]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-costs.cc
combine: Fix ICE in try_combine on pr112494.c [PR112560]
[thirdparty/gcc.git] / gcc / ira-costs.cc
CommitLineData
ce18efcb 1/* IRA hard register and memory cost calculation for allocnos or pseudos.
a945c346 2 Copyright (C) 2006-2024 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "target.h"
058e97ec 26#include "rtl.h"
c7131fb2 27#include "tree.h"
957060b5 28#include "predict.h"
4d0cdd0c 29#include "memmodel.h"
957060b5 30#include "tm_p.h"
957060b5
AM
31#include "insn-config.h"
32#include "regs.h"
f55cdce3 33#include "regset.h"
957060b5
AM
34#include "ira.h"
35#include "ira-int.h"
058e97ec 36#include "addresses.h"
8ff49c29 37#include "reload.h"
2639f9d2 38#include "print-rtl.h"
058e97ec 39
ce18efcb
VM
40/* The flags is set up every time when we calculate pseudo register
41 classes through function ira_set_pseudo_classes. */
42static bool pseudo_classes_defined_p = false;
43
44/* TRUE if we work with allocnos. Otherwise we work with pseudos. */
45static bool allocno_p;
46
9aaa7e47 47/* Number of elements in array `costs'. */
ce18efcb 48static int cost_elements_num;
058e97ec 49
058e97ec
VM
50/* The `costs' struct records the cost of using hard registers of each
51 class considered for the calculation and of using memory for each
ce18efcb 52 allocno or pseudo. */
058e97ec
VM
53struct costs
54{
55 int mem_cost;
56 /* Costs for register classes start here. We process only some
1756cb66 57 allocno classes. */
058e97ec
VM
58 int cost[1];
59};
60
aa1c5d72
RS
61#define max_struct_costs_size \
62 (this_target_ira_int->x_max_struct_costs_size)
63#define init_cost \
64 (this_target_ira_int->x_init_cost)
65#define temp_costs \
66 (this_target_ira_int->x_temp_costs)
67#define op_costs \
68 (this_target_ira_int->x_op_costs)
69#define this_op_costs \
70 (this_target_ira_int->x_this_op_costs)
058e97ec 71
ce18efcb
VM
72/* Costs of each class for each allocno or pseudo. */
73static struct costs *costs;
74
75/* Accumulated costs of each class for each allocno. */
76static struct costs *total_allocno_costs;
058e97ec 77
058e97ec 78/* It is the current size of struct costs. */
ff304c01 79static size_t struct_costs_size;
058e97ec 80
ce18efcb
VM
81/* Return pointer to structure containing costs of allocno or pseudo
82 with given NUM in array ARR. */
83#define COSTS(arr, num) \
058e97ec
VM
84 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
85
ce18efcb 86/* Return index in COSTS when processing reg with REGNO. */
1756cb66
VM
87#define COST_INDEX(regno) (allocno_p \
88 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
ce18efcb 89 : (int) regno)
058e97ec 90
ce18efcb
VM
91/* Record register class preferences of each allocno or pseudo. Null
92 value means no preferences. It happens on the 1st iteration of the
93 cost calculation. */
94static enum reg_class *pref;
058e97ec 95
ce18efcb
VM
96/* Allocated buffers for pref. */
97static enum reg_class *pref_buffer;
98
1756cb66
VM
99/* Record allocno class of each allocno with the same regno. */
100static enum reg_class *regno_aclass;
7db7ed3c 101
8ff49c29
BS
102/* Record cost gains for not allocating a register with an invariant
103 equivalence. */
104static int *regno_equiv_gains;
105
058e97ec
VM
106/* Execution frequency of the current insn. */
107static int frequency;
108
109\f
110
1756cb66
VM
111/* Info about reg classes whose costs are calculated for a pseudo. */
112struct cost_classes
113{
114 /* Number of the cost classes in the subsequent array. */
115 int num;
116 /* Container of the cost classes. */
117 enum reg_class classes[N_REG_CLASSES];
118 /* Map reg class -> index of the reg class in the previous array.
df3e3493 119 -1 if it is not a cost class. */
1756cb66
VM
120 int index[N_REG_CLASSES];
121 /* Map hard regno index of first class in array CLASSES containing
122 the hard regno, -1 otherwise. */
123 int hard_regno_index[FIRST_PSEUDO_REGISTER];
124};
125
126/* Types of pointers to the structure above. */
127typedef struct cost_classes *cost_classes_t;
128typedef const struct cost_classes *const_cost_classes_t;
129
130/* Info about cost classes for each pseudo. */
131static cost_classes_t *regno_cost_classes;
132
4a8fb1a1
LC
133/* Helper for cost_classes hashing. */
134
7edd9b15 135struct cost_classes_hasher : pointer_hash <cost_classes>
1756cb66 136{
67f58944
TS
137 static inline hashval_t hash (const cost_classes *);
138 static inline bool equal (const cost_classes *, const cost_classes *);
139 static inline void remove (cost_classes *);
4a8fb1a1 140};
1756cb66 141
4a8fb1a1
LC
142/* Returns hash value for cost classes info HV. */
143inline hashval_t
67f58944 144cost_classes_hasher::hash (const cost_classes *hv)
4a8fb1a1 145{
1756cb66
VM
146 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
147}
148
4a8fb1a1
LC
149/* Compares cost classes info HV1 and HV2. */
150inline bool
67f58944 151cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
1756cb66 152{
c99ebd4d
FY
153 return (hv1->num == hv2->num
154 && memcmp (hv1->classes, hv2->classes,
155 sizeof (enum reg_class) * hv1->num) == 0);
1756cb66
VM
156}
157
158/* Delete cost classes info V from the hash table. */
4a8fb1a1 159inline void
67f58944 160cost_classes_hasher::remove (cost_classes *v)
1756cb66
VM
161{
162 ira_free (v);
163}
164
165/* Hash table of unique cost classes. */
c203e8a7 166static hash_table<cost_classes_hasher> *cost_classes_htab;
1756cb66
VM
167
168/* Map allocno class -> cost classes for pseudo of given allocno
169 class. */
170static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
171
172/* Map mode -> cost classes for pseudo of give mode. */
173static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
174
cbfb1548
RS
175/* Cost classes that include all classes in ira_important_classes. */
176static cost_classes all_cost_classes;
177
178/* Use the array of classes in CLASSES_PTR to fill out the rest of
179 the structure. */
180static void
181complete_cost_classes (cost_classes_t classes_ptr)
182{
183 for (int i = 0; i < N_REG_CLASSES; i++)
184 classes_ptr->index[i] = -1;
185 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
186 classes_ptr->hard_regno_index[i] = -1;
187 for (int i = 0; i < classes_ptr->num; i++)
188 {
189 enum reg_class cl = classes_ptr->classes[i];
190 classes_ptr->index[cl] = i;
191 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
192 {
193 unsigned int hard_regno = ira_class_hard_regs[cl][j];
194 if (classes_ptr->hard_regno_index[hard_regno] < 0)
195 classes_ptr->hard_regno_index[hard_regno] = i;
196 }
197 }
198}
199
1756cb66
VM
200/* Initialize info about the cost classes for each pseudo. */
201static void
202initiate_regno_cost_classes (void)
203{
204 int size = sizeof (cost_classes_t) * max_reg_num ();
205
206 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
207 memset (regno_cost_classes, 0, size);
208 memset (cost_classes_aclass_cache, 0,
209 sizeof (cost_classes_t) * N_REG_CLASSES);
210 memset (cost_classes_mode_cache, 0,
211 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
c203e8a7 212 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
cbfb1548
RS
213 all_cost_classes.num = ira_important_classes_num;
214 for (int i = 0; i < ira_important_classes_num; i++)
215 all_cost_classes.classes[i] = ira_important_classes[i];
216 complete_cost_classes (&all_cost_classes);
1756cb66
VM
217}
218
219/* Create new cost classes from cost classes FROM and set up members
220 index and hard_regno_index. Return the new classes. The function
221 implements some common code of two functions
222 setup_regno_cost_classes_by_aclass and
223 setup_regno_cost_classes_by_mode. */
224static cost_classes_t
225setup_cost_classes (cost_classes_t from)
226{
227 cost_classes_t classes_ptr;
1756cb66
VM
228
229 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
230 classes_ptr->num = from->num;
cbfb1548
RS
231 for (int i = 0; i < from->num; i++)
232 classes_ptr->classes[i] = from->classes[i];
233 complete_cost_classes (classes_ptr);
234 return classes_ptr;
235}
236
237/* Return a version of FULL that only considers registers in REGS that are
238 valid for mode MODE. Both FULL and the returned class are globally
239 allocated. */
240static cost_classes_t
ef4bddc2 241restrict_cost_classes (cost_classes_t full, machine_mode mode,
504279ae 242 const_hard_reg_set regs)
cbfb1548
RS
243{
244 static struct cost_classes narrow;
245 int map[N_REG_CLASSES];
246 narrow.num = 0;
247 for (int i = 0; i < full->num; i++)
1756cb66 248 {
cbfb1548
RS
249 /* Assume that we'll drop the class. */
250 map[i] = -1;
251
252 /* Ignore classes that are too small for the mode. */
253 enum reg_class cl = full->classes[i];
254 if (!contains_reg_of_mode[cl][mode])
255 continue;
256
257 /* Calculate the set of registers in CL that belong to REGS and
258 are valid for MODE. */
dc333d8f 259 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
d15e5131
RS
260 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
261 | ira_no_alloc_regs);
cbfb1548
RS
262 if (hard_reg_set_empty_p (valid_for_cl))
263 continue;
264
265 /* Don't use this class if the set of valid registers is a subset
266 of an existing class. For example, suppose we have two classes
267 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
268 that the mode changes allowed by FR_REGS are not as general as
269 the mode changes allowed by GR_REGS.
270
271 In this situation, the mode changes for GR_AND_FR_REGS could
272 either be seen as the union or the intersection of the mode
273 changes allowed by the two subclasses. The justification for
274 the union-based definition would be that, if you want a mode
275 change that's only allowed by GR_REGS, you can pick a register
276 from the GR_REGS subclass. The justification for the
277 intersection-based definition would be that every register
278 from the class would allow the mode change.
