]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ipa-cp.c
IPA REF refactoring
[thirdparty/gcc.git] / gcc / ipa-cp.c
CommitLineData
3b22db66 1/* Interprocedural constant propagation
3aea1f79 2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
821d0e0f 3
4 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
5 <mjambor@suse.cz>
48e1416a 6
3b22db66 7This file is part of GCC.
48e1416a 8
3b22db66 9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
8c4c00c1 11Software Foundation; either version 3, or (at your option) any later
3b22db66 12version.
48e1416a 13
3b22db66 14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
48e1416a 18
3b22db66 19You should have received a copy of the GNU General Public License
8c4c00c1 20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
3b22db66 22
821d0e0f 23/* Interprocedural constant propagation (IPA-CP).
48e1416a 24
821d0e0f 25 The goal of this transformation is to
d60eadfa 26
821d0e0f 27 1) discover functions which are always invoked with some arguments with the
28 same known constant values and modify the functions so that the
29 subsequent optimizations can take advantage of the knowledge, and
d60eadfa 30
821d0e0f 31 2) partial specialization - create specialized versions of functions
32 transformed in this way if some parameters are known constants only in
33 certain contexts but the estimated tradeoff between speedup and cost size
34 is deemed good.
48e1416a 35
821d0e0f 36 The algorithm also propagates types and attempts to perform type based
37 devirtualization. Types are propagated much like constants.
48e1416a 38
821d0e0f 39 The algorithm basically consists of three stages. In the first, functions
40 are analyzed one at a time and jump functions are constructed for all known
41 call-sites. In the second phase, the pass propagates information from the
42 jump functions across the call to reveal what values are available at what
43 call sites, performs estimations of effects of known values on functions and
44 their callees, and finally decides what specialized extra versions should be
45 created. In the third, the special versions materialize and appropriate
46 calls are redirected.
d60eadfa 47
821d0e0f 48 The algorithm used is to a certain extent based on "Interprocedural Constant
49 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
50 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
51 Cooper, Mary W. Hall, and Ken Kennedy.
48e1416a 52
3b22db66 53
54 First stage - intraprocedural analysis
55 =======================================
821d0e0f 56
d60eadfa 57 This phase computes jump_function and modification flags.
48e1416a 58
821d0e0f 59 A jump function for a call-site represents the values passed as an actual
60 arguments of a given call-site. In principle, there are three types of
61 values:
62
63 Pass through - the caller's formal parameter is passed as an actual
64 argument, plus an operation on it can be performed.
85694bac 65 Constant - a constant is passed as an actual argument.
3b22db66 66 Unknown - neither of the above.
48e1416a 67
821d0e0f 68 All jump function types are described in detail in ipa-prop.h, together with
69 the data structures that represent them and methods of accessing them.
48e1416a 70
821d0e0f 71 ipcp_generate_summary() is the main function of the first stage.
3b22db66 72
73 Second stage - interprocedural analysis
74 ========================================
48e1416a 75
821d0e0f 76 This stage is itself divided into two phases. In the first, we propagate
77 known values over the call graph, in the second, we make cloning decisions.
78 It uses a different algorithm than the original Callahan's paper.
48e1416a 79
821d0e0f 80 First, we traverse the functions topologically from callers to callees and,
81 for each strongly connected component (SCC), we propagate constants
82 according to previously computed jump functions. We also record what known
83 values depend on other known values and estimate local effects. Finally, we
9d75589a 84 propagate cumulative information about these effects from dependent values
821d0e0f 85 to those on which they depend.
3b22db66 86
821d0e0f 87 Second, we again traverse the call graph in the same topological order and
88 make clones for functions which we know are called with the same values in
89 all contexts and decide about extra specialized clones of functions just for
90 some contexts - these decisions are based on both local estimates and
91 cumulative estimates propagated from callees.
3b22db66 92
821d0e0f 93 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
94 third stage.
95
96 Third phase - materialization of clones, call statement updates.
3b22db66 97 ============================================
821d0e0f 98
99 This stage is currently performed by call graph code (mainly in cgraphunit.c
100 and tree-inline.c) according to instructions inserted to the call graph by
101 the second stage. */
3b22db66 102
103#include "config.h"
104#include "system.h"
105#include "coretypes.h"
106#include "tree.h"
bc61cadb 107#include "gimple-fold.h"
108#include "gimple-expr.h"
3b22db66 109#include "target.h"
3b22db66 110#include "ipa-prop.h"
073c1fd5 111#include "bitmap.h"
3b22db66 112#include "tree-pass.h"
113#include "flags.h"
3b22db66 114#include "diagnostic.h"
ce084dfc 115#include "tree-pretty-print.h"
8624b7fc 116#include "tree-inline.h"
2a15795f 117#include "params.h"
c7b2cc59 118#include "ipa-inline.h"
821d0e0f 119#include "ipa-utils.h"
3b22db66 120
821d0e0f 121struct ipcp_value;
11b73810 122
821d0e0f 123/* Describes a particular source for an IPA-CP value. */
11b73810 124
821d0e0f 125struct ipcp_value_source
126{
803a7988 127 /* Aggregate offset of the source, negative if the source is scalar value of
128 the argument itself. */
129 HOST_WIDE_INT offset;
821d0e0f 130 /* The incoming edge that brought the value. */
131 struct cgraph_edge *cs;
132 /* If the jump function that resulted into his value was a pass-through or an
133 ancestor, this is the ipcp_value of the caller from which the described
134 value has been derived. Otherwise it is NULL. */
135 struct ipcp_value *val;
136 /* Next pointer in a linked list of sources of a value. */
137 struct ipcp_value_source *next;
138 /* If the jump function that resulted into his value was a pass-through or an
139 ancestor, this is the index of the parameter of the caller the jump
140 function references. */
141 int index;
142};
11b73810 143
821d0e0f 144/* Describes one particular value stored in struct ipcp_lattice. */
11b73810 145
821d0e0f 146struct ipcp_value
3b22db66 147{
821d0e0f 148 /* The actual value for the given parameter. This is either an IPA invariant
149 or a TREE_BINFO describing a type that can be used for
150 devirtualization. */
151 tree value;
152 /* The list of sources from which this value originates. */
153 struct ipcp_value_source *sources;
154 /* Next pointers in a linked list of all values in a lattice. */
155 struct ipcp_value *next;
156 /* Next pointers in a linked list of values in a strongly connected component
157 of values. */
158 struct ipcp_value *scc_next;
159 /* Next pointers in a linked list of SCCs of values sorted topologically
160 according their sources. */
161 struct ipcp_value *topo_next;
162 /* A specialized node created for this value, NULL if none has been (so far)
163 created. */
164 struct cgraph_node *spec_node;
165 /* Depth first search number and low link for topological sorting of
166 values. */
167 int dfs, low_link;
168 /* Time benefit and size cost that specializing the function for this value
169 would bring about in this function alone. */
170 int local_time_benefit, local_size_cost;
171 /* Time benefit and size cost that specializing the function for this value
172 can bring about in it's callees (transitively). */
173 int prop_time_benefit, prop_size_cost;
174 /* True if this valye is currently on the topo-sort stack. */
175 bool on_stack;
176};
3b22db66 177
803a7988 178/* Lattice describing potential values of a formal parameter of a function, or
179 a part of an aggreagate. TOP is represented by a lattice with zero values
180 and with contains_variable and bottom flags cleared. BOTTOM is represented
181 by a lattice with the bottom flag set. In that case, values and
821d0e0f 182 contains_variable flag should be disregarded. */
183
184struct ipcp_lattice
3b22db66 185{
821d0e0f 186 /* The list of known values and types in this lattice. Note that values are
187 not deallocated if a lattice is set to bottom because there may be value
188 sources referencing them. */
189 struct ipcp_value *values;
190 /* Number of known values and types in this lattice. */
191 int values_count;
803a7988 192 /* The lattice contains a variable component (in addition to values). */
821d0e0f 193 bool contains_variable;
194 /* The value of the lattice is bottom (i.e. variable and unusable for any
195 propagation). */
196 bool bottom;
803a7988 197};
198
199/* Lattice with an offset to describe a part of an aggregate. */
200
201struct ipcp_agg_lattice : public ipcp_lattice
202{
203 /* Offset that is being described by this lattice. */
204 HOST_WIDE_INT offset;
205 /* Size so that we don't have to re-compute it every time we traverse the
206 list. Must correspond to TYPE_SIZE of all lat values. */
207 HOST_WIDE_INT size;
208 /* Next element of the linked list. */
209 struct ipcp_agg_lattice *next;
210};
211
212/* Structure containing lattices for a parameter itself and for pieces of
213 aggregates that are passed in the parameter or by a reference in a parameter
214 plus some other useful flags. */
215
216struct ipcp_param_lattices
217{
218 /* Lattice describing the value of the parameter itself. */
219 struct ipcp_lattice itself;
220 /* Lattices describing aggregate parts. */
221 struct ipcp_agg_lattice *aggs;
222 /* Number of aggregate lattices */
223 int aggs_count;
224 /* True if aggregate data were passed by reference (as opposed to by
225 value). */
226 bool aggs_by_ref;
227 /* All aggregate lattices contain a variable component (in addition to
228 values). */
229 bool aggs_contain_variable;
230 /* The value of all aggregate lattices is bottom (i.e. variable and unusable
231 for any propagation). */
232 bool aggs_bottom;
233
821d0e0f 234 /* There is a virtual call based on this parameter. */
235 bool virt_call;
236};
3b22db66 237
803a7988 238/* Allocation pools for values and their sources in ipa-cp. */
239
240alloc_pool ipcp_values_pool;
241alloc_pool ipcp_sources_pool;
242alloc_pool ipcp_agg_lattice_pool;
243
821d0e0f 244/* Maximal count found in program. */
245
246static gcov_type max_count;
247
248/* Original overall size of the program. */
249
250static long overall_size, max_new_size;
251
252/* Head of the linked list of topologically sorted values. */
253
254static struct ipcp_value *values_topo;
255
803a7988 256/* Return the param lattices structure corresponding to the Ith formal
257 parameter of the function described by INFO. */
258static inline struct ipcp_param_lattices *
259ipa_get_parm_lattices (struct ipa_node_params *info, int i)
3b22db66 260{
03f99d3c 261 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
821d0e0f 262 gcc_checking_assert (!info->ipcp_orig_node);
263 gcc_checking_assert (info->lattices);
264 return &(info->lattices[i]);
3b22db66 265}
266
803a7988 267/* Return the lattice corresponding to the scalar value of the Ith formal
268 parameter of the function described by INFO. */
269static inline struct ipcp_lattice *
270ipa_get_scalar_lat (struct ipa_node_params *info, int i)
271{
272 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
273 return &plats->itself;
274}
275
821d0e0f 276/* Return whether LAT is a lattice with a single constant and without an
277 undefined value. */
278
d60eadfa 279static inline bool
821d0e0f 280ipa_lat_is_single_const (struct ipcp_lattice *lat)
3b22db66 281{
821d0e0f 282 if (lat->bottom
283 || lat->contains_variable
284 || lat->values_count != 1)
3b22db66 285 return false;
821d0e0f 286 else
287 return true;
3b22db66 288}
289
821d0e0f 290/* Print V which is extracted from a value in a lattice to F. */
291
3b22db66 292static void
821d0e0f 293print_ipcp_constant_value (FILE * f, tree v)
3b22db66 294{
821d0e0f 295 if (TREE_CODE (v) == TREE_BINFO)
3b22db66 296 {
821d0e0f 297 fprintf (f, "BINFO ");
298 print_generic_expr (f, BINFO_TYPE (v), 0);
3b22db66 299 }
821d0e0f 300 else if (TREE_CODE (v) == ADDR_EXPR
301 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
3b22db66 302 {
821d0e0f 303 fprintf (f, "& ");
304 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
3b22db66 305 }
821d0e0f 306 else
307 print_generic_expr (f, v, 0);
3b22db66 308}
309
803a7988 310/* Print a lattice LAT to F. */
311
312static void
313print_lattice (FILE * f, struct ipcp_lattice *lat,
314 bool dump_sources, bool dump_benefits)
315{
316 struct ipcp_value *val;
317 bool prev = false;
318
319 if (lat->bottom)
320 {
321 fprintf (f, "BOTTOM\n");
322 return;
323 }
324
325 if (!lat->values_count && !lat->contains_variable)
326 {
327 fprintf (f, "TOP\n");
328 return;
329 }
330
331 if (lat->contains_variable)
332 {
333 fprintf (f, "VARIABLE");
334 prev = true;
335 if (dump_benefits)
336 fprintf (f, "\n");
337 }
338
339 for (val = lat->values; val; val = val->next)
340 {
341 if (dump_benefits && prev)
342 fprintf (f, " ");
343 else if (!dump_benefits && prev)
344 fprintf (f, ", ");
345 else
346 prev = true;
347
348 print_ipcp_constant_value (f, val->value);
349
350 if (dump_sources)
351 {
352 struct ipcp_value_source *s;
353
354 fprintf (f, " [from:");
355 for (s = val->sources; s; s = s->next)
02774f2d 356 fprintf (f, " %i(%i)", s->cs->caller->order,
15c999e3 357 s->cs->frequency);
803a7988 358 fprintf (f, "]");
359 }
360
361 if (dump_benefits)
362 fprintf (f, " [loc_time: %i, loc_size: %i, "
363 "prop_time: %i, prop_size: %i]\n",
364 val->local_time_benefit, val->local_size_cost,
365 val->prop_time_benefit, val->prop_size_cost);
366 }
367 if (!dump_benefits)
368 fprintf (f, "\n");
369}
370
d60eadfa 371/* Print all ipcp_lattices of all functions to F. */
821d0e0f 372
3b22db66 373static void
821d0e0f 374print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
3b22db66 375{
376 struct cgraph_node *node;
377 int i, count;
8624b7fc 378
821d0e0f 379 fprintf (f, "\nLattices:\n");
380 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
3b22db66 381 {
86c96e3a 382 struct ipa_node_params *info;
383
86c96e3a 384 info = IPA_NODE_REF (node);
f1c8b4d7 385 fprintf (f, " Node: %s/%i:\n", node->name (),
02774f2d 386 node->order);
d60eadfa 387 count = ipa_get_param_count (info);
3b22db66 388 for (i = 0; i < count; i++)
389 {
803a7988 390 struct ipcp_agg_lattice *aglat;
391 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
11b73810 392 fprintf (f, " param [%d]: ", i);
803a7988 393 print_lattice (f, &plats->itself, dump_sources, dump_benefits);
821d0e0f 394
803a7988 395 if (plats->virt_call)
396 fprintf (f, " virt_call flag set\n");
397
398 if (plats->aggs_bottom)
821d0e0f 399 {
803a7988 400 fprintf (f, " AGGS BOTTOM\n");
821d0e0f 401 continue;
402 }
803a7988 403 if (plats->aggs_contain_variable)
404 fprintf (f, " AGGS VARIABLE\n");
405 for (aglat = plats->aggs; aglat; aglat = aglat->next)
821d0e0f 406 {
803a7988 407 fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
408 plats->aggs_by_ref ? "ref " : "", aglat->offset);
409 print_lattice (f, aglat, dump_sources, dump_benefits);
821d0e0f 410 }
3b22db66 411 }
412 }
413}
414
821d0e0f 415/* Determine whether it is at all technically possible to create clones of NODE
416 and store this information in the ipa_node_params structure associated
417 with NODE. */
d747fdfb 418
821d0e0f 419static void
420determine_versionability (struct cgraph_node *node)
d747fdfb 421{
821d0e0f 422 const char *reason = NULL;
