]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
alpha.c (alpha_split_lock_test_and_set): Move memory barrier to below the test-and...
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec
VM
1/* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "cfgloop.h"
23#include "ira.h"
24#include "alloc-pool.h"
25
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29#ifdef ENABLE_CHECKING
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
36#define ira_assert(c)
37#endif
38
39/* Compute register frequency from edge frequency FREQ. It is
40 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
41 profile driven feedback is available and the function is never
42 executed, frequency is always equivalent. Otherwise rescale the
43 edge frequency. */
44#define REG_FREQ_FROM_EDGE_FREQ(freq) \
45 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
46 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
47 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
48
49/* All natural loops. */
50extern struct loops ira_loops;
51
52/* A modified value of flag `-fira-verbose' used internally. */
53extern int internal_flag_ira_verbose;
54
55/* Dump file of the allocator if it is not NULL. */
56extern FILE *ira_dump_file;
57
58/* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60typedef struct ira_allocno_live_range *allocno_live_range_t;
61typedef struct ira_allocno *ira_allocno_t;
62typedef struct ira_allocno_copy *ira_copy_t;
63
64/* Definition of vector of allocnos and copies. */
65DEF_VEC_P(ira_allocno_t);
66DEF_VEC_ALLOC_P(ira_allocno_t, heap);
67DEF_VEC_P(ira_copy_t);
68DEF_VEC_ALLOC_P(ira_copy_t, heap);
69
70/* Typedef for pointer to the subsequent structure. */
71typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
72
73/* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81struct ira_loop_tree_node
82{
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 struct loop *loop; /* NULL for BB. */
86 /* The next (loop) node of with the same parent. SUBLOOP_NEXT is
87 always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next, next;
89 /* The first (loop) node immediately inside the node. SUBLOOPS is
90 always NULL for BBs. */
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
94
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
97
98 /* All the following members are defined only for nodes representing
99 loops. */
100
101 /* Allocnos in the loop corresponding to their regnos. If it is
102 NULL the loop does not form a separate register allocation region
103 (e.g. because it has abnormal enter/exit edges and we can not put
104 code for register shuffling on the edges if a different
105 allocation is used for a pseudo-register on different sides of
106 the edges). Caps are not in the map (remember we can have more
107 one cap with the same regno in a region). */
108 ira_allocno_t *regno_allocno_map;
109
110 /* Maximal register pressure inside loop for given register class
111 (defined only for the cover classes). */
112 int reg_pressure[N_REG_CLASSES];
113
114 /* Numbers of allocnos referred in the loop node. */
115 bitmap mentioned_allocnos;
116
117 /* Regnos of pseudos modified in the loop node (including its
118 subloops). */
119 bitmap modified_regnos;
120
121 /* Numbers of allocnos living at the loop borders. */
122 bitmap border_allocnos;
123
124 /* Numbers of copies referred in the corresponding loop. */
125 bitmap local_copies;
126};
127
128/* The root of the loop tree corresponding to the all function. */
129extern ira_loop_tree_node_t ira_loop_tree_root;
130
131/* Height of the loop tree. */
132extern int ira_loop_tree_height;
133
134/* All nodes representing basic blocks are referred through the
135 following array. We can not use basic block member `aux' for this
136 because it is used for insertion of insns on edges. */
137extern ira_loop_tree_node_t ira_bb_nodes;
138
139/* Two access macros to the nodes representing basic blocks. */
140#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
141#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
142(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
143 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
144 { \
145 fprintf (stderr, \
146 "\n%s: %d: error in %s: it is not a block node\n", \
147 __FILE__, __LINE__, __FUNCTION__); \
148 gcc_unreachable (); \
149 } \
150 _node; }))
151#else
152#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
153#endif
154
155#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
156
157/* All nodes representing loops are referred through the following
158 array. */
159extern ira_loop_tree_node_t ira_loop_nodes;
160
161/* Two access macros to the nodes representing loops. */
162#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
163#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
164(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
165 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
166 { \
167 fprintf (stderr, \
168 "\n%s: %d: error in %s: it is not a loop node\n", \
169 __FILE__, __LINE__, __FUNCTION__); \
170 gcc_unreachable (); \
171 } \
172 _node; }))
173#else
174#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
175#endif
176
177#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
178
179\f
180
181/* The structure describes program points where a given allocno lives.
