]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
sreal.h (to_double): New method.
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
23a5b65a 2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
f1717f8d
KC
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
058e97ec
VM
24#include "cfgloop.h"
25#include "ira.h"
26#include "alloc-pool.h"
27
28/* To provide consistency in naming, all IRA external variables,
29 functions, common typedefs start with prefix ira_. */
30
31#ifdef ENABLE_CHECKING
32#define ENABLE_IRA_CHECKING
33#endif
34
35#ifdef ENABLE_IRA_CHECKING
36#define ira_assert(c) gcc_assert (c)
37#else
f7556aae 38/* Always define and include C, so that warnings for empty body in an
7b3b6ae4 39 'if' statement and unused variable do not occur. */
f7556aae 40#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
41#endif
42
43/* Compute register frequency from edge frequency FREQ. It is
44 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
45 profile driven feedback is available and the function is never
46 executed, frequency is always equivalent. Otherwise rescale the
47 edge frequency. */
cf40f973
DC
48#define REG_FREQ_FROM_EDGE_FREQ(freq) \
49 (optimize_function_for_size_p (cfun) \
fefa31b5 50 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
058e97ec
VM
51 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
52
058e97ec
VM
53/* A modified value of flag `-fira-verbose' used internally. */
54extern int internal_flag_ira_verbose;
55
56/* Dump file of the allocator if it is not NULL. */
57extern FILE *ira_dump_file;
58
59/* Typedefs for pointers to allocno live range, allocno, and copy of
60 allocnos. */
b14151b5 61typedef struct live_range *live_range_t;
058e97ec 62typedef struct ira_allocno *ira_allocno_t;
3b6d1699 63typedef struct ira_allocno_pref *ira_pref_t;
058e97ec 64typedef struct ira_allocno_copy *ira_copy_t;
a49ae217 65typedef struct ira_object *ira_object_t;
058e97ec
VM
66
67/* Definition of vector of allocnos and copies. */
058e97ec
VM
68
69/* Typedef for pointer to the subsequent structure. */
70typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
71
e80ccebc
RS
72typedef unsigned short move_table[N_REG_CLASSES];
73
058e97ec
VM
74/* In general case, IRA is a regional allocator. The regions are
75 nested and form a tree. Currently regions are natural loops. The
76 following structure describes loop tree node (representing basic
77 block or loop). We need such tree because the loop tree from
78 cfgloop.h is not convenient for the optimization: basic blocks are
79 not a part of the tree from cfgloop.h. We also use the nodes for
80 storing additional information about basic blocks/loops for the
81 register allocation purposes. */
82struct ira_loop_tree_node
83{
84 /* The node represents basic block if children == NULL. */
85 basic_block bb; /* NULL for loop. */
2608d841
VM
86 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
87 struct loop *loop;
af51c885
AN
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 90 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
058e97ec
VM
93 ira_loop_tree_node_t subloops, children;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent;
96
97 /* Loop level in range [0, ira_loop_tree_height). */
98 int level;
99
100 /* All the following members are defined only for nodes representing
101 loops. */
102
2608d841
VM
103 /* The loop number from CFG loop tree. The root number is 0. */
104 int loop_num;
105
30ea859e
VM
106 /* True if the loop was marked for removal from the register
107 allocation. */
108 bool to_remove_p;
109
058e97ec
VM
110 /* Allocnos in the loop corresponding to their regnos. If it is
111 NULL the loop does not form a separate register allocation region
112 (e.g. because it has abnormal enter/exit edges and we can not put
113 code for register shuffling on the edges if a different
114 allocation is used for a pseudo-register on different sides of
115 the edges). Caps are not in the map (remember we can have more
116 one cap with the same regno in a region). */
117 ira_allocno_t *regno_allocno_map;
118
ea1c67e6
VM
119 /* True if there is an entry to given loop not from its parent (or
120 grandparent) basic block. For example, it is possible for two
121 adjacent loops inside another loop. */
122 bool entered_from_non_parent_p;
123
058e97ec 124 /* Maximal register pressure inside loop for given register class
1756cb66 125 (defined only for the pressure classes). */
058e97ec
VM
126 int reg_pressure[N_REG_CLASSES];
127
49d988e7
VM
128 /* Numbers of allocnos referred or living in the loop node (except
129 for its subloops). */
130 bitmap all_allocnos;
131
132 /* Numbers of allocnos living at the loop borders. */
