]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
Correct a function pre/postcondition [PR102403].
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
99dee823 2 Copyright (C) 2006-2021 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
f1717f8d
KC
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
68c6cacb 24#include "recog.h"
6c476222 25#include "function-abi.h"
68c6cacb 26
058e97ec
VM
27/* To provide consistency in naming, all IRA external variables,
28 functions, common typedefs start with prefix ira_. */
29
b2b29377 30#if CHECKING_P
058e97ec
VM
31#define ENABLE_IRA_CHECKING
32#endif
33
34#ifdef ENABLE_IRA_CHECKING
35#define ira_assert(c) gcc_assert (c)
36#else
f7556aae 37/* Always define and include C, so that warnings for empty body in an
7b3b6ae4 38 'if' statement and unused variable do not occur. */
f7556aae 39#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
40#endif
41
42/* Compute register frequency from edge frequency FREQ. It is
43 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
44 profile driven feedback is available and the function is never
45 executed, frequency is always equivalent. Otherwise rescale the
46 edge frequency. */
cf40f973
DC
47#define REG_FREQ_FROM_EDGE_FREQ(freq) \
48 (optimize_function_for_size_p (cfun) \
fefa31b5 49 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
058e97ec
VM
50 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51
058e97ec
VM
52/* A modified value of flag `-fira-verbose' used internally. */
53extern int internal_flag_ira_verbose;
54
55/* Dump file of the allocator if it is not NULL. */
56extern FILE *ira_dump_file;
57
58/* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
b14151b5 60typedef struct live_range *live_range_t;
058e97ec 61typedef struct ira_allocno *ira_allocno_t;
3b6d1699 62typedef struct ira_allocno_pref *ira_pref_t;
058e97ec 63typedef struct ira_allocno_copy *ira_copy_t;
a49ae217 64typedef struct ira_object *ira_object_t;
058e97ec
VM
65
66/* Definition of vector of allocnos and copies. */
058e97ec
VM
67
68/* Typedef for pointer to the subsequent structure. */
69typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
70
e80ccebc
RS
71typedef unsigned short move_table[N_REG_CLASSES];
72
058e97ec
VM
73/* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81struct ira_loop_tree_node
82{
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
2608d841 85 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
99b1c316 86 class loop *loop;
af51c885
AN
87 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
88 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 89 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
90 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
91 the node. They are NULL for BBs. */
058e97ec
VM
92 ira_loop_tree_node_t subloops, children;
93 /* The node immediately containing given node. */
94 ira_loop_tree_node_t parent;
95
96 /* Loop level in range [0, ira_loop_tree_height). */
97 int level;
98
99 /* All the following members are defined only for nodes representing
100 loops. */
101
2608d841
VM
102 /* The loop number from CFG loop tree. The root number is 0. */
103 int loop_num;
104
30ea859e
VM
105 /* True if the loop was marked for removal from the register
106 allocation. */
107 bool to_remove_p;
108
058e97ec
VM
109 /* Allocnos in the loop corresponding to their regnos. If it is
110 NULL the loop does not form a separate register allocation region
67914693 111 (e.g. because it has abnormal enter/exit edges and we cannot put
058e97ec
VM
112 code for register shuffling on the edges if a different
113 allocation is used for a pseudo-register on different sides of
114 the edges). Caps are not in the map (remember we can have more
115 one cap with the same regno in a region). */
116 ira_allocno_t *regno_allocno_map;
117
ea1c67e6
VM
118 /* True if there is an entry to given loop not from its parent (or
119 grandparent) basic block. For example, it is possible for two
120 adjacent loops inside another loop. */
121 bool entered_from_non_parent_p;
122
058e97ec 123 /* Maximal register pressure inside loop for given register class
1756cb66 124 (defined only for the pressure classes). */
058e97ec
VM
125 int reg_pressure[N_REG_CLASSES];
126
49d988e7
VM
127 /* Numbers of allocnos referred or living in the loop node (except
128 for its subloops). */
129 bitmap all_allocnos;
130
131 /* Numbers of allocnos living at the loop borders. */
132 bitmap border_allocnos;
058e97ec
VM
133
134 /* Regnos of pseudos modified in the loop node (including its
135 subloops). */
136 bitmap modified_regnos;
137
058e97ec
VM
138 /* Numbers of copies referred in the corresponding loop. */
139 bitmap local_copies;
140};
141
142/* The root of the loop tree corresponding to the all function. */
143extern ira_loop_tree_node_t ira_loop_tree_root;
144
145/* Height of the loop tree. */
146extern int ira_loop_tree_height;
147
148/* All nodes representing basic blocks are referred through the
67914693 149 following array. We cannot use basic block member `aux' for this
058e97ec
VM
150 because it is used for insertion of insns on edges. */
151extern ira_loop_tree_node_t ira_bb_nodes;
152
153/* Two access macros to the nodes representing basic blocks. */
154#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
155#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
2608d841 156(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
058e97ec
VM
157 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
158 { \
159 fprintf (stderr, \
160 "\n%s: %d: error in %s: it is not a block node\n", \
161 __FILE__, __LINE__, __FUNCTION__); \
162 gcc_unreachable (); \
163 } \
164 _node; }))
165#else
166#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
167#endif
168
169#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
170
171/* All nodes representing loops are referred through the following
172 array. */
173extern ira_loop_tree_node_t ira_loop_nodes;
174
175/* Two access macros to the nodes representing loops. */
176#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
177#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
2608d841
VM
178(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
179 if (_node->children == NULL || _node->bb != NULL \
180 || (_node->loop == NULL && current_loops != NULL)) \
058e97ec
VM
181 { \
182 fprintf (stderr, \
183 "\n%s: %d: error in %s: it is not a loop node\n", \
184 __FILE__, __LINE__, __FUNCTION__); \
185 gcc_unreachable (); \
186 } \
187 _node; }))
188#else
189#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
190#endif
191
192#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
193
194\f
058e97ec 195/* The structure describes program points where a given allocno lives.
1756cb66
VM
196 If the live ranges of two allocnos are intersected, the allocnos
197 are in conflict. */
b14151b5 198struct live_range
058e97ec 199{
ac0ab4f7 200 /* Object whose live range is described by given structure. */
9140d27b 201 ira_object_t object;
058e97ec
VM
202 /* Program point range. */
203 int start, finish;
204 /* Next structure describing program points where the allocno
205 lives. */
b14151b5 206 live_range_t next;
058e97ec 207 /* Pointer to structures with the same start/finish. */
b14151b5 208 live_range_t start_next, finish_next;
058e97ec
VM
209};
210
211/* Program points are enumerated by numbers from range
212 0..IRA_MAX_POINT-1. There are approximately two times more program
213 points than insns. Program points are places in the program where
214 liveness info can be changed. In most general case (there are more
215 complicated cases too) some program points correspond to places
216 where input operand dies and other ones correspond to places where
217 output operands are born. */
218extern int ira_max_point;
219
220/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
221 live ranges with given start/finish point. */
b14151b5 222extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
058e97ec 223
a49ae217
BS
224/* A structure representing conflict information for an allocno
225 (or one of its subwords). */
226struct ira_object
227{
228 /* The allocno associated with this record. */
229 ira_allocno_t allocno;
230 /* Vector of accumulated conflicting conflict_redords with NULL end
231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
1756cb66 232 otherwise. */
a49ae217 233 void *conflicts_array;
9140d27b
BS
234 /* Pointer to structures describing at what program point the
235 object lives. We always maintain the list in such way that *the
236 ranges in the list are not intersected and ordered by decreasing
237 their program points*. */
238 live_range_t live_ranges;
ac0ab4f7
BS
239 /* The subword within ALLOCNO which is represented by this object.