279
280 However, if we have a register that needs to be in GR_REGS,
281 using GR_AND_FR_REGS with the intersection-based definition
282 would be too pessimistic, since it would bring in restrictions
283 that only apply to FR_REGS. Conversely, if we have a register
284 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
285 union-based definition would lose the extra restrictions
286 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
287 for cases where GR_REGS and FP_REGS are both valid. */
288 int pos;
289 for (pos = 0; pos < narrow.num; ++pos)
1756cb66 290 {
cbfb1548
RS
291 enum reg_class cl2 = narrow.classes[pos];
292 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
293 break;
294 }
295 map[i] = pos;
296 if (pos == narrow.num)
297 {
298 /* If several classes are equivalent, prefer to use the one
299 that was chosen as the allocno class. */
300 enum reg_class cl2 = ira_allocno_class_translate[cl];
301 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
302 cl = cl2;
303 narrow.classes[narrow.num++] = cl;
1756cb66
VM
304 }
305 }
cbfb1548
RS
306 if (narrow.num == full->num)
307 return full;
308
309 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
310 if (*slot == NULL)
311 {
312 cost_classes_t classes = setup_cost_classes (&narrow);
313 /* Map equivalent classes to the representative that we chose above. */
314 for (int i = 0; i < ira_important_classes_num; i++)
315 {
316 enum reg_class cl = ira_important_classes[i];
317 int index = full->index[cl];
318 if (index >= 0)
319 classes->index[cl] = map[index];
320 }
321 *slot = classes;
322 }
323 return *slot;
1756cb66
VM
324}
325
326/* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
327 This function is used when we know an initial approximation of
328 allocno class of the pseudo already, e.g. on the second iteration
329 of class cost calculation or after class cost calculation in
330 register-pressure sensitive insn scheduling or register-pressure
331 sensitive loop-invariant motion. */
332static void
333setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
334{
335 static struct cost_classes classes;
336 cost_classes_t classes_ptr;
337 enum reg_class cl;
338 int i;
4a8fb1a1 339 cost_classes **slot;
1756cb66 340 HARD_REG_SET temp, temp2;
6277a710 341 bool exclude_p;
1756cb66
VM
342
343 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
344 {
d15e5131 345 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
6277a710 346 /* We exclude classes from consideration which are subsets of
165f639c
VM
347 ACLASS only if ACLASS is an uniform class. */
348 exclude_p = ira_uniform_class_p[aclass];
1756cb66
VM
349 classes.num = 0;
350 for (i = 0; i < ira_important_classes_num; i++)
351 {
352 cl = ira_important_classes[i];
6277a710
VM
353 if (exclude_p)
354 {
165f639c 355 /* Exclude non-uniform classes which are subsets of
6277a710 356 ACLASS. */
d15e5131 357 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
165f639c 358 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
6277a710
VM
359 continue;
360 }
1756cb66
VM
361 classes.classes[classes.num++] = cl;
362 }
c203e8a7 363 slot = cost_classes_htab->find_slot (&classes, INSERT);
1756cb66
VM
364 if (*slot == NULL)
365 {
366 classes_ptr = setup_cost_classes (&classes);
367 *slot = classes_ptr;
368 }
369 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
370 }
cbfb1548 371 if (regno_reg_rtx[regno] != NULL_RTX)
dab67d2c
RS
372 {
373 /* Restrict the classes to those that are valid for REGNO's mode
374 (which might for example exclude singleton classes if the mode
375 requires two registers). Also restrict the classes to those that
376 are valid for subregs of REGNO. */
377 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
378 if (!valid_regs)
379 valid_regs = &reg_class_contents[ALL_REGS];
380 classes_ptr = restrict_cost_classes (classes_ptr,
381 PSEUDO_REGNO_MODE (regno),
382 *valid_regs);
383 }
1756cb66
VM
384 regno_cost_classes[regno] = classes_ptr;
385}
386
387/* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
388 decrease number of cost classes for the pseudo, if hard registers
67914693
SL
389 of some important classes cannot hold a value of MODE. So the
390 pseudo cannot get hard register of some important classes and cost
df3e3493 391 calculation for such important classes is only wasting CPU
1756cb66
VM
392 time. */
393static void
ef4bddc2 394setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
1756cb66 395{
dab67d2c
RS
396 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
397 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
398 mode, *valid_regs);
399 else
400 {
401 if (cost_classes_mode_cache[mode] == NULL)
402 cost_classes_mode_cache[mode]
403 = restrict_cost_classes (&all_cost_classes, mode,
404 reg_class_contents[ALL_REGS]);
405 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
406 }
1756cb66
VM
407}
408
df3e3493 409/* Finalize info about the cost classes for each pseudo. */
1756cb66
VM
410static void
411finish_regno_cost_classes (void)
412{
413 ira_free (regno_cost_classes);
c203e8a7
TS
414 delete cost_classes_htab;
415 cost_classes_htab = NULL;
1756cb66
VM
416}
417
418\f
419
058e97ec
VM
420/* Compute the cost of loading X into (if TO_P is TRUE) or from (if
421 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
422 be a pseudo register. */
423static int
ef4bddc2 424copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
058e97ec
VM
425 secondary_reload_info *prev_sri)
426{
427 secondary_reload_info sri;
fba42e24 428 reg_class_t secondary_class = NO_REGS;
058e97ec
VM
429
430 /* If X is a SCRATCH, there is actually nothing to move since we are
431 assuming optimal allocation. */
432 if (GET_CODE (x) == SCRATCH)
433 return 0;
434
435 /* Get the class we will actually use for a reload. */
fba42e24 436 rclass = targetm.preferred_reload_class (x, rclass);
058e97ec
VM
437
438 /* If we need a secondary reload for an intermediate, the cost is
439 that to load the input into the intermediate register, then to
440 copy it. */
441 sri.prev_sri = prev_sri;
442 sri.extra_cost = 0;
a2faef8e
NC
443 /* PR 68770: Secondary reload might examine the t_icode field. */
444 sri.t_icode = CODE_FOR_nothing;
445
fba42e24 446 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
058e97ec 447
058e97ec 448 if (secondary_class != NO_REGS)
20377b47 449 {
bac1c6a4
RS
450 ira_init_register_move_cost_if_necessary (mode);
451 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
fba42e24 452 + sri.extra_cost
20377b47
JH
453 + copy_cost (x, mode, secondary_class, to_p, &sri));
454 }
058e97ec
VM
455
456 /* For memory, use the memory move cost, for (hard) registers, use
457 the cost to move between the register classes, and use 2 for
458 everything else (constants). */
459 if (MEM_P (x) || rclass == NO_REGS)
fba42e24
AS
460 return sri.extra_cost
461 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
058e97ec 462 else if (REG_P (x))
20377b47 463 {
bac1c6a4
RS
464 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
465
466 ira_init_register_move_cost_if_necessary (mode);
fba42e24 467 return (sri.extra_cost
bac1c6a4 468 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
20377b47 469 }
058e97ec
VM
470 else
471 /* If this is a constant, we may eventually want to call rtx_cost
472 here. */
473 return sri.extra_cost + COSTS_N_INSNS (1);
474}
475
476\f
477
478/* Record the cost of using memory or hard registers of various
479 classes for the operands in INSN.
480
481 N_ALTS is the number of alternatives.
482 N_OPS is the number of operands.
483 OPS is an array of the operands.
484 MODES are the modes of the operands, in case any are VOIDmode.
485 CONSTRAINTS are the constraints to use for the operands. This array
486 is modified by this procedure.
487
488 This procedure works alternative by alternative. For each
489 alternative we assume that we will be able to allocate all allocnos
490 to their ideal register class and calculate the cost of using that
491 alternative. Then we compute, for each operand that is a
492 pseudo-register, the cost of having the allocno allocated to each
493 register class and using it in that alternative. To this cost is
494 added the cost of the alternative.
495
496 The cost of each class for this insn is its lowest cost among all
497 the alternatives. */
498static void
499record_reg_classes (int n_alts, int n_ops, rtx *ops,
ef4bddc2 500 machine_mode *modes, const char **constraints,
070a1983 501 rtx_insn *insn, enum reg_class *pref)
058e97ec
VM
502{
503 int alt;
504 int i, j, k;
927425df 505 int insn_allows_mem[MAX_RECOG_OPERANDS];
0a1eb350
VM
506 move_table *move_in_cost, *move_out_cost;
507 short (*mem_cost)[2];
2639f9d2
VM
508 const char *p;
509
510 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
511 {
512 fprintf (ira_dump_file, " Processing insn %u", INSN_UID (insn));
513 if (INSN_CODE (insn) >= 0
514 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
515 fprintf (ira_dump_file, " {%s}", p);
516 fprintf (ira_dump_file, " (freq=%d)\n",
517 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
518 dump_insn_slim (ira_dump_file, insn);
519 }
927425df
VM
520
521 for (i = 0; i < n_ops; i++)
522 insn_allows_mem[i] = 0;
058e97ec
VM
523
524 /* Process each alternative, each time minimizing an operand's cost
525 with the cost for each operand in that alternative. */
9840b2fa 526 alternative_mask preferred = get_preferred_alternatives (insn);
058e97ec
VM
527 for (alt = 0; alt < n_alts; alt++)
528 {
529 enum reg_class classes[MAX_RECOG_OPERANDS];
530 int allows_mem[MAX_RECOG_OPERANDS];
bbbbb16a 531 enum reg_class rclass;
058e97ec
VM
532 int alt_fail = 0;
533 int alt_cost = 0, op_cost_add;
534
9840b2fa 535 if (!TEST_BIT (preferred, alt))
979740a0
BS
536 {
537 for (i = 0; i < recog_data.n_operands; i++)
538 constraints[i] = skip_alternative (constraints[i]);
539
540 continue;
541 }
542
2639f9d2
VM
543 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
544 {
545 fprintf (ira_dump_file, " Alt %d:", alt);
546 for (i = 0; i < n_ops; i++)
547 {
548 p = constraints[i];
549 if (*p == '\0')
550 continue;
551 fprintf (ira_dump_file, " (%d) ", i);
552 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
553 fputc (*p, ira_dump_file);
554 }
555 fprintf (ira_dump_file, "\n");
556 }
557
058e97ec
VM
558 for (i = 0; i < n_ops; i++)
559 {
560 unsigned char c;
561 const char *p = constraints[i];
562 rtx op = ops[i];
ef4bddc2 563 machine_mode mode = modes[i];
058e97ec
VM
564 int allows_addr = 0;
565 int win = 0;
566
567 /* Initially show we know nothing about the register class. */
568 classes[i] = NO_REGS;
569 allows_mem[i] = 0;
570
571 /* If this operand has no constraints at all, we can
572 conclude nothing about it since anything is valid. */
573 if (*p == 0)
574 {
575 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
576 memset (this_op_costs[i], 0, struct_costs_size);
577 continue;
578 }
579
580 /* If this alternative is only relevant when this operand
581 matches a previous operand, we do different things
582 depending on whether this operand is a allocno-reg or not.
583 We must process any modifiers for the operand before we
584 can make this test. */
585 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
586 p++;
587
d81c5030 588 if (p[0] >= '0' && p[0] <= '0' + i)
058e97ec
VM
589 {
590 /* Copy class and whether memory is allowed from the
591 matching alternative. Then perform any needed cost
592 computations and/or adjustments. */
593 j = p[0] - '0';
594 classes[i] = classes[j];
595 allows_mem[i] = allows_mem[j];
927425df
VM
596 if (allows_mem[i])
597 insn_allows_mem[i] = 1;
058e97ec
VM
598
599 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
600 {
601 /* If this matches the other operand, we have no
602 added cost and we win. */
603 if (rtx_equal_p (ops[j], op))
604 win = 1;
605 /* If we can put the other operand into a register,
606 add to the cost of this alternative the cost to
607 copy this operand to the register used for the
608 other operand. */
609 else if (classes[j] != NO_REGS)
610 {
611 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
612 win = 1;
613 }
614 }
615 else if (! REG_P (ops[j])
616 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
617 {
618 /* This op is an allocno but the one it matches is
619 not. */
620
621 /* If we can't put the other operand into a
622 register, this alternative can't be used. */
623
624 if (classes[j] == NO_REGS)
2639f9d2
VM
625 {
626 alt_fail = 1;
627 }
058e97ec 628 else
2639f9d2
VM
629 /* Otherwise, add to the cost of this alternative the cost
630 to copy the other operand to the hard register used for
631 this operand. */
632 {
633 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
634 }
058e97ec
VM
635 }
636 else
637 {
638 /* The costs of this operand are not the same as the
639 other operand since move costs are not symmetric.
