]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ipa-prop.c
re PR lto/49302 (FAIL: gcc.dg/lto/20110201-1 c_lto_20110201-1_0.o-c_lto_20110201...
[thirdparty/gcc.git] / gcc / ipa-prop.c
CommitLineData
518dc859 1/* Interprocedural analyses.
c75c517d
SB
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
518dc859
RL
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
518dc859
RL
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
518dc859
RL
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tree.h"
25#include "langhooks.h"
26#include "ggc.h"
27#include "target.h"
28#include "cgraph.h"
29#include "ipa-prop.h"
30#include "tree-flow.h"
31#include "tree-pass.h"
771578a0 32#include "tree-inline.h"
b258210c 33#include "gimple.h"
518dc859
RL
34#include "flags.h"
35#include "timevar.h"
771578a0 36#include "flags.h"
3e293154 37#include "diagnostic.h"
cf835838
JM
38#include "tree-pretty-print.h"
39#include "gimple-pretty-print.h"
fb3f88cc 40#include "lto-streamer.h"
771578a0 41
062c604f
MJ
42
43/* Intermediate information about a parameter that is only useful during the
44 run of ipa_analyze_node and is not kept afterwards. */
45
46struct param_analysis_info
47{
48 bool modified;
49 bitmap visited_statements;
50};
51
771578a0
MJ
52/* Vector where the parameter infos are actually stored. */
53VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
54/* Vector where the parameter infos are actually stored. */
fb3f88cc 55VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
771578a0 56
e33c6cd6
MJ
57/* Bitmap with all UIDs of call graph edges that have been already processed
58 by indirect inlining. */
59static bitmap iinlining_processed_edges;
60
771578a0 61/* Holders of ipa cgraph hooks: */
e2c9111c
JH
62static struct cgraph_edge_hook_list *edge_removal_hook_holder;
63static struct cgraph_node_hook_list *node_removal_hook_holder;
64static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
65static struct cgraph_2node_hook_list *node_duplication_hook_holder;
40982661 66static struct cgraph_node_hook_list *function_insertion_hook_holder;
518dc859 67
5b9633c8
MJ
68/* Add cgraph NODE described by INFO to the worklist WL regardless of whether
69 it is in one or not. It should almost never be used directly, as opposed to
70 ipa_push_func_to_list. */
71
72void
73ipa_push_func_to_list_1 (struct ipa_func_list **wl,
74 struct cgraph_node *node,
75 struct ipa_node_params *info)
76{
77 struct ipa_func_list *temp;
78
79 info->node_enqueued = 1;
80 temp = XCNEW (struct ipa_func_list);
81 temp->node = node;
82 temp->next = *wl;
83 *wl = temp;
84}
85
dcd416e3 86/* Initialize worklist to contain all functions. */
be95e2b9 87
dcd416e3
MJ
88struct ipa_func_list *
89ipa_init_func_list (void)
518dc859
RL
90{
91 struct cgraph_node *node;
dcd416e3 92 struct ipa_func_list * wl;
518dc859
RL
93
94 wl = NULL;
95 for (node = cgraph_nodes; node; node = node->next)
749f25d8 96 if (node->analyzed && !node->alias)
0eae6bab 97 {
5b9633c8 98 struct ipa_node_params *info = IPA_NODE_REF (node);
0eae6bab
MJ
99 /* Unreachable nodes should have been eliminated before ipcp and
100 inlining. */
101 gcc_assert (node->needed || node->reachable);
5b9633c8 102 ipa_push_func_to_list_1 (&wl, node, info);
0eae6bab 103 }
518dc859
RL
104
105 return wl;
106}
107
5b9633c8 108/* Remove a function from the worklist WL and return it. */
be95e2b9 109
518dc859 110struct cgraph_node *
5b9633c8 111ipa_pop_func_from_list (struct ipa_func_list **wl)
518dc859 112{
5b9633c8 113 struct ipa_node_params *info;
dcd416e3 114 struct ipa_func_list *first;
5b9633c8 115 struct cgraph_node *node;
518dc859
RL
116
117 first = *wl;
dcd416e3 118 *wl = (*wl)->next;
5b9633c8 119 node = first->node;
518dc859 120 free (first);
5b9633c8
MJ
121
122 info = IPA_NODE_REF (node);
123 info->node_enqueued = 0;
124 return node;
518dc859
RL
125}
126
be95e2b9
MJ
127/* Return index of the formal whose tree is PTREE in function which corresponds
128 to INFO. */
129
632b4f8e 130int
dcd416e3 131ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
518dc859
RL
132{
133 int i, count;
134
dcd416e3 135 count = ipa_get_param_count (info);
518dc859 136 for (i = 0; i < count; i++)
f8e2a1ed 137 if (ipa_get_param(info, i) == ptree)
518dc859
RL
138 return i;
139
140 return -1;
141}
142
f8e2a1ed
MJ
143/* Populate the param_decl field in parameter descriptors of INFO that
144 corresponds to NODE. */
be95e2b9 145
f8e2a1ed
MJ
146static void
147ipa_populate_param_decls (struct cgraph_node *node,
148 struct ipa_node_params *info)
518dc859
RL
149{
150 tree fndecl;
151 tree fnargs;
152 tree parm;
153 int param_num;
3e293154 154
f8e2a1ed 155 fndecl = node->decl;
518dc859
RL
156 fnargs = DECL_ARGUMENTS (fndecl);
157 param_num = 0;
910ad8de 158 for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
518dc859 159 {
f8e2a1ed 160 info->params[param_num].decl = parm;
518dc859
RL
161 param_num++;
162 }
163}
164
3f84bf08
MJ
165/* Return how many formal parameters FNDECL has. */
166
167static inline int
168count_formal_params_1 (tree fndecl)
169{
170 tree parm;
171 int count = 0;
172
910ad8de 173 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
3f84bf08
MJ
174 count++;
175
176 return count;
177}
178
f8e2a1ed
MJ
179/* Count number of formal parameters in NOTE. Store the result to the
180 appropriate field of INFO. */
be95e2b9 181
f8e2a1ed
MJ
182static void
183ipa_count_formal_params (struct cgraph_node *node,
184 struct ipa_node_params *info)
518dc859 185{
518dc859
RL
186 int param_num;
187
3f84bf08 188 param_num = count_formal_params_1 (node->decl);
f8e2a1ed
MJ
189 ipa_set_param_count (info, param_num);
190}
191
192/* Initialize the ipa_node_params structure associated with NODE by counting
193 the function parameters, creating the descriptors and populating their
194 param_decls. */
be95e2b9 195
f8e2a1ed
MJ
196void
197ipa_initialize_node_params (struct cgraph_node *node)
198{
199 struct ipa_node_params *info = IPA_NODE_REF (node);
200
201 if (!info->params)
202 {
203 ipa_count_formal_params (node, info);
204 info->params = XCNEWVEC (struct ipa_param_descriptor,
205 ipa_get_param_count (info));
206 ipa_populate_param_decls (node, info);
207 }
518dc859
RL
208}
209
be95e2b9 210/* Count number of arguments callsite CS has and store it in
dcd416e3 211 ipa_edge_args structure corresponding to this callsite. */
be95e2b9 212
062c604f 213static void
dcd416e3 214ipa_count_arguments (struct cgraph_edge *cs)
518dc859 215{
726a989a 216 gimple stmt;
518dc859
RL
217 int arg_num;
218
726a989a
RB
219 stmt = cs->call_stmt;
220 gcc_assert (is_gimple_call (stmt));
221 arg_num = gimple_call_num_args (stmt);
129a37fc
JH
222 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
223 <= (unsigned) cgraph_edge_max_uid)
fb3f88cc 224 VEC_safe_grow_cleared (ipa_edge_args_t, gc,
129a37fc 225 ipa_edge_args_vector, cgraph_edge_max_uid + 1);
dcd416e3 226 ipa_set_cs_argument_count (IPA_EDGE_REF (cs), arg_num);
518dc859
RL
227}
228
749aa96d
MJ
229/* Print the jump functions associated with call graph edge CS to file F. */
230
231static void
232ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
233{
234 int i, count;
235
236 count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
237 for (i = 0; i < count; i++)
238 {
239 struct ipa_jump_func *jump_func;
240 enum jump_func_type type;
241
242 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
243 type = jump_func->type;
244
245 fprintf (f, " param %d: ", i);
246 if (type == IPA_JF_UNKNOWN)
247 fprintf (f, "UNKNOWN\n");
248 else if (type == IPA_JF_KNOWN_TYPE)
249 {
250 tree binfo_type = TREE_TYPE (jump_func->value.base_binfo);
251 fprintf (f, "KNOWN TYPE, type in binfo is: ");
252 print_generic_expr (f, binfo_type, 0);
253 fprintf (f, " (%u)\n", TYPE_UID (binfo_type));
254 }
255 else if (type == IPA_JF_CONST)
256 {
257 tree val = jump_func->value.constant;
258 fprintf (f, "CONST: ");
259 print_generic_expr (f, val, 0);
260 if (TREE_CODE (val) == ADDR_EXPR
261 && TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
262 {
263 fprintf (f, " -> ");
264 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
265 0);
266 }
267 fprintf (f, "\n");
268 }
269 else if (type == IPA_JF_CONST_MEMBER_PTR)
270 {
271 fprintf (f, "CONST MEMBER PTR: ");
272 print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
273 fprintf (f, ", ");
274 print_generic_expr (f, jump_func->value.member_cst.delta, 0);
275 fprintf (f, "\n");
276 }
277 else if (type == IPA_JF_PASS_THROUGH)
278 {
279 fprintf (f, "PASS THROUGH: ");
280 fprintf (f, "%d, op %s ",
281 jump_func->value.pass_through.formal_id,
282 tree_code_name[(int)
283 jump_func->value.pass_through.operation]);
284 if (jump_func->value.pass_through.operation != NOP_EXPR)
285 print_generic_expr (dump_file,
286 jump_func->value.pass_through.operand, 0);
287 fprintf (dump_file, "\n");
288 }
289 else if (type == IPA_JF_ANCESTOR)
290 {
291 fprintf (f, "ANCESTOR: ");
292 fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
293 jump_func->value.ancestor.formal_id,
294 jump_func->value.ancestor.offset);
295 print_generic_expr (f, jump_func->value.ancestor.type, 0);
296 fprintf (dump_file, "\n");
297 }
298 }
299}
300
301
be95e2b9
MJ
302/* Print the jump functions of all arguments on all call graph edges going from
303 NODE to file F. */
304
518dc859 305void
3e293154 306ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
518dc859 307{
3e293154 308 struct cgraph_edge *cs;
749aa96d 309 int i;
518dc859 310
ca30a539 311 fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
3e293154
MJ
312 for (cs = node->callees; cs; cs = cs->next_callee)
313 {
314 if (!ipa_edge_args_info_available_for_edge_p (cs))
315 continue;
316
749aa96d
MJ
317 fprintf (f, " callsite %s/%i -> %s/%i : \n",
318 cgraph_node_name (node), node->uid,
319 cgraph_node_name (cs->callee), cs->callee->uid);
320 ipa_print_node_jump_functions_for_edge (f, cs);
321 }
518dc859 322
749aa96d
MJ
323 for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
324 {
325 if (!ipa_edge_args_info_available_for_edge_p (cs))
326 continue;
3e293154 327
749aa96d
MJ
328 if (cs->call_stmt)
329 {
330 fprintf (f, " indirect callsite %d for stmt ", i);
331 print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
3e293154 332 }
749aa96d
MJ
333 else
334 fprintf (f, " indirect callsite %d :\n", i);
335 ipa_print_node_jump_functions_for_edge (f, cs);
336
3e293154
MJ
337 }
338}
339
340/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
be95e2b9 341
3e293154
MJ
342void
343ipa_print_all_jump_functions (FILE *f)
344{
345 struct cgraph_node *node;
346
ca30a539 347 fprintf (f, "\nJump functions:\n");
3e293154
MJ
348 for (node = cgraph_nodes; node; node = node->next)
349 {
350 ipa_print_node_jump_functions (f, node);
351 }
352}
353
f65cf2b7
MJ
354/* Structure to be passed in between detect_type_change and
355 check_stmt_for_type_change. */
356
357struct type_change_info
358{
359 /* Set to true if dynamic type change has been detected. */
360 bool type_maybe_changed;
361};
362
363/* Return true if STMT can modify a virtual method table pointer.
364
365 This function makes special assumptions about both constructors and
366 destructors which are all the functions that are allowed to alter the VMT
367 pointers. It assumes that destructors begin with assignment into all VMT
368 pointers and that constructors essentially look in the following way:
369
370 1) The very first thing they do is that they call constructors of ancestor
371 sub-objects that have them.
372
373 2) Then VMT pointers of this and all its ancestors is set to new values
374 corresponding to the type corresponding to the constructor.
375
376 3) Only afterwards, other stuff such as constructor of member sub-objects
377 and the code written by the user is run. Only this may include calling
378 virtual functions, directly or indirectly.
379
380 There is no way to call a constructor of an ancestor sub-object in any
381 other way.
382
383 This means that we do not have to care whether constructors get the correct
384 type information because they will always change it (in fact, if we define
385 the type to be given by the VMT pointer, it is undefined).
386
387 The most important fact to derive from the above is that if, for some
388 statement in the section 3, we try to detect whether the dynamic type has
389 changed, we can safely ignore all calls as we examine the function body
390 backwards until we reach statements in section 2 because these calls cannot
391 be ancestor constructors or destructors (if the input is not bogus) and so
392 do not change the dynamic type (this holds true only for automatically
393 allocated objects but at the moment we devirtualize only these). We then
394 must detect that statements in section 2 change the dynamic type and can try
395 to derive the new type. That is enough and we can stop, we will never see
396 the calls into constructors of sub-objects in this code. Therefore we can
397 safely ignore all call statements that we traverse.
