]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
re PR rtl-optimization/63475 (Postreload CSE propagates aliased memory operand)
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
23a5b65a 2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
f1717f8d
KC
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
058e97ec
VM
24#include "cfgloop.h"
25#include "ira.h"
26#include "alloc-pool.h"
27
28/* To provide consistency in naming, all IRA external variables,
29 functions, common typedefs start with prefix ira_. */
30
31#ifdef ENABLE_CHECKING
32#define ENABLE_IRA_CHECKING
33#endif
34
35#ifdef ENABLE_IRA_CHECKING
36#define ira_assert(c) gcc_assert (c)
37#else
f7556aae 38/* Always define and include C, so that warnings for empty body in an
7b3b6ae4 39 'if' statement and unused variable do not occur. */
f7556aae 40#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
41#endif
42
43/* Compute register frequency from edge frequency FREQ. It is
44 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
45 profile driven feedback is available and the function is never
46 executed, frequency is always equivalent. Otherwise rescale the
47 edge frequency. */
cf40f973
DC
48#define REG_FREQ_FROM_EDGE_FREQ(freq) \
49 (optimize_function_for_size_p (cfun) \
fefa31b5 50 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
058e97ec
VM
51 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
52
058e97ec
VM
53/* A modified value of flag `-fira-verbose' used internally. */
54extern int internal_flag_ira_verbose;
55
56/* Dump file of the allocator if it is not NULL. */
57extern FILE *ira_dump_file;
58
59/* Typedefs for pointers to allocno live range, allocno, and copy of
60 allocnos. */
b14151b5 61typedef struct live_range *live_range_t;
058e97ec 62typedef struct ira_allocno *ira_allocno_t;
3b6d1699 63typedef struct ira_allocno_pref *ira_pref_t;
058e97ec 64typedef struct ira_allocno_copy *ira_copy_t;
a49ae217 65typedef struct ira_object *ira_object_t;
058e97ec
VM
66
67/* Definition of vector of allocnos and copies. */
058e97ec
VM
68
69/* Typedef for pointer to the subsequent structure. */
70typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
71
e80ccebc
RS
72typedef unsigned short move_table[N_REG_CLASSES];
73
058e97ec
VM
74/* In general case, IRA is a regional allocator. The regions are
75 nested and form a tree. Currently regions are natural loops. The
76 following structure describes loop tree node (representing basic
77 block or loop). We need such tree because the loop tree from
78 cfgloop.h is not convenient for the optimization: basic blocks are
79 not a part of the tree from cfgloop.h. We also use the nodes for
80 storing additional information about basic blocks/loops for the
81 register allocation purposes. */
82struct ira_loop_tree_node
83{
84 /* The node represents basic block if children == NULL. */
85 basic_block bb; /* NULL for loop. */
2608d841
VM
86 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
87 struct loop *loop;
af51c885
AN
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 90 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
058e97ec
VM
93 ira_loop_tree_node_t subloops, children;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent;
96
97 /* Loop level in range [0, ira_loop_tree_height). */
98 int level;
99
100 /* All the following members are defined only for nodes representing
101 loops. */
102
2608d841
VM
103 /* The loop number from CFG loop tree. The root number is 0. */
104 int loop_num;
105
30ea859e
VM
106 /* True if the loop was marked for removal from the register
107 allocation. */
108 bool to_remove_p;
109
058e97ec
VM
110 /* Allocnos in the loop corresponding to their regnos. If it is
111 NULL the loop does not form a separate register allocation region
112 (e.g. because it has abnormal enter/exit edges and we can not put
113 code for register shuffling on the edges if a different
114 allocation is used for a pseudo-register on different sides of
115 the edges). Caps are not in the map (remember we can have more
116 one cap with the same regno in a region). */
117 ira_allocno_t *regno_allocno_map;
118
ea1c67e6
VM
119 /* True if there is an entry to given loop not from its parent (or
120 grandparent) basic block. For example, it is possible for two
121 adjacent loops inside another loop. */
122 bool entered_from_non_parent_p;
123
058e97ec 124 /* Maximal register pressure inside loop for given register class
1756cb66 125 (defined only for the pressure classes). */
058e97ec
VM
126 int reg_pressure[N_REG_CLASSES];
127
49d988e7
VM
128 /* Numbers of allocnos referred or living in the loop node (except
129 for its subloops). */
130 bitmap all_allocnos;
131
132 /* Numbers of allocnos living at the loop borders. */
133 bitmap border_allocnos;
058e97ec
VM
134
135 /* Regnos of pseudos modified in the loop node (including its
136 subloops). */
137 bitmap modified_regnos;
138
058e97ec
VM
139 /* Numbers of copies referred in the corresponding loop. */
140 bitmap local_copies;
141};
142
143/* The root of the loop tree corresponding to the all function. */
144extern ira_loop_tree_node_t ira_loop_tree_root;
145
146/* Height of the loop tree. */
147extern int ira_loop_tree_height;
148
149/* All nodes representing basic blocks are referred through the
150 following array. We can not use basic block member `aux' for this
151 because it is used for insertion of insns on edges. */
152extern ira_loop_tree_node_t ira_bb_nodes;
153
154/* Two access macros to the nodes representing basic blocks. */
155#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
156#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
2608d841 157(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
058e97ec
VM
158 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 { \
160 fprintf (stderr, \
161 "\n%s: %d: error in %s: it is not a block node\n", \
162 __FILE__, __LINE__, __FUNCTION__); \
163 gcc_unreachable (); \
164 } \
165 _node; }))
166#else
167#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
168#endif
169
170#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171
172/* All nodes representing loops are referred through the following
173 array. */
174extern ira_loop_tree_node_t ira_loop_nodes;
175
176/* Two access macros to the nodes representing loops. */
177#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
178#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
2608d841
VM
179(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
180 if (_node->children == NULL || _node->bb != NULL \
181 || (_node->loop == NULL && current_loops != NULL)) \
058e97ec
VM
182 { \
183 fprintf (stderr, \
184 "\n%s: %d: error in %s: it is not a loop node\n", \
185 __FILE__, __LINE__, __FUNCTION__); \
186 gcc_unreachable (); \
187 } \
188 _node; }))
189#else
190#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
191#endif
192
193#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
194
195\f
058e97ec 196/* The structure describes program points where a given allocno lives.
1756cb66
VM
197 If the live ranges of two allocnos are intersected, the allocnos
198 are in conflict. */
b14151b5 199struct live_range
058e97ec 200{
ac0ab4f7 201 /* Object whose live range is described by given structure. */
9140d27b 202 ira_object_t object;
058e97ec
VM
203 /* Program point range. */
204 int start, finish;
205 /* Next structure describing program points where the allocno
206 lives. */
b14151b5 207 live_range_t next;
058e97ec 208 /* Pointer to structures with the same start/finish. */
b14151b5 209 live_range_t start_next, finish_next;
058e97ec
VM
210};
211
212/* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219extern int ira_max_point;
220
221/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
b14151b5 223extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
058e97ec 224
a49ae217
BS
225/* A structure representing conflict information for an allocno
226 (or one of its subwords). */
227struct ira_object
228{
229 /* The allocno associated with this record. */
230 ira_allocno_t allocno;
231 /* Vector of accumulated conflicting conflict_redords with NULL end
232 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
1756cb66 233 otherwise. */
a49ae217 234 void *conflicts_array;
9140d27b
BS
235 /* Pointer to structures describing at what program point the
236 object lives. We always maintain the list in such way that *the
237 ranges in the list are not intersected and ordered by decreasing
238 their program points*. */
239 live_range_t live_ranges;
ac0ab4f7
BS
240 /* The subword within ALLOCNO which is represented by this object.
