]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/hash-table.h
* common.opt (flto-odr-type-merging): Ignore.
[thirdparty/gcc.git] / gcc / hash-table.h
CommitLineData
2b15d2ba 1/* A type-safe hash table template.
fbd26352 2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
2b15d2ba 3 Contributed by Lawrence Crowl <crowl@google.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21
22/* This file implements a typed hash table.
c580da87 23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
3445be6e 40 (or 'const value_type &') and returns a hashval_t value.
c580da87 41
3445be6e 42 - A typedef named 'compare_type' that is used to test when a value
c580da87 43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
3445be6e 48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
c580da87 50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
99378011 56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
c580da87 66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
3445be6e 72 parameterized on the value type. It provides two functions:
c580da87 73
c580da87 74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
eae1ecb4 95 hash-traits.h provides class templates for the four most common
b594087e 96 policies:
c580da87 97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
b594087e 104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
eae1ecb4 109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
c580da87 116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
3445be6e 124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
c580da87 127
3445be6e 128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
c580da87 134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
770ff93b 140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
c580da87 142 // nothing. This choice is good for raw values.
143 {
c580da87 144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
47ae02b7 166 You can then use any of the functions in hash_table's public interface.
c580da87 167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
067e9a50 170 If a hash table is used only in some rare cases, it is possible
171 to construct the hash_table lazily before first use. This is done
172 through:
173
174 hash_table <some_type_hasher, true> some_type_hash_table;
175
176 which will cause whatever methods actually need the allocated entries
177 array to allocate it later.
178
c580da87 179
180 EASY DESCRIPTORS FOR POINTERS
181
3445be6e 182 There are four descriptors for pointer elements, one for each of
183 the removal policies above:
184
185 * nofree_ptr_hash (based on typed_noop_remove)
186 * free_ptr_hash (based on typed_free_remove)
187 * ggc_ptr_hash (based on ggc_remove)
188 * ggc_cache_ptr_hash (based on ggc_cache_remove)
189
190 These descriptors hash and compare elements by their pointer value,
191 rather than what they point to. So, to instantiate a hash table over
192 pointers to whatever_type, without freeing the whatever_types, use:
c580da87 193
3445be6e 194 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
c580da87 195
3e871d4d 196
197 HASH TABLE ITERATORS
198
199 The hash table provides standard C++ iterators. For example, consider a
200 hash table of some_info. We wish to consume each element of the table:
201
202 extern void consume (some_info *);
203
204 We define a convenience typedef and the hash table:
205
206 typedef hash_table <some_info_hasher> info_table_type;
207 info_table_type info_table;
208
209 Then we write the loop in typical C++ style:
210
211 for (info_table_type::iterator iter = info_table.begin ();
212 iter != info_table.end ();
213 ++iter)
214 if ((*iter).status == INFO_READY)
215 consume (&*iter);
216
217 Or with common sub-expression elimination:
218
219 for (info_table_type::iterator iter = info_table.begin ();
220 iter != info_table.end ();
221 ++iter)
222 {
223 some_info &elem = *iter;
224 if (elem.status == INFO_READY)
225 consume (&elem);
226 }
227
228 One can also use a more typical GCC style:
229
230 typedef some_info *some_info_p;
231 some_info *elem_ptr;
232 info_table_type::iterator iter;
233 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
234 if (elem_ptr->status == INFO_READY)
235 consume (elem_ptr);
236
c580da87 237*/
2b15d2ba 238
239
240#ifndef TYPED_HASHTAB_H
241#define TYPED_HASHTAB_H
242
64486212 243#include "statistics.h"
8f359205 244#include "ggc.h"
64486212 245#include "vec.h"
2b15d2ba 246#include "hashtab.h"
64486212 247#include "inchash.h"
0ff42de5 248#include "mem-stats-traits.h"
142dd62a 249#include "hash-traits.h"
64486212 250#include "hash-map-traits.h"
2b15d2ba 251
8f359205 252template<typename, typename, typename> class hash_map;
067e9a50 253template<typename, bool, typename> class hash_set;
2b15d2ba 254
255/* The ordinary memory allocator. */
256/* FIXME (crowl): This allocator may be extracted for wider sharing later. */
257
258template <typename Type>
259struct xcallocator
260{
2b15d2ba 261 static Type *data_alloc (size_t count);
2b15d2ba 262 static void data_free (Type *memory);
263};
264
265
c580da87 266/* Allocate memory for COUNT data blocks. */
2b15d2ba 267
268template <typename Type>
269inline Type *
270xcallocator <Type>::data_alloc (size_t count)
271{
272 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
273}
274
275
2b15d2ba 276/* Free memory for data blocks. */
277
278template <typename Type>
279inline void
280xcallocator <Type>::data_free (Type *memory)
281{
282 return ::free (memory);
283}
284
285
2b15d2ba 286/* Table of primes and their inversion information. */
287
288struct prime_ent
289{
290 hashval_t prime;
291 hashval_t inv;
292 hashval_t inv_m2; /* inverse of prime-2 */
293 hashval_t shift;
294};
295
296extern struct prime_ent const prime_tab[];
297
298
299/* Functions for computing hash table indexes. */
300
e2afa5c1 301extern unsigned int hash_table_higher_prime_index (unsigned long n)
302 ATTRIBUTE_PURE;
303
304/* Return X % Y using multiplicative inverse values INV and SHIFT.