182 To save memory we store allocno conflicts only for the same cover
183 class allocnos which is enough to assign hard registers. To find
184 conflicts for other allocnos (e.g. to assign stack memory slot) we
185 use the live ranges. If the live ranges of two allocnos are
186 intersected, the allocnos are in conflict. */
187struct ira_allocno_live_range
188{
189 /* Allocno whose live range is described by given structure. */
190 ira_allocno_t allocno;
191 /* Program point range. */
192 int start, finish;
193 /* Next structure describing program points where the allocno
194 lives. */
195 allocno_live_range_t next;
196 /* Pointer to structures with the same start/finish. */
197 allocno_live_range_t start_next, finish_next;
198};
199
200/* Program points are enumerated by numbers from range
201 0..IRA_MAX_POINT-1. There are approximately two times more program
202 points than insns. Program points are places in the program where
203 liveness info can be changed. In most general case (there are more
204 complicated cases too) some program points correspond to places
205 where input operand dies and other ones correspond to places where
206 output operands are born. */
207extern int ira_max_point;
208
209/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
210 live ranges with given start/finish point. */
211extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
212
213/* A structure representing an allocno (allocation entity). Allocno
214 represents a pseudo-register in an allocation region. If
215 pseudo-register does not live in a region but it lives in the
216 nested regions, it is represented in the region by special allocno
217 called *cap*. There may be more one cap representing the same
218 pseudo-register in region. It means that the corresponding
219 pseudo-register lives in more one non-intersected subregion. */
220struct ira_allocno
221{
222 /* The allocno order number starting with 0. Each allocno has an
223 unique number and the number is never changed for the
224 allocno. */
225 int num;
226 /* Regno for allocno or cap. */
227 int regno;
228 /* Mode of the allocno which is the mode of the corresponding
229 pseudo-register. */
230 enum machine_mode mode;
231 /* Final rtx representation of the allocno. */
232 rtx reg;
233 /* Hard register assigned to given allocno. Negative value means
234 that memory was allocated to the allocno. During the reload,
235 spilled allocno has value equal to the corresponding stack slot
236 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
237 reload (at this point pseudo-register has only one allocno) which
238 did not get stack slot yet. */
239 int hard_regno;
240 /* Allocnos with the same regno are linked by the following member.
241 Allocnos corresponding to inner loops are first in the list (it
242 corresponds to depth-first traverse of the loops). */
243 ira_allocno_t next_regno_allocno;
244 /* There may be different allocnos with the same regno in different
245 regions. Allocnos are bound to the corresponding loop tree node.
246 Pseudo-register may have only one regular allocno with given loop
247 tree node but more than one cap (see comments above). */
248 ira_loop_tree_node_t loop_tree_node;
249 /* Accumulated usage references of the allocno. Here and below,
250 word 'accumulated' means info for given region and all nested
251 subregions. In this case, 'accumulated' means sum of references
252 of the corresponding pseudo-register in this region and in all
253 nested subregions recursively. */
254 int nrefs;
255 /* Accumulated frequency of usage of the allocno. */
256 int freq;
257 /* Register class which should be used for allocation for given
258 allocno. NO_REGS means that we should use memory. */
259 enum reg_class cover_class;
260 /* Minimal accumulated cost of usage register of the cover class for
261 the allocno. */
262 int cover_class_cost;
263 /* Minimal accumulated, and updated costs of memory for the allocno.
264 At the allocation start, the original and updated costs are
265 equal. The updated cost may be changed after finishing
266 allocation in a region and starting allocation in a subregion.
267 The change reflects the cost of spill/restore code on the
268 subregion border if we assign memory to the pseudo in the
269 subregion. */
270 int memory_cost, updated_memory_cost;
271 /* Accumulated number of points where the allocno lives and there is
272 excess pressure for its class. Excess pressure for a register
273 class at some point means that there are more allocnos of given
274 register class living at the point than number of hard-registers
275 of the class available for the allocation. */
276 int excess_pressure_points_num;
277 /* Copies to other non-conflicting allocnos. The copies can
278 represent move insn or potential move insn usually because of two
279 operand insn constraints. */
280 ira_copy_t allocno_copies;
281 /* It is a allocno (cap) representing given allocno on upper loop tree
282 level. */
283 ira_allocno_t cap;
284 /* It is a link to allocno (cap) on lower loop level represented by
285 given cap. Null if given allocno is not a cap. */
286 ira_allocno_t cap_member;
287 /* Coalesced allocnos form a cyclic list. One allocno given by
288 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
289 list is chained by NEXT_COALESCED_ALLOCNO. */
290 ira_allocno_t first_coalesced_allocno;
291 ira_allocno_t next_coalesced_allocno;
292 /* Pointer to structures describing at what program point the
293 allocno lives. We always maintain the list in such way that *the
294 ranges in the list are not intersected and ordered by decreasing
295 their program points*. */
296 allocno_live_range_t live_ranges;
297 /* Before building conflicts the two member values are
298 correspondingly minimal and maximal points of the accumulated
299 allocno live ranges. After building conflicts the values are
300 correspondingly minimal and maximal conflict ids of allocnos with
301 which given allocno can conflict. */
302 int min, max;
303 /* The unique member value represents given allocno in conflict bit
304 vectors. */
305 int conflict_id;
306 /* Vector of accumulated conflicting allocnos with NULL end marker
307 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
308 Only allocnos with the same cover class are in the vector or in
309 the bit vector. */
310 void *conflict_allocno_array;
311 /* Allocated size of the previous array. */
312 unsigned int conflict_allocno_array_size;
313 /* Number of accumulated conflicts in the vector of conflicting
314 allocnos. */
315 int conflict_allocnos_num;
316 /* Initial and accumulated hard registers conflicting with this
317 allocno and as a consequences can not be assigned to the allocno.