640 Moreover, if we cannot tie them, this alternative
641 needs to do a copy, which is one insn. */
642 struct costs *pp = this_op_costs[i];
1756cb66
VM
643 int *pp_costs = pp->cost;
644 cost_classes_t cost_classes_ptr
645 = regno_cost_classes[REGNO (op)];
646 enum reg_class *cost_classes = cost_classes_ptr->classes;
647 bool in_p = recog_data.operand_type[i] != OP_OUT;
648 bool out_p = recog_data.operand_type[i] != OP_IN;
649 enum reg_class op_class = classes[i];
1756cb66
VM
650
651 ira_init_register_move_cost_if_necessary (mode);
652 if (! in_p)
fe82cdfb 653 {
1756cb66 654 ira_assert (out_p);
0a1eb350 655 if (op_class == NO_REGS)
1756cb66 656 {
0a1eb350
VM
657 mem_cost = ira_memory_move_cost[mode];
658 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 {
660 rclass = cost_classes[k];
661 pp_costs[k] = mem_cost[rclass][0] * frequency;
662 }
663 }
664 else
665 {
666 move_out_cost = ira_may_move_out_cost[mode];
667 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
668 {
669 rclass = cost_classes[k];
670 pp_costs[k]
671 = move_out_cost[op_class][rclass] * frequency;
672 }
1756cb66
VM
673 }
674 }
675 else if (! out_p)
676 {
677 ira_assert (in_p);
0a1eb350 678 if (op_class == NO_REGS)
1756cb66 679 {
0a1eb350
VM
680 mem_cost = ira_memory_move_cost[mode];
681 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
682 {
683 rclass = cost_classes[k];
684 pp_costs[k] = mem_cost[rclass][1] * frequency;
685 }
686 }
687 else
688 {
689 move_in_cost = ira_may_move_in_cost[mode];
690 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
691 {
692 rclass = cost_classes[k];
693 pp_costs[k]
694 = move_in_cost[rclass][op_class] * frequency;
695 }
1756cb66
VM
696 }
697 }
698 else
699 {
0a1eb350 700 if (op_class == NO_REGS)
1756cb66 701 {
0a1eb350
VM
702 mem_cost = ira_memory_move_cost[mode];
703 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
704 {
705 rclass = cost_classes[k];
706 pp_costs[k] = ((mem_cost[rclass][0]
707 + mem_cost[rclass][1])
708 * frequency);
709 }
710 }
711 else
712 {
713 move_in_cost = ira_may_move_in_cost[mode];
714 move_out_cost = ira_may_move_out_cost[mode];
715 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
716 {
717 rclass = cost_classes[k];
718 pp_costs[k] = ((move_in_cost[rclass][op_class]
719 + move_out_cost[op_class][rclass])
720 * frequency);
721 }
1756cb66 722 }
058e97ec
VM
723 }
724
725 /* If the alternative actually allows memory, make
726 things a bit cheaper since we won't need an extra
727 insn to load it. */
728 pp->mem_cost
1756cb66
VM
729 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
730 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
058e97ec 731 - allows_mem[i]) * frequency;
927425df 732
1756cb66
VM
733 /* If we have assigned a class to this allocno in
734 our first pass, add a cost to this alternative
735 corresponding to what we would add if this
736 allocno were not in the appropriate class. */
ce18efcb 737 if (pref)
058e97ec 738 {
ce18efcb 739 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
058e97ec
VM
740
741 if (pref_class == NO_REGS)
742 alt_cost
1756cb66
VM
743 += ((out_p
744 ? ira_memory_move_cost[mode][op_class][0] : 0)
745 + (in_p
746 ? ira_memory_move_cost[mode][op_class][1]
058e97ec
VM
747 : 0));
748 else if (ira_reg_class_intersect
1756cb66
VM
749 [pref_class][op_class] == NO_REGS)
750 alt_cost
751 += ira_register_move_cost[mode][pref_class][op_class];
058e97ec
VM
752 }
753 if (REGNO (ops[i]) != REGNO (ops[j])
754 && ! find_reg_note (insn, REG_DEAD, op))
755 alt_cost += 2;
756
d81c5030 757 p++;
058e97ec
VM
758 }
759 }
b8698a0f 760
058e97ec
VM
761 /* Scan all the constraint letters. See if the operand
762 matches any of the constraints. Collect the valid
763 register classes and see if this operand accepts
764 memory. */
765 while ((c = *p))
766 {
767 switch (c)
768 {
058e97ec
VM
769 case '*':
770 /* Ignore the next letter for this pass. */
771 c = *++p;
772 break;
773
d1457701
VM
774 case '^':
775 alt_cost += 2;
776 break;
777
058e97ec
VM
778 case '?':
779 alt_cost += 2;
058e97ec
VM
780 break;
781
782 case 'g':
783 if (MEM_P (op)
784 || (CONSTANT_P (op)
785 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
786 win = 1;
927425df 787 insn_allows_mem[i] = allows_mem[i] = 1;
1756cb66 788 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
058e97ec
VM
789 break;
790
791 default:
777e635f
RS
792 enum constraint_num cn = lookup_constraint (p);
793 enum reg_class cl;
794 switch (get_constraint_type (cn))
058e97ec 795 {
777e635f
RS
796 case CT_REGISTER:
797 cl = reg_class_for_constraint (cn);
798 if (cl != NO_REGS)
799 classes[i] = ira_reg_class_subunion[classes[i]][cl];
800 break;
801
d9c35eee
RS
802 case CT_CONST_INT:
803 if (CONST_INT_P (op)
804 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
805 win = 1;
806 break;
807
777e635f 808 case CT_MEMORY:
0d37e2d3 809 case CT_RELAXED_MEMORY:
058e97ec 810 /* Every MEM can be reloaded to fit. */
927425df 811 insn_allows_mem[i] = allows_mem[i] = 1;
058e97ec
VM
812 if (MEM_P (op))
813 win = 1;
777e635f
RS
814 break;
815
9eb1ca69
VM
816 case CT_SPECIAL_MEMORY:
817 insn_allows_mem[i] = allows_mem[i] = 1;
4de7b010 818 if (MEM_P (extract_mem_from_operand (op))
819 && constraint_satisfied_p (op, cn))
9eb1ca69
VM
820 win = 1;
821 break;
822
777e635f 823 case CT_ADDRESS:
058e97ec
VM
824 /* Every address can be reloaded to fit. */
825 allows_addr = 1;
777e635f
RS
826 if (address_operand (op, GET_MODE (op))
827 || constraint_satisfied_p (op, cn))
058e97ec
VM
828 win = 1;
829 /* We know this operand is an address, so we
830 want it to be allocated to a hard register
831 that can be the base of an address,
832 i.e. BASE_REG_CLASS. */
833 classes[i]
1756cb66 834 = ira_reg_class_subunion[classes[i]]
86fc3d06
UW
835 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
836 ADDRESS, SCRATCH)];
777e635f
RS
837 break;
838
839 case CT_FIXED_FORM:
840 if (constraint_satisfied_p (op, cn))
841 win = 1;
842 break;
058e97ec 843 }
058e97ec
VM
844 break;
845 }
846 p += CONSTRAINT_LEN (c, p);
847 if (c == ',')
848 break;
849 }
850
851 constraints[i] = p;
852
3d8e4920
RS
853 if (alt_fail)
854 break;
855
058e97ec
VM
856 /* How we account for this operand now depends on whether it
857 is a pseudo register or not. If it is, we first check if
858 any register classes are valid. If not, we ignore this
859 alternative, since we want to assume that all allocnos get
860 allocated for register preferencing. If some register
861 class is valid, compute the costs of moving the allocno
862 into that class. */
863 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
864 {
f4e075e7 865 if (classes[i] == NO_REGS && ! allows_mem[i])
058e97ec
VM
866 {
867 /* We must always fail if the operand is a REG, but
f4e075e7
VM
868 we did not find a suitable class and memory is
869 not allowed.
058e97ec
VM
870
871 Otherwise we may perform an uninitialized read
872 from this_op_costs after the `continue' statement
873 below. */
874 alt_fail = 1;
875 }
876 else
877 {
1756cb66 878 unsigned int regno = REGNO (op);
058e97ec 879 struct costs *pp = this_op_costs[i];
1756cb66
VM
880 int *pp_costs = pp->cost;
881 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
882 enum reg_class *cost_classes = cost_classes_ptr->classes;
883 bool in_p = recog_data.operand_type[i] != OP_OUT;
884 bool out_p = recog_data.operand_type[i] != OP_IN;
885 enum reg_class op_class = classes[i];
1756cb66
VM
886
887 ira_init_register_move_cost_if_necessary (mode);
888 if (! in_p)
fe82cdfb 889 {
1756cb66 890 ira_assert (out_p);
f4e075e7 891 if (op_class == NO_REGS)
1756cb66 892 {
f4e075e7
VM
893 mem_cost = ira_memory_move_cost[mode];
894 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 {
896 rclass = cost_classes[k];
897 pp_costs[k] = mem_cost[rclass][0] * frequency;
898 }
899 }
900 else
901 {
902 move_out_cost = ira_may_move_out_cost[mode];
903 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
904 {
905 rclass = cost_classes[k];
906 pp_costs[k]
907 = move_out_cost[op_class][rclass] * frequency;
908 }
1756cb66
VM
909 }
910 }
911 else if (! out_p)
912 {
913 ira_assert (in_p);
f4e075e7 914 if (op_class == NO_REGS)
1756cb66 915 {
f4e075e7
VM
916 mem_cost = ira_memory_move_cost[mode];
917 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 {
919 rclass = cost_classes[k];
920 pp_costs[k] = mem_cost[rclass][1] * frequency;
921 }
922 }
923 else
924 {
925 move_in_cost = ira_may_move_in_cost[mode];
926 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
927 {
928 rclass = cost_classes[k];
929 pp_costs[k]
930 = move_in_cost[rclass][op_class] * frequency;
931 }
1756cb66
VM
932 }
933 }
934 else
935 {
f4e075e7 936 if (op_class == NO_REGS)
1756cb66 937 {
f4e075e7
VM
938 mem_cost = ira_memory_move_cost[mode];
939 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
940 {
941 rclass = cost_classes[k];
942 pp_costs[k] = ((mem_cost[rclass][0]
943 + mem_cost[rclass][1])
944 * frequency);
945 }
946 }
947 else
948 {
949 move_in_cost = ira_may_move_in_cost[mode];
950 move_out_cost = ira_may_move_out_cost[mode];
951 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
952 {
953 rclass = cost_classes[k];
954 pp_costs[k] = ((move_in_cost[rclass][op_class]
955 + move_out_cost[op_class][rclass])
956 * frequency);
957 }
1756cb66 958 }
058e97ec
VM
959 }
960
0a1eb350
VM
961 if (op_class == NO_REGS)
962 /* Although we don't need insn to reload from
963 memory, still accessing memory is usually more
964 expensive than a register. */
965 pp->mem_cost = frequency;
966 else
967 /* If the alternative actually allows memory, make
968 things a bit cheaper since we won't need an
969 extra insn to load it. */
f4e075e7
VM
970 pp->mem_cost
971 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
972 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
973 - allows_mem[i]) * frequency;
1756cb66
VM
974 /* If we have assigned a class to this allocno in
975 our first pass, add a cost to this alternative
976 corresponding to what we would add if this
977 allocno were not in the appropriate class. */
ce18efcb 978 if (pref)
058e97ec 979 {
ce18efcb 980 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
058e97ec
VM
981
982 if (pref_class == NO_REGS)
f4e075e7
VM
983 {
984 if (op_class != NO_REGS)
985 alt_cost
986 += ((out_p
987 ? ira_memory_move_cost[mode][op_class][0]
988 : 0)
989 + (in_p
990 ? ira_memory_move_cost[mode][op_class][1]
991 : 0));
992 }
993 else if (op_class == NO_REGS)
058e97ec 994 alt_cost
1756cb66 995 += ((out_p
f4e075e7
VM
996 ? ira_memory_move_cost[mode][pref_class][1]
997 : 0)
1756cb66 998 + (in_p
f4e075e7 999 ? ira_memory_move_cost[mode][pref_class][0]
058e97ec 1000 : 0));
1756cb66 1001 else if (ira_reg_class_intersect[pref_class][op_class]
058e97ec 1002 == NO_REGS)
f4e075e7
VM
1003 alt_cost += (ira_register_move_cost
1004 [mode][pref_class][op_class]);
058e97ec
VM
1005 }
1006 }
1007 }
1008
1009 /* Otherwise, if this alternative wins, either because we
1010 have already determined that or if we have a hard
1011 register of the proper class, there is no cost for this
1012 alternative. */
1013 else if (win || (REG_P (op)
1014 && reg_fits_class_p (op, classes[i],
1015 0, GET_MODE (op))))
1016 ;
1017
1018 /* If registers are valid, the cost of this alternative
1019 includes copying the object to and/or from a
1020 register. */
1021 else if (classes[i] != NO_REGS)
1022 {
1023 if (recog_data.operand_type[i] != OP_OUT)
1024 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1025
1026 if (recog_data.operand_type[i] != OP_IN)
1027 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1028 }
1029 /* The only other way this alternative can be used is if
1030 this is a constant that could be placed into memory. */
1031 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1032 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1033 else
1034 alt_fail = 1;
3d8e4920
RS
1035
1036 if (alt_fail)
1037 break;
058e97ec
VM
1038 }
1039
1040 if (alt_fail)
3d8e4920
RS
1041 {
1042 /* The loop above might have exited early once the failure
1043 was seen. Skip over the constraints for the remaining
1044 operands. */
1045 i += 1;
1046 for (; i < n_ops; ++i)
1047 constraints[i] = skip_alternative (constraints[i]);
1048 continue;
1049 }
058e97ec
VM
1050
1051 op_cost_add = alt_cost * frequency;
1052 /* Finally, update the costs with the information we've
1053 calculated about this alternative. */
1054 for (i = 0; i < n_ops; i++)
1055 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1056 {
2639f9d2
VM
1057 int old_cost;
1058 bool cost_change_p = false;
058e97ec 1059 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1756cb66 1060 int *pp_costs = pp->cost, *qq_costs = qq->cost;
058e97ec 1061 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1756cb66
VM
1062 cost_classes_t cost_classes_ptr
1063 = regno_cost_classes[REGNO (ops[i])];
058e97ec 1064
2639f9d2
VM
1065 old_cost = pp->mem_cost;
1066 pp->mem_cost = MIN (old_cost,
058e97ec
VM
1067 (qq->mem_cost + op_cost_add) * scale);
1068
2639f9d2
VM
1069 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1070 && pp->mem_cost < old_cost)
1071 {
1072 cost_change_p = true;
1073 fprintf (ira_dump_file, " op %d(r=%u) new costs MEM:%d",
1074 i, REGNO(ops[i]), pp->mem_cost);
1075 }
1756cb66 1076 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2639f9d2
VM
1077 {
1078 old_cost = pp_costs[k];
1079 pp_costs[k]
1080 = MIN (old_cost, (qq_costs[k] + op_cost_add) * scale);
1081 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1082 && pp_costs[k] < old_cost)
1083 {
1084 if (!cost_change_p)
1085 fprintf (ira_dump_file, " op %d(r=%u) new costs",
1086 i, REGNO(ops[i]));
1087 cost_change_p = true;
1088 fprintf (ira_dump_file, " %s:%d",
1089 reg_class_names[cost_classes_ptr->classes[k]],
1090 pp_costs[k]);
1091 }
1092 }
1093 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1094 && cost_change_p)
1095 fprintf (ira_dump_file, "\n");
058e97ec
VM
1096 }
1097 }
1098
ce18efcb
VM
1099 if (allocno_p)
1100 for (i = 0; i < n_ops; i++)
1101 {
1102 ira_allocno_t a;
1103 rtx op = ops[i];
b8698a0f 1104
ce18efcb
VM
1105 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1106 continue;
1107 a = ira_curr_regno_allocno_map [REGNO (op)];
1108 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1109 ALLOCNO_BAD_SPILL_P (a) = true;
1110 }
927425df 1111
058e97ec
VM
1112}
1113
1114\f
1115
1116/* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1117static inline bool
1118ok_for_index_p_nonstrict (rtx reg)
1119{
1120 unsigned regno = REGNO (reg);
1121
1122 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1123}
1124
1125/* A version of regno_ok_for_base_p for use here, when all
1126 pseudo-registers should count as OK. Arguments as for
1127 regno_ok_for_base_p. */
1128static inline bool
ef4bddc2 1129ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
058e97ec
VM
1130 enum rtx_code outer_code, enum rtx_code index_code)
1131{
1132 unsigned regno = REGNO (reg);
1133
1134 if (regno >= FIRST_PSEUDO_REGISTER)
1135 return true;
86fc3d06 1136 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
058e97ec
VM
1137}
1138
1139/* Record the pseudo registers we must reload into hard registers in a
1140 subexpression of a memory address, X.