398 */
399
400static bool
401stmt_may_be_vtbl_ptr_store (gimple stmt)
402{
403 if (is_gimple_call (stmt))
404 return false;
405 else if (is_gimple_assign (stmt))
406 {
407 tree lhs = gimple_assign_lhs (stmt);
408
0004f992
MJ
409 if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
410 {
411 if (flag_strict_aliasing
412 && !POINTER_TYPE_P (TREE_TYPE (lhs)))
413 return false;
414
415 if (TREE_CODE (lhs) == COMPONENT_REF
416 && !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
f65cf2b7 417 return false;
0004f992
MJ
418 /* In the future we might want to use get_base_ref_and_offset to find
419 if there is a field corresponding to the offset and if so, proceed
420 almost like if it was a component ref. */
421 }
f65cf2b7
MJ
422 }
423 return true;
424}
425
61502ca8 426/* Callback of walk_aliased_vdefs and a helper function for
f65cf2b7
MJ
427 detect_type_change to check whether a particular statement may modify
428 the virtual table pointer, and if possible also determine the new type of
429 the (sub-)object. It stores its result into DATA, which points to a
430 type_change_info structure. */
431
432static bool
433check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
434{
435 gimple stmt = SSA_NAME_DEF_STMT (vdef);
436 struct type_change_info *tci = (struct type_change_info *) data;
437
438 if (stmt_may_be_vtbl_ptr_store (stmt))
439 {
440 tci->type_maybe_changed = true;
441 return true;
442 }
443 else
444 return false;
445}
446
447/* Detect whether the dynamic type of ARG has changed (before callsite CALL) by
448 looking for assignments to its virtual table pointer. If it is, return true
449 and fill in the jump function JFUNC with relevant type information or set it
450 to unknown. ARG is the object itself (not a pointer to it, unless
451 dereferenced). BASE is the base of the memory access as returned by
452 get_ref_base_and_extent, as is the offset. */
453
454static bool
455detect_type_change (tree arg, tree base, gimple call,
456 struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
457{
458 struct type_change_info tci;
459 ao_ref ao;
460
461 gcc_checking_assert (DECL_P (arg)
462 || TREE_CODE (arg) == MEM_REF
463 || handled_component_p (arg));
464 /* Const calls cannot call virtual methods through VMT and so type changes do
465 not matter. */
05842ff5 466 if (!flag_devirtualize || !gimple_vuse (call))
f65cf2b7
MJ
467 return false;
468
469 tci.type_maybe_changed = false;
470
471 ao.ref = arg;
472 ao.base = base;
473 ao.offset = offset;
474 ao.size = POINTER_SIZE;
475 ao.max_size = ao.size;
476 ao.ref_alias_set = -1;
477 ao.base_alias_set = -1;
478
479 walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
480 &tci, NULL);
481 if (!tci.type_maybe_changed)
482 return false;
483
484 jfunc->type = IPA_JF_UNKNOWN;
485 return true;
486}
487
488/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
489 SSA name (its dereference will become the base and the offset is assumed to
490 be zero). */
491
492static bool
493detect_type_change_ssa (tree arg, gimple call, struct ipa_jump_func *jfunc)
494{
495 gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
05842ff5
MJ
496 if (!flag_devirtualize
497 || !POINTER_TYPE_P (TREE_TYPE (arg))
f65cf2b7
MJ
498 || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != RECORD_TYPE)
499 return false;
500
501 arg = build2 (MEM_REF, ptr_type_node, arg,
502 build_int_cst (ptr_type_node, 0));
503
504 return detect_type_change (arg, arg, call, jfunc, 0);
505}
506
507
b258210c
MJ
508/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
509 of an assignment statement STMT, try to find out whether NAME can be
510 described by a (possibly polynomial) pass-through jump-function or an
511 ancestor jump function and if so, write the appropriate function into
512 JFUNC */
685b0d13
MJ
513
514static void
b258210c
MJ
515compute_complex_assign_jump_func (struct ipa_node_params *info,
516 struct ipa_jump_func *jfunc,
f65cf2b7 517 gimple call, gimple stmt, tree name)
685b0d13
MJ
518{
519 HOST_WIDE_INT offset, size, max_size;
f65cf2b7 520 tree op1, op2, base, ssa;
685b0d13 521 int index;
685b0d13 522
685b0d13
MJ
523 op1 = gimple_assign_rhs1 (stmt);
524 op2 = gimple_assign_rhs2 (stmt);
525
b258210c
MJ
526 if (TREE_CODE (op1) == SSA_NAME
527 && SSA_NAME_IS_DEFAULT_DEF (op1))
685b0d13 528 {
b258210c
MJ
529 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
530 if (index < 0)
685b0d13
MJ
531 return;
532
b258210c 533 if (op2)
685b0d13 534 {
b258210c
MJ
535 if (!is_gimple_ip_invariant (op2)
536 || (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
537 && !useless_type_conversion_p (TREE_TYPE (name),
538 TREE_TYPE (op1))))
539 return;
540
685b0d13
MJ
541 jfunc->type = IPA_JF_PASS_THROUGH;
542 jfunc->value.pass_through.formal_id = index;
543 jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
544 jfunc->value.pass_through.operand = op2;
545 }
f65cf2b7
MJ
546 else if (gimple_assign_unary_nop_p (stmt)
547 && !detect_type_change_ssa (op1, call, jfunc))
b258210c
MJ
548 {
549 jfunc->type = IPA_JF_PASS_THROUGH;
550 jfunc->value.pass_through.formal_id = index;
551 jfunc->value.pass_through.operation = NOP_EXPR;
552 }
685b0d13
MJ
553 return;
554 }
555
556 if (TREE_CODE (op1) != ADDR_EXPR)
557 return;
558 op1 = TREE_OPERAND (op1, 0);
f65cf2b7 559 if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
b258210c 560 return;
32aa622c
MJ
561 base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
562 if (TREE_CODE (base) != MEM_REF
1a15bfdc
RG
563 /* If this is a varying address, punt. */
564 || max_size == -1
565 || max_size != size)
685b0d13 566 return;
32aa622c 567 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
f65cf2b7
MJ
568 ssa = TREE_OPERAND (base, 0);
569 if (TREE_CODE (ssa) != SSA_NAME
570 || !SSA_NAME_IS_DEFAULT_DEF (ssa)
280fedf0 571 || offset < 0)
685b0d13
MJ
572 return;
573
32aa622c 574 /* Dynamic types are changed only in constructors and destructors and */
f65cf2b7
MJ
575 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
576 if (index >= 0
577 && !detect_type_change (op1, base, call, jfunc, offset))
685b0d13
MJ
578 {
579 jfunc->type = IPA_JF_ANCESTOR;
580 jfunc->value.ancestor.formal_id = index;
581 jfunc->value.ancestor.offset = offset;
f65cf2b7 582 jfunc->value.ancestor.type = TREE_TYPE (op1);
685b0d13
MJ
583 }
584}
585
40591473
MJ
586/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
587 it looks like:
588
589 iftmp.1_3 = &obj_2(D)->D.1762;
590
591 The base of the MEM_REF must be a default definition SSA NAME of a
592 parameter. Return NULL_TREE if it looks otherwise. If case of success, the
593 whole MEM_REF expression is returned and the offset calculated from any
594 handled components and the MEM_REF itself is stored into *OFFSET. The whole
595 RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
596
597static tree
598get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
599{
600 HOST_WIDE_INT size, max_size;
601 tree expr, parm, obj;
602
603 if (!gimple_assign_single_p (assign))
604 return NULL_TREE;
605 expr = gimple_assign_rhs1 (assign);
606
607 if (TREE_CODE (expr) != ADDR_EXPR)
608 return NULL_TREE;
609 expr = TREE_OPERAND (expr, 0);
610 obj = expr;
611 expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
612
613 if (TREE_CODE (expr) != MEM_REF
614 /* If this is a varying address, punt. */
615 || max_size == -1
616 || max_size != size
617 || *offset < 0)
618 return NULL_TREE;
619 parm = TREE_OPERAND (expr, 0);
620 if (TREE_CODE (parm) != SSA_NAME
621 || !SSA_NAME_IS_DEFAULT_DEF (parm)
622 || TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
623 return NULL_TREE;
624
625 *offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
626 *obj_p = obj;
627 return expr;
628}
629
685b0d13 630
b258210c
MJ
631/* Given that an actual argument is an SSA_NAME that is a result of a phi
632 statement PHI, try to find out whether NAME is in fact a
633 multiple-inheritance typecast from a descendant into an ancestor of a formal
634 parameter and thus can be described by an ancestor jump function and if so,
635 write the appropriate function into JFUNC.
636
637 Essentially we want to match the following pattern:
638
639 if (obj_2(D) != 0B)
640 goto <bb 3>;
641 else
642 goto <bb 4>;
643
644 <bb 3>:
645 iftmp.1_3 = &obj_2(D)->D.1762;
646
647 <bb 4>:
648 # iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
649 D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
650 return D.1879_6; */
651
652static void
653compute_complex_ancestor_jump_func (struct ipa_node_params *info,
654 struct ipa_jump_func *jfunc,
f65cf2b7 655 gimple call, gimple phi)
b258210c 656{
40591473 657 HOST_WIDE_INT offset;
b258210c
MJ
658 gimple assign, cond;
659 basic_block phi_bb, assign_bb, cond_bb;
f65cf2b7 660 tree tmp, parm, expr, obj;
b258210c
MJ
661 int index, i;
662
54e348cb 663 if (gimple_phi_num_args (phi) != 2)
b258210c
MJ
664 return;
665
54e348cb
MJ
666 if (integer_zerop (PHI_ARG_DEF (phi, 1)))
667 tmp = PHI_ARG_DEF (phi, 0);
668 else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
669 tmp = PHI_ARG_DEF (phi, 1);
670 else
671 return;
b258210c
MJ
672 if (TREE_CODE (tmp) != SSA_NAME
673 || SSA_NAME_IS_DEFAULT_DEF (tmp)
674 || !POINTER_TYPE_P (TREE_TYPE (tmp))
675 || TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
676 return;
677
678 assign = SSA_NAME_DEF_STMT (tmp);
679 assign_bb = gimple_bb (assign);
40591473 680 if (!single_pred_p (assign_bb))
b258210c 681 return;
40591473
MJ
682 expr = get_ancestor_addr_info (assign, &obj, &offset);
683 if (!expr)
b258210c
MJ
684 return;
685 parm = TREE_OPERAND (expr, 0);
b258210c 686 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
40591473 687 gcc_assert (index >= 0);
b258210c
MJ
688
689 cond_bb = single_pred (assign_bb);
690 cond = last_stmt (cond_bb);
69610617
SB
691 if (!cond
692 || gimple_code (cond) != GIMPLE_COND
b258210c
MJ
693 || gimple_cond_code (cond) != NE_EXPR
694 || gimple_cond_lhs (cond) != parm
695 || !integer_zerop (gimple_cond_rhs (cond)))
696 return;
697
b258210c
MJ
698 phi_bb = gimple_bb (phi);
699 for (i = 0; i < 2; i++)
700 {
701 basic_block pred = EDGE_PRED (phi_bb, i)->src;
702 if (pred != assign_bb && pred != cond_bb)
703 return;
704 }
705
f65cf2b7
MJ
706 if (!detect_type_change (obj, expr, call, jfunc, offset))
707 {
708 jfunc->type = IPA_JF_ANCESTOR;
709 jfunc->value.ancestor.formal_id = index;
710 jfunc->value.ancestor.offset = offset;
40591473 711 jfunc->value.ancestor.type = TREE_TYPE (obj);
f65cf2b7 712 }
b258210c
MJ
713}
714
61502ca8 715/* Given OP which is passed as an actual argument to a called function,
b258210c
MJ
716 determine if it is possible to construct a KNOWN_TYPE jump function for it
717 and if so, create one and store it to JFUNC. */
718
719static void
f65cf2b7
MJ
720compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
721 gimple call)
b258210c 722{
32aa622c
MJ
723 HOST_WIDE_INT offset, size, max_size;
724 tree base, binfo;
b258210c 725
05842ff5
MJ
726 if (!flag_devirtualize
727 || TREE_CODE (op) != ADDR_EXPR
32aa622c 728 || TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE)
b258210c
MJ
729 return;
730
731 op = TREE_OPERAND (op, 0);
32aa622c
MJ
732 base = get_ref_base_and_extent (op, &offset, &size, &max_size);
733 if (!DECL_P (base)
734 || max_size == -1
735 || max_size != size
736 || TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
737 || is_global_var (base))
738 return;
739
f65cf2b7
MJ
740 if (detect_type_change (op, base, call, jfunc, offset))
741 return;
742
32aa622c
MJ
743 binfo = TYPE_BINFO (TREE_TYPE (base));
744 if (!binfo)
745 return;
746 binfo = get_binfo_at_offset (binfo, offset, TREE_TYPE (op));
b258210c
MJ
747 if (binfo)
748 {
749 jfunc->type = IPA_JF_KNOWN_TYPE;
750 jfunc->value.base_binfo = binfo;
751 }
752}
753
754
be95e2b9
MJ
755/* Determine the jump functions of scalar arguments. Scalar means SSA names
756 and constants of a number of selected types. INFO is the ipa_node_params
757 structure associated with the caller, FUNCTIONS is a pointer to an array of
758 jump function structures associated with CALL which is the call statement
759 being examined.*/
760
3e293154
MJ
761static void
762compute_scalar_jump_functions (struct ipa_node_params *info,
763 struct ipa_jump_func *functions,
726a989a 764 gimple call)
3e293154 765{
3e293154 766 tree arg;
726a989a 767 unsigned num = 0;
3e293154 768
726a989a 769 for (num = 0; num < gimple_call_num_args (call); num++)
518dc859 770 {
726a989a
RB
771 arg = gimple_call_arg (call, num);