241 Zero means the lowest-order subword (or the entire allocno in case
242 it is not being tracked in subwords). */
243 int subword;
9140d27b 244 /* Allocated size of the conflicts array. */
a49ae217 245 unsigned int conflicts_array_size;
ac0ab4f7 246 /* A unique number for every instance of this structure, which is used
a49ae217
BS
247 to represent it in conflict bit vectors. */
248 int id;
249 /* Before building conflicts, MIN and MAX are initialized to
250 correspondingly minimal and maximal points of the accumulated
ac0ab4f7
BS
251 live ranges. Afterwards, they hold the minimal and maximal ids
252 of other ira_objects that this one can conflict with. */
a49ae217
BS
253 int min, max;
254 /* Initial and accumulated hard registers conflicting with this
ac0ab4f7 255 object and as a consequences can not be assigned to the allocno.
1756cb66 256 All non-allocatable hard regs and hard regs of register classes
ac0ab4f7 257 different from given allocno one are included in the sets. */
a49ae217
BS
258 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
259 /* Number of accumulated conflicts in the vector of conflicting
ac0ab4f7 260 objects. */
a49ae217
BS
261 int num_accumulated_conflicts;
262 /* TRUE if conflicts are represented by a vector of pointers to
263 ira_object structures. Otherwise, we use a bit vector indexed
264 by conflict ID numbers. */
265 unsigned int conflict_vec_p : 1;
266};
267
058e97ec
VM
268/* A structure representing an allocno (allocation entity). Allocno
269 represents a pseudo-register in an allocation region. If
270 pseudo-register does not live in a region but it lives in the
271 nested regions, it is represented in the region by special allocno
272 called *cap*. There may be more one cap representing the same
273 pseudo-register in region. It means that the corresponding
274 pseudo-register lives in more one non-intersected subregion. */
275struct ira_allocno
276{
277 /* The allocno order number starting with 0. Each allocno has an
278 unique number and the number is never changed for the
279 allocno. */
280 int num;
281 /* Regno for allocno or cap. */
282 int regno;
283 /* Mode of the allocno which is the mode of the corresponding
284 pseudo-register. */
1756cb66 285 ENUM_BITFIELD (machine_mode) mode : 8;
d1bb282e
DS
286 /* Widest mode of the allocno which in at least one case could be
287 for paradoxical subregs where wmode > mode. */
288 ENUM_BITFIELD (machine_mode) wmode : 8;
1756cb66
VM
289 /* Register class which should be used for allocation for given
290 allocno. NO_REGS means that we should use memory. */
291 ENUM_BITFIELD (reg_class) aclass : 16;
292 /* During the reload, value TRUE means that we should not reassign a
293 hard register to the allocno got memory earlier. It is set up
294 when we removed memory-memory move insn before each iteration of
295 the reload. */
296 unsigned int dont_reassign_p : 1;
297#ifdef STACK_REGS
298 /* Set to TRUE if allocno can't be assigned to the stack hard
299 register correspondingly in this region and area including the
300 region and all its subregions recursively. */
301 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
302#endif
303 /* TRUE value means that there is no sense to spill the allocno
304 during coloring because the spill will result in additional
305 reloads in reload pass. */
306 unsigned int bad_spill_p : 1;
307 /* TRUE if a hard register or memory has been assigned to the
308 allocno. */
309 unsigned int assigned_p : 1;
310 /* TRUE if conflicts for given allocno are represented by vector of
311 pointers to the conflicting allocnos. Otherwise, we use a bit
312 vector where a bit with given index represents allocno with the
313 same number. */
314 unsigned int conflict_vec_p : 1;
058e97ec
VM
315 /* Hard register assigned to given allocno. Negative value means
316 that memory was allocated to the allocno. During the reload,
317 spilled allocno has value equal to the corresponding stack slot
318 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
319 reload (at this point pseudo-register has only one allocno) which
320 did not get stack slot yet. */
8684302d 321 signed int hard_regno : 16;
058e97ec
VM
322 /* Allocnos with the same regno are linked by the following member.
323 Allocnos corresponding to inner loops are first in the list (it
324 corresponds to depth-first traverse of the loops). */
325 ira_allocno_t next_regno_allocno;
326 /* There may be different allocnos with the same regno in different
327 regions. Allocnos are bound to the corresponding loop tree node.
328 Pseudo-register may have only one regular allocno with given loop
329 tree node but more than one cap (see comments above). */
330 ira_loop_tree_node_t loop_tree_node;
331 /* Accumulated usage references of the allocno. Here and below,
332 word 'accumulated' means info for given region and all nested
333 subregions. In this case, 'accumulated' means sum of references
334 of the corresponding pseudo-register in this region and in all
335 nested subregions recursively. */
336 int nrefs;
337 /* Accumulated frequency of usage of the allocno. */
338 int freq;
cb1ca6ac 339 /* Minimal accumulated and updated costs of usage register of the
1756cb66
VM
340 allocno class. */
341 int class_cost, updated_class_cost;
058e97ec
VM
342 /* Minimal accumulated, and updated costs of memory for the allocno.
343 At the allocation start, the original and updated costs are
344 equal. The updated cost may be changed after finishing
345 allocation in a region and starting allocation in a subregion.
