]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
2008-09-03 Vladimir Makarov <vmakarov@redhat.com>
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
47dd2e78 1/* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "cfgloop.h"
23#include "ira.h"
24#include "alloc-pool.h"
25
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29#ifdef ENABLE_CHECKING
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
36#define ira_assert(c)
37#endif
38
39/* Compute register frequency from edge frequency FREQ. It is
40 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
41 profile driven feedback is available and the function is never
42 executed, frequency is always equivalent. Otherwise rescale the
43 edge frequency. */
44#define REG_FREQ_FROM_EDGE_FREQ(freq) \
45 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
46 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
47 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
48
49/* All natural loops. */
50extern struct loops ira_loops;
51
52/* A modified value of flag `-fira-verbose' used internally. */
53extern int internal_flag_ira_verbose;
54
55/* Dump file of the allocator if it is not NULL. */
56extern FILE *ira_dump_file;
57
58/* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60typedef struct ira_allocno_live_range *allocno_live_range_t;
61typedef struct ira_allocno *ira_allocno_t;
62typedef struct ira_allocno_copy *ira_copy_t;
63
64/* Definition of vector of allocnos and copies. */
65DEF_VEC_P(ira_allocno_t);
66DEF_VEC_ALLOC_P(ira_allocno_t, heap);
67DEF_VEC_P(ira_copy_t);
68DEF_VEC_ALLOC_P(ira_copy_t, heap);
69
70/* Typedef for pointer to the subsequent structure. */
71typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
72
73/* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81struct ira_loop_tree_node
82{
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 struct loop *loop; /* NULL for BB. */
86 /* The next (loop) node of with the same parent. SUBLOOP_NEXT is
87 always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next, next;
89 /* The first (loop) node immediately inside the node. SUBLOOPS is
90 always NULL for BBs. */
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
94
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
97
98 /* All the following members are defined only for nodes representing
99 loops. */
100
101 /* Allocnos in the loop corresponding to their regnos. If it is
102 NULL the loop does not form a separate register allocation region
103 (e.g. because it has abnormal enter/exit edges and we can not put
104 code for register shuffling on the edges if a different
105 allocation is used for a pseudo-register on different sides of
106 the edges). Caps are not in the map (remember we can have more
107 one cap with the same regno in a region). */
108 ira_allocno_t *regno_allocno_map;
109
110 /* Maximal register pressure inside loop for given register class
111 (defined only for the cover classes). */
112 int reg_pressure[N_REG_CLASSES];
113
2bae4acc 114 /* Numbers of allocnos referred or living in the loop node (except
115 for its subloops). */
116 bitmap all_allocnos;
117
118 /* Numbers of allocnos living at the loop borders. */
119 bitmap border_allocnos;
47dd2e78 120
121 /* Regnos of pseudos modified in the loop node (including its
122 subloops). */
123 bitmap modified_regnos;
124
47dd2e78 125 /* Numbers of copies referred in the corresponding loop. */
126 bitmap local_copies;
127};
128
129/* The root of the loop tree corresponding to the all function. */
130extern ira_loop_tree_node_t ira_loop_tree_root;
131
132/* Height of the loop tree. */
133extern int ira_loop_tree_height;
134
135/* All nodes representing basic blocks are referred through the
136 following array. We can not use basic block member `aux' for this
137 because it is used for insertion of insns on edges. */
138extern ira_loop_tree_node_t ira_bb_nodes;
139
140/* Two access macros to the nodes representing basic blocks. */
141#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
142#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
143(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
144 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
145 { \
146 fprintf (stderr, \
147 "\n%s: %d: error in %s: it is not a block node\n", \
148 __FILE__, __LINE__, __FUNCTION__); \
149 gcc_unreachable (); \
150 } \
151 _node; }))
152#else
153#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
154#endif
155
156#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
157
158/* All nodes representing loops are referred through the following
159 array. */
160extern ira_loop_tree_node_t ira_loop_nodes;
161
162/* Two access macros to the nodes representing loops. */
163#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
164#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
165(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
166 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
167 { \
168 fprintf (stderr, \
169 "\n%s: %d: error in %s: it is not a loop node\n", \
170 __FILE__, __LINE__, __FUNCTION__); \
171 gcc_unreachable (); \
172 } \
173 _node; }))
174#else
175#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
176#endif
177
178#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
179
180\f
181
182/* The structure describes program points where a given allocno lives.