772
00fc2333 773 if (is_gimple_ip_invariant (arg))
518dc859 774 {
133f9369 775 functions[num].type = IPA_JF_CONST;
3e293154
MJ
776 functions[num].value.constant = arg;
777 }
685b0d13 778 else if (TREE_CODE (arg) == SSA_NAME)
3e293154 779 {
685b0d13 780 if (SSA_NAME_IS_DEFAULT_DEF (arg))
518dc859 781 {
685b0d13
MJ
782 int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
783
f65cf2b7
MJ
784 if (index >= 0
785 && !detect_type_change_ssa (arg, call, &functions[num]))
685b0d13
MJ
786 {
787 functions[num].type = IPA_JF_PASS_THROUGH;
788 functions[num].value.pass_through.formal_id = index;
789 functions[num].value.pass_through.operation = NOP_EXPR;
790 }
518dc859 791 }
685b0d13 792 else
b258210c
MJ
793 {
794 gimple stmt = SSA_NAME_DEF_STMT (arg);
795 if (is_gimple_assign (stmt))
796 compute_complex_assign_jump_func (info, &functions[num],
f65cf2b7 797 call, stmt, arg);
b258210c
MJ
798 else if (gimple_code (stmt) == GIMPLE_PHI)
799 compute_complex_ancestor_jump_func (info, &functions[num],
f65cf2b7 800 call, stmt);
b258210c 801 }
518dc859 802 }
b258210c 803 else
f65cf2b7 804 compute_known_type_jump_func (arg, &functions[num], call);
3e293154
MJ
805 }
806}
807
be95e2b9
MJ
808/* Inspect the given TYPE and return true iff it has the same structure (the
809 same number of fields of the same types) as a C++ member pointer. If
810 METHOD_PTR and DELTA are non-NULL, store the trees representing the
811 corresponding fields there. */
812
3e293154
MJ
813static bool
814type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
815{
816 tree fld;
817
818 if (TREE_CODE (type) != RECORD_TYPE)
819 return false;
820
821 fld = TYPE_FIELDS (type);
822 if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
823 || TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
824 return false;
825
826 if (method_ptr)
827 *method_ptr = fld;
828
910ad8de 829 fld = DECL_CHAIN (fld);
3e293154
MJ
830 if (!fld || INTEGRAL_TYPE_P (fld))
831 return false;
832 if (delta)
833 *delta = fld;
834
910ad8de 835 if (DECL_CHAIN (fld))
3e293154
MJ
836 return false;
837
838 return true;
839}
840
062c604f
MJ
841/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
842 boolean variable pointed to by DATA. */
843
844static bool
845mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
846 void *data)
847{
848 bool *b = (bool *) data;
849 *b = true;
850 return true;
851}
852
853/* Return true if the formal parameter PARM might have been modified in this
854 function before reaching the statement CALL. PARM_INFO is a pointer to a
855 structure containing intermediate information about PARM. */
856
857static bool
858is_parm_modified_before_call (struct param_analysis_info *parm_info,
859 gimple call, tree parm)
860{
861 bool modified = false;
862 ao_ref refd;
863
864 if (parm_info->modified)
865 return true;
866
867 ao_ref_init (&refd, parm);
868 walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
869 &modified, &parm_info->visited_statements);
870 if (modified)
871 {
872 parm_info->modified = true;
873 return true;
874 }
875 return false;
876}
877
be95e2b9
MJ
878/* Go through arguments of the CALL and for every one that looks like a member
879 pointer, check whether it can be safely declared pass-through and if so,
880 mark that to the corresponding item of jump FUNCTIONS. Return true iff
881 there are non-pass-through member pointers within the arguments. INFO
062c604f
MJ
882 describes formal parameters of the caller. PARMS_INFO is a pointer to a
883 vector containing intermediate information about each formal parameter. */
be95e2b9 884
3e293154
MJ
885static bool
886compute_pass_through_member_ptrs (struct ipa_node_params *info,
062c604f 887 struct param_analysis_info *parms_info,
3e293154 888 struct ipa_jump_func *functions,
726a989a 889 gimple call)
3e293154 890{
3e293154 891 bool undecided_members = false;
726a989a 892 unsigned num;
3e293154
MJ
893 tree arg;
894
726a989a 895 for (num = 0; num < gimple_call_num_args (call); num++)
3e293154 896 {
726a989a
RB
897 arg = gimple_call_arg (call, num);
898
3e293154 899 if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
518dc859 900 {
3e293154
MJ
901 if (TREE_CODE (arg) == PARM_DECL)
902 {
903 int index = ipa_get_param_decl_index (info, arg);
904
905 gcc_assert (index >=0);
062c604f 906 if (!is_parm_modified_before_call (&parms_info[index], call, arg))
3e293154 907 {
133f9369 908 functions[num].type = IPA_JF_PASS_THROUGH;
685b0d13
MJ
909 functions[num].value.pass_through.formal_id = index;
910 functions[num].value.pass_through.operation = NOP_EXPR;
3e293154
MJ
911 }
912 else
913 undecided_members = true;
914 }
915 else
916 undecided_members = true;
518dc859 917 }
3e293154
MJ
918 }
919
920 return undecided_members;
921}
922
923/* Simple function filling in a member pointer constant jump function (with PFN
924 and DELTA as the constant value) into JFUNC. */
be95e2b9 925
3e293154
MJ
926static void
927fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
928 tree pfn, tree delta)
929{
133f9369 930 jfunc->type = IPA_JF_CONST_MEMBER_PTR;
3e293154
MJ
931 jfunc->value.member_cst.pfn = pfn;
932 jfunc->value.member_cst.delta = delta;
933}
934
61502ca8 935/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
7ec49257
MJ
936 return the rhs of its defining statement. */
937
938static inline tree
939get_ssa_def_if_simple_copy (tree rhs)
940{
941 while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
942 {
943 gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
944
945 if (gimple_assign_single_p (def_stmt))
946 rhs = gimple_assign_rhs1 (def_stmt);
9961eb45
MJ
947 else
948 break;
7ec49257
MJ
949 }
950 return rhs;
951}
952
726a989a
RB
953/* Traverse statements from CALL backwards, scanning whether the argument ARG
954 which is a member pointer is filled in with constant values. If it is, fill
955 the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
956 fields of the record type of the member pointer. To give an example, we
957 look for a pattern looking like the following:
3e293154
MJ
958
959 D.2515.__pfn ={v} printStuff;
960 D.2515.__delta ={v} 0;
961 i_1 = doprinting (D.2515); */
be95e2b9 962
3e293154 963static void
726a989a 964determine_cst_member_ptr (gimple call, tree arg, tree method_field,
3e293154
MJ
965 tree delta_field, struct ipa_jump_func *jfunc)
966{
726a989a 967 gimple_stmt_iterator gsi;
3e293154
MJ
968 tree method = NULL_TREE;
969 tree delta = NULL_TREE;
970
726a989a 971 gsi = gsi_for_stmt (call);
3e293154 972
726a989a
RB
973 gsi_prev (&gsi);
974 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
3e293154 975 {
726a989a 976 gimple stmt = gsi_stmt (gsi);
3e293154
MJ
977 tree lhs, rhs, fld;
978
8aa29647
MJ
979 if (!stmt_may_clobber_ref_p (stmt, arg))
980 continue;
8b75fc9b 981 if (!gimple_assign_single_p (stmt))
3e293154
MJ
982 return;
983
726a989a
RB
984 lhs = gimple_assign_lhs (stmt);
985 rhs = gimple_assign_rhs1 (stmt);
3e293154
MJ
986
987 if (TREE_CODE (lhs) != COMPONENT_REF
988 || TREE_OPERAND (lhs, 0) != arg)
8aa29647 989 return;
3e293154
MJ
990
991 fld = TREE_OPERAND (lhs, 1);
992 if (!method && fld == method_field)
518dc859 993 {
7ec49257 994 rhs = get_ssa_def_if_simple_copy (rhs);
3e293154
MJ
995 if (TREE_CODE (rhs) == ADDR_EXPR
996 && TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
997 && TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
518dc859 998 {
3e293154
MJ
999 method = TREE_OPERAND (rhs, 0);
1000 if (delta)
1001 {
00fc2333 1002 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
3e293154
MJ
1003 return;
1004 }
518dc859 1005 }
3e293154
MJ
1006 else
1007 return;
1008 }
1009
1010 if (!delta && fld == delta_field)
1011 {
7ec49257 1012 rhs = get_ssa_def_if_simple_copy (rhs);
3e293154
MJ
1013 if (TREE_CODE (rhs) == INTEGER_CST)
1014 {
1015 delta = rhs;
1016 if (method)
1017 {
00fc2333 1018 fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
3e293154
MJ
1019 return;
1020 }
1021 }
1022 else
1023 return;
1024 }
1025 }
1026
1027 return;
1028}
1029
726a989a
RB
1030/* Go through the arguments of the CALL and for every member pointer within
1031 tries determine whether it is a constant. If it is, create a corresponding
1032 constant jump function in FUNCTIONS which is an array of jump functions
1033 associated with the call. */
be95e2b9 1034
3e293154
MJ
1035static void
1036compute_cst_member_ptr_arguments (struct ipa_jump_func *functions,
726a989a 1037 gimple call)
3e293154 1038{
726a989a 1039 unsigned num;
3e293154
MJ
1040 tree arg, method_field, delta_field;
1041
726a989a 1042 for (num = 0; num < gimple_call_num_args (call); num++)
3e293154 1043 {
726a989a
RB
1044 arg = gimple_call_arg (call, num);
1045
133f9369 1046 if (functions[num].type == IPA_JF_UNKNOWN
3e293154
MJ
1047 && type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
1048 &delta_field))
726a989a
RB
1049 determine_cst_member_ptr (call, arg, method_field, delta_field,
1050 &functions[num]);
3e293154
MJ
1051 }
1052}
1053
1054/* Compute jump function for all arguments of callsite CS and insert the
1055 information in the jump_functions array in the ipa_edge_args corresponding
1056 to this callsite. */
be95e2b9 1057
749aa96d 1058static void
062c604f
MJ
1059ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_info,
1060 struct cgraph_edge *cs)
3e293154
MJ
1061{
1062 struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
1063 struct ipa_edge_args *arguments = IPA_EDGE_REF (cs);
726a989a 1064 gimple call;
3e293154
MJ
1065
1066 if (ipa_get_cs_argument_count (arguments) == 0 || arguments->jump_functions)
1067 return;
a9429e29
LB
1068 arguments->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
1069 (ipa_get_cs_argument_count (arguments));
726a989a
RB
1070
1071 call = cs->call_stmt;
1072 gcc_assert (is_gimple_call (call));
3e293154
MJ
1073
1074 /* We will deal with constants and SSA scalars first: */
1075 compute_scalar_jump_functions (info, arguments->jump_functions, call);
1076
1077 /* Let's check whether there are any potential member pointers and if so,
1078 whether we can determine their functions as pass_through. */
062c604f
MJ
1079 if (!compute_pass_through_member_ptrs (info, parms_info,
1080 arguments->jump_functions, call))
3e293154
MJ
1081 return;
1082
be95e2b9 1083 /* Finally, let's check whether we actually pass a new constant member
3e293154 1084 pointer here... */
726a989a 1085 compute_cst_member_ptr_arguments (arguments->jump_functions, call);
3e293154
MJ
1086}
1087
749aa96d
MJ
1088/* Compute jump functions for all edges - both direct and indirect - outgoing
1089 from NODE. Also count the actual arguments in the process. */
1090
062c604f
MJ
1091static void
1092ipa_compute_jump_functions (struct cgraph_node *node,
1093 struct param_analysis_info *parms_info)
749aa96d
MJ
1094{
1095 struct cgraph_edge *cs;
1096
1097 for (cs = node->callees; cs; cs = cs->next_callee)
1098 {
749f25d8 1099 struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee, NULL);
749aa96d
MJ
1100 /* We do not need to bother analyzing calls to unknown
1101 functions unless they may become known during lto/whopr. */
014d92e1 1102 if (!cs->callee->analyzed && !flag_lto)
749aa96d
MJ
1103 continue;
1104 ipa_count_arguments (cs);
062c604f
MJ
1105 /* If the descriptor of the callee is not initialized yet, we have to do
1106 it now. */
749f25d8
JH
1107 if (callee->analyzed)
1108 ipa_initialize_node_params (callee);
749aa96d 1109 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
749f25d8
JH
1110 != ipa_get_param_count (IPA_NODE_REF (callee)))
1111 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
062c604f 1112 ipa_compute_jump_functions_for_edge (parms_info, cs);
749aa96d
MJ
1113 }
1114
1115 for (cs = node->indirect_calls; cs; cs = cs->next_callee)
1116 {
1117 ipa_count_arguments (cs);
062c604f 1118 ipa_compute_jump_functions_for_edge (parms_info, cs);
749aa96d
MJ
1119 }
1120}
1121
6f7b8b70
RE
1122/* If RHS looks like a rhs of a statement loading pfn from a member
1123 pointer formal parameter, return the parameter, otherwise return
1124 NULL. If USE_DELTA, then we look for a use of the delta field
1125 rather than the pfn. */
be95e2b9 1126
3e293154 1127static tree
6f7b8b70 1128ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
3e293154 1129{
ae788515 1130 tree rec, ref_field, ref_offset, fld, fld_offset, ptr_field, delta_field;
3e293154 1131
ae788515
EB
1132 if (TREE_CODE (rhs) == COMPONENT_REF)
1133 {
1134 ref_field = TREE_OPERAND (rhs, 1);
1135 rhs = TREE_OPERAND (rhs, 0);
1136 }
1137 else
