]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ipa-utils.c
* ipa-pure-const.c (state_from_flags, local_pure_const): Use
[thirdparty/gcc.git] / gcc / ipa-utils.c
CommitLineData
f7d118a9 1/* Utilities for ipa analysis.
cfaf579d 2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
f7d118a9 3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
f7d118a9 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
f7d118a9 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "tree-flow.h"
27#include "tree-inline.h"
b9ed1410 28#include "dumpfile.h"
f7d118a9 29#include "langhooks.h"
30#include "pointer-set.h"
5863771b 31#include "splay-tree.h"
f7d118a9 32#include "ggc.h"
33#include "ipa-utils.h"
34#include "ipa-reference.h"
75a70cf9 35#include "gimple.h"
f7d118a9 36#include "cgraph.h"
f7d118a9 37#include "flags.h"
f7d118a9 38#include "diagnostic.h"
39#include "langhooks.h"
40
41/* Debugging function for postorder and inorder code. NOTE is a string
42 that is printed before the nodes are printed. ORDER is an array of
43 cgraph_nodes that has COUNT useful nodes in it. */
44
48e1416a 45void
7771d558 46ipa_print_order (FILE* out,
47 const char * note,
48 struct cgraph_node** order,
49 int count)
f7d118a9 50{
51 int i;
52 fprintf (out, "\n\n ordered call graph: %s\n", note);
48e1416a 53
f7d118a9 54 for (i = count - 1; i >= 0; i--)
55 dump_cgraph_node(dump_file, order[i]);
56 fprintf (out, "\n");
57 fflush(out);
58}
59
60\f
61struct searchc_env {
62 struct cgraph_node **stack;
63 int stack_size;
64 struct cgraph_node **result;
65 int order_pos;
66 splay_tree nodes_marked_new;
67 bool reduce;
c336a49e 68 bool allow_overwritable;
f7d118a9 69 int count;
70};
71
72/* This is an implementation of Tarjan's strongly connected region
73 finder as reprinted in Aho Hopcraft and Ullman's The Design and
74 Analysis of Computer Programs (1975) pages 192-193. This version
75 has been customized for cgraph_nodes. The env parameter is because
76 it is recursive and there are no nested functions here. This
77 function should only be called from itself or
7771d558 78 ipa_reduced_postorder. ENV is a stack env and would be
f7d118a9 79 unnecessary if C had nested functions. V is the node to start
80 searching from. */
81
82static void
17b28e52 83searchc (struct searchc_env* env, struct cgraph_node *v,
84 bool (*ignore_edge) (struct cgraph_edge *))
f7d118a9 85{
86 struct cgraph_edge *edge;
7d0d0ce1 87 struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->symbol.aux;
48e1416a 88
f7d118a9 89 /* mark node as old */
cda6870f 90 v_info->new_node = false;
f7d118a9 91 splay_tree_remove (env->nodes_marked_new, v->uid);
48e1416a 92
f7d118a9 93 v_info->dfn_number = env->count;
94 v_info->low_link = env->count;
95 env->count++;
96 env->stack[(env->stack_size)++] = v;
97 v_info->on_stack = true;
48e1416a 98
f7d118a9 99 for (edge = v->callees; edge; edge = edge->next_callee)
100 {
101 struct ipa_dfs_info * w_info;
b2c2e188 102 enum availability avail;
103 struct cgraph_node *w = cgraph_function_or_thunk_node (edge->callee, &avail);
86844d6c 104
b2c2e188 105 if (!w || (ignore_edge && ignore_edge (edge)))
17b28e52 106 continue;
107
7d0d0ce1 108 if (w->symbol.aux
c336a49e 109 && (avail > AVAIL_OVERWRITABLE
110 || (env->allow_overwritable && avail == AVAIL_OVERWRITABLE)))
f7d118a9 111 {
7d0d0ce1 112 w_info = (struct ipa_dfs_info *) w->symbol.aux;
48e1416a 113 if (w_info->new_node)
f7d118a9 114 {
17b28e52 115 searchc (env, w, ignore_edge);
f7d118a9 116 v_info->low_link =
117 (v_info->low_link < w_info->low_link) ?