305
306 The multiplicative inverses computed above are for 32-bit types,
307 and requires that we be able to compute a highpart multiply.
308
309 FIX: I am not at all convinced that
310 3 loads, 2 multiplications, 3 shifts, and 3 additions
311 will be faster than
312 1 load and 1 modulus
313 on modern systems running a compiler. */
314
315inline hashval_t
316mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
317{
318 hashval_t t1, t2, t3, t4, q, r;
319
320 t1 = ((uint64_t)x * inv) >> 32;
321 t2 = x - t1;
322 t3 = t2 >> 1;
323 t4 = t1 + t3;
324 q = t4 >> shift;
325 r = x - (q * y);
326
327 return r;
328}
329
330/* Compute the primary table index for HASH given current prime index. */
331
332inline hashval_t
333hash_table_mod1 (hashval_t hash, unsigned int index)
334{
335 const struct prime_ent *p = &prime_tab[index];
336 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
3fd918e6 337 return mul_mod (hash, p->prime, p->inv, p->shift);
e2afa5c1 338}
339
340/* Compute the secondary table index for HASH given current prime index. */
341
342inline hashval_t
343hash_table_mod2 (hashval_t hash, unsigned int index)
344{
345 const struct prime_ent *p = &prime_tab[index];
346 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
347 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
348}
2b15d2ba 349
0ff42de5 350class mem_usage;
351
2b15d2ba 352/* User-facing hash table type.
353
3445be6e 354 The table stores elements of type Descriptor::value_type and uses
355 the static descriptor functions described at the top of the file
356 to hash, compare and remove elements.
2b15d2ba 357
c580da87 358 Specify the template Allocator to allocate and free memory.
2b15d2ba 359 The default is xcallocator.
360
2933f7af 361 Storage is an implementation detail and should not be used outside the
362 hash table code.
363
2b15d2ba 364*/
067e9a50 365template <typename Descriptor, bool Lazy = false,
366 template<typename Type> class Allocator = xcallocator>
2b15d2ba 367class hash_table
2933f7af 368{
369 typedef typename Descriptor::value_type value_type;
370 typedef typename Descriptor::compare_type compare_type;
371
372public:
e3343fd6 373 explicit hash_table (size_t, bool ggc = false,
374 bool gather_mem_stats = GATHER_STATISTICS,
a80feb6c 375 mem_alloc_origin origin = HASH_TABLE_ORIGIN
0ff42de5 376 CXX_MEM_STAT_INFO);
3404c48b 377 explicit hash_table (const hash_table &, bool ggc = false,
378 bool gather_mem_stats = GATHER_STATISTICS,
379 mem_alloc_origin origin = HASH_TABLE_ORIGIN
380 CXX_MEM_STAT_INFO);
2933f7af 381 ~hash_table ();
382
2ef51f0e 383 /* Create a hash_table in gc memory. */
2ef51f0e 384 static hash_table *
0ff42de5 385 create_ggc (size_t n CXX_MEM_STAT_INFO)
2ef51f0e 386 {
387 hash_table *table = ggc_alloc<hash_table> ();
e3343fd6 388 new (table) hash_table (n, true, GATHER_STATISTICS,
389 HASH_TABLE_ORIGIN PASS_MEM_STAT);
2ef51f0e 390 return table;
391 }
392
2933f7af 393 /* Current size (in entries) of the hash table. */
394 size_t size () const { return m_size; }
395
396 /* Return the current number of elements in this hash table. */
397 size_t elements () const { return m_n_elements - m_n_deleted; }
398
399 /* Return the current number of elements in this hash table. */
400 size_t elements_with_deleted () const { return m_n_elements; }
401
a94ab168 402 /* This function clears all entries in this hash table. */
403 void empty () { if (elements ()) empty_slow (); }
2933f7af 404
9a78b979 405 /* Return true when there are no elements in this hash table. */
406 bool is_empty () const { return elements () == 0; }
407
2933f7af 408 /* This function clears a specified SLOT in a hash table. It is
409 useful when you've already done the lookup and don't want to do it
410 again. */
2933f7af 411 void clear_slot (value_type *);
412
413 /* This function searches for a hash table entry equal to the given