318 All non-allocatable hard regs and hard regs of cover classes
319 different from given allocno one are included in the sets. */
320 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
321 /* Accumulated frequency of calls which given allocno
322 intersects. */
323 int call_freq;
324 /* Length of the previous array (number of the intersected calls). */
325 int calls_crossed_num;
326 /* Non NULL if we remove restoring value from given allocno to
327 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
328 allocno value is not changed inside the loop. */
329 ira_allocno_t mem_optimized_dest;
330 /* TRUE if the allocno assigned to memory was a destination of
331 removed move (see ira-emit.c) at loop exit because the value of
332 the corresponding pseudo-register is not changed inside the
333 loop. */
334 unsigned int mem_optimized_dest_p : 1;
335 /* TRUE if the corresponding pseudo-register has disjoint live
336 ranges and the other allocnos of the pseudo-register except this
337 one changed REG. */
338 unsigned int somewhere_renamed_p : 1;
339 /* TRUE if allocno with the same REGNO in a subregion has been
340 renamed, in other words, got a new pseudo-register. */
341 unsigned int child_renamed_p : 1;
342 /* During the reload, value TRUE means that we should not reassign a
343 hard register to the allocno got memory earlier. It is set up
344 when we removed memory-memory move insn before each iteration of
345 the reload. */
346 unsigned int dont_reassign_p : 1;
347#ifdef STACK_REGS
348 /* Set to TRUE if allocno can't be assigned to the stack hard
349 register correspondingly in this region and area including the
350 region and all its subregions recursively. */
351 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
352#endif
353 /* TRUE value means that the allocno was not removed yet from the
354 conflicting graph during colouring. */
355 unsigned int in_graph_p : 1;
356 /* TRUE if a hard register or memory has been assigned to the
357 allocno. */
358 unsigned int assigned_p : 1;
359 /* TRUE if it is put on the stack to make other allocnos
360 colorable. */
361 unsigned int may_be_spilled_p : 1;
362 /* TRUE if the allocno was removed from the splay tree used to
363 choose allocn for spilling (see ira-color.c::. */
364 unsigned int splay_removed_p : 1;
365 /* TRUE if conflicts for given allocno are represented by vector of
366 pointers to the conflicting allocnos. Otherwise, we use a bit
367 vector where a bit with given index represents allocno with the
368 same number. */
369 unsigned int conflict_vec_p : 1;
370 /* Array of usage costs (accumulated and the one updated during
371 coloring) for each hard register of the allocno cover class. The
372 member value can be NULL if all costs are the same and equal to
373 COVER_CLASS_COST. For example, the costs of two different hard
374 registers can be different if one hard register is callee-saved
375 and another one is callee-used and the allocno lives through
376 calls. Another example can be case when for some insn the
377 corresponding pseudo-register value should be put in specific
378 register class (e.g. AREG for x86) which is a strict subset of
379 the allocno cover class (GENERAL_REGS for x86). We have updated
380 costs to reflect the situation when the usage cost of a hard
381 register is decreased because the allocno is connected to another
382 allocno by a copy and the another allocno has been assigned to
383 the hard register. */
384 int *hard_reg_costs, *updated_hard_reg_costs;
385 /* Array of decreasing costs (accumulated and the one updated during
386 coloring) for allocnos conflicting with given allocno for hard
387 regno of the allocno cover class. The member value can be NULL
388 if all costs are the same. These costs are used to reflect
389 preferences of other allocnos not assigned yet during assigning
390 to given allocno. */
391 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
392 /* Number of the same cover class allocnos with TRUE in_graph_p
393 value and conflicting with given allocno during each point of
394 graph coloring. */
395 int left_conflicts_num;
396 /* Number of hard registers of the allocno cover class really
397 available for the allocno allocation. */
398 int available_regs_num;
399 /* Allocnos in a bucket (used in coloring) chained by the following
400 two members. */
401 ira_allocno_t next_bucket_allocno;
402 ira_allocno_t prev_bucket_allocno;
403 /* Used for temporary purposes. */
404 int temp;
405};
406
407/* All members of the allocno structures should be accessed only
408 through the following macros. */
409#define ALLOCNO_NUM(A) ((A)->num)
410#define ALLOCNO_REGNO(A) ((A)->regno)
411#define ALLOCNO_REG(A) ((A)->reg)
412#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
413#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
414#define ALLOCNO_CAP(A) ((A)->cap)
415#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
416#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
417#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
418 ((A)->conflict_allocno_array_size)
419#define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
420 ((A)->conflict_allocnos_num)
421#define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
422#define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
423#define ALLOCNO_NREFS(A) ((A)->nrefs)
424#define ALLOCNO_FREQ(A) ((A)->freq)
425#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
426#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
427#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