118 v_info->low_link : w_info->low_link;
48e1416a 119 }
120 else
121 if ((w_info->dfn_number < v_info->dfn_number)
122 && (w_info->on_stack))
f7d118a9 123 v_info->low_link =
124 (w_info->dfn_number < v_info->low_link) ?
125 w_info->dfn_number : v_info->low_link;
126 }
127 }
128
129
48e1416a 130 if (v_info->low_link == v_info->dfn_number)
f7d118a9 131 {
132 struct cgraph_node *last = NULL;
133 struct cgraph_node *x;
134 struct ipa_dfs_info *x_info;
135 do {
136 x = env->stack[--(env->stack_size)];
7d0d0ce1 137 x_info = (struct ipa_dfs_info *) x->symbol.aux;
f7d118a9 138 x_info->on_stack = false;
572635a5 139 x_info->scc_no = v_info->dfn_number;
48e1416a 140
141 if (env->reduce)
f7d118a9 142 {
143 x_info->next_cycle = last;
144 last = x;
48e1416a 145 }
146 else
f7d118a9 147 env->result[env->order_pos++] = x;
48e1416a 148 }
f7d118a9 149 while (v != x);
48e1416a 150 if (env->reduce)
f7d118a9 151 env->result[env->order_pos++] = v;
152 }
153}
154
155/* Topsort the call graph by caller relation. Put the result in ORDER.
156
9631926a 157 The REDUCE flag is true if you want the cycles reduced to single nodes.
158 You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
159 call graph nodes in a reduced node.
160
161 Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
7771d558 162 IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
163 for the topological sort. */
f7d118a9 164
165int
7771d558 166ipa_reduced_postorder (struct cgraph_node **order,
167 bool reduce, bool allow_overwritable,
168 bool (*ignore_edge) (struct cgraph_edge *))
f7d118a9 169{
170 struct cgraph_node *node;
171 struct searchc_env env;
172 splay_tree_node result;
4c36ffe6 173 env.stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
f7d118a9 174 env.stack_size = 0;
175 env.result = order;
176 env.order_pos = 0;
177 env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
178 env.count = 1;
179 env.reduce = reduce;
c336a49e 180 env.allow_overwritable = allow_overwritable;
48e1416a 181
7c455d87 182 FOR_EACH_DEFINED_FUNCTION (node)
86844d6c 183 {
184 enum availability avail = cgraph_function_body_availability (node);
185
186 if (avail > AVAIL_OVERWRITABLE
48e1416a 187 || (allow_overwritable
86844d6c 188 && (avail == AVAIL_OVERWRITABLE)))
189 {
190 /* Reuse the info if it is already there. */
7d0d0ce1 191 struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->symbol.aux;
86844d6c 192 if (!info)
193 info = XCNEW (struct ipa_dfs_info);
194 info->new_node = true;
195 info->on_stack = false;
196 info->next_cycle = NULL;
7d0d0ce1 197 node->symbol.aux = info;
48e1416a 198
86844d6c 199 splay_tree_insert (env.nodes_marked_new,
48e1416a 200 (splay_tree_key)node->uid,
86844d6c 201 (splay_tree_value)node);
48e1416a 202 }
203 else
7d0d0ce1 204 node->symbol.aux = NULL;
86844d6c 205 }
f7d118a9 206 result = splay_tree_min (env.nodes_marked_new);
207 while (result)
208 {
209 node = (struct cgraph_node *)result->value;
17b28e52 210 searchc (&env, node, ignore_edge);
f7d118a9 211 result = splay_tree_min (env.nodes_marked_new);
212 }
213 splay_tree_delete (env.nodes_marked_new);
214 free (env.stack);
215
216 return env.order_pos;
217}
218
7771d558 219/* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
220 graph nodes. */
221
222void
223ipa_free_postorder_info (void)
224{
225 struct cgraph_node *node;
7c455d87 226 FOR_EACH_DEFINED_FUNCTION (node)
7771d558 227 {
228 /* Get rid of the aux information. */
7d0d0ce1 229 if (node->symbol.aux)
7771d558 230 {
7d0d0ce1 231 free (node->symbol.aux);
232 node->symbol.aux = NULL;
7771d558 233 }
234 }
235}
236
9631926a 237/* Get the set of nodes for the cycle in the reduced call graph starting
238 from NODE. */
239
240VEC (cgraph_node_p, heap) *
241ipa_get_nodes_in_cycle (struct cgraph_node *node)
242{
243 VEC (cgraph_node_p, heap) *v = NULL;
244 struct ipa_dfs_info *node_dfs_info;
245 while (node)
246 {
247 VEC_safe_push (cgraph_node_p, heap, v, node);
248 node_dfs_info = (struct ipa_dfs_info *) node->symbol.aux;
249 node = node_dfs_info->next_cycle;
250 }
251 return v;
252}
253
ee5e516b 254struct postorder_stack
255{
256 struct cgraph_node *node;
257 struct cgraph_edge *edge;
258 int ref;
259};
260
7771d558 261/* Fill array order with all nodes with output flag set in the reverse
c70f46b0 262 topological order. Return the number of elements in the array.