1141
1142 If CONTEXT is 0, we are looking at the base part of an address,
1143 otherwise we are looking at the index part.
1144
86fc3d06
UW
1145 MODE and AS are the mode and address space of the memory reference;
1146 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1147 These four arguments are passed down to base_reg_class.
058e97ec
VM
1148
1149 SCALE is twice the amount to multiply the cost by (it is twice so
1150 we can represent half-cost adjustments). */
1151static void
ef4bddc2 1152record_address_regs (machine_mode mode, addr_space_t as, rtx x,
86fc3d06
UW
1153 int context, enum rtx_code outer_code,
1154 enum rtx_code index_code, int scale)
058e97ec
VM
1155{
1156 enum rtx_code code = GET_CODE (x);
1157 enum reg_class rclass;
1158
1159 if (context == 1)
1160 rclass = INDEX_REG_CLASS;
1161 else
86fc3d06 1162 rclass = base_reg_class (mode, as, outer_code, index_code);
058e97ec
VM
1163
1164 switch (code)
1165 {
1166 case CONST_INT:
1167 case CONST:
058e97ec
VM
1168 case PC:
1169 case SYMBOL_REF:
1170 case LABEL_REF:
1171 return;
1172
1173 case PLUS:
1174 /* When we have an address that is a sum, we must determine
1175 whether registers are "base" or "index" regs. If there is a
1176 sum of two registers, we must choose one to be the "base".
1177 Luckily, we can use the REG_POINTER to make a good choice
1178 most of the time. We only need to do this on machines that
1179 can have two registers in an address and where the base and
1180 index register classes are different.
1181
1182 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1183 but that seems bogus since it should only be set when we are
1184 sure the register is being used as a pointer. */
1185 {
1186 rtx arg0 = XEXP (x, 0);
1187 rtx arg1 = XEXP (x, 1);
1188 enum rtx_code code0 = GET_CODE (arg0);
1189 enum rtx_code code1 = GET_CODE (arg1);
1190
1191 /* Look inside subregs. */
1192 if (code0 == SUBREG)
1193 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1194 if (code1 == SUBREG)
1195 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1196
9f1c93df 1197 /* If index registers do not appear, or coincide with base registers,
058e97ec
VM
1198 just record registers in any non-constant operands. We
1199 assume here, as well as in the tests below, that all
1200 addresses are in canonical form. */
9f1c93df
AM
1201 if (MAX_REGS_PER_ADDRESS == 1
1202 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
058e97ec 1203 {
86fc3d06 1204 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
058e97ec 1205 if (! CONSTANT_P (arg1))
86fc3d06 1206 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
058e97ec
VM
1207 }
1208
1209 /* If the second operand is a constant integer, it doesn't
1210 change what class the first operand must be. */
33ffb5c5 1211 else if (CONST_SCALAR_INT_P (arg1))
86fc3d06 1212 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
058e97ec
VM
1213 /* If the second operand is a symbolic constant, the first
1214 operand must be an index register. */
1215 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
86fc3d06 1216 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
058e97ec
VM
1217 /* If both operands are registers but one is already a hard
1218 register of index or reg-base class, give the other the
1219 class that the hard register is not. */
1220 else if (code0 == REG && code1 == REG
1221 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
86fc3d06 1222 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
058e97ec 1223 || ok_for_index_p_nonstrict (arg0)))
86fc3d06
UW
1224 record_address_regs (mode, as, arg1,
1225 ok_for_base_p_nonstrict (arg0, mode, as,
1226 PLUS, REG) ? 1 : 0,
058e97ec
VM
1227 PLUS, REG, scale);
1228 else if (code0 == REG && code1 == REG
1229 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
86fc3d06 1230 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
058e97ec 1231 || ok_for_index_p_nonstrict (arg1)))
86fc3d06
UW
1232 record_address_regs (mode, as, arg0,
1233 ok_for_base_p_nonstrict (arg1, mode, as,
1234 PLUS, REG) ? 1 : 0,
058e97ec
VM
1235 PLUS, REG, scale);
1236 /* If one operand is known to be a pointer, it must be the
1237 base with the other operand the index. Likewise if the
1238 other operand is a MULT. */
1239 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1240 {
86fc3d06
UW
1241 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1242 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
058e97ec
VM
1243 }
1244 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1245 {
86fc3d06
UW
1246 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1247 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
058e97ec
VM
1248 }
1249 /* Otherwise, count equal chances that each might be a base or
1250 index register. This case should be rare. */
1251 else
1252 {
86fc3d06
UW
1253 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1254 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1255 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1256 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
058e97ec
VM
1257 }
1258 }
1259 break;
1260
1261 /* Double the importance of an allocno that is incremented or
1262 decremented, since it would take two extra insns if it ends
1263 up in the wrong place. */
1264 case POST_MODIFY:
1265 case PRE_MODIFY:
86fc3d06 1266 record_address_regs (mode, as, XEXP (x, 0), 0, code,
058e97ec
VM
1267 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1268 if (REG_P (XEXP (XEXP (x, 1), 1)))
86fc3d06 1269 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
058e97ec
VM
1270 2 * scale);
1271 break;
1272
1273 case POST_INC:
1274 case PRE_INC:
1275 case POST_DEC:
1276 case PRE_DEC:
1277 /* Double the importance of an allocno that is incremented or
1278 decremented, since it would take two extra insns if it ends
9aaa7e47 1279 up in the wrong place. */
86fc3d06 1280 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
058e97ec
VM
1281 break;
1282
1283 case REG:
1284 {
1285 struct costs *pp;
1756cb66 1286 int *pp_costs;
bbbbb16a 1287 enum reg_class i;
1756cb66
VM
1288 int k, regno, add_cost;
1289 cost_classes_t cost_classes_ptr;
1290 enum reg_class *cost_classes;
1291 move_table *move_in_cost;
058e97ec
VM
1292
1293 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1294 break;
1295
1756cb66 1296 regno = REGNO (x);
ce18efcb 1297 if (allocno_p)
1756cb66
VM
1298 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1299 pp = COSTS (costs, COST_INDEX (regno));
1300 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1301 if (INT_MAX - add_cost < pp->mem_cost)
1302 pp->mem_cost = INT_MAX;
1303 else
1304 pp->mem_cost += add_cost;
1305 cost_classes_ptr = regno_cost_classes[regno];
1306 cost_classes = cost_classes_ptr->classes;
1307 pp_costs = pp->cost;
1308 ira_init_register_move_cost_if_necessary (Pmode);
1309 move_in_cost = ira_may_move_in_cost[Pmode];
1310 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
058e97ec
VM
1311 {
1312 i = cost_classes[k];
1756cb66
VM
1313 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1314 if (INT_MAX - add_cost < pp_costs[k])
1315 pp_costs[k] = INT_MAX;
eeae9314 1316 else
1756cb66 1317 pp_costs[k] += add_cost;
058e97ec
VM
1318 }
1319 }
1320 break;
1321
1322 default:
1323 {
1324 const char *fmt = GET_RTX_FORMAT (code);
1325 int i;
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1327 if (fmt[i] == 'e')
86fc3d06 1328 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
058e97ec
VM
1329 scale);
1330 }
1331 }
1332}
1333
1334\f
1335
1336/* Calculate the costs of insn operands. */
1337static void
070a1983 1338record_operand_costs (rtx_insn *insn, enum reg_class *pref)
058e97ec
VM
1339{
1340 const char *constraints[MAX_RECOG_OPERANDS];
ef4bddc2 1341 machine_mode modes[MAX_RECOG_OPERANDS];
3b6d1699 1342 rtx set;
058e97ec
VM
1343 int i;
1344
eeae9314
VM
1345 if ((set = single_set (insn)) != NULL_RTX
1346 /* In rare cases the single set insn might have less 2 operands
1347 as the source can be a fixed special reg. */
1348 && recog_data.n_operands > 1
1349 && recog_data.operand[0] == SET_DEST (set)
1350 && recog_data.operand[1] == SET_SRC (set))
1351 {
1352 int regno, other_regno;
1353 rtx dest = SET_DEST (set);
1354 rtx src = SET_SRC (set);
1355
1356 if (GET_CODE (dest) == SUBREG
1357 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1358 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1359 dest = SUBREG_REG (dest);
1360 if (GET_CODE (src) == SUBREG
1361 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1362 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1363 src = SUBREG_REG (src);
1364 if (REG_P (src) && REG_P (dest)
1365 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1366 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1367 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1368 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1369 {
2639f9d2
VM
1370 machine_mode mode = GET_MODE (SET_SRC (set)), cost_mode = mode;
1371 machine_mode hard_reg_mode = GET_MODE(regno_reg_rtx[other_regno]);
1372 poly_int64 pmode_size = GET_MODE_SIZE (mode);
1373 poly_int64 phard_reg_mode_size = GET_MODE_SIZE (hard_reg_mode);
1374 HOST_WIDE_INT mode_size, hard_reg_mode_size;
eeae9314
VM
1375 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1376 enum reg_class *cost_classes = cost_classes_ptr->classes;
a7acb6dc 1377 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
2639f9d2 1378 int cost_factor = 1, cost, k;
36d070a7 1379 move_table *move_costs;
eeae9314
VM
1380 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1381
1382 hard_reg_class = REGNO_REG_CLASS (other_regno);
2639f9d2
VM
1383 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1384 /* Target code may return any cost for mode which does not fit the
1385 hard reg class (e.g. DImode for AREG on i386). Check this and use
1386 a bigger class to get the right cost. */
1387 if (bigger_hard_reg_class != NO_REGS
1388 && ! ira_hard_reg_in_set_p (other_regno, mode,
1389 reg_class_contents[hard_reg_class]))
1390 hard_reg_class = bigger_hard_reg_class;
1391 ira_init_register_move_cost_if_necessary (mode);
1392 ira_init_register_move_cost_if_necessary (hard_reg_mode);
1393 /* Use smaller movement cost for natural hard reg mode or its mode as
1394 operand. */
1395 if (pmode_size.is_constant (&mode_size)
1396 && phard_reg_mode_size.is_constant (&hard_reg_mode_size))
1397 {
1398 /* Assume we are moving in the natural modes: */
1399 cost_factor = mode_size / hard_reg_mode_size;
1400 if (mode_size % hard_reg_mode_size != 0)
1401 cost_factor++;
1402 if (cost_factor
1403 * (ira_register_move_cost
1404 [hard_reg_mode][hard_reg_class][hard_reg_class])
1405 < (ira_register_move_cost
1406 [mode][hard_reg_class][hard_reg_class]))
1407 cost_mode = hard_reg_mode;
1408 else
1409 cost_factor = 1;
1410 }
1411 move_costs = ira_register_move_cost[cost_mode];
eeae9314
VM
1412 i = regno == (int) REGNO (src) ? 1 : 0;
1413 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1414 {
1415 rclass = cost_classes[k];
36d070a7
VM
1416 cost = (i == 0
1417 ? move_costs[hard_reg_class][rclass]
1418 : move_costs[rclass][hard_reg_class]);
2639f9d2 1419 cost *= cost_factor;
36d070a7 1420 op_costs[i]->cost[k] = cost * frequency;
eeae9314
VM
1421 /* If this insn is a single set copying operand 1 to
1422 operand 0 and one operand is an allocno with the
1423 other a hard reg or an allocno that prefers a hard
1424 register that is in its own register class then we
1425 may want to adjust the cost of that register class to
1426 -1.