1138 ref_field = NULL_TREE;
d242d063 1139 if (TREE_CODE (rhs) != MEM_REF)
3e293154 1140 return NULL_TREE;
3e293154 1141 rec = TREE_OPERAND (rhs, 0);
d242d063
MJ
1142 if (TREE_CODE (rec) != ADDR_EXPR)
1143 return NULL_TREE;
1144 rec = TREE_OPERAND (rec, 0);
3e293154 1145 if (TREE_CODE (rec) != PARM_DECL
6f7b8b70 1146 || !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
3e293154
MJ
1147 return NULL_TREE;
1148
d242d063 1149 ref_offset = TREE_OPERAND (rhs, 1);
ae788515
EB
1150
1151 if (ref_field)
1152 {
1153 if (integer_nonzerop (ref_offset))
1154 return NULL_TREE;
1155
1156 if (use_delta)
1157 fld = delta_field;
1158 else
1159 fld = ptr_field;
1160
1161 return ref_field == fld ? rec : NULL_TREE;
1162 }
1163
d242d063
MJ
1164 if (use_delta)
1165 fld_offset = byte_position (delta_field);
3e293154 1166 else
d242d063
MJ
1167 fld_offset = byte_position (ptr_field);
1168
1169 return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
3e293154
MJ
1170}
1171
1172/* If STMT looks like a statement loading a value from a member pointer formal
be95e2b9
MJ
1173 parameter, this function returns that parameter. */
1174
3e293154 1175static tree
6f7b8b70 1176ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
3e293154
MJ
1177{
1178 tree rhs;
1179
8b75fc9b 1180 if (!gimple_assign_single_p (stmt))
3e293154
MJ
1181 return NULL_TREE;
1182
726a989a 1183 rhs = gimple_assign_rhs1 (stmt);
6f7b8b70 1184 return ipa_get_member_ptr_load_param (rhs, use_delta);
3e293154
MJ
1185}
1186
1187/* Returns true iff T is an SSA_NAME defined by a statement. */
be95e2b9 1188
3e293154
MJ
1189static bool
1190ipa_is_ssa_with_stmt_def (tree t)
1191{
1192 if (TREE_CODE (t) == SSA_NAME
1193 && !SSA_NAME_IS_DEFAULT_DEF (t))
1194 return true;
1195 else
1196 return false;
1197}
1198
40591473
MJ
1199/* Find the indirect call graph edge corresponding to STMT and mark it as a
1200 call to a parameter number PARAM_INDEX. NODE is the caller. Return the
1201 indirect call graph edge. */
be95e2b9 1202
40591473
MJ
1203static struct cgraph_edge *
1204ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
3e293154 1205{
e33c6cd6 1206 struct cgraph_edge *cs;
3e293154 1207
5f902d76 1208 cs = cgraph_edge (node, stmt);
b258210c
MJ
1209 cs->indirect_info->param_index = param_index;
1210 cs->indirect_info->anc_offset = 0;
40591473
MJ
1211 cs->indirect_info->polymorphic = 0;
1212 return cs;
3e293154
MJ
1213}
1214
e33c6cd6 1215/* Analyze the CALL and examine uses of formal parameters of the caller NODE
062c604f
MJ
1216 (described by INFO). PARMS_INFO is a pointer to a vector containing
1217 intermediate information about each formal parameter. Currently it checks
1218 whether the call calls a pointer that is a formal parameter and if so, the
1219 parameter is marked with the called flag and an indirect call graph edge
1220 describing the call is created. This is very simple for ordinary pointers
1221 represented in SSA but not-so-nice when it comes to member pointers. The
1222 ugly part of this function does nothing more than trying to match the
1223 pattern of such a call. An example of such a pattern is the gimple dump
1224 below, the call is on the last line:
3e293154 1225
ae788515
EB
1226 <bb 2>:
1227 f$__delta_5 = f.__delta;
1228 f$__pfn_24 = f.__pfn;
1229
1230 or
3e293154 1231 <bb 2>:
d242d063
MJ
1232 f$__delta_5 = MEM[(struct *)&f];
1233 f$__pfn_24 = MEM[(struct *)&f + 4B];
8aa29647 1234
ae788515 1235 and a few lines below:
8aa29647
MJ
1236
1237 <bb 5>
3e293154
MJ
1238 D.2496_3 = (int) f$__pfn_24;
1239 D.2497_4 = D.2496_3 & 1;
1240 if (D.2497_4 != 0)
1241 goto <bb 3>;
1242 else
1243 goto <bb 4>;
1244
8aa29647 1245 <bb 6>:
3e293154
MJ
1246 D.2500_7 = (unsigned int) f$__delta_5;
1247 D.2501_8 = &S + D.2500_7;
1248 D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
1249 D.2503_10 = *D.2502_9;
1250 D.2504_12 = f$__pfn_24 + -1;
1251 D.2505_13 = (unsigned int) D.2504_12;
1252 D.2506_14 = D.2503_10 + D.2505_13;
1253 D.2507_15 = *D.2506_14;
1254 iftmp.11_16 = (String:: *) D.2507_15;
1255
8aa29647 1256 <bb 7>:
3e293154
MJ
1257 # iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
1258 D.2500_19 = (unsigned int) f$__delta_5;
1259 D.2508_20 = &S + D.2500_19;
1260 D.2493_21 = iftmp.11_1 (D.2508_20, 4);
1261
1262 Such patterns are results of simple calls to a member pointer:
1263
1264 int doprinting (int (MyString::* f)(int) const)
1265 {
1266 MyString S ("somestring");
1267
1268 return (S.*f)(4);
1269 }
1270*/
1271
1272static void
b258210c
MJ
1273ipa_analyze_indirect_call_uses (struct cgraph_node *node,
1274 struct ipa_node_params *info,
062c604f 1275 struct param_analysis_info *parms_info,
b258210c 1276 gimple call, tree target)
3e293154 1277{
726a989a 1278 gimple def;
3e293154 1279 tree n1, n2;
726a989a
RB
1280 gimple d1, d2;
1281 tree rec, rec2, cond;
1282 gimple branch;
3e293154 1283 int index;
3e293154
MJ
1284 basic_block bb, virt_bb, join;
1285
3e293154
MJ
1286 if (SSA_NAME_IS_DEFAULT_DEF (target))
1287 {
b258210c 1288 tree var = SSA_NAME_VAR (target);
3e293154
MJ
1289 index = ipa_get_param_decl_index (info, var);
1290 if (index >= 0)
40591473 1291 ipa_note_param_call (node, index, call);
3e293154
MJ
1292 return;
1293 }
1294
1295 /* Now we need to try to match the complex pattern of calling a member
1296 pointer. */
1297
1298 if (!POINTER_TYPE_P (TREE_TYPE (target))
1299 || TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
1300 return;
1301
1302 def = SSA_NAME_DEF_STMT (target);
726a989a 1303 if (gimple_code (def) != GIMPLE_PHI)
3e293154
MJ
1304 return;
1305
726a989a 1306 if (gimple_phi_num_args (def) != 2)
3e293154
MJ
1307 return;
1308
1309 /* First, we need to check whether one of these is a load from a member
1310 pointer that is a parameter to this function. */
1311 n1 = PHI_ARG_DEF (def, 0);
1312 n2 = PHI_ARG_DEF (def, 1);
1fc8feb5 1313 if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
3e293154
MJ
1314 return;
1315 d1 = SSA_NAME_DEF_STMT (n1);
1316 d2 = SSA_NAME_DEF_STMT (n2);
1317
8aa29647 1318 join = gimple_bb (def);
6f7b8b70 1319 if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
3e293154 1320 {
6f7b8b70 1321 if (ipa_get_stmt_member_ptr_load_param (d2, false))
3e293154
MJ
1322 return;
1323
8aa29647 1324 bb = EDGE_PRED (join, 0)->src;
726a989a 1325 virt_bb = gimple_bb (d2);
3e293154 1326 }
6f7b8b70 1327 else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
3e293154 1328 {
8aa29647 1329 bb = EDGE_PRED (join, 1)->src;
726a989a 1330 virt_bb = gimple_bb (d1);
3e293154
MJ
1331 }
1332 else
1333 return;
1334
1335 /* Second, we need to check that the basic blocks are laid out in the way
1336 corresponding to the pattern. */
1337
3e293154
MJ
1338 if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
1339 || single_pred (virt_bb) != bb
1340 || single_succ (virt_bb) != join)
1341 return;
1342
1343 /* Third, let's see that the branching is done depending on the least
1344 significant bit of the pfn. */
1345
1346 branch = last_stmt (bb);
8aa29647 1347 if (!branch || gimple_code (branch) != GIMPLE_COND)
3e293154
MJ
1348 return;
1349
726a989a
RB
1350 if (gimple_cond_code (branch) != NE_EXPR
1351 || !integer_zerop (gimple_cond_rhs (branch)))
3e293154 1352 return;
3e293154 1353
726a989a 1354 cond = gimple_cond_lhs (branch);
3e293154
MJ
1355 if (!ipa_is_ssa_with_stmt_def (cond))
1356 return;
1357
726a989a 1358 def = SSA_NAME_DEF_STMT (cond);
8b75fc9b 1359 if (!is_gimple_assign (def)
726a989a
RB
1360 || gimple_assign_rhs_code (def) != BIT_AND_EXPR
1361 || !integer_onep (gimple_assign_rhs2 (def)))
3e293154 1362 return;
726a989a
RB
1363
1364 cond = gimple_assign_rhs1 (def);
3e293154
MJ
1365 if (!ipa_is_ssa_with_stmt_def (cond))
1366 return;
1367
726a989a 1368 def = SSA_NAME_DEF_STMT (cond);
3e293154 1369
8b75fc9b
MJ
1370 if (is_gimple_assign (def)
1371 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
3e293154 1372 {
726a989a 1373 cond = gimple_assign_rhs1 (def);
3e293154
MJ
1374 if (!ipa_is_ssa_with_stmt_def (cond))
1375 return;
726a989a 1376 def = SSA_NAME_DEF_STMT (cond);
3e293154
MJ
1377 }
1378
6f7b8b70
RE
1379 rec2 = ipa_get_stmt_member_ptr_load_param (def,
1380 (TARGET_PTRMEMFUNC_VBIT_LOCATION
1381 == ptrmemfunc_vbit_in_delta));
1382
3e293154
MJ
1383 if (rec != rec2)
1384 return;
1385
1386 index = ipa_get_param_decl_index (info, rec);
062c604f
MJ
1387 if (index >= 0 && !is_parm_modified_before_call (&parms_info[index],
1388 call, rec))
40591473 1389 ipa_note_param_call (node, index, call);
3e293154
MJ
1390
1391 return;
1392}
1393
b258210c
MJ
1394/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
1395 object referenced in the expression is a formal parameter of the caller
1396 (described by INFO), create a call note for the statement. */
1397
1398static void
1399ipa_analyze_virtual_call_uses (struct cgraph_node *node,
1400 struct ipa_node_params *info, gimple call,
1401 tree target)
1402{
40591473
MJ
1403 struct cgraph_edge *cs;
1404 struct cgraph_indirect_call_info *ii;
f65cf2b7 1405 struct ipa_jump_func jfunc;
b258210c 1406 tree obj = OBJ_TYPE_REF_OBJECT (target);
b258210c 1407 int index;
40591473 1408 HOST_WIDE_INT anc_offset;
b258210c 1409
05842ff5
MJ
1410 if (!flag_devirtualize)
1411 return;
1412
40591473 1413 if (TREE_CODE (obj) != SSA_NAME)
b258210c
MJ
1414 return;
1415
40591473
MJ
1416 if (SSA_NAME_IS_DEFAULT_DEF (obj))
1417 {
1418 if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
1419 return;
b258210c 1420
40591473
MJ
1421 anc_offset = 0;
1422 index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
1423 gcc_assert (index >= 0);
1424 if (detect_type_change_ssa (obj, call, &jfunc))
1425 return;
1426 }
1427 else
1428 {
1429 gimple stmt = SSA_NAME_DEF_STMT (obj);
1430 tree expr;
1431
1432 expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
1433 if (!expr)
1434 return;
1435 index = ipa_get_param_decl_index (info,
1436 SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
1437 gcc_assert (index >= 0);
1438 if (detect_type_change (obj, expr, call, &jfunc, anc_offset))
1439 return;
1440 }
1441
1442 cs = ipa_note_param_call (node, index, call);
1443 ii = cs->indirect_info;
1444 ii->anc_offset = anc_offset;
1445 ii->otr_token = tree_low_cst (OBJ_TYPE_REF_TOKEN (target), 1);
1446 ii->otr_type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (target)));
1447 ii->polymorphic = 1;
b258210c
MJ
1448}
1449
1450/* Analyze a call statement CALL whether and how it utilizes formal parameters
062c604f
MJ
1451 of the caller (described by INFO). PARMS_INFO is a pointer to a vector
1452 containing intermediate information about each formal parameter. */
b258210c
MJ
1453
1454static void
1455ipa_analyze_call_uses (struct cgraph_node *node,
062c604f
MJ
1456 struct ipa_node_params *info,
1457 struct param_analysis_info *parms_info, gimple call)
b258210c
MJ
1458{
1459 tree target = gimple_call_fn (call);
1460
25583c4f
RS
1461 if (!target)
1462 return;
b258210c 1463 if (TREE_CODE (target) == SSA_NAME)
062c604f 1464 ipa_analyze_indirect_call_uses (node, info, parms_info, call, target);
b258210c
MJ
1465 else if (TREE_CODE (target) == OBJ_TYPE_REF)
1466 ipa_analyze_virtual_call_uses (node, info, call, target);
1467}
1468
1469
e33c6cd6
MJ
1470/* Analyze the call statement STMT with respect to formal parameters (described
1471 in INFO) of caller given by NODE. Currently it only checks whether formal
062c604f
MJ
1472 parameters are called. PARMS_INFO is a pointer to a vector containing
1473 intermediate information about each formal parameter. */
be95e2b9 1474
3e293154 1475static void
e33c6cd6 1476ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
062c604f 1477 struct param_analysis_info *parms_info, gimple stmt)
3e293154 1478{
726a989a 1479 if (is_gimple_call (stmt))
062c604f
MJ
1480 ipa_analyze_call_uses (node, info, parms_info, stmt);
1481}
1482
1483/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
1484 If OP is a parameter declaration, mark it as used in the info structure
1485 passed in DATA. */
1486
1487static bool
1488visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
1489 tree op, void *data)
1490{
1491 struct ipa_node_params *info = (struct ipa_node_params *) data;
1492
1493 op = get_base_address (op);
1494 if (op
1495 && TREE_CODE (op) == PARM_DECL)
1496 {
1497 int index = ipa_get_param_decl_index (info, op);
1498 gcc_assert (index >= 0);
1499 info->params[index].used = true;
1500 }
1501
1502 return false;
3e293154
MJ
1503}
1504
1505/* Scan the function body of NODE and inspect the uses of formal parameters.