428#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
429#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
430#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
431#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
432#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
433#ifdef STACK_REGS
434#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
435#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
436#endif
437#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
438#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
439#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
440#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
441#define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
442#define ALLOCNO_MODE(A) ((A)->mode)
443#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
444#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
445#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
446#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
447 ((A)->conflict_hard_reg_costs)
448#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
449 ((A)->updated_conflict_hard_reg_costs)
450#define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
451#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
452#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
453#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
454#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
455#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
456#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
457#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
458#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
459#define IRA_ALLOCNO_TEMP(A) ((A)->temp)
460#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
461#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
462#define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
463#define ALLOCNO_MIN(A) ((A)->min)
464#define ALLOCNO_MAX(A) ((A)->max)
465#define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
466
467/* Map regno -> allocnos with given regno (see comments for
468 allocno member `next_regno_allocno'). */
469extern ira_allocno_t *ira_regno_allocno_map;
470
471/* Array of references to all allocnos. The order number of the
472 allocno corresponds to the index in the array. Removed allocnos
473 have NULL element value. */
474extern ira_allocno_t *ira_allocnos;
475
476/* Sizes of the previous array. */
477extern int ira_allocnos_num;
478
479/* Map conflict id -> allocno with given conflict id (see comments for
480 allocno member `conflict_id'). */
481extern ira_allocno_t *ira_conflict_id_allocno_map;
482
483/* The following structure represents a copy of two allocnos. The
484 copies represent move insns or potential move insns usually because
485 of two operand insn constraints. To remove register shuffle, we
486 also create copies between allocno which is output of an insn and
487 allocno becoming dead in the insn. */
488struct ira_allocno_copy
489{
490 /* The unique order number of the copy node starting with 0. */
491 int num;
492 /* Allocnos connected by the copy. The first allocno should have
493 smaller order number than the second one. */
494 ira_allocno_t first, second;
495 /* Execution frequency of the copy. */
496 int freq;
497 /* It is a move insn which is an origin of the copy. The member
498 value for the copy representing two operand insn constraints or
499 for the copy created to remove register shuffle is NULL. In last
500 case the copy frequency is smaller than the corresponding insn
501 execution frequency. */
502 rtx insn;
503 /* All copies with the same allocno as FIRST are linked by the two
504 following members. */
505 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
506 /* All copies with the same allocno as SECOND are linked by the two
507 following members. */
508 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
509 /* Region from which given copy is originated. */
510 ira_loop_tree_node_t loop_tree_node;
511};
512
513/* Array of references to all copies. The order number of the copy
514 corresponds to the index in the array. Removed copies have NULL
515 element value. */
516extern ira_copy_t *ira_copies;
517
518/* Size of the previous array. */
519extern int ira_copies_num;
520
521/* The following structure describes a stack slot used for spilled
522 pseudo-registers. */
523struct ira_spilled_reg_stack_slot
524{
525 /* pseudo-registers assigned to the stack slot. */
526 regset_head spilled_regs;
527 /* RTL representation of the stack slot. */
528 rtx mem;
529 /* Size of the stack slot. */
530 unsigned int width;
531};
532
533/* The number of elements in the following array. */
534extern int ira_spilled_reg_stack_slots_num;
535
536/* The following array contains info about spilled pseudo-registers
537 stack slots used in current function so far. */
538extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
539
540/* Correspondingly overall cost of the allocation, cost of the
541 allocnos assigned to hard-registers, cost of the allocnos assigned
542 to memory, cost of loads, stores and register move insns generated
543 for pseudo-register live range splitting (see ira-emit.c). */
544extern int ira_overall_cost;
545extern int ira_reg_cost, ira_mem_cost;
546extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
547extern int ira_move_loops_num, ira_additional_jumps_num;
548
549/* Map: register class x machine mode -> number of hard registers of
550 given class needed to store value of given mode. If the number for