240 Zero means the lowest-order subword (or the entire allocno in case
241 it is not being tracked in subwords). */
242 int subword;
9140d27b 243 /* Allocated size of the conflicts array. */
a49ae217 244 unsigned int conflicts_array_size;
ac0ab4f7 245 /* A unique number for every instance of this structure, which is used
a49ae217
BS
246 to represent it in conflict bit vectors. */
247 int id;
248 /* Before building conflicts, MIN and MAX are initialized to
249 correspondingly minimal and maximal points of the accumulated
ac0ab4f7
BS
250 live ranges. Afterwards, they hold the minimal and maximal ids
251 of other ira_objects that this one can conflict with. */
a49ae217
BS
252 int min, max;
253 /* Initial and accumulated hard registers conflicting with this
67914693 254 object and as a consequences cannot be assigned to the allocno.
1756cb66 255 All non-allocatable hard regs and hard regs of register classes
ac0ab4f7 256 different from given allocno one are included in the sets. */
a49ae217
BS
257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
258 /* Number of accumulated conflicts in the vector of conflicting
ac0ab4f7 259 objects. */
a49ae217
BS
260 int num_accumulated_conflicts;
261 /* TRUE if conflicts are represented by a vector of pointers to
262 ira_object structures. Otherwise, we use a bit vector indexed
263 by conflict ID numbers. */
264 unsigned int conflict_vec_p : 1;
265};
266
058e97ec
VM
267/* A structure representing an allocno (allocation entity). Allocno
268 represents a pseudo-register in an allocation region. If
269 pseudo-register does not live in a region but it lives in the
270 nested regions, it is represented in the region by special allocno
271 called *cap*. There may be more one cap representing the same
272 pseudo-register in region. It means that the corresponding
273 pseudo-register lives in more one non-intersected subregion. */
274struct ira_allocno
275{
276 /* The allocno order number starting with 0. Each allocno has an
277 unique number and the number is never changed for the
278 allocno. */
279 int num;
280 /* Regno for allocno or cap. */
281 int regno;
282 /* Mode of the allocno which is the mode of the corresponding
283 pseudo-register. */
1756cb66 284 ENUM_BITFIELD (machine_mode) mode : 8;
d1bb282e
DS
285 /* Widest mode of the allocno which in at least one case could be
286 for paradoxical subregs where wmode > mode. */
287 ENUM_BITFIELD (machine_mode) wmode : 8;
1756cb66
VM
288 /* Register class which should be used for allocation for given
289 allocno. NO_REGS means that we should use memory. */
290 ENUM_BITFIELD (reg_class) aclass : 16;
6c476222
RS
291 /* A bitmask of the ABIs used by calls that occur while the allocno
292 is live. */
293 unsigned int crossed_calls_abis : NUM_ABI_IDS;
1756cb66
VM
294 /* During the reload, value TRUE means that we should not reassign a
295 hard register to the allocno got memory earlier. It is set up
296 when we removed memory-memory move insn before each iteration of
297 the reload. */
298 unsigned int dont_reassign_p : 1;
299#ifdef STACK_REGS
300 /* Set to TRUE if allocno can't be assigned to the stack hard
301 register correspondingly in this region and area including the
302 region and all its subregions recursively. */
303 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
304#endif
305 /* TRUE value means that there is no sense to spill the allocno
306 during coloring because the spill will result in additional
307 reloads in reload pass. */
308 unsigned int bad_spill_p : 1;
309 /* TRUE if a hard register or memory has been assigned to the
310 allocno. */
311 unsigned int assigned_p : 1;
312 /* TRUE if conflicts for given allocno are represented by vector of
313 pointers to the conflicting allocnos. Otherwise, we use a bit
314 vector where a bit with given index represents allocno with the
315 same number. */
316 unsigned int conflict_vec_p : 1;
058e97ec
VM
317 /* Hard register assigned to given allocno. Negative value means
318 that memory was allocated to the allocno. During the reload,
319 spilled allocno has value equal to the corresponding stack slot
320 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
321 reload (at this point pseudo-register has only one allocno) which
322 did not get stack slot yet. */
8684302d 323 signed int hard_regno : 16;
058e97ec
VM
324 /* Allocnos with the same regno are linked by the following member.
325 Allocnos corresponding to inner loops are first in the list (it
326 corresponds to depth-first traverse of the loops). */
327 ira_allocno_t next_regno_allocno;
328 /* There may be different allocnos with the same regno in different
329 regions. Allocnos are bound to the corresponding loop tree node.
330 Pseudo-register may have only one regular allocno with given loop
331 tree node but more than one cap (see comments above). */
332 ira_loop_tree_node_t loop_tree_node;
333 /* Accumulated usage references of the allocno. Here and below,
334 word 'accumulated' means info for given region and all nested
335 subregions. In this case, 'accumulated' means sum of references
336 of the corresponding pseudo-register in this region and in all
337 nested subregions recursively. */
338 int nrefs;
339 /* Accumulated frequency of usage of the allocno. */
340 int freq;
cb1ca6ac 341 /* Minimal accumulated and updated costs of usage register of the
1756cb66
VM
342 allocno class. */
343 int class_cost, updated_class_cost;
058e97ec
VM
344 /* Minimal accumulated, and updated costs of memory for the allocno.
345 At the allocation start, the original and updated costs are
346 equal. The updated cost may be changed after finishing
347 allocation in a region and starting allocation in a subregion.