414 COMPARABLE element starting with the given HASH value. It cannot
415 be used to insert or delete an element. */
416 value_type &find_with_hash (const compare_type &, hashval_t);
417
3445be6e 418 /* Like find_slot_with_hash, but compute the hash value from the element. */
2933f7af 419 value_type &find (const value_type &value)
420 {
421 return find_with_hash (value, Descriptor::hash (value));
422 }
423
424 value_type *find_slot (const value_type &value, insert_option insert)
425 {
426 return find_slot_with_hash (value, Descriptor::hash (value), insert);
427 }
428
429 /* This function searches for a hash table slot containing an entry
430 equal to the given COMPARABLE element and starting with the given
431 HASH. To delete an entry, call this with insert=NO_INSERT, then
432 call clear_slot on the slot returned (possibly after doing some
433 checks). To insert an entry, call this with insert=INSERT, then
434 write the value you want into the returned slot. When inserting an
435 entry, NULL may be returned if memory allocation fails. */
436 value_type *find_slot_with_hash (const compare_type &comparable,
067e9a50 437 hashval_t hash, enum insert_option insert);
2933f7af 438
439 /* This function deletes an element with the given COMPARABLE value
440 from hash table starting with the given HASH. If there is no
441 matching element in the hash table, this function does nothing. */
442 void remove_elt_with_hash (const compare_type &, hashval_t);
443
3445be6e 444 /* Like remove_elt_with_hash, but compute the hash value from the
445 element. */
2933f7af 446 void remove_elt (const value_type &value)
447 {
448 remove_elt_with_hash (value, Descriptor::hash (value));
449 }
450
451 /* This function scans over the entire hash table calling CALLBACK for
452 each live entry. If CALLBACK returns false, the iteration stops.
453 ARGUMENT is passed as CALLBACK's second argument. */
454 template <typename Argument,
455 int (*Callback) (value_type *slot, Argument argument)>
456 void traverse_noresize (Argument argument);
457
458 /* Like traverse_noresize, but does resize the table when it is too empty
459 to improve effectivity of subsequent calls. */
460 template <typename Argument,
461 int (*Callback) (value_type *slot, Argument argument)>
462 void traverse (Argument argument);
463
464 class iterator
465 {
466 public:
467 iterator () : m_slot (NULL), m_limit (NULL) {}
468
469 iterator (value_type *slot, value_type *limit) :
470 m_slot (slot), m_limit (limit) {}
471
472 inline value_type &operator * () { return *m_slot; }
473 void slide ();
474 inline iterator &operator ++ ();
475 bool operator != (const iterator &other) const
476 {
477 return m_slot != other.m_slot || m_limit != other.m_limit;
478 }
479
480 private:
481 value_type *m_slot;
482 value_type *m_limit;
483 };
484
485 iterator begin () const
486 {
067e9a50 487 if (Lazy && m_entries == NULL)
488 return iterator ();
2933f7af 489 iterator iter (m_entries, m_entries + m_size);
490 iter.slide ();
491 return iter;
492 }
493
494 iterator end () const { return iterator (); }
495
496 double collisions () const
497 {
498 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
499 }
500
501private:
8f359205 502 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
503 template<typename T> friend void gt_pch_nx (hash_table<T> *);
2ef51f0e 504 template<typename T> friend void
505 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
506 template<typename T, typename U, typename V> friend void
507 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
067e9a50 508 template<typename T, typename U>
509 friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
2ef51f0e 510 template<typename T> friend void gt_pch_nx (hash_table<T> *,
511 gt_pointer_operator, void *);
2933f7af 512
99378011 513 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