1506 Store the findings in various structures of the associated ipa_node_params
062c604f
MJ
1507 structure, such as parameter flags, notes etc. PARMS_INFO is a pointer to a
1508 vector containing intermediate information about each formal parameter. */
be95e2b9 1509
062c604f
MJ
1510static void
1511ipa_analyze_params_uses (struct cgraph_node *node,
1512 struct param_analysis_info *parms_info)
3e293154
MJ
1513{
1514 tree decl = node->decl;
1515 basic_block bb;
1516 struct function *func;
726a989a 1517 gimple_stmt_iterator gsi;
3e293154 1518 struct ipa_node_params *info = IPA_NODE_REF (node);
062c604f 1519 int i;
3e293154 1520
726a989a 1521 if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
3e293154 1522 return;
3e293154 1523
062c604f
MJ
1524 for (i = 0; i < ipa_get_param_count (info); i++)
1525 {
1526 tree parm = ipa_get_param (info, i);
1527 /* For SSA regs see if parameter is used. For non-SSA we compute
1528 the flag during modification analysis. */
1529 if (is_gimple_reg (parm)
1530 && gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
1531 info->params[i].used = true;
1532 }
1533
3e293154
MJ
1534 func = DECL_STRUCT_FUNCTION (decl);
1535 FOR_EACH_BB_FN (bb, func)
1536 {
726a989a 1537 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3e293154 1538 {
726a989a 1539 gimple stmt = gsi_stmt (gsi);
062c604f
MJ
1540
1541 if (is_gimple_debug (stmt))
1542 continue;
1543
1544 ipa_analyze_stmt_uses (node, info, parms_info, stmt);
1545 walk_stmt_load_store_addr_ops (stmt, info,
1546 visit_ref_for_mod_analysis,
1547 visit_ref_for_mod_analysis,
1548 visit_ref_for_mod_analysis);
518dc859 1549 }
062c604f
MJ
1550 for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
1551 walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
1552 visit_ref_for_mod_analysis,
1553 visit_ref_for_mod_analysis,
1554 visit_ref_for_mod_analysis);
518dc859 1555 }
3e293154
MJ
1556
1557 info->uses_analysis_done = 1;
1558}
1559
dd5a833e
MS
1560/* Initialize the array describing properties of of formal parameters
1561 of NODE, analyze their uses and compute jump functions associated
1562 with actual arguments of calls from within NODE. */
062c604f
MJ
1563
1564void
1565ipa_analyze_node (struct cgraph_node *node)
1566{
57dbdc5a 1567 struct ipa_node_params *info;
062c604f
MJ
1568 struct param_analysis_info *parms_info;
1569 int i, param_count;
1570
57dbdc5a
MJ
1571 ipa_check_create_node_params ();
1572 ipa_check_create_edge_args ();
1573 info = IPA_NODE_REF (node);
f65cf2b7
MJ
1574 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
1575 current_function_decl = node->decl;
062c604f
MJ
1576 ipa_initialize_node_params (node);
1577
1578 param_count = ipa_get_param_count (info);
1579 parms_info = XALLOCAVEC (struct param_analysis_info, param_count);
1580 memset (parms_info, 0, sizeof (struct param_analysis_info) * param_count);
1581
1582 ipa_analyze_params_uses (node, parms_info);
1583 ipa_compute_jump_functions (node, parms_info);
1584
1585 for (i = 0; i < param_count; i++)
1586 if (parms_info[i].visited_statements)
1587 BITMAP_FREE (parms_info[i].visited_statements);
f65cf2b7
MJ
1588
1589 current_function_decl = NULL;
1590 pop_cfun ();
062c604f
MJ
1591}
1592
1593
61502ca8 1594/* Update the jump function DST when the call graph edge corresponding to SRC is
b258210c
MJ
1595 is being inlined, knowing that DST is of type ancestor and src of known
1596 type. */
1597
1598static void
1599combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
1600 struct ipa_jump_func *dst)
1601{
1602 tree new_binfo;
1603
1604 new_binfo = get_binfo_at_offset (src->value.base_binfo,
1605 dst->value.ancestor.offset,
1606 dst->value.ancestor.type);
1607 if (new_binfo)
1608 {
1609 dst->type = IPA_JF_KNOWN_TYPE;
1610 dst->value.base_binfo = new_binfo;
1611 }
1612 else
1613 dst->type = IPA_JF_UNKNOWN;
1614}
1615
be95e2b9 1616/* Update the jump functions associated with call graph edge E when the call
3e293154 1617 graph edge CS is being inlined, assuming that E->caller is already (possibly
b258210c 1618 indirectly) inlined into CS->callee and that E has not been inlined. */
be95e2b9 1619
3e293154
MJ
1620static void
1621update_jump_functions_after_inlining (struct cgraph_edge *cs,
1622 struct cgraph_edge *e)
1623{
1624 struct ipa_edge_args *top = IPA_EDGE_REF (cs);
1625 struct ipa_edge_args *args = IPA_EDGE_REF (e);
1626 int count = ipa_get_cs_argument_count (args);
1627 int i;
1628
1629 for (i = 0; i < count; i++)
1630 {
b258210c 1631 struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
3e293154 1632
685b0d13
MJ
1633 if (dst->type == IPA_JF_ANCESTOR)
1634 {
b258210c 1635 struct ipa_jump_func *src;
685b0d13 1636
b258210c
MJ
1637 /* Variable number of arguments can cause havoc if we try to access
1638 one that does not exist in the inlined edge. So make sure we
1639 don't. */
1640 if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
1641 {
1642 dst->type = IPA_JF_UNKNOWN;
1643 continue;
1644 }
1645
1646 src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
1647 if (src->type == IPA_JF_KNOWN_TYPE)
1648 combine_known_type_and_ancestor_jfs (src, dst);
b258210c
MJ
1649 else if (src->type == IPA_JF_PASS_THROUGH
1650 && src->value.pass_through.operation == NOP_EXPR)
1651 dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
1652 else if (src->type == IPA_JF_ANCESTOR)
1653 {
1654 dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
1655 dst->value.ancestor.offset += src->value.ancestor.offset;
1656 }
1657 else
1658 dst->type = IPA_JF_UNKNOWN;
1659 }
1660 else if (dst->type == IPA_JF_PASS_THROUGH)
3e293154 1661 {
b258210c
MJ
1662 struct ipa_jump_func *src;
1663 /* We must check range due to calls with variable number of arguments
1664 and we cannot combine jump functions with operations. */
1665 if (dst->value.pass_through.operation == NOP_EXPR
1666 && (dst->value.pass_through.formal_id
1667 < ipa_get_cs_argument_count (top)))
1668 {
1669 src = ipa_get_ith_jump_func (top,
1670 dst->value.pass_through.formal_id);
1671 *dst = *src;
1672 }
1673 else
1674 dst->type = IPA_JF_UNKNOWN;
3e293154 1675 }
b258210c
MJ
1676 }
1677}
1678
1679/* If TARGET is an addr_expr of a function declaration, make it the destination
ceeffab0
MJ
1680 of an indirect edge IE and return the edge. Otherwise, return NULL. Delta,
1681 if non-NULL, is an integer constant that must be added to this pointer
1682 (first parameter). */
b258210c 1683
3949c4a7 1684struct cgraph_edge *
ceeffab0 1685ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target, tree delta)
b258210c
MJ
1686{
1687 struct cgraph_node *callee;
1688
ceeffab0
MJ
1689 if (TREE_CODE (target) == ADDR_EXPR)
1690 target = TREE_OPERAND (target, 0);
b258210c
MJ
1691 if (TREE_CODE (target) != FUNCTION_DECL)
1692 return NULL;
581985d7 1693 callee = cgraph_get_node (target);
b258210c
MJ
1694 if (!callee)
1695 return NULL;
1dbee8c9 1696 ipa_check_create_node_params ();
ceeffab0 1697
17afc0fe
JH
1698 /* We can not make edges to inline clones. It is bug that someone removed the cgraph
1699 node too early. */
1700 gcc_assert (!callee->global.inlined_to);
1701
ce47fda3 1702 cgraph_make_edge_direct (ie, callee, delta ? tree_low_cst (delta, 0) : 0);
b258210c
MJ
1703 if (dump_file)
1704 {
1705 fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
ceeffab0 1706 "(%s/%i -> %s/%i), for stmt ",
b258210c
MJ
1707 ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
1708 cgraph_node_name (ie->caller), ie->caller->uid,
1709 cgraph_node_name (ie->callee), ie->callee->uid);
b258210c
MJ
1710 if (ie->call_stmt)
1711 print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
1712 else
1713 fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
ceeffab0
MJ
1714
1715 if (delta)
1716 {
1717 fprintf (dump_file, " Thunk delta is ");
1718 print_generic_expr (dump_file, delta, 0);
1719 fprintf (dump_file, "\n");
1720 }
3e293154 1721 }
749aa96d
MJ
1722
1723 if (ipa_get_cs_argument_count (IPA_EDGE_REF (ie))
1724 != ipa_get_param_count (IPA_NODE_REF (callee)))
1725 ipa_set_called_with_variable_arg (IPA_NODE_REF (callee));
1726
b258210c 1727 return ie;
3e293154
MJ
1728}
1729
b258210c
MJ
1730/* Try to find a destination for indirect edge IE that corresponds to a simple
1731 call or a call of a member function pointer and where the destination is a
1732 pointer formal parameter described by jump function JFUNC. If it can be
1733 determined, return the newly direct edge, otherwise return NULL. */
be95e2b9 1734
b258210c
MJ
1735static struct cgraph_edge *
1736try_make_edge_direct_simple_call (struct cgraph_edge *ie,
1737 struct ipa_jump_func *jfunc)
1738{
1739 tree target;
1740
1741 if (jfunc->type == IPA_JF_CONST)
1742 target = jfunc->value.constant;
1743 else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
1744 target = jfunc->value.member_cst.pfn;
1745 else
1746 return NULL;
1747
ceeffab0 1748 return ipa_make_edge_direct_to_target (ie, target, NULL_TREE);
b258210c
MJ
1749}
1750
1751/* Try to find a destination for indirect edge IE that corresponds to a
61502ca8 1752 virtual call based on a formal parameter which is described by jump
b258210c
MJ
1753 function JFUNC and if it can be determined, make it direct and return the
1754 direct edge. Otherwise, return NULL. */
1755
1756static struct cgraph_edge *
1757try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
1758 struct ipa_jump_func *jfunc)
3e293154 1759{
ceeffab0 1760 tree binfo, type, target, delta;
b258210c
MJ
1761 HOST_WIDE_INT token;
1762
1763 if (jfunc->type == IPA_JF_KNOWN_TYPE)
1764 binfo = jfunc->value.base_binfo;
3e293154 1765 else
b258210c
MJ
1766 return NULL;
1767
1768 if (!binfo)
1769 return NULL;
3e293154 1770
b258210c
MJ
1771 token = ie->indirect_info->otr_token;
1772 type = ie->indirect_info->otr_type;
1773 binfo = get_binfo_at_offset (binfo, ie->indirect_info->anc_offset, type);
1774 if (binfo)
f1724940 1775 target = gimple_get_virt_method_for_binfo (token, binfo, &delta);
b258210c
MJ
1776 else
1777 return NULL;
1778
1779 if (target)
ceeffab0 1780 return ipa_make_edge_direct_to_target (ie, target, delta);
b258210c
MJ
1781 else
1782 return NULL;
3e293154
MJ
1783}
1784
1785/* Update the param called notes associated with NODE when CS is being inlined,
1786 assuming NODE is (potentially indirectly) inlined into CS->callee.
1787 Moreover, if the callee is discovered to be constant, create a new cgraph
e56f5f3e 1788 edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
f8e2a1ed 1789 unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
be95e2b9 1790
f8e2a1ed 1791static bool
e33c6cd6
MJ
1792update_indirect_edges_after_inlining (struct cgraph_edge *cs,
1793 struct cgraph_node *node,
1794 VEC (cgraph_edge_p, heap) **new_edges)
3e293154 1795{
9e97ff61 1796 struct ipa_edge_args *top;
b258210c 1797 struct cgraph_edge *ie, *next_ie, *new_direct_edge;
f8e2a1ed 1798 bool res = false;
3e293154 1799
e33c6cd6 1800 ipa_check_create_edge_args ();
9e97ff61 1801 top = IPA_EDGE_REF (cs);
e33c6cd6
MJ
1802
1803 for (ie = node->indirect_calls; ie; ie = next_ie)
3e293154 1804 {
e33c6cd6 1805 struct cgraph_indirect_call_info *ici = ie->indirect_info;
3e293154
MJ
1806 struct ipa_jump_func *jfunc;
1807
e33c6cd6
MJ
1808 next_ie = ie->next_callee;
1809 if (bitmap_bit_p (iinlining_processed_edges, ie->uid))
3e293154
MJ
1810 continue;
1811
e33c6cd6
MJ
1812 /* If we ever use indirect edges for anything other than indirect
1813 inlining, we will need to skip those with negative param_indices. */
5f902d76
JH
1814 if (ici->param_index == -1)
1815 continue;
e33c6cd6 1816
3e293154 1817 /* We must check range due to calls with variable number of arguments: */
e33c6cd6 1818 if (ici->param_index >= ipa_get_cs_argument_count (top))
3e293154 1819 {
e33c6cd6 1820 bitmap_set_bit (iinlining_processed_edges, ie->uid);
3e293154
MJ
1821 continue;
1822 }
1823
e33c6cd6 1824 jfunc = ipa_get_ith_jump_func (top, ici->param_index);
685b0d13
MJ
1825 if (jfunc->type == IPA_JF_PASS_THROUGH
1826 && jfunc->value.pass_through.operation == NOP_EXPR)
e33c6cd6 1827 ici->param_index = jfunc->value.pass_through.formal_id;
b258210c 1828 else if (jfunc->type == IPA_JF_ANCESTOR)
3e293154 1829 {
b258210c
MJ
1830 ici->param_index = jfunc->value.ancestor.formal_id;
1831 ici->anc_offset += jfunc->value.ancestor.offset;
3e293154 1832 }
685b0d13 1833 else
b258210c
MJ
1834 /* Either we can find a destination for this edge now or never. */
1835 bitmap_set_bit (iinlining_processed_edges, ie->uid);
1836
1837 if (ici->polymorphic)
1838 new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
1839 else
1840 new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
1841
1842 if (new_direct_edge)
685b0d13 1843 {
b258210c
MJ
1844 new_direct_edge->indirect_inlining_edge = 1;
1845 if (new_edges)
1846 {
1847 VEC_safe_push (cgraph_edge_p, heap, *new_edges,
1848 new_direct_edge);
1849 top = IPA_EDGE_REF (cs);
1850 res = true;
1851 }
685b0d13 1852 }
3e293154 1853 }
e33c6cd6 1854
f8e2a1ed 1855 return res;
3e293154
MJ
1856}
1857
1858/* Recursively traverse subtree of NODE (including node) made of inlined
1859 cgraph_edges when CS has been inlined and invoke
e33c6cd6 1860 update_indirect_edges_after_inlining on all nodes and
3e293154
MJ
1861 update_jump_functions_after_inlining on all non-inlined edges that lead out
1862 of this subtree. Newly discovered indirect edges will be added to
f8e2a1ed
MJ
1863 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
1864 created. */
be95e2b9 1865
f8e2a1ed 1866static bool
3e293154
MJ
1867propagate_info_to_inlined_callees (struct cgraph_edge *cs,
1868 struct cgraph_node *node,
e56f5f3e 1869 VEC (cgraph_edge_p, heap) **new_edges)
3e293154
MJ
1870{
1871 struct cgraph_edge *e;
f8e2a1ed 1872 bool res;
3e293154 1873
e33c6cd6 1874 res = update_indirect_edges_after_inlining (cs, node, new_edges);
3e293154
MJ
1875
1876 for (e = node->callees; e; e = e->next_callee)
1877 if (!e->inline_failed)
f8e2a1ed 1878 res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
3e293154
MJ
1879 else
1880 update_jump_functions_after_inlining (cs, e);
f8e2a1ed
MJ
1881
1882 return res;
3e293154
MJ
1883}
1884
1885/* Update jump functions and call note functions on inlining the call site CS.