348 The change reflects the cost of spill/restore code on the
349 subregion border if we assign memory to the pseudo in the
350 subregion. */
351 int memory_cost, updated_memory_cost;
352 /* Accumulated number of points where the allocno lives and there is
353 excess pressure for its class. Excess pressure for a register
354 class at some point means that there are more allocnos of given
355 register class living at the point than number of hard-registers
356 of the class available for the allocation. */
357 int excess_pressure_points_num;
3b6d1699
VM
358 /* Allocno hard reg preferences. */
359 ira_pref_t allocno_prefs;
058e97ec
VM
360 /* Copies to other non-conflicting allocnos. The copies can
361 represent move insn or potential move insn usually because of two
362 operand insn constraints. */
363 ira_copy_t allocno_copies;
364 /* It is a allocno (cap) representing given allocno on upper loop tree
365 level. */
366 ira_allocno_t cap;
367 /* It is a link to allocno (cap) on lower loop level represented by
368 given cap. Null if given allocno is not a cap. */
369 ira_allocno_t cap_member;
ac0ab4f7
BS
370 /* The number of objects tracked in the following array. */
371 int num_objects;
372 /* An array of structures describing conflict information and live
373 ranges for each object associated with the allocno. There may be
374 more than one such object in cases where the allocno represents a
375 multi-word register. */
376 ira_object_t objects[2];
058e97ec
VM
377 /* Accumulated frequency of calls which given allocno
378 intersects. */
379 int call_freq;
a812fb07 380 /* Accumulated number of the intersected calls. */
058e97ec 381 int calls_crossed_num;
e384e6b5
BS
382 /* The number of calls across which it is live, but which should not
383 affect register preferences. */
384 int cheap_calls_crossed_num;
c2ba7e7a
RO
385 /* Registers clobbered by intersected calls. */
386 HARD_REG_SET crossed_calls_clobbered_regs;
058e97ec 387 /* Array of usage costs (accumulated and the one updated during
1756cb66 388 coloring) for each hard register of the allocno class. The
058e97ec 389 member value can be NULL if all costs are the same and equal to
1756cb66 390 CLASS_COST. For example, the costs of two different hard
058e97ec
VM
391 registers can be different if one hard register is callee-saved
392 and another one is callee-used and the allocno lives through
393 calls. Another example can be case when for some insn the
394 corresponding pseudo-register value should be put in specific
395 register class (e.g. AREG for x86) which is a strict subset of
1756cb66
VM
396 the allocno class (GENERAL_REGS for x86). We have updated costs
397 to reflect the situation when the usage cost of a hard register
398 is decreased because the allocno is connected to another allocno
399 by a copy and the another allocno has been assigned to the hard
400 register. */
058e97ec
VM
401 int *hard_reg_costs, *updated_hard_reg_costs;
402 /* Array of decreasing costs (accumulated and the one updated during
403 coloring) for allocnos conflicting with given allocno for hard
1756cb66
VM
404 regno of the allocno class. The member value can be NULL if all
405 costs are the same. These costs are used to reflect preferences
406 of other allocnos not assigned yet during assigning to given
407 allocno. */
058e97ec 408 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
1756cb66
VM
409 /* Different additional data. It is used to decrease size of
410 allocno data footprint. */
411 void *add_data;
058e97ec
VM
412};
413
1756cb66 414
058e97ec
VM
415/* All members of the allocno structures should be accessed only
416 through the following macros. */
417#define ALLOCNO_NUM(A) ((A)->num)
418#define ALLOCNO_REGNO(A) ((A)->regno)
419#define ALLOCNO_REG(A) ((A)->reg)
420#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
421#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
422#define ALLOCNO_CAP(A) ((A)->cap)
423#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
058e97ec
VM
424#define ALLOCNO_NREFS(A) ((A)->nrefs)
425#define ALLOCNO_FREQ(A) ((A)->freq)
426#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
427#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
428#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
e384e6b5 429#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
6c476222 430#define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis)
c2ba7e7a
RO
431#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
432 ((A)->crossed_calls_clobbered_regs)
058e97ec
VM
433#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
434#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
435#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
436#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
437#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
438#ifdef STACK_REGS
439#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
440#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
441#endif
927425df 442#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec 443#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
058e97ec 444#define ALLOCNO_MODE(A) ((A)->mode)
d1bb282e 445#define ALLOCNO_WMODE(A) ((A)->wmode)
3b6d1699 446#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
058e97ec
VM
447#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
448#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
449#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
450#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
451 ((A)->conflict_hard_reg_costs)
452#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
453 ((A)->updated_conflict_hard_reg_costs)
1756cb66
VM
454#define ALLOCNO_CLASS(A) ((A)->aclass)
455#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
456#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
058e97ec
VM
457#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
458#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
1756cb66
VM
459#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
460 ((A)->excess_pressure_points_num)
ac0ab4f7
BS
461#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
462#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
1756cb66 463#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
a49ae217 464
1756cb66
VM
465/* Typedef for pointer to the subsequent structure. */
466typedef struct ira_emit_data *ira_emit_data_t;
467
468/* Allocno bound data used for emit pseudo live range split insns and
469 to flattening IR. */
470struct ira_emit_data
471{
472 /* TRUE if the allocno assigned to memory was a destination of
473 removed move (see ira-emit.c) at loop exit because the value of
474 the corresponding pseudo-register is not changed inside the
475 loop. */
476 unsigned int mem_optimized_dest_p : 1;
477 /* TRUE if the corresponding pseudo-register has disjoint live
478 ranges and the other allocnos of the pseudo-register except this
479 one changed REG. */
480 unsigned int somewhere_renamed_p : 1;
481 /* TRUE if allocno with the same REGNO in a subregion has been
482 renamed, in other words, got a new pseudo-register. */
483 unsigned int child_renamed_p : 1;
484 /* Final rtx representation of the allocno. */
485 rtx reg;
486 /* Non NULL if we remove restoring value from given allocno to
487 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
488 allocno value is not changed inside the loop. */
489 ira_allocno_t mem_optimized_dest;
490};
491
492#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
493
494/* Data used to emit live range split insns and to flattening IR. */
495extern ira_emit_data_t ira_allocno_emit_data;
496
497/* Abbreviation for frequent emit data access. */
498static inline rtx
499allocno_emit_reg (ira_allocno_t a)
500{
501 return ALLOCNO_EMIT_DATA (a)->reg;
502}
503
504#define OBJECT_ALLOCNO(O) ((O)->allocno)
505#define OBJECT_SUBWORD(O) ((O)->subword)