263 FIXME: While walking, consider aliases, too. */
7771d558 264
265int
266ipa_reverse_postorder (struct cgraph_node **order)
267{
268 struct cgraph_node *node, *node2;
269 int stack_size = 0;
270 int order_pos = 0;
ee5e516b 271 struct cgraph_edge *edge;
7771d558 272 int pass;
ee5e516b 273 struct ipa_ref *ref;
7771d558 274
ee5e516b 275 struct postorder_stack *stack =
276 XCNEWVEC (struct postorder_stack, cgraph_n_nodes);
7771d558 277
278 /* We have to deal with cycles nicely, so use a depth first traversal
279 output algorithm. Ignore the fact that some functions won't need
280 to be output and put them into order as well, so we get dependencies
281 right through inline functions. */
7c455d87 282 FOR_EACH_FUNCTION (node)
7d0d0ce1 283 node->symbol.aux = NULL;
7771d558 284 for (pass = 0; pass < 2; pass++)
7c455d87 285 FOR_EACH_FUNCTION (node)
7d0d0ce1 286 if (!node->symbol.aux
7771d558 287 && (pass
7d0d0ce1 288 || (!node->symbol.address_taken
7771d558 289 && !node->global.inlined_to
ee5e516b 290 && !node->alias && !node->thunk.thunk_p
291 && !cgraph_only_called_directly_p (node))))
7771d558 292 {
ee5e516b 293 stack_size = 0;
294 stack[stack_size].node = node;
295 stack[stack_size].edge = node->callers;
296 stack[stack_size].ref = 0;
7d0d0ce1 297 node->symbol.aux = (void *)(size_t)1;
ee5e516b 298 while (stack_size >= 0)
7771d558 299 {
ee5e516b 300 while (true)
7771d558 301 {
ee5e516b 302 node2 = NULL;
303 while (stack[stack_size].edge && !node2)
7771d558 304 {
ee5e516b 305 edge = stack[stack_size].edge;
7771d558 306 node2 = edge->caller;
ee5e516b 307 stack[stack_size].edge = edge->next_caller;
308 /* Break possible cycles involving always-inline
309 functions by ignoring edges from always-inline
310 functions to non-always-inline functions. */
7d0d0ce1 311 if (DECL_DISREGARD_INLINE_LIMITS (edge->caller->symbol.decl)
ee5e516b 312 && !DECL_DISREGARD_INLINE_LIMITS
7d0d0ce1 313 (cgraph_function_node (edge->callee, NULL)->symbol.decl))
ee5e516b 314 node2 = NULL;
315 }
04ec15fa 316 for (;ipa_ref_list_referring_iterate (&stack[stack_size].node->symbol.ref_list,
ee5e516b 317 stack[stack_size].ref,
318 ref) && !node2;
319 stack[stack_size].ref++)
320 {
321 if (ref->use == IPA_REF_ALIAS)
04ec15fa 322 node2 = ipa_ref_referring_node (ref);
ee5e516b 323 }
324 if (!node2)
325 break;
7d0d0ce1 326 if (!node2->symbol.aux)
ee5e516b 327 {
328 stack[++stack_size].node = node2;
329 stack[stack_size].edge = node2->callers;
330 stack[stack_size].ref = 0;
7d0d0ce1 331 node2->symbol.aux = (void *)(size_t)1;
7771d558 332 }
333 }
ee5e516b 334 order[order_pos++] = stack[stack_size--].node;
7771d558 335 }
336 }
337 free (stack);
7c455d87 338 FOR_EACH_FUNCTION (node)
7d0d0ce1 339 node->symbol.aux = NULL;
7771d558 340 return order_pos;
341}
342
343
f7d118a9 344
345/* Given a memory reference T, will return the variable at the bottom
9d75589a 346 of the access. Unlike get_base_address, this will recurse through
f7d118a9 347 INDIRECT_REFS. */
348
349tree
350get_base_var (tree t)
351{
48e1416a 352 while (!SSA_VAR_P (t)
f7d118a9 353 && (!CONSTANT_CLASS_P (t))
354 && TREE_CODE (t) != LABEL_DECL
355 && TREE_CODE (t) != FUNCTION_DECL
9ed5b1f5 356 && TREE_CODE (t) != CONST_DECL
357 && TREE_CODE (t) != CONSTRUCTOR)