1886 CS is expected to lead to a node already cloned by
1887 cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
f8e2a1ed
MJ
1888 *NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
1889 created. */
be95e2b9 1890
f8e2a1ed 1891bool
3e293154 1892ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
e56f5f3e 1893 VEC (cgraph_edge_p, heap) **new_edges)
3e293154 1894{
f8e2a1ed
MJ
1895 /* Do nothing if the preparation phase has not been carried out yet
1896 (i.e. during early inlining). */
1897 if (!ipa_node_params_vector)
1898 return false;
1899 gcc_assert (ipa_edge_args_vector);
1900
1901 return propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
518dc859
RL
1902}
1903
771578a0
MJ
1904/* Frees all dynamically allocated structures that the argument info points
1905 to. */
be95e2b9 1906
518dc859 1907void
771578a0 1908ipa_free_edge_args_substructures (struct ipa_edge_args *args)
518dc859 1909{
771578a0 1910 if (args->jump_functions)
fb3f88cc 1911 ggc_free (args->jump_functions);
771578a0
MJ
1912
1913 memset (args, 0, sizeof (*args));
518dc859
RL
1914}
1915
771578a0 1916/* Free all ipa_edge structures. */
be95e2b9 1917
518dc859 1918void
771578a0 1919ipa_free_all_edge_args (void)
518dc859 1920{
771578a0
MJ
1921 int i;
1922 struct ipa_edge_args *args;
518dc859 1923
ac47786e 1924 FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
771578a0
MJ
1925 ipa_free_edge_args_substructures (args);
1926
fb3f88cc 1927 VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
771578a0 1928 ipa_edge_args_vector = NULL;
518dc859
RL
1929}
1930
771578a0
MJ
1931/* Frees all dynamically allocated structures that the param info points
1932 to. */
be95e2b9 1933
518dc859 1934void
771578a0 1935ipa_free_node_params_substructures (struct ipa_node_params *info)
518dc859 1936{
04695783 1937 free (info->params);
3e293154 1938
771578a0 1939 memset (info, 0, sizeof (*info));
518dc859
RL
1940}
1941
771578a0 1942/* Free all ipa_node_params structures. */
be95e2b9 1943
518dc859 1944void
771578a0 1945ipa_free_all_node_params (void)
518dc859 1946{
771578a0
MJ
1947 int i;
1948 struct ipa_node_params *info;
518dc859 1949
ac47786e 1950 FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
771578a0
MJ
1951 ipa_free_node_params_substructures (info);
1952
1953 VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
1954 ipa_node_params_vector = NULL;
1955}
1956
1957/* Hook that is called by cgraph.c when an edge is removed. */
be95e2b9 1958
771578a0 1959static void
5c0466b5 1960ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
771578a0 1961{
c6f7cfc1
JH
1962 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1963 if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
1964 <= (unsigned)cs->uid)
1965 return;
771578a0 1966 ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
518dc859
RL
1967}
1968
771578a0 1969/* Hook that is called by cgraph.c when a node is removed. */
be95e2b9 1970
771578a0 1971static void
5c0466b5 1972ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
771578a0 1973{
dd6d1ad7
JH
1974 /* During IPA-CP updating we can be called on not-yet analyze clones. */
1975 if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
1976 <= (unsigned)node->uid)
1977 return;
771578a0
MJ
1978 ipa_free_node_params_substructures (IPA_NODE_REF (node));
1979}
1980
1981/* Helper function to duplicate an array of size N that is at SRC and store a
1982 pointer to it to DST. Nothing is done if SRC is NULL. */
be95e2b9 1983
771578a0
MJ
1984static void *
1985duplicate_array (void *src, size_t n)
1986{
1987 void *p;
1988
1989 if (!src)
1990 return NULL;
1991
fb3f88cc
JH
1992 p = xmalloc (n);
1993 memcpy (p, src, n);
1994 return p;
1995}
1996
a9429e29
LB
1997static struct ipa_jump_func *
1998duplicate_ipa_jump_func_array (const struct ipa_jump_func * src, size_t n)
fb3f88cc 1999{
a9429e29 2000 struct ipa_jump_func *p;
fb3f88cc
JH
2001
2002 if (!src)
2003 return NULL;
2004
a9429e29
LB
2005 p = ggc_alloc_vec_ipa_jump_func (n);
2006 memcpy (p, src, n * sizeof (struct ipa_jump_func));
771578a0
MJ
2007 return p;
2008}
2009
2010/* Hook that is called by cgraph.c when a node is duplicated. */
be95e2b9 2011
771578a0
MJ
2012static void
2013ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
f8e2a1ed 2014 __attribute__((unused)) void *data)
771578a0
MJ
2015{
2016 struct ipa_edge_args *old_args, *new_args;
2017 int arg_count;
2018
2019 ipa_check_create_edge_args ();
2020
2021 old_args = IPA_EDGE_REF (src);
2022 new_args = IPA_EDGE_REF (dst);
2023
2024 arg_count = ipa_get_cs_argument_count (old_args);
2025 ipa_set_cs_argument_count (new_args, arg_count);
a9429e29
LB
2026 new_args->jump_functions =
2027 duplicate_ipa_jump_func_array (old_args->jump_functions, arg_count);
e33c6cd6
MJ
2028
2029 if (iinlining_processed_edges
2030 && bitmap_bit_p (iinlining_processed_edges, src->uid))
2031 bitmap_set_bit (iinlining_processed_edges, dst->uid);
771578a0
MJ
2032}
2033
2034/* Hook that is called by cgraph.c when a node is duplicated. */
be95e2b9 2035
771578a0
MJ
2036static void
2037ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
10a5dd5d 2038 ATTRIBUTE_UNUSED void *data)
771578a0
MJ
2039{
2040 struct ipa_node_params *old_info, *new_info;
3949c4a7 2041 int param_count, i;
771578a0
MJ
2042
2043 ipa_check_create_node_params ();
2044 old_info = IPA_NODE_REF (src);
2045 new_info = IPA_NODE_REF (dst);
2046 param_count = ipa_get_param_count (old_info);
2047
2048 ipa_set_param_count (new_info, param_count);
f8e2a1ed
MJ
2049 new_info->params = (struct ipa_param_descriptor *)
2050 duplicate_array (old_info->params,
2051 sizeof (struct ipa_param_descriptor) * param_count);
3949c4a7
MJ
2052 for (i = 0; i < param_count; i++)
2053 new_info->params[i].types = VEC_copy (tree, heap,
2054 old_info->params[i].types);
771578a0
MJ
2055 new_info->ipcp_orig_node = old_info->ipcp_orig_node;
2056 new_info->count_scale = old_info->count_scale;
3949c4a7
MJ
2057
2058 new_info->called_with_var_arguments = old_info->called_with_var_arguments;
2059 new_info->uses_analysis_done = old_info->uses_analysis_done;
2060 new_info->node_enqueued = old_info->node_enqueued;
771578a0
MJ
2061}
2062
40982661
JH
2063
2064/* Analyze newly added function into callgraph. */
2065
2066static void
2067ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
2068{
2069 ipa_analyze_node (node);
2070}
2071
771578a0 2072/* Register our cgraph hooks if they are not already there. */
be95e2b9 2073
518dc859 2074void
771578a0 2075ipa_register_cgraph_hooks (void)
518dc859 2076{
771578a0
MJ
2077 if (!edge_removal_hook_holder)
2078 edge_removal_hook_holder =
2079 cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
2080 if (!node_removal_hook_holder)
2081 node_removal_hook_holder =
2082 cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
2083 if (!edge_duplication_hook_holder)
2084 edge_duplication_hook_holder =
2085 cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
2086 if (!node_duplication_hook_holder)
2087 node_duplication_hook_holder =
2088 cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
40982661
JH
2089 function_insertion_hook_holder =
2090 cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
771578a0 2091}
518dc859 2092
771578a0 2093/* Unregister our cgraph hooks if they are not already there. */
be95e2b9 2094
771578a0
MJ
2095static void
2096ipa_unregister_cgraph_hooks (void)
2097{
2098 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
2099 edge_removal_hook_holder = NULL;
2100 cgraph_remove_node_removal_hook (node_removal_hook_holder);
2101 node_removal_hook_holder = NULL;
2102 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
2103 edge_duplication_hook_holder = NULL;
2104 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
2105 node_duplication_hook_holder = NULL;
40982661
JH
2106 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
2107 function_insertion_hook_holder = NULL;
771578a0
MJ
2108}
2109
61502ca8 2110/* Allocate all necessary data structures necessary for indirect inlining. */
e33c6cd6
MJ
2111
2112void
2113ipa_create_all_structures_for_iinln (void)
2114{
2115 iinlining_processed_edges = BITMAP_ALLOC (NULL);
2116}
2117
771578a0
MJ
2118/* Free all ipa_node_params and all ipa_edge_args structures if they are no
2119 longer needed after ipa-cp. */
be95e2b9 2120
771578a0 2121void
e33c6cd6 2122ipa_free_all_structures_after_ipa_cp (void)
3e293154 2123{
7e8b322a 2124 if (!flag_indirect_inlining)
3e293154
MJ
2125 {
2126 ipa_free_all_edge_args ();
2127 ipa_free_all_node_params ();
2128 ipa_unregister_cgraph_hooks ();
2129 }
2130}
2131
2132/* Free all ipa_node_params and all ipa_edge_args structures if they are no
2133 longer needed after indirect inlining. */
be95e2b9 2134
3e293154 2135void
e33c6cd6 2136ipa_free_all_structures_after_iinln (void)
771578a0 2137{
e33c6cd6
MJ
2138 BITMAP_FREE (iinlining_processed_edges);
2139
771578a0
MJ
2140 ipa_free_all_edge_args ();
2141 ipa_free_all_node_params ();
2142 ipa_unregister_cgraph_hooks ();
518dc859
RL
2143}
2144
dcd416e3 2145/* Print ipa_tree_map data structures of all functions in the
518dc859 2146 callgraph to F. */
be95e2b9 2147
518dc859 2148void
ca30a539 2149ipa_print_node_params (FILE * f, struct cgraph_node *node)
518dc859
RL
2150{
2151 int i, count;
2152 tree temp;
3e293154 2153 struct ipa_node_params *info;
518dc859 2154
3e293154
MJ
2155 if (!node->analyzed)
2156 return;
2157 info = IPA_NODE_REF (node);
b258210c
MJ
2158 fprintf (f, " function %s parameter descriptors:\n",
2159 cgraph_node_name (node));
3e293154
MJ
2160 count = ipa_get_param_count (info);
2161 for (i = 0; i < count; i++)
518dc859 2162 {
f8e2a1ed 2163 temp = ipa_get_param (info, i);
ca30a539
JH
2164 if (TREE_CODE (temp) == PARM_DECL)
2165 fprintf (f, " param %d : %s", i,
90e1a349
MH
2166 (DECL_NAME (temp)
2167 ? (*lang_hooks.decl_printable_name) (temp, 2)
2168 : "(unnamed)"));
339f49ec
JH
2169 if (ipa_is_param_used (info, i))
2170 fprintf (f, " used");
3e293154 2171 fprintf (f, "\n");
518dc859
RL
2172 }
2173}
dcd416e3 2174
ca30a539 2175/* Print ipa_tree_map data structures of all functions in the
3e293154 2176 callgraph to F. */
be95e2b9 2177
3e293154 2178void
ca30a539 2179ipa_print_all_params (FILE * f)
3e293154
MJ
2180{
2181 struct cgraph_node *node;
2182
ca30a539 2183 fprintf (f, "\nFunction parameters:\n");
3e293154 2184 for (node = cgraph_nodes; node; node = node->next)
ca30a539 2185 ipa_print_node_params (f, node);
3e293154 2186}
3f84bf08
MJ
2187
2188/* Return a heap allocated vector containing formal parameters of FNDECL. */
2189
2190VEC(tree, heap) *
2191ipa_get_vector_of_formal_parms (tree fndecl)
2192{
2193 VEC(tree, heap) *args;
2194 int count;
2195 tree parm;
2196
2197 count = count_formal_params_1 (fndecl);
2198 args = VEC_alloc (tree, heap, count);
910ad8de 2199 for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
3f84bf08
MJ
2200 VEC_quick_push (tree, args, parm);
2201
2202 return args;
2203}
2204
2205/* Return a heap allocated vector containing types of formal parameters of
2206 function type FNTYPE. */
2207
2208static inline VEC(tree, heap) *
2209get_vector_of_formal_parm_types (tree fntype)
2210{
2211 VEC(tree, heap) *types;
2212 int count = 0;
2213 tree t;
2214
2215 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2216 count++;
2217
2218 types = VEC_alloc (tree, heap, count);
2219 for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
2220 VEC_quick_push (tree, types, TREE_VALUE (t));
2221
2222 return types;
2223}
2224
2225/* Modify the function declaration FNDECL and its type according to the plan in
2226 ADJUSTMENTS. It also sets base fields of individual adjustments structures
2227 to reflect the actual parameters being modified which are determined by the
2228 base_index field. */
2229
2230void
2231ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
2232 const char *synth_parm_prefix)
2233{
2234 VEC(tree, heap) *oparms, *otypes;
2235 tree orig_type, new_type = NULL;
2236 tree old_arg_types, t, new_arg_types = NULL;
2237 tree parm, *link = &DECL_ARGUMENTS (fndecl);
2238 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2239 tree new_reversed = NULL;
2240 bool care_for_types, last_parm_void;
2241
2242 if (!synth_parm_prefix)
2243 synth_parm_prefix = "SYNTH";
2244
2245 oparms = ipa_get_vector_of_formal_parms (fndecl);
2246 orig_type = TREE_TYPE (fndecl);
2247 old_arg_types = TYPE_ARG_TYPES (orig_type);
2248
2249 /* The following test is an ugly hack, some functions simply don't have any
2250 arguments in their type. This is probably a bug but well... */
2251 care_for_types = (old_arg_types != NULL_TREE);
2252 if (care_for_types)
2253 {
2254 last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
2255 == void_type_node);
2256 otypes = get_vector_of_formal_parm_types (orig_type);
2257 if (last_parm_void)
2258 gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
2259 else
2260 gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
2261 }
2262 else
2263 {
2264 last_parm_void = false;
2265 otypes = NULL;
2266 }
2267
2268 for (i = 0; i < len; i++)
2269 {
2270 struct ipa_parm_adjustment *adj;
2271 gcc_assert (link);
2272
2273 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2274 parm = VEC_index (tree, oparms, adj->base_index);
2275 adj->base = parm;
2276
2277 if (adj->copy_param)
2278 {
2279 if (care_for_types)
2280 new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
2281 adj->base_index),
2282 new_arg_types);
2283 *link = parm;
910ad8de 2284 link = &DECL_CHAIN (parm);
3f84bf08
MJ
2285 }
2286 else if (!adj->remove_param)
2287 {
2288 tree new_parm;
2289 tree ptype;
2290
2291 if (adj->by_ref)
2292 ptype = build_pointer_type (adj->type);
2293 else
2294 ptype = adj->type;
2295
2296 if (care_for_types)
2297 new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
2298
2299 new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
2300 ptype);
2301 DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
2302
2303 DECL_ARTIFICIAL (new_parm) = 1;
2304 DECL_ARG_TYPE (new_parm) = ptype;
2305 DECL_CONTEXT (new_parm) = fndecl;
2306 TREE_USED (new_parm) = 1;
2307 DECL_IGNORED_P (new_parm) = 1;
2308 layout_decl (new_parm, 0);
2309
2310 add_referenced_var (new_parm);
2311 mark_sym_for_renaming (new_parm);
2312 adj->base = parm;
2313 adj->reduction = new_parm;
2314
2315 *link = new_parm;
2316
910ad8de 2317 link = &DECL_CHAIN (new_parm);
3f84bf08
MJ
2318 }
2319 }
2320
2321 *link = NULL_TREE;
2322
2323 if (care_for_types)
2324 {
2325 new_reversed = nreverse (new_arg_types);
2326 if (last_parm_void)
2327 {
2328 if (new_reversed)
2329 TREE_CHAIN (new_arg_types) = void_list_node;
2330 else
2331 new_reversed = void_list_node;
2332 }
2333 }
2334
2335 /* Use copy_node to preserve as much as possible from original type
2336 (debug info, attribute lists etc.)