183 To save memory we store allocno conflicts only for the same cover
184 class allocnos which is enough to assign hard registers. To find
185 conflicts for other allocnos (e.g. to assign stack memory slot) we
186 use the live ranges. If the live ranges of two allocnos are
187 intersected, the allocnos are in conflict. */
188struct ira_allocno_live_range
189{
190 /* Allocno whose live range is described by given structure. */
191 ira_allocno_t allocno;
192 /* Program point range. */
193 int start, finish;
194 /* Next structure describing program points where the allocno
195 lives. */
196 allocno_live_range_t next;
197 /* Pointer to structures with the same start/finish. */
198 allocno_live_range_t start_next, finish_next;
199};
200
201/* Program points are enumerated by numbers from range
202 0..IRA_MAX_POINT-1. There are approximately two times more program
203 points than insns. Program points are places in the program where
204 liveness info can be changed. In most general case (there are more
205 complicated cases too) some program points correspond to places
206 where input operand dies and other ones correspond to places where
207 output operands are born. */
208extern int ira_max_point;
209
210/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
211 live ranges with given start/finish point. */
212extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
213
214/* A structure representing an allocno (allocation entity). Allocno
215 represents a pseudo-register in an allocation region. If
216 pseudo-register does not live in a region but it lives in the
217 nested regions, it is represented in the region by special allocno
218 called *cap*. There may be more one cap representing the same
219 pseudo-register in region. It means that the corresponding
220 pseudo-register lives in more one non-intersected subregion. */
221struct ira_allocno
222{
223 /* The allocno order number starting with 0. Each allocno has an
224 unique number and the number is never changed for the
225 allocno. */
226 int num;
227 /* Regno for allocno or cap. */
228 int regno;
229 /* Mode of the allocno which is the mode of the corresponding
230 pseudo-register. */
231 enum machine_mode mode;
232 /* Final rtx representation of the allocno. */
233 rtx reg;
234 /* Hard register assigned to given allocno. Negative value means
235 that memory was allocated to the allocno. During the reload,
236 spilled allocno has value equal to the corresponding stack slot
237 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
238 reload (at this point pseudo-register has only one allocno) which
239 did not get stack slot yet. */
240 int hard_regno;
241 /* Allocnos with the same regno are linked by the following member.
242 Allocnos corresponding to inner loops are first in the list (it
243 corresponds to depth-first traverse of the loops). */
244 ira_allocno_t next_regno_allocno;
245 /* There may be different allocnos with the same regno in different
246 regions. Allocnos are bound to the corresponding loop tree node.
247 Pseudo-register may have only one regular allocno with given loop
248 tree node but more than one cap (see comments above). */
249 ira_loop_tree_node_t loop_tree_node;
250 /* Accumulated usage references of the allocno. Here and below,
251 word 'accumulated' means info for given region and all nested
252 subregions. In this case, 'accumulated' means sum of references
253 of the corresponding pseudo-register in this region and in all
254 nested subregions recursively. */
255 int nrefs;
256 /* Accumulated frequency of usage of the allocno. */
257 int freq;
258 /* Register class which should be used for allocation for given
259 allocno. NO_REGS means that we should use memory. */
260 enum reg_class cover_class;
261 /* Minimal accumulated cost of usage register of the cover class for
262 the allocno. */
263 int cover_class_cost;
264 /* Minimal accumulated, and updated costs of memory for the allocno.
265 At the allocation start, the original and updated costs are
266 equal. The updated cost may be changed after finishing
267 allocation in a region and starting allocation in a subregion.
268 The change reflects the cost of spill/restore code on the
269 subregion border if we assign memory to the pseudo in the
270 subregion. */
271 int memory_cost, updated_memory_cost;
272 /* Accumulated number of points where the allocno lives and there is
273 excess pressure for its class. Excess pressure for a register
274 class at some point means that there are more allocnos of given
275 register class living at the point than number of hard-registers
276 of the class available for the allocation. */
277 int excess_pressure_points_num;
278 /* Copies to other non-conflicting allocnos. The copies can
279 represent move insn or potential move insn usually because of two
280 operand insn constraints. */
281 ira_copy_t allocno_copies;
282 /* It is a allocno (cap) representing given allocno on upper loop tree
283 level. */
284 ira_allocno_t cap;
285 /* It is a link to allocno (cap) on lower loop level represented by
286 given cap. Null if given allocno is not a cap. */
287 ira_allocno_t cap_member;
288 /* Coalesced allocnos form a cyclic list. One allocno given by
289 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
290 list is chained by NEXT_COALESCED_ALLOCNO. */
291 ira_allocno_t first_coalesced_allocno;
292 ira_allocno_t next_coalesced_allocno;
293 /* Pointer to structures describing at what program point the
294 allocno lives. We always maintain the list in such way that *the
295 ranges in the list are not intersected and ordered by decreasing
296 their program points*. */
297 allocno_live_range_t live_ranges;
298 /* Before building conflicts the two member values are
299 correspondingly minimal and maximal points of the accumulated
300 allocno live ranges. After building conflicts the values are
301 correspondingly minimal and maximal conflict ids of allocnos with
302 which given allocno can conflict. */
303 int min, max;
304 /* The unique member value represents given allocno in conflict bit
305 vectors. */
306 int conflict_id;
307 /* Vector of accumulated conflicting allocnos with NULL end marker
308 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
309 Only allocnos with the same cover class are in the vector or in
310 the bit vector. */
311 void *conflict_allocno_array;
312 /* Allocated size of the previous array. */
313 unsigned int conflict_allocno_array_size;
314 /* Number of accumulated conflicts in the vector of conflicting
315 allocnos. */
316 int conflict_allocnos_num;
317 /* Initial and accumulated hard registers conflicting with this
318 allocno and as a consequences can not be assigned to the allocno.