346 The change reflects the cost of spill/restore code on the
347 subregion border if we assign memory to the pseudo in the
348 subregion. */
349 int memory_cost, updated_memory_cost;
350 /* Accumulated number of points where the allocno lives and there is
351 excess pressure for its class. Excess pressure for a register
352 class at some point means that there are more allocnos of given
353 register class living at the point than number of hard-registers
354 of the class available for the allocation. */
355 int excess_pressure_points_num;
3b6d1699
VM
356 /* Allocno hard reg preferences. */
357 ira_pref_t allocno_prefs;
058e97ec
VM
358 /* Copies to other non-conflicting allocnos. The copies can
359 represent move insn or potential move insn usually because of two
360 operand insn constraints. */
361 ira_copy_t allocno_copies;
362 /* It is a allocno (cap) representing given allocno on upper loop tree
363 level. */
364 ira_allocno_t cap;
365 /* It is a link to allocno (cap) on lower loop level represented by
366 given cap. Null if given allocno is not a cap. */
367 ira_allocno_t cap_member;
ac0ab4f7
BS
368 /* The number of objects tracked in the following array. */
369 int num_objects;
370 /* An array of structures describing conflict information and live
371 ranges for each object associated with the allocno. There may be
372 more than one such object in cases where the allocno represents a
373 multi-word register. */
374 ira_object_t objects[2];
058e97ec
VM
375 /* Accumulated frequency of calls which given allocno
376 intersects. */
377 int call_freq;
a812fb07 378 /* Accumulated number of the intersected calls. */
058e97ec 379 int calls_crossed_num;
e384e6b5
BS
380 /* The number of calls across which it is live, but which should not
381 affect register preferences. */
382 int cheap_calls_crossed_num;
c2ba7e7a
RO
383 /* Registers clobbered by intersected calls. */
384 HARD_REG_SET crossed_calls_clobbered_regs;
058e97ec 385 /* Array of usage costs (accumulated and the one updated during
1756cb66 386 coloring) for each hard register of the allocno class. The
058e97ec 387 member value can be NULL if all costs are the same and equal to
1756cb66 388 CLASS_COST. For example, the costs of two different hard
058e97ec
VM
389 registers can be different if one hard register is callee-saved
390 and another one is callee-used and the allocno lives through
391 calls. Another example can be case when for some insn the
392 corresponding pseudo-register value should be put in specific
393 register class (e.g. AREG for x86) which is a strict subset of
1756cb66
VM
394 the allocno class (GENERAL_REGS for x86). We have updated costs
395 to reflect the situation when the usage cost of a hard register
396 is decreased because the allocno is connected to another allocno
397 by a copy and the another allocno has been assigned to the hard
398 register. */
058e97ec
VM
399 int *hard_reg_costs, *updated_hard_reg_costs;
400 /* Array of decreasing costs (accumulated and the one updated during
401 coloring) for allocnos conflicting with given allocno for hard
1756cb66
VM
402 regno of the allocno class. The member value can be NULL if all
403 costs are the same. These costs are used to reflect preferences
404 of other allocnos not assigned yet during assigning to given
405 allocno. */
058e97ec 406 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
1756cb66
VM
407 /* Different additional data. It is used to decrease size of
408 allocno data footprint. */
409 void *add_data;
058e97ec
VM
410};
411
1756cb66 412
058e97ec
VM
413/* All members of the allocno structures should be accessed only
414 through the following macros. */
415#define ALLOCNO_NUM(A) ((A)->num)
416#define ALLOCNO_REGNO(A) ((A)->regno)
417#define ALLOCNO_REG(A) ((A)->reg)
418#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
419#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
420#define ALLOCNO_CAP(A) ((A)->cap)
421#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
058e97ec
VM
422#define ALLOCNO_NREFS(A) ((A)->nrefs)
423#define ALLOCNO_FREQ(A) ((A)->freq)
424#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
425#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
426#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
e384e6b5 427#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
c2ba7e7a
RO
428#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
429 ((A)->crossed_calls_clobbered_regs)
058e97ec
VM
430#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
431#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
432#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
433#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
434#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
435#ifdef STACK_REGS
436#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
437#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
438#endif
927425df 439#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec 440#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
058e97ec 441#define ALLOCNO_MODE(A) ((A)->mode)
d1bb282e 442#define ALLOCNO_WMODE(A) ((A)->wmode)
3b6d1699 443#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
058e97ec
VM
444#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->conflict_hard_reg_costs)
449#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450 ((A)->updated_conflict_hard_reg_costs)
1756cb66
VM
451#define ALLOCNO_CLASS(A) ((A)->aclass)
452#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
453#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
058e97ec
VM
454#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
455#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
1756cb66
VM
456#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
457 ((A)->excess_pressure_points_num)
ac0ab4f7
BS
458#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
459#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
1756cb66 460#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
a49ae217 461
1756cb66
VM
462/* Typedef for pointer to the subsequent structure. */
463typedef struct ira_emit_data *ira_emit_data_t;
464
465/* Allocno bound data used for emit pseudo live range split insns and
466 to flattening IR. */
467struct ira_emit_data
468{
469 /* TRUE if the allocno assigned to memory was a destination of
470 removed move (see ira-emit.c) at loop exit because the value of
471 the corresponding pseudo-register is not changed inside the
472 loop. */
473 unsigned int mem_optimized_dest_p : 1;
474 /* TRUE if the corresponding pseudo-register has disjoint live
475 ranges and the other allocnos of the pseudo-register except this
476 one changed REG. */
477 unsigned int somewhere_renamed_p : 1;
478 /* TRUE if allocno with the same REGNO in a subregion has been
479 renamed, in other words, got a new pseudo-register. */
480 unsigned int child_renamed_p : 1;
481 /* Final rtx representation of the allocno. */
482 rtx reg;
483 /* Non NULL if we remove restoring value from given allocno to
484 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
485 allocno value is not changed inside the loop. */
486 ira_allocno_t mem_optimized_dest;
487};
488
489#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
490
491/* Data used to emit live range split insns and to flattening IR. */
492extern ira_emit_data_t ira_allocno_emit_data;
493
494/* Abbreviation for frequent emit data access. */
495static inline rtx
496allocno_emit_reg (ira_allocno_t a)
497{
498 return ALLOCNO_EMIT_DATA (a)->reg;
499}
500
501#define OBJECT_ALLOCNO(O) ((O)->allocno)
502#define OBJECT_SUBWORD(O) ((O)->subword)
503#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