2337 Exception is METHOD_TYPEs must have THIS argument.
2338 When we are asked to remove it, we need to build new FUNCTION_TYPE
2339 instead. */
2340 if (TREE_CODE (orig_type) != METHOD_TYPE
2341 || (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
2342 && VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
2343 {
4eb3f32c 2344 new_type = build_distinct_type_copy (orig_type);
3f84bf08
MJ
2345 TYPE_ARG_TYPES (new_type) = new_reversed;
2346 }
2347 else
2348 {
2349 new_type
2350 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
2351 new_reversed));
2352 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
2353 DECL_VINDEX (fndecl) = NULL_TREE;
2354 }
2355
d402c33d
JH
2356 /* When signature changes, we need to clear builtin info. */
2357 if (DECL_BUILT_IN (fndecl))
2358 {
2359 DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
2360 DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
2361 }
2362
3f84bf08
MJ
2363 /* This is a new type, not a copy of an old type. Need to reassociate
2364 variants. We can handle everything except the main variant lazily. */
2365 t = TYPE_MAIN_VARIANT (orig_type);
2366 if (orig_type != t)
2367 {
2368 TYPE_MAIN_VARIANT (new_type) = t;
2369 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
2370 TYPE_NEXT_VARIANT (t) = new_type;
2371 }
2372 else
2373 {
2374 TYPE_MAIN_VARIANT (new_type) = new_type;
2375 TYPE_NEXT_VARIANT (new_type) = NULL;
2376 }
2377
2378 TREE_TYPE (fndecl) = new_type;
9b389a5e 2379 DECL_VIRTUAL_P (fndecl) = 0;
3f84bf08
MJ
2380 if (otypes)
2381 VEC_free (tree, heap, otypes);
2382 VEC_free (tree, heap, oparms);
2383}
2384
2385/* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
2386 If this is a directly recursive call, CS must be NULL. Otherwise it must
2387 contain the corresponding call graph edge. */
2388
2389void
2390ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
2391 ipa_parm_adjustment_vec adjustments)
2392{
2393 VEC(tree, heap) *vargs;
2394 gimple new_stmt;
2395 gimple_stmt_iterator gsi;
2396 tree callee_decl;
2397 int i, len;
2398
2399 len = VEC_length (ipa_parm_adjustment_t, adjustments);
2400 vargs = VEC_alloc (tree, heap, len);
2401
2402 gsi = gsi_for_stmt (stmt);
2403 for (i = 0; i < len; i++)
2404 {
2405 struct ipa_parm_adjustment *adj;
2406
2407 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2408
2409 if (adj->copy_param)
2410 {
2411 tree arg = gimple_call_arg (stmt, adj->base_index);
2412
2413 VEC_quick_push (tree, vargs, arg);
2414 }
2415 else if (!adj->remove_param)
2416 {
fffe1e40
MJ
2417 tree expr, base, off;
2418 location_t loc;
2419
2420 /* We create a new parameter out of the value of the old one, we can
2421 do the following kind of transformations:
2422
2423 - A scalar passed by reference is converted to a scalar passed by
2424 value. (adj->by_ref is false and the type of the original
2425 actual argument is a pointer to a scalar).
2426
2427 - A part of an aggregate is passed instead of the whole aggregate.
2428 The part can be passed either by value or by reference, this is
2429 determined by value of adj->by_ref. Moreover, the code below
2430 handles both situations when the original aggregate is passed by
2431 value (its type is not a pointer) and when it is passed by
2432 reference (it is a pointer to an aggregate).
2433
2434 When the new argument is passed by reference (adj->by_ref is true)
2435 it must be a part of an aggregate and therefore we form it by
2436 simply taking the address of a reference inside the original
2437 aggregate. */
2438
2439 gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
2440 base = gimple_call_arg (stmt, adj->base_index);
2441 loc = EXPR_LOCATION (base);
2442
82d49829
MJ
2443 if (TREE_CODE (base) != ADDR_EXPR
2444 && POINTER_TYPE_P (TREE_TYPE (base)))
2445 off = build_int_cst (adj->alias_ptr_type,
fffe1e40 2446 adj->offset / BITS_PER_UNIT);
3f84bf08 2447 else
3f84bf08 2448 {
fffe1e40
MJ
2449 HOST_WIDE_INT base_offset;
2450 tree prev_base;
2451
2452 if (TREE_CODE (base) == ADDR_EXPR)
2453 base = TREE_OPERAND (base, 0);
2454 prev_base = base;
2455 base = get_addr_base_and_unit_offset (base, &base_offset);
2456 /* Aggregate arguments can have non-invariant addresses. */
2457 if (!base)
2458 {
2459 base = build_fold_addr_expr (prev_base);
82d49829 2460 off = build_int_cst (adj->alias_ptr_type,
fffe1e40
MJ
2461 adj->offset / BITS_PER_UNIT);
2462 }
2463 else if (TREE_CODE (base) == MEM_REF)
2464 {
82d49829 2465 off = build_int_cst (adj->alias_ptr_type,
fffe1e40
MJ
2466 base_offset
2467 + adj->offset / BITS_PER_UNIT);
2468 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
d35936ab 2469 off);
fffe1e40
MJ
2470 base = TREE_OPERAND (base, 0);
2471 }
2472 else
2473 {
82d49829 2474 off = build_int_cst (adj->alias_ptr_type,
fffe1e40
MJ
2475 base_offset
2476 + adj->offset / BITS_PER_UNIT);
2477 base = build_fold_addr_expr (base);
2478 }
3f84bf08 2479 }
fffe1e40
MJ
2480
2481 expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
2482 if (adj->by_ref)
2483 expr = build_fold_addr_expr (expr);
2484
3f84bf08
MJ
2485 expr = force_gimple_operand_gsi (&gsi, expr,
2486 adj->by_ref
2487 || is_gimple_reg_type (adj->type),
2488 NULL, true, GSI_SAME_STMT);
2489 VEC_quick_push (tree, vargs, expr);
2490 }
2491 }
2492
2493 if (dump_file && (dump_flags & TDF_DETAILS))
2494 {
2495 fprintf (dump_file, "replacing stmt:");
2496 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
2497 }
2498
2499 callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
2500 new_stmt = gimple_build_call_vec (callee_decl, vargs);
2501 VEC_free (tree, heap, vargs);
2502 if (gimple_call_lhs (stmt))
2503 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2504
2505 gimple_set_block (new_stmt, gimple_block (stmt));
2506 if (gimple_has_location (stmt))
2507 gimple_set_location (new_stmt, gimple_location (stmt));
2508 gimple_call_copy_flags (new_stmt, stmt);
2509 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2510
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2512 {
2513 fprintf (dump_file, "with stmt:");
2514 print_gimple_stmt (dump_file, new_stmt, 0, 0);
2515 fprintf (dump_file, "\n");
2516 }
2517 gsi_replace (&gsi, new_stmt, true);
2518 if (cs)
2519 cgraph_set_call_stmt (cs, new_stmt);
2520 update_ssa (TODO_update_ssa);
2521 free_dominance_info (CDI_DOMINATORS);
2522}
2523
2524/* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
2525
2526static bool
2527index_in_adjustments_multiple_times_p (int base_index,
2528 ipa_parm_adjustment_vec adjustments)
2529{
2530 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2531 bool one = false;
2532
2533 for (i = 0; i < len; i++)
2534 {
2535 struct ipa_parm_adjustment *adj;
2536 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2537
2538 if (adj->base_index == base_index)
2539 {
2540 if (one)
2541 return true;
2542 else
2543 one = true;
2544 }
2545 }
2546 return false;
2547}
2548
2549
2550/* Return adjustments that should have the same effect on function parameters
2551 and call arguments as if they were first changed according to adjustments in
2552 INNER and then by adjustments in OUTER. */
2553
2554ipa_parm_adjustment_vec
2555ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
2556 ipa_parm_adjustment_vec outer)
2557{
2558 int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
2559 int inlen = VEC_length (ipa_parm_adjustment_t, inner);
2560 int removals = 0;
2561 ipa_parm_adjustment_vec adjustments, tmp;
2562
2563 tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
2564 for (i = 0; i < inlen; i++)
2565 {
2566 struct ipa_parm_adjustment *n;
2567 n = VEC_index (ipa_parm_adjustment_t, inner, i);
2568
2569 if (n->remove_param)
2570 removals++;
2571 else
2572 VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
2573 }
2574
2575 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
2576 for (i = 0; i < outlen; i++)
2577 {
2578 struct ipa_parm_adjustment *r;
2579 struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
2580 outer, i);
2581 struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
2582 out->base_index);
2583
2584 gcc_assert (!in->remove_param);
2585 if (out->remove_param)
2586 {
2587 if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
2588 {
2589 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2590 memset (r, 0, sizeof (*r));
2591 r->remove_param = true;
2592 }
2593 continue;
2594 }
2595
2596 r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
2597 memset (r, 0, sizeof (*r));
2598 r->base_index = in->base_index;
2599 r->type = out->type;
2600
2601 /* FIXME: Create nonlocal value too. */
2602
2603 if (in->copy_param && out->copy_param)
2604 r->copy_param = true;
2605 else if (in->copy_param)
2606 r->offset = out->offset;
2607 else if (out->copy_param)
2608 r->offset = in->offset;
2609 else
2610 r->offset = in->offset + out->offset;
2611 }
2612
2613 for (i = 0; i < inlen; i++)
2614 {
2615 struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
2616 inner, i);
2617
2618 if (n->remove_param)
2619 VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
2620 }
2621
2622 VEC_free (ipa_parm_adjustment_t, heap, tmp);
2623 return adjustments;
2624}
2625
2626/* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
2627 friendly way, assuming they are meant to be applied to FNDECL. */
2628
2629void
2630ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
2631 tree fndecl)
2632{
2633 int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
2634 bool first = true;
2635 VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
2636
2637 fprintf (file, "IPA param adjustments: ");
2638 for (i = 0; i < len; i++)
2639 {
2640 struct ipa_parm_adjustment *adj;
2641 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
2642
2643 if (!first)
2644 fprintf (file, " ");
2645 else
2646 first = false;
2647
2648 fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
2649 print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
2650 if (adj->base)
2651 {
2652 fprintf (file, ", base: ");
2653 print_generic_expr (file, adj->base, 0);
2654 }
2655 if (adj->reduction)
2656 {
2657 fprintf (file, ", reduction: ");
2658 print_generic_expr (file, adj->reduction, 0);
2659 }
2660 if (adj->new_ssa_base)
2661 {
2662 fprintf (file, ", new_ssa_base: ");
2663 print_generic_expr (file, adj->new_ssa_base, 0);
2664 }
2665
2666 if (adj->copy_param)
2667 fprintf (file, ", copy_param");
2668 else if (adj->remove_param)
2669 fprintf (file, ", remove_param");
2670 else
2671 fprintf (file, ", offset %li", (long) adj->offset);
2672 if (adj->by_ref)
2673 fprintf (file, ", by_ref");
2674 print_node_brief (file, ", type: ", adj->type, 0);
2675 fprintf (file, "\n");
2676 }
2677 VEC_free (tree, heap, parms);
2678}
2679
fb3f88cc
JH
2680/* Stream out jump function JUMP_FUNC to OB. */
2681
2682static void
2683ipa_write_jump_function (struct output_block *ob,
2684 struct ipa_jump_func *jump_func)
2685{
2686 lto_output_uleb128_stream (ob->main_stream,
2687 jump_func->type);
2688
2689 switch (jump_func->type)
2690 {
2691 case IPA_JF_UNKNOWN:
2692 break;
b258210c
MJ
2693 case IPA_JF_KNOWN_TYPE:
2694 lto_output_tree (ob, jump_func->value.base_binfo, true);
2695 break;
fb3f88cc
JH
2696 case IPA_JF_CONST:
2697 lto_output_tree (ob, jump_func->value.constant, true);
2698 break;
2699 case IPA_JF_PASS_THROUGH:
2700 lto_output_tree (ob, jump_func->value.pass_through.operand, true);
2701 lto_output_uleb128_stream (ob->main_stream,
2702 jump_func->value.pass_through.formal_id);
2703 lto_output_uleb128_stream (ob->main_stream,
2704 jump_func->value.pass_through.operation);
2705 break;
2706 case IPA_JF_ANCESTOR:
2707 lto_output_uleb128_stream (ob->main_stream,
2708 jump_func->value.ancestor.offset);
2709 lto_output_tree (ob, jump_func->value.ancestor.type, true);
2710 lto_output_uleb128_stream (ob->main_stream,
2711 jump_func->value.ancestor.formal_id);
2712 break;
2713 case IPA_JF_CONST_MEMBER_PTR:
2714 lto_output_tree (ob, jump_func->value.member_cst.pfn, true);
2715 lto_output_tree (ob, jump_func->value.member_cst.delta, false);
2716 break;
2717 }
2718}
2719
2720/* Read in jump function JUMP_FUNC from IB. */
2721
2722static void
2723ipa_read_jump_function (struct lto_input_block *ib,
2724 struct ipa_jump_func *jump_func,
2725 struct data_in *data_in)