133 bitmap border_allocnos;
058e97ec
VM
134
135 /* Regnos of pseudos modified in the loop node (including its
136 subloops). */
137 bitmap modified_regnos;
138
058e97ec
VM
139 /* Numbers of copies referred in the corresponding loop. */
140 bitmap local_copies;
141};
142
143/* The root of the loop tree corresponding to the all function. */
144extern ira_loop_tree_node_t ira_loop_tree_root;
145
146/* Height of the loop tree. */
147extern int ira_loop_tree_height;
148
149/* All nodes representing basic blocks are referred through the
150 following array. We can not use basic block member `aux' for this
151 because it is used for insertion of insns on edges. */
152extern ira_loop_tree_node_t ira_bb_nodes;
153
154/* Two access macros to the nodes representing basic blocks. */
155#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
156#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
2608d841 157(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
058e97ec
VM
158 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 { \
160 fprintf (stderr, \
161 "\n%s: %d: error in %s: it is not a block node\n", \
162 __FILE__, __LINE__, __FUNCTION__); \
163 gcc_unreachable (); \
164 } \
165 _node; }))
166#else
167#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
168#endif
169
170#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
171
172/* All nodes representing loops are referred through the following
173 array. */
174extern ira_loop_tree_node_t ira_loop_nodes;
175
176/* Two access macros to the nodes representing loops. */
177#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
178#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
2608d841
VM
179(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
180 if (_node->children == NULL || _node->bb != NULL \
181 || (_node->loop == NULL && current_loops != NULL)) \
058e97ec
VM
182 { \
183 fprintf (stderr, \
184 "\n%s: %d: error in %s: it is not a loop node\n", \
185 __FILE__, __LINE__, __FUNCTION__); \
186 gcc_unreachable (); \
187 } \
188 _node; }))
189#else
190#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
191#endif
192
193#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
194
195\f
058e97ec 196/* The structure describes program points where a given allocno lives.
1756cb66
VM
197 If the live ranges of two allocnos are intersected, the allocnos
198 are in conflict. */
b14151b5 199struct live_range
058e97ec 200{
ac0ab4f7 201 /* Object whose live range is described by given structure. */
9140d27b 202 ira_object_t object;
058e97ec
VM
203 /* Program point range. */
204 int start, finish;
205 /* Next structure describing program points where the allocno
206 lives. */
b14151b5 207 live_range_t next;
058e97ec 208 /* Pointer to structures with the same start/finish. */
b14151b5 209 live_range_t start_next, finish_next;
058e97ec
VM
210};
211
212/* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219extern int ira_max_point;
220
221/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
b14151b5 223extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
058e97ec 224
a49ae217
BS
225/* A structure representing conflict information for an allocno
226 (or one of its subwords). */
227struct ira_object
228{
229 /* The allocno associated with this record. */
230 ira_allocno_t allocno;
231 /* Vector of accumulated conflicting conflict_redords with NULL end
232 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
1756cb66 233 otherwise. */
a49ae217 234 void *conflicts_array;
9140d27b
BS
235 /* Pointer to structures describing at what program point the
236 object lives. We always maintain the list in such way that *the
237 ranges in the list are not intersected and ordered by decreasing
238 their program points*. */
239 live_range_t live_ranges;
ac0ab4f7
BS
240 /* The subword within ALLOCNO which is represented by this object.
241 Zero means the lowest-order subword (or the entire allocno in case
242 it is not being tracked in subwords). */
243 int subword;
9140d27b 244 /* Allocated size of the conflicts array. */
a49ae217 245 unsigned int conflicts_array_size;
ac0ab4f7 246 /* A unique number for every instance of this structure, which is used
a49ae217
BS
247 to represent it in conflict bit vectors. */
248 int id;
249 /* Before building conflicts, MIN and MAX are initialized to
250 correspondingly minimal and maximal points of the accumulated
ac0ab4f7
BS
251 live ranges. Afterwards, they hold the minimal and maximal ids
252 of other ira_objects that this one can conflict with. */
a49ae217
BS
253 int min, max;
254 /* Initial and accumulated hard registers conflicting with this
ac0ab4f7 255 object and as a consequences can not be assigned to the allocno.