eae7682a 423
77b05e95 424 /* There are a number of generic reasons functions cannot be versioned. We
425 also cannot remove parameters if there are type attributes such as fnspec
426 present. */
02774f2d 427 if (node->alias || node->thunk.thunk_p)
821d0e0f 428 reason = "alias or thunk";
c8d92fc1 429 else if (!node->local.versionable)
03f99d3c 430 reason = "not a tree_versionable_function";
821d0e0f 431 else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
432 reason = "insufficient body availability";
83167671 433 else if (!opt_for_fn (node->decl, optimize)
434 || !opt_for_fn (node->decl, flag_ipa_cp))
435 reason = "non-optimized function";
d09768a4 436 else if (lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (node->decl)))
437 {
438 /* Ideally we should clone the SIMD clones themselves and create
439 vector copies of them, so IPA-cp and SIMD clones can happily
440 coexist, but that may not be worth the effort. */
441 reason = "function has SIMD clones";
442 }
468088ac 443 /* Don't clone decls local to a comdat group; it breaks and for C++
444 decloned constructors, inlining is always better anyway. */
445 else if (symtab_comdat_local_p (node))
446 reason = "comdat-local function";
d747fdfb 447
02774f2d 448 if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
821d0e0f 449 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
f1c8b4d7 450 node->name (), node->order, reason);
d747fdfb 451
c8d92fc1 452 node->local.versionable = (reason == NULL);
d747fdfb 453}
454
821d0e0f 455/* Return true if it is at all technically possible to create clones of a
456 NODE. */
457
11b73810 458static bool
821d0e0f 459ipcp_versionable_function_p (struct cgraph_node *node)
11b73810 460{
c8d92fc1 461 return node->local.versionable;
821d0e0f 462}
11b73810 463
821d0e0f 464/* Structure holding accumulated information about callers of a node. */
4855a75d 465
821d0e0f 466struct caller_statistics
467{
468 gcov_type count_sum;
469 int n_calls, n_hot_calls, freq_sum;
470};
11b73810 471
821d0e0f 472/* Initialize fields of STAT to zeroes. */
7f74ac6b 473
821d0e0f 474static inline void
475init_caller_stats (struct caller_statistics *stats)
476{
477 stats->count_sum = 0;
478 stats->n_calls = 0;
479 stats->n_hot_calls = 0;
480 stats->freq_sum = 0;
481}
482
483/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
484 non-thunk incoming edges to NODE. */
485
486static bool
487gather_caller_stats (struct cgraph_node *node, void *data)
488{
489 struct caller_statistics *stats = (struct caller_statistics *) data;
490 struct cgraph_edge *cs;
491
492 for (cs = node->callers; cs; cs = cs->next_caller)
493 if (cs->caller->thunk.thunk_p)
494 cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
495 stats, false);
496 else
497 {
498 stats->count_sum += cs->count;
499 stats->freq_sum += cs->frequency;
500 stats->n_calls++;
501 if (cgraph_maybe_hot_edge_p (cs))
502 stats->n_hot_calls ++;
503 }
504 return false;
505
506}
507
508/* Return true if this NODE is viable candidate for cloning. */
509
510static bool
511ipcp_cloning_candidate_p (struct cgraph_node *node)
512{
513 struct caller_statistics stats;
514
515 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
48e1416a 516
821d0e0f 517 if (!flag_ipa_cp_clone)
11b73810 518 {
519 if (dump_file)
821d0e0f 520 fprintf (dump_file, "Not considering %s for cloning; "
521 "-fipa-cp-clone disabled.\n",
f1c8b4d7 522 node->name ());
11b73810 523 return false;
524 }
11b73810 525
02774f2d 526 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
11b73810 527 {
528 if (dump_file)
821d0e0f 529 fprintf (dump_file, "Not considering %s for cloning; "
530 "optimizing it for size.\n",
f1c8b4d7 531 node->name ());
11b73810 532 return false;
533 }
534
821d0e0f 535 init_caller_stats (&stats);
536 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
537
538 if (inline_summary (node)->self_size < stats.n_calls)
11b73810 539 {
540 if (dump_file)
821d0e0f 541 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
f1c8b4d7 542 node->name ());
821d0e0f 543 return true;
11b73810 544 }
545
546 /* When profile is available and function is hot, propagate into it even if
547 calls seems cold; constant propagation can improve function's speed
0a10fd82 548 significantly. */
11b73810 549 if (max_count)
550 {
821d0e0f 551 if (stats.count_sum > node->count * 90 / 100)
11b73810 552 {
553 if (dump_file)
821d0e0f 554 fprintf (dump_file, "Considering %s for cloning; "
555 "usually called directly.\n",
f1c8b4d7 556 node->name ());
11b73810 557 return true;
558 }
559 }
821d0e0f 560 if (!stats.n_hot_calls)
11b73810 561 {
562 if (dump_file)
563 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
f1c8b4d7 564 node->name ());
a111083a 565 return false;
11b73810 566 }
567 if (dump_file)
568 fprintf (dump_file, "Considering %s for cloning.\n",
f1c8b4d7 569 node->name ());
11b73810 570 return true;
571}
572
821d0e0f 573/* Arrays representing a topological ordering of call graph nodes and a stack
574 of noes used during constant propagation. */
1caef38b 575
821d0e0f 576struct topo_info
1caef38b 577{
821d0e0f 578 struct cgraph_node **order;
579 struct cgraph_node **stack;
580 int nnodes, stack_top;
581};
582
583/* Allocate the arrays in TOPO and topologically sort the nodes into order. */
584
585static void
586build_toporder_info (struct topo_info *topo)
587{
588 topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
589 topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
590 topo->stack_top = 0;
591 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
1caef38b 592}
593
821d0e0f 594/* Free information about strongly connected components and the arrays in
595 TOPO. */
596
3b22db66 597static void
821d0e0f 598free_toporder_info (struct topo_info *topo)
599{
600 ipa_free_postorder_info ();
601 free (topo->order);
602 free (topo->stack);
603}
604
605/* Add NODE to the stack in TOPO, unless it is already there. */
606
607static inline void
608push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
3b22db66 609{
d60eadfa 610 struct ipa_node_params *info = IPA_NODE_REF (node);
821d0e0f 611 if (info->node_enqueued)
612 return;
613 info->node_enqueued = 1;
614 topo->stack[topo->stack_top++] = node;
615}
3b22db66 616
821d0e0f 617/* Pop a node from the stack in TOPO and return it or return NULL if the stack
618 is empty. */
11b73810 619
821d0e0f 620static struct cgraph_node *
621pop_node_from_stack (struct topo_info *topo)
622{
623 if (topo->stack_top)
1caef38b 624 {
821d0e0f 625 struct cgraph_node *node;
626 topo->stack_top--;
627 node = topo->stack[topo->stack_top];
628 IPA_NODE_REF (node)->node_enqueued = 0;
629 return node;
1caef38b 630 }
821d0e0f 631 else
632 return NULL;
3b22db66 633}
634
821d0e0f 635/* Set lattice LAT to bottom and return true if it previously was not set as
636 such. */
637
638static inline bool
639set_lattice_to_bottom (struct ipcp_lattice *lat)
3b22db66 640{
821d0e0f 641 bool ret = !lat->bottom;
642 lat->bottom = true;
643 return ret;
644}
3b22db66 645
821d0e0f 646/* Mark lattice as containing an unknown value and return true if it previously
647 was not marked as such. */
50828ed8 648
821d0e0f 649static inline bool
650set_lattice_contains_variable (struct ipcp_lattice *lat)
651{
652 bool ret = !lat->contains_variable;
653 lat->contains_variable = true;
654 return ret;
3b22db66 655}
656
803a7988 657/* Set all aggegate lattices in PLATS to bottom and return true if they were
658 not previously set as such. */
659
660static inline bool
661set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
662{
663 bool ret = !plats->aggs_bottom;
664 plats->aggs_bottom = true;
665 return ret;
666}
667
668/* Mark all aggegate lattices in PLATS as containing an unknown value and
669 return true if they were not previously marked as such. */
670
671static inline bool
672set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
673{
674 bool ret = !plats->aggs_contain_variable;
675 plats->aggs_contain_variable = true;
676 return ret;
677}
678
679/* Mark bot aggregate and scalar lattices as containing an unknown variable,
680 return true is any of them has not been marked as such so far. */
681
682static inline bool
683set_all_contains_variable (struct ipcp_param_lattices *plats)
684{
685 bool ret = !plats->itself.contains_variable || !plats->aggs_contain_variable;
686 plats->itself.contains_variable = true;
687 plats->aggs_contain_variable = true;
688 return ret;
689}
690
821d0e0f 691/* Initialize ipcp_lattices. */
5fce5299 692
3b22db66 693static void
821d0e0f 694initialize_node_lattices (struct cgraph_node *node)
3b22db66 695{
821d0e0f 696 struct ipa_node_params *info = IPA_NODE_REF (node);
697 struct cgraph_edge *ie;
698 bool disable = false, variable = false;
699 int i;
3b22db66 700
821d0e0f 701 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
03f99d3c 702 if (!node->local.local)
821d0e0f 703 {
704 /* When cloning is allowed, we can assume that externally visible
705 functions are not called. We will compensate this by cloning
706 later. */
707 if (ipcp_versionable_function_p (node)
708 && ipcp_cloning_candidate_p (node))
709 variable = true;
710 else
711 disable = true;
712 }
3b22db66 713
821d0e0f 714 if (disable || variable)
715 {
716 for (i = 0; i < ipa_get_param_count (info) ; i++)
717 {
803a7988 718 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
821d0e0f 719 if (disable)
803a7988 720 {
721 set_lattice_to_bottom (&plats->itself);
722 set_agg_lats_to_bottom (plats);
723 }
821d0e0f 724 else
803a7988 725 set_all_contains_variable (plats);
821d0e0f 726 }
727 if (dump_file && (dump_flags & TDF_DETAILS)
02774f2d 728 && !node->alias && !node->thunk.thunk_p)
821d0e0f 729 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
f1c8b4d7 730 node->name (), node->order,
821d0e0f 731 disable ? "BOTTOM" : "VARIABLE");
732 }
3b22db66 733
821d0e0f 734 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
f5e35fed 735 if (ie->indirect_info->polymorphic
736 && ie->indirect_info->param_index >= 0)
eae7682a 737 {
821d0e0f 738 gcc_checking_assert (ie->indirect_info->param_index >= 0);
803a7988 739 ipa_get_parm_lattices (info,
740 ie->indirect_info->param_index)->virt_call = 1;
eae7682a 741 }
3b22db66 742}
743
821d0e0f 744/* Return the result of a (possibly arithmetic) pass through jump function
745 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
ad4a8b28 746 determined or be considered an interprocedural invariant. */
1caef38b 747
821d0e0f 748static tree
749ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
1caef38b 750{
821d0e0f 751 tree restype, res;
1caef38b 752
ad4a8b28 753 if (TREE_CODE (input) == TREE_BINFO)
754 {
755 if (ipa_get_jf_pass_through_type_preserved (jfunc))
756 {
757 gcc_checking_assert (ipa_get_jf_pass_through_operation (jfunc)
758 == NOP_EXPR);
759 return input;
760 }
761 return NULL_TREE;
762 }
763
4fa83f96 764 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
821d0e0f 765 return input;
1caef38b 766
4fa83f96 767 gcc_checking_assert (is_gimple_ip_invariant (input));
768 if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
821d0e0f 769 == tcc_comparison)
770 restype = boolean_type_node;
771 else
772 restype = TREE_TYPE (input);
4fa83f96 773 res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
774 input, ipa_get_jf_pass_through_operand (jfunc));
1caef38b 775
821d0e0f 776 if (res && !is_gimple_ip_invariant (res))
777 return NULL_TREE;
1caef38b 778
821d0e0f 779 return res;
1caef38b 780}
781
821d0e0f 782/* Return the result of an ancestor jump function JFUNC on the constant value
783 INPUT. Return NULL_TREE if that cannot be determined. */
1caef38b 784
821d0e0f 785static tree
786ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
1caef38b 787{
4fa83f96 788 if (TREE_CODE (input) == TREE_BINFO)
ad4a8b28 789 {
790 if (!ipa_get_jf_ancestor_type_preserved (jfunc))
791 return NULL;
792 return get_binfo_at_offset (input,
793 ipa_get_jf_ancestor_offset (jfunc),
794 ipa_get_jf_ancestor_type (jfunc));
795 }
4fa83f96 796 else if (TREE_CODE (input) == ADDR_EXPR)
1caef38b 797 {
821d0e0f 798 tree t = TREE_OPERAND (input, 0);
799 t = build_ref_for_offset (EXPR_LOCATION (t), t,
4fa83f96 800 ipa_get_jf_ancestor_offset (jfunc),
0daac096 801 ipa_get_jf_ancestor_type (jfunc)
802 ? ipa_get_jf_ancestor_type (jfunc)
803 : ptr_type_node, NULL, false);
821d0e0f 804 return build_fold_addr_expr (t);
1caef38b 805 }
806 else
821d0e0f 807 return NULL_TREE;
808}
1caef38b 809
821d0e0f 810/* Determine whether JFUNC evaluates to a known value (that is either a
811 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
812 describes the caller node so that pass-through jump functions can be
813 evaluated. */
814
20da2013 815tree
821d0e0f 816ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
817{
818 if (jfunc->type == IPA_JF_CONST)
4fa83f96 819 return ipa_get_jf_constant (jfunc);
821d0e0f 820 else if (jfunc->type == IPA_JF_KNOWN_TYPE)
bee52153 821 return ipa_binfo_from_known_type_jfunc (jfunc);
821d0e0f 822 else if (jfunc->type == IPA_JF_PASS_THROUGH
823 || jfunc->type == IPA_JF_ANCESTOR)
1caef38b 824 {
821d0e0f 825 tree input;
826 int idx;
1caef38b 827
821d0e0f 828 if (jfunc->type == IPA_JF_PASS_THROUGH)
4fa83f96 829 idx = ipa_get_jf_pass_through_formal_id (jfunc);
821d0e0f 830 else
4fa83f96 831 idx = ipa_get_jf_ancestor_formal_id (jfunc);
1caef38b 832
821d0e0f 833 if (info->ipcp_orig_node)
f1f41a6c 834 input = info->known_vals[idx];
821d0e0f 835 else
1caef38b 836 {
821d0e0f 837 struct ipcp_lattice *lat;
838
839 if (!info->lattices)
1caef38b 840 {
821d0e0f 841 gcc_checking_assert (!flag_ipa_cp);
842 return NULL_TREE;
1caef38b 843 }
803a7988 844 lat = ipa_get_scalar_lat (info, idx);
821d0e0f 845 if (!ipa_lat_is_single_const (lat))
846 return NULL_TREE;
847 input = lat->values->value;
848 }
849
850 if (!input)
851 return NULL_TREE;
852
853 if (jfunc->type == IPA_JF_PASS_THROUGH)
4fa83f96 854 return ipa_get_jf_pass_through_result (jfunc, input);
821d0e0f 855 else
4fa83f96 856 return ipa_get_jf_ancestor_result (jfunc, input);
1caef38b 857 }
821d0e0f 858 else
859 return NULL_TREE;
1caef38b 860}
861
1caef38b 862
821d0e0f 863/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
864 bottom, not containing a variable component and without any known value at
865 the same time. */
1caef38b 866
821d0e0f 867DEBUG_FUNCTION void
868ipcp_verify_propagated_values (void)
3b22db66 869{
821d0e0f 870 struct cgraph_node *node;
11b73810 871
821d0e0f 872 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
3b22db66 873 {
d60eadfa 874 struct ipa_node_params *info = IPA_NODE_REF (node);
821d0e0f 875 int i, count = ipa_get_param_count (info);
d60eadfa 876
821d0e0f 877 for (i = 0; i < count; i++)
3b22db66 878 {
803a7988 879 struct ipcp_lattice *lat = ipa_get_scalar_lat (info, i);
d60eadfa 880
821d0e0f 881 if (!lat->bottom
882 && !lat->contains_variable
883 && lat->values_count == 0)
3b22db66 884 {
821d0e0f 885 if (dump_file)
3b22db66 886 {
3083a0b3 887 dump_symtab (dump_file);
821d0e0f 888 fprintf (dump_file, "\nIPA lattices after constant "
3083a0b3 889 "propagation, before gcc_unreachable:\n");
821d0e0f 890 print_all_lattices (dump_file, true, false);
3b22db66 891 }
1caef38b 892
821d0e0f 893 gcc_unreachable ();
3b22db66 894 }
895 }
896 }
897}
898
821d0e0f 899/* Return true iff X and Y should be considered equal values by IPA-CP. */
900
901static bool
902values_equal_for_ipcp_p (tree x, tree y)
903{
904 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
905
906 if (x == y)
907 return true;
908
909 if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
910 return false;
911
912 if (TREE_CODE (x) == ADDR_EXPR
913 && TREE_CODE (y) == ADDR_EXPR
914 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
915 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
916 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