319 All non-allocatable hard regs and hard regs of cover classes
320 different from given allocno one are included in the sets. */
321 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
322 /* Accumulated frequency of calls which given allocno
323 intersects. */
324 int call_freq;
325 /* Length of the previous array (number of the intersected calls). */
326 int calls_crossed_num;
327 /* Non NULL if we remove restoring value from given allocno to
328 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
329 allocno value is not changed inside the loop. */
330 ira_allocno_t mem_optimized_dest;
331 /* TRUE if the allocno assigned to memory was a destination of
332 removed move (see ira-emit.c) at loop exit because the value of
333 the corresponding pseudo-register is not changed inside the
334 loop. */
335 unsigned int mem_optimized_dest_p : 1;
336 /* TRUE if the corresponding pseudo-register has disjoint live
337 ranges and the other allocnos of the pseudo-register except this
338 one changed REG. */
339 unsigned int somewhere_renamed_p : 1;
340 /* TRUE if allocno with the same REGNO in a subregion has been
341 renamed, in other words, got a new pseudo-register. */
342 unsigned int child_renamed_p : 1;
343 /* During the reload, value TRUE means that we should not reassign a
344 hard register to the allocno got memory earlier. It is set up
345 when we removed memory-memory move insn before each iteration of
346 the reload. */
347 unsigned int dont_reassign_p : 1;
348#ifdef STACK_REGS
349 /* Set to TRUE if allocno can't be assigned to the stack hard
350 register correspondingly in this region and area including the
351 region and all its subregions recursively. */
352 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
353#endif
354 /* TRUE value means that the allocno was not removed yet from the
355 conflicting graph during colouring. */
356 unsigned int in_graph_p : 1;
357 /* TRUE if a hard register or memory has been assigned to the
358 allocno. */
359 unsigned int assigned_p : 1;
360 /* TRUE if it is put on the stack to make other allocnos
361 colorable. */
362 unsigned int may_be_spilled_p : 1;
363 /* TRUE if the allocno was removed from the splay tree used to
364 choose allocn for spilling (see ira-color.c::. */
365 unsigned int splay_removed_p : 1;
366 /* TRUE if conflicts for given allocno are represented by vector of
367 pointers to the conflicting allocnos. Otherwise, we use a bit
368 vector where a bit with given index represents allocno with the
369 same number. */
370 unsigned int conflict_vec_p : 1;
371 /* Array of usage costs (accumulated and the one updated during
372 coloring) for each hard register of the allocno cover class. The
373 member value can be NULL if all costs are the same and equal to
374 COVER_CLASS_COST. For example, the costs of two different hard
375 registers can be different if one hard register is callee-saved
376 and another one is callee-used and the allocno lives through
377 calls. Another example can be case when for some insn the
378 corresponding pseudo-register value should be put in specific
379 register class (e.g. AREG for x86) which is a strict subset of
380 the allocno cover class (GENERAL_REGS for x86). We have updated
381 costs to reflect the situation when the usage cost of a hard
382 register is decreased because the allocno is connected to another
383 allocno by a copy and the another allocno has been assigned to
384 the hard register. */
385 int *hard_reg_costs, *updated_hard_reg_costs;
386 /* Array of decreasing costs (accumulated and the one updated during
387 coloring) for allocnos conflicting with given allocno for hard
388 regno of the allocno cover class. The member value can be NULL
389 if all costs are the same. These costs are used to reflect
390 preferences of other allocnos not assigned yet during assigning
391 to given allocno. */
392 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
393 /* Number of the same cover class allocnos with TRUE in_graph_p
394 value and conflicting with given allocno during each point of
395 graph coloring. */
396 int left_conflicts_num;
397 /* Number of hard registers of the allocno cover class really
398 available for the allocno allocation. */
399 int available_regs_num;
400 /* Allocnos in a bucket (used in coloring) chained by the following
401 two members. */
402 ira_allocno_t next_bucket_allocno;
403 ira_allocno_t prev_bucket_allocno;
404 /* Used for temporary purposes. */
405 int temp;
406};
407
408/* All members of the allocno structures should be accessed only
409 through the following macros. */
410#define ALLOCNO_NUM(A) ((A)->num)
411#define ALLOCNO_REGNO(A) ((A)->regno)
412#define ALLOCNO_REG(A) ((A)->reg)
413#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
414#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
415#define ALLOCNO_CAP(A) ((A)->cap)
416#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
417#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
418#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
419 ((A)->conflict_allocno_array_size)
420#define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
421 ((A)->conflict_allocnos_num)
422#define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
423#define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
424#define ALLOCNO_NREFS(A) ((A)->nrefs)
425#define ALLOCNO_FREQ(A) ((A)->freq)
426#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
427#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