1756cb66 256 All non-allocatable hard regs and hard regs of register classes
ac0ab4f7 257 different from given allocno one are included in the sets. */
a49ae217
BS
258 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
259 /* Number of accumulated conflicts in the vector of conflicting
ac0ab4f7 260 objects. */
a49ae217
BS
261 int num_accumulated_conflicts;
262 /* TRUE if conflicts are represented by a vector of pointers to
263 ira_object structures. Otherwise, we use a bit vector indexed
264 by conflict ID numbers. */
265 unsigned int conflict_vec_p : 1;
266};
267
058e97ec
VM
268/* A structure representing an allocno (allocation entity). Allocno
269 represents a pseudo-register in an allocation region. If
270 pseudo-register does not live in a region but it lives in the
271 nested regions, it is represented in the region by special allocno
272 called *cap*. There may be more one cap representing the same
273 pseudo-register in region. It means that the corresponding
274 pseudo-register lives in more one non-intersected subregion. */
275struct ira_allocno
276{
277 /* The allocno order number starting with 0. Each allocno has an
278 unique number and the number is never changed for the
279 allocno. */
280 int num;
281 /* Regno for allocno or cap. */
282 int regno;
283 /* Mode of the allocno which is the mode of the corresponding
284 pseudo-register. */
1756cb66 285 ENUM_BITFIELD (machine_mode) mode : 8;
d1bb282e
DS
286 /* Widest mode of the allocno which in at least one case could be
287 for paradoxical subregs where wmode > mode. */
288 ENUM_BITFIELD (machine_mode) wmode : 8;
1756cb66
VM
289 /* Register class which should be used for allocation for given
290 allocno. NO_REGS means that we should use memory. */
291 ENUM_BITFIELD (reg_class) aclass : 16;
292 /* During the reload, value TRUE means that we should not reassign a
293 hard register to the allocno got memory earlier. It is set up
294 when we removed memory-memory move insn before each iteration of
295 the reload. */
296 unsigned int dont_reassign_p : 1;
297#ifdef STACK_REGS
298 /* Set to TRUE if allocno can't be assigned to the stack hard
299 register correspondingly in this region and area including the
300 region and all its subregions recursively. */
301 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
302#endif
303 /* TRUE value means that there is no sense to spill the allocno
304 during coloring because the spill will result in additional
305 reloads in reload pass. */
306 unsigned int bad_spill_p : 1;
307 /* TRUE if a hard register or memory has been assigned to the
308 allocno. */
309 unsigned int assigned_p : 1;
310 /* TRUE if conflicts for given allocno are represented by vector of
311 pointers to the conflicting allocnos. Otherwise, we use a bit
312 vector where a bit with given index represents allocno with the
313 same number. */
314 unsigned int conflict_vec_p : 1;
058e97ec
VM
315 /* Hard register assigned to given allocno. Negative value means
316 that memory was allocated to the allocno. During the reload,
317 spilled allocno has value equal to the corresponding stack slot
318 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
319 reload (at this point pseudo-register has only one allocno) which
320 did not get stack slot yet. */
8684302d 321 signed int hard_regno : 16;
058e97ec
VM
322 /* Allocnos with the same regno are linked by the following member.
323 Allocnos corresponding to inner loops are first in the list (it
324 corresponds to depth-first traverse of the loops). */
325 ira_allocno_t next_regno_allocno;
326 /* There may be different allocnos with the same regno in different
327 regions. Allocnos are bound to the corresponding loop tree node.
328 Pseudo-register may have only one regular allocno with given loop
329 tree node but more than one cap (see comments above). */
330 ira_loop_tree_node_t loop_tree_node;
331 /* Accumulated usage references of the allocno. Here and below,
332 word 'accumulated' means info for given region and all nested
333 subregions. In this case, 'accumulated' means sum of references
334 of the corresponding pseudo-register in this region and in all
335 nested subregions recursively. */
336 int nrefs;
337 /* Accumulated frequency of usage of the allocno. */
338 int freq;
cb1ca6ac 339 /* Minimal accumulated and updated costs of usage register of the
1756cb66
VM
340 allocno class. */
341 int class_cost, updated_class_cost;
058e97ec
VM
342 /* Minimal accumulated, and updated costs of memory for the allocno.
343 At the allocation start, the original and updated costs are
344 equal. The updated cost may be changed after finishing
345 allocation in a region and starting allocation in a subregion.
346 The change reflects the cost of spill/restore code on the
347 subregion border if we assign memory to the pseudo in the
348 subregion. */
349 int memory_cost, updated_memory_cost;
350 /* Accumulated number of points where the allocno lives and there is
351 excess pressure for its class. Excess pressure for a register
352 class at some point means that there are more allocnos of given
353 register class living at the point than number of hard-registers
354 of the class available for the allocation. */
355 int excess_pressure_points_num;
3b6d1699
VM
356 /* Allocno hard reg preferences. */
357 ira_pref_t allocno_prefs;
058e97ec
VM
358 /* Copies to other non-conflicting allocnos. The copies can
359 represent move insn or potential move insn usually because of two
360 operand insn constraints. */
361 ira_copy_t allocno_copies;
362 /* It is a allocno (cap) representing given allocno on upper loop tree
363 level. */
364 ira_allocno_t cap;
365 /* It is a link to allocno (cap) on lower loop level represented by
366 given cap. Null if given allocno is not a cap. */
367 ira_allocno_t cap_member;
ac0ab4f7
BS
368 /* The number of objects tracked in the following array. */