504#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
505#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
506#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
507#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
508#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
509#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
510#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
511#define OBJECT_MIN(O) ((O)->min)
512#define OBJECT_MAX(O) ((O)->max)
513#define OBJECT_CONFLICT_ID(O) ((O)->id)
514#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
058e97ec 515
b8698a0f 516/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
517 allocno member `next_regno_allocno'). */
518extern ira_allocno_t *ira_regno_allocno_map;
519
520/* Array of references to all allocnos. The order number of the
521 allocno corresponds to the index in the array. Removed allocnos
522 have NULL element value. */
523extern ira_allocno_t *ira_allocnos;
524
a49ae217 525/* The size of the previous array. */
058e97ec
VM
526extern int ira_allocnos_num;
527
a49ae217
BS
528/* Map a conflict id to its corresponding ira_object structure. */
529extern ira_object_t *ira_object_id_map;
530
531/* The size of the previous array. */
532extern int ira_objects_num;
058e97ec 533
3b6d1699
VM
534/* The following structure represents a hard register prefererence of
535 allocno. The preference represent move insns or potential move
536 insns usually because of two operand insn constraints. One move
537 operand is a hard register. */
538struct ira_allocno_pref
539{
540 /* The unique order number of the preference node starting with 0. */
541 int num;
542 /* Preferred hard register. */
543 int hard_regno;
544 /* Accumulated execution frequency of insns from which the
545 preference created. */
546 int freq;
547 /* Given allocno. */
548 ira_allocno_t allocno;
549 /* All prefernces with the same allocno are linked by the following
550 member. */
551 ira_pref_t next_pref;
552};
553
554/* Array of references to all allocno preferences. The order number
555 of the preference corresponds to the index in the array. */
556extern ira_pref_t *ira_prefs;
557
558/* Size of the previous array. */
559extern int ira_prefs_num;
560
058e97ec
VM
561/* The following structure represents a copy of two allocnos. The
562 copies represent move insns or potential move insns usually because
563 of two operand insn constraints. To remove register shuffle, we
564 also create copies between allocno which is output of an insn and
565 allocno becoming dead in the insn. */
566struct ira_allocno_copy
567{
568 /* The unique order number of the copy node starting with 0. */
569 int num;
570 /* Allocnos connected by the copy. The first allocno should have
571 smaller order number than the second one. */
572 ira_allocno_t first, second;
573 /* Execution frequency of the copy. */
574 int freq;
548a6322 575 bool constraint_p;
058e97ec
VM
576 /* It is a move insn which is an origin of the copy. The member
577 value for the copy representing two operand insn constraints or
578 for the copy created to remove register shuffle is NULL. In last
579 case the copy frequency is smaller than the corresponding insn
580 execution frequency. */
070a1983 581 rtx_insn *insn;
058e97ec
VM
582 /* All copies with the same allocno as FIRST are linked by the two
583 following members. */
584 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
585 /* All copies with the same allocno as SECOND are linked by the two
586 following members. */
587 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
588 /* Region from which given copy is originated. */
589 ira_loop_tree_node_t loop_tree_node;
590};
591
592/* Array of references to all copies. The order number of the copy
593 corresponds to the index in the array. Removed copies have NULL
594 element value. */
595extern ira_copy_t *ira_copies;
596
597/* Size of the previous array. */
598extern int ira_copies_num;
599
600/* The following structure describes a stack slot used for spilled
601 pseudo-registers. */
602struct ira_spilled_reg_stack_slot
603{
604 /* pseudo-registers assigned to the stack slot. */
7a8cba34 605 bitmap_head spilled_regs;
058e97ec
VM
606 /* RTL representation of the stack slot. */
607 rtx mem;
608 /* Size of the stack slot. */
609 unsigned int width;
610};
611
612/* The number of elements in the following array. */
613extern int ira_spilled_reg_stack_slots_num;
614
615/* The following array contains info about spilled pseudo-registers
616 stack slots used in current function so far. */
617extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
618
619/* Correspondingly overall cost of the allocation, cost of the
620 allocnos assigned to hard-registers, cost of the allocnos assigned
621 to memory, cost of loads, stores and register move insns generated
622 for pseudo-register live range splitting (see ira-emit.c). */
623extern int ira_overall_cost;
624extern int ira_reg_cost, ira_mem_cost;
625extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
626extern int ira_move_loops_num, ira_additional_jumps_num;
1756cb66 627
42ce1cc4
BS
628\f
629/* This page contains a bitset implementation called 'min/max sets' used to
630 record conflicts in IRA.
631 They are named min/maxs set since we keep track of a minimum and a maximum
632 bit number for each set representing the bounds of valid elements. Otherwise,
633 the implementation resembles sbitmaps in that we store an array of integers
634 whose bits directly represent the members of the set. */
635
636/* The type used as elements in the array, and the number of bits in
637 this type. */
ac0ab4f7 638
058e97ec
VM
639#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
640#define IRA_INT_TYPE HOST_WIDE_INT
641
642/* Set, clear or test bit number I in R, a bit vector of elements with
643 minimal index and maximal index equal correspondingly to MIN and
644 MAX. */
645#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
646
42ce1cc4 647#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
648 (({ int _min = (MIN), _max = (MAX), _i = (I); \
649 if (_i < _min || _i > _max) \
650 { \
651 fprintf (stderr, \
652 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
653 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
654 gcc_unreachable (); \
655 } \
656 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
657 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 658
058e97ec 659
42ce1cc4 660#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
661 (({ int _min = (MIN), _max = (MAX), _i = (I); \
662 if (_i < _min || _i > _max) \
663 { \
664 fprintf (stderr, \
665 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
666 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
667 gcc_unreachable (); \
668 } \
669 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
670 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
671
42ce1cc4 672#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
673 (({ int _min = (MIN), _max = (MAX), _i = (I); \
674 if (_i < _min || _i > _max) \
675 { \
676 fprintf (stderr, \
677 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
678 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
679 gcc_unreachable (); \
680 } \
681 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
682 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
683
684#else
685
42ce1cc4 686#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
687 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
688 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
689
42ce1cc4 690#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
691 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