506#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
507#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
508#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
509#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
510#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
511#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
512#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
513#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
514#define OBJECT_MIN(O) ((O)->min)
515#define OBJECT_MAX(O) ((O)->max)
516#define OBJECT_CONFLICT_ID(O) ((O)->id)
517#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
058e97ec 518
b8698a0f 519/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
520 allocno member `next_regno_allocno'). */
521extern ira_allocno_t *ira_regno_allocno_map;
522
523/* Array of references to all allocnos. The order number of the
524 allocno corresponds to the index in the array. Removed allocnos
525 have NULL element value. */
526extern ira_allocno_t *ira_allocnos;
527
a49ae217 528/* The size of the previous array. */
058e97ec
VM
529extern int ira_allocnos_num;
530
a49ae217
BS
531/* Map a conflict id to its corresponding ira_object structure. */
532extern ira_object_t *ira_object_id_map;
533
534/* The size of the previous array. */
535extern int ira_objects_num;
058e97ec 536
df3e3493 537/* The following structure represents a hard register preference of
3b6d1699
VM
538 allocno. The preference represent move insns or potential move
539 insns usually because of two operand insn constraints. One move
540 operand is a hard register. */
541struct ira_allocno_pref
542{
543 /* The unique order number of the preference node starting with 0. */
544 int num;
545 /* Preferred hard register. */
546 int hard_regno;
547 /* Accumulated execution frequency of insns from which the
548 preference created. */
549 int freq;
550 /* Given allocno. */
551 ira_allocno_t allocno;
df3e3493 552 /* All preferences with the same allocno are linked by the following
3b6d1699
VM
553 member. */
554 ira_pref_t next_pref;
555};
556
557/* Array of references to all allocno preferences. The order number
558 of the preference corresponds to the index in the array. */
559extern ira_pref_t *ira_prefs;
560
561/* Size of the previous array. */
562extern int ira_prefs_num;
563
058e97ec
VM
564/* The following structure represents a copy of two allocnos. The
565 copies represent move insns or potential move insns usually because
566 of two operand insn constraints. To remove register shuffle, we
567 also create copies between allocno which is output of an insn and
568 allocno becoming dead in the insn. */
569struct ira_allocno_copy
570{
571 /* The unique order number of the copy node starting with 0. */
572 int num;
573 /* Allocnos connected by the copy. The first allocno should have
574 smaller order number than the second one. */
575 ira_allocno_t first, second;
576 /* Execution frequency of the copy. */
577 int freq;
548a6322 578 bool constraint_p;
058e97ec
VM
579 /* It is a move insn which is an origin of the copy. The member
580 value for the copy representing two operand insn constraints or
581 for the copy created to remove register shuffle is NULL. In last
582 case the copy frequency is smaller than the corresponding insn
583 execution frequency. */
070a1983 584 rtx_insn *insn;
058e97ec
VM
585 /* All copies with the same allocno as FIRST are linked by the two
586 following members. */
587 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
588 /* All copies with the same allocno as SECOND are linked by the two
589 following members. */
590 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
591 /* Region from which given copy is originated. */
592 ira_loop_tree_node_t loop_tree_node;
593};
594
595/* Array of references to all copies. The order number of the copy
596 corresponds to the index in the array. Removed copies have NULL
597 element value. */
598extern ira_copy_t *ira_copies;
599
600/* Size of the previous array. */
601extern int ira_copies_num;
602
603/* The following structure describes a stack slot used for spilled
604 pseudo-registers. */
6c1dae73 605class ira_spilled_reg_stack_slot
058e97ec 606{
6c1dae73 607public:
058e97ec 608 /* pseudo-registers assigned to the stack slot. */
7a8cba34 609 bitmap_head spilled_regs;
058e97ec
VM
610 /* RTL representation of the stack slot. */
611 rtx mem;
612 /* Size of the stack slot. */
80ce7eb4 613 poly_uint64_pod width;
058e97ec
VM
614};
615
616/* The number of elements in the following array. */
617extern int ira_spilled_reg_stack_slots_num;
618
619/* The following array contains info about spilled pseudo-registers
620 stack slots used in current function so far. */
99b1c316 621extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
058e97ec
VM
622
623/* Correspondingly overall cost of the allocation, cost of the
624 allocnos assigned to hard-registers, cost of the allocnos assigned
625 to memory, cost of loads, stores and register move insns generated
626 for pseudo-register live range splitting (see ira-emit.c). */
2bf7560b
VM
627extern int64_t ira_overall_cost;
628extern int64_t ira_reg_cost, ira_mem_cost;
629extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec 630extern int ira_move_loops_num, ira_additional_jumps_num;
1756cb66 631
42ce1cc4
BS
632\f
633/* This page contains a bitset implementation called 'min/max sets' used to
634 record conflicts in IRA.
635 They are named min/maxs set since we keep track of a minimum and a maximum
636 bit number for each set representing the bounds of valid elements. Otherwise,
637 the implementation resembles sbitmaps in that we store an array of integers
638 whose bits directly represent the members of the set. */
639
640/* The type used as elements in the array, and the number of bits in
641 this type. */
ac0ab4f7 642
058e97ec
VM
643#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
644#define IRA_INT_TYPE HOST_WIDE_INT
645
646/* Set, clear or test bit number I in R, a bit vector of elements with
647 minimal index and maximal index equal correspondingly to MIN and
648 MAX. */
649#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
650
42ce1cc4 651#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
652 (({ int _min = (MIN), _max = (MAX), _i = (I); \
653 if (_i < _min || _i > _max) \
654 { \
655 fprintf (stderr, \
656 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
657 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
658 gcc_unreachable (); \
659 } \
660 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
661 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 662
058e97ec 663
42ce1cc4 664#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
665 (({ int _min = (MIN), _max = (MAX), _i = (I); \
666 if (_i < _min || _i > _max) \
667 { \
668 fprintf (stderr, \
669 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
670 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
671 gcc_unreachable (); \
672 } \
673 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
674 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
675
42ce1cc4 676#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
677 (({ int _min = (MIN), _max = (MAX), _i = (I); \
678 if (_i < _min || _i > _max) \
679 { \
680 fprintf (stderr, \
681 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
682 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
683 gcc_unreachable (); \
684 } \
685 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
686 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
687
688#else
689
42ce1cc4 690#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
691 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
692 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693
42ce1cc4 694#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
695 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