369 int num_objects;
370 /* An array of structures describing conflict information and live
371 ranges for each object associated with the allocno. There may be
372 more than one such object in cases where the allocno represents a
373 multi-word register. */
374 ira_object_t objects[2];
058e97ec
VM
375 /* Accumulated frequency of calls which given allocno
376 intersects. */
377 int call_freq;
a812fb07 378 /* Accumulated number of the intersected calls. */
058e97ec 379 int calls_crossed_num;
e384e6b5
BS
380 /* The number of calls across which it is live, but which should not
381 affect register preferences. */
382 int cheap_calls_crossed_num;
c2ba7e7a
RO
383 /* Registers clobbered by intersected calls. */
384 HARD_REG_SET crossed_calls_clobbered_regs;
058e97ec 385 /* Array of usage costs (accumulated and the one updated during
1756cb66 386 coloring) for each hard register of the allocno class. The
058e97ec 387 member value can be NULL if all costs are the same and equal to
1756cb66 388 CLASS_COST. For example, the costs of two different hard
058e97ec
VM
389 registers can be different if one hard register is callee-saved
390 and another one is callee-used and the allocno lives through
391 calls. Another example can be case when for some insn the
392 corresponding pseudo-register value should be put in specific
393 register class (e.g. AREG for x86) which is a strict subset of
1756cb66
VM
394 the allocno class (GENERAL_REGS for x86). We have updated costs
395 to reflect the situation when the usage cost of a hard register
396 is decreased because the allocno is connected to another allocno
397 by a copy and the another allocno has been assigned to the hard
398 register. */
058e97ec
VM
399 int *hard_reg_costs, *updated_hard_reg_costs;
400 /* Array of decreasing costs (accumulated and the one updated during
401 coloring) for allocnos conflicting with given allocno for hard
1756cb66
VM
402 regno of the allocno class. The member value can be NULL if all
403 costs are the same. These costs are used to reflect preferences
404 of other allocnos not assigned yet during assigning to given
405 allocno. */
058e97ec 406 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
1756cb66
VM
407 /* Different additional data. It is used to decrease size of
408 allocno data footprint. */
409 void *add_data;
058e97ec
VM
410};
411
1756cb66 412
058e97ec
VM
413/* All members of the allocno structures should be accessed only
414 through the following macros. */
415#define ALLOCNO_NUM(A) ((A)->num)
416#define ALLOCNO_REGNO(A) ((A)->regno)
417#define ALLOCNO_REG(A) ((A)->reg)
418#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
419#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
420#define ALLOCNO_CAP(A) ((A)->cap)
421#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
058e97ec
VM
422#define ALLOCNO_NREFS(A) ((A)->nrefs)
423#define ALLOCNO_FREQ(A) ((A)->freq)
424#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
425#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
426#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
e384e6b5 427#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
c2ba7e7a
RO
428#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
429 ((A)->crossed_calls_clobbered_regs)
058e97ec
VM
430#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
431#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
432#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
433#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
434#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
435#ifdef STACK_REGS
436#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
437#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
438#endif
927425df 439#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec 440#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
058e97ec 441#define ALLOCNO_MODE(A) ((A)->mode)
d1bb282e 442#define ALLOCNO_WMODE(A) ((A)->wmode)
3b6d1699 443#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
058e97ec
VM
444#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->conflict_hard_reg_costs)
449#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450 ((A)->updated_conflict_hard_reg_costs)
1756cb66
VM
451#define ALLOCNO_CLASS(A) ((A)->aclass)
452#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
453#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
058e97ec
VM
454#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
455#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
1756cb66
VM
456#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
457 ((A)->excess_pressure_points_num)
ac0ab4f7
BS
458#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
459#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
1756cb66 460#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
a49ae217 461
1756cb66
VM
462/* Typedef for pointer to the subsequent structure. */
463typedef struct ira_emit_data *ira_emit_data_t;
464
465/* Allocno bound data used for emit pseudo live range split insns and
466 to flattening IR. */
467struct ira_emit_data
468{
469 /* TRUE if the allocno assigned to memory was a destination of
470 removed move (see ira-emit.c) at loop exit because the value of
471 the corresponding pseudo-register is not changed inside the
472 loop. */
473 unsigned int mem_optimized_dest_p : 1;
474 /* TRUE if the corresponding pseudo-register has disjoint live
475 ranges and the other allocnos of the pseudo-register except this
476 one changed REG. */
477 unsigned int somewhere_renamed_p : 1;
478 /* TRUE if allocno with the same REGNO in a subregion has been
479 renamed, in other words, got a new pseudo-register. */
480 unsigned int child_renamed_p : 1;
481 /* Final rtx representation of the allocno. */
482 rtx reg;
483 /* Non NULL if we remove restoring value from given allocno to
484 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