2726{
2727 jump_func->type = (enum jump_func_type) lto_input_uleb128 (ib);
2728
2729 switch (jump_func->type)
2730 {
2731 case IPA_JF_UNKNOWN:
2732 break;
b258210c
MJ
2733 case IPA_JF_KNOWN_TYPE:
2734 jump_func->value.base_binfo = lto_input_tree (ib, data_in);
2735 break;
fb3f88cc
JH
2736 case IPA_JF_CONST:
2737 jump_func->value.constant = lto_input_tree (ib, data_in);
2738 break;
2739 case IPA_JF_PASS_THROUGH:
2740 jump_func->value.pass_through.operand = lto_input_tree (ib, data_in);
2741 jump_func->value.pass_through.formal_id = lto_input_uleb128 (ib);
2742 jump_func->value.pass_through.operation = (enum tree_code) lto_input_uleb128 (ib);
2743 break;
2744 case IPA_JF_ANCESTOR:
2745 jump_func->value.ancestor.offset = lto_input_uleb128 (ib);
2746 jump_func->value.ancestor.type = lto_input_tree (ib, data_in);
2747 jump_func->value.ancestor.formal_id = lto_input_uleb128 (ib);
2748 break;
2749 case IPA_JF_CONST_MEMBER_PTR:
2750 jump_func->value.member_cst.pfn = lto_input_tree (ib, data_in);
2751 jump_func->value.member_cst.delta = lto_input_tree (ib, data_in);
2752 break;
2753 }
2754}
2755
e33c6cd6
MJ
2756/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
2757 relevant to indirect inlining to OB. */
661e7330
MJ
2758
2759static void
e33c6cd6
MJ
2760ipa_write_indirect_edge_info (struct output_block *ob,
2761 struct cgraph_edge *cs)
661e7330 2762{
e33c6cd6 2763 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2465dcc2 2764 struct bitpack_d bp;
e33c6cd6
MJ
2765
2766 lto_output_sleb128_stream (ob->main_stream, ii->param_index);
b258210c 2767 lto_output_sleb128_stream (ob->main_stream, ii->anc_offset);
2465dcc2
RG
2768 bp = bitpack_create (ob->main_stream);
2769 bp_pack_value (&bp, ii->polymorphic, 1);
2770 lto_output_bitpack (&bp);
b258210c
MJ
2771
2772 if (ii->polymorphic)
2773 {
2774 lto_output_sleb128_stream (ob->main_stream, ii->otr_token);
2775 lto_output_tree (ob, ii->otr_type, true);
2776 }
661e7330
MJ
2777}
2778
e33c6cd6
MJ
2779/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
2780 relevant to indirect inlining from IB. */
661e7330
MJ
2781
2782static void
e33c6cd6
MJ
2783ipa_read_indirect_edge_info (struct lto_input_block *ib,
2784 struct data_in *data_in ATTRIBUTE_UNUSED,
2785 struct cgraph_edge *cs)
661e7330 2786{
e33c6cd6 2787 struct cgraph_indirect_call_info *ii = cs->indirect_info;
2465dcc2 2788 struct bitpack_d bp;
661e7330 2789
e33c6cd6 2790 ii->param_index = (int) lto_input_sleb128 (ib);
b258210c
MJ
2791 ii->anc_offset = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2792 bp = lto_input_bitpack (ib);
2465dcc2 2793 ii->polymorphic = bp_unpack_value (&bp, 1);
b258210c
MJ
2794 if (ii->polymorphic)
2795 {
2796 ii->otr_token = (HOST_WIDE_INT) lto_input_sleb128 (ib);
2797 ii->otr_type = lto_input_tree (ib, data_in);
2798 }
661e7330
MJ
2799}
2800
fb3f88cc
JH
2801/* Stream out NODE info to OB. */
2802
2803static void
2804ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
2805{
2806 int node_ref;
2807 lto_cgraph_encoder_t encoder;
2808 struct ipa_node_params *info = IPA_NODE_REF (node);
2809 int j;
2810 struct cgraph_edge *e;
2465dcc2 2811 struct bitpack_d bp;
fb3f88cc
JH
2812
2813 encoder = ob->decl_state->cgraph_node_encoder;
2814 node_ref = lto_cgraph_encoder_encode (encoder, node);
2815 lto_output_uleb128_stream (ob->main_stream, node_ref);
2816
2465dcc2
RG
2817 bp = bitpack_create (ob->main_stream);
2818 bp_pack_value (&bp, info->called_with_var_arguments, 1);
062c604f 2819 gcc_assert (info->uses_analysis_done
661e7330 2820 || ipa_get_param_count (info) == 0);
fb3f88cc
JH
2821 gcc_assert (!info->node_enqueued);
2822 gcc_assert (!info->ipcp_orig_node);
2823 for (j = 0; j < ipa_get_param_count (info); j++)
062c604f 2824 bp_pack_value (&bp, info->params[j].used, 1);
2465dcc2 2825 lto_output_bitpack (&bp);
fb3f88cc
JH
2826 for (e = node->callees; e; e = e->next_callee)
2827 {
2828 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2829
661e7330
MJ
2830 lto_output_uleb128_stream (ob->main_stream,
2831 ipa_get_cs_argument_count (args));
fb3f88cc
JH
2832 for (j = 0; j < ipa_get_cs_argument_count (args); j++)
2833 ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
2834 }
e33c6cd6
MJ
2835 for (e = node->indirect_calls; e; e = e->next_callee)
2836 ipa_write_indirect_edge_info (ob, e);
fb3f88cc
JH
2837}
2838
61502ca8 2839/* Stream in NODE info from IB. */
fb3f88cc
JH
2840
2841static void
2842ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
2843 struct data_in *data_in)
2844{
2845 struct ipa_node_params *info = IPA_NODE_REF (node);
2846 int k;
2847 struct cgraph_edge *e;
2465dcc2 2848 struct bitpack_d bp;
fb3f88cc
JH
2849
2850 ipa_initialize_node_params (node);
2851
fb3f88cc 2852 bp = lto_input_bitpack (ib);
2465dcc2 2853 info->called_with_var_arguments = bp_unpack_value (&bp, 1);
fb3f88cc 2854 if (ipa_get_param_count (info) != 0)
062c604f 2855 info->uses_analysis_done = true;
fb3f88cc
JH
2856 info->node_enqueued = false;
2857 for (k = 0; k < ipa_get_param_count (info); k++)
062c604f 2858 info->params[k].used = bp_unpack_value (&bp, 1);
fb3f88cc
JH
2859 for (e = node->callees; e; e = e->next_callee)
2860 {
2861 struct ipa_edge_args *args = IPA_EDGE_REF (e);
2862 int count = lto_input_uleb128 (ib);
2863
fb3f88cc
JH
2864 ipa_set_cs_argument_count (args, count);
2865 if (!count)
2866 continue;
2867
a9429e29
LB
2868 args->jump_functions = ggc_alloc_cleared_vec_ipa_jump_func
2869 (ipa_get_cs_argument_count (args));
fb3f88cc
JH
2870 for (k = 0; k < ipa_get_cs_argument_count (args); k++)
2871 ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
2872 }
e33c6cd6
MJ
2873 for (e = node->indirect_calls; e; e = e->next_callee)
2874 ipa_read_indirect_edge_info (ib, data_in, e);
fb3f88cc
JH
2875}
2876
2877/* Write jump functions for nodes in SET. */
2878
2879void
2880ipa_prop_write_jump_functions (cgraph_node_set set)
2881{
2882 struct cgraph_node *node;
2883 struct output_block *ob = create_output_block (LTO_section_jump_functions);
2884 unsigned int count = 0;
2885 cgraph_node_set_iterator csi;
2886
2887 ob->cgraph_node = NULL;
2888
2889 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2890 {
2891 node = csi_node (csi);
c47d0034
JH
2892 if (cgraph_function_with_gimple_body_p (node)
2893 && IPA_NODE_REF (node) != NULL)
fb3f88cc
JH
2894 count++;
2895 }
2896
2897 lto_output_uleb128_stream (ob->main_stream, count);
2898
2899 /* Process all of the functions. */
2900 for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
2901 {
2902 node = csi_node (csi);
c47d0034
JH
2903 if (cgraph_function_with_gimple_body_p (node)
2904 && IPA_NODE_REF (node) != NULL)
fb3f88cc
JH
2905 ipa_write_node_info (ob, node);
2906 }
2907 lto_output_1_stream (ob->main_stream, 0);
2908 produce_asm (ob, NULL);
2909 destroy_output_block (ob);
2910}
2911
2912/* Read section in file FILE_DATA of length LEN with data DATA. */
2913
2914static void
2915ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
2916 size_t len)
2917{
2918 const struct lto_function_header *header =
2919 (const struct lto_function_header *) data;
2920 const int32_t cfg_offset = sizeof (struct lto_function_header);
2921 const int32_t main_offset = cfg_offset + header->cfg_size;
2922 const int32_t string_offset = main_offset + header->main_size;
2923 struct data_in *data_in;
2924 struct lto_input_block ib_main;
2925 unsigned int i;
2926 unsigned int count;
2927
2928 LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
2929 header->main_size);
2930
2931 data_in =
2932 lto_data_in_create (file_data, (const char *) data + string_offset,
2933 header->string_size, NULL);
2934 count = lto_input_uleb128 (&ib_main);
2935
2936 for (i = 0; i < count; i++)
2937 {
2938 unsigned int index;
2939 struct cgraph_node *node;
2940 lto_cgraph_encoder_t encoder;
2941
2942 index = lto_input_uleb128 (&ib_main);
2943 encoder = file_data->cgraph_node_encoder;
2944 node = lto_cgraph_encoder_deref (encoder, index);
9b3cf76a 2945 gcc_assert (node->analyzed);
fb3f88cc
JH
2946 ipa_read_node_info (&ib_main, node, data_in);
2947 }
2948 lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
2949 len);
2950 lto_data_in_delete (data_in);
2951}
2952
2953/* Read ipcp jump functions. */
2954
2955void
2956ipa_prop_read_jump_functions (void)
2957{
2958 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
2959 struct lto_file_decl_data *file_data;
2960 unsigned int j = 0;
2961
2962 ipa_check_create_node_params ();
2963 ipa_check_create_edge_args ();
2964 ipa_register_cgraph_hooks ();
2965
2966 while ((file_data = file_data_vec[j++]))
2967 {
2968 size_t len;
2969 const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
2970
2971 if (data)
2972 ipa_prop_read_section (file_data, data, len);
2973 }
2974}
2975
b8698a0f 2976/* After merging units, we can get mismatch in argument counts.
61502ca8 2977 Also decl merging might've rendered parameter lists obsolete.
fb3f88cc
JH
2978 Also compute called_with_variable_arg info. */
2979
2980void
2981ipa_update_after_lto_read (void)
2982{
2983 struct cgraph_node *node;
2984 struct cgraph_edge *cs;
2985
05d3aa37
MJ
2986 ipa_check_create_node_params ();
2987 ipa_check_create_edge_args ();
2988
fb3f88cc 2989 for (node = cgraph_nodes; node; node = node->next)
563cb662 2990 if (node->analyzed)
05d3aa37 2991 ipa_initialize_node_params (node);
563cb662
MJ
2992
2993 for (node = cgraph_nodes; node; node = node->next)
2994 if (node->analyzed)
fb3f88cc
JH
2995 for (cs = node->callees; cs; cs = cs->next_callee)
2996 {
2997 if (ipa_get_cs_argument_count (IPA_EDGE_REF (cs))
2998 != ipa_get_param_count (IPA_NODE_REF (cs->callee)))
2999 ipa_set_called_with_variable_arg (IPA_NODE_REF (cs->callee));
3000 }
fb3f88cc 3001}
632b4f8e
JH
3002
3003/* Given the jump function JFUNC, compute the lattice LAT that describes the
3004 value coming down the callsite. INFO describes the caller node so that
3005 pass-through jump functions can be evaluated. */
411a20d6 3006
632b4f8e
JH
3007void
3008ipa_lattice_from_jfunc (struct ipa_node_params *info, struct ipcp_lattice *lat,
3009 struct ipa_jump_func *jfunc)
3010{
3011 if (jfunc->type == IPA_JF_CONST)
3012 {
3013 lat->type = IPA_CONST_VALUE;
3014 lat->constant = jfunc->value.constant;
3015 }
3016 else if (jfunc->type == IPA_JF_PASS_THROUGH)
3017 {
3018 struct ipcp_lattice *caller_lat;
3019 tree cst;
3020
3021 caller_lat = ipa_get_lattice (info, jfunc->value.pass_through.formal_id);
3022 lat->type = caller_lat->type;
3023 if (caller_lat->type != IPA_CONST_VALUE)
3024 return;
3025 cst = caller_lat->constant;
3026
3027 if (jfunc->value.pass_through.operation != NOP_EXPR)
3028 {
3029 tree restype;
3030 if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
3031 == tcc_comparison)
3032 restype = boolean_type_node;
3033 else
3034 restype = TREE_TYPE (cst);
3035 cst = fold_binary (jfunc->value.pass_through.operation,
3036 restype, cst, jfunc->value.pass_through.operand);
3037 }
3038 if (!cst || !is_gimple_ip_invariant (cst))
3039 lat->type = IPA_BOTTOM;
3040 lat->constant = cst;
3041 }
3042 else if (jfunc->type == IPA_JF_ANCESTOR)
3043 {
3044 struct ipcp_lattice *caller_lat;
3045 tree t;
3046
3047 caller_lat = ipa_get_lattice (info, jfunc->value.ancestor.formal_id);
3048 lat->type = caller_lat->type;
3049 if (caller_lat->type != IPA_CONST_VALUE)
3050 return;
3051 if (TREE_CODE (caller_lat->constant) != ADDR_EXPR)
3052 {
3053 /* This can happen when the constant is a NULL pointer. */
3054 lat->type = IPA_BOTTOM;
3055 return;
3056 }
3057 t = TREE_OPERAND (caller_lat->constant, 0);
3058 t = build_ref_for_offset (EXPR_LOCATION (t), t,
3059 jfunc->value.ancestor.offset,
3060 jfunc->value.ancestor.type, NULL, false);
3061 lat->constant = build_fold_addr_expr (t);
3062 }
3063 else
3064 lat->type = IPA_BOTTOM;
3065}
411a20d6
MJ
3066
3067/* Determine whether JFUNC evaluates to a constant and if so, return it.
3068 Otherwise return NULL. INFO describes the caller node so that pass-through
3069 jump functions can be evaluated. */
3070
3071tree
3072ipa_cst_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
3073{
3074 struct ipcp_lattice lat;
3075
3076 ipa_lattice_from_jfunc (info, &lat, jfunc);
3077 if (lat.type == IPA_CONST_VALUE)
3078 return lat.constant;
3079 else
3080 return NULL_TREE;
3081}