917 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
918 else
919 return operand_equal_p (x, y, 0);
920}
921
922/* Add a new value source to VAL, marking that a value comes from edge CS and
923 (if the underlying jump function is a pass-through or an ancestor one) from
803a7988 924 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. OFFSET
925 is negative if the source was the scalar value of the parameter itself or
926 the offset within an aggregate. */
821d0e0f 927
3b22db66 928static void
821d0e0f 929add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
803a7988 930 struct ipcp_value *src_val, int src_idx, HOST_WIDE_INT offset)
3b22db66 931{
821d0e0f 932 struct ipcp_value_source *src;
11b73810 933
821d0e0f 934 src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
803a7988 935 src->offset = offset;
821d0e0f 936 src->cs = cs;
937 src->val = src_val;
938 src->index = src_idx;
8867b500 939
821d0e0f 940 src->next = val->sources;
941 val->sources = src;
942}
943
821d0e0f 944/* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
803a7988 945 it. CS, SRC_VAL SRC_INDEX and OFFSET are meant for add_value_source and
946 have the same meaning. */
821d0e0f 947
948static bool
949add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
950 struct cgraph_edge *cs, struct ipcp_value *src_val,
803a7988 951 int src_idx, HOST_WIDE_INT offset)
821d0e0f 952{
953 struct ipcp_value *val;
954
955 if (lat->bottom)
956 return false;
957
821d0e0f 958 for (val = lat->values; val; val = val->next)
959 if (values_equal_for_ipcp_p (val->value, newval))
960 {
a0255a70 961 if (ipa_edge_within_scc (cs))
821d0e0f 962 {
963 struct ipcp_value_source *s;
964 for (s = val->sources; s ; s = s->next)
965 if (s->cs == cs)
966 break;
967 if (s)
968 return false;
969 }
970
803a7988 971 add_value_source (val, cs, src_val, src_idx, offset);
821d0e0f 972 return false;
973 }
974
975 if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
976 {
977 /* We can only free sources, not the values themselves, because sources
978 of other values in this this SCC might point to them. */
979 for (val = lat->values; val; val = val->next)
980 {
981 while (val->sources)
982 {
983 struct ipcp_value_source *src = val->sources;
984 val->sources = src->next;
985 pool_free (ipcp_sources_pool, src);
986 }
987 }
988
989 lat->values = NULL;
990 return set_lattice_to_bottom (lat);
991 }
992
993 lat->values_count++;
994 val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
995 memset (val, 0, sizeof (*val));
996
803a7988 997 add_value_source (val, cs, src_val, src_idx, offset);
821d0e0f 998 val->value = newval;
999 val->next = lat->values;
1000 lat->values = val;
1001 return true;
1002}
8867b500 1003
803a7988 1004/* Like above but passes a special value of offset to distinguish that the
1005 origin is the scalar value of the parameter rather than a part of an
1006 aggregate. */
1007
1008static inline bool
1009add_scalar_value_to_lattice (struct ipcp_lattice *lat, tree newval,
1010 struct cgraph_edge *cs,
1011 struct ipcp_value *src_val, int src_idx)
1012{
1013 return add_value_to_lattice (lat, newval, cs, src_val, src_idx, -1);
1014}
1015
821d0e0f 1016/* Propagate values through a pass-through jump function JFUNC associated with
1017 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1018 is the index of the source parameter. */
1019
1020static bool
1021propagate_vals_accross_pass_through (struct cgraph_edge *cs,
1022 struct ipa_jump_func *jfunc,
1023 struct ipcp_lattice *src_lat,
1024 struct ipcp_lattice *dest_lat,
1025 int src_idx)
1026{
1027 struct ipcp_value *src_val;
1028 bool ret = false;
1029
821d0e0f 1030 /* Do not create new values when propagating within an SCC because if there
4fa83f96 1031 are arithmetic functions with circular dependencies, there is infinite
1032 number of them and we would just make lattices bottom. */
ad4a8b28 1033 if ((ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
a0255a70 1034 && ipa_edge_within_scc (cs))
821d0e0f 1035 ret = set_lattice_contains_variable (dest_lat);
1036 else
1037 for (src_val = src_lat->values; src_val; src_val = src_val->next)
eae7682a 1038 {
ad4a8b28 1039 tree cstval = ipa_get_jf_pass_through_result (jfunc, src_val->value);
821d0e0f 1040
1041 if (cstval)
803a7988 1042 ret |= add_scalar_value_to_lattice (dest_lat, cstval, cs, src_val,
1043 src_idx);
821d0e0f 1044 else
1045 ret |= set_lattice_contains_variable (dest_lat);
eae7682a 1046 }
821d0e0f 1047
1048 return ret;
1049}
1050
1051/* Propagate values through an ancestor jump function JFUNC associated with
1052 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1053 is the index of the source parameter. */
1054
1055static bool
1056propagate_vals_accross_ancestor (struct cgraph_edge *cs,
1057 struct ipa_jump_func *jfunc,
1058 struct ipcp_lattice *src_lat,
1059 struct ipcp_lattice *dest_lat,
1060 int src_idx)
1061{
1062 struct ipcp_value *src_val;
1063 bool ret = false;
1064
a0255a70 1065 if (ipa_edge_within_scc (cs))
821d0e0f 1066 return set_lattice_contains_variable (dest_lat);
1067
1068 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1069 {
4fa83f96 1070 tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
821d0e0f 1071
1072 if (t)
803a7988 1073 ret |= add_scalar_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
821d0e0f 1074 else
1075 ret |= set_lattice_contains_variable (dest_lat);
1076 }
1077
1078 return ret;
1079}
1080
803a7988 1081/* Propagate scalar values across jump function JFUNC that is associated with
1082 edge CS and put the values into DEST_LAT. */
821d0e0f 1083
1084static bool
803a7988 1085propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
1086 struct ipa_jump_func *jfunc,
1087 struct ipcp_lattice *dest_lat)
821d0e0f 1088{
1089 if (dest_lat->bottom)
1090 return false;
1091
1092 if (jfunc->type == IPA_JF_CONST
1093 || jfunc->type == IPA_JF_KNOWN_TYPE)
1094 {
1095 tree val;
1096
1097 if (jfunc->type == IPA_JF_KNOWN_TYPE)
ee4fcf24 1098 {
bee52153 1099 val = ipa_binfo_from_known_type_jfunc (jfunc);
ee4fcf24 1100 if (!val)
1101 return set_lattice_contains_variable (dest_lat);
1102 }
821d0e0f 1103 else
4fa83f96 1104 val = ipa_get_jf_constant (jfunc);
803a7988 1105 return add_scalar_value_to_lattice (dest_lat, val, cs, NULL, 0);
821d0e0f 1106 }
1107 else if (jfunc->type == IPA_JF_PASS_THROUGH
1108 || jfunc->type == IPA_JF_ANCESTOR)
1109 {
1110 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1111 struct ipcp_lattice *src_lat;
1112 int src_idx;
1113 bool ret;
1114
1115 if (jfunc->type == IPA_JF_PASS_THROUGH)
4fa83f96 1116 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
821d0e0f 1117 else
4fa83f96 1118 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
821d0e0f 1119
803a7988 1120 src_lat = ipa_get_scalar_lat (caller_info, src_idx);
821d0e0f 1121 if (src_lat->bottom)
1122 return set_lattice_contains_variable (dest_lat);
1123
1124 /* If we would need to clone the caller and cannot, do not propagate. */
1125 if (!ipcp_versionable_function_p (cs->caller)
1126 && (src_lat->contains_variable
1127 || (src_lat->values_count > 1)))
1128 return set_lattice_contains_variable (dest_lat);
1129
1130 if (jfunc->type == IPA_JF_PASS_THROUGH)
1131 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1132 dest_lat, src_idx);
1133 else
1134 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1135 src_idx);
1136
1137 if (src_lat->contains_variable)
1138 ret |= set_lattice_contains_variable (dest_lat);
1139
1140 return ret;
1141 }
1142
1143 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1144 use it for indirect inlining), we should propagate them too. */
1145 return set_lattice_contains_variable (dest_lat);
1146}
1147
803a7988 1148/* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
1149 NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
1150 other cases, return false). If there are no aggregate items, set
1151 aggs_by_ref to NEW_AGGS_BY_REF. */
1152
1153static bool
1154set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
1155 bool new_aggs_by_ref)
1156{
1157 if (dest_plats->aggs)
1158 {
1159 if (dest_plats->aggs_by_ref != new_aggs_by_ref)
1160 {
1161 set_agg_lats_to_bottom (dest_plats);
1162 return true;
1163 }
1164 }
1165 else
1166 dest_plats->aggs_by_ref = new_aggs_by_ref;
1167 return false;
1168}
1169
1170/* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
1171 already existing lattice for the given OFFSET and SIZE, marking all skipped
1172 lattices as containing variable and checking for overlaps. If there is no
1173 already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
1174 it with offset, size and contains_variable to PRE_EXISTING, and return true,
1175 unless there are too many already. If there are two many, return false. If
1176 there are overlaps turn whole DEST_PLATS to bottom and return false. If any
1177 skipped lattices were newly marked as containing variable, set *CHANGE to
1178 true. */
1179
1180static bool
1181merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
1182 HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
1183 struct ipcp_agg_lattice ***aglat,
1184 bool pre_existing, bool *change)
1185{
1186 gcc_checking_assert (offset >= 0);
1187
1188 while (**aglat && (**aglat)->offset < offset)
1189 {
1190 if ((**aglat)->offset + (**aglat)->size > offset)
1191 {
1192 set_agg_lats_to_bottom (dest_plats);
1193 return false;
1194 }
1195 *change |= set_lattice_contains_variable (**aglat);
1196 *aglat = &(**aglat)->next;
1197 }
1198
1199 if (**aglat && (**aglat)->offset == offset)
1200 {
1201 if ((**aglat)->size != val_size
1202 || ((**aglat)->next
1203 && (**aglat)->next->offset < offset + val_size))
1204 {
1205 set_agg_lats_to_bottom (dest_plats);
1206 return false;
1207 }
1208 gcc_checking_assert (!(**aglat)->next
1209 || (**aglat)->next->offset >= offset + val_size);
1210 return true;
1211 }
1212 else
1213 {
1214 struct ipcp_agg_lattice *new_al;
1215
1216 if (**aglat && (**aglat)->offset < offset + val_size)
1217 {
1218 set_agg_lats_to_bottom (dest_plats);
1219 return false;
1220 }
1221 if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1222 return false;
1223 dest_plats->aggs_count++;
1224 new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
1225 memset (new_al, 0, sizeof (*new_al));
1226
1227 new_al->offset = offset;
1228 new_al->size = val_size;
1229 new_al->contains_variable = pre_existing;
1230
1231 new_al->next = **aglat;
1232 **aglat = new_al;
1233 return true;
1234 }
1235}
1236
1237/* Set all AGLAT and all other aggregate lattices reachable by next pointers as
1238 containing an unknown value. */
1239
1240static bool
1241set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
1242{
1243 bool ret = false;
1244 while (aglat)
1245 {
1246 ret |= set_lattice_contains_variable (aglat);
1247 aglat = aglat->next;
1248 }
1249 return ret;
1250}
1251
1252/* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
1253 DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
1254 parameter used for lattice value sources. Return true if DEST_PLATS changed
1255 in any way. */
1256
1257static bool
1258merge_aggregate_lattices (struct cgraph_edge *cs,
1259 struct ipcp_param_lattices *dest_plats,
1260 struct ipcp_param_lattices *src_plats,
1261 int src_idx, HOST_WIDE_INT offset_delta)
1262{
1263 bool pre_existing = dest_plats->aggs != NULL;
1264 struct ipcp_agg_lattice **dst_aglat;
1265 bool ret = false;
1266
1267 if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
1268 return true;
1269 if (src_plats->aggs_bottom)
1270 return set_agg_lats_contain_variable (dest_plats);
36bcc547 1271 if (src_plats->aggs_contain_variable)
1272 ret |= set_agg_lats_contain_variable (dest_plats);
803a7988 1273 dst_aglat = &dest_plats->aggs;
1274
1275 for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
1276 src_aglat;
1277 src_aglat = src_aglat->next)
1278 {
1279 HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
1280
1281 if (new_offset < 0)
1282 continue;
1283 if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
1284 &dst_aglat, pre_existing, &ret))
1285 {
1286 struct ipcp_agg_lattice *new_al = *dst_aglat;
1287
1288 dst_aglat = &(*dst_aglat)->next;
1289 if (src_aglat->bottom)
1290 {
1291 ret |= set_lattice_contains_variable (new_al);
1292 continue;
1293 }
1294 if (src_aglat->contains_variable)
1295 ret |= set_lattice_contains_variable (new_al);
1296 for (struct ipcp_value *val = src_aglat->values;
1297 val;
1298 val = val->next)
1299 ret |= add_value_to_lattice (new_al, val->value, cs, val, src_idx,
1300 src_aglat->offset);
1301 }
1302 else if (dest_plats->aggs_bottom)
1303 return true;
1304 }
1305 ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
1306 return ret;
1307}
1308
e3f929ed 1309/* Determine whether there is anything to propagate FROM SRC_PLATS through a
1310 pass-through JFUNC and if so, whether it has conform and conforms to the
1311 rules about propagating values passed by reference. */
1312
1313static bool
1314agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
1315 struct ipa_jump_func *jfunc)
1316{
1317 return src_plats->aggs
1318 && (!src_plats->aggs_by_ref
1319 || ipa_get_jf_pass_through_agg_preserved (jfunc));
1320}
1321
803a7988 1322/* Propagate scalar values across jump function JFUNC that is associated with
1323 edge CS and put the values into DEST_LAT. */
1324
1325static bool
1326propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
1327 struct ipa_jump_func *jfunc,
1328 struct ipcp_param_lattices *dest_plats)
1329{
1330 bool ret = false;
1331
1332 if (dest_plats->aggs_bottom)
1333 return false;
1334
1335 if (jfunc->type == IPA_JF_PASS_THROUGH
1336 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1337 {
1338 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1339 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1340 struct ipcp_param_lattices *src_plats;
1341
1342 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
e3f929ed 1343 if (agg_pass_through_permissible_p (src_plats, jfunc))
803a7988 1344 {
1345 /* Currently we do not produce clobber aggregate jump
1346 functions, replace with merging when we do. */
1347 gcc_assert (!jfunc->agg.items);
1348 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
1349 src_idx, 0);
1350 }
1351 else
1352 ret |= set_agg_lats_contain_variable (dest_plats);
1353 }
1354 else if (jfunc->type == IPA_JF_ANCESTOR
1355 && ipa_get_jf_ancestor_agg_preserved (jfunc))
1356 {
1357 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1358 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1359 struct ipcp_param_lattices *src_plats;
1360
1361 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1362 if (src_plats->aggs && src_plats->aggs_by_ref)
1363 {
1364 /* Currently we do not produce clobber aggregate jump
1365 functions, replace with merging when we do. */
1366 gcc_assert (!jfunc->agg.items);
1367 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
1368 ipa_get_jf_ancestor_offset (jfunc));
1369 }
1370 else if (!src_plats->aggs_by_ref)
1371 ret |= set_agg_lats_to_bottom (dest_plats);
1372 else
1373 ret |= set_agg_lats_contain_variable (dest_plats);
1374 }
1375 else if (jfunc->agg.items)
1376 {
1377 bool pre_existing = dest_plats->aggs != NULL;
1378 struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
1379 struct ipa_agg_jf_item *item;
1380 int i;
1381
1382 if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
1383 return true;
1384
f1f41a6c 1385 FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
803a7988 1386 {
1387 HOST_WIDE_INT val_size;
1388
1389 if (item->offset < 0)
1390 continue;
1391 gcc_checking_assert (is_gimple_ip_invariant (item->value));
6a0712d4 1392 val_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (item->value)));
803a7988 1393
1394 if (merge_agg_lats_step (dest_plats, item->offset, val_size,
1395 &aglat, pre_existing, &ret))