485 allocno value is not changed inside the loop. */
486 ira_allocno_t mem_optimized_dest;
487};
488
489#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
490
491/* Data used to emit live range split insns and to flattening IR. */
492extern ira_emit_data_t ira_allocno_emit_data;
493
494/* Abbreviation for frequent emit data access. */
495static inline rtx
496allocno_emit_reg (ira_allocno_t a)
497{
498 return ALLOCNO_EMIT_DATA (a)->reg;
499}
500
501#define OBJECT_ALLOCNO(O) ((O)->allocno)
502#define OBJECT_SUBWORD(O) ((O)->subword)
503#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
504#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
505#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
506#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
507#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
508#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
509#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
510#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
511#define OBJECT_MIN(O) ((O)->min)
512#define OBJECT_MAX(O) ((O)->max)
513#define OBJECT_CONFLICT_ID(O) ((O)->id)
514#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
058e97ec 515
b8698a0f 516/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
517 allocno member `next_regno_allocno'). */
518extern ira_allocno_t *ira_regno_allocno_map;
519
520/* Array of references to all allocnos. The order number of the
521 allocno corresponds to the index in the array. Removed allocnos
522 have NULL element value. */
523extern ira_allocno_t *ira_allocnos;
524
a49ae217 525/* The size of the previous array. */
058e97ec
VM
526extern int ira_allocnos_num;
527
a49ae217
BS
528/* Map a conflict id to its corresponding ira_object structure. */
529extern ira_object_t *ira_object_id_map;
530
531/* The size of the previous array. */
532extern int ira_objects_num;
058e97ec 533
df3e3493 534/* The following structure represents a hard register preference of
3b6d1699
VM
535 allocno. The preference represent move insns or potential move
536 insns usually because of two operand insn constraints. One move
537 operand is a hard register. */
538struct ira_allocno_pref
539{
540 /* The unique order number of the preference node starting with 0. */
541 int num;
542 /* Preferred hard register. */
543 int hard_regno;
544 /* Accumulated execution frequency of insns from which the
545 preference created. */
546 int freq;
547 /* Given allocno. */
548 ira_allocno_t allocno;
df3e3493 549 /* All preferences with the same allocno are linked by the following
3b6d1699
VM
550 member. */
551 ira_pref_t next_pref;
552};
553
554/* Array of references to all allocno preferences. The order number
555 of the preference corresponds to the index in the array. */
556extern ira_pref_t *ira_prefs;
557
558/* Size of the previous array. */
559extern int ira_prefs_num;
560
058e97ec
VM
561/* The following structure represents a copy of two allocnos. The
562 copies represent move insns or potential move insns usually because
563 of two operand insn constraints. To remove register shuffle, we
564 also create copies between allocno which is output of an insn and
565 allocno becoming dead in the insn. */
566struct ira_allocno_copy
567{
568 /* The unique order number of the copy node starting with 0. */
569 int num;
570 /* Allocnos connected by the copy. The first allocno should have
571 smaller order number than the second one. */
572 ira_allocno_t first, second;
573 /* Execution frequency of the copy. */
574 int freq;
548a6322 575 bool constraint_p;
058e97ec
VM
576 /* It is a move insn which is an origin of the copy. The member
577 value for the copy representing two operand insn constraints or
578 for the copy created to remove register shuffle is NULL. In last
579 case the copy frequency is smaller than the corresponding insn
580 execution frequency. */
070a1983 581 rtx_insn *insn;
058e97ec
VM
582 /* All copies with the same allocno as FIRST are linked by the two
583 following members. */
584 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
585 /* All copies with the same allocno as SECOND are linked by the two
586 following members. */
587 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
588 /* Region from which given copy is originated. */
589 ira_loop_tree_node_t loop_tree_node;
590};
591
592/* Array of references to all copies. The order number of the copy
593 corresponds to the index in the array. Removed copies have NULL
594 element value. */
595extern ira_copy_t *ira_copies;
596
597/* Size of the previous array. */
598extern int ira_copies_num;
599
600/* The following structure describes a stack slot used for spilled
601 pseudo-registers. */
602struct ira_spilled_reg_stack_slot
603{
604 /* pseudo-registers assigned to the stack slot. */
7a8cba34 605 bitmap_head spilled_regs;
058e97ec
VM
606 /* RTL representation of the stack slot. */
607 rtx mem;
608 /* Size of the stack slot. */
609 unsigned int width;
610};
611
612/* The number of elements in the following array. */
613extern int ira_spilled_reg_stack_slots_num;
614
615/* The following array contains info about spilled pseudo-registers
616 stack slots used in current function so far. */
617extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
618
619/* Correspondingly overall cost of the allocation, cost of the
620 allocnos assigned to hard-registers, cost of the allocnos assigned
621 to memory, cost of loads, stores and register move insns generated
622 for pseudo-register live range splitting (see ira-emit.c). */
623extern int ira_overall_cost;
624extern int ira_reg_cost, ira_mem_cost;
625extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
626extern int ira_move_loops_num, ira_additional_jumps_num;
1756cb66 627
42ce1cc4
BS
628\f
629/* This page contains a bitset implementation called 'min/max sets' used to
630 record conflicts in IRA.