514
a94ab168 515 void empty_slow ();
516
e7826ae1 517 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
2933f7af 518 value_type *find_empty_slot_for_expand (hashval_t);
f0c3cf64 519 bool too_empty_p (unsigned int);
2933f7af 520 void expand ();
521 static bool is_deleted (value_type &v)
ac549b40 522 {
523 return Descriptor::is_deleted (v);
524 }
525
2933f7af 526 static bool is_empty (value_type &v)
ac549b40 527 {
528 return Descriptor::is_empty (v);
529 }
2933f7af 530
531 static void mark_deleted (value_type &v)
ac549b40 532 {
533 Descriptor::mark_deleted (v);
534 }
2933f7af 535
536 static void mark_empty (value_type &v)
ac549b40 537 {
538 Descriptor::mark_empty (v);
539 }
2933f7af 540
541 /* Table itself. */
542 typename Descriptor::value_type *m_entries;
543
544 size_t m_size;
545
546 /* Current number of elements including also deleted elements. */
547 size_t m_n_elements;
548
549 /* Current number of deleted elements in the table. */
550 size_t m_n_deleted;
551
552 /* The following member is used for debugging. Its value is number
553 of all calls of `htab_find_slot' for the hash table. */
554 unsigned int m_searches;
555
556 /* The following member is used for debugging. Its value is number
557 of collisions fixed for time of work with the hash table. */
558 unsigned int m_collisions;
559
560 /* Current size (in entries) of the hash table, as an index into the
561 table of primes. */
562 unsigned int m_size_prime_index;
8f359205 563
564 /* if m_entries is stored in ggc memory. */
565 bool m_ggc;
0ff42de5 566
567 /* If we should gather memory statistics for the table. */
42ae70fa 568#if GATHER_STATISTICS
0ff42de5 569 bool m_gather_mem_stats;
42ae70fa 570#else
571 static const bool m_gather_mem_stats = false;
572#endif
2933f7af 573};
574
0ff42de5 575/* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
576 mem-stats.h after hash_table declaration. */
577
578#include "mem-stats.h"
579#include "hash-map.h"
0ff42de5 580
70e2fd2f 581extern mem_alloc_description<mem_usage>& hash_table_usage (void);
0ff42de5 582
583/* Support function for statistics. */
584extern void dump_hash_table_loc_statistics (void);
585
067e9a50 586template<typename Descriptor, bool Lazy,
587 template<typename Type> class Allocator>
588hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
42ae70fa 589 bool gather_mem_stats
590 ATTRIBUTE_UNUSED,
067e9a50 591 mem_alloc_origin origin
592 MEM_STAT_DECL) :
8f359205 593 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
42ae70fa 594 m_ggc (ggc)
595#if GATHER_STATISTICS
596 , m_gather_mem_stats (gather_mem_stats)
597#endif
2933f7af 598{
599 unsigned int size_prime_index;
600
601 size_prime_index = hash_table_higher_prime_index (size);
602 size = prime_tab[size_prime_index].prime;
603
0ff42de5 604 if (m_gather_mem_stats)
70e2fd2f 605 hash_table_usage ().register_descriptor (this, origin, ggc
067e9a50 606 FINAL_PASS_MEM_STAT);
0ff42de5 607
067e9a50 608 if (Lazy)
609 m_entries = NULL;
610 else
611 m_entries = alloc_entries (size PASS_MEM_STAT);
2933f7af 612 m_size = size;
613 m_size_prime_index = size_prime_index;
614}
615
067e9a50 616template<typename Descriptor, bool Lazy,
617 template<typename Type> class Allocator>
618hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
619 bool ggc,
42ae70fa 620 bool gather_mem_stats
621 ATTRIBUTE_UNUSED,
067e9a50 622 mem_alloc_origin origin
623 MEM_STAT_DECL) :
f8f37521 624 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
42ae70fa 625 m_searches (0), m_collisions (0), m_ggc (ggc)
626#if GATHER_STATISTICS
627 , m_gather_mem_stats (gather_mem_stats)
628#endif
f8f37521 629{
630 size_t size = h.m_size;
631
632 if (m_gather_mem_stats)
70e2fd2f 633 hash_table_usage ().register_descriptor (this, origin, ggc
f8f37521 634 FINAL_PASS_MEM_STAT);
635
067e9a50 636 if (Lazy && h.m_entries == NULL)
637 m_entries = NULL;