1396 {
1397 ret |= add_value_to_lattice (*aglat, item->value, cs, NULL, 0, 0);
1398 aglat = &(*aglat)->next;
1399 }
1400 else if (dest_plats->aggs_bottom)
1401 return true;
1402 }
1403
1404 ret |= set_chain_of_aglats_contains_variable (*aglat);
1405 }
1406 else
1407 ret |= set_agg_lats_contain_variable (dest_plats);
1408
1409 return ret;
1410}
1411
821d0e0f 1412/* Propagate constants from the caller to the callee of CS. INFO describes the
1413 caller. */
1414
1415static bool
1416propagate_constants_accross_call (struct cgraph_edge *cs)
1417{
1418 struct ipa_node_params *callee_info;
1419 enum availability availability;
1420 struct cgraph_node *callee, *alias_or_thunk;
1421 struct ipa_edge_args *args;
1422 bool ret = false;
03f99d3c 1423 int i, args_count, parms_count;
821d0e0f 1424
1425 callee = cgraph_function_node (cs->callee, &availability);
02774f2d 1426 if (!callee->definition)
821d0e0f 1427 return false;
1428 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
1429 callee_info = IPA_NODE_REF (callee);
821d0e0f 1430
1431 args = IPA_EDGE_REF (cs);
03f99d3c 1432 args_count = ipa_get_cs_argument_count (args);
1433 parms_count = ipa_get_param_count (callee_info);
019885b0 1434 if (parms_count == 0)
1435 return false;
821d0e0f 1436
1437 /* If this call goes through a thunk we must not propagate to the first (0th)
1438 parameter. However, we might need to uncover a thunk from below a series
1439 of aliases first. */
1440 alias_or_thunk = cs->callee;
02774f2d 1441 while (alias_or_thunk->alias)
15ca8f90 1442 alias_or_thunk = cgraph_alias_target (alias_or_thunk);
821d0e0f 1443 if (alias_or_thunk->thunk.thunk_p)
1444 {
803a7988 1445 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1446 0));
821d0e0f 1447 i = 1;
1448 }
1449 else
1450 i = 0;
1451
03f99d3c 1452 for (; (i < args_count) && (i < parms_count); i++)
821d0e0f 1453 {
1454 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
803a7988 1455 struct ipcp_param_lattices *dest_plats;
821d0e0f 1456
803a7988 1457 dest_plats = ipa_get_parm_lattices (callee_info, i);
821d0e0f 1458 if (availability == AVAIL_OVERWRITABLE)
803a7988 1459 ret |= set_all_contains_variable (dest_plats);
821d0e0f 1460 else
803a7988 1461 {
1462 ret |= propagate_scalar_accross_jump_function (cs, jump_func,
1463 &dest_plats->itself);
1464 ret |= propagate_aggs_accross_jump_function (cs, jump_func,
1465 dest_plats);
1466 }
821d0e0f 1467 }
03f99d3c 1468 for (; i < parms_count; i++)
803a7988 1469 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
03f99d3c 1470
821d0e0f 1471 return ret;
1472}
1473
1474/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
265c4eb2 1475 (which can contain both constants and binfos), KNOWN_BINFOS, KNOWN_AGGS or
1476 AGG_REPS return the destination. The latter three can be NULL. If AGG_REPS
1477 is not NULL, KNOWN_AGGS is ignored. */
821d0e0f 1478
265c4eb2 1479static tree
1480ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
1481 vec<tree> known_vals,
1482 vec<tree> known_binfos,
1483 vec<ipa_agg_jump_function_p> known_aggs,
1484 struct ipa_agg_replacement_value *agg_reps)
821d0e0f 1485{
1486 int param_index = ie->indirect_info->param_index;
1487 HOST_WIDE_INT token, anc_offset;
1488 tree otr_type;
1489 tree t;
02636da3 1490 tree target = NULL;
821d0e0f 1491
fd8b458b 1492 if (param_index == -1
1493 || known_vals.length () <= (unsigned int) param_index)
821d0e0f 1494 return NULL_TREE;
1495
1496 if (!ie->indirect_info->polymorphic)
1497 {
a4f60e55 1498 tree t;
1499
1500 if (ie->indirect_info->agg_contents)
1501 {
265c4eb2 1502 if (agg_reps)
1503 {
1504 t = NULL;
1505 while (agg_reps)
1506 {
1507 if (agg_reps->index == param_index
c42e4f2e 1508 && agg_reps->offset == ie->indirect_info->offset
1509 && agg_reps->by_ref == ie->indirect_info->by_ref)
265c4eb2 1510 {
1511 t = agg_reps->value;
1512 break;
1513 }
1514 agg_reps = agg_reps->next;
1515 }
1516 }
1517 else if (known_aggs.length () > (unsigned int) param_index)
a4f60e55 1518 {
1519 struct ipa_agg_jump_function *agg;
f1f41a6c 1520 agg = known_aggs[param_index];
a4f60e55 1521 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1522 ie->indirect_info->by_ref);
1523 }
1524 else
1525 t = NULL;
1526 }
1527 else
fd8b458b 1528 t = known_vals[param_index];
a4f60e55 1529
821d0e0f 1530 if (t &&
1531 TREE_CODE (t) == ADDR_EXPR
1532 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
d4e80e2b 1533 return TREE_OPERAND (t, 0);
821d0e0f 1534 else
1535 return NULL_TREE;
1536 }
1537
02636da3 1538 if (!flag_devirtualize)
1539 return NULL_TREE;
1540
a4f60e55 1541 gcc_assert (!ie->indirect_info->agg_contents);
821d0e0f 1542 token = ie->indirect_info->otr_token;
0d491188 1543 anc_offset = ie->indirect_info->offset;
821d0e0f 1544 otr_type = ie->indirect_info->otr_type;
1545
02636da3 1546 t = NULL;
1547
1548 /* Try to work out value of virtual table pointer value in replacemnets. */
1549 if (!t && agg_reps && !ie->indirect_info->by_ref)
1550 {
1551 while (agg_reps)
1552 {
1553 if (agg_reps->index == param_index
1554 && agg_reps->offset == ie->indirect_info->offset
1555 && agg_reps->by_ref)
1556 {
1557 t = agg_reps->value;
1558 break;
1559 }
1560 agg_reps = agg_reps->next;
1561 }
1562 }
1563
1564 /* Try to work out value of virtual table pointer value in known
1565 aggregate values. */
1566 if (!t && known_aggs.length () > (unsigned int) param_index
1567 && !ie->indirect_info->by_ref)
1568 {
1569 struct ipa_agg_jump_function *agg;
1570 agg = known_aggs[param_index];
1571 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1572 true);
1573 }
1574
6750de5f 1575 /* If we found the virtual table pointer, lookup the target. */
02636da3 1576 if (t)
6750de5f 1577 {
1578 tree vtable;
1579 unsigned HOST_WIDE_INT offset;
1580 if (vtable_pointer_value_to_vtable (t, &vtable, &offset))
1581 {
1582 target = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
1583 vtable, offset);
bc58d800 1584 if (target)
6750de5f 1585 {
bc58d800 1586 if ((TREE_CODE (TREE_TYPE (target)) == FUNCTION_TYPE
1587 && DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
1588 || !possible_polymorphic_call_target_p
1589 (ie, cgraph_get_node (target)))
1590 {
1591 if (dump_file)
1592 fprintf (dump_file,
1593 "Type inconsident devirtualization: %s/%i->%s\n",
1594 ie->caller->name (), ie->caller->order,
1595 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
1596 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
1597 cgraph_get_create_node (target);
1598 }
1599 return target;
6750de5f 1600 }
6750de5f 1601 }
1602 }
02636da3 1603
1604 /* Did we work out BINFO via type propagation? */
f1f41a6c 1605 if (!t && known_binfos.length () > (unsigned int) param_index)
1606 t = known_binfos[param_index];
02636da3 1607 /* Or do we know the constant value of pointer? */
1608 if (!t)
1609 t = known_vals[param_index];
821d0e0f 1610 if (!t)
1611 return NULL_TREE;
1612
1613 if (TREE_CODE (t) != TREE_BINFO)
1614 {
54176a57 1615 ipa_polymorphic_call_context context;
1616 vec <cgraph_node *>targets;
1617 bool final;
1618
1619 if (!get_polymorphic_call_info_from_invariant
1620 (&context, t, ie->indirect_info->otr_type,
1621 anc_offset))
821d0e0f 1622 return NULL_TREE;
54176a57 1623 targets = possible_polymorphic_call_targets
1624 (ie->indirect_info->otr_type,
1625 ie->indirect_info->otr_token,
1626 context, &final);
1627 if (!final || targets.length () > 1)
821d0e0f 1628 return NULL_TREE;
54176a57 1629 if (targets.length () == 1)
1630 target = targets[0]->decl;
1631 else
1632 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
821d0e0f 1633 }
1634 else
1635 {
1636 tree binfo;
1637
1638 binfo = get_binfo_at_offset (t, anc_offset, otr_type);
1639 if (!binfo)
1640 return NULL_TREE;
10fba9c0 1641 target = gimple_get_virt_method_for_binfo (token, binfo);
821d0e0f 1642 }
9a225e5a 1643
1644 if (target && !possible_polymorphic_call_target_p (ie,
1645 cgraph_get_node (target)))
1646 {
1647 if (dump_file)
1648 fprintf (dump_file,
1649 "Type inconsident devirtualization: %s/%i->%s\n",
1650 ie->caller->name (), ie->caller->order,
1651 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
1652 target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
1653 cgraph_get_create_node (target);
1654 }
10fba9c0 1655
1656 return target;
821d0e0f 1657}
1658
265c4eb2 1659
1660/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1661 (which can contain both constants and binfos), KNOWN_BINFOS (which can be
1662 NULL) or KNOWN_AGGS (which also can be NULL) return the destination. */
1663
1664tree
1665ipa_get_indirect_edge_target (struct cgraph_edge *ie,
1666 vec<tree> known_vals,
1667 vec<tree> known_binfos,
1668 vec<ipa_agg_jump_function_p> known_aggs)
1669{
1670 return ipa_get_indirect_edge_target_1 (ie, known_vals, known_binfos,
1671 known_aggs, NULL);
1672}
1673
821d0e0f 1674/* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1675 and KNOWN_BINFOS. */
1676
1677static int
1678devirtualization_time_bonus (struct cgraph_node *node,
f1f41a6c 1679 vec<tree> known_csts,
265c4eb2 1680 vec<tree> known_binfos,
1681 vec<ipa_agg_jump_function_p> known_aggs)
821d0e0f 1682{
1683 struct cgraph_edge *ie;
1684 int res = 0;
1685
1686 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
1687 {
1688 struct cgraph_node *callee;
1689 struct inline_summary *isummary;
d4e80e2b 1690 tree target;
821d0e0f 1691
a4f60e55 1692 target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos,
265c4eb2 1693 known_aggs);
821d0e0f 1694 if (!target)
1695 continue;
1696
1697 /* Only bare minimum benefit for clearly un-inlineable targets. */
1698 res += 1;
1699 callee = cgraph_get_node (target);
02774f2d 1700 if (!callee || !callee->definition)
821d0e0f 1701 continue;
1702 isummary = inline_summary (callee);
1703 if (!isummary->inlinable)
1704 continue;
1705
1706 /* FIXME: The values below need re-considering and perhaps also
1707 integrating into the cost metrics, at lest in some very basic way. */
1708 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
1709 res += 31;
1710 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
1711 res += 15;
1712 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
02774f2d 1713 || DECL_DECLARED_INLINE_P (callee->decl))
821d0e0f 1714 res += 7;
1715 }
1716
1717 return res;
1718}
1719
803a7988 1720/* Return time bonus incurred because of HINTS. */
1721
1722static int
1723hint_time_bonus (inline_hints hints)
1724{
3a1cb879 1725 int result = 0;
803a7988 1726 if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
3a1cb879 1727 result += PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
1728 if (hints & INLINE_HINT_array_index)
1729 result += PARAM_VALUE (PARAM_IPA_CP_ARRAY_INDEX_HINT_BONUS);
1730 return result;
803a7988 1731}
1732
821d0e0f 1733/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1734 and SIZE_COST and with the sum of frequencies of incoming edges to the
1735 potential new clone in FREQUENCIES. */
1736
1737static bool
1738good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
1739 int freq_sum, gcov_type count_sum, int size_cost)
1740{
1741 if (time_benefit == 0
1742 || !flag_ipa_cp_clone
02774f2d 1743 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
821d0e0f 1744 return false;
1745
29bb06c7 1746 gcc_assert (size_cost > 0);
821d0e0f 1747
821d0e0f 1748 if (max_count)
1749 {
29bb06c7 1750 int factor = (count_sum * 1000) / max_count;
3a4303e7 1751 int64_t evaluation = (((int64_t) time_benefit * factor)
29bb06c7 1752 / size_cost);
821d0e0f 1753
1754 if (dump_file && (dump_flags & TDF_DETAILS))
1755 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1756 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
3a4303e7 1757 ") -> evaluation: " "%"PRId64
29bb06c7 1758 ", threshold: %i\n",
821d0e0f 1759 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
cfb368a3 1760 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
821d0e0f 1761
1762 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1763 }
1764 else
1765 {
3a4303e7 1766 int64_t evaluation = (((int64_t) time_benefit * freq_sum)
29bb06c7 1767 / size_cost);
821d0e0f 1768
1769 if (dump_file && (dump_flags & TDF_DETAILS))
1770 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
29bb06c7 1771 "size: %i, freq_sum: %i) -> evaluation: "
3a4303e7 1772 "%"PRId64 ", threshold: %i\n",
821d0e0f 1773 time_benefit, size_cost, freq_sum, evaluation,
cfb368a3 1774 PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
821d0e0f 1775
1776 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1777 }
1778}
1779
803a7988 1780/* Return all context independent values from aggregate lattices in PLATS in a
1781 vector. Return NULL if there are none. */
1782
b3e7c666 1783static vec<ipa_agg_jf_item, va_gc> *
803a7988 1784context_independent_aggregate_values (struct ipcp_param_lattices *plats)
1785{
b3e7c666 1786 vec<ipa_agg_jf_item, va_gc> *res = NULL;
803a7988 1787
1788 if (plats->aggs_bottom
1789 || plats->aggs_contain_variable
1790 || plats->aggs_count == 0)
1791 return NULL;
1792
1793 for (struct ipcp_agg_lattice *aglat = plats->aggs;
1794 aglat;
1795 aglat = aglat->next)
1796 if (ipa_lat_is_single_const (aglat))
1797 {
1798 struct ipa_agg_jf_item item;
1799 item.offset = aglat->offset;
1800 item.value = aglat->values->value;
f1f41a6c 1801 vec_safe_push (res, item);
803a7988 1802 }
1803 return res;
1804}
821d0e0f 1805
803a7988 1806/* Allocate KNOWN_CSTS, KNOWN_BINFOS and, if non-NULL, KNOWN_AGGS and populate
1807 them with values of parameters that are known independent of the context.
1808 INFO describes the function. If REMOVABLE_PARAMS_COST is non-NULL, the
1809 movement cost of all removable parameters will be stored in it. */
821d0e0f 1810
1811static bool
1812gather_context_independent_values (struct ipa_node_params *info,
f1f41a6c 1813 vec<tree> *known_csts,
1814 vec<tree> *known_binfos,
b3e7c666 1815 vec<ipa_agg_jump_function> *known_aggs,
803a7988 1816 int *removable_params_cost)
821d0e0f 1817{
1818 int i, count = ipa_get_param_count (info);
1819 bool ret = false;
1820
f1f41a6c 1821 known_csts->create (0);
1822 known_binfos->create (0);
1823 known_csts->safe_grow_cleared (count);
1824 known_binfos->safe_grow_cleared (count);
803a7988 1825 if (known_aggs)
1826 {
f1f41a6c 1827 known_aggs->create (0);
1828 known_aggs->safe_grow_cleared (count);
803a7988 1829 }
821d0e0f 1830
1831 if (removable_params_cost)
1832 *removable_params_cost = 0;
1833
1834 for (i = 0; i < count ; i++)
1835 {
803a7988 1836 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1837 struct ipcp_lattice *lat = &plats->itself;
821d0e0f 1838
1839 if (ipa_lat_is_single_const (lat))
1840 {
1841 struct ipcp_value *val = lat->values;
1842 if (TREE_CODE (val->value) != TREE_BINFO)
1843 {
f1f41a6c 1844 (*known_csts)[i] = val->value;
821d0e0f 1845 if (removable_params_cost)
1846 *removable_params_cost
1847 += estimate_move_cost (TREE_TYPE (val->value));
1848 ret = true;
1849 }
803a7988 1850 else if (plats->virt_call)
821d0e0f 1851 {
f1f41a6c 1852 (*known_binfos)[i] = val->value;
821d0e0f 1853 ret = true;
1854 }
1855 else if (removable_params_cost
1856 && !ipa_is_param_used (info, i))
09ab6335 1857 *removable_params_cost += ipa_get_param_move_cost (info, i);
821d0e0f 1858 }
1859 else if (removable_params_cost
1860 && !ipa_is_param_used (info, i))
1861 *removable_params_cost
09ab6335 1862 += ipa_get_param_move_cost (info, i);
803a7988 1863
1864 if (known_aggs)
1865 {
b3e7c666 1866 vec<ipa_agg_jf_item, va_gc> *agg_items;
803a7988 1867 struct ipa_agg_jump_function *ajf;
1868
1869 agg_items = context_independent_aggregate_values (plats);
f1f41a6c 1870 ajf = &(*known_aggs)[i];
803a7988 1871 ajf->items = agg_items;
1872 ajf->by_ref = plats->aggs_by_ref;
1873 ret |= agg_items != NULL;
1874 }
821d0e0f 1875 }
1876
1877 return ret;
1878}
1879
803a7988 1880/* The current interface in ipa-inline-analysis requires a pointer vector.
