lgup - 1;
69 *mlp = mhigh;
70 return mhigh >> 32;
71}
72#endif
73
74struct prime_ent const prime_tab[] = {
75 { 7, 0x24924925, 0x9999999b, 2 },
76 { 13, 0x3b13b13c, 0x745d1747, 3 },
77 { 31, 0x08421085, 0x1a7b9612, 4 },
78 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
79 { 127, 0x02040811, 0x0624dd30, 6 },
80 { 251, 0x05197f7e, 0x073260a5, 7 },
81 { 509, 0x01824366, 0x02864fc8, 8 },
82 { 1021, 0x00c0906d, 0x014191f7, 9 },
83 { 2039, 0x0121456f, 0x0161e69e, 10 },
84 { 4093, 0x00300902, 0x00501908, 11 },
85 { 8191, 0x00080041, 0x00180241, 12 },
86 { 16381, 0x000c0091, 0x00140191, 13 },
87 { 32749, 0x002605a5, 0x002a06e6, 14 },
88 { 65521, 0x000f00e2, 0x00110122, 15 },
89 { 131071, 0x00008001, 0x00018003, 16 },
90 { 262139, 0x00014002, 0x0001c004, 17 },
91 { 524287, 0x00002001, 0x00006001, 18 },
92 { 1048573, 0x00003001, 0x00005001, 19 },
93 { 2097143, 0x00004801, 0x00005801, 20 },
94 { 4194301, 0x00000c01, 0x00001401, 21 },
95 { 8388593, 0x00001e01, 0x00002201, 22 },
96 { 16777213, 0x00000301, 0x00000501, 23 },
97 { 33554393, 0x00001381, 0x00001481, 24 },
98 { 67108859, 0x00000141, 0x000001c1, 25 },
99 { 134217689, 0x000004e1, 0x00000521, 26 },
100 { 268435399, 0x00000391, 0x000003b1, 27 },
101 { 536870909, 0x00000019, 0x00000029, 28 },
102 { 1073741789, 0x0000008d, 0x00000095, 29 },
103 { 2147483647, 0x00000003, 0x00000007, 30 },
104 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
105 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
106};
107
108/* The following function returns an index into the above table of the
109 nearest prime number which is greater than N, and near a power of two. */
110
111unsigned int
112hash_table_higher_prime_index (unsigned long n)
113{
114 unsigned int low = 0;
115 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
116
117 while (low != high)
118 {
119 unsigned int mid = low + (high - low) / 2;
120 if (n > prime_tab[mid].prime)
121 low = mid + 1;
122 else
123 high = mid;
124 }
125
126 /* If we've run out of primes, abort. */
127 if (n > prime_tab[low].prime)
128 {
129 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
130 abort ();
131 }
132
133 return low;
134}
135
136/* Return X % Y using multiplicative inverse values INV and SHIFT.
137
138 The multiplicative inverses computed above are for 32-bit types,
139 and requires that we be able to compute a highpart multiply.
140
141 FIX: I am not at all convinced that
142 3 loads, 2 multiplications, 3 shifts, and 3 additions
143 will be faster than
144 1 load and 1 modulus
145 on modern systems running a compiler. */
146
147#ifdef UNSIGNED_64BIT_TYPE
148static inline hashval_t
149mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
150{
151 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
152 hashval_t t1, t2, t3, t4, q, r;
153
154 t1 = ((ull)x * inv) >> 32;
155 t2 = x - t1;
156 t3 = t2 >> 1;
157 t4 = t1 + t3;
158 q = t4 >> shift;
159 r = x - (q * y);
160
161 return r;
162}
163#endif
164
165/* Compute the primary table index for HASH given current prime index. */
166
167hashval_t
168hash_table_mod1 (hashval_t hash, unsigned int index)
169{
170 const struct prime_ent *p = &prime_tab[index];
171#ifdef UNSIGNED_64BIT_TYPE
172 if (sizeof (hashval_t) * CHAR_BIT <= 32)
173 return mul_mod (hash, p->prime, p->inv, p->shift);
174#endif
175 return hash % p->prime;
176}
177
178
179/* Compute the secondary table index for HASH given current prime index. */
180
181hashval_t
182hash_table_mod2 (hashval_t hash, unsigned int index)
183{
184 const struct prime_ent *p = &prime_tab[index];
185#ifdef UNSIGNED_64BIT_TYPE
186 if (sizeof (hashval_t) * CHAR_BIT <= 32)
187 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
188#endif
189 return 1 + hash % (p->prime - 2);
190}