692 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693
42ce1cc4 694#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
695 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
696 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
697
698#endif
699
42ce1cc4 700/* The iterator for min/max sets. */
84562394 701struct minmax_set_iterator {
058e97ec 702
42ce1cc4 703 /* Array containing the bit vector. */
058e97ec
VM
704 IRA_INT_TYPE *vec;
705
706 /* The number of the current element in the vector. */
707 unsigned int word_num;
708
709 /* The number of bits in the bit vector. */
710 unsigned int nel;
711
712 /* The current bit index of the bit vector. */
713 unsigned int bit_num;
714
715 /* Index corresponding to the 1st bit of the bit vector. */
716 int start_val;
717
718 /* The word of the bit vector currently visited. */
719 unsigned IRA_INT_TYPE word;
84562394 720};
058e97ec 721
42ce1cc4
BS
722/* Initialize the iterator I for bit vector VEC containing minimal and
723 maximal values MIN and MAX. */
058e97ec 724static inline void
42ce1cc4
BS
725minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
726 int max)
058e97ec
VM
727{
728 i->vec = vec;
729 i->word_num = 0;
730 i->nel = max < min ? 0 : max - min + 1;
731 i->start_val = min;
732 i->bit_num = 0;
733 i->word = i->nel == 0 ? 0 : vec[0];
734}
735
ac0ab4f7 736/* Return TRUE if we have more allocnos to visit, in which case *N is
42ce1cc4 737 set to the number of the element to be visited. Otherwise, return
058e97ec
VM
738 FALSE. */
739static inline bool
42ce1cc4 740minmax_set_iter_cond (minmax_set_iterator *i, int *n)
058e97ec
VM
741{
742 /* Skip words that are zeros. */
743 for (; i->word == 0; i->word = i->vec[i->word_num])
744 {
745 i->word_num++;
746 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 747
058e97ec
VM
748 /* If we have reached the end, break. */
749 if (i->bit_num >= i->nel)
750 return false;
751 }
b8698a0f 752
058e97ec
VM
753 /* Skip bits that are zero. */
754 for (; (i->word & 1) == 0; i->word >>= 1)
755 i->bit_num++;
b8698a0f 756
058e97ec 757 *n = (int) i->bit_num + i->start_val;
b8698a0f 758
058e97ec
VM
759 return true;
760}
761
42ce1cc4 762/* Advance to the next element in the set. */
058e97ec 763static inline void
42ce1cc4 764minmax_set_iter_next (minmax_set_iterator *i)
058e97ec
VM
765{
766 i->word >>= 1;
767 i->bit_num++;
768}
769
42ce1cc4 770/* Loop over all elements of a min/max set given by bit vector VEC and
058e97ec
VM
771 their minimal and maximal values MIN and MAX. In each iteration, N
772 is set to the number of next allocno. ITER is an instance of
42ce1cc4
BS
773 minmax_set_iterator used to iterate over the set. */
774#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
775 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
776 minmax_set_iter_cond (&(ITER), &(N)); \
777 minmax_set_iter_next (&(ITER)))
778\f
afcc66c4 779struct target_ira_int {
19c708dc
RS
780 ~target_ira_int ();
781
782 void free_ira_costs ();
783 void free_register_move_costs ();
784
aa1c5d72
RS
785 /* Initialized once. It is a maximal possible size of the allocated
786 struct costs. */
787 int x_max_struct_costs_size;
788
789 /* Allocated and initialized once, and used to initialize cost values
790 for each insn. */
791 struct costs *x_init_cost;
792
793 /* Allocated once, and used for temporary purposes. */
794 struct costs *x_temp_costs;
795
796 /* Allocated once, and used for the cost calculation. */
797 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
798 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
799
afcc66c4
RS
800 /* Hard registers that can not be used for the register allocator for
801 all functions of the current compilation unit. */
802 HARD_REG_SET x_no_unit_alloc_regs;
803
804 /* Map: hard regs X modes -> set of hard registers for storing value
805 of given mode starting with given hard register. */
806 HARD_REG_SET (x_ira_reg_mode_hard_regset
807 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
808
e80ccebc
RS
809 /* Maximum cost of moving from a register in one class to a register
810 in another class. Based on TARGET_REGISTER_MOVE_COST. */
7cc61ee4 811 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
e80ccebc
RS
812
813 /* Similar, but here we don't have to move if the first index is a
814 subset of the second so in that case the cost is zero. */
7cc61ee4 815 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
e80ccebc
RS
816
817 /* Similar, but here we don't have to move if the first index is a
818 superset of the second so in that case the cost is zero. */
7cc61ee4 819 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
e80ccebc
RS
820
821 /* Keep track of the last mode we initialized move costs for. */
822 int x_last_mode_for_init_move_cost;
823
7cc61ee4
RS
824 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
825 cost not minimal. */
1756cb66 826 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
1756cb66
VM
827
828 /* Map class->true if class is a possible allocno class, false
829 otherwise. */
830 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
831
832 /* Map class->true if class is a pressure class, false otherwise. */
833 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
834
afcc66c4 835 /* Array of the number of hard registers of given class which are
dd5a833e 836 available for allocation. The order is defined by the hard
afcc66c4
RS
837 register numbers. */
838 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
839
840 /* Index (in ira_class_hard_regs; for given register class and hard
841 register (in general case a hard register can belong to several
842 register classes;. The index is negative for hard registers
843 unavailable for the allocation. */
844 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
845
846 /* Array whose values are hard regset of hard registers available for
847 the allocation of given register class whose HARD_REGNO_MODE_OK
848 values for given mode are zero. */
1756cb66 849 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
afcc66c4 850
a2c19e93
RS
851 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
852
853 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
854
855 For example, if:
856
857 - (reg:M 2) is valid and occupies two registers;
858 - register 2 belongs to CL; and
859 - register 3 belongs to the same pressure class as CL
860
861 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
862 in the set. */
863 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
864
afcc66c4
RS
865 /* The value is number of elements in the subsequent array. */
866 int x_ira_important_classes_num;
867
1756cb66 868 /* The array containing all non-empty classes. Such classes is
afcc66c4
RS
869 important for calculation of the hard register usage costs. */
870 enum reg_class x_ira_important_classes[N_REG_CLASSES];
871
1756cb66
VM
872 /* The array containing indexes of important classes in the previous
873 array. The array elements are defined only for important
874 classes. */
875 int x_ira_important_class_nums[N_REG_CLASSES];
876
165f639c
VM
877 /* Map class->true if class is an uniform class, false otherwise. */
878 bool x_ira_uniform_class_p[N_REG_CLASSES];
879
afcc66c4
RS
880 /* The biggest important class inside of intersection of the two
881 classes (that is calculated taking only hard registers available
882 for allocation into account;. If the both classes contain no hard
883 registers available for allocation, the value is calculated with
884 taking all hard-registers including fixed ones into account. */
885 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
886
afcc66c4 887 /* Classes with end marker LIM_REG_CLASSES which are intersected with