631 They are named min/maxs set since we keep track of a minimum and a maximum
632 bit number for each set representing the bounds of valid elements. Otherwise,
633 the implementation resembles sbitmaps in that we store an array of integers
634 whose bits directly represent the members of the set. */
635
636/* The type used as elements in the array, and the number of bits in
637 this type. */
ac0ab4f7 638
058e97ec
VM
639#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
640#define IRA_INT_TYPE HOST_WIDE_INT
641
642/* Set, clear or test bit number I in R, a bit vector of elements with
643 minimal index and maximal index equal correspondingly to MIN and
644 MAX. */
645#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
646
42ce1cc4 647#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
648 (({ int _min = (MIN), _max = (MAX), _i = (I); \
649 if (_i < _min || _i > _max) \
650 { \
651 fprintf (stderr, \
652 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
653 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
654 gcc_unreachable (); \
655 } \
656 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
657 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 658
058e97ec 659
42ce1cc4 660#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
661 (({ int _min = (MIN), _max = (MAX), _i = (I); \
662 if (_i < _min || _i > _max) \
663 { \
664 fprintf (stderr, \
665 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
666 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
667 gcc_unreachable (); \
668 } \
669 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
670 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
671
42ce1cc4 672#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
673 (({ int _min = (MIN), _max = (MAX), _i = (I); \
674 if (_i < _min || _i > _max) \
675 { \
676 fprintf (stderr, \
677 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
678 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
679 gcc_unreachable (); \
680 } \
681 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
682 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
683
684#else
685
42ce1cc4 686#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
687 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
688 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
689
42ce1cc4 690#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
691 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
692 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693
42ce1cc4 694#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
695 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
696 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
697
698#endif
699
42ce1cc4 700/* The iterator for min/max sets. */
84562394 701struct minmax_set_iterator {
058e97ec 702
42ce1cc4 703 /* Array containing the bit vector. */
058e97ec
VM
704 IRA_INT_TYPE *vec;
705
706 /* The number of the current element in the vector. */
707 unsigned int word_num;
708
709 /* The number of bits in the bit vector. */
710 unsigned int nel;
711
712 /* The current bit index of the bit vector. */
713 unsigned int bit_num;
714
715 /* Index corresponding to the 1st bit of the bit vector. */
716 int start_val;
717
718 /* The word of the bit vector currently visited. */
719 unsigned IRA_INT_TYPE word;
84562394 720};
058e97ec 721
42ce1cc4
BS
722/* Initialize the iterator I for bit vector VEC containing minimal and
723 maximal values MIN and MAX. */
058e97ec 724static inline void
42ce1cc4
BS
725minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
726 int max)
058e97ec
VM
727{
728 i->vec = vec;
729 i->word_num = 0;
730 i->nel = max < min ? 0 : max - min + 1;
731 i->start_val = min;
732 i->bit_num = 0;
733 i->word = i->nel == 0 ? 0 : vec[0];
734}
735
ac0ab4f7 736/* Return TRUE if we have more allocnos to visit, in which case *N is
42ce1cc4 737 set to the number of the element to be visited. Otherwise, return
058e97ec
VM
738 FALSE. */
739static inline bool
42ce1cc4 740minmax_set_iter_cond (minmax_set_iterator *i, int *n)
058e97ec
VM
741{
742 /* Skip words that are zeros. */
743 for (; i->word == 0; i->word = i->vec[i->word_num])
744 {
745 i->word_num++;
746 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 747
058e97ec
VM
748 /* If we have reached the end, break. */
749 if (i->bit_num >= i->nel)
750 return false;
751 }
b8698a0f 752
058e97ec
VM
753 /* Skip bits that are zero. */
754 for (; (i->word & 1) == 0; i->word >>= 1)
755 i->bit_num++;
b8698a0f 756
058e97ec 757 *n = (int) i->bit_num + i->start_val;
b8698a0f 758
058e97ec
VM
759 return true;
760}
761
42ce1cc4 762/* Advance to the next element in the set. */
058e97ec 763static inline void
42ce1cc4 764minmax_set_iter_next (minmax_set_iterator *i)
058e97ec
VM
765{
766 i->word >>= 1;
767 i->bit_num++;
768}
769
42ce1cc4 770/* Loop over all elements of a min/max set given by bit vector VEC and
058e97ec
VM
771 their minimal and maximal values MIN and MAX. In each iteration, N