428#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
429#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
430#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
431#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
432#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
433#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
434#ifdef STACK_REGS
435#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
436#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
437#endif
438#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
439#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
440#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
441#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
442#define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
443#define ALLOCNO_MODE(A) ((A)->mode)
444#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->conflict_hard_reg_costs)
449#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450 ((A)->updated_conflict_hard_reg_costs)
451#define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
452#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
453#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
454#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
455#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
456#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
457#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
458#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
459#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
460#define IRA_ALLOCNO_TEMP(A) ((A)->temp)
461#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
462#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
463#define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
464#define ALLOCNO_MIN(A) ((A)->min)
465#define ALLOCNO_MAX(A) ((A)->max)
466#define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
467
468/* Map regno -> allocnos with given regno (see comments for
469 allocno member `next_regno_allocno'). */
470extern ira_allocno_t *ira_regno_allocno_map;
471
472/* Array of references to all allocnos. The order number of the
473 allocno corresponds to the index in the array. Removed allocnos
474 have NULL element value. */
475extern ira_allocno_t *ira_allocnos;
476
477/* Sizes of the previous array. */
478extern int ira_allocnos_num;
479
480/* Map conflict id -> allocno with given conflict id (see comments for
481 allocno member `conflict_id'). */
482extern ira_allocno_t *ira_conflict_id_allocno_map;
483
484/* The following structure represents a copy of two allocnos. The
485 copies represent move insns or potential move insns usually because
486 of two operand insn constraints. To remove register shuffle, we
487 also create copies between allocno which is output of an insn and
488 allocno becoming dead in the insn. */
489struct ira_allocno_copy
490{
491 /* The unique order number of the copy node starting with 0. */
492 int num;
493 /* Allocnos connected by the copy. The first allocno should have
494 smaller order number than the second one. */
495 ira_allocno_t first, second;
496 /* Execution frequency of the copy. */
497 int freq;
498 /* It is a move insn which is an origin of the copy. The member
499 value for the copy representing two operand insn constraints or
500 for the copy created to remove register shuffle is NULL. In last
501 case the copy frequency is smaller than the corresponding insn
502 execution frequency. */
503 rtx insn;
504 /* All copies with the same allocno as FIRST are linked by the two
505 following members. */
506 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
507 /* All copies with the same allocno as SECOND are linked by the two
508 following members. */
509 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
510 /* Region from which given copy is originated. */
511 ira_loop_tree_node_t loop_tree_node;
512};
513
514/* Array of references to all copies. The order number of the copy
515 corresponds to the index in the array. Removed copies have NULL
516 element value. */
517extern ira_copy_t *ira_copies;
518
519/* Size of the previous array. */
520extern int ira_copies_num;
521
522/* The following structure describes a stack slot used for spilled
523 pseudo-registers. */
524struct ira_spilled_reg_stack_slot
525{
526 /* pseudo-registers assigned to the stack slot. */
527 regset_head spilled_regs;
528 /* RTL representation of the stack slot. */
529 rtx mem;
530 /* Size of the stack slot. */
531 unsigned int width;
532};
533
534/* The number of elements in the following array. */
535extern int ira_spilled_reg_stack_slots_num;
536
537/* The following array contains info about spilled pseudo-registers
538 stack slots used in current function so far. */
539extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
540
541/* Correspondingly overall cost of the allocation, cost of the
542 allocnos assigned to hard-registers, cost of the allocnos assigned
543 to memory, cost of loads, stores and register move insns generated
544 for pseudo-register live range splitting (see ira-emit.c). */
545extern int ira_overall_cost;
546extern int ira_reg_cost, ira_mem_cost;
547extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
548extern int ira_move_loops_num, ira_additional_jumps_num;
549
550/* Map: register class x machine mode -> number of hard registers of
551 given class needed to store value of given mode. If the number for
552 some hard-registers of the register class is different, the size
553 will be negative. */
554extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
555
556/* Maximal value of the previous array elements. */
557extern int ira_max_nregs;
558
559/* The number of bits in each element of array used to implement a bit
560 vector of allocnos and what type that element has. We use the
561 largest integer format on the host machine. */
562#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
563#define IRA_INT_TYPE HOST_WIDE_INT
564
565/* Set, clear or test bit number I in R, a bit vector of elements with
566 minimal index and maximal index equal correspondingly to MIN and
567 MAX. */
568#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
569
570#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
571 (({ int _min = (MIN), _max = (MAX), _i = (I); \
572 if (_i < _min || _i > _max) \
573 { \
574 fprintf (stderr, \
575 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
576 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
577 gcc_unreachable (); \
578 } \
579 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
580 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
581
582
583#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
584 (({ int _min = (MIN), _max = (MAX), _i = (I); \
585 if (_i < _min || _i > _max) \
586 { \
587 fprintf (stderr, \
588 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
589 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
590 gcc_unreachable (); \
591 } \
592 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
593 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
594
595#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
596 (({ int _min = (MIN), _max = (MAX), _i = (I); \
597 if (_i < _min || _i > _max) \
598 { \
599 fprintf (stderr, \
600 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
601 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
602 gcc_unreachable (); \
603 } \
604 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
605 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
606
607#else
608
609#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
610 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
611 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
612
613#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
614 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
615 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
616
617#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
618 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
619 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
620
621#endif
622
623/* The iterator for allocno set implemented ed as allocno bit
624 vector. */
625typedef struct {
626
627 /* Array containing the allocno bit vector. */
628 IRA_INT_TYPE *vec;
629
630 /* The number of the current element in the vector. */
631 unsigned int word_num;
632
633 /* The number of bits in the bit vector. */
634 unsigned int nel;
635
636 /* The current bit index of the bit vector. */
637 unsigned int bit_num;
638
639 /* Index corresponding to the 1st bit of the bit vector. */
640 int start_val;
641
642 /* The word of the bit vector currently visited. */
643 unsigned IRA_INT_TYPE word;
644} ira_allocno_set_iterator;
645
646/* Initialize the iterator I for allocnos bit vector VEC containing
647 minimal and maximal values MIN and MAX. */
648static inline void
649ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
650 IRA_INT_TYPE *vec, int min, int max)
651{
652 i->vec = vec;
653 i->word_num = 0;
654 i->nel = max < min ? 0 : max - min + 1;
655 i->start_val = min;
656 i->bit_num = 0;
657 i->word = i->nel == 0 ? 0 : vec[0];
658}
659
660/* Return TRUE if we have more allocnos to visit, in which case *N is
661 set to the allocno number to be visited. Otherwise, return
662 FALSE. */
663static inline bool
664ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
665{
666 /* Skip words that are zeros. */
667 for (; i->word == 0; i->word = i->vec[i->word_num])
668 {
669 i->word_num++;
670 i->bit_num = i->word_num * IRA_INT_BITS;
671
672 /* If we have reached the end, break. */
673 if (i->bit_num >= i->nel)
674 return false;
675 }
676
677 /* Skip bits that are zero. */
678 for (; (i->word & 1) == 0; i->word >>= 1)
679 i->bit_num++;
680
681 *n = (int) i->bit_num + i->start_val;
682
683 return true;
684}
685
686/* Advance to the next allocno in the set. */
687static inline void
688ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
689{
690 i->word >>= 1;
691 i->bit_num++;
692}
693
694/* Loop over all elements of allocno set given by bit vector VEC and
695 their minimal and maximal values MIN and MAX. In each iteration, N
696 is set to the number of next allocno. ITER is an instance of
697 ira_allocno_set_iterator used to iterate the allocnos in the set. */
698#define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
699 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
700 ira_allocno_set_iter_cond (&(ITER), &(N)); \
701 ira_allocno_set_iter_next (&(ITER)))
702
703/* ira.c: */
704
705/* Hard regsets whose all bits are correspondingly zero or one. */
706extern HARD_REG_SET ira_zero_hard_reg_set;
707extern HARD_REG_SET ira_one_hard_reg_set;
708
709/* Map: hard regs X modes -> set of hard registers for storing value
710 of given mode starting with given hard register. */
711extern HARD_REG_SET ira_reg_mode_hard_regset
712 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
713
714/* Arrays analogous to macros MEMORY_MOVE_COST and
715 REGISTER_MOVE_COST. */
716extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
717extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
718
719/* Similar to may_move_in_cost but it is calculated in IRA instead of
720 regclass. Another difference we take only available hard registers
721 into account to figure out that one register class is a subset of
722 the another one. */
723extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
724
725/* Similar to may_move_out_cost but it is calculated in IRA instead of
726 regclass. Another difference we take only available hard registers
727 into account to figure out that one register class is a subset of
728 the another one. */
729extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
730
731/* Register class subset relation: TRUE if the first class is a subset
732 of the second one considering only hard registers available for the
733 allocation. */
734extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
735
736/* Array of number of hard registers of given class which are
737 available for the allocation. The order is defined by the
738 allocation order. */
739extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
740
741/* The number of elements of the above array for given register
742 class. */
743extern int ira_class_hard_regs_num[N_REG_CLASSES];
744
745/* Index (in ira_class_hard_regs) for given register class and hard
746 register (in general case a hard register can belong to several
747 register classes). The index is negative for hard registers
748 unavailable for the allocation. */
749extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
750
751/* Function specific hard registers can not be used for the register
752 allocation. */
753extern HARD_REG_SET ira_no_alloc_regs;
754
755/* Number of given class hard registers available for the register
756 allocation for given classes. */
757extern int ira_available_class_regs[N_REG_CLASSES];
758
759/* Array whose values are hard regset of hard registers available for
760 the allocation of given register class whose HARD_REGNO_MODE_OK
761 values for given mode are zero. */
762extern HARD_REG_SET prohibited_class_mode_regs
763 [N_REG_CLASSES][NUM_MACHINE_MODES];
764
765/* Array whose values are hard regset of hard registers for which
766 move of the hard register in given mode into itself is
767 prohibited. */
768extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
769
770/* Number of cover classes. Cover classes is non-intersected register
771 classes containing all hard-registers available for the
772 allocation. */
773extern int ira_reg_class_cover_size;
774
775/* The array containing cover classes (see also comments for macro
776 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
777 used for this. */
778extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
779
780/* The value is number of elements in the subsequent array. */
781extern int ira_important_classes_num;
782
783/* The array containing non-empty classes (including non-empty cover
784 classes) which are subclasses of cover classes. Such classes is
785 important for calculation of the hard register usage costs. */
786extern enum reg_class ira_important_classes[N_REG_CLASSES];
787
788/* The array containing indexes of important classes in the previous
789 array. The array elements are defined only for important
790 classes. */
791extern int ira_important_class_nums[N_REG_CLASSES];
792
793/* Map of all register classes to corresponding cover class containing
794 the given class. If given class is not a subset of a cover class,
795 we translate it into the cheapest cover class. */
796extern enum reg_class ira_class_translate[N_REG_CLASSES];
797
798/* The biggest important class inside of intersection of the two
799 classes (that is calculated taking only hard registers available
800 for allocation into account). If the both classes contain no hard
801 registers available for allocation, the value is calculated with
802 taking all hard-registers including fixed ones into account. */
803extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
804
805/* The biggest important class inside of union of the two classes
806 (that is calculated taking only hard registers available for
807 allocation into account). If the both classes contain no hard
808 registers available for allocation, the value is calculated with
809 taking all hard-registers including fixed ones into account. In
810 other words, the value is the corresponding reg_class_subunion
811 value. */
812extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
813
814extern void *ira_allocate (size_t);
815extern void *ira_reallocate (void *, size_t);
816extern void ira_free (void *addr);
817extern bitmap ira_allocate_bitmap (void);
818extern void ira_free_bitmap (bitmap);
819extern void ira_print_disposition (FILE *);
820extern void ira_debug_disposition (void);
821extern void ira_debug_class_cover (void);
822extern void ira_init_register_move_cost (enum machine_mode);
823
824/* The length of the two following arrays. */
825extern int ira_reg_equiv_len;
826
827/* The element value is TRUE if the corresponding regno value is
828 invariant. */
829extern bool *ira_reg_equiv_invariant_p;
830
831/* The element value is equiv constant of given pseudo-register or
832 NULL_RTX. */
833extern rtx *ira_reg_equiv_const;
834
835/* ira-build.c */
836
837/* The current loop tree node and its regno allocno map. */
838extern ira_loop_tree_node_t ira_curr_loop_tree_node;
839extern ira_allocno_t *ira_curr_regno_allocno_map;
840
841extern void ira_debug_allocno_copies (ira_allocno_t);
842
843extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
844 void (*) (ira_loop_tree_node_t),
845 void (*) (ira_loop_tree_node_t));
846extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
847extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
848extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
849extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
850extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
851extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
852extern void ira_print_expanded_allocno (ira_allocno_t);
853extern allocno_live_range_t ira_create_allocno_live_range
854 (ira_allocno_t, int, int, allocno_live_range_t);
855extern void ira_finish_allocno_live_range (allocno_live_range_t);
856extern void ira_free_allocno_updated_costs (ira_allocno_t);
857extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
858 int, rtx, ira_loop_tree_node_t);
859extern void ira_add_allocno_copy_to_list (ira_copy_t);
860extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
861extern void ira_remove_allocno_copy_from_list (ira_copy_t);
862extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, rtx,
863 ira_loop_tree_node_t);
864
865extern int *ira_allocate_cost_vector (enum reg_class);
866extern void ira_free_cost_vector (int *, enum reg_class);
867
868extern void ira_flattening (int, int);
869extern bool ira_build (bool);
870extern void ira_destroy (void);
871
872/* ira-costs.c */
873extern void ira_init_costs_once (void);
874extern void ira_init_costs (void);
875extern void ira_finish_costs_once (void);
876extern void ira_costs (void);
877extern void ira_tune_allocno_costs_and_cover_classes (void);
878
879/* ira-lives.c */
880
881extern void ira_rebuild_start_finish_chains (void);
882extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
883extern void ira_debug_live_range_list (allocno_live_range_t);
884extern void ira_debug_allocno_live_ranges (ira_allocno_t);
885extern void ira_debug_live_ranges (void);
886extern void ira_create_allocno_live_ranges (void);
887extern void ira_finish_allocno_live_ranges (void);
888
889/* ira-conflicts.c */
890extern bool ira_allocno_live_ranges_intersect_p (ira_allocno_t, ira_allocno_t);
891extern bool ira_pseudo_live_ranges_intersect_p (int, int);
892extern void ira_debug_conflicts (bool);
893extern void ira_build_conflicts (void);
894
895/* ira-color.c */
896extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
897extern void ira_reassign_conflict_allocnos (int);
898extern void ira_initiate_assign (void);
899extern void ira_finish_assign (void);
900extern void ira_color (void);
901extern void ira_fast_allocation (void);
902
903/* ira-emit.c */
904extern void ira_emit (bool);
905
906\f
907
908/* The iterator for all allocnos. */
909typedef struct {
910 /* The number of the current element in IRA_ALLOCNOS. */
911 int n;
912} ira_allocno_iterator;
913
914/* Initialize the iterator I. */
915static inline void
916ira_allocno_iter_init (ira_allocno_iterator *i)
917{
918 i->n = 0;
919}
920
921/* Return TRUE if we have more allocnos to visit, in which case *A is
922 set to the allocno to be visited. Otherwise, return FALSE. */
923static inline bool
924ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
925{
926 int n;
927
928 for (n = i->n; n < ira_allocnos_num; n++)
929 if (ira_allocnos[n] != NULL)
930 {
931 *a = ira_allocnos[n];
932 i->n = n + 1;
933 return true;
934 }
935 return false;
936}
937
938/* Loop over all allocnos. In each iteration, A is set to the next
939 allocno. ITER is an instance of ira_allocno_iterator used to iterate
940 the allocnos. */
941#define FOR_EACH_ALLOCNO(A, ITER) \
942 for (ira_allocno_iter_init (&(ITER)); \
943 ira_allocno_iter_cond (&(ITER), &(A));)
944
945
946\f
947
948/* The iterator for copies. */
949typedef struct {
950 /* The number of the current element in IRA_COPIES. */
951 int n;
952} ira_copy_iterator;
953
954/* Initialize the iterator I. */
955static inline void
956ira_copy_iter_init (ira_copy_iterator *i)
957{
958 i->n = 0;
959}
960
961/* Return TRUE if we have more copies to visit, in which case *CP is
962 set to the copy to be visited. Otherwise, return FALSE. */
963static inline bool
964ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
965{
966 int n;
967
968 for (n = i->n; n < ira_copies_num; n++)
969 if (ira_copies[n] != NULL)
970 {
971 *cp = ira_copies[n];
972 i->n = n + 1;
973 return true;
974 }
975 return false;
976}
977
978/* Loop over all copies. In each iteration, C is set to the next
979 copy. ITER is an instance of ira_copy_iterator used to iterate
980 the copies. */
981#define FOR_EACH_COPY(C, ITER) \
982 for (ira_copy_iter_init (&(ITER)); \
983 ira_copy_iter_cond (&(ITER), &(C));)
984
985
986\f
987
988/* The iterator for allocno conflicts. */
989typedef struct {
990
991 /* TRUE if the conflicts are represented by vector of allocnos. */
992 bool allocno_conflict_vec_p;
993
994 /* The conflict vector or conflict bit vector. */
995 void *vec;
996
997 /* The number of the current element in the vector (of type
998 ira_allocno_t or IRA_INT_TYPE). */
999 unsigned int word_num;
1000
1001 /* The bit vector size. It is defined only if
1002 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1003 unsigned int size;
1004
1005 /* The current bit index of bit vector. It is defined only if
1006 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1007 unsigned int bit_num;
1008
1009 /* Allocno conflict id corresponding to the 1st bit of the bit
1010 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1011 FALSE. */