1427
1428 Avoid the adjustment if the source does not die to
1429 avoid stressing of register allocator by preferencing
1430 two colliding registers into single class. */
1431 if (dead_p
1432 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1433 && (reg_class_size[(int) rclass]
1434 == (ira_reg_class_max_nregs
1435 [(int) rclass][(int) GET_MODE(src)])))
1436 {
1437 if (reg_class_size[rclass] == 1)
1438 op_costs[i]->cost[k] = -frequency;
1439 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1440 GET_MODE(src), other_regno))
1441 op_costs[i]->cost[k] = -frequency;
1442 }
1443 }
1444 op_costs[i]->mem_cost
1445 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
eeae9314
VM
1446 return;
1447 }
1448 }
1449
058e97ec
VM
1450 for (i = 0; i < recog_data.n_operands; i++)
1451 {
1452 constraints[i] = recog_data.constraints[i];
1453 modes[i] = recog_data.operand_mode[i];
1454 }
1455
1456 /* If we get here, we are set up to record the costs of all the
1457 operands for this insn. Start by initializing the costs. Then
1458 handle any address registers. Finally record the desired classes
1459 for any allocnos, doing it twice if some pair of operands are
1460 commutative. */
1461 for (i = 0; i < recog_data.n_operands; i++)
1462 {
4de7b010 1463 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
058e97ec
VM
1464 memcpy (op_costs[i], init_cost, struct_costs_size);
1465
1466 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1467 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1468
4de7b010 1469 if (MEM_P (op_mem))
1470 record_address_regs (GET_MODE (op_mem),
1471 MEM_ADDR_SPACE (op_mem),
1472 XEXP (op_mem, 0),
058e97ec
VM
1473 0, MEM, SCRATCH, frequency * 2);
1474 else if (constraints[i][0] == 'p'
777e635f
RS
1475 || (insn_extra_address_constraint
1476 (lookup_constraint (constraints[i]))))
86fc3d06
UW
1477 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1478 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1479 frequency * 2);
058e97ec 1480 }
eeae9314 1481
058e97ec
VM
1482 /* Check for commutative in a separate loop so everything will have
1483 been initialized. We must do this even if one operand is a
1484 constant--see addsi3 in m68k.md. */
1485 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1486 if (constraints[i][0] == '%')
1487 {
1488 const char *xconstraints[MAX_RECOG_OPERANDS];
1489 int j;
1490
eeae9314
VM
1491 /* Handle commutative operands by swapping the
1492 constraints. We assume the modes are the same. */
058e97ec
VM
1493 for (j = 0; j < recog_data.n_operands; j++)
1494 xconstraints[j] = constraints[j];
1495
1496 xconstraints[i] = constraints[i+1];
1497 xconstraints[i+1] = constraints[i];
1498 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1499 recog_data.operand, modes,
aa1c5d72 1500 xconstraints, insn, pref);
058e97ec
VM
1501 }
1502 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1503 recog_data.operand, modes,
aa1c5d72 1504 constraints, insn, pref);
058e97ec
VM
1505}
1506
1507\f
1508
1509/* Process one insn INSN. Scan it and record each time it would save
1510 code to put a certain allocnos in a certain class. Return the last
1511 insn processed, so that the scan can be continued from there. */
070a1983
DM
1512static rtx_insn *
1513scan_one_insn (rtx_insn *insn)
058e97ec
VM
1514{
1515 enum rtx_code pat_code;
1516 rtx set, note;
1517 int i, k;
82ce305c 1518 bool counted_mem;
058e97ec 1519
39718607 1520 if (!NONDEBUG_INSN_P (insn))
058e97ec
VM
1521 return insn;
1522
1523 pat_code = GET_CODE (PATTERN (insn));
355930ab 1524 if (pat_code == ASM_INPUT)
058e97ec
VM
1525 return insn;
1526
355930ab
JL
1527 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1528 and initialize the register move costs of mode M.
1529
1530 The pseudo may be related to another pseudo via a copy (implicit or
1531 explicit) and if there are no mode M uses/sets of the original
1532 pseudo, then we may leave the register move costs uninitialized for
1533 mode M. */
1534 if (pat_code == USE || pat_code == CLOBBER)
1535 {
1536 rtx x = XEXP (PATTERN (insn), 0);
1537 if (GET_CODE (x) == REG
2c2d5d00
JL
1538 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1539 && have_regs_of_mode[GET_MODE (x)])
355930ab
JL
1540 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1541 return insn;
1542 }
1543
82ce305c 1544 counted_mem = false;
058e97ec
VM
1545 set = single_set (insn);
1546 extract_insn (insn);
1547
1548 /* If this insn loads a parameter from its stack slot, then it
1549 represents a savings, rather than a cost, if the parameter is
eeae9314 1550 stored in memory. Record this fact.
82ce305c
JL
1551
1552 Similarly if we're loading other constants from memory (constant
1553 pool, TOC references, small data areas, etc) and this is the only
3db93c89
JJ
1554 assignment to the destination pseudo.
1555
1556 Don't do this if SET_SRC (set) isn't a general operand, if it is
1557 a memory requiring special instructions to load it, decreasing
1558 mem_cost might result in it being loaded using the specialized
1559 instruction into a register, then stored into stack and loaded
b8578ff7 1560 again from the stack. See PR52208.
eeae9314 1561
b8578ff7 1562 Don't do this if SET_SRC (set) has side effect. See PR56124. */
058e97ec
VM
1563 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1564 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
b8578ff7
BC
1565 && ((MEM_P (XEXP (note, 0))
1566 && !side_effects_p (SET_SRC (set)))
82ce305c 1567 || (CONSTANT_P (XEXP (note, 0))
cca81ac8
L
1568 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1569 XEXP (note, 0))
3db93c89 1570 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
9129a561
VM
1571 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1572 /* LRA does not use equiv with a symbol for PIC code. */
1573 && (! ira_use_lra_p || ! pic_offset_table_rtx
1574 || ! contains_symbol_ref_p (XEXP (note, 0))))
058e97ec 1575 {
4fb66b23 1576 enum reg_class cl = GENERAL_REGS;
548a6322 1577 rtx reg = SET_DEST (set);
ce18efcb 1578 int num = COST_INDEX (REGNO (reg));
4fb66b23 1579 /* Costs for NO_REGS are used in cost calculation on the
1580 1st pass when the preferred register classes are not
1581 known yet. In this case we take the best scenario when
1582 mode can't be put into GENERAL_REGS. */
1583 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
1584 GET_MODE (reg)))
1585 cl = NO_REGS;
548a6322 1586
ce18efcb 1587 COSTS (costs, num)->mem_cost
548a6322 1588 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
86fc3d06
UW
1589 record_address_regs (GET_MODE (SET_SRC (set)),
1590 MEM_ADDR_SPACE (SET_SRC (set)),
1591 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1592 frequency * 2);
82ce305c 1593 counted_mem = true;
058e97ec
VM
1594 }
1595
aa1c5d72 1596 record_operand_costs (insn, pref);
058e97ec 1597
2639f9d2
VM
1598 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1599 {
1600 const char *p;
1601 fprintf (ira_dump_file, " Final costs after insn %u", INSN_UID (insn));
1602 if (INSN_CODE (insn) >= 0
1603 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
1604 fprintf (ira_dump_file, " {%s}", p);
1605 fprintf (ira_dump_file, " (freq=%d)\n",
1606 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
1607 dump_insn_slim (ira_dump_file, insn);
1608 }
1609
058e97ec
VM
1610 /* Now add the cost for each operand to the total costs for its
1611 allocno. */
1612 for (i = 0; i < recog_data.n_operands; i++)
6d078c9a
VM
1613 {
1614 rtx op = recog_data.operand[i];
2639f9d2 1615
6d078c9a
VM
1616 if (GET_CODE (op) == SUBREG)
1617 op = SUBREG_REG (op);
1618 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1619 {
1620 int regno = REGNO (op);
1621 struct costs *p = COSTS (costs, COST_INDEX (regno));
1622 struct costs *q = op_costs[i];
1623 int *p_costs = p->cost, *q_costs = q->cost;
1624 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
2639f9d2
VM
1625 int add_cost = 0;
1626
6d078c9a
VM
1627 /* If the already accounted for the memory "cost" above, don't
1628 do so again. */
1629 if (!counted_mem)
1630 {
1631 add_cost = q->mem_cost;
1632 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1633 p->mem_cost = INT_MAX;
1634 else
1635 p->mem_cost += add_cost;
1636 }
2639f9d2
VM
1637 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1638 {
1639 fprintf (ira_dump_file, " op %d(r=%u) MEM:%d(+%d)",
1640 i, REGNO(op), p->mem_cost, add_cost);
1641 }
6d078c9a
VM
1642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1643 {
1644 add_cost = q_costs[k];
1645 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1646 p_costs[k] = INT_MAX;
1647 else
1648 p_costs[k] += add_cost;
2639f9d2
VM
1649 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1650 {
1651 fprintf (ira_dump_file, " %s:%d(+%d)",
1652 reg_class_names[cost_classes_ptr->classes[k]],
1653 p_costs[k], add_cost);
1654 }
6d078c9a 1655 }
2639f9d2
VM
1656 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1657 fprintf (ira_dump_file, "\n");
6d078c9a
VM
1658 }
1659 }
058e97ec
VM
1660 return insn;
1661}
1662
1663\f
1664
95f61de9 1665/* Print allocnos costs to the dump file. */
058e97ec 1666static void
95f61de9 1667print_allocno_costs (void)
058e97ec
VM
1668{
1669 int k;
1670 ira_allocno_t a;
1671 ira_allocno_iterator ai;
1672
ce18efcb 1673 ira_assert (allocno_p);
95f61de9 1674 fprintf (ira_dump_file, "\n");
058e97ec
VM
1675 FOR_EACH_ALLOCNO (a, ai)
1676 {
1677 int i, rclass;
1678 basic_block bb;
1679 int regno = ALLOCNO_REGNO (a);
1756cb66
VM
1680 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1681 enum reg_class *cost_classes = cost_classes_ptr->classes;
058e97ec
VM
1682
1683 i = ALLOCNO_NUM (a);
95f61de9 1684 fprintf (ira_dump_file, " a%d(r%d,", i, regno);
058e97ec 1685 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
95f61de9 1686 fprintf (ira_dump_file, "b%d", bb->index);
058e97ec 1687 else
95f61de9
VM
1688 fprintf (ira_dump_file, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1689 fprintf (ira_dump_file, ") costs:");
1756cb66 1690 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
1691 {
1692 rclass = cost_classes[k];
95f61de9 1693 fprintf (ira_dump_file, " %s:%d", reg_class_names[rclass],
dab67d2c
RS
1694 COSTS (costs, i)->cost[k]);
1695 if (flag_ira_region == IRA_REGION_ALL
1696 || flag_ira_region == IRA_REGION_MIXED)
95f61de9
VM
1697 fprintf (ira_dump_file, ",%d",
1698 COSTS (total_allocno_costs, i)->cost[k]);
058e97ec 1699 }
95f61de9 1700 fprintf (ira_dump_file, " MEM:%i", COSTS (costs, i)->mem_cost);
1756cb66
VM
1701 if (flag_ira_region == IRA_REGION_ALL
1702 || flag_ira_region == IRA_REGION_MIXED)
95f61de9
VM
1703 fprintf (ira_dump_file, ",%d",
1704 COSTS (total_allocno_costs, i)->mem_cost);
1705 fprintf (ira_dump_file, "\n");
ce18efcb
VM
1706 }
1707}
1708
95f61de9 1709/* Print pseudo costs to the dump file. */
ce18efcb 1710static void
95f61de9 1711print_pseudo_costs (void)
ce18efcb
VM
1712{
1713 int regno, k;
1714 int rclass;
1756cb66
VM
1715 cost_classes_t cost_classes_ptr;
1716 enum reg_class *cost_classes;
ce18efcb
VM
1717
1718 ira_assert (! allocno_p);
95f61de9 1719 fprintf (ira_dump_file, "\n");
ce18efcb
VM
1720 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1721 {
1756cb66 1722 if (REG_N_REFS (regno) <= 0)
ce18efcb 1723 continue;
1756cb66
VM
1724 cost_classes_ptr = regno_cost_classes[regno];
1725 cost_classes = cost_classes_ptr->classes;
95f61de9 1726 fprintf (ira_dump_file, " r%d costs:", regno);
1756cb66 1727 for (k = 0; k < cost_classes_ptr->num; k++)
ce18efcb
VM
1728 {
1729 rclass = cost_classes[k];
95f61de9 1730 fprintf (ira_dump_file, " %s:%d", reg_class_names[rclass],
dab67d2c 1731 COSTS (costs, regno)->cost[k]);
ce18efcb 1732 }
95f61de9 1733 fprintf (ira_dump_file, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
058e97ec
VM
1734 }
1735}
1736
1737/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1738 costs. */
1739static void
ce18efcb 1740process_bb_for_costs (basic_block bb)
058e97ec 1741{
070a1983 1742 rtx_insn *insn;
058e97ec 1743
058e97ec
VM
1744 frequency = REG_FREQ_FROM_BB (bb);
1745 if (frequency == 0)
1746 frequency = 1;
1747 FOR_BB_INSNS (bb, insn)
1748 insn = scan_one_insn (insn);
1749}
1750
ce18efcb
VM
1751/* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1752 costs. */
058e97ec 1753static void
ce18efcb 1754process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
058e97ec 1755{
ce18efcb
VM
1756 basic_block bb;
1757
1758 bb = loop_tree_node->bb;
1759 if (bb != NULL)
1760 process_bb_for_costs (bb);
1761}
1762
df66fa08
VM
1763/* Return true if all autoinc rtx in X change only a register and memory is
1764 valid. */
1765static bool
1766validate_autoinc_and_mem_addr_p (rtx x)
1767{
1768 enum rtx_code code = GET_CODE (x);
1769 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
1770 return REG_P (XEXP (x, 0));
1771 const char *fmt = GET_RTX_FORMAT (code);
1772 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1773 if (fmt[i] == 'e')
1774 {
1775 if (!validate_autoinc_and_mem_addr_p (XEXP (x, i)))
1776 return false;
1777 }
1778 else if (fmt[i] == 'E')
1779 {
1780 for (int j = 0; j < XVECLEN (x, i); j++)
1781 if (!validate_autoinc_and_mem_addr_p (XVECEXP (x, i, j)))
1782 return false;
1783 }
1784 /* Check memory after checking autoinc to guarantee that autoinc is already
1785 valid for machine-dependent code checking memory address. */
1786 return (!MEM_P (x)
1787 || memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
1788 MEM_ADDR_SPACE (x)));
1789}
1790
f55cdce3
VM
1791/* Check that reg REGNO can be changed by TO in INSN. Return true in case the
1792 result insn would be valid one. */
1793static bool
1794equiv_can_be_consumed_p (int regno, rtx to, rtx_insn *insn)
1795{
1796 validate_replace_src_group (regno_reg_rtx[regno], to, insn);
df66fa08
VM
1797 /* We can change register to equivalent memory in autoinc rtl. Some code
1798 including verify_changes assumes that autoinc contains only a register.