551 some hard-registers of the register class is different, the size
552 will be negative. */
553extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
554
555/* Maximal value of the previous array elements. */
556extern int ira_max_nregs;
557
558/* The number of bits in each element of array used to implement a bit
559 vector of allocnos and what type that element has. We use the
560 largest integer format on the host machine. */
561#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
562#define IRA_INT_TYPE HOST_WIDE_INT
563
564/* Set, clear or test bit number I in R, a bit vector of elements with
565 minimal index and maximal index equal correspondingly to MIN and
566 MAX. */
567#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
568
569#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
570 (({ int _min = (MIN), _max = (MAX), _i = (I); \
571 if (_i < _min || _i > _max) \
572 { \
573 fprintf (stderr, \
574 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
575 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
576 gcc_unreachable (); \
577 } \
578 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
579 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
580
581
582#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
583 (({ int _min = (MIN), _max = (MAX), _i = (I); \
584 if (_i < _min || _i > _max) \
585 { \
586 fprintf (stderr, \
587 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
588 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
589 gcc_unreachable (); \
590 } \
591 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
592 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
593
594#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
595 (({ int _min = (MIN), _max = (MAX), _i = (I); \
596 if (_i < _min || _i > _max) \
597 { \
598 fprintf (stderr, \
599 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
600 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
601 gcc_unreachable (); \
602 } \
603 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
604 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
605
606#else
607
608#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
609 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
610 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
611
612#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
613 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
614 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
615
616#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
617 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
618 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
619
620#endif
621
622/* The iterator for allocno set implemented ed as allocno bit
623 vector. */
624typedef struct {
625
626 /* Array containing the allocno bit vector. */
627 IRA_INT_TYPE *vec;
628
629 /* The number of the current element in the vector. */
630 unsigned int word_num;
631
632 /* The number of bits in the bit vector. */
633 unsigned int nel;
634
635 /* The current bit index of the bit vector. */
636 unsigned int bit_num;
637
638 /* Index corresponding to the 1st bit of the bit vector. */
639 int start_val;
640
641 /* The word of the bit vector currently visited. */
642 unsigned IRA_INT_TYPE word;
643} ira_allocno_set_iterator;
644
645/* Initialize the iterator I for allocnos bit vector VEC containing
646 minimal and maximal values MIN and MAX. */
647static inline void
648ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
649 IRA_INT_TYPE *vec, int min, int max)
650{
651 i->vec = vec;
652 i->word_num = 0;
653 i->nel = max < min ? 0 : max - min + 1;
654 i->start_val = min;
655 i->bit_num = 0;
656 i->word = i->nel == 0 ? 0 : vec[0];
657}
658
659/* Return TRUE if we have more allocnos to visit, in which case *N is
660 set to the allocno number to be visited. Otherwise, return
661 FALSE. */
662static inline bool
663ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
664{
665 /* Skip words that are zeros. */
666 for (; i->word == 0; i->word = i->vec[i->word_num])
667 {
668 i->word_num++;
669 i->bit_num = i->word_num * IRA_INT_BITS;
670
671 /* If we have reached the end, break. */
672 if (i->bit_num >= i->nel)
673 return false;
674 }
675
676 /* Skip bits that are zero. */
677 for (; (i->word & 1) == 0; i->word >>= 1)
678 i->bit_num++;
679
680 *n = (int) i->bit_num + i->start_val;
681
682 return true;
683}
684
685/* Advance to the next allocno in the set. */
686static inline void
687ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
688{
689 i->word >>= 1;
690 i->bit_num++;
691}
692
693/* Loop over all elements of allocno set given by bit vector VEC and
694 their minimal and maximal values MIN and MAX. In each iteration, N
695 is set to the number of next allocno. ITER is an instance of
696 ira_allocno_set_iterator used to iterate the allocnos in the set. */
697#define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
698 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
699 ira_allocno_set_iter_cond (&(ITER), &(N)); \
700 ira_allocno_set_iter_next (&(ITER)))
701
702/* ira.c: */
703
704/* Hard regsets whose all bits are correspondingly zero or one. */
705extern HARD_REG_SET ira_zero_hard_reg_set;
706extern HARD_REG_SET ira_one_hard_reg_set;
707
708/* Map: hard regs X modes -> set of hard registers for storing value
709 of given mode starting with given hard register. */
710extern HARD_REG_SET ira_reg_mode_hard_regset
711 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
712
713/* Arrays analogous to macros MEMORY_MOVE_COST and