55a2c322 888 given class (the first index). That includes given class itself.
afcc66c4
RS
889 This is calculated taking only hard registers available for
890 allocation into account. */
891 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
892
1756cb66
VM
893 /* The biggest (smallest) important class inside of (covering) union
894 of the two classes (that is calculated taking only hard registers
895 available for allocation into account). If the both classes
896 contain no hard registers available for allocation, the value is
897 calculated with taking all hard-registers including fixed ones
898 into account. In other words, the value is the corresponding
899 reg_class_subunion (reg_class_superunion) value. */
900 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
901 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
afcc66c4
RS
902
903 /* For each reg class, table listing all the classes contained in it
904 (excluding the class itself. Non-allocatable registers are
55a2c322 905 excluded from the consideration). */
afcc66c4 906 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
15e7b94f
RS
907
908 /* Array whose values are hard regset of hard registers for which
909 move of the hard register in given mode into itself is
910 prohibited. */
911 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
912
913 /* Flag of that the above array has been initialized. */
914 bool x_ira_prohibited_mode_move_regs_initialized_p;
afcc66c4
RS
915};
916
917extern struct target_ira_int default_target_ira_int;
918#if SWITCHABLE_TARGET
919extern struct target_ira_int *this_target_ira_int;
920#else
921#define this_target_ira_int (&default_target_ira_int)
922#endif
058e97ec 923
afcc66c4
RS
924#define ira_reg_mode_hard_regset \
925 (this_target_ira_int->x_ira_reg_mode_hard_regset)
926#define ira_register_move_cost \
927 (this_target_ira_int->x_ira_register_move_cost)
1756cb66
VM
928#define ira_max_memory_move_cost \
929 (this_target_ira_int->x_ira_max_memory_move_cost)
afcc66c4
RS
930#define ira_may_move_in_cost \
931 (this_target_ira_int->x_ira_may_move_in_cost)
932#define ira_may_move_out_cost \
933 (this_target_ira_int->x_ira_may_move_out_cost)
1756cb66
VM
934#define ira_reg_allocno_class_p \
935 (this_target_ira_int->x_ira_reg_allocno_class_p)
936#define ira_reg_pressure_class_p \
937 (this_target_ira_int->x_ira_reg_pressure_class_p)
afcc66c4
RS
938#define ira_non_ordered_class_hard_regs \
939 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
940#define ira_class_hard_reg_index \
941 (this_target_ira_int->x_ira_class_hard_reg_index)
1756cb66
VM
942#define ira_prohibited_class_mode_regs \
943 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
a2c19e93
RS
944#define ira_useful_class_mode_regs \
945 (this_target_ira_int->x_ira_useful_class_mode_regs)
afcc66c4
RS
946#define ira_important_classes_num \
947 (this_target_ira_int->x_ira_important_classes_num)
948#define ira_important_classes \
949 (this_target_ira_int->x_ira_important_classes)
1756cb66
VM
950#define ira_important_class_nums \
951 (this_target_ira_int->x_ira_important_class_nums)
165f639c
VM
952#define ira_uniform_class_p \
953 (this_target_ira_int->x_ira_uniform_class_p)
afcc66c4
RS
954#define ira_reg_class_intersect \
955 (this_target_ira_int->x_ira_reg_class_intersect)
afcc66c4
RS
956#define ira_reg_class_super_classes \
957 (this_target_ira_int->x_ira_reg_class_super_classes)
1756cb66
VM
958#define ira_reg_class_subunion \
959 (this_target_ira_int->x_ira_reg_class_subunion)
960#define ira_reg_class_superunion \
961 (this_target_ira_int->x_ira_reg_class_superunion)
15e7b94f
RS
962#define ira_prohibited_mode_move_regs \
963 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
afcc66c4
RS
964\f
965/* ira.c: */
058e97ec 966
058e97ec 967extern void *ira_allocate (size_t);
058e97ec
VM
968extern void ira_free (void *addr);
969extern bitmap ira_allocate_bitmap (void);
970extern void ira_free_bitmap (bitmap);
971extern void ira_print_disposition (FILE *);
972extern void ira_debug_disposition (void);
1756cb66 973extern void ira_debug_allocno_classes (void);
058e97ec 974extern void ira_init_register_move_cost (enum machine_mode);
647d790d 975extern void ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts);
3b6d1699 976extern int ira_get_dup_out_num (int op_num, HARD_REG_SET &alts);
058e97ec 977
058e97ec
VM
978/* ira-build.c */
979
980/* The current loop tree node and its regno allocno map. */
981extern ira_loop_tree_node_t ira_curr_loop_tree_node;
982extern ira_allocno_t *ira_curr_regno_allocno_map;
983
3b6d1699
VM
984extern void ira_debug_pref (ira_pref_t);
985extern void ira_debug_prefs (void);
986extern void ira_debug_allocno_prefs (ira_allocno_t);
987
4cda38d5 988extern void ira_debug_copy (ira_copy_t);
7b3b6ae4
LC
989extern void debug (ira_allocno_copy &ref);
990extern void debug (ira_allocno_copy *ptr);
991
4cda38d5 992extern void ira_debug_copies (void);
058e97ec 993extern void ira_debug_allocno_copies (ira_allocno_t);
7b3b6ae4
LC
994extern void debug (ira_allocno &ref);
995extern void debug (ira_allocno *ptr);
058e97ec
VM
996
997extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
998 void (*) (ira_loop_tree_node_t),
999 void (*) (ira_loop_tree_node_t));
029da7d4
BS
1000extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
1001extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec 1002extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
ac0ab4f7 1003extern void ira_create_allocno_objects (ira_allocno_t);
1756cb66 1004extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
a49ae217
BS
1005extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
1006extern void ira_allocate_conflict_vec (ira_object_t, int);
1007extern void ira_allocate_object_conflicts (ira_object_t, int);
ac0ab4f7 1008extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
058e97ec 1009extern void ira_print_expanded_allocno (ira_allocno_t);
ac0ab4f7 1010extern void ira_add_live_range_to_object (ira_object_t, int, int);
9140d27b
BS
1011extern live_range_t ira_create_live_range (ira_object_t, int, int,
1012 live_range_t);
1013extern live_range_t ira_copy_live_range_list (live_range_t);
1014extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1015extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1016extern void ira_finish_live_range (live_range_t);
1017extern void ira_finish_live_range_list (live_range_t);
058e97ec 1018extern void ira_free_allocno_updated_costs (ira_allocno_t);
3b6d1699
VM
1019extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1020extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1021extern void ira_remove_pref (ira_pref_t);
1022extern void ira_remove_allocno_prefs (ira_allocno_t);
058e97ec 1023extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
070a1983
DM
1024 int, bool, rtx_insn *,
1025 ira_loop_tree_node_t);
548a6322 1026extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
070a1983
DM
1027 bool, rtx_insn *,
1028 ira_loop_tree_node_t);
058e97ec 1029
6f76a878
AS
1030extern int *ira_allocate_cost_vector (reg_class_t);
1031extern void ira_free_cost_vector (int *, reg_class_t);
058e97ec
VM
1032
1033extern void ira_flattening (int, int);
2608d841 1034extern bool ira_build (void);
058e97ec
VM
1035extern void ira_destroy (void);
1036
1037/* ira-costs.c */
1038extern void ira_init_costs_once (void);
1039extern void ira_init_costs (void);
058e97ec 1040extern void ira_costs (void);
1756cb66 1041extern void ira_tune_allocno_costs (void);
058e97ec
VM
1042
1043/* ira-lives.c */
1044
1045extern void ira_rebuild_start_finish_chains (void);
b14151b5 1046extern void ira_print_live_range_list (FILE *, live_range_t);
7b3b6ae4
LC