1881 Create it.
1882
1883 FIXME: That interface should be re-worked, this is slightly silly. Still,
1884 I'd like to discuss how to change it first and this demonstrates the
1885 issue. */
1886
f1f41a6c 1887static vec<ipa_agg_jump_function_p>
b3e7c666 1888agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function> known_aggs)
803a7988 1889{
f1f41a6c 1890 vec<ipa_agg_jump_function_p> ret;
803a7988 1891 struct ipa_agg_jump_function *ajf;
1892 int i;
1893
f1f41a6c 1894 ret.create (known_aggs.length ());
1895 FOR_EACH_VEC_ELT (known_aggs, i, ajf)
1896 ret.quick_push (ajf);
803a7988 1897 return ret;
1898}
1899
821d0e0f 1900/* Iterate over known values of parameters of NODE and estimate the local
1901 effects in terms of time and size they have. */
1902
1903static void
1904estimate_local_effects (struct cgraph_node *node)
1905{
1906 struct ipa_node_params *info = IPA_NODE_REF (node);
1907 int i, count = ipa_get_param_count (info);
f1f41a6c 1908 vec<tree> known_csts, known_binfos;
b3e7c666 1909 vec<ipa_agg_jump_function> known_aggs;
f1f41a6c 1910 vec<ipa_agg_jump_function_p> known_aggs_ptrs;
821d0e0f 1911 bool always_const;
1912 int base_time = inline_summary (node)->time;
1913 int removable_params_cost;
1914
1915 if (!count || !ipcp_versionable_function_p (node))
1916 return;
1917
11b73810 1918 if (dump_file && (dump_flags & TDF_DETAILS))
821d0e0f 1919 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
f1c8b4d7 1920 node->name (), node->order, base_time);
821d0e0f 1921
1922 always_const = gather_context_independent_values (info, &known_csts,
803a7988 1923 &known_binfos, &known_aggs,
821d0e0f 1924 &removable_params_cost);
803a7988 1925 known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
821d0e0f 1926 if (always_const)
11b73810 1927 {
821d0e0f 1928 struct caller_statistics stats;
803a7988 1929 inline_hints hints;
821d0e0f 1930 int time, size;
1931
1932 init_caller_stats (&stats);
1933 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
20da2013 1934 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
803a7988 1935 known_aggs_ptrs, &size, &time, &hints);
265c4eb2 1936 time -= devirtualization_time_bonus (node, known_csts, known_binfos,
1937 known_aggs_ptrs);
803a7988 1938 time -= hint_time_bonus (hints);
821d0e0f 1939 time -= removable_params_cost;
1940 size -= stats.n_calls * removable_params_cost;
1941
1942 if (dump_file)
1943 fprintf (dump_file, " - context independent values, size: %i, "
1944 "time_benefit: %i\n", size, base_time - time);
1945
1946 if (size <= 0
1947 || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
1948 {
87228246 1949 info->do_clone_for_all_contexts = true;
821d0e0f 1950 base_time = time;
1951
1952 if (dump_file)
1953 fprintf (dump_file, " Decided to specialize for all "
1954 "known contexts, code not going to grow.\n");
1955 }
1956 else if (good_cloning_opportunity_p (node, base_time - time,
1957 stats.freq_sum, stats.count_sum,
1958 size))
1959 {
1960 if (size + overall_size <= max_new_size)
1961 {
87228246 1962 info->do_clone_for_all_contexts = true;
821d0e0f 1963 base_time = time;
1964 overall_size += size;
1965
1966 if (dump_file)
1967 fprintf (dump_file, " Decided to specialize for all "
1968 "known contexts, growth deemed beneficial.\n");
1969 }
1970 else if (dump_file && (dump_flags & TDF_DETAILS))
1971 fprintf (dump_file, " Not cloning for all contexts because "
1972 "max_new_size would be reached with %li.\n",
1973 size + overall_size);
1974 }
11b73810 1975 }
1976
821d0e0f 1977 for (i = 0; i < count ; i++)
11b73810 1978 {
803a7988 1979 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1980 struct ipcp_lattice *lat = &plats->itself;
821d0e0f 1981 struct ipcp_value *val;
1982 int emc;
1983
1984 if (lat->bottom
1985 || !lat->values
f1f41a6c 1986 || known_csts[i]
1987 || known_binfos[i])
821d0e0f 1988 continue;
1989
1990 for (val = lat->values; val; val = val->next)
1991 {
1992 int time, size, time_benefit;
803a7988 1993 inline_hints hints;
821d0e0f 1994
1995 if (TREE_CODE (val->value) != TREE_BINFO)
1996 {
f1f41a6c 1997 known_csts[i] = val->value;
1998 known_binfos[i] = NULL_TREE;
821d0e0f 1999 emc = estimate_move_cost (TREE_TYPE (val->value));
2000 }
803a7988 2001 else if (plats->virt_call)
821d0e0f 2002 {
f1f41a6c 2003 known_csts[i] = NULL_TREE;
2004 known_binfos[i] = val->value;
821d0e0f 2005 emc = 0;
2006 }
2007 else
2008 continue;
2009
20da2013 2010 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
803a7988 2011 known_aggs_ptrs, &size, &time,
2012 &hints);
821d0e0f 2013 time_benefit = base_time - time
265c4eb2 2014 + devirtualization_time_bonus (node, known_csts, known_binfos,
2015 known_aggs_ptrs)
803a7988 2016 + hint_time_bonus (hints)
821d0e0f 2017 + removable_params_cost + emc;
2018
ae56707d 2019 gcc_checking_assert (size >=0);
2020 /* The inliner-heuristics based estimates may think that in certain
2021 contexts some functions do not have any size at all but we want
2022 all specializations to have at least a tiny cost, not least not to
2023 divide by zero. */
2024 if (size == 0)
2025 size = 1;
2026
821d0e0f 2027 if (dump_file && (dump_flags & TDF_DETAILS))
2028 {
2029 fprintf (dump_file, " - estimates for value ");
2030 print_ipcp_constant_value (dump_file, val->value);
09ab6335 2031 fprintf (dump_file, " for ");
2032 ipa_dump_param (dump_file, info, i);
821d0e0f 2033 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
2034 time_benefit, size);
2035 }
2036
2037 val->local_time_benefit = time_benefit;
2038 val->local_size_cost = size;
2039 }
f1f41a6c 2040 known_binfos[i] = NULL_TREE;
2041 known_csts[i] = NULL_TREE;
803a7988 2042 }
2043
2044 for (i = 0; i < count ; i++)
2045 {
2046 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2047 struct ipa_agg_jump_function *ajf;
2048 struct ipcp_agg_lattice *aglat;
2049
2050 if (plats->aggs_bottom || !plats->aggs)
2051 continue;
2052
f1f41a6c 2053 ajf = &known_aggs[i];
803a7988 2054 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2055 {
2056 struct ipcp_value *val;
2057 if (aglat->bottom || !aglat->values
2058 /* If the following is true, the one value is in known_aggs. */
2059 || (!plats->aggs_contain_variable
2060 && ipa_lat_is_single_const (aglat)))
2061 continue;
2062
2063 for (val = aglat->values; val; val = val->next)
2064 {
2065 int time, size, time_benefit;
2066 struct ipa_agg_jf_item item;
2067 inline_hints hints;
2068
2069 item.offset = aglat->offset;
2070 item.value = val->value;
f1f41a6c 2071 vec_safe_push (ajf->items, item);
803a7988 2072
2073 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
2074 known_aggs_ptrs, &size, &time,
2075 &hints);
2076 time_benefit = base_time - time
265c4eb2 2077 + devirtualization_time_bonus (node, known_csts, known_binfos,
2078 known_aggs_ptrs)
803a7988 2079 + hint_time_bonus (hints);
2080 gcc_checking_assert (size >=0);
2081 if (size == 0)
2082 size = 1;
2083
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 {
2086 fprintf (dump_file, " - estimates for value ");
2087 print_ipcp_constant_value (dump_file, val->value);
09ab6335 2088 fprintf (dump_file, " for ");
2089 ipa_dump_param (dump_file, info, i);
803a7988 2090 fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
2091 "]: time_benefit: %i, size: %i\n",
2092 plats->aggs_by_ref ? "ref " : "",
2093 aglat->offset, time_benefit, size);
2094 }
2095
2096 val->local_time_benefit = time_benefit;
2097 val->local_size_cost = size;
f1f41a6c 2098 ajf->items->pop ();
803a7988 2099 }
2100 }
2101 }
2102
2103 for (i = 0; i < count ; i++)
f1f41a6c 2104 vec_free (known_aggs[i].items);
821d0e0f 2105
f1f41a6c 2106 known_csts.release ();
2107 known_binfos.release ();
2108 known_aggs.release ();
2109 known_aggs_ptrs.release ();
821d0e0f 2110}
2111
2112
2113/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
2114 topological sort of values. */
2115
2116static void
2117add_val_to_toposort (struct ipcp_value *cur_val)
2118{
2119 static int dfs_counter = 0;
2120 static struct ipcp_value *stack;
2121 struct ipcp_value_source *src;
2122
2123 if (cur_val->dfs)
2124 return;
2125
2126 dfs_counter++;
2127 cur_val->dfs = dfs_counter;
2128 cur_val->low_link = dfs_counter;
2129
2130 cur_val->topo_next = stack;
2131 stack = cur_val;
2132 cur_val->on_stack = true;
2133
2134 for (src = cur_val->sources; src; src = src->next)
2135 if (src->val)
2136 {
2137 if (src->val->dfs == 0)
2138 {
2139 add_val_to_toposort (src->val);
2140 if (src->val->low_link < cur_val->low_link)
2141 cur_val->low_link = src->val->low_link;
2142 }
2143 else if (src->val->on_stack
2144 && src->val->dfs < cur_val->low_link)
2145 cur_val->low_link = src->val->dfs;
2146 }
2147
2148 if (cur_val->dfs == cur_val->low_link)
11b73810 2149 {
821d0e0f 2150 struct ipcp_value *v, *scc_list = NULL;
2151
2152 do
2153 {
2154 v = stack;
2155 stack = v->topo_next;
2156 v->on_stack = false;
2157
2158 v->scc_next = scc_list;
2159 scc_list = v;
2160 }
2161 while (v != cur_val);
2162
2163 cur_val->topo_next = values_topo;
2164 values_topo = cur_val;
11b73810 2165 }
3b22db66 2166}
2167
821d0e0f 2168/* Add all values in lattices associated with NODE to the topological sort if
2169 they are not there yet. */
2170
2171static void
2172add_all_node_vals_to_toposort (struct cgraph_node *node)
3b22db66 2173{
821d0e0f 2174 struct ipa_node_params *info = IPA_NODE_REF (node);
2175 int i, count = ipa_get_param_count (info);
2176
2177 for (i = 0; i < count ; i++)
2178 {
803a7988 2179 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2180 struct ipcp_lattice *lat = &plats->itself;
2181 struct ipcp_agg_lattice *aglat;
821d0e0f 2182 struct ipcp_value *val;
2183
803a7988 2184 if (!lat->bottom)
2185 for (val = lat->values; val; val = val->next)
2186 add_val_to_toposort (val);
2187
2188 if (!plats->aggs_bottom)
2189 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2190 if (!aglat->bottom)
2191 for (val = aglat->values; val; val = val->next)
2192 add_val_to_toposort (val);
821d0e0f 2193 }
3b22db66 2194}
2195
821d0e0f 2196/* One pass of constants propagation along the call graph edges, from callers
2197 to callees (requires topological ordering in TOPO), iterate over strongly
2198 connected components. */
2199
3b22db66 2200static void
821d0e0f 2201propagate_constants_topo (struct topo_info *topo)
3b22db66 2202{
821d0e0f 2203 int i;
3b22db66 2204
821d0e0f 2205 for (i = topo->nnodes - 1; i >= 0; i--)
3b22db66 2206 {
3ffe0ea9 2207 unsigned j;
821d0e0f 2208 struct cgraph_node *v, *node = topo->order[i];
3ffe0ea9 2209 vec<cgraph_node_ptr> cycle_nodes = ipa_get_nodes_in_cycle (node);
821d0e0f 2210
821d0e0f 2211 /* First, iteratively propagate within the strongly connected component
2212 until all lattices stabilize. */
3ffe0ea9 2213 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2214 if (cgraph_function_with_gimple_body_p (v))
821d0e0f 2215 push_node_to_stack (topo, v);
821d0e0f 2216
3ffe0ea9 2217 v = pop_node_from_stack (topo);
821d0e0f 2218 while (v)
2219 {
2220 struct cgraph_edge *cs;
2221
2222 for (cs = v->callees; cs; cs = cs->next_callee)
a0255a70 2223 if (ipa_edge_within_scc (cs)
821d0e0f 2224 && propagate_constants_accross_call (cs))
2225 push_node_to_stack (topo, cs->callee);
2226 v = pop_node_from_stack (topo);
2227 }
2228
2229 /* Afterwards, propagate along edges leading out of the SCC, calculates
2230 the local effects of the discovered constants and all valid values to
2231 their topological sort. */
3ffe0ea9 2232 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2233 if (cgraph_function_with_gimple_body_p (v))
2234 {
2235 struct cgraph_edge *cs;
821d0e0f 2236
3ffe0ea9 2237 estimate_local_effects (v);
2238 add_all_node_vals_to_toposort (v);
2239 for (cs = v->callees; cs; cs = cs->next_callee)
a0255a70 2240 if (!ipa_edge_within_scc (cs))
3ffe0ea9 2241 propagate_constants_accross_call (cs);
2242 }
2243 cycle_nodes.release ();
3b22db66 2244 }
2245}
2246
29bb06c7 2247
2248/* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
2249 the bigger one if otherwise. */
2250
2251static int
2252safe_add (int a, int b)
2253{
2254 if (a > INT_MAX/2 || b > INT_MAX/2)
2255 return a > b ? a : b;
2256 else
2257 return a + b;
2258}
2259
2260
821d0e0f 2261/* Propagate the estimated effects of individual values along the topological
9d75589a 2262 from the dependent values to those they depend on. */
821d0e0f 2263
3b22db66 2264static void
821d0e0f 2265propagate_effects (void)
3b22db66 2266{
821d0e0f 2267 struct ipcp_value *base;
3b22db66 2268
821d0e0f 2269 for (base = values_topo; base; base = base->topo_next)
3b22db66 2270 {
821d0e0f 2271 struct ipcp_value_source *src;
2272 struct ipcp_value *val;
2273 int time = 0, size = 0;
2274
2275 for (val = base; val; val = val->scc_next)
2276 {
29bb06c7 2277 time = safe_add (time,
2278 val->local_time_benefit + val->prop_time_benefit);
2279 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
821d0e0f 2280 }
2281
2282 for (val = base; val; val = val->scc_next)
2283 for (src = val->sources; src; src = src->next)
2284 if (src->val
2285 && cgraph_maybe_hot_edge_p (src->cs))
2286 {
29bb06c7 2287 src->val->prop_time_benefit = safe_add (time,
2288 src->val->prop_time_benefit);
2289 src->val->prop_size_cost = safe_add (size,
2290 src->val->prop_size_cost);
821d0e0f 2291 }
3b22db66 2292 }
2293}
2294
821d0e0f 2295
2296/* Propagate constants, binfos and their effects from the summaries
2297 interprocedurally. */
2298
3b22db66 2299static void
821d0e0f 2300ipcp_propagate_stage (struct topo_info *topo)
3b22db66 2301{
2302 struct cgraph_node *node;
3b22db66 2303
821d0e0f 2304 if (dump_file)
2305 fprintf (dump_file, "\n Propagating constants:\n\n");
2306
2307 if (in_lto_p)
2308 ipa_update_after_lto_read ();
2309
2310
2311 FOR_EACH_DEFINED_FUNCTION (node)
2312 {
2313 struct ipa_node_params *info = IPA_NODE_REF (node);
2314
2315 determine_versionability (node);
2316 if (cgraph_function_with_gimple_body_p (node))
2317 {
803a7988 2318 info->lattices = XCNEWVEC (struct ipcp_param_lattices,
821d0e0f 2319 ipa_get_param_count (info));
2320 initialize_node_lattices (node);
2321 }
02774f2d 2322 if (node->definition && !node->alias)
15ca8f90 2323 overall_size += inline_summary (node)->self_size;
821d0e0f 2324 if (node->count > max_count)
2325 max_count = node->count;
821d0e0f 2326 }
2327
2328 max_new_size = overall_size;
2329 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
2330 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
2331 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
2332
2333 if (dump_file)
2334 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
2335 overall_size, max_new_size);
2336
2337 propagate_constants_topo (topo);
2338#ifdef ENABLE_CHECKING
2339 ipcp_verify_propagated_values ();
2340#endif
2341 propagate_effects ();
2342
2343 if (dump_file)
2344 {
2345 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
2346 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
2347 }
2348}
2349
2350/* Discover newly direct outgoing edges from NODE which is a new clone with
2351 known KNOWN_VALS and make them direct. */
2352
2353static void
2354ipcp_discover_new_direct_edges (struct cgraph_node *node,
265c4eb2 2355 vec<tree> known_vals,
2356 struct ipa_agg_replacement_value *aggvals)
821d0e0f 2357{
2358 struct cgraph_edge *ie, *next_ie;
18b64b34 2359 bool found = false;
821d0e0f 2360
2361 for (ie = node->indirect_calls; ie; ie = next_ie)
2362 {
d4e80e2b 2363 tree target;
821d0e0f 2364
2365 next_ie = ie->next_callee;
265c4eb2 2366 target = ipa_get_indirect_edge_target_1 (ie, known_vals, vNULL, vNULL,