714 REGISTER_MOVE_COST. */
715extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
716extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
717
718/* Similar to may_move_in_cost but it is calculated in IRA instead of
719 regclass. Another difference we take only available hard registers
720 into account to figure out that one register class is a subset of
721 the another one. */
722extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
723
724/* Similar to may_move_out_cost but it is calculated in IRA instead of
725 regclass. Another difference we take only available hard registers
726 into account to figure out that one register class is a subset of
727 the another one. */
728extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
729
730/* Register class subset relation: TRUE if the first class is a subset
731 of the second one considering only hard registers available for the
732 allocation. */
733extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
734
735/* Array of number of hard registers of given class which are
736 available for the allocation. The order is defined by the
737 allocation order. */
738extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
739
740/* The number of elements of the above array for given register
741 class. */
742extern int ira_class_hard_regs_num[N_REG_CLASSES];
743
744/* Index (in ira_class_hard_regs) for given register class and hard
745 register (in general case a hard register can belong to several
746 register classes). The index is negative for hard registers
747 unavailable for the allocation. */
748extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
749
750/* Function specific hard registers can not be used for the register
751 allocation. */
752extern HARD_REG_SET ira_no_alloc_regs;
753
754/* Number of given class hard registers available for the register
755 allocation for given classes. */
756extern int ira_available_class_regs[N_REG_CLASSES];
757
758/* Array whose values are hard regset of hard registers available for
759 the allocation of given register class whose HARD_REGNO_MODE_OK
760 values for given mode are zero. */
761extern HARD_REG_SET prohibited_class_mode_regs
762 [N_REG_CLASSES][NUM_MACHINE_MODES];
763
764/* Array whose values are hard regset of hard registers for which
765 move of the hard register in given mode into itself is
766 prohibited. */
767extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
768
769/* Number of cover classes. Cover classes is non-intersected register
770 classes containing all hard-registers available for the
771 allocation. */
772extern int ira_reg_class_cover_size;
773
774/* The array containing cover classes (see also comments for macro
775 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
776 used for this. */
777extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
778
779/* The value is number of elements in the subsequent array. */
780extern int ira_important_classes_num;
781
782/* The array containing non-empty classes (including non-empty cover
783 classes) which are subclasses of cover classes. Such classes is
784 important for calculation of the hard register usage costs. */
785extern enum reg_class ira_important_classes[N_REG_CLASSES];
786
787/* The array containing indexes of important classes in the previous
788 array. The array elements are defined only for important
789 classes. */
790extern int ira_important_class_nums[N_REG_CLASSES];
791
792/* Map of all register classes to corresponding cover class containing
793 the given class. If given class is not a subset of a cover class,
794 we translate it into the cheapest cover class. */
795extern enum reg_class ira_class_translate[N_REG_CLASSES];
796
797/* The biggest important class inside of intersection of the two
798 classes (that is calculated taking only hard registers available
799 for allocation into account). If the both classes contain no hard
800 registers available for allocation, the value is calculated with
801 taking all hard-registers including fixed ones into account. */
802extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
803
804/* The biggest important class inside of union of the two classes
805 (that is calculated taking only hard registers available for
806 allocation into account). If the both classes contain no hard
807 registers available for allocation, the value is calculated with
808 taking all hard-registers including fixed ones into account. In
809 other words, the value is the corresponding reg_class_subunion
810 value. */
811extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
812
813extern void *ira_allocate (size_t);
814extern void *ira_reallocate (void *, size_t);
815extern void ira_free (void *addr);
816extern bitmap ira_allocate_bitmap (void);
817extern void ira_free_bitmap (bitmap);
818extern void ira_print_disposition (FILE *);
819extern void ira_debug_disposition (void);
820extern void ira_debug_class_cover (void);
821extern void ira_init_register_move_cost (enum machine_mode);
822
823/* The length of the two following arrays. */
824extern int ira_reg_equiv_len;
825
826/* The element value is TRUE if the corresponding regno value is
827 invariant. */
828extern bool *ira_reg_equiv_invariant_p;
829
830/* The element value is equiv constant of given pseudo-register or
831 NULL_RTX. */
832extern rtx *ira_reg_equiv_const;
833
834/* ira-build.c */
835
836/* The current loop tree node and its regno allocno map. */
837extern ira_loop_tree_node_t ira_curr_loop_tree_node;
838extern ira_allocno_t *ira_curr_regno_allocno_map;
839