696 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
697
42ce1cc4 698#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
699 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
700 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
701
702#endif
703
42ce1cc4 704/* The iterator for min/max sets. */
84562394 705struct minmax_set_iterator {
058e97ec 706
42ce1cc4 707 /* Array containing the bit vector. */
058e97ec
VM
708 IRA_INT_TYPE *vec;
709
710 /* The number of the current element in the vector. */
711 unsigned int word_num;
712
713 /* The number of bits in the bit vector. */
714 unsigned int nel;
715
716 /* The current bit index of the bit vector. */
717 unsigned int bit_num;
718
719 /* Index corresponding to the 1st bit of the bit vector. */
720 int start_val;
721
722 /* The word of the bit vector currently visited. */
723 unsigned IRA_INT_TYPE word;
84562394 724};
058e97ec 725
42ce1cc4
BS
726/* Initialize the iterator I for bit vector VEC containing minimal and
727 maximal values MIN and MAX. */
058e97ec 728static inline void
42ce1cc4
BS
729minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
730 int max)
058e97ec
VM
731{
732 i->vec = vec;
733 i->word_num = 0;
734 i->nel = max < min ? 0 : max - min + 1;
735 i->start_val = min;
736 i->bit_num = 0;
737 i->word = i->nel == 0 ? 0 : vec[0];
738}
739
ac0ab4f7 740/* Return TRUE if we have more allocnos to visit, in which case *N is
42ce1cc4 741 set to the number of the element to be visited. Otherwise, return
058e97ec
VM
742 FALSE. */
743static inline bool
42ce1cc4 744minmax_set_iter_cond (minmax_set_iterator *i, int *n)
058e97ec
VM
745{
746 /* Skip words that are zeros. */
747 for (; i->word == 0; i->word = i->vec[i->word_num])
748 {
749 i->word_num++;
750 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 751
058e97ec
VM
752 /* If we have reached the end, break. */
753 if (i->bit_num >= i->nel)
754 return false;
755 }
b8698a0f 756
058e97ec
VM
757 /* Skip bits that are zero. */
758 for (; (i->word & 1) == 0; i->word >>= 1)
759 i->bit_num++;
b8698a0f 760
058e97ec 761 *n = (int) i->bit_num + i->start_val;
b8698a0f 762
058e97ec
VM
763 return true;
764}
765
42ce1cc4 766/* Advance to the next element in the set. */
058e97ec 767static inline void
42ce1cc4 768minmax_set_iter_next (minmax_set_iterator *i)
058e97ec
VM
769{
770 i->word >>= 1;
771 i->bit_num++;
772}
773
42ce1cc4 774/* Loop over all elements of a min/max set given by bit vector VEC and
058e97ec
VM
775 their minimal and maximal values MIN and MAX. In each iteration, N
776 is set to the number of next allocno. ITER is an instance of
42ce1cc4
BS
777 minmax_set_iterator used to iterate over the set. */
778#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
779 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
780 minmax_set_iter_cond (&(ITER), &(N)); \
781 minmax_set_iter_next (&(ITER)))
782\f
6c1dae73
MS
783class target_ira_int {
784public:
19c708dc
RS
785 ~target_ira_int ();
786
787 void free_ira_costs ();
788 void free_register_move_costs ();
789
aa1c5d72
RS
790 /* Initialized once. It is a maximal possible size of the allocated
791 struct costs. */
ff304c01 792 size_t x_max_struct_costs_size;
aa1c5d72
RS
793
794 /* Allocated and initialized once, and used to initialize cost values
795 for each insn. */
796 struct costs *x_init_cost;
797
798 /* Allocated once, and used for temporary purposes. */
799 struct costs *x_temp_costs;
800
801 /* Allocated once, and used for the cost calculation. */
802 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
803 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
804
67914693 805 /* Hard registers that cannot be used for the register allocator for
afcc66c4
RS
806 all functions of the current compilation unit. */
807 HARD_REG_SET x_no_unit_alloc_regs;
808
809 /* Map: hard regs X modes -> set of hard registers for storing value
810 of given mode starting with given hard register. */
811 HARD_REG_SET (x_ira_reg_mode_hard_regset
812 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
813
e80ccebc
RS
814 /* Maximum cost of moving from a register in one class to a register
815 in another class. Based on TARGET_REGISTER_MOVE_COST. */
7cc61ee4 816 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
e80ccebc
RS
817
818 /* Similar, but here we don't have to move if the first index is a
819 subset of the second so in that case the cost is zero. */
7cc61ee4 820 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
e80ccebc
RS
821
822 /* Similar, but here we don't have to move if the first index is a
823 superset of the second so in that case the cost is zero. */
7cc61ee4 824 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
e80ccebc
RS
825
826 /* Keep track of the last mode we initialized move costs for. */
827 int x_last_mode_for_init_move_cost;
828
7cc61ee4
RS
829 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
830 cost not minimal. */
1756cb66 831 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
1756cb66
VM
832
833 /* Map class->true if class is a possible allocno class, false
834 otherwise. */
835 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
836
837 /* Map class->true if class is a pressure class, false otherwise. */
838 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
839
afcc66c4 840 /* Array of the number of hard registers of given class which are
dd5a833e 841 available for allocation. The order is defined by the hard
afcc66c4
RS
842 register numbers. */
843 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
844
845 /* Index (in ira_class_hard_regs; for given register class and hard
846 register (in general case a hard register can belong to several
847 register classes;. The index is negative for hard registers
848 unavailable for the allocation. */
849 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
850
a2c19e93
RS
851 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
852
853 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
854
855 For example, if:
856
857 - (reg:M 2) is valid and occupies two registers;
858 - register 2 belongs to CL; and
859 - register 3 belongs to the same pressure class as CL
860
861 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
862 in the set. */
863 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
864
afcc66c4
RS
865 /* The value is number of elements in the subsequent array. */
866 int x_ira_important_classes_num;
867
1756cb66 868 /* The array containing all non-empty classes. Such classes is
afcc66c4
RS
869 important for calculation of the hard register usage costs. */
870 enum reg_class x_ira_important_classes[N_REG_CLASSES];
871
1756cb66
VM
872 /* The array containing indexes of important classes in the previous
873 array. The array elements are defined only for important
874 classes. */
875 int x_ira_important_class_nums[N_REG_CLASSES];
876
165f639c
VM
877 /* Map class->true if class is an uniform class, false otherwise. */
878 bool x_ira_uniform_class_p[N_REG_CLASSES];
879
afcc66c4
RS
880 /* The biggest important class inside of intersection of the two
881 classes (that is calculated taking only hard registers available
882 for allocation into account;. If the both classes contain no hard
883 registers available for allocation, the value is calculated with
884 taking all hard-registers including fixed ones into account. */
885 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
886
afcc66c4 887 /* Classes with end marker LIM_REG_CLASSES which are intersected with
55a2c322 888 given class (the first index). That includes given class itself.
afcc66c4
RS
889 This is calculated taking only hard registers available for
890 allocation into account. */
891 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
892
1756cb66
VM
893 /* The biggest (smallest) important class inside of (covering) union