638 else
f8f37521 639 {
067e9a50 640 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
641 for (size_t i = 0; i < size; ++i)
642 {
643 value_type &entry = h.m_entries[i];
644 if (is_deleted (entry))
645 mark_deleted (nentries[i]);
646 else if (!is_empty (entry))
647 nentries[i] = entry;
648 }
649 m_entries = nentries;
f8f37521 650 }
f8f37521 651 m_size = size;
652 m_size_prime_index = h.m_size_prime_index;
653}
654
067e9a50 655template<typename Descriptor, bool Lazy,
656 template<typename Type> class Allocator>
657hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
2933f7af 658{
067e9a50 659 if (!Lazy || m_entries)
660 {
661 for (size_t i = m_size - 1; i < m_size; i--)
662 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
663 Descriptor::remove (m_entries[i]);
2933f7af 664
067e9a50 665 if (!m_ggc)
666 Allocator <value_type> ::data_free (m_entries);
667 else
668 ggc_free (m_entries);
bcc45766 669 if (m_gather_mem_stats)
670 hash_table_usage ().release_instance_overhead (this,
671 sizeof (value_type)
672 * m_size, true);
067e9a50 673 }
bcc45766 674 else if (m_gather_mem_stats)
675 hash_table_usage ().unregister_descriptor (this);
2933f7af 676}
677
74800550 678/* This function returns an array of empty hash table elements. */
679
067e9a50 680template<typename Descriptor, bool Lazy,
681 template<typename Type> class Allocator>
682inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
683hash_table<Descriptor, Lazy,
684 Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
74800550 685{
686 value_type *nentries;
687
0ff42de5 688 if (m_gather_mem_stats)
70e2fd2f 689 hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
0ff42de5 690
74800550 691 if (!m_ggc)
692 nentries = Allocator <value_type> ::data_alloc (n);
693 else
e7826ae1 694 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
74800550 695
696 gcc_assert (nentries != NULL);
697 for (size_t i = 0; i < n; i++)
698 mark_empty (nentries[i]);
699
700 return nentries;
701}
702
2933f7af 703/* Similar to find_slot, but without several unwanted side effects:
704 - Does not call equal when it finds an existing entry.
705 - Does not change the count of elements/searches/collisions in the
706 hash table.
707 This function also assumes there are no deleted entries in the table.
708 HASH is the hash value for the element to be inserted. */
709
067e9a50 710template<typename Descriptor, bool Lazy,
711 template<typename Type> class Allocator>
712typename hash_table<Descriptor, Lazy, Allocator>::value_type *
713hash_table<Descriptor, Lazy,
714 Allocator>::find_empty_slot_for_expand (hashval_t hash)
2933f7af 715{
716 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
717 size_t size = m_size;
718 value_type *slot = m_entries + index;
719 hashval_t hash2;
720
721 if (is_empty (*slot))
722 return slot;
e2afa5c1 723 gcc_checking_assert (!is_deleted (*slot));
2933f7af 724
725 hash2 = hash_table_mod2 (hash, m_size_prime_index);
726 for (;;)
727 {
728 index += hash2;
729 if (index >= size)
730 index -= size;
731
732 slot = m_entries + index;
733 if (is_empty (*slot))
734 return slot;
e2afa5c1 735 gcc_checking_assert (!is_deleted (*slot));
2933f7af 736 }
737}
738
f0c3cf64 739/* Return true if the current table is excessively big for ELTS elements. */
740
067e9a50 741template<typename Descriptor, bool Lazy,
742 template<typename Type> class Allocator>
f0c3cf64 743inline bool
067e9a50 744hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
f0c3cf64 745{
746 return elts * 8 < m_size && m_size > 32;
747}
748
2933f7af 749/* The following function changes size of memory allocated for the
750 entries and repeatedly inserts the table elements. The occupancy
751 of the table after the call will be about 50%. Naturally the hash
752 table must already exist. Remember also that the place of the
753 table entries is changed. If memory allocation fails, this function