840extern void ira_debug_allocno_copies (ira_allocno_t);
841
842extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
843 void (*) (ira_loop_tree_node_t),
844 void (*) (ira_loop_tree_node_t));
845extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
846extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
847extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
848extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
849extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
850extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
851extern void ira_print_expanded_allocno (ira_allocno_t);
852extern allocno_live_range_t ira_create_allocno_live_range
853 (ira_allocno_t, int, int, allocno_live_range_t);
854extern void ira_finish_allocno_live_range (allocno_live_range_t);
855extern void ira_free_allocno_updated_costs (ira_allocno_t);
856extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
857 int, rtx, ira_loop_tree_node_t);
858extern void ira_add_allocno_copy_to_list (ira_copy_t);
859extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
860extern void ira_remove_allocno_copy_from_list (ira_copy_t);
861extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, rtx,
862 ira_loop_tree_node_t);
863
864extern int *ira_allocate_cost_vector (enum reg_class);
865extern void ira_free_cost_vector (int *, enum reg_class);
866
867extern void ira_flattening (int, int);
868extern bool ira_build (bool);
869extern void ira_destroy (void);
870
871/* ira-costs.c */
872extern void ira_init_costs_once (void);
873extern void ira_init_costs (void);
874extern void ira_finish_costs_once (void);
875extern void ira_costs (void);
876extern void ira_tune_allocno_costs_and_cover_classes (void);
877
878/* ira-lives.c */
879
880extern void ira_rebuild_start_finish_chains (void);
881extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
882extern void ira_debug_live_range_list (allocno_live_range_t);
883extern void ira_debug_allocno_live_ranges (ira_allocno_t);
884extern void ira_debug_live_ranges (void);
885extern void ira_create_allocno_live_ranges (void);
886extern void ira_finish_allocno_live_ranges (void);
887
888/* ira-conflicts.c */
889extern bool ira_allocno_live_ranges_intersect_p (ira_allocno_t, ira_allocno_t);
890extern bool ira_pseudo_live_ranges_intersect_p (int, int);
891extern void ira_debug_conflicts (bool);
892extern void ira_build_conflicts (void);
893
894/* ira-color.c */
895extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
896extern void ira_reassign_conflict_allocnos (int);
897extern void ira_initiate_assign (void);
898extern void ira_finish_assign (void);
899extern void ira_color (void);
900extern void ira_fast_allocation (void);
901
902/* ira-emit.c */
903extern void ira_emit (bool);
904
905\f
906
907/* The iterator for all allocnos. */
908typedef struct {
909 /* The number of the current element in IRA_ALLOCNOS. */
910 int n;
911} ira_allocno_iterator;
912
913/* Initialize the iterator I. */
914static inline void
915ira_allocno_iter_init (ira_allocno_iterator *i)
916{
917 i->n = 0;
918}
919
920/* Return TRUE if we have more allocnos to visit, in which case *A is
921 set to the allocno to be visited. Otherwise, return FALSE. */
922static inline bool
923ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
924{
925 int n;
926
927 for (n = i->n; n < ira_allocnos_num; n++)
928 if (ira_allocnos[n] != NULL)
929 {
930 *a = ira_allocnos[n];
931 i->n = n + 1;
932 return true;
933 }
934 return false;
935}
936
937/* Loop over all allocnos. In each iteration, A is set to the next
938 allocno. ITER is an instance of ira_allocno_iterator used to iterate
939 the allocnos. */
940#define FOR_EACH_ALLOCNO(A, ITER) \
941 for (ira_allocno_iter_init (&(ITER)); \
942 ira_allocno_iter_cond (&(ITER), &(A));)
943
944
945\f
946
947/* The iterator for copies. */
948typedef struct {
949 /* The number of the current element in IRA_COPIES. */
950 int n;
951} ira_copy_iterator;
952
953/* Initialize the iterator I. */
954static inline void
955ira_copy_iter_init (ira_copy_iterator *i)
956{
957 i->n = 0;
958}
959
960/* Return TRUE if we have more copies to visit, in which case *CP is
961 set to the copy to be visited. Otherwise, return FALSE. */
962static inline bool
963ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
964{
965 int n;
966
967 for (n = i->n; n < ira_copies_num; n++)
968 if (ira_copies[n] != NULL)
969 {
970 *cp = ira_copies[n];
971 i->n = n + 1;
972 return true;
973 }
974 return false;
975}
976
977/* Loop over all copies. In each iteration, C is set to the next
978 copy. ITER is an instance of ira_copy_iterator used to iterate
979 the copies. */
980#define FOR_EACH_COPY(C, ITER) \
981 for (ira_copy_iter_init (&(ITER)); \
982 ira_copy_iter_cond (&(ITER), &(C));)
983
984
985\f
986
987/* The iterator for allocno conflicts. */
988typedef struct {
989
990 /* TRUE if the conflicts are represented by vector of allocnos. */
991 bool allocno_conflict_vec_p;
992
993 /* The conflict vector or conflict bit vector. */
994 void *vec;
995
996 /* The number of the current element in the vector (of type
997 ira_allocno_t or IRA_INT_TYPE). */
998 unsigned int word_num;
999
1000 /* The bit vector size. It is defined only if
1001 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1002 unsigned int size;
1003
1004 /* The current bit index of bit vector. It is defined only if
1005 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1006 unsigned int bit_num;
1007
1008 /* Allocno conflict id corresponding to the 1st bit of the bit