2367 aggvals);
821d0e0f 2368 if (target)
18b64b34 2369 {
4d044066 2370 bool agg_contents = ie->indirect_info->agg_contents;
2371 bool polymorphic = ie->indirect_info->polymorphic;
436b29f7 2372 int param_index = ie->indirect_info->param_index;
096295f6 2373 struct cgraph_edge *cs = ipa_make_edge_direct_to_target (ie, target);
18b64b34 2374 found = true;
096295f6 2375
4d044066 2376 if (cs && !agg_contents && !polymorphic)
096295f6 2377 {
2378 struct ipa_node_params *info = IPA_NODE_REF (node);
096295f6 2379 int c = ipa_get_controlled_uses (info, param_index);
2380 if (c != IPA_UNDESCRIBED_USE)
2381 {
2382 struct ipa_ref *to_del;
2383
2384 c--;
2385 ipa_set_controlled_uses (info, param_index, c);
2386 if (dump_file && (dump_flags & TDF_DETAILS))
2387 fprintf (dump_file, " controlled uses count of param "
2388 "%i bumped down to %i\n", param_index, c);
2389 if (c == 0
51ce5652 2390 && (to_del = node->find_reference (cs->callee, NULL, 0)))
096295f6 2391 {
2392 if (dump_file && (dump_flags & TDF_DETAILS))
2393 fprintf (dump_file, " and even removing its "
2394 "cloning-created reference\n");
51ce5652 2395 to_del->remove_reference ();
096295f6 2396 }
2397 }
2398 }
18b64b34 2399 }
821d0e0f 2400 }
18b64b34 2401 /* Turning calls to direct calls will improve overall summary. */
2402 if (found)
2403 inline_update_overall_summary (node);
821d0e0f 2404}
2405
2406/* Vector of pointers which for linked lists of clones of an original crgaph
2407 edge. */
2408
f1f41a6c 2409static vec<cgraph_edge_p> next_edge_clone;
948ccfa6 2410static vec<cgraph_edge_p> prev_edge_clone;
821d0e0f 2411
2412static inline void
948ccfa6 2413grow_edge_clone_vectors (void)
821d0e0f 2414{
f1f41a6c 2415 if (next_edge_clone.length ()
821d0e0f 2416 <= (unsigned) cgraph_edge_max_uid)
f1f41a6c 2417 next_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
948ccfa6 2418 if (prev_edge_clone.length ()
2419 <= (unsigned) cgraph_edge_max_uid)
2420 prev_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
821d0e0f 2421}
2422
2423/* Edge duplication hook to grow the appropriate linked list in
2424 next_edge_clone. */
2425
2426static void
2427ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
948ccfa6 2428 void *)
821d0e0f 2429{
948ccfa6 2430 grow_edge_clone_vectors ();
2431
2432 struct cgraph_edge *old_next = next_edge_clone[src->uid];
2433 if (old_next)
2434 prev_edge_clone[old_next->uid] = dst;
2435 prev_edge_clone[dst->uid] = src;
2436
2437 next_edge_clone[dst->uid] = old_next;
f1f41a6c 2438 next_edge_clone[src->uid] = dst;
821d0e0f 2439}
2440
948ccfa6 2441/* Hook that is called by cgraph.c when an edge is removed. */
2442
2443static void
2444ipcp_edge_removal_hook (struct cgraph_edge *cs, void *)
2445{
2446 grow_edge_clone_vectors ();
2447
2448 struct cgraph_edge *prev = prev_edge_clone[cs->uid];
2449 struct cgraph_edge *next = next_edge_clone[cs->uid];
2450 if (prev)
2451 next_edge_clone[prev->uid] = next;
2452 if (next)
2453 prev_edge_clone[next->uid] = prev;
2454}
2455
803a7988 2456/* See if NODE is a clone with a known aggregate value at a given OFFSET of a
2457 parameter with the given INDEX. */
821d0e0f 2458
803a7988 2459static tree
3a4303e7 2460get_clone_agg_value (struct cgraph_node *node, HOST_WIDE_INT offset,
803a7988 2461 int index)
821d0e0f 2462{
803a7988 2463 struct ipa_agg_replacement_value *aggval;
2464
2465 aggval = ipa_get_agg_replacements_for_node (node);
2466 while (aggval)
2467 {
2468 if (aggval->offset == offset
2469 && aggval->index == index)
2470 return aggval->value;
2471 aggval = aggval->next;
2472 }
2473 return NULL_TREE;
821d0e0f 2474}
2475
2476/* Return true if edge CS does bring about the value described by SRC. */
2477
2478static bool
2479cgraph_edge_brings_value_p (struct cgraph_edge *cs,
2480 struct ipcp_value_source *src)
2481{
2482 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
7c1c3c97 2483 cgraph_node *real_dest = cgraph_function_node (cs->callee);
2484 struct ipa_node_params *dst_info = IPA_NODE_REF (real_dest);
821d0e0f 2485
87228246 2486 if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
821d0e0f 2487 || caller_info->node_dead)
2488 return false;
2489 if (!src->val)
2490 return true;
2491
2492 if (caller_info->ipcp_orig_node)
2493 {
803a7988 2494 tree t;
2495 if (src->offset == -1)
f1f41a6c 2496 t = caller_info->known_vals[src->index];
803a7988 2497 else
2498 t = get_clone_agg_value (cs->caller, src->offset, src->index);
821d0e0f 2499 return (t != NULL_TREE
2500 && values_equal_for_ipcp_p (src->val->value, t));
2501 }
2502 else
3b22db66 2503 {
803a7988 2504 struct ipcp_agg_lattice *aglat;
2505 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
2506 src->index);
2507 if (src->offset == -1)
2508 return (ipa_lat_is_single_const (&plats->itself)
2509 && values_equal_for_ipcp_p (src->val->value,
2510 plats->itself.values->value));
821d0e0f 2511 else
803a7988 2512 {
2513 if (plats->aggs_bottom || plats->aggs_contain_variable)
2514 return false;
2515 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2516 if (aglat->offset == src->offset)
2517 return (ipa_lat_is_single_const (aglat)
2518 && values_equal_for_ipcp_p (src->val->value,
2519 aglat->values->value));
2520 }
2521 return false;
821d0e0f 2522 }
2523}
2524
803a7988 2525/* Get the next clone in the linked list of clones of an edge. */
2526
2527static inline struct cgraph_edge *
2528get_next_cgraph_edge_clone (struct cgraph_edge *cs)
2529{
f1f41a6c 2530 return next_edge_clone[cs->uid];
803a7988 2531}
2532
821d0e0f 2533/* Given VAL, iterate over all its sources and if they still hold, add their
2534 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
2535 respectively. */
2536
2537static bool
2538get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
2539 gcov_type *count_sum, int *caller_count)
2540{
2541 struct ipcp_value_source *src;
2542 int freq = 0, count = 0;
2543 gcov_type cnt = 0;
2544 bool hot = false;
2545
2546 for (src = val->sources; src; src = src->next)
2547 {
2548 struct cgraph_edge *cs = src->cs;
2549 while (cs)
3b22db66 2550 {
821d0e0f 2551 if (cgraph_edge_brings_value_p (cs, src))
2552 {
2553 count++;
2554 freq += cs->frequency;
2555 cnt += cs->count;
2556 hot |= cgraph_maybe_hot_edge_p (cs);
2557 }
2558 cs = get_next_cgraph_edge_clone (cs);
3b22db66 2559 }
2560 }
821d0e0f 2561
2562 *freq_sum = freq;
2563 *count_sum = cnt;
2564 *caller_count = count;
2565 return hot;
3b22db66 2566}
2567
821d0e0f 2568/* Return a vector of incoming edges that do bring value VAL. It is assumed
2569 their number is known and equal to CALLER_COUNT. */
2570
f1f41a6c 2571static vec<cgraph_edge_p>
821d0e0f 2572gather_edges_for_value (struct ipcp_value *val, int caller_count)
3b22db66 2573{
821d0e0f 2574 struct ipcp_value_source *src;
f1f41a6c 2575 vec<cgraph_edge_p> ret;
821d0e0f 2576
f1f41a6c 2577 ret.create (caller_count);
821d0e0f 2578 for (src = val->sources; src; src = src->next)
2579 {
2580 struct cgraph_edge *cs = src->cs;
2581 while (cs)
2582 {
2583 if (cgraph_edge_brings_value_p (cs, src))
f1f41a6c 2584 ret.quick_push (cs);
821d0e0f 2585 cs = get_next_cgraph_edge_clone (cs);
2586 }
2587 }
2588
2589 return ret;
3b22db66 2590}
2591
821d0e0f 2592/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
2593 Return it or NULL if for some reason it cannot be created. */
2594
3b22db66 2595static struct ipa_replace_map *
09ab6335 2596get_replacement_map (struct ipa_node_params *info, tree value, int parm_num)
3b22db66 2597{
2598 struct ipa_replace_map *replace_map;
3b22db66 2599
821d0e0f 2600
25a27413 2601 replace_map = ggc_alloc<ipa_replace_map> ();
5afe38fe 2602 if (dump_file)
2603 {
09ab6335 2604 fprintf (dump_file, " replacing ");
2605 ipa_dump_param (dump_file, info, parm_num);
2606
5afe38fe 2607 fprintf (dump_file, " with const ");
821d0e0f 2608 print_generic_expr (dump_file, value, 0);
5afe38fe 2609 fprintf (dump_file, "\n");
2610 }
79e830ee 2611 replace_map->old_tree = NULL;
2612 replace_map->parm_num = parm_num;
821d0e0f 2613 replace_map->new_tree = value;
13e50f08 2614 replace_map->replace_p = true;
2615 replace_map->ref_p = false;
3b22db66 2616
2617 return replace_map;
2618}
2619
821d0e0f 2620/* Dump new profiling counts */
3b22db66 2621
3b22db66 2622static void
821d0e0f 2623dump_profile_updates (struct cgraph_node *orig_node,
2624 struct cgraph_node *new_node)
3b22db66 2625{
821d0e0f 2626 struct cgraph_edge *cs;
3b22db66 2627
821d0e0f 2628 fprintf (dump_file, " setting count of the specialized node to "
2629 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
2630 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2631 fprintf (dump_file, " edge to %s has count "
2632 HOST_WIDE_INT_PRINT_DEC "\n",
f1c8b4d7 2633 cs->callee->name (), (HOST_WIDE_INT) cs->count);
821d0e0f 2634
2635 fprintf (dump_file, " setting count of the original node to "
2636 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
2637 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2638 fprintf (dump_file, " edge to %s is left with "
2639 HOST_WIDE_INT_PRINT_DEC "\n",
f1c8b4d7 2640 cs->callee->name (), (HOST_WIDE_INT) cs->count);
821d0e0f 2641}
5afe38fe 2642
821d0e0f 2643/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
2644 their profile information to reflect this. */
3b22db66 2645
3b22db66 2646static void
821d0e0f 2647update_profiling_info (struct cgraph_node *orig_node,
2648 struct cgraph_node *new_node)
3b22db66 2649{
3b22db66 2650 struct cgraph_edge *cs;
821d0e0f 2651 struct caller_statistics stats;
2652 gcov_type new_sum, orig_sum;
2653 gcov_type remainder, orig_node_count = orig_node->count;
2654
2655 if (orig_node_count == 0)
2656 return;
3b22db66 2657
821d0e0f 2658 init_caller_stats (&stats);
2659 cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
2660 orig_sum = stats.count_sum;
2661 init_caller_stats (&stats);
2662 cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
2663 new_sum = stats.count_sum;
2664
2665 if (orig_node_count < orig_sum + new_sum)
3b22db66 2666 {
821d0e0f 2667 if (dump_file)
2668 fprintf (dump_file, " Problem: node %s/%i has too low count "
2669 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
2670 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
f1c8b4d7 2671 orig_node->name (), orig_node->order,
821d0e0f 2672 (HOST_WIDE_INT) orig_node_count,
2673 (HOST_WIDE_INT) (orig_sum + new_sum));
2674
2675 orig_node_count = (orig_sum + new_sum) * 12 / 10;
2676 if (dump_file)
2677 fprintf (dump_file, " proceeding by pretending it was "
2678 HOST_WIDE_INT_PRINT_DEC "\n",
2679 (HOST_WIDE_INT) orig_node_count);
3b22db66 2680 }
821d0e0f 2681
2682 new_node->count = new_sum;
2683 remainder = orig_node_count - new_sum;
2684 orig_node->count = remainder;
2685
2686 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2687 if (cs->frequency)
f9d4b7f4 2688 cs->count = apply_probability (cs->count,
2689 GCOV_COMPUTE_SCALE (new_sum,
2690 orig_node_count));
821d0e0f 2691 else
2692 cs->count = 0;
2693
2694 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
f9d4b7f4 2695 cs->count = apply_probability (cs->count,
2696 GCOV_COMPUTE_SCALE (remainder,
2697 orig_node_count));
821d0e0f 2698
2699 if (dump_file)
2700 dump_profile_updates (orig_node, new_node);
3b22db66 2701}
2702
821d0e0f 2703/* Update the respective profile of specialized NEW_NODE and the original
2704 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
2705 have been redirected to the specialized version. */
2706
2707static void
2708update_specialized_profile (struct cgraph_node *new_node,
2709 struct cgraph_node *orig_node,
2710 gcov_type redirected_sum)
2a15795f 2711{
614b82b2 2712 struct cgraph_edge *cs;
821d0e0f 2713 gcov_type new_node_count, orig_node_count = orig_node->count;
2a15795f 2714
821d0e0f 2715 if (dump_file)
2716 fprintf (dump_file, " the sum of counts of redirected edges is "
2717 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
2718 if (orig_node_count == 0)
2719 return;
614b82b2 2720
821d0e0f 2721 gcc_assert (orig_node_count >= redirected_sum);
2a15795f 2722
821d0e0f 2723 new_node_count = new_node->count;
2724 new_node->count += redirected_sum;
2725 orig_node->count -= redirected_sum;
614b82b2 2726
821d0e0f 2727 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2728 if (cs->frequency)
f9d4b7f4 2729 cs->count += apply_probability (cs->count,
2730 GCOV_COMPUTE_SCALE (redirected_sum,
2731 new_node_count));
821d0e0f 2732 else
2733 cs->count = 0;
614b82b2 2734
821d0e0f 2735 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2736 {
f9d4b7f4 2737 gcov_type dec = apply_probability (cs->count,
2738 GCOV_COMPUTE_SCALE (redirected_sum,
2739 orig_node_count));
821d0e0f 2740 if (dec < cs->count)
2741 cs->count -= dec;
2742 else
2743 cs->count = 0;
2744 }
614b82b2 2745
821d0e0f 2746 if (dump_file)
2747 dump_profile_updates (orig_node, new_node);
2a15795f 2748}
2749
821d0e0f 2750/* Create a specialized version of NODE with known constants and types of
2751 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
614b82b2 2752
821d0e0f 2753static struct cgraph_node *
2754create_specialized_node (struct cgraph_node *node,
f1f41a6c 2755 vec<tree> known_vals,
803a7988 2756 struct ipa_agg_replacement_value *aggvals,
f1f41a6c 2757 vec<cgraph_edge_p> callers)
2a15795f 2758{
821d0e0f 2759 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
f1f41a6c 2760 vec<ipa_replace_map_p, va_gc> *replace_trees = NULL;
3c0fe71b 2761 struct ipa_agg_replacement_value *av;
821d0e0f 2762 struct cgraph_node *new_node;
2763 int i, count = ipa_get_param_count (info);
2764 bitmap args_to_skip;
2a15795f 2765
821d0e0f 2766 gcc_assert (!info->ipcp_orig_node);
2767
2768 if (node->local.can_change_signature)
2a15795f 2769 {
821d0e0f 2770 args_to_skip = BITMAP_GGC_ALLOC ();
2771 for (i = 0; i < count; i++)
2772 {
f1f41a6c 2773 tree t = known_vals[i];
821d0e0f 2774
2775 if ((t && TREE_CODE (t) != TREE_BINFO)
2776 || !ipa_is_param_used (info, i))
2777 bitmap_set_bit (args_to_skip, i);
2778 }
2779 }
2780 else
03f99d3c 2781 {
2782 args_to_skip = NULL;
2783 if (dump_file && (dump_flags & TDF_DETAILS))
2784 fprintf (dump_file, " cannot change function signature\n");
2785 }
821d0e0f 2786
2787 for (i = 0; i < count ; i++)
2788 {
f1f41a6c 2789 tree t = known_vals[i];
821d0e0f 2790 if (t && TREE_CODE (t) != TREE_BINFO)
2791 {
2792 struct ipa_replace_map *replace_map;
2793
09ab6335 2794 replace_map = get_replacement_map (info, t, i);
821d0e0f 2795 if (replace_map)
f1f41a6c 2796 vec_safe_push (replace_trees, replace_map);
821d0e0f 2797 }
2a15795f 2798 }
2799
821d0e0f 2800 new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
2801 args_to_skip, "constprop");
803a7988 2802 ipa_set_node_agg_value_chain (new_node, aggvals);
3c0fe71b 2803 for (av = aggvals; av; av = av->next)
51ce5652 2804 new_node->maybe_add_reference (av->value, IPA_REF_ADDR, NULL);
3c0fe71b 2805
821d0e0f 2806 if (dump_file && (dump_flags & TDF_DETAILS))
803a7988 2807 {
2808 fprintf (dump_file, " the new node is %s/%i.\n",
f1c8b4d7 2809 new_node->name (), new_node->order);
803a7988 2810 if (aggvals)
2811 ipa_dump_agg_replacement_values (dump_file, aggvals);
2812 }
5a7ad253 2813 ipa_check_create_node_params ();
821d0e0f 2814 update_profiling_info (node, new_node);
2815 new_info = IPA_NODE_REF (new_node);
2816 new_info->ipcp_orig_node = node;
2817 new_info->known_vals = known_vals;
2a15795f 2818
265c4eb2 2819 ipcp_discover_new_direct_edges (new_node, known_vals, aggvals);
821d0e0f 2820
f1f41a6c 2821 callers.release ();
821d0e0f 2822 return new_node;
2a15795f 2823}
2824