894 of the two classes (that is calculated taking only hard registers
895 available for allocation into account). If the both classes
896 contain no hard registers available for allocation, the value is
897 calculated with taking all hard-registers including fixed ones
898 into account. In other words, the value is the corresponding
899 reg_class_subunion (reg_class_superunion) value. */
900 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
901 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
afcc66c4
RS
902
903 /* For each reg class, table listing all the classes contained in it
904 (excluding the class itself. Non-allocatable registers are
55a2c322 905 excluded from the consideration). */
afcc66c4 906 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
15e7b94f
RS
907
908 /* Array whose values are hard regset of hard registers for which
909 move of the hard register in given mode into itself is
910 prohibited. */
911 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
912
913 /* Flag of that the above array has been initialized. */
914 bool x_ira_prohibited_mode_move_regs_initialized_p;
afcc66c4
RS
915};
916
99b1c316 917extern class target_ira_int default_target_ira_int;
afcc66c4 918#if SWITCHABLE_TARGET
99b1c316 919extern class target_ira_int *this_target_ira_int;
afcc66c4
RS
920#else
921#define this_target_ira_int (&default_target_ira_int)
922#endif
058e97ec 923
afcc66c4
RS
924#define ira_reg_mode_hard_regset \
925 (this_target_ira_int->x_ira_reg_mode_hard_regset)
926#define ira_register_move_cost \
927 (this_target_ira_int->x_ira_register_move_cost)
1756cb66
VM
928#define ira_max_memory_move_cost \
929 (this_target_ira_int->x_ira_max_memory_move_cost)
afcc66c4
RS
930#define ira_may_move_in_cost \
931 (this_target_ira_int->x_ira_may_move_in_cost)
932#define ira_may_move_out_cost \
933 (this_target_ira_int->x_ira_may_move_out_cost)
1756cb66
VM
934#define ira_reg_allocno_class_p \
935 (this_target_ira_int->x_ira_reg_allocno_class_p)
936#define ira_reg_pressure_class_p \
937 (this_target_ira_int->x_ira_reg_pressure_class_p)
afcc66c4
RS
938#define ira_non_ordered_class_hard_regs \
939 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
940#define ira_class_hard_reg_index \
941 (this_target_ira_int->x_ira_class_hard_reg_index)
a2c19e93
RS
942#define ira_useful_class_mode_regs \
943 (this_target_ira_int->x_ira_useful_class_mode_regs)
afcc66c4
RS
944#define ira_important_classes_num \
945 (this_target_ira_int->x_ira_important_classes_num)
946#define ira_important_classes \
947 (this_target_ira_int->x_ira_important_classes)
1756cb66
VM
948#define ira_important_class_nums \
949 (this_target_ira_int->x_ira_important_class_nums)
165f639c
VM
950#define ira_uniform_class_p \
951 (this_target_ira_int->x_ira_uniform_class_p)
afcc66c4
RS
952#define ira_reg_class_intersect \
953 (this_target_ira_int->x_ira_reg_class_intersect)
afcc66c4
RS
954#define ira_reg_class_super_classes \
955 (this_target_ira_int->x_ira_reg_class_super_classes)
1756cb66
VM
956#define ira_reg_class_subunion \
957 (this_target_ira_int->x_ira_reg_class_subunion)
958#define ira_reg_class_superunion \
959 (this_target_ira_int->x_ira_reg_class_superunion)
15e7b94f
RS
960#define ira_prohibited_mode_move_regs \
961 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
afcc66c4
RS
962\f
963/* ira.c: */
058e97ec 964
058e97ec 965extern void *ira_allocate (size_t);
058e97ec
VM
966extern void ira_free (void *addr);
967extern bitmap ira_allocate_bitmap (void);
968extern void ira_free_bitmap (bitmap);
969extern void ira_print_disposition (FILE *);
970extern void ira_debug_disposition (void);
1756cb66 971extern void ira_debug_allocno_classes (void);
ef4bddc2 972extern void ira_init_register_move_cost (machine_mode);
73bb8fe9 973extern alternative_mask ira_setup_alts (rtx_insn *);
8ffe25ee 974extern int ira_get_dup_out_num (int, alternative_mask, bool &);
058e97ec 975
058e97ec
VM
976/* ira-build.c */
977
978/* The current loop tree node and its regno allocno map. */
979extern ira_loop_tree_node_t ira_curr_loop_tree_node;
980extern ira_allocno_t *ira_curr_regno_allocno_map;
981
3b6d1699
VM
982extern void ira_debug_pref (ira_pref_t);
983extern void ira_debug_prefs (void);
984extern void ira_debug_allocno_prefs (ira_allocno_t);
985
4cda38d5 986extern void ira_debug_copy (ira_copy_t);
7b3b6ae4
LC
987extern void debug (ira_allocno_copy &ref);
988extern void debug (ira_allocno_copy *ptr);
989
4cda38d5 990extern void ira_debug_copies (void);
058e97ec 991extern void ira_debug_allocno_copies (ira_allocno_t);
7b3b6ae4
LC
992extern void debug (ira_allocno &ref);
993extern void debug (ira_allocno *ptr);
058e97ec
VM
994
995extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
996 void (*) (ira_loop_tree_node_t),
997 void (*) (ira_loop_tree_node_t));
029da7d4
BS
998extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
999extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec 1000extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
ac0ab4f7 1001extern void ira_create_allocno_objects (ira_allocno_t);
1756cb66 1002extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
a49ae217
BS
1003extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
1004extern void ira_allocate_conflict_vec (ira_object_t, int);
1005extern void ira_allocate_object_conflicts (ira_object_t, int);
75f4e3a1 1006extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set);
058e97ec 1007extern void ira_print_expanded_allocno (ira_allocno_t);
ac0ab4f7 1008extern void ira_add_live_range_to_object (ira_object_t, int, int);
9140d27b
BS
1009extern live_range_t ira_create_live_range (ira_object_t, int, int,
1010 live_range_t);
1011extern live_range_t ira_copy_live_range_list (live_range_t);
1012extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1013extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1014extern void ira_finish_live_range (live_range_t);
1015extern void ira_finish_live_range_list (live_range_t);
058e97ec 1016extern void ira_free_allocno_updated_costs (ira_allocno_t);
3b6d1699
VM
1017extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1018extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1019extern void ira_remove_pref (ira_pref_t);
1020extern void ira_remove_allocno_prefs (ira_allocno_t);
058e97ec 1021extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
070a1983
DM
1022 int, bool, rtx_insn *,
1023 ira_loop_tree_node_t);
548a6322 1024extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
070a1983
DM
1025 bool, rtx_insn *,
1026 ira_loop_tree_node_t);
058e97ec 1027
6f76a878
AS
1028extern int *ira_allocate_cost_vector (reg_class_t);
1029extern void ira_free_cost_vector (int *, reg_class_t);
058e97ec
VM
1030
1031extern void ira_flattening (int, int);
2608d841 1032extern bool ira_build (void);
058e97ec
VM
1033extern void ira_destroy (void);
1034
1035/* ira-costs.c */
1036extern void ira_init_costs_once (void);
1037extern void ira_init_costs (void);
058e97ec 1038extern void ira_costs (void);
1756cb66 1039extern void ira_tune_allocno_costs (void);
058e97ec
VM
1040
1041/* ira-lives.c */
1042
1043extern void ira_rebuild_start_finish_chains (void);
b14151b5 1044extern void ira_print_live_range_list (FILE *, live_range_t);
7b3b6ae4
LC
1045extern void debug (live_range &ref);
1046extern void debug (live_range *ptr);
b14151b5 1047extern void ira_debug_live_range_list (live_range_t);
058e97ec
VM
1048extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1049extern void ira_debug_live_ranges (void);
1050extern void ira_create_allocno_live_ranges (void);
b15a7ae6 1051extern void ira_compress_allocno_live_ranges (void);
058e97ec 1052extern void ira_finish_allocno_live_ranges (void);
8f3f5ac0
L
1053extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1054 alternative_mask);
058e97ec
VM
1055
1056/* ira-conflicts.c */
058e97ec
VM
1057extern void ira_debug_conflicts (bool);