1009 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1010 FALSE. */
1011 int base_conflict_id;
1012
1013 /* The word of bit vector currently visited. It is defined only if
1014 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1015 unsigned IRA_INT_TYPE word;
1016} ira_allocno_conflict_iterator;
1017
1018/* Initialize the iterator I with ALLOCNO conflicts. */
1019static inline void
1020ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1021 ira_allocno_t allocno)
1022{
1023 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1024 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1025 i->word_num = 0;
1026 if (i->allocno_conflict_vec_p)
1027 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1028 else
1029 {
1030 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1031 i->size = 0;
1032 else
1033 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1034 + IRA_INT_BITS)
1035 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1036 i->bit_num = 0;
1037 i->base_conflict_id = ALLOCNO_MIN (allocno);
1038 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1039 }
1040}
1041
1042/* Return TRUE if we have more conflicting allocnos to visit, in which
1043 case *A is set to the allocno to be visited. Otherwise, return
1044 FALSE. */
1045static inline bool
1046ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1047 ira_allocno_t *a)
1048{
1049 ira_allocno_t conflict_allocno;
1050
1051 if (i->allocno_conflict_vec_p)
1052 {
1053 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1054 if (conflict_allocno == NULL)
1055 return false;
1056 *a = conflict_allocno;
1057 return true;
1058 }
1059 else
1060 {
1061 /* Skip words that are zeros. */
1062 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1063 {
1064 i->word_num++;
1065
1066 /* If we have reached the end, break. */
1067 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1068 return false;
1069
1070 i->bit_num = i->word_num * IRA_INT_BITS;
1071 }
1072
1073 /* Skip bits that are zero. */
1074 for (; (i->word & 1) == 0; i->word >>= 1)
1075 i->bit_num++;
1076
1077 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1078
1079 return true;
1080 }
1081}
1082
1083/* Advance to the next conflicting allocno. */
1084static inline void
1085ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1086{
1087 if (i->allocno_conflict_vec_p)
1088 i->word_num++;
1089 else
1090 {
1091 i->word >>= 1;
1092 i->bit_num++;
1093 }
1094}
1095
1096/* Loop over all allocnos conflicting with ALLOCNO. In each
1097 iteration, A is set to the next conflicting allocno. ITER is an
1098 instance of ira_allocno_conflict_iterator used to iterate the
1099 conflicts. */
1100#define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1101 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1102 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1103 ira_allocno_conflict_iter_next (&(ITER)))
1104
1105\f
1106
1107/* The function returns TRUE if hard registers starting with
1108 HARD_REGNO and containing value of MODE are not in set
1109 HARD_REGSET. */
1110static inline bool
1111ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1112 HARD_REG_SET hard_regset)
1113{
1114 int i;
1115
1116 ira_assert (hard_regno >= 0);
1117 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1118 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1119 return false;
1120 return true;
1121}
1122
1123\f
1124
1125/* To save memory we use a lazy approach for allocation and
1126 initialization of the cost vectors. We do this only when it is
1127 really necessary. */
1128
1129/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1130 initialize the elements by VAL if it is necessary */
1131static inline void
1132ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1133{
1134 int i, *reg_costs;
1135 int len;
1136
1137 if (*vec != NULL)
1138 return;
1139 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1140 len = ira_class_hard_regs_num[cover_class];
1141 for (i = 0; i < len; i++)
1142 reg_costs[i] = val;
1143}
1144
1145/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1146 copy values of vector SRC into the vector if it is necessary */
1147static inline void
1148ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1149{
1150 int len;
1151
1152 if (*vec != NULL || src == NULL)
1153 return;
1154 *vec = ira_allocate_cost_vector (cover_class);
1155 len = ira_class_hard_regs_num[cover_class];
1156 memcpy (*vec, src, sizeof (int) * len);
1157}
1158
1159/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1160 add values of vector SRC into the vector if it is necessary */
1161static inline void
1162ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1163 int *src)
1164{
1165 int i, len;
1166
1167 if (src == NULL)
1168 return;
1169 len = ira_class_hard_regs_num[cover_class];
1170 if (*vec == NULL)
1171 {
1172 *vec = ira_allocate_cost_vector (cover_class);
1173 memset (*vec, 0, sizeof (int) * len);
1174 }
1175 for (i = 0; i < len; i++)
1176 (*vec)[i] += src[i];
1177}
1178
1179/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1180 copy values of vector SRC into the vector or initialize it by VAL
1181 (if SRC is null). */
1182static inline void
1183ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1184 int val, int *src)
1185{
1186 int i, *reg_costs;
1187 int len;
1188
1189 if (*vec != NULL)
1190 return;
1191 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1192 len = ira_class_hard_regs_num[cover_class];
1193 if (src != NULL)
1194 memcpy (reg_costs, src, sizeof (int) * len);
1195 else
1196 {
1197 for (i = 0; i < len; i++)
1198 reg_costs[i] = val;
1199 }
1200}