1047extern void debug (live_range &ref);
1048extern void debug (live_range *ptr);
b14151b5 1049extern void ira_debug_live_range_list (live_range_t);
058e97ec
VM
1050extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1051extern void ira_debug_live_ranges (void);
1052extern void ira_create_allocno_live_ranges (void);
b15a7ae6 1053extern void ira_compress_allocno_live_ranges (void);
058e97ec
VM
1054extern void ira_finish_allocno_live_ranges (void);
1055
1056/* ira-conflicts.c */
058e97ec
VM
1057extern void ira_debug_conflicts (bool);
1058extern void ira_build_conflicts (void);
1059
1060/* ira-color.c */
1756cb66 1061extern void ira_debug_hard_regs_forest (void);
058e97ec
VM
1062extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1063extern void ira_reassign_conflict_allocnos (int);
1064extern void ira_initiate_assign (void);
1065extern void ira_finish_assign (void);
1066extern void ira_color (void);
058e97ec
VM
1067
1068/* ira-emit.c */
1756cb66
VM
1069extern void ira_initiate_emit_data (void);
1070extern void ira_finish_emit_data (void);
058e97ec
VM
1071extern void ira_emit (bool);
1072
1073\f
1074
55a2c322
VM
1075/* Return true if equivalence of pseudo REGNO is not a lvalue. */
1076static inline bool
1077ira_equiv_no_lvalue_p (int regno)
1078{
1079 if (regno >= ira_reg_equiv_len)
1080 return false;
1081 return (ira_reg_equiv[regno].constant != NULL_RTX
1082 || ira_reg_equiv[regno].invariant != NULL_RTX
1083 || (ira_reg_equiv[regno].memory != NULL_RTX
1084 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1085}
1086
1087\f
1088
1756cb66
VM
1089/* Initialize register costs for MODE if necessary. */
1090static inline void
1091ira_init_register_move_cost_if_necessary (enum machine_mode mode)
6080348f
VM
1092{
1093 if (ira_register_move_cost[mode] == NULL)
1094 ira_init_register_move_cost (mode);
6080348f
VM
1095}
1096
1097\f
1098
058e97ec 1099/* The iterator for all allocnos. */
84562394 1100struct ira_allocno_iterator {
058e97ec
VM
1101 /* The number of the current element in IRA_ALLOCNOS. */
1102 int n;
84562394 1103};
058e97ec
VM
1104
1105/* Initialize the iterator I. */
1106static inline void
1107ira_allocno_iter_init (ira_allocno_iterator *i)
1108{
1109 i->n = 0;
1110}
1111
1112/* Return TRUE if we have more allocnos to visit, in which case *A is
1113 set to the allocno to be visited. Otherwise, return FALSE. */
1114static inline bool
1115ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1116{
1117 int n;
1118
1119 for (n = i->n; n < ira_allocnos_num; n++)
1120 if (ira_allocnos[n] != NULL)
1121 {
1122 *a = ira_allocnos[n];
1123 i->n = n + 1;
1124 return true;
1125 }
1126 return false;
1127}
1128
1129/* Loop over all allocnos. In each iteration, A is set to the next
1130 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1131 the allocnos. */
1132#define FOR_EACH_ALLOCNO(A, ITER) \
1133 for (ira_allocno_iter_init (&(ITER)); \
1134 ira_allocno_iter_cond (&(ITER), &(A));)
a49ae217
BS
1135\f
1136/* The iterator for all objects. */
84562394 1137struct ira_object_iterator {
ac0ab4f7 1138 /* The number of the current element in ira_object_id_map. */
a49ae217 1139 int n;
84562394 1140};
058e97ec 1141
a49ae217
BS
1142/* Initialize the iterator I. */
1143static inline void
1144ira_object_iter_init (ira_object_iterator *i)
1145{
1146 i->n = 0;
1147}
1148
1149/* Return TRUE if we have more objects to visit, in which case *OBJ is
1150 set to the object to be visited. Otherwise, return FALSE. */
1151static inline bool
1152ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1153{
1154 int n;
058e97ec 1155
a49ae217
BS
1156 for (n = i->n; n < ira_objects_num; n++)
1157 if (ira_object_id_map[n] != NULL)
1158 {
1159 *obj = ira_object_id_map[n];
1160 i->n = n + 1;
1161 return true;
1162 }
1163 return false;
1164}
1165
ac0ab4f7
BS
1166/* Loop over all objects. In each iteration, OBJ is set to the next
1167 object. ITER is an instance of ira_object_iterator used to iterate
a49ae217
BS
1168 the objects. */
1169#define FOR_EACH_OBJECT(OBJ, ITER) \
1170 for (ira_object_iter_init (&(ITER)); \
1171 ira_object_iter_cond (&(ITER), &(OBJ));)
058e97ec 1172\f
ac0ab4f7 1173/* The iterator for objects associated with an allocno. */
84562394 1174struct ira_allocno_object_iterator {
ac0ab4f7
BS
1175 /* The number of the element the allocno's object array. */
1176 int n;
84562394 1177};
ac0ab4f7
BS
1178
1179/* Initialize the iterator I. */
1180static inline void
1181ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1182{
1183 i->n = 0;
1184}
1185
1186/* Return TRUE if we have more objects to visit in allocno A, in which
1187 case *O is set to the object to be visited. Otherwise, return
1188 FALSE. */
1189static inline bool
1190ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1191 ira_object_t *o)
1192{
d0a854af
RG
1193 int n = i->n++;
1194 if (n < ALLOCNO_NUM_OBJECTS (a))
1195 {
1196 *o = ALLOCNO_OBJECT (a, n);
1197 return true;
1198 }
1199 return false;
ac0ab4f7
BS
1200}
1201
1202/* Loop over all objects associated with allocno A. In each
1203 iteration, O is set to the next object. ITER is an instance of
1204 ira_allocno_object_iterator used to iterate the conflicts. */
1205#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1206 for (ira_allocno_object_iter_init (&(ITER)); \
1207 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1208\f
058e97ec 1209
3b6d1699 1210/* The iterator for prefs. */
84562394 1211struct ira_pref_iterator {
3b6d1699
VM
1212 /* The number of the current element in IRA_PREFS. */
1213 int n;
84562394 1214};
3b6d1699
VM
1215
1216/* Initialize the iterator I. */
1217static inline void
1218ira_pref_iter_init (ira_pref_iterator *i)
1219{
1220 i->n = 0;
1221}
1222
1223/* Return TRUE if we have more prefs to visit, in which case *PREF is
1224 set to the pref to be visited. Otherwise, return FALSE. */
1225static inline bool
1226ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1227{
1228 int n;
1229
1230 for (n = i->n; n < ira_prefs_num; n++)
1231 if (ira_prefs[n] != NULL)
1232 {
1233 *pref = ira_prefs[n];
1234 i->n = n + 1;
1235 return true;
1236 }
1237 return false;
1238}
1239
1240/* Loop over all prefs. In each iteration, P is set to the next
1241 pref. ITER is an instance of ira_pref_iterator used to iterate
1242 the prefs. */
1243#define FOR_EACH_PREF(P, ITER) \
1244 for (ira_pref_iter_init (&(ITER)); \
1245 ira_pref_iter_cond (&(ITER), &(P));)
1246\f
1247
058e97ec 1248/* The iterator for copies. */
84562394 1249struct ira_copy_iterator {
058e97ec
VM
1250 /* The number of the current element in IRA_COPIES. */
1251 int n;
84562394 1252};
058e97ec
VM
1253
1254/* Initialize the iterator I. */
1255static inline void
1256ira_copy_iter_init (ira_copy_iterator *i)
1257{
1258 i->n = 0;
1259}
1260
1261/* Return TRUE if we have more copies to visit, in which case *CP is
1262 set to the copy to be visited. Otherwise, return FALSE. */
1263static inline bool
1264ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1265{
1266 int n;
1267
1268 for (n = i->n; n < ira_copies_num; n++)
1269 if (ira_copies[n] != NULL)
1270 {
1271 *cp = ira_copies[n];
1272 i->n = n + 1;
1273 return true;
1274 }
1275 return false;
1276}
1277
1278/* Loop over all copies. In each iteration, C is set to the next
1279 copy. ITER is an instance of ira_copy_iterator used to iterate
1280 the copies. */
1281#define FOR_EACH_COPY(C, ITER) \
1282 for (ira_copy_iter_init (&(ITER)); \
1283 ira_copy_iter_cond (&(ITER), &(C));)
058e97ec 1284\f
ac0ab4f7 1285/* The iterator for object conflicts. */
84562394 1286struct ira_object_conflict_iterator {
ac0ab4f7
BS
1287
1288 /* TRUE if the conflicts are represented by vector of allocnos. */
a49ae217 1289 bool conflict_vec_p;