1058extern void ira_build_conflicts (void);
1059
1060/* ira-color.c */
1756cb66 1061extern void ira_debug_hard_regs_forest (void);
058e97ec
VM
1062extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1063extern void ira_reassign_conflict_allocnos (int);
1064extern void ira_initiate_assign (void);
1065extern void ira_finish_assign (void);
1066extern void ira_color (void);
058e97ec
VM
1067
1068/* ira-emit.c */
1756cb66
VM
1069extern void ira_initiate_emit_data (void);
1070extern void ira_finish_emit_data (void);
058e97ec
VM
1071extern void ira_emit (bool);
1072
1073\f
1074
55a2c322
VM
1075/* Return true if equivalence of pseudo REGNO is not a lvalue. */
1076static inline bool
1077ira_equiv_no_lvalue_p (int regno)
1078{
1079 if (regno >= ira_reg_equiv_len)
1080 return false;
1081 return (ira_reg_equiv[regno].constant != NULL_RTX
1082 || ira_reg_equiv[regno].invariant != NULL_RTX
1083 || (ira_reg_equiv[regno].memory != NULL_RTX
1084 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1085}
1086
1087\f
1088
1756cb66
VM
1089/* Initialize register costs for MODE if necessary. */
1090static inline void
ef4bddc2 1091ira_init_register_move_cost_if_necessary (machine_mode mode)
6080348f
VM
1092{
1093 if (ira_register_move_cost[mode] == NULL)
1094 ira_init_register_move_cost (mode);
6080348f
VM
1095}
1096
1097\f
1098
058e97ec 1099/* The iterator for all allocnos. */
84562394 1100struct ira_allocno_iterator {
058e97ec
VM
1101 /* The number of the current element in IRA_ALLOCNOS. */
1102 int n;
84562394 1103};
058e97ec
VM
1104
1105/* Initialize the iterator I. */
1106static inline void
1107ira_allocno_iter_init (ira_allocno_iterator *i)
1108{
1109 i->n = 0;
1110}
1111
1112/* Return TRUE if we have more allocnos to visit, in which case *A is
1113 set to the allocno to be visited. Otherwise, return FALSE. */
1114static inline bool
1115ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1116{
1117 int n;
1118
1119 for (n = i->n; n < ira_allocnos_num; n++)
1120 if (ira_allocnos[n] != NULL)
1121 {
1122 *a = ira_allocnos[n];
1123 i->n = n + 1;
1124 return true;
1125 }
1126 return false;
1127}
1128
1129/* Loop over all allocnos. In each iteration, A is set to the next
1130 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1131 the allocnos. */
1132#define FOR_EACH_ALLOCNO(A, ITER) \
1133 for (ira_allocno_iter_init (&(ITER)); \
1134 ira_allocno_iter_cond (&(ITER), &(A));)
a49ae217
BS
1135\f
1136/* The iterator for all objects. */
84562394 1137struct ira_object_iterator {
ac0ab4f7 1138 /* The number of the current element in ira_object_id_map. */
a49ae217 1139 int n;
84562394 1140};
058e97ec 1141
a49ae217
BS
1142/* Initialize the iterator I. */
1143static inline void
1144ira_object_iter_init (ira_object_iterator *i)
1145{
1146 i->n = 0;
1147}
1148
1149/* Return TRUE if we have more objects to visit, in which case *OBJ is
1150 set to the object to be visited. Otherwise, return FALSE. */
1151static inline bool
1152ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1153{
1154 int n;
058e97ec 1155
a49ae217
BS
1156 for (n = i->n; n < ira_objects_num; n++)
1157 if (ira_object_id_map[n] != NULL)
1158 {
1159 *obj = ira_object_id_map[n];
1160 i->n = n + 1;
1161 return true;
1162 }
1163 return false;
1164}
1165
ac0ab4f7
BS
1166/* Loop over all objects. In each iteration, OBJ is set to the next
1167 object. ITER is an instance of ira_object_iterator used to iterate
a49ae217
BS
1168 the objects. */
1169#define FOR_EACH_OBJECT(OBJ, ITER) \
1170 for (ira_object_iter_init (&(ITER)); \
1171 ira_object_iter_cond (&(ITER), &(OBJ));)
058e97ec 1172\f
ac0ab4f7 1173/* The iterator for objects associated with an allocno. */
84562394 1174struct ira_allocno_object_iterator {
ac0ab4f7
BS
1175 /* The number of the element the allocno's object array. */
1176 int n;
84562394 1177};
ac0ab4f7
BS
1178
1179/* Initialize the iterator I. */
1180static inline void
1181ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1182{
1183 i->n = 0;
1184}
1185
1186/* Return TRUE if we have more objects to visit in allocno A, in which
1187 case *O is set to the object to be visited. Otherwise, return
1188 FALSE. */
1189static inline bool
1190ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1191 ira_object_t *o)
1192{
d0a854af
RG
1193 int n = i->n++;
1194 if (n < ALLOCNO_NUM_OBJECTS (a))
1195 {
1196 *o = ALLOCNO_OBJECT (a, n);
1197 return true;
1198 }
1199 return false;
ac0ab4f7
BS
1200}
1201
1202/* Loop over all objects associated with allocno A. In each
1203 iteration, O is set to the next object. ITER is an instance of
1204 ira_allocno_object_iterator used to iterate the conflicts. */
1205#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1206 for (ira_allocno_object_iter_init (&(ITER)); \
1207 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1208\f
058e97ec 1209
3b6d1699 1210/* The iterator for prefs. */
84562394 1211struct ira_pref_iterator {
3b6d1699
VM
1212 /* The number of the current element in IRA_PREFS. */
1213 int n;
84562394 1214};
3b6d1699
VM
1215
1216/* Initialize the iterator I. */
1217static inline void
1218ira_pref_iter_init (ira_pref_iterator *i)
1219{
1220 i->n = 0;
1221}
1222
1223/* Return TRUE if we have more prefs to visit, in which case *PREF is
1224 set to the pref to be visited. Otherwise, return FALSE. */
1225static inline bool
1226ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1227{
1228 int n;
1229
1230 for (n = i->n; n < ira_prefs_num; n++)
1231 if (ira_prefs[n] != NULL)
1232 {
1233 *pref = ira_prefs[n];
1234 i->n = n + 1;
1235 return true;
1236 }
1237 return false;
1238}
1239
1240/* Loop over all prefs. In each iteration, P is set to the next
1241 pref. ITER is an instance of ira_pref_iterator used to iterate
1242 the prefs. */
1243#define FOR_EACH_PREF(P, ITER) \
1244 for (ira_pref_iter_init (&(ITER)); \
1245 ira_pref_iter_cond (&(ITER), &(P));)
1246\f
1247
058e97ec 1248/* The iterator for copies. */
84562394 1249struct ira_copy_iterator {
058e97ec
VM
1250 /* The number of the current element in IRA_COPIES. */
1251 int n;
84562394 1252};
058e97ec
VM
1253
1254/* Initialize the iterator I. */
1255static inline void
1256ira_copy_iter_init (ira_copy_iterator *i)
1257{
1258 i->n = 0;
1259}
1260
1261/* Return TRUE if we have more copies to visit, in which case *CP is
1262 set to the copy to be visited. Otherwise, return FALSE. */
1263static inline bool
1264ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1265{
1266 int n;
1267
1268 for (n = i->n; n < ira_copies_num; n++)
1269 if (ira_copies[n] != NULL)
1270 {
1271 *cp = ira_copies[n];
1272 i->n = n + 1;
1273 return true;
1274 }
1275 return false;
1276}
1277
1278/* Loop over all copies. In each iteration, C is set to the next
1279 copy. ITER is an instance of ira_copy_iterator used to iterate
1280 the copies. */
1281#define FOR_EACH_COPY(C, ITER) \
1282 for (ira_copy_iter_init (&(ITER)); \
1283 ira_copy_iter_cond (&(ITER), &(C));)
058e97ec 1284\f
ac0ab4f7 1285/* The iterator for object conflicts. */
84562394 1286struct ira_object_conflict_iterator {
ac0ab4f7
BS
1287
1288 /* TRUE if the conflicts are represented by vector of allocnos. */
a49ae217 1289 bool conflict_vec_p;
058e97ec
VM
1290
1291 /* The conflict vector or conflict bit vector. */
1292 void *vec;
1293
1294 /* The number of the current element in the vector (of type
a49ae217 1295 ira_object_t or IRA_INT_TYPE). */
058e97ec
VM
1296 unsigned int word_num;
1297
1298 /* The bit vector size. It is defined only if
a49ae217 1299 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1300 unsigned int size;
1301
1302 /* The current bit index of bit vector. It is defined only if
a49ae217 1303 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1304 unsigned int bit_num;
1305
a49ae217
BS
1306 /* The object id corresponding to the 1st bit of the bit vector. It