754 will abort. */
755
067e9a50 756template<typename Descriptor, bool Lazy,
757 template<typename Type> class Allocator>
2933f7af 758void
067e9a50 759hash_table<Descriptor, Lazy, Allocator>::expand ()
2933f7af 760{
761 value_type *oentries = m_entries;
762 unsigned int oindex = m_size_prime_index;
763 size_t osize = size ();
764 value_type *olimit = oentries + osize;
765 size_t elts = elements ();
766
767 /* Resize only when table after removal of unused elements is either
768 too full or too empty. */
769 unsigned int nindex;
770 size_t nsize;
f0c3cf64 771 if (elts * 2 > osize || too_empty_p (elts))
2933f7af 772 {
773 nindex = hash_table_higher_prime_index (elts * 2);
774 nsize = prime_tab[nindex].prime;
775 }
776 else
777 {
778 nindex = oindex;
779 nsize = osize;
780 }
781
74800550 782 value_type *nentries = alloc_entries (nsize);
0ff42de5 783
784 if (m_gather_mem_stats)
70e2fd2f 785 hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
0ff42de5 786 * osize);
787
2933f7af 788 m_entries = nentries;
789 m_size = nsize;
790 m_size_prime_index = nindex;
791 m_n_elements -= m_n_deleted;
792 m_n_deleted = 0;
793
794 value_type *p = oentries;
795 do
796 {
797 value_type &x = *p;
798
799 if (!is_empty (x) && !is_deleted (x))
800 {
801 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
802
803 *q = x;
804 }
805
806 p++;
807 }
808 while (p < olimit);
809
8f359205 810 if (!m_ggc)
811 Allocator <value_type> ::data_free (oentries);
812 else
813 ggc_free (oentries);
2933f7af 814}
815
a94ab168 816/* Implements empty() in cases where it isn't a no-op. */
817
067e9a50 818template<typename Descriptor, bool Lazy,
819 template<typename Type> class Allocator>
2933f7af 820void
067e9a50 821hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
2933f7af 822{
823 size_t size = m_size;
f0c3cf64 824 size_t nsize = size;
2933f7af 825 value_type *entries = m_entries;
826 int i;
827
828 for (i = size - 1; i >= 0; i--)
829 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
830 Descriptor::remove (entries[i]);
831
832 /* Instead of clearing megabyte, downsize the table. */
f0c3cf64 833 if (size > 1024*1024 / sizeof (value_type))
834 nsize = 1024 / sizeof (value_type);
835 else if (too_empty_p (m_n_elements))
836 nsize = m_n_elements * 2;
837
838 if (nsize != size)
2933f7af 839 {
f0c3cf64 840 int nindex = hash_table_higher_prime_index (nsize);
2933f7af 841 int nsize = prime_tab[nindex].prime;
842
8f359205 843 if (!m_ggc)
74800550 844 Allocator <value_type> ::data_free (m_entries);
8f359205 845 else
74800550 846 ggc_free (m_entries);
8f359205 847
74800550 848 m_entries = alloc_entries (nsize);
2933f7af 849 m_size = nsize;
850 m_size_prime_index = nindex;
851 }
852 else
a324786b 853 {
e0573431 854#ifndef BROKEN_VALUE_INITIALIZATION
a324786b 855 for ( ; size; ++entries, --size)
856 *entries = value_type ();
e0573431 857#else
858 memset (entries, 0, size * sizeof (value_type));
859#endif
a324786b 860 }
2933f7af 861 m_n_deleted = 0;
862 m_n_elements = 0;
863}
864
865/* This function clears a specified SLOT in a hash table. It is
866 useful when you've already done the lookup and don't want to do it
867 again. */
868
067e9a50 869template<typename Descriptor, bool Lazy,
870 template<typename Type> class Allocator>
2933f7af 871void
067e9a50 872hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
2933f7af 873{
e2afa5c1 874 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
875 || is_empty (*slot) || is_deleted (*slot)));
2933f7af 876
877 Descriptor::remove (*slot);
878
879 mark_deleted (*slot);
880 m_n_deleted++;
881}
882
883/* This function searches for a hash table entry equal to the given
884 COMPARABLE element starting with the given HASH value. It cannot
885 be used to insert or delete an element. */
886
067e9a50 887template<typename Descriptor, bool Lazy,