f7d118a9 358 {
359 t = TREE_OPERAND (t, 0);
360 }
361 return t;
48e1416a 362}
f7d118a9 363
19ad01f7 364
365/* Create a new cgraph node set. */
366
367cgraph_node_set
368cgraph_node_set_new (void)
369{
370 cgraph_node_set new_node_set;
371
372 new_node_set = XCNEW (struct cgraph_node_set_def);
373 new_node_set->map = pointer_map_create ();
374 new_node_set->nodes = NULL;
375 return new_node_set;
376}
377
378
379/* Add cgraph_node NODE to cgraph_node_set SET. */
380
381void
382cgraph_node_set_add (cgraph_node_set set, struct cgraph_node *node)
383{
384 void **slot;
385
386 slot = pointer_map_insert (set->map, node);
387
388 if (*slot)
389 {
390 int index = (size_t) *slot - 1;
391 gcc_checking_assert ((VEC_index (cgraph_node_ptr, set->nodes, index)
392 == node));
393 return;
394 }
395
396 *slot = (void *)(size_t) (VEC_length (cgraph_node_ptr, set->nodes) + 1);
397
398 /* Insert into node vector. */
399 VEC_safe_push (cgraph_node_ptr, heap, set->nodes, node);
400}
401
402
403/* Remove cgraph_node NODE from cgraph_node_set SET. */
404
405void
406cgraph_node_set_remove (cgraph_node_set set, struct cgraph_node *node)
407{
408 void **slot, **last_slot;
409 int index;
410 struct cgraph_node *last_node;
411
412 slot = pointer_map_contains (set->map, node);
413 if (slot == NULL || !*slot)
414 return;
415
416 index = (size_t) *slot - 1;
417 gcc_checking_assert (VEC_index (cgraph_node_ptr, set->nodes, index)
418 == node);
419
420 /* Remove from vector. We do this by swapping node with the last element
421 of the vector. */
422 last_node = VEC_pop (cgraph_node_ptr, set->nodes);
423 if (last_node != node)
424 {
425 last_slot = pointer_map_contains (set->map, last_node);
426 gcc_checking_assert (last_slot && *last_slot);
427 *last_slot = (void *)(size_t) (index + 1);
428
429 /* Move the last element to the original spot of NODE. */
430 VEC_replace (cgraph_node_ptr, set->nodes, index, last_node);
431 }
432
433 /* Remove element from hash table. */
434 *slot = NULL;
435}
436
437
438/* Find NODE in SET and return an iterator to it if found. A null iterator
439 is returned if NODE is not in SET. */
440
441cgraph_node_set_iterator
442cgraph_node_set_find (cgraph_node_set set, struct cgraph_node *node)
443{
444 void **slot;
445 cgraph_node_set_iterator csi;
446
447 slot = pointer_map_contains (set->map, node);
448 if (slot == NULL || !*slot)
449 csi.index = (unsigned) ~0;
450 else
451 csi.index = (size_t)*slot - 1;
452 csi.set = set;
453
454 return csi;
455}
456
457
458/* Dump content of SET to file F. */
459
460void
461dump_cgraph_node_set (FILE *f, cgraph_node_set set)
462{
463 cgraph_node_set_iterator iter;
464
465 for (iter = csi_start (set); !csi_end_p (iter); csi_next (&iter))
466 {
467 struct cgraph_node *node = csi_node (iter);
468 fprintf (f, " %s/%i", cgraph_node_name (node), node->uid);
469 }
470 fprintf (f, "\n");
471}
472
473
474/* Dump content of SET to stderr. */
475
476DEBUG_FUNCTION void
477debug_cgraph_node_set (cgraph_node_set set)
478{
479 dump_cgraph_node_set (stderr, set);
480}
481
482
483/* Free varpool node set. */
484
485void
486free_cgraph_node_set (cgraph_node_set set)
487{
488 VEC_free (cgraph_node_ptr, heap, set->nodes);