821d0e0f 2825/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2826 KNOWN_VALS with constants and types that are also known for all of the
2827 CALLERS. */
1caef38b 2828
2829static void
803a7988 2830find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
f1f41a6c 2831 vec<tree> known_vals,
2832 vec<cgraph_edge_p> callers)
1caef38b 2833{
2834 struct ipa_node_params *info = IPA_NODE_REF (node);
821d0e0f 2835 int i, count = ipa_get_param_count (info);
1caef38b 2836
821d0e0f 2837 for (i = 0; i < count ; i++)
1caef38b 2838 {
821d0e0f 2839 struct cgraph_edge *cs;
2840 tree newval = NULL_TREE;
2841 int j;
1caef38b 2842
f1f41a6c 2843 if (ipa_get_scalar_lat (info, i)->bottom || known_vals[i])
1caef38b 2844 continue;
2845
f1f41a6c 2846 FOR_EACH_VEC_ELT (callers, j, cs)
3658fd1d 2847 {
821d0e0f 2848 struct ipa_jump_func *jump_func;
2849 tree t;
09a2b4db 2850
c8fc6b84 2851 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
2852 {
2853 newval = NULL_TREE;
2854 break;
2855 }
821d0e0f 2856 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
821d0e0f 2857 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
2858 if (!t
2859 || (newval
2860 && !values_equal_for_ipcp_p (t, newval)))
1caef38b 2861 {
821d0e0f 2862 newval = NULL_TREE;
2863 break;
1caef38b 2864 }
821d0e0f 2865 else
2866 newval = t;
1caef38b 2867 }
2868
821d0e0f 2869 if (newval)
2870 {
2871 if (dump_file && (dump_flags & TDF_DETAILS))
2872 {
803a7988 2873 fprintf (dump_file, " adding an extra known scalar value ");
821d0e0f 2874 print_ipcp_constant_value (dump_file, newval);
09ab6335 2875 fprintf (dump_file, " for ");
2876 ipa_dump_param (dump_file, info, i);
821d0e0f 2877 fprintf (dump_file, "\n");
2878 }
2a15795f 2879
f1f41a6c 2880 known_vals[i] = newval;
821d0e0f 2881 }
2a15795f 2882 }
2a15795f 2883}
2884
803a7988 2885/* Go through PLATS and create a vector of values consisting of values and
2886 offsets (minus OFFSET) of lattices that contain only a single value. */
2887
b3e7c666 2888static vec<ipa_agg_jf_item>
803a7988 2889copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
2890{
b3e7c666 2891 vec<ipa_agg_jf_item> res = vNULL;
803a7988 2892
2893 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
1e094109 2894 return vNULL;
803a7988 2895
2896 for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
2897 if (ipa_lat_is_single_const (aglat))
2898 {
2899 struct ipa_agg_jf_item ti;
2900 ti.offset = aglat->offset - offset;
2901 ti.value = aglat->values->value;
f1f41a6c 2902 res.safe_push (ti);
803a7988 2903 }
2904 return res;
2905}
2906
2907/* Intersect all values in INTER with single value lattices in PLATS (while
2908 subtracting OFFSET). */
2909
2910static void
2911intersect_with_plats (struct ipcp_param_lattices *plats,
b3e7c666 2912 vec<ipa_agg_jf_item> *inter,
803a7988 2913 HOST_WIDE_INT offset)
2914{
2915 struct ipcp_agg_lattice *aglat;
2916 struct ipa_agg_jf_item *item;
2917 int k;
2918
2919 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2920 {
f1f41a6c 2921 inter->release ();
803a7988 2922 return;
2923 }
2924
2925 aglat = plats->aggs;
f1f41a6c 2926 FOR_EACH_VEC_ELT (*inter, k, item)
803a7988 2927 {
2928 bool found = false;
2929 if (!item->value)
2930 continue;
2931 while (aglat)
2932 {
2933 if (aglat->offset - offset > item->offset)
2934 break;
2935 if (aglat->offset - offset == item->offset)
2936 {
2937 gcc_checking_assert (item->value);
2938 if (values_equal_for_ipcp_p (item->value, aglat->values->value))
2939 found = true;
2940 break;
2941 }
2942 aglat = aglat->next;
2943 }
2944 if (!found)
2945 item->value = NULL_TREE;
2946 }
2947}
2948
2949/* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
2950 vector result while subtracting OFFSET from the individual value offsets. */
2951
b3e7c666 2952static vec<ipa_agg_jf_item>
9bd3a517 2953agg_replacements_to_vector (struct cgraph_node *node, int index,
2954 HOST_WIDE_INT offset)
803a7988 2955{
2956 struct ipa_agg_replacement_value *av;
b3e7c666 2957 vec<ipa_agg_jf_item> res = vNULL;
803a7988 2958
2959 for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
9bd3a517 2960 if (av->index == index
2961 && (av->offset - offset) >= 0)
803a7988 2962 {
2963 struct ipa_agg_jf_item item;
2964 gcc_checking_assert (av->value);
2965 item.offset = av->offset - offset;
2966 item.value = av->value;
f1f41a6c 2967 res.safe_push (item);
803a7988 2968 }
2969
2970 return res;
2971}
2972
2973/* Intersect all values in INTER with those that we have already scheduled to
2974 be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
2975 (while subtracting OFFSET). */
2976
2977static void
2978intersect_with_agg_replacements (struct cgraph_node *node, int index,
b3e7c666 2979 vec<ipa_agg_jf_item> *inter,
803a7988 2980 HOST_WIDE_INT offset)
2981{
2982 struct ipa_agg_replacement_value *srcvals;
2983 struct ipa_agg_jf_item *item;
2984 int i;
2985
2986 srcvals = ipa_get_agg_replacements_for_node (node);
2987 if (!srcvals)
2988 {
f1f41a6c 2989 inter->release ();
803a7988 2990 return;
2991 }
2992
f1f41a6c 2993 FOR_EACH_VEC_ELT (*inter, i, item)
803a7988 2994 {
2995 struct ipa_agg_replacement_value *av;
2996 bool found = false;
2997 if (!item->value)
2998 continue;
2999 for (av = srcvals; av; av = av->next)
3000 {
3001 gcc_checking_assert (av->value);
3002 if (av->index == index
3003 && av->offset - offset == item->offset)
3004 {
3005 if (values_equal_for_ipcp_p (item->value, av->value))
3006 found = true;
3007 break;
3008 }
3009 }
3010 if (!found)
3011 item->value = NULL_TREE;
3012 }
3013}
3014
7e8091c8 3015/* Intersect values in INTER with aggregate values that come along edge CS to
3016 parameter number INDEX and return it. If INTER does not actually exist yet,
3017 copy all incoming values to it. If we determine we ended up with no values
3018 whatsoever, return a released vector. */
3019
b3e7c666 3020static vec<ipa_agg_jf_item>
7e8091c8 3021intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
b3e7c666 3022 vec<ipa_agg_jf_item> inter)
7e8091c8 3023{
3024 struct ipa_jump_func *jfunc;
3025 jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
3026 if (jfunc->type == IPA_JF_PASS_THROUGH
3027 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3028 {
3029 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
3030 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
3031
3032 if (caller_info->ipcp_orig_node)
3033 {
3034 struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
3035 struct ipcp_param_lattices *orig_plats;
3036 orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
3037 src_idx);
3038 if (agg_pass_through_permissible_p (orig_plats, jfunc))
3039 {
3040 if (!inter.exists ())
9bd3a517 3041 inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
7e8091c8 3042 else
3043 intersect_with_agg_replacements (cs->caller, src_idx,
3044 &inter, 0);
3045 }
3046 }
3047 else
3048 {
3049 struct ipcp_param_lattices *src_plats;
3050 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
3051 if (agg_pass_through_permissible_p (src_plats, jfunc))
3052 {
3053 /* Currently we do not produce clobber aggregate jump
3054 functions, adjust when we do. */
3055 gcc_checking_assert (!jfunc->agg.items);
3056 if (!inter.exists ())
3057 inter = copy_plats_to_inter (src_plats, 0);
3058 else
3059 intersect_with_plats (src_plats, &inter, 0);
3060 }
3061 }
3062 }
3063 else if (jfunc->type == IPA_JF_ANCESTOR
3064 && ipa_get_jf_ancestor_agg_preserved (jfunc))
3065 {
3066 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
3067 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
3068 struct ipcp_param_lattices *src_plats;
3069 HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
3070
3071 if (caller_info->ipcp_orig_node)
3072 {
3073 if (!inter.exists ())
9bd3a517 3074 inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
7e8091c8 3075 else
9bd3a517 3076 intersect_with_agg_replacements (cs->caller, src_idx, &inter,
7e8091c8 3077 delta);
3078 }
3079 else
3080 {
3081 src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
3082 /* Currently we do not produce clobber aggregate jump
3083 functions, adjust when we do. */
3084 gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
3085 if (!inter.exists ())
3086 inter = copy_plats_to_inter (src_plats, delta);
3087 else
3088 intersect_with_plats (src_plats, &inter, delta);
3089 }
3090 }
3091 else if (jfunc->agg.items)
3092 {
3093 struct ipa_agg_jf_item *item;
3094 int k;
3095
3096 if (!inter.exists ())
3097 for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
3098 inter.safe_push ((*jfunc->agg.items)[i]);
3099 else
3100 FOR_EACH_VEC_ELT (inter, k, item)
3101 {
3102 int l = 0;
3103 bool found = false;;
3104
3105 if (!item->value)
3106 continue;
3107
3108 while ((unsigned) l < jfunc->agg.items->length ())
3109 {
3110 struct ipa_agg_jf_item *ti;
3111 ti = &(*jfunc->agg.items)[l];
3112 if (ti->offset > item->offset)
3113 break;
3114 if (ti->offset == item->offset)
3115 {
3116 gcc_checking_assert (ti->value);
3117 if (values_equal_for_ipcp_p (item->value,
3118 ti->value))
3119 found = true;
3120 break;
3121 }
3122 l++;
3123 }
3124 if (!found)
3125 item->value = NULL;
3126 }
3127 }
3128 else
3129 {
9af5ce0c 3130 inter.release ();
b3e7c666 3131 return vec<ipa_agg_jf_item>();
7e8091c8 3132 }
3133 return inter;
3134}
3135
803a7988 3136/* Look at edges in CALLERS and collect all known aggregate values that arrive
3137 from all of them. */
3138
3139static struct ipa_agg_replacement_value *
3140find_aggregate_values_for_callers_subset (struct cgraph_node *node,
f1f41a6c 3141 vec<cgraph_edge_p> callers)
803a7988 3142{
91af92ef 3143 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
803a7988 3144 struct ipa_agg_replacement_value *res = NULL;
3145 struct cgraph_edge *cs;
91af92ef 3146 int i, j, count = ipa_get_param_count (dest_info);
803a7988 3147
f1f41a6c 3148 FOR_EACH_VEC_ELT (callers, j, cs)
803a7988 3149 {
3150 int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3151 if (c < count)
3152 count = c;
3153 }
3154
3155 for (i = 0; i < count ; i++)
3156 {
3157 struct cgraph_edge *cs;
b3e7c666 3158 vec<ipa_agg_jf_item> inter = vNULL;
803a7988 3159 struct ipa_agg_jf_item *item;
c42e4f2e 3160 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (dest_info, i);
803a7988 3161 int j;
3162
3163 /* Among other things, the following check should deal with all by_ref
3164 mismatches. */
c42e4f2e 3165 if (plats->aggs_bottom)
803a7988 3166 continue;
3167
f1f41a6c 3168 FOR_EACH_VEC_ELT (callers, j, cs)
803a7988 3169 {
7e8091c8 3170 inter = intersect_aggregates_with_edge (cs, i, inter);
803a7988 3171
f1f41a6c 3172 if (!inter.exists ())
803a7988 3173 goto next_param;
3174 }
3175
f1f41a6c 3176 FOR_EACH_VEC_ELT (inter, j, item)
803a7988 3177 {
3178 struct ipa_agg_replacement_value *v;
3179
3180 if (!item->value)
3181 continue;
3182
25a27413 3183 v = ggc_alloc<ipa_agg_replacement_value> ();
803a7988 3184 v->index = i;
3185 v->offset = item->offset;
3186 v->value = item->value;
c42e4f2e 3187 v->by_ref = plats->aggs_by_ref;
803a7988 3188 v->next = res;
3189 res = v;
3190 }
3191
3192 next_param:
f1f41a6c 3193 if (inter.exists ())
3194 inter.release ();
803a7988 3195 }
3196 return res;
3197}
3198
3199/* Turn KNOWN_AGGS into a list of aggreate replacement values. */
3200
3201static struct ipa_agg_replacement_value *
b3e7c666 3202known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function> known_aggs)
803a7988 3203{
3204 struct ipa_agg_replacement_value *res = NULL;
3205 struct ipa_agg_jump_function *aggjf;
3206 struct ipa_agg_jf_item *item;
3207 int i, j;
3208
f1f41a6c 3209 FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
3210 FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
803a7988 3211 {
3212 struct ipa_agg_replacement_value *v;
25a27413 3213 v = ggc_alloc<ipa_agg_replacement_value> ();
803a7988 3214 v->index = i;
3215 v->offset = item->offset;
3216 v->value = item->value;
c42e4f2e 3217 v->by_ref = aggjf->by_ref;
803a7988 3218 v->next = res;
3219 res = v;
3220 }
3221 return res;
3222}
3223
3224/* Determine whether CS also brings all scalar values that the NODE is
3225 specialized for. */
3226
3227static bool
3228cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
3229 struct cgraph_node *node)
3230{
3231 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3232 int count = ipa_get_param_count (dest_info);
3233 struct ipa_node_params *caller_info;
3234 struct ipa_edge_args *args;
3235 int i;
3236
3237 caller_info = IPA_NODE_REF (cs->caller);
3238 args = IPA_EDGE_REF (cs);
3239 for (i = 0; i < count; i++)
3240 {
3241 struct ipa_jump_func *jump_func;
3242 tree val, t;
3243
f1f41a6c 3244 val = dest_info->known_vals[i];
803a7988 3245 if (!val)
3246 continue;
3247
3248 if (i >= ipa_get_cs_argument_count (args))
3249 return false;
3250 jump_func = ipa_get_ith_jump_func (args, i);
3251 t = ipa_value_from_jfunc (caller_info, jump_func);
3252 if (!t || !values_equal_for_ipcp_p (val, t))
3253 return false;
3254 }
3255 return true;
3256}
3257
3258/* Determine whether CS also brings all aggregate values that NODE is
3259 specialized for. */
3260static bool
3261cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
3262 struct cgraph_node *node)
3263{
7e8091c8 3264 struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
fc635e81 3265 struct ipa_node_params *orig_node_info;
803a7988 3266 struct ipa_agg_replacement_value *aggval;
7e8091c8 3267 int i, ec, count;
803a7988 3268
3269 aggval = ipa_get_agg_replacements_for_node (node);
7e8091c8 3270 if (!aggval)
3271 return true;
3272
3273 count = ipa_get_param_count (IPA_NODE_REF (node));
3274 ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3275 if (ec < count)
3276 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3277 if (aggval->index >= ec)
3278 return false;
3279
fc635e81 3280 orig_node_info = IPA_NODE_REF (IPA_NODE_REF (node)->ipcp_orig_node);
7e8091c8 3281 if (orig_caller_info->ipcp_orig_node)
3282 orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
3283
3284 for (i = 0; i < count; i++)
803a7988 3285 {
b3e7c666 3286 static vec<ipa_agg_jf_item> values = vec<ipa_agg_jf_item>();
803a7988 3287 struct ipcp_param_lattices *plats;
7e8091c8 3288 bool interesting = false;
3289 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3290 if (aggval->index == i)
3291 {
3292 interesting = true;
3293 break;
3294 }
3295 if (!interesting)
3296 continue;
3297
fc635e81 3298 plats = ipa_get_parm_lattices (orig_node_info, aggval->index);
7e8091c8 3299 if (plats->aggs_bottom)
803a7988 3300 return false;
803a7988 3301
7e8091c8 3302 values = intersect_aggregates_with_edge (cs, i, values);
9af5ce0c 3303 if (!values.exists ())
803a7988 3304 return false;
3305
7e8091c8 3306 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3307 if (aggval->index == i)
3308 {
3309 struct ipa_agg_jf_item *item;
3310 int j;
3311 bool found = false;
3312 FOR_EACH_VEC_ELT (values, j, item)
3313 if (item->value
3314 && item->offset == av->offset
3315 && values_equal_for_ipcp_p (item->value, av->value))
9ea71c42 3316 {
3317 found = true;
3318 break;
3319 }
7e8091c8 3320 if (!found)
3321 {
9af5ce0c 3322 values.release ();
7e8091c8 3323 return false;
3324 }
3325 }
803a7988 3326 }
3327 return true;
3328}
3329
821d0e0f 3330/* Given an original NODE and a VAL for which we have already created a
3331 specialized clone, look whether there are incoming edges that still lead
3332 into the old node but now also bring the requested value and also conform to
3333 all other criteria such that they can be redirected the the special node.