1799 So check this first. */
1800 bool res = validate_autoinc_and_mem_addr_p (PATTERN (insn));
1801 if (res)
1802 res = verify_changes (0);
f55cdce3
VM
1803 cancel_changes (0);
1804 return res;
1805}
1806
1807/* Return true if X contains a pseudo with equivalence. In this case also
1808 return the pseudo through parameter REG. If the pseudo is a part of subreg,
1809 return the subreg through parameter SUBREG. */
1810
1811static bool
1812get_equiv_regno (rtx x, int &regno, rtx &subreg)
1813{
1814 subreg = NULL_RTX;
1815 if (GET_CODE (x) == SUBREG)
1816 {
1817 subreg = x;
1818 x = SUBREG_REG (x);
1819 }
1820 if (REG_P (x)
1821 && (ira_reg_equiv[REGNO (x)].memory != NULL
8aa47713 1822 || ira_reg_equiv[REGNO (x)].invariant != NULL
f55cdce3
VM
1823 || ira_reg_equiv[REGNO (x)].constant != NULL))
1824 {
1825 regno = REGNO (x);
1826 return true;
1827 }
1828 RTX_CODE code = GET_CODE (x);
1829 const char *fmt = GET_RTX_FORMAT (code);
1830
1831 for (int i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1832 if (fmt[i] == 'e')
1833 {
1834 if (get_equiv_regno (XEXP (x, i), regno, subreg))
1835 return true;
1836 }
1837 else if (fmt[i] == 'E')
1838 {
1839 for (int j = 0; j < XVECLEN (x, i); j++)
1840 if (get_equiv_regno (XVECEXP (x, i, j), regno, subreg))
1841 return true;
1842 }
1843 return false;
1844}
1845
1846/* A pass through the current function insns. Calculate costs of using
1847 equivalences for pseudos and store them in regno_equiv_gains. */
1848
1849static void
1850calculate_equiv_gains (void)
1851{
1852 basic_block bb;
1853 int regno, freq, cost;
1854 rtx subreg;
1855 rtx_insn *insn;
1856 machine_mode mode;
1857 enum reg_class rclass;
1858 bitmap_head equiv_pseudos;
1859
1860 ira_assert (allocno_p);
1861 bitmap_initialize (&equiv_pseudos, &reg_obstack);
1862 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1863 if (ira_reg_equiv[regno].init_insns != NULL
1864 && (ira_reg_equiv[regno].memory != NULL
8aa47713 1865 || ira_reg_equiv[regno].invariant != NULL
f55cdce3
VM
1866 || (ira_reg_equiv[regno].constant != NULL
1867 /* Ignore complicated constants which probably will be placed
1868 in memory: */
1869 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_DOUBLE
1870 && GET_CODE (ira_reg_equiv[regno].constant) != CONST_VECTOR
1871 && GET_CODE (ira_reg_equiv[regno].constant) != LABEL_REF)))
1872 {
1873 rtx_insn_list *x;
1874 for (x = ira_reg_equiv[regno].init_insns; x != NULL; x = x->next ())
1875 {
1876 insn = x->insn ();
1877 rtx set = single_set (insn);
1878
1879 if (set == NULL_RTX || SET_DEST (set) != regno_reg_rtx[regno])
1880 break;
1881 bb = BLOCK_FOR_INSN (insn);
1882 ira_curr_regno_allocno_map
1883 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1884 mode = PSEUDO_REGNO_MODE (regno);
1885 rclass = pref[COST_INDEX (regno)];
1886 ira_init_register_move_cost_if_necessary (mode);
1887 if (ira_reg_equiv[regno].memory != NULL)
1888 cost = ira_memory_move_cost[mode][rclass][1];
1889 else
1890 cost = ira_register_move_cost[mode][rclass][rclass];
1891 freq = REG_FREQ_FROM_BB (bb);
1892 regno_equiv_gains[regno] += cost * freq;
1893 }
1894 if (x != NULL)
1895 /* We found complicated equiv or reverse equiv mem=reg. Ignore
1896 them. */
1897 regno_equiv_gains[regno] = 0;
1898 else
1899 bitmap_set_bit (&equiv_pseudos, regno);
1900 }
1901
1902 FOR_EACH_BB_FN (bb, cfun)
1903 {
1904 freq = REG_FREQ_FROM_BB (bb);
1905 ira_curr_regno_allocno_map
1906 = ira_bb_nodes[bb->index].parent->regno_allocno_map;
1907 FOR_BB_INSNS (bb, insn)
1908 {
4d3d2cdb
VM
1909 if (!NONDEBUG_INSN_P (insn)
1910 || !get_equiv_regno (PATTERN (insn), regno, subreg)
f55cdce3
VM
1911 || !bitmap_bit_p (&equiv_pseudos, regno))
1912 continue;
1913 rtx subst = ira_reg_equiv[regno].memory;
1914
1915 if (subst == NULL)
1916 subst = ira_reg_equiv[regno].constant;
8aa47713
VM
1917 if (subst == NULL)
1918 subst = ira_reg_equiv[regno].invariant;
f55cdce3
VM
1919 ira_assert (subst != NULL);
1920 mode = PSEUDO_REGNO_MODE (regno);
1921 ira_init_register_move_cost_if_necessary (mode);
1922 bool consumed_p = equiv_can_be_consumed_p (regno, subst, insn);
1923
1924 rclass = pref[COST_INDEX (regno)];
1925 if (MEM_P (subst)
1926 /* If it is a change of constant into double for example, the
1927 result constant probably will be placed in memory. */
1928 || (subreg != NULL_RTX && !INTEGRAL_MODE_P (GET_MODE (subreg))))
1929 cost = ira_memory_move_cost[mode][rclass][1] + (consumed_p ? 0 : 1);
1930 else if (consumed_p)
1931 continue;
1932 else
1933 cost = ira_register_move_cost[mode][rclass][rclass];
1934 regno_equiv_gains[regno] -= cost * freq;
1935 }
1936 }
1937 bitmap_clear (&equiv_pseudos);
1938}
1939
ce18efcb 1940/* Find costs of register classes and memory for allocnos or pseudos
1756cb66 1941 and their best costs. Set up preferred, alternative and allocno
ce18efcb
VM
1942 classes for pseudos. */
1943static void
95f61de9 1944find_costs_and_classes (void)
ce18efcb 1945{
1756cb66 1946 int i, k, start, max_cost_classes_num;
058e97ec
VM
1947 int pass;
1948 basic_block bb;
5074a1f8 1949 enum reg_class *regno_best_class, new_class;
058e97ec
VM
1950
1951 init_recog ();
1756cb66
VM
1952 regno_best_class
1953 = (enum reg_class *) ira_allocate (max_reg_num ()
1954 * sizeof (enum reg_class));
1955 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1956 regno_best_class[i] = NO_REGS;
1957 if (!resize_reg_info () && allocno_p
1958 && pseudo_classes_defined_p && flag_expensive_optimizations)
ce18efcb
VM
1959 {
1960 ira_allocno_t a;
1961 ira_allocno_iterator ai;
b8698a0f 1962
ce18efcb 1963 pref = pref_buffer;
1756cb66 1964 max_cost_classes_num = 1;
ce18efcb 1965 FOR_EACH_ALLOCNO (a, ai)
1756cb66
VM
1966 {
1967 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1968 setup_regno_cost_classes_by_aclass
1969 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1970 max_cost_classes_num
1971 = MAX (max_cost_classes_num,
1972 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1973 }
1974 start = 1;
1975 }
1976 else
1977 {
1978 pref = NULL;
1979 max_cost_classes_num = ira_important_classes_num;
1980 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1981 if (regno_reg_rtx[i] != NULL_RTX)
1982 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1983 else
1984 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1985 start = 0;
ce18efcb
VM
1986 }
1987 if (allocno_p)
1988 /* Clear the flag for the next compiled function. */
1989 pseudo_classes_defined_p = false;
058e97ec
VM
1990 /* Normally we scan the insns once and determine the best class to
1991 use for each allocno. However, if -fexpensive-optimizations are
1992 on, we do so twice, the second time using the tentative best
1993 classes to guide the selection. */
ce18efcb 1994 for (pass = start; pass <= flag_expensive_optimizations; pass++)
058e97ec 1995 {
95f61de9
VM
1996 if ((!allocno_p || internal_flag_ira_verbose > 0) && ira_dump_file)
1997 fprintf (ira_dump_file,
ce18efcb 1998 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1756cb66
VM
1999
2000 if (pass != start)
058e97ec 2001 {
1756cb66
VM
2002 max_cost_classes_num = 1;
2003 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2004 {
2005 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
2006 max_cost_classes_num
2007 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
2008 }
058e97ec 2009 }
1756cb66 2010
058e97ec 2011 struct_costs_size
1756cb66 2012 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
058e97ec
VM
2013 /* Zero out our accumulation of the cost of each class for each
2014 allocno. */
ce18efcb 2015 memset (costs, 0, cost_elements_num * struct_costs_size);
058e97ec 2016
ce18efcb
VM
2017 if (allocno_p)
2018 {
2019 /* Scan the instructions and record each time it would save code
2020 to put a certain allocno in a certain class. */
2021 ira_traverse_loop_tree (true, ira_loop_tree_root,
2022 process_bb_node_for_costs, NULL);
2023
2024 memcpy (total_allocno_costs, costs,
2025 max_struct_costs_size * ira_allocnos_num);
2026 }
2027 else
2028 {
2029 basic_block bb;
2030
11cd3bed 2031 FOR_EACH_BB_FN (bb, cfun)
ce18efcb
VM
2032 process_bb_for_costs (bb);
2033 }
058e97ec 2034
058e97ec 2035 if (pass == 0)
ce18efcb 2036 pref = pref_buffer;
058e97ec 2037
f55cdce3
VM
2038 if (ira_use_lra_p && allocno_p && pass == 1)
2039 /* It is a pass through all insns. So do it once and only for RA (not
2040 for insn scheduler) when we already found preferable pseudo register
2041 classes on the previous pass. */
2042 calculate_equiv_gains ();
2043
058e97ec
VM
2044 /* Now for each allocno look at how desirable each class is and
2045 find which class is preferred. */
2046 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2047 {
2048 ira_allocno_t a, parent_a;
1756cb66 2049 int rclass, a_num, parent_a_num, add_cost;
058e97ec 2050 ira_loop_tree_node_t parent;
61ad6db1 2051 int best_cost, allocno_cost;
7db7ed3c 2052 enum reg_class best, alt_class;
1756cb66 2053 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
0dc7d7cc 2054 enum reg_class *cost_classes;
1756cb66
VM
2055 int *i_costs = temp_costs->cost;
2056 int i_mem_cost;
8ff49c29 2057 int equiv_savings = regno_equiv_gains[i];
058e97ec 2058
ce18efcb 2059 if (! allocno_p)
058e97ec 2060 {
ce18efcb
VM
2061 if (regno_reg_rtx[i] == NULL_RTX)
2062 continue;
ce18efcb 2063 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1756cb66 2064 i_mem_cost = temp_costs->mem_cost;
0dc7d7cc 2065 cost_classes = cost_classes_ptr->classes;
ce18efcb
VM
2066 }
2067 else
2068 {
2069 if (ira_regno_allocno_map[i] == NULL)
2070 continue;
2071 memset (temp_costs, 0, struct_costs_size);
1756cb66 2072 i_mem_cost = 0;
0dc7d7cc 2073 cost_classes = cost_classes_ptr->classes;
ce18efcb
VM
2074 /* Find cost of all allocnos with the same regno. */
2075 for (a = ira_regno_allocno_map[i];
2076 a != NULL;
2077 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
058e97ec 2078 {
1756cb66 2079 int *a_costs, *p_costs;
eeae9314 2080
ce18efcb
VM
2081 a_num = ALLOCNO_NUM (a);
2082 if ((flag_ira_region == IRA_REGION_ALL
2083 || flag_ira_region == IRA_REGION_MIXED)
2084 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2085 && (parent_a = parent->regno_allocno_map[i]) != NULL
2086 /* There are no caps yet. */
2087 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
2088 (a)->border_allocnos,
2089 ALLOCNO_NUM (a)))
2090 {
2091 /* Propagate costs to upper levels in the region
2092 tree. */
2093 parent_a_num = ALLOCNO_NUM (parent_a);
1756cb66
VM
2094 a_costs = COSTS (total_allocno_costs, a_num)->cost;
2095 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
2096 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2097 {
2098 add_cost = a_costs[k];
2099 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
2100 p_costs[k] = INT_MAX;
2101 else
2102 p_costs[k] += add_cost;
2103 }
2104 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
2105 if (add_cost > 0
2106 && (INT_MAX - add_cost
2107 < COSTS (total_allocno_costs,
2108 parent_a_num)->mem_cost))
2109 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2110 = INT_MAX;
2111 else
2112 COSTS (total_allocno_costs, parent_a_num)->mem_cost
2113 += add_cost;
2114
acf41a74
BS
2115 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2116 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
ce18efcb 2117 }
1756cb66
VM
2118 a_costs = COSTS (costs, a_num)->cost;
2119 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2120 {
2121 add_cost = a_costs[k];
2122 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
2123 i_costs[k] = INT_MAX;
2124 else
2125 i_costs[k] += add_cost;
2126 }
2127 add_cost = COSTS (costs, a_num)->mem_cost;
bddc98e1 2128 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1756cb66
VM
2129 i_mem_cost = INT_MAX;
2130 else
2131 i_mem_cost += add_cost;
ce18efcb 2132 }
058e97ec 2133 }
acf41a74
BS
2134 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
2135 i_mem_cost = 0;
f55cdce3
VM
2136 else if (ira_use_lra_p)
2137 {
2138 if (equiv_savings > 0)
2139 {
2140 i_mem_cost = 0;
2141 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
2142 fprintf (ira_dump_file,
2143 " Use MEM for r%d as the equiv savings is %d\n",
2144 i, equiv_savings);
2145 }
2146 }
8552dcd8
VM
2147 else if (equiv_savings < 0)
2148 i_mem_cost = -equiv_savings;
2149 else if (equiv_savings > 0)
2150 {
2151 i_mem_cost = 0;
2152 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
2153 i_costs[k] += equiv_savings;
2154 }
2155
058e97ec
VM
2156 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2157 best = ALL_REGS;
2158 alt_class = NO_REGS;
2159 /* Find best common class for all allocnos with the same
2160 regno. */
1756cb66 2161 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
2162 {
2163 rclass = cost_classes[k];
1756cb66 2164 if (i_costs[k] < best_cost)
058e97ec 2165 {
1756cb66 2166 best_cost = i_costs[k];
058e97ec
VM
2167 best = (enum reg_class) rclass;
2168 }
1756cb66
VM
2169 else if (i_costs[k] == best_cost)
2170 best = ira_reg_class_subunion[best][rclass];
058e97ec 2171 if (pass == flag_expensive_optimizations
9d19c732
VM
2172 /* We still prefer registers to memory even at this
2173 stage if their costs are the same. We will make
2174 a final decision during assigning hard registers
2175 when we have all info including more accurate
2176 costs which might be affected by assigning hard
2177 registers to other pseudos because the pseudos
2178 involved in moves can be coalesced. */
2179 && i_costs[k] <= i_mem_cost
058e97ec
VM
2180 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
2181 > reg_class_size[alt_class]))
2182 alt_class = reg_class_subunion[alt_class][rclass];
2183 }
1756cb66 2184 alt_class = ira_allocno_class_translate[alt_class];
b81a2f0d
VM
2185 if (best_cost > i_mem_cost
2186 && ! non_spilled_static_chain_regno_p (i))
1756cb66 2187 regno_aclass[i] = NO_REGS;
2da068d5
RS
2188 else if (!optimize && !targetm.class_likely_spilled_p (best))
2189 /* Registers in the alternative class are likely to need
2190 longer or slower sequences than registers in the best class.