772 is set to the number of next allocno. ITER is an instance of
42ce1cc4
BS
773 minmax_set_iterator used to iterate over the set. */
774#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
775 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
776 minmax_set_iter_cond (&(ITER), &(N)); \
777 minmax_set_iter_next (&(ITER)))
778\f
afcc66c4 779struct target_ira_int {
19c708dc
RS
780 ~target_ira_int ();
781
782 void free_ira_costs ();
783 void free_register_move_costs ();
784
aa1c5d72
RS
785 /* Initialized once. It is a maximal possible size of the allocated
786 struct costs. */
787 int x_max_struct_costs_size;
788
789 /* Allocated and initialized once, and used to initialize cost values
790 for each insn. */
791 struct costs *x_init_cost;
792
793 /* Allocated once, and used for temporary purposes. */
794 struct costs *x_temp_costs;
795
796 /* Allocated once, and used for the cost calculation. */
797 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
798 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
799
afcc66c4
RS
800 /* Hard registers that can not be used for the register allocator for
801 all functions of the current compilation unit. */
802 HARD_REG_SET x_no_unit_alloc_regs;
803
804 /* Map: hard regs X modes -> set of hard registers for storing value
805 of given mode starting with given hard register. */
806 HARD_REG_SET (x_ira_reg_mode_hard_regset
807 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
808
e80ccebc
RS
809 /* Maximum cost of moving from a register in one class to a register
810 in another class. Based on TARGET_REGISTER_MOVE_COST. */
7cc61ee4 811 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
e80ccebc
RS
812
813 /* Similar, but here we don't have to move if the first index is a
814 subset of the second so in that case the cost is zero. */
7cc61ee4 815 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
e80ccebc
RS
816
817 /* Similar, but here we don't have to move if the first index is a
818 superset of the second so in that case the cost is zero. */
7cc61ee4 819 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
e80ccebc
RS
820
821 /* Keep track of the last mode we initialized move costs for. */
822 int x_last_mode_for_init_move_cost;
823
7cc61ee4
RS
824 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
825 cost not minimal. */
1756cb66 826 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
1756cb66
VM
827
828 /* Map class->true if class is a possible allocno class, false
829 otherwise. */
830 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
831
832 /* Map class->true if class is a pressure class, false otherwise. */
833 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
834
afcc66c4 835 /* Array of the number of hard registers of given class which are
dd5a833e 836 available for allocation. The order is defined by the hard
afcc66c4
RS
837 register numbers. */
838 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
839
840 /* Index (in ira_class_hard_regs; for given register class and hard
841 register (in general case a hard register can belong to several
842 register classes;. The index is negative for hard registers
843 unavailable for the allocation. */
844 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
845
a2c19e93
RS
846 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
847
848 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
849
850 For example, if:
851
852 - (reg:M 2) is valid and occupies two registers;
853 - register 2 belongs to CL; and
854 - register 3 belongs to the same pressure class as CL
855
856 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
857 in the set. */
858 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
859
afcc66c4
RS
860 /* The value is number of elements in the subsequent array. */
861 int x_ira_important_classes_num;
862
1756cb66 863 /* The array containing all non-empty classes. Such classes is
afcc66c4
RS
864 important for calculation of the hard register usage costs. */
865 enum reg_class x_ira_important_classes[N_REG_CLASSES];
866
1756cb66
VM
867 /* The array containing indexes of important classes in the previous
868 array. The array elements are defined only for important
869 classes. */
870 int x_ira_important_class_nums[N_REG_CLASSES];
871
165f639c
VM
872 /* Map class->true if class is an uniform class, false otherwise. */
873 bool x_ira_uniform_class_p[N_REG_CLASSES];
874
afcc66c4
RS
875 /* The biggest important class inside of intersection of the two
876 classes (that is calculated taking only hard registers available
877 for allocation into account;. If the both classes contain no hard
878 registers available for allocation, the value is calculated with
879 taking all hard-registers including fixed ones into account. */
880 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
881
afcc66c4 882 /* Classes with end marker LIM_REG_CLASSES which are intersected with
55a2c322 883 given class (the first index). That includes given class itself.