3334 This function can therefore redirect the final edge in a SCC. */
7428ee1f 3335
3336static void
821d0e0f 3337perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
7428ee1f 3338{
821d0e0f 3339 struct ipcp_value_source *src;
821d0e0f 3340 gcov_type redirected_sum = 0;
7428ee1f 3341
821d0e0f 3342 for (src = val->sources; src; src = src->next)
7428ee1f 3343 {
821d0e0f 3344 struct cgraph_edge *cs = src->cs;
3345 while (cs)
3346 {
3347 enum availability availability;
87228246 3348 struct cgraph_node *dst = cgraph_function_node (cs->callee,
3349 &availability);
3350 if ((dst == node || IPA_NODE_REF (dst)->is_all_contexts_clone)
821d0e0f 3351 && availability > AVAIL_OVERWRITABLE
3352 && cgraph_edge_brings_value_p (cs, src))
3353 {
803a7988 3354 if (cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
3355 && cgraph_edge_brings_all_agg_vals_for_node (cs,
3356 val->spec_node))
821d0e0f 3357 {
3358 if (dump_file)
3359 fprintf (dump_file, " - adding an extra caller %s/%i"
3360 " of %s/%i\n",
f1c8b4d7 3361 xstrdup (cs->caller->name ()),
02774f2d 3362 cs->caller->order,
f1c8b4d7 3363 xstrdup (val->spec_node->name ()),
02774f2d 3364 val->spec_node->order);
821d0e0f 3365
3366 cgraph_redirect_edge_callee (cs, val->spec_node);
3367 redirected_sum += cs->count;
3368 }
3369 }
3370 cs = get_next_cgraph_edge_clone (cs);
3371 }
7428ee1f 3372 }
821d0e0f 3373
3374 if (redirected_sum)
3375 update_specialized_profile (val->spec_node, node, redirected_sum);
7428ee1f 3376}
3377
3378
821d0e0f 3379/* Copy KNOWN_BINFOS to KNOWN_VALS. */
3380
3b22db66 3381static void
f1f41a6c 3382move_binfos_to_values (vec<tree> known_vals,
3383 vec<tree> known_binfos)
3b22db66 3384{
821d0e0f 3385 tree t;
2a15795f 3386 int i;
3b22db66 3387
f1f41a6c 3388 for (i = 0; known_binfos.iterate (i, &t); i++)
821d0e0f 3389 if (t)
f1f41a6c 3390 known_vals[i] = t;
821d0e0f 3391}
2a15795f 3392
803a7988 3393/* Return true if there is a replacement equivalent to VALUE, INDEX and OFFSET
3394 among those in the AGGVALS list. */
3395
3396DEBUG_FUNCTION bool
3397ipcp_val_in_agg_replacements_p (struct ipa_agg_replacement_value *aggvals,
3398 int index, HOST_WIDE_INT offset, tree value)
3399{
3400 while (aggvals)
3401 {
3402 if (aggvals->index == index
3403 && aggvals->offset == offset
3404 && values_equal_for_ipcp_p (aggvals->value, value))
3405 return true;
3406 aggvals = aggvals->next;
3407 }
3408 return false;
3409}
3410
3411/* Decide wheter to create a special version of NODE for value VAL of parameter
3412 at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
3413 otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
3414 KNOWN_BINFOS and KNOWN_AGGS describe the other already known values. */
3415
3416static bool
3417decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
f1f41a6c 3418 struct ipcp_value *val, vec<tree> known_csts,
3419 vec<tree> known_binfos)
803a7988 3420{
3421 struct ipa_agg_replacement_value *aggvals;
3422 int freq_sum, caller_count;
3423 gcov_type count_sum;
f1f41a6c 3424 vec<cgraph_edge_p> callers;
3425 vec<tree> kv;
803a7988 3426
3427 if (val->spec_node)
3428 {
3429 perhaps_add_new_callers (node, val);
3430 return false;
3431 }
3432 else if (val->local_size_cost + overall_size > max_new_size)
3433 {
3434 if (dump_file && (dump_flags & TDF_DETAILS))
3435 fprintf (dump_file, " Ignoring candidate value because "
3436 "max_new_size would be reached with %li.\n",
3437 val->local_size_cost + overall_size);
3438 return false;
3439 }
3440 else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
3441 &caller_count))
3442 return false;
3443
3444 if (dump_file && (dump_flags & TDF_DETAILS))
3445 {
3446 fprintf (dump_file, " - considering value ");
3447 print_ipcp_constant_value (dump_file, val->value);
09ab6335 3448 fprintf (dump_file, " for ");
3449 ipa_dump_param (dump_file, IPA_NODE_REF (node), index);
803a7988 3450 if (offset != -1)
3451 fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
3452 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
3453 }
3454
3455 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
3456 freq_sum, count_sum,
3457 val->local_size_cost)
3458 && !good_cloning_opportunity_p (node,
3459 val->local_time_benefit
3460 + val->prop_time_benefit,
3461 freq_sum, count_sum,
3462 val->local_size_cost
3463 + val->prop_size_cost))
3464 return false;
3465
3466 if (dump_file)
3467 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
f1c8b4d7 3468 node->name (), node->order);
803a7988 3469
3470 callers = gather_edges_for_value (val, caller_count);
f1f41a6c 3471 kv = known_csts.copy ();
803a7988 3472 move_binfos_to_values (kv, known_binfos);
3473 if (offset == -1)
f1f41a6c 3474 kv[index] = val->value;
803a7988 3475 find_more_scalar_values_for_callers_subset (node, kv, callers);
3476 aggvals = find_aggregate_values_for_callers_subset (node, callers);
3477 gcc_checking_assert (offset == -1
3478 || ipcp_val_in_agg_replacements_p (aggvals, index,
3479 offset, val->value));
3480 val->spec_node = create_specialized_node (node, kv, aggvals, callers);
3481 overall_size += val->local_size_cost;
3482
3483 /* TODO: If for some lattice there is only one other known value
3484 left, make a special node for it too. */
3485
3486 return true;
3487}
2a15795f 3488
821d0e0f 3489/* Decide whether and what specialized clones of NODE should be created. */
2a15795f 3490
821d0e0f 3491static bool
3492decide_whether_version_node (struct cgraph_node *node)
3493{
3494 struct ipa_node_params *info = IPA_NODE_REF (node);
3495 int i, count = ipa_get_param_count (info);
f1f41a6c 3496 vec<tree> known_csts, known_binfos;
b3e7c666 3497 vec<ipa_agg_jump_function> known_aggs = vNULL;
821d0e0f 3498 bool ret = false;
2a15795f 3499
821d0e0f 3500 if (count == 0)
3501 return false;
2a15795f 3502
821d0e0f 3503 if (dump_file && (dump_flags & TDF_DETAILS))
3504 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
f1c8b4d7 3505 node->name (), node->order);
2a15795f 3506
821d0e0f 3507 gather_context_independent_values (info, &known_csts, &known_binfos,
87228246 3508 info->do_clone_for_all_contexts ? &known_aggs
3509 : NULL, NULL);
2a15795f 3510
803a7988 3511 for (i = 0; i < count ;i++)
821d0e0f 3512 {
803a7988 3513 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
3514 struct ipcp_lattice *lat = &plats->itself;
821d0e0f 3515 struct ipcp_value *val;
2a15795f 3516
803a7988 3517 if (!lat->bottom
f1f41a6c 3518 && !known_csts[i]
3519 && !known_binfos[i])
803a7988 3520 for (val = lat->values; val; val = val->next)
3521 ret |= decide_about_value (node, i, -1, val, known_csts,
3522 known_binfos);
3c97c75d 3523
87228246 3524 if (!plats->aggs_bottom)
3b22db66 3525 {
803a7988 3526 struct ipcp_agg_lattice *aglat;
3527 struct ipcp_value *val;
3528 for (aglat = plats->aggs; aglat; aglat = aglat->next)
3529 if (!aglat->bottom && aglat->values
3530 /* If the following is false, the one value is in
3531 known_aggs. */
3532 && (plats->aggs_contain_variable
3533 || !ipa_lat_is_single_const (aglat)))
3534 for (val = aglat->values; val; val = val->next)
3535 ret |= decide_about_value (node, i, aglat->offset, val,
3536 known_csts, known_binfos);
f9e9b574 3537 }
803a7988 3538 info = IPA_NODE_REF (node);
821d0e0f 3539 }
f9e9b574 3540
87228246 3541 if (info->do_clone_for_all_contexts)
821d0e0f 3542 {
87228246 3543 struct cgraph_node *clone;
f1f41a6c 3544 vec<cgraph_edge_p> callers;
f9e9b574 3545
821d0e0f 3546 if (dump_file)
3547 fprintf (dump_file, " - Creating a specialized node of %s/%i "
f1c8b4d7 3548 "for all known contexts.\n", node->name (),
02774f2d 3549 node->order);
2a15795f 3550
821d0e0f 3551 callers = collect_callers_of_node (node);
3552 move_binfos_to_values (known_csts, known_binfos);
87228246 3553 clone = create_specialized_node (node, known_csts,
803a7988 3554 known_aggs_to_agg_replacement_list (known_aggs),
3555 callers);
821d0e0f 3556 info = IPA_NODE_REF (node);
87228246 3557 info->do_clone_for_all_contexts = false;
3558 IPA_NODE_REF (clone)->is_all_contexts_clone = true;
e4898110 3559 for (i = 0; i < count ; i++)
3560 vec_free (known_aggs[i].items);
3561 known_aggs.release ();
821d0e0f 3562 ret = true;
3563 }
3564 else
f1f41a6c 3565 known_csts.release ();
2a15795f 3566
f1f41a6c 3567 known_binfos.release ();
821d0e0f 3568 return ret;
3569}
ccf4ab6b 3570
821d0e0f 3571/* Transitively mark all callees of NODE within the same SCC as not dead. */
1caef38b 3572
821d0e0f 3573static void
3574spread_undeadness (struct cgraph_node *node)
3575{
3576 struct cgraph_edge *cs;
2a15795f 3577
821d0e0f 3578 for (cs = node->callees; cs; cs = cs->next_callee)
a0255a70 3579 if (ipa_edge_within_scc (cs))
821d0e0f 3580 {
3581 struct cgraph_node *callee;
3582 struct ipa_node_params *info;
50828ed8 3583
821d0e0f 3584 callee = cgraph_function_node (cs->callee, NULL);
3585 info = IPA_NODE_REF (callee);
2a15795f 3586
821d0e0f 3587 if (info->node_dead)
3588 {
3589 info->node_dead = 0;
3590 spread_undeadness (callee);
3591 }
3592 }
3593}
3594
3595/* Return true if NODE has a caller from outside of its SCC that is not
3596 dead. Worker callback for cgraph_for_node_and_aliases. */
3597
3598static bool
3599has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
3600 void *data ATTRIBUTE_UNUSED)
3601{
3602 struct cgraph_edge *cs;
3603
3604 for (cs = node->callers; cs; cs = cs->next_caller)
3605 if (cs->caller->thunk.thunk_p
3606 && cgraph_for_node_and_aliases (cs->caller,
3607 has_undead_caller_from_outside_scc_p,
3608 NULL, true))
3609 return true;
a0255a70 3610 else if (!ipa_edge_within_scc (cs)
821d0e0f 3611 && !IPA_NODE_REF (cs->caller)->node_dead)
3612 return true;
3613 return false;
3614}
3615
3616
3617/* Identify nodes within the same SCC as NODE which are no longer needed
3618 because of new clones and will be removed as unreachable. */
3619
3620static void
3621identify_dead_nodes (struct cgraph_node *node)
3622{
3623 struct cgraph_node *v;
02774f2d 3624 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
821d0e0f 3625 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
3626 && !cgraph_for_node_and_aliases (v,
3627 has_undead_caller_from_outside_scc_p,
3628 NULL, true))
3629 IPA_NODE_REF (v)->node_dead = 1;
3630
02774f2d 3631 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
821d0e0f 3632 if (!IPA_NODE_REF (v)->node_dead)
3633 spread_undeadness (v);
3634
3635 if (dump_file && (dump_flags & TDF_DETAILS))
3636 {
02774f2d 3637 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
821d0e0f 3638 if (IPA_NODE_REF (v)->node_dead)
3639 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
f1c8b4d7 3640 v->name (), v->order);
2a15795f 3641 }
821d0e0f 3642}
3643
3644/* The decision stage. Iterate over the topological order of call graph nodes
3645 TOPO and make specialized clones if deemed beneficial. */
3646
3647static void
3648ipcp_decision_stage (struct topo_info *topo)
3649{
3650 int i;
3651
3652 if (dump_file)
3653 fprintf (dump_file, "\nIPA decision stage:\n\n");
2a15795f 3654
821d0e0f 3655 for (i = topo->nnodes - 1; i >= 0; i--)
2a15795f 3656 {
821d0e0f 3657 struct cgraph_node *node = topo->order[i];
3658 bool change = false, iterate = true;
3659
3660 while (iterate)
3661 {
3662 struct cgraph_node *v;
3663 iterate = false;
02774f2d 3664 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
821d0e0f 3665 if (cgraph_function_with_gimple_body_p (v)
3666 && ipcp_versionable_function_p (v))
3667 iterate |= decide_whether_version_node (v);
3668
3669 change |= iterate;
3670 }
3671 if (change)
3672 identify_dead_nodes (node);
3b22db66 3673 }
3b22db66 3674}
3675
3676/* The IPCP driver. */
821d0e0f 3677
8624b7fc 3678static unsigned int
3b22db66 3679ipcp_driver (void)
3680{
821d0e0f 3681 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
948ccfa6 3682 struct cgraph_edge_hook_list *edge_removal_hook_holder;
821d0e0f 3683 struct topo_info topo;
3684
821d0e0f 3685 ipa_check_create_node_params ();
3686 ipa_check_create_edge_args ();
948ccfa6 3687 grow_edge_clone_vectors ();
821d0e0f 3688 edge_duplication_hook_holder =
3689 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
948ccfa6 3690 edge_removal_hook_holder =
3691 cgraph_add_edge_removal_hook (&ipcp_edge_removal_hook, NULL);
3692
821d0e0f 3693 ipcp_values_pool = create_alloc_pool ("IPA-CP values",
3694 sizeof (struct ipcp_value), 32);
3695 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
3696 sizeof (struct ipcp_value_source), 64);
803a7988 3697 ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
3698 sizeof (struct ipcp_agg_lattice),
3699 32);
3b22db66 3700 if (dump_file)
3701 {
11b73810 3702 fprintf (dump_file, "\nIPA structures before propagation:\n");
3703 if (dump_flags & TDF_DETAILS)
3704 ipa_print_all_params (dump_file);
3705 ipa_print_all_jump_functions (dump_file);
3b22db66 3706 }
821d0e0f 3707
3708 /* Topological sort. */
3709 build_toporder_info (&topo);
3710 /* Do the interprocedural propagation. */
3711 ipcp_propagate_stage (&topo);
3712 /* Decide what constant propagation and cloning should be performed. */
3713 ipcp_decision_stage (&topo);
3714
3b22db66 3715 /* Free all IPCP structures. */
821d0e0f 3716 free_toporder_info (&topo);
f1f41a6c 3717 next_edge_clone.release ();
948ccfa6 3718 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
821d0e0f 3719 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
799c8711 3720 ipa_free_all_structures_after_ipa_cp ();
3b22db66 3721 if (dump_file)
3722 fprintf (dump_file, "\nIPA constant propagation end\n");
2a1990e9 3723 return 0;
3b22db66 3724}
3725
1caef38b 3726/* Initialization and computation of IPCP data structures. This is the initial
3727 intraprocedural analysis of functions, which gathers information to be
3728 propagated later on. */
3729
50828ed8 3730static void
3731ipcp_generate_summary (void)
3732{
1caef38b 3733 struct cgraph_node *node;
3734
50828ed8 3735 if (dump_file)
3736 fprintf (dump_file, "\nIPA constant propagation start:\n");
50828ed8 3737 ipa_register_cgraph_hooks ();
1caef38b 3738
91bf9d9a 3739 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
1caef38b 3740 {
7d0d0ce1 3741 node->local.versionable
02774f2d 3742 = tree_versionable_function_p (node->decl);
1caef38b 3743 ipa_analyze_node (node);
3744 }
50828ed8 3745}
3746
8867b500 3747/* Write ipcp summary for nodes in SET. */
821d0e0f 3748
8867b500 3749static void
eab36a5a 3750ipcp_write_summary (void)
8867b500 3751{
eab36a5a 3752 ipa_prop_write_jump_functions ();
8867b500 3753}
3754
3755/* Read ipcp summary. */
821d0e0f 3756
8867b500 3757static void
3758ipcp_read_summary (void)
3759{
3760 ipa_prop_read_jump_functions ();
3761}
3762
cbe8bda8 3763namespace {
3764
3765const pass_data pass_data_ipa_cp =
3766{
3767 IPA_PASS, /* type */
3768 "cp", /* name */
3769 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 3770 true, /* has_execute */
3771 TV_IPA_CONSTANT_PROP, /* tv_id */
3772 0, /* properties_required */
3773 0, /* properties_provided */
3774 0, /* properties_destroyed */
3775 0, /* todo_flags_start */
3776 ( TODO_dump_symtab | TODO_remove_functions ), /* todo_flags_finish */
3b22db66 3777};
cbe8bda8 3778
3779class pass_ipa_cp : public ipa_opt_pass_d
3780{
3781public:
9af5ce0c 3782 pass_ipa_cp (gcc::context *ctxt)
3783 : ipa_opt_pass_d (pass_data_ipa_cp, ctxt,
3784 ipcp_generate_summary, /* generate_summary */
3785 ipcp_write_summary, /* write_summary */
3786 ipcp_read_summary, /* read_summary */
3787 ipa_prop_write_all_agg_replacement, /*
3788 write_optimization_summary */
3789 ipa_prop_read_all_agg_replacement, /*
3790 read_optimization_summary */
3791 NULL, /* stmt_fixup */
3792 0, /* function_transform_todo_flags_start */
3793 ipcp_transform_function, /* function_transform */
3794 NULL) /* variable_transform */
cbe8bda8 3795 {}
3796
3797 /* opt_pass methods: */
31315c24 3798 virtual bool gate (function *)
3799 {
3800 /* FIXME: We should remove the optimize check after we ensure we never run
3801 IPA passes when not optimizing. */
3802 return flag_ipa_cp && optimize;
3803 }
3804
65b0537f 3805 virtual unsigned int execute (function *) { return ipcp_driver (); }
cbe8bda8 3806
3807}; // class pass_ipa_cp
3808
3809} // anon namespace
3810
3811ipa_opt_pass_d *
3812make_pass_ipa_cp (gcc::context *ctxt)
3813{
3814 return new pass_ipa_cp (ctxt);
3815}