2191 When optimizing we make some effort to use the best class
2192 over the alternative class where possible, but at -O0 we
2193 effectively give the alternative class equal weight.
2194 We then run the risk of using slower alternative registers
2195 when plenty of registers from the best class are still free.
2196 This is especially true because live ranges tend to be very
2197 short in -O0 code and so register pressure tends to be low.
2198
2199 Avoid that by ignoring the alternative class if the best
bc13623e
VM
2200 class has plenty of registers.
2201
2202 The union class arrays give important classes and only
2203 part of it are allocno classes. So translate them into
2204 allocno classes. */
2205 regno_aclass[i] = ira_allocno_class_translate[best];
058e97ec 2206 else
1756cb66
VM
2207 {
2208 /* Make the common class the biggest class of best and
bc13623e
VM
2209 alt_class. Translate the common class into an
2210 allocno class too. */
2211 regno_aclass[i] = (ira_allocno_class_translate
2212 [ira_reg_class_superunion[best][alt_class]]);
1756cb66
VM
2213 ira_assert (regno_aclass[i] != NO_REGS
2214 && ira_reg_allocno_class_p[regno_aclass[i]]);
2215 }
8cc87074
VM
2216 if (pic_offset_table_rtx != NULL
2217 && i == (int) REGNO (pic_offset_table_rtx))
2218 {
2219 /* For some targets, integer pseudos can be assigned to fp
2220 regs. As we don't want reload pic offset table pseudo, we
2221 should avoid using non-integer regs. */
2222 regno_aclass[i]
2223 = ira_reg_class_intersect[regno_aclass[i]][GENERAL_REGS];
2224 alt_class = ira_reg_class_intersect[alt_class][GENERAL_REGS];
2225 }
5074a1f8
VM
2226 if ((new_class
2227 = (reg_class) (targetm.ira_change_pseudo_allocno_class
31e2b5a3 2228 (i, regno_aclass[i], best))) != regno_aclass[i])
5074a1f8
VM
2229 {
2230 regno_aclass[i] = new_class;
2231 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2232 reg_class_contents[best]))
2233 best = new_class;
2234 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2235 reg_class_contents[alt_class]))
2236 alt_class = new_class;
2237 }
ce18efcb
VM
2238 if (pass == flag_expensive_optimizations)
2239 {
b81a2f0d
VM
2240 if (best_cost > i_mem_cost
2241 /* Do not assign NO_REGS to static chain pointer
2242 pseudo when non-local goto is used. */
2243 && ! non_spilled_static_chain_regno_p (i))
ce18efcb
VM
2244 best = alt_class = NO_REGS;
2245 else if (best == alt_class)
2246 alt_class = NO_REGS;
1756cb66 2247 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
ce18efcb 2248 if ((!allocno_p || internal_flag_ira_verbose > 2)
95f61de9
VM
2249 && ira_dump_file != NULL)
2250 fprintf (ira_dump_file,
1756cb66 2251 " r%d: preferred %s, alternative %s, allocno %s\n",
ce18efcb 2252 i, reg_class_names[best], reg_class_names[alt_class],
1756cb66 2253 reg_class_names[regno_aclass[i]]);
ce18efcb 2254 }
1756cb66 2255 regno_best_class[i] = best;
ce18efcb
VM
2256 if (! allocno_p)
2257 {
b81a2f0d
VM
2258 pref[i] = (best_cost > i_mem_cost
2259 && ! non_spilled_static_chain_regno_p (i)
2260 ? NO_REGS : best);
ce18efcb
VM
2261 continue;
2262 }
058e97ec
VM
2263 for (a = ira_regno_allocno_map[i];
2264 a != NULL;
2265 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2266 {
3b6d1699
VM
2267 enum reg_class aclass = regno_aclass[i];
2268 int a_num = ALLOCNO_NUM (a);
2269 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
2270 int *a_costs = COSTS (costs, a_num)->cost;
eeae9314 2271
3b6d1699 2272 if (aclass == NO_REGS)
058e97ec
VM
2273 best = NO_REGS;
2274 else
b8698a0f 2275 {
058e97ec
VM
2276 /* Finding best class which is subset of the common
2277 class. */
2278 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
61ad6db1 2279 allocno_cost = best_cost;
058e97ec 2280 best = ALL_REGS;
1756cb66 2281 for (k = 0; k < cost_classes_ptr->num; k++)
058e97ec
VM
2282 {
2283 rclass = cost_classes[k];
3b6d1699 2284 if (! ira_class_subset_p[rclass][aclass])
058e97ec 2285 continue;
dab67d2c 2286 if (total_a_costs[k] < best_cost)
058e97ec 2287 {
1756cb66
VM
2288 best_cost = total_a_costs[k];
2289 allocno_cost = a_costs[k];
058e97ec
VM
2290 best = (enum reg_class) rclass;
2291 }
1756cb66 2292 else if (total_a_costs[k] == best_cost)
61ad6db1 2293 {
1756cb66
VM
2294 best = ira_reg_class_subunion[best][rclass];
2295 allocno_cost = MAX (allocno_cost, a_costs[k]);
61ad6db1 2296 }
058e97ec 2297 }
1756cb66 2298 ALLOCNO_CLASS_COST (a) = allocno_cost;
058e97ec 2299 }
95f61de9 2300 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL
ce18efcb 2301 && (pass == 0 || pref[a_num] != best))
058e97ec 2302 {
95f61de9 2303 fprintf (ira_dump_file, " a%d (r%d,", a_num, i);
058e97ec 2304 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
95f61de9 2305 fprintf (ira_dump_file, "b%d", bb->index);
058e97ec 2306 else
95f61de9 2307 fprintf (ira_dump_file, "l%d",
2608d841 2308 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
95f61de9 2309 fprintf (ira_dump_file, ") best %s, allocno %s\n",
058e97ec 2310 reg_class_names[best],
3b6d1699 2311 reg_class_names[aclass]);
058e97ec 2312 }
ce18efcb 2313 pref[a_num] = best;
3b6d1699
VM
2314 if (pass == flag_expensive_optimizations && best != aclass
2315 && ira_class_hard_regs_num[best] > 0
2316 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2317 >= ira_class_hard_regs_num[best]))
2318 {
2319 int ind = cost_classes_ptr->index[aclass];
2320
2321 ira_assert (ind >= 0);
dc687582 2322 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
3b6d1699
VM
2323 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2324 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2325 / (ira_register_move_cost
2326 [ALLOCNO_MODE (a)][best][aclass]));
2327 for (k = 0; k < cost_classes_ptr->num; k++)
2328 if (ira_class_subset_p[cost_classes[k]][best])
2329 a_costs[k] = a_costs[ind];
2330 }
058e97ec
VM
2331 }
2332 }
eeae9314 2333
95f61de9 2334 if (internal_flag_ira_verbose > 4 && ira_dump_file)
058e97ec 2335 {
ce18efcb 2336 if (allocno_p)
95f61de9 2337 print_allocno_costs ();
ce18efcb 2338 else
95f61de9
VM
2339 print_pseudo_costs ();
2340 fprintf (ira_dump_file,"\n");
058e97ec
VM
2341 }
2342 }
1756cb66 2343 ira_free (regno_best_class);
058e97ec
VM
2344}
2345
2346\f
2347
2348/* Process moves involving hard regs to modify allocno hard register
1756cb66 2349 costs. We can do this only after determining allocno class. If a
420ab54b 2350 hard register forms a register class, then moves with the hard
058e97ec
VM
2351 register are already taken into account in class costs for the
2352 allocno. */
2353static void
2354process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2355{
3b6d1699 2356 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
058e97ec 2357 bool to_p;
3b6d1699
VM
2358 ira_allocno_t a, curr_a;
2359 ira_loop_tree_node_t curr_loop_tree_node;
2360 enum reg_class rclass;
058e97ec 2361 basic_block bb;
070a1983
DM
2362 rtx_insn *insn;
2363 rtx set, src, dst;
058e97ec
VM
2364
2365 bb = loop_tree_node->bb;
2366 if (bb == NULL)
2367 return;
2368 freq = REG_FREQ_FROM_BB (bb);
2369 if (freq == 0)
2370 freq = 1;
2371 FOR_BB_INSNS (bb, insn)
2372 {
b5b8b0ac 2373 if (!NONDEBUG_INSN_P (insn))
058e97ec
VM
2374 continue;
2375 set = single_set (insn);
2376 if (set == NULL_RTX)
2377 continue;
2378 dst = SET_DEST (set);
2379 src = SET_SRC (set);
2380 if (! REG_P (dst) || ! REG_P (src))
2381 continue;
2382 dst_regno = REGNO (dst);
2383 src_regno = REGNO (src);
2384 if (dst_regno >= FIRST_PSEUDO_REGISTER
2385 && src_regno < FIRST_PSEUDO_REGISTER)
2386 {
2387 hard_regno = src_regno;
058e97ec 2388 a = ira_curr_regno_allocno_map[dst_regno];
3b6d1699 2389 to_p = true;
058e97ec
VM
2390 }
2391 else if (src_regno >= FIRST_PSEUDO_REGISTER
2392 && dst_regno < FIRST_PSEUDO_REGISTER)
2393 {
2394 hard_regno = dst_regno;
058e97ec 2395 a = ira_curr_regno_allocno_map[src_regno];
3b6d1699 2396 to_p = false;
058e97ec
VM
2397 }
2398 else
2399 continue;
0d2a576a
VM
2400 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2401 == (ira_reg_class_max_nregs
2402 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2403 /* If the class can provide only one hard reg to the allocno,
2404 we processed the insn record_operand_costs already and we
2405 actually updated the hard reg cost there. */
2406 continue;
1756cb66 2407 rclass = ALLOCNO_CLASS (a);
058e97ec
VM
2408 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2409 continue;
2410 i = ira_class_hard_reg_index[rclass][hard_regno];
2411 if (i < 0)
2412 continue;
3b6d1699
VM
2413 a_regno = ALLOCNO_REGNO (a);
2414 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2415 curr_loop_tree_node != NULL;
2416 curr_loop_tree_node = curr_loop_tree_node->parent)
2417 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2418 ira_add_allocno_pref (curr_a, hard_regno, freq);
2419 {
2420 int cost;
2421 enum reg_class hard_reg_class;
ef4bddc2 2422 machine_mode mode;
eeae9314 2423
3b6d1699
VM
2424 mode = ALLOCNO_MODE (a);
2425 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2426 ira_init_register_move_cost_if_necessary (mode);
2427 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2428 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2429 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2430 ALLOCNO_CLASS_COST (a));
2431 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2432 rclass, 0);
2433 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2434 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2435 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2436 ALLOCNO_HARD_REG_COSTS (a)[i]);
2437 }
058e97ec
VM
2438 }
2439}
2440
2441/* After we find hard register and memory costs for allocnos, define
1756cb66 2442 its class and modify hard register cost because insns moving
058e97ec
VM
2443 allocno to/from hard registers. */
2444static void
1756cb66 2445setup_allocno_class_and_costs (void)
058e97ec 2446{
1756cb66 2447 int i, j, n, regno, hard_regno, num;