888 template<typename Type> class Allocator>
889typename hash_table<Descriptor, Lazy, Allocator>::value_type &
890hash_table<Descriptor, Lazy, Allocator>
2933f7af 891::find_with_hash (const compare_type &comparable, hashval_t hash)
892{
893 m_searches++;
894 size_t size = m_size;
895 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
896
067e9a50 897 if (Lazy && m_entries == NULL)
898 m_entries = alloc_entries (size);
2933f7af 899 value_type *entry = &m_entries[index];
900 if (is_empty (*entry)
901 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
902 return *entry;
903
904 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
905 for (;;)
906 {
907 m_collisions++;
908 index += hash2;
909 if (index >= size)
910 index -= size;
911
912 entry = &m_entries[index];
913 if (is_empty (*entry)
914 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
915 return *entry;
916 }
917}
918
919/* This function searches for a hash table slot containing an entry
920 equal to the given COMPARABLE element and starting with the given
921 HASH. To delete an entry, call this with insert=NO_INSERT, then
922 call clear_slot on the slot returned (possibly after doing some
923 checks). To insert an entry, call this with insert=INSERT, then
924 write the value you want into the returned slot. When inserting an
925 entry, NULL may be returned if memory allocation fails. */
926
067e9a50 927template<typename Descriptor, bool Lazy,
928 template<typename Type> class Allocator>
929typename hash_table<Descriptor, Lazy, Allocator>::value_type *
930hash_table<Descriptor, Lazy, Allocator>
2933f7af 931::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
932 enum insert_option insert)
933{
067e9a50 934 if (Lazy && m_entries == NULL)
935 {
936 if (insert == INSERT)
937 m_entries = alloc_entries (m_size);
938 else
939 return NULL;
940 }
2933f7af 941 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
942 expand ();
943
944 m_searches++;
945
946 value_type *first_deleted_slot = NULL;
947 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
948 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
949 value_type *entry = &m_entries[index];
950 size_t size = m_size;
951 if (is_empty (*entry))
952 goto empty_entry;
953 else if (is_deleted (*entry))
954 first_deleted_slot = &m_entries[index];
955 else if (Descriptor::equal (*entry, comparable))
956 return &m_entries[index];
957
958 for (;;)
959 {
960 m_collisions++;
961 index += hash2;
962 if (index >= size)
963 index -= size;
964
965 entry = &m_entries[index];
966 if (is_empty (*entry))
967 goto empty_entry;
968 else if (is_deleted (*entry))
969 {
970 if (!first_deleted_slot)
971 first_deleted_slot = &m_entries[index];
972 }
973 else if (Descriptor::equal (*entry, comparable))
974 return &m_entries[index];
975 }
976
977 empty_entry:
978 if (insert == NO_INSERT)
979 return NULL;
980
981 if (first_deleted_slot)
982 {
983 m_n_deleted--;
984 mark_empty (*first_deleted_slot);
985 return first_deleted_slot;
986 }
987
988 m_n_elements++;
989 return &m_entries[index];
990}
991
992/* This function deletes an element with the given COMPARABLE value
993 from hash table starting with the given HASH. If there is no
994 matching element in the hash table, this function does nothing. */
995
067e9a50 996template<typename Descriptor, bool Lazy,
997 template<typename Type> class Allocator>
2933f7af 998void
067e9a50 999hash_table<Descriptor, Lazy, Allocator>
2933f7af 1000::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
1001{
1002 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
41a2340f 1003 if (slot == NULL)
2933f7af 1004 return;
1005
1006 Descriptor::remove (*slot);
1007
1008 mark_deleted (*slot);
1009 m_n_deleted++;
1010}
1011
1012/* This function scans over the entire hash table calling CALLBACK for
1013 each live entry. If CALLBACK returns false, the iteration stops.