1012 int base_conflict_id;
1013
1014 /* The word of bit vector currently visited. It is defined only if
1015 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1016 unsigned IRA_INT_TYPE word;
1017} ira_allocno_conflict_iterator;
1018
1019/* Initialize the iterator I with ALLOCNO conflicts. */
1020static inline void
1021ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1022 ira_allocno_t allocno)
1023{
1024 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1025 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1026 i->word_num = 0;
1027 if (i->allocno_conflict_vec_p)
1028 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1029 else
1030 {
1031 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1032 i->size = 0;
1033 else
1034 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1035 + IRA_INT_BITS)
1036 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1037 i->bit_num = 0;
1038 i->base_conflict_id = ALLOCNO_MIN (allocno);
1039 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1040 }
1041}
1042
1043/* Return TRUE if we have more conflicting allocnos to visit, in which
1044 case *A is set to the allocno to be visited. Otherwise, return
1045 FALSE. */
1046static inline bool
1047ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1048 ira_allocno_t *a)
1049{
1050 ira_allocno_t conflict_allocno;
1051
1052 if (i->allocno_conflict_vec_p)
1053 {
1054 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1055 if (conflict_allocno == NULL)
1056 return false;
1057 *a = conflict_allocno;
1058 return true;
1059 }
1060 else
1061 {
1062 /* Skip words that are zeros. */
1063 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1064 {
1065 i->word_num++;
1066
1067 /* If we have reached the end, break. */
1068 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1069 return false;
1070
1071 i->bit_num = i->word_num * IRA_INT_BITS;
1072 }
1073
1074 /* Skip bits that are zero. */
1075 for (; (i->word & 1) == 0; i->word >>= 1)
1076 i->bit_num++;
1077
1078 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1079
1080 return true;
1081 }
1082}
1083
1084/* Advance to the next conflicting allocno. */
1085static inline void
1086ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1087{
1088 if (i->allocno_conflict_vec_p)
1089 i->word_num++;
1090 else
1091 {
1092 i->word >>= 1;
1093 i->bit_num++;
1094 }
1095}
1096
1097/* Loop over all allocnos conflicting with ALLOCNO. In each
1098 iteration, A is set to the next conflicting allocno. ITER is an
1099 instance of ira_allocno_conflict_iterator used to iterate the
1100 conflicts. */
1101#define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1102 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1103 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1104 ira_allocno_conflict_iter_next (&(ITER)))
1105
1106\f
1107
1108/* The function returns TRUE if hard registers starting with
1109 HARD_REGNO and containing value of MODE are not in set
1110 HARD_REGSET. */
1111static inline bool
1112ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1113 HARD_REG_SET hard_regset)
1114{
1115 int i;
1116
1117 ira_assert (hard_regno >= 0);
1118 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1119 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1120 return false;
1121 return true;
1122}
1123
1124\f
1125
1126/* To save memory we use a lazy approach for allocation and
1127 initialization of the cost vectors. We do this only when it is
1128 really necessary. */
1129
1130/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1131 initialize the elements by VAL if it is necessary */
1132static inline void
1133ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1134{
1135 int i, *reg_costs;
1136 int len;
1137
1138 if (*vec != NULL)
1139 return;
1140 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1141 len = ira_class_hard_regs_num[cover_class];
1142 for (i = 0; i < len; i++)
1143 reg_costs[i] = val;
1144}
1145
1146/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1147 copy values of vector SRC into the vector if it is necessary */
1148static inline void
1149ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1150{
1151 int len;
1152
1153 if (*vec != NULL || src == NULL)
1154 return;
1155 *vec = ira_allocate_cost_vector (cover_class);
1156 len = ira_class_hard_regs_num[cover_class];
1157 memcpy (*vec, src, sizeof (int) * len);
1158}
1159
1160/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1161 add values of vector SRC into the vector if it is necessary */
1162static inline void
1163ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1164 int *src)
1165{
1166 int i, len;
1167
1168 if (src == NULL)
1169 return;
1170 len = ira_class_hard_regs_num[cover_class];
1171 if (*vec == NULL)
1172 {
1173 *vec = ira_allocate_cost_vector (cover_class);
1174 memset (*vec, 0, sizeof (int) * len);
1175 }
1176 for (i = 0; i < len; i++)
1177 (*vec)[i] += src[i];
1178}
1179
1180/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1181 copy values of vector SRC into the vector or initialize it by VAL
1182 (if SRC is null). */
1183static inline void
1184ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1185 int val, int *src)
1186{
1187 int i, *reg_costs;
1188 int len;
1189
1190 if (*vec != NULL)
1191 return;
1192 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1193 len = ira_class_hard_regs_num[cover_class];
1194 if (src != NULL)
1195 memcpy (reg_costs, src, sizeof (int) * len);
1196 else
1197 {
1198 for (i = 0; i < len; i++)
1199 reg_costs[i] = val;
1200 }
1201}