1307 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1308 int base_conflict_id;
1309
1310 /* The word of bit vector currently visited. It is defined only if
a49ae217 1311 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec 1312 unsigned IRA_INT_TYPE word;
84562394 1313};
058e97ec
VM
1314
1315/* Initialize the iterator I with ALLOCNO conflicts. */
1316static inline void
fa86d337
BS
1317ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1318 ira_object_t obj)
058e97ec 1319{
a49ae217
BS
1320 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1321 i->vec = OBJECT_CONFLICT_ARRAY (obj);
058e97ec 1322 i->word_num = 0;
a49ae217 1323 if (i->conflict_vec_p)
058e97ec
VM
1324 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1325 else
1326 {
a49ae217 1327 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
058e97ec
VM
1328 i->size = 0;
1329 else
a49ae217 1330 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
058e97ec
VM
1331 + IRA_INT_BITS)
1332 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1333 i->bit_num = 0;
a49ae217 1334 i->base_conflict_id = OBJECT_MIN (obj);
058e97ec
VM
1335 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1336 }
1337}
1338
1339/* Return TRUE if we have more conflicting allocnos to visit, in which
1340 case *A is set to the allocno to be visited. Otherwise, return
1341 FALSE. */
1342static inline bool
fa86d337
BS
1343ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1344 ira_object_t *pobj)
058e97ec 1345{
a49ae217 1346 ira_object_t obj;
058e97ec 1347
a49ae217 1348 if (i->conflict_vec_p)
058e97ec 1349 {
1756cb66 1350 obj = ((ira_object_t *) i->vec)[i->word_num++];
a49ae217 1351 if (obj == NULL)
058e97ec 1352 return false;
058e97ec
VM
1353 }
1354 else
1355 {
1756cb66
VM
1356 unsigned IRA_INT_TYPE word = i->word;
1357 unsigned int bit_num = i->bit_num;
1358
058e97ec 1359 /* Skip words that are zeros. */
1756cb66 1360 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
058e97ec
VM
1361 {
1362 i->word_num++;
b8698a0f 1363
058e97ec
VM
1364 /* If we have reached the end, break. */
1365 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1366 return false;
b8698a0f 1367
1756cb66 1368 bit_num = i->word_num * IRA_INT_BITS;
058e97ec 1369 }
b8698a0f 1370
058e97ec 1371 /* Skip bits that are zero. */
1756cb66
VM
1372 for (; (word & 1) == 0; word >>= 1)
1373 bit_num++;
b8698a0f 1374
1756cb66
VM
1375 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1376 i->bit_num = bit_num + 1;
1377 i->word = word >> 1;
058e97ec 1378 }
a49ae217 1379
fa86d337 1380 *pobj = obj;
a49ae217 1381 return true;
058e97ec
VM
1382}
1383
fa86d337
BS
1384/* Loop over all objects conflicting with OBJ. In each iteration,
1385 CONF is set to the next conflicting object. ITER is an instance
1386 of ira_object_conflict_iterator used to iterate the conflicts. */
1387#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1388 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1756cb66 1389 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
058e97ec
VM
1390
1391\f
1392
1756cb66
VM
1393/* The function returns TRUE if at least one hard register from ones
1394 starting with HARD_REGNO and containing value of MODE are in set
1395 HARD_REGSET. */
1396static inline bool
ef4bddc2 1397ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1756cb66
VM
1398 HARD_REG_SET hard_regset)
1399{
1400 int i;
1401
1402 gcc_assert (hard_regno >= 0);
ad474626 1403 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1756cb66
VM
1404 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1405 return true;
1406 return false;
1407}
1408
1409/* Return number of hard registers in hard register SET. */
1410static inline int
1411hard_reg_set_size (HARD_REG_SET set)
1412{
1413 int i, size;
1414
1415 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1416 if (TEST_HARD_REG_BIT (set, i))
1417 size++;
1418 return size;
1419}
1420
058e97ec 1421/* The function returns TRUE if hard registers starting with
9181a6e5 1422 HARD_REGNO and containing value of MODE are fully in set
058e97ec
VM
1423 HARD_REGSET. */
1424static inline bool
ef4bddc2 1425ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
9181a6e5 1426 HARD_REG_SET hard_regset)
058e97ec
VM
1427{
1428 int i;
1429
1430 ira_assert (hard_regno >= 0);
ad474626 1431 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
9181a6e5 1432 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
058e97ec
VM
1433 return false;
1434 return true;
1435}
1436
1437\f
1438
1439/* To save memory we use a lazy approach for allocation and
1440 initialization of the cost vectors. We do this only when it is
1441 really necessary. */
1442
1756cb66 1443/* Allocate cost vector *VEC for hard registers of ACLASS and
058e97ec
VM
1444 initialize the elements by VAL if it is necessary */
1445static inline void
6f76a878 1446ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
058e97ec
VM
1447{
1448 int i, *reg_costs;
1449 int len;
1450
1451 if (*vec != NULL)
1452 return;
1756cb66 1453 *vec = reg_costs = ira_allocate_cost_vector (aclass);
6f76a878 1454 len = ira_class_hard_regs_num[(int) aclass];
058e97ec
VM
1455 for (i = 0; i < len; i++)
1456 reg_costs[i] = val;
1457}
1458
1756cb66
VM
1459/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1460 values of vector SRC into the vector if it is necessary */
058e97ec 1461static inline void
1756cb66 1462ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1463{
1464 int len;
1465
1466 if (*vec != NULL || src == NULL)
1467 return;
1756cb66
VM
1468 *vec = ira_allocate_cost_vector (aclass);
1469 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1470 memcpy (*vec, src, sizeof (int) * len);
1471}
1472
1756cb66
VM
1473/* Allocate cost vector *VEC for hard registers of ACLASS and add
1474 values of vector SRC into the vector if it is necessary */
058e97ec 1475static inline void
1756cb66 1476ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1477{
1478 int i, len;
1479
1480 if (src == NULL)
1481 return;
1756cb66 1482 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1483 if (*vec == NULL)
1484 {
1756cb66 1485 *vec = ira_allocate_cost_vector (aclass);
058e97ec
VM
1486 memset (*vec, 0, sizeof (int) * len);
1487 }
1488 for (i = 0; i < len; i++)
1489 (*vec)[i] += src[i];
1490}
1491
1756cb66
VM
1492/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1493 values of vector SRC into the vector or initialize it by VAL (if
1494 SRC is null). */
058e97ec 1495static inline void
1756cb66 1496ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
058e97ec
VM
1497 int val, int *src)
1498{
1499 int i, *reg_costs;
1500 int len;
1501
1502 if (*vec != NULL)
1503 return;
1756cb66
VM
1504 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1505 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1506 if (src != NULL)
1507 memcpy (reg_costs, src, sizeof (int) * len);
1508 else
1509 {
1510 for (i = 0; i < len; i++)
1511 reg_costs[i] = val;
1512 }
1513}
acf41a74
BS
1514
1515extern rtx ira_create_new_reg (rtx);
1516extern int first_moveable_pseudo, last_moveable_pseudo;
f1717f8d 1517
6c476222
RS
1518/* Return the set of registers that would need a caller save if allocno A
1519 overlapped them. */
1520
1521inline HARD_REG_SET
1522ira_need_caller_save_regs (ira_allocno_t a)
1523{
1524 return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a),
1525 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1526 ALLOCNO_MODE (a));
1527}
1528
1529/* Return true if we would need to save allocno A around a call if we
1530 assigned hard register REGNO. */
1531
1532inline bool
1533ira_need_caller_save_p (ira_allocno_t a, unsigned int regno)
1534{
1535 if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0)
1536 return false;
1537 return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a),
1538 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1539 ALLOCNO_MODE (a), regno);
1540}
1541
f1717f8d 1542#endif /* GCC_IRA_INT_H */