1014 ARGUMENT is passed as CALLBACK's second argument. */
1015
067e9a50 1016template<typename Descriptor, bool Lazy,
2933f7af 1017 template<typename Type> class Allocator>
1018template<typename Argument,
067e9a50 1019 int (*Callback)
1020 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1021 Argument argument)>
2933f7af 1022void
067e9a50 1023hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
2933f7af 1024{
067e9a50 1025 if (Lazy && m_entries == NULL)
1026 return;
1027
2933f7af 1028 value_type *slot = m_entries;
1029 value_type *limit = slot + size ();
1030
1031 do
1032 {
1033 value_type &x = *slot;
1034
1035 if (!is_empty (x) && !is_deleted (x))
1036 if (! Callback (slot, argument))
1037 break;
1038 }
1039 while (++slot < limit);
1040}
1041
1042/* Like traverse_noresize, but does resize the table when it is too empty
1043 to improve effectivity of subsequent calls. */
1044
067e9a50 1045template <typename Descriptor, bool Lazy,
2933f7af 1046 template <typename Type> class Allocator>
1047template <typename Argument,
9969c043 1048 int (*Callback)
067e9a50 1049 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1050 Argument argument)>
2933f7af 1051void
067e9a50 1052hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
2933f7af 1053{
067e9a50 1054 if (too_empty_p (elements ()) && (!Lazy || m_entries))
2933f7af 1055 expand ();
1056
1057 traverse_noresize <Argument, Callback> (argument);
1058}
1059
1060/* Slide down the iterator slots until an active entry is found. */
1061
067e9a50 1062template<typename Descriptor, bool Lazy,
1063 template<typename Type> class Allocator>
2933f7af 1064void
067e9a50 1065hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
2933f7af 1066{
1067 for ( ; m_slot < m_limit; ++m_slot )
1068 {
1069 value_type &x = *m_slot;
1070 if (!is_empty (x) && !is_deleted (x))
1071 return;
1072 }
1073 m_slot = NULL;
1074 m_limit = NULL;
1075}
1076
1077/* Bump the iterator. */
1078
067e9a50 1079template<typename Descriptor, bool Lazy,
1080 template<typename Type> class Allocator>
1081inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
1082hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
3e871d4d 1083{
ae84f584 1084 ++m_slot;
3e871d4d 1085 slide ();
1086 return *this;
1087}
1088
3e871d4d 1089
1090/* Iterate through the elements of hash_table HTAB,
1091 using hash_table <....>::iterator ITER,
f6d8a42a 1092 storing each element in RESULT, which is of type TYPE. */
3e871d4d 1093
1094#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1095 for ((ITER) = (HTAB).begin (); \
2933f7af 1096 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
3e871d4d 1097 ++(ITER))
1098
8f359205 1099/* ggc walking routines. */
1100
1101template<typename E>
1102static inline void
1103gt_ggc_mx (hash_table<E> *h)
1104{
1105 typedef hash_table<E> table;
1106
1107 if (!ggc_test_and_set_mark (h->m_entries))
1108 return;
1109
1110 for (size_t i = 0; i < h->m_size; i++)
1111 {
1112 if (table::is_empty (h->m_entries[i])
1113 || table::is_deleted (h->m_entries[i]))
1114 continue;
1115
8bcf9382 1116 /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1117 mark in gt_cleare_cache if appropriate. */
1118 E::ggc_maybe_mx (h->m_entries[i]);
8f359205 1119 }
1120}
1121
1122template<typename D>
1123static inline void
1124hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1125 void *cookie)
1126{
1127 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1128 gcc_checking_assert (map->m_entries == obj);
1129 for (size_t i = 0; i < map->m_size; i++)
1130 {
1131 typedef hash_table<D> table;
1132 if (table::is_empty (map->m_entries[i])
1133 || table::is_deleted (map->m_entries[i]))
1134 continue;
1135
1136 D::pch_nx (map->m_entries[i], op, cookie);
1137 }
1138}
1139
1140template<typename D>
1141static void
1142gt_pch_nx (hash_table<D> *h)
1143{
2ef51f0e 1144 bool success
e7246521 1145 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1146 gcc_checking_assert (success);
8f359205 1147 for (size_t i = 0; i < h->m_size; i++)
1148 {
1149 if (hash_table<D>::is_empty (h->m_entries[i])
1150 || hash_table<D>::is_deleted (h->m_entries[i]))
1151 continue;
1152
1153 D::pch_nx (h->m_entries[i]);
1154 }
1155}
1156
2ef51f0e 1157template<typename D>
1158static inline void
1159gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1160{
1161 op (&h->m_entries, cookie);
1162}
1163
f863a586 1164template<typename H>
1165inline void
1166gt_cleare_cache (hash_table<H> *h)
1167{
99378011 1168 typedef hash_table<H> table;
f863a586 1169 if (!h)
1170 return;
1171
99378011 1172 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1173 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1174 {
1175 int res = H::keep_cache_entry (*iter);
1176 if (res == 0)
1177 h->clear_slot (&*iter);
1178 else if (res != -1)
8bcf9382 1179 H::ggc_mx (*iter);
99378011 1180 }
f863a586 1181}
1182
2b15d2ba 1183#endif /* TYPED_HASHTAB_H */