489 pointer_map_destroy (set->map);
490 free (set);
491}
492
493
494/* Create a new varpool node set. */
495
496varpool_node_set
497varpool_node_set_new (void)
498{
499 varpool_node_set new_node_set;
500
501 new_node_set = XCNEW (struct varpool_node_set_def);
502 new_node_set->map = pointer_map_create ();
503 new_node_set->nodes = NULL;
504 return new_node_set;
505}
506
507
508/* Add varpool_node NODE to varpool_node_set SET. */
509
510void
511varpool_node_set_add (varpool_node_set set, struct varpool_node *node)
512{
513 void **slot;
514
515 slot = pointer_map_insert (set->map, node);
516
517 if (*slot)
518 {
519 int index = (size_t) *slot - 1;
520 gcc_checking_assert ((VEC_index (varpool_node_ptr, set->nodes, index)
521 == node));
522 return;
523 }
524
525 *slot = (void *)(size_t) (VEC_length (varpool_node_ptr, set->nodes) + 1);
526
527 /* Insert into node vector. */
528 VEC_safe_push (varpool_node_ptr, heap, set->nodes, node);
529}
530
531
532/* Remove varpool_node NODE from varpool_node_set SET. */
533
534void
535varpool_node_set_remove (varpool_node_set set, struct varpool_node *node)
536{
537 void **slot, **last_slot;
538 int index;
539 struct varpool_node *last_node;
540
541 slot = pointer_map_contains (set->map, node);
542 if (slot == NULL || !*slot)
543 return;
544
545 index = (size_t) *slot - 1;
546 gcc_checking_assert (VEC_index (varpool_node_ptr, set->nodes, index)
547 == node);
548
549 /* Remove from vector. We do this by swapping node with the last element
550 of the vector. */
551 last_node = VEC_pop (varpool_node_ptr, set->nodes);
552 if (last_node != node)
553 {
554 last_slot = pointer_map_contains (set->map, last_node);
555 gcc_checking_assert (last_slot && *last_slot);
556 *last_slot = (void *)(size_t) (index + 1);
557
558 /* Move the last element to the original spot of NODE. */
559 VEC_replace (varpool_node_ptr, set->nodes, index, last_node);
560 }
561
562 /* Remove element from hash table. */
563 *slot = NULL;
564}
565
566
567/* Find NODE in SET and return an iterator to it if found. A null iterator
568 is returned if NODE is not in SET. */
569
570varpool_node_set_iterator
571varpool_node_set_find (varpool_node_set set, struct varpool_node *node)
572{
573 void **slot;
574 varpool_node_set_iterator vsi;
575
576 slot = pointer_map_contains (set->map, node);
577 if (slot == NULL || !*slot)
578 vsi.index = (unsigned) ~0;
579 else
580 vsi.index = (size_t)*slot - 1;
581 vsi.set = set;
582
583 return vsi;
584}
585
586
587/* Dump content of SET to file F. */
588
589void
590dump_varpool_node_set (FILE *f, varpool_node_set set)
591{
592 varpool_node_set_iterator iter;
593
594 for (iter = vsi_start (set); !vsi_end_p (iter); vsi_next (&iter))
595 {
596 struct varpool_node *node = vsi_node (iter);
597 fprintf (f, " %s", varpool_node_name (node));
598 }
599 fprintf (f, "\n");
600}
601
602
603/* Free varpool node set. */
604
605void
606free_varpool_node_set (varpool_node_set set)
607{
608 VEC_free (varpool_node_ptr, heap, set->nodes);
609 pointer_map_destroy (set->map);
610 free (set);
611}
612
613
614/* Dump content of SET to stderr. */
615
616DEBUG_FUNCTION void
617debug_varpool_node_set (varpool_node_set set)
618{
619 dump_varpool_node_set (stderr, set);
620}