058e97ec 2448 int *reg_costs;
1756cb66 2449 enum reg_class aclass, rclass;
058e97ec
VM
2450 ira_allocno_t a;
2451 ira_allocno_iterator ai;
1756cb66 2452 cost_classes_t cost_classes_ptr;
058e97ec 2453
ce18efcb 2454 ira_assert (allocno_p);
058e97ec
VM
2455 FOR_EACH_ALLOCNO (a, ai)
2456 {
2457 i = ALLOCNO_NUM (a);
1756cb66
VM
2458 regno = ALLOCNO_REGNO (a);
2459 aclass = regno_aclass[regno];
2460 cost_classes_ptr = regno_cost_classes[regno];
2461 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
ce18efcb 2462 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1756cb66
VM
2463 ira_set_allocno_class (a, aclass);
2464 if (aclass == NO_REGS)
058e97ec 2465 continue;
1756cb66 2466 if (optimize && ALLOCNO_CLASS (a) != pref[i])
058e97ec 2467 {
1756cb66 2468 n = ira_class_hard_regs_num[aclass];
058e97ec 2469 ALLOCNO_HARD_REG_COSTS (a)
1756cb66 2470 = reg_costs = ira_allocate_cost_vector (aclass);
058e97ec
VM
2471 for (j = n - 1; j >= 0; j--)
2472 {
1756cb66
VM
2473 hard_regno = ira_class_hard_regs[aclass][j];
2474 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2475 reg_costs[j] = ALLOCNO_CLASS_COST (a);
61ad6db1 2476 else
c0683a82 2477 {
1756cb66
VM
2478 rclass = REGNO_REG_CLASS (hard_regno);
2479 num = cost_classes_ptr->index[rclass];
61ad6db1
RS
2480 if (num < 0)
2481 {
1756cb66
VM
2482 num = cost_classes_ptr->hard_regno_index[hard_regno];
2483 ira_assert (num >= 0);
61ad6db1 2484 }
ce18efcb 2485 reg_costs[j] = COSTS (costs, i)->cost[num];
c0683a82 2486 }
058e97ec
VM
2487 }
2488 }
2489 }
2490 if (optimize)
2491 ira_traverse_loop_tree (true, ira_loop_tree_root,
2492 process_bb_node_for_hard_reg_moves, NULL);
2493}
2494
2495\f
2496
2497/* Function called once during compiler work. */
2498void
2499ira_init_costs_once (void)
2500{
2501 int i;
2502
2503 init_cost = NULL;
2504 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2505 {
2506 op_costs[i] = NULL;
2507 this_op_costs[i] = NULL;
2508 }
2509 temp_costs = NULL;
058e97ec
VM
2510}
2511
2512/* Free allocated temporary cost vectors. */
19c708dc
RS
2513void
2514target_ira_int::free_ira_costs ()
058e97ec
VM
2515{
2516 int i;
2517
19c708dc
RS
2518 free (x_init_cost);
2519 x_init_cost = NULL;
058e97ec
VM
2520 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2521 {
19c708dc
RS
2522 free (x_op_costs[i]);
2523 free (x_this_op_costs[i]);
2524 x_op_costs[i] = x_this_op_costs[i] = NULL;
058e97ec 2525 }
19c708dc
RS
2526 free (x_temp_costs);
2527 x_temp_costs = NULL;
058e97ec
VM
2528}
2529
2530/* This is called each time register related information is
2531 changed. */
2532void
2533ira_init_costs (void)
2534{
2535 int i;
2536
19c708dc 2537 this_target_ira_int->free_ira_costs ();
058e97ec
VM
2538 max_struct_costs_size
2539 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1756cb66
VM
2540 /* Don't use ira_allocate because vectors live through several IRA
2541 calls. */
058e97ec
VM
2542 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2543 init_cost->mem_cost = 1000000;
2544 for (i = 0; i < ira_important_classes_num; i++)
2545 init_cost->cost[i] = 1000000;
2546 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2547 {
2548 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2549 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2550 }
2551 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
058e97ec
VM
2552}
2553
058e97ec
VM
2554\f
2555
ce18efcb
VM
2556/* Common initialization function for ira_costs and
2557 ira_set_pseudo_classes. */
2558static void
2559init_costs (void)
2560{
1833192f 2561 init_subregs_of_mode ();
ce18efcb
VM
2562 costs = (struct costs *) ira_allocate (max_struct_costs_size
2563 * cost_elements_num);
1756cb66
VM
2564 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2565 * cost_elements_num);
2566 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2567 * max_reg_num ());
8ff49c29
BS
2568 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2569 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
ce18efcb
VM
2570}
2571
2572/* Common finalization function for ira_costs and
2573 ira_set_pseudo_classes. */
2574static void
2575finish_costs (void)
2576{
fa1fabcb 2577 finish_subregs_of_mode ();
8ff49c29 2578 ira_free (regno_equiv_gains);
1756cb66 2579 ira_free (regno_aclass);
ce18efcb
VM
2580 ira_free (pref_buffer);
2581 ira_free (costs);
2582}
2583
1756cb66
VM
2584/* Entry function which defines register class, memory and hard
2585 register costs for each allocno. */
058e97ec
VM
2586void
2587ira_costs (void)
2588{
ce18efcb
VM
2589 allocno_p = true;
2590 cost_elements_num = ira_allocnos_num;
2591 init_costs ();
2592 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2593 * ira_allocnos_num);
1756cb66 2594 initiate_regno_cost_classes ();
f55cdce3
VM
2595 if (!ira_use_lra_p)
2596 /* Process equivs in reload to update costs through hook
2597 ira_adjust_equiv_reg_cost. */
2598 calculate_elim_costs_all_insns ();
95f61de9 2599 find_costs_and_classes ();
1756cb66
VM
2600 setup_allocno_class_and_costs ();
2601 finish_regno_cost_classes ();
ce18efcb
VM
2602 finish_costs ();
2603 ira_free (total_allocno_costs);
2604}
2605
b11f0116
BC
2606/* Entry function which defines classes for pseudos.
2607 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
ce18efcb 2608void
b11f0116 2609ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
ce18efcb 2610{
95f61de9 2611 FILE *saved_file = ira_dump_file;
ce18efcb
VM
2612 allocno_p = false;
2613 internal_flag_ira_verbose = flag_ira_verbose;
95f61de9 2614 ira_dump_file = dump_file;
ce18efcb
VM
2615 cost_elements_num = max_reg_num ();
2616 init_costs ();
1756cb66 2617 initiate_regno_cost_classes ();
95f61de9 2618 find_costs_and_classes ();
1756cb66 2619 finish_regno_cost_classes ();
b11f0116
BC
2620 if (define_pseudo_classes)
2621 pseudo_classes_defined_p = true;
2622
ce18efcb 2623 finish_costs ();
95f61de9 2624 ira_dump_file = saved_file;
058e97ec
VM
2625}
2626
2627\f
2628
2629/* Change hard register costs for allocnos which lives through
2630 function calls. This is called only when we found all intersected
2631 calls during building allocno live ranges. */
2632void
1756cb66 2633ira_tune_allocno_costs (void)
058e97ec
VM
2634{
2635 int j, n, regno;
2636 int cost, min_cost, *reg_costs;
01f3e6a4 2637 enum reg_class aclass;
ef4bddc2 2638 machine_mode mode;
058e97ec
VM
2639 ira_allocno_t a;
2640 ira_allocno_iterator ai;
1756cb66
VM
2641 ira_allocno_object_iterator oi;
2642 ira_object_t obj;
2643 bool skip_p;
058e97ec
VM
2644
2645 FOR_EACH_ALLOCNO (a, ai)
2646 {
1756cb66
VM
2647 aclass = ALLOCNO_CLASS (a);
2648 if (aclass == NO_REGS)
058e97ec
VM
2649 continue;
2650 mode = ALLOCNO_MODE (a);
1756cb66 2651 n = ira_class_hard_regs_num[aclass];
058e97ec 2652 min_cost = INT_MAX;
e384e6b5
BS
2653 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2654 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
058e97ec
VM
2655 {
2656 ira_allocate_and_set_costs
1756cb66
VM
2657 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2658 ALLOCNO_CLASS_COST (a));
058e97ec
VM
2659 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2660 for (j = n - 1; j >= 0; j--)
2661 {
1756cb66
VM
2662 regno = ira_class_hard_regs[aclass][j];
2663 skip_p = false;
2664 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2665 {
9181a6e5
VM
2666 if (ira_hard_reg_set_intersection_p (regno, mode,
2667 OBJECT_CONFLICT_HARD_REGS
2668 (obj)))
1756cb66
VM
2669 {
2670 skip_p = true;
2671 break;
2672 }
2673 }
2674 if (skip_p)
2675 continue;
058e97ec 2676 cost = 0;
6c476222 2677 if (ira_need_caller_save_p (a, regno))
01f3e6a4 2678 cost += ira_caller_save_cost (a);
058e97ec 2679#ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
a923fa6d
RS
2680 {
2681 auto rclass = REGNO_REG_CLASS (regno);
2682 cost += ((ira_memory_move_cost[mode][rclass][0]
2683 + ira_memory_move_cost[mode][rclass][1])
2684 * ALLOCNO_FREQ (a)
2685 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2686 }
058e97ec 2687#endif
1756cb66
VM
2688 if (INT_MAX - cost < reg_costs[j])
2689 reg_costs[j] = INT_MAX;
2690 else
2691 reg_costs[j] += cost;
058e97ec
VM
2692 if (min_cost > reg_costs[j])
2693 min_cost = reg_costs[j];
2694 }
2695 }
2696 if (min_cost != INT_MAX)
1756cb66 2697 ALLOCNO_CLASS_COST (a) = min_cost;
0583835c 2698
8908df28
EB
2699 /* Some targets allow pseudos to be allocated to unaligned sequences
2700 of hard registers. However, selecting an unaligned sequence can
2701 unnecessarily restrict later allocations. So increase the cost of
2702 unaligned hard regs to encourage the use of aligned hard regs. */
0583835c 2703 {
1756cb66 2704 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
0583835c 2705
8908df28 2706 if (nregs > 1)
0583835c
VM
2707 {
2708 ira_allocate_and_set_costs
1756cb66 2709 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
0583835c
VM
2710 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2711 for (j = n - 1; j >= 0; j--)
2712 {
1756cb66 2713 regno = ira_non_ordered_class_hard_regs[aclass][j];
8908df28 2714 if ((regno % nregs) != 0)
0583835c 2715 {
1756cb66 2716 int index = ira_class_hard_reg_index[aclass][regno];
c6d0f11a 2717 ira_assert (index != -1);
0583835c
VM
2718 reg_costs[index] += ALLOCNO_FREQ (a);
2719 }
2720 }
2721 }
2722 }
058e97ec
VM
2723 }
2724}
8ff49c29 2725
f55cdce3
VM
2726/* A hook from the reload pass. Add COST to the estimated gain for eliminating
2727 REGNO with its equivalence. If COST is zero, record that no such
2728 elimination is possible. */
8ff49c29
BS
2729
2730void
2731ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2732{
f55cdce3 2733 ira_assert (!ira_use_lra_p);
8ff49c29
BS
2734 if (cost == 0)
2735 regno_equiv_gains[regno] = 0;
2736 else
2737 regno_equiv_gains[regno] += cost;
2738}
eec42458
DM
2739
2740void
d5148d4f 2741ira_costs_cc_finalize (void)
eec42458
DM
2742{
2743 this_target_ira_int->free_ira_costs ();
2744}