058e97ec
VM
1290
1291 /* The conflict vector or conflict bit vector. */
1292 void *vec;
1293
1294 /* The number of the current element in the vector (of type
a49ae217 1295 ira_object_t or IRA_INT_TYPE). */
058e97ec
VM
1296 unsigned int word_num;
1297
1298 /* The bit vector size. It is defined only if
a49ae217 1299 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1300 unsigned int size;
1301
1302 /* The current bit index of bit vector. It is defined only if
a49ae217 1303 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1304 unsigned int bit_num;
1305
a49ae217
BS
1306 /* The object id corresponding to the 1st bit of the bit vector. It
1307 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1308 int base_conflict_id;
1309
1310 /* The word of bit vector currently visited. It is defined only if
a49ae217 1311 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec 1312 unsigned IRA_INT_TYPE word;
84562394 1313};
058e97ec
VM
1314
1315/* Initialize the iterator I with ALLOCNO conflicts. */
1316static inline void
fa86d337
BS
1317ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1318 ira_object_t obj)
058e97ec 1319{
a49ae217
BS
1320 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1321 i->vec = OBJECT_CONFLICT_ARRAY (obj);
058e97ec 1322 i->word_num = 0;
a49ae217 1323 if (i->conflict_vec_p)
058e97ec
VM
1324 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1325 else
1326 {
a49ae217 1327 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
058e97ec
VM
1328 i->size = 0;
1329 else
a49ae217 1330 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
058e97ec
VM
1331 + IRA_INT_BITS)
1332 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1333 i->bit_num = 0;
a49ae217 1334 i->base_conflict_id = OBJECT_MIN (obj);
058e97ec
VM
1335 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1336 }
1337}
1338
1339/* Return TRUE if we have more conflicting allocnos to visit, in which
1340 case *A is set to the allocno to be visited. Otherwise, return
1341 FALSE. */
1342static inline bool
fa86d337
BS
1343ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1344 ira_object_t *pobj)
058e97ec 1345{
a49ae217 1346 ira_object_t obj;
058e97ec 1347
a49ae217 1348 if (i->conflict_vec_p)
058e97ec 1349 {
1756cb66 1350 obj = ((ira_object_t *) i->vec)[i->word_num++];
a49ae217 1351 if (obj == NULL)
058e97ec 1352 return false;
058e97ec
VM
1353 }
1354 else
1355 {
1756cb66
VM
1356 unsigned IRA_INT_TYPE word = i->word;
1357 unsigned int bit_num = i->bit_num;
1358
058e97ec 1359 /* Skip words that are zeros. */
1756cb66 1360 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
058e97ec
VM
1361 {
1362 i->word_num++;
b8698a0f 1363
058e97ec
VM
1364 /* If we have reached the end, break. */
1365 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1366 return false;
b8698a0f 1367
1756cb66 1368 bit_num = i->word_num * IRA_INT_BITS;
058e97ec 1369 }
b8698a0f 1370
058e97ec 1371 /* Skip bits that are zero. */
1756cb66
VM
1372 for (; (word & 1) == 0; word >>= 1)
1373 bit_num++;
b8698a0f 1374
1756cb66
VM
1375 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1376 i->bit_num = bit_num + 1;
1377 i->word = word >> 1;
058e97ec 1378 }
a49ae217 1379
fa86d337 1380 *pobj = obj;
a49ae217 1381 return true;
058e97ec
VM
1382}
1383
fa86d337
BS
1384/* Loop over all objects conflicting with OBJ. In each iteration,
1385 CONF is set to the next conflicting object. ITER is an instance
1386 of ira_object_conflict_iterator used to iterate the conflicts. */
1387#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1388 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1756cb66 1389 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
058e97ec
VM
1390
1391\f
1392
1756cb66
VM
1393/* The function returns TRUE if at least one hard register from ones
1394 starting with HARD_REGNO and containing value of MODE are in set
1395 HARD_REGSET. */
1396static inline bool
1397ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1398 HARD_REG_SET hard_regset)
1399{
1400 int i;
1401
1402 gcc_assert (hard_regno >= 0);
1403 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1404 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1405 return true;
1406 return false;
1407}
1408
1409/* Return number of hard registers in hard register SET. */
1410static inline int
1411hard_reg_set_size (HARD_REG_SET set)
1412{
1413 int i, size;
1414
1415 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1416 if (TEST_HARD_REG_BIT (set, i))
1417 size++;
1418 return size;
1419}
1420
058e97ec 1421/* The function returns TRUE if hard registers starting with
9181a6e5 1422 HARD_REGNO and containing value of MODE are fully in set
058e97ec
VM
1423 HARD_REGSET. */
1424static inline bool
9181a6e5
VM
1425ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1426 HARD_REG_SET hard_regset)
058e97ec
VM
1427{
1428 int i;
1429
1430 ira_assert (hard_regno >= 0);
1431 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
9181a6e5 1432 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
058e97ec
VM
1433 return false;
1434 return true;
1435}
1436
1437\f
1438
1439/* To save memory we use a lazy approach for allocation and
1440 initialization of the cost vectors. We do this only when it is
1441 really necessary. */
1442
1756cb66 1443/* Allocate cost vector *VEC for hard registers of ACLASS and
058e97ec
VM
1444 initialize the elements by VAL if it is necessary */
1445static inline void
6f76a878 1446ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
058e97ec
VM
1447{
1448 int i, *reg_costs;
1449 int len;
1450
1451 if (*vec != NULL)
1452 return;
1756cb66 1453 *vec = reg_costs = ira_allocate_cost_vector (aclass);
6f76a878 1454 len = ira_class_hard_regs_num[(int) aclass];
058e97ec
VM
1455 for (i = 0; i < len; i++)
1456 reg_costs[i] = val;
1457}
1458
1756cb66
VM
1459/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1460 values of vector SRC into the vector if it is necessary */
058e97ec 1461static inline void
1756cb66 1462ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1463{
1464 int len;
1465
1466 if (*vec != NULL || src == NULL)
1467 return;
1756cb66
VM
1468 *vec = ira_allocate_cost_vector (aclass);
1469 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1470 memcpy (*vec, src, sizeof (int) * len);
1471}
1472
1756cb66
VM
1473/* Allocate cost vector *VEC for hard registers of ACLASS and add
1474 values of vector SRC into the vector if it is necessary */
058e97ec 1475static inline void
1756cb66 1476ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1477{
1478 int i, len;
1479
1480 if (src == NULL)
1481 return;
1756cb66 1482 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1483 if (*vec == NULL)
1484 {
1756cb66 1485 *vec = ira_allocate_cost_vector (aclass);
058e97ec
VM
1486 memset (*vec, 0, sizeof (int) * len);
1487 }
1488 for (i = 0; i < len; i++)
1489 (*vec)[i] += src[i];
1490}
1491
1756cb66
VM
1492/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1493 values of vector SRC into the vector or initialize it by VAL (if
1494 SRC is null). */
058e97ec 1495static inline void
1756cb66 1496ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
058e97ec
VM
1497 int val, int *src)
1498{
1499 int i, *reg_costs;
1500 int len;
1501
1502 if (*vec != NULL)
1503 return;
1756cb66
VM
1504 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1505 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1506 if (src != NULL)
1507 memcpy (reg_costs, src, sizeof (int) * len);
1508 else
1509 {
1510 for (i = 0; i < len; i++)
1511 reg_costs[i] = val;
1512 }
1513}
acf41a74
BS
1514
1515extern rtx ira_create_new_reg (rtx);
1516extern int first_moveable_pseudo, last_moveable_pseudo;
f1717f8d
KC
1517
1518#endif /* GCC_IRA_INT_H */