afcc66c4
RS
884 This is calculated taking only hard registers available for
885 allocation into account. */
886 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
887
1756cb66
VM
888 /* The biggest (smallest) important class inside of (covering) union
889 of the two classes (that is calculated taking only hard registers
890 available for allocation into account). If the both classes
891 contain no hard registers available for allocation, the value is
892 calculated with taking all hard-registers including fixed ones
893 into account. In other words, the value is the corresponding
894 reg_class_subunion (reg_class_superunion) value. */
895 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
896 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
afcc66c4
RS
897
898 /* For each reg class, table listing all the classes contained in it
899 (excluding the class itself. Non-allocatable registers are
55a2c322 900 excluded from the consideration). */
afcc66c4 901 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
15e7b94f
RS
902
903 /* Array whose values are hard regset of hard registers for which
904 move of the hard register in given mode into itself is
905 prohibited. */
906 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
907
908 /* Flag of that the above array has been initialized. */
909 bool x_ira_prohibited_mode_move_regs_initialized_p;
afcc66c4
RS
910};
911
912extern struct target_ira_int default_target_ira_int;
913#if SWITCHABLE_TARGET
914extern struct target_ira_int *this_target_ira_int;
915#else
916#define this_target_ira_int (&default_target_ira_int)
917#endif
058e97ec 918
afcc66c4
RS
919#define ira_reg_mode_hard_regset \
920 (this_target_ira_int->x_ira_reg_mode_hard_regset)
921#define ira_register_move_cost \
922 (this_target_ira_int->x_ira_register_move_cost)
1756cb66
VM
923#define ira_max_memory_move_cost \
924 (this_target_ira_int->x_ira_max_memory_move_cost)
afcc66c4
RS
925#define ira_may_move_in_cost \
926 (this_target_ira_int->x_ira_may_move_in_cost)
927#define ira_may_move_out_cost \
928 (this_target_ira_int->x_ira_may_move_out_cost)
1756cb66
VM
929#define ira_reg_allocno_class_p \
930 (this_target_ira_int->x_ira_reg_allocno_class_p)
931#define ira_reg_pressure_class_p \
932 (this_target_ira_int->x_ira_reg_pressure_class_p)
afcc66c4
RS
933#define ira_non_ordered_class_hard_regs \
934 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
935#define ira_class_hard_reg_index \
936 (this_target_ira_int->x_ira_class_hard_reg_index)
a2c19e93
RS
937#define ira_useful_class_mode_regs \
938 (this_target_ira_int->x_ira_useful_class_mode_regs)
afcc66c4
RS
939#define ira_important_classes_num \
940 (this_target_ira_int->x_ira_important_classes_num)
941#define ira_important_classes \
942 (this_target_ira_int->x_ira_important_classes)
1756cb66
VM
943#define ira_important_class_nums \
944 (this_target_ira_int->x_ira_important_class_nums)
165f639c
VM
945#define ira_uniform_class_p \
946 (this_target_ira_int->x_ira_uniform_class_p)
afcc66c4
RS
947#define ira_reg_class_intersect \
948 (this_target_ira_int->x_ira_reg_class_intersect)
afcc66c4
RS
949#define ira_reg_class_super_classes \
950 (this_target_ira_int->x_ira_reg_class_super_classes)
1756cb66
VM
951#define ira_reg_class_subunion \
952 (this_target_ira_int->x_ira_reg_class_subunion)
953#define ira_reg_class_superunion \
954 (this_target_ira_int->x_ira_reg_class_superunion)
15e7b94f
RS
955#define ira_prohibited_mode_move_regs \
956 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
afcc66c4
RS
957\f
958/* ira.c: */
058e97ec 959
058e97ec 960extern void *ira_allocate (size_t);
058e97ec
VM
961extern void ira_free (void *addr);
962extern bitmap ira_allocate_bitmap (void);
963extern void ira_free_bitmap (bitmap);
964extern void ira_print_disposition (FILE *);
965extern void ira_debug_disposition (void);
1756cb66 966extern void ira_debug_allocno_classes (void);
ef4bddc2 967extern void ira_init_register_move_cost (machine_mode);
647d790d 968extern void ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts);
3b6d1699 969extern int ira_get_dup_out_num (int op_num, HARD_REG_SET &alts);
058e97ec 970
058e97ec
VM
971/* ira-build.c */
972
973/* The current loop tree node and its regno allocno map. */
974extern ira_loop_tree_node_t ira_curr_loop_tree_node;
975extern ira_allocno_t *ira_curr_regno_allocno_map;
976
3b6d1699
VM
977extern void ira_debug_pref (ira_pref_t);
978extern void ira_debug_prefs (void);
979extern void ira_debug_allocno_prefs (ira_allocno_t);
980
4cda38d5 981extern void ira_debug_copy (ira_copy_t);
7b3b6ae4
LC
982extern void debug (ira_allocno_copy &ref);
983extern void debug (ira_allocno_copy *ptr);
984
4cda38d5 985extern void ira_debug_copies (void);
058e97ec 986extern void ira_debug_allocno_copies (ira_allocno_t);
7b3b6ae4
LC
987extern void debug (ira_allocno &ref);
988extern void debug (ira_allocno *ptr);
058e97ec
VM
989
990extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
991 void (*) (ira_loop_tree_node_t),
992 void (*) (ira_loop_tree_node_t));
029da7d4
BS
993extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
994extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec 995extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
ac0ab4f7 996extern void ira_create_allocno_objects (ira_allocno_t);
1756cb66 997extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
a49ae217
BS
998extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
999extern void ira_allocate_conflict_vec (ira_object_t, int);
1000extern void ira_allocate_object_conflicts (ira_object_t, int);
ac0ab4f7 1001extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
058e97ec 1002extern void ira_print_expanded_allocno (ira_allocno_t);
ac0ab4f7 1003extern void ira_add_live_range_to_object (ira_object_t, int, int);
9140d27b
BS
1004extern live_range_t ira_create_live_range (ira_object_t, int, int,
1005 live_range_t);
1006extern live_range_t ira_copy_live_range_list (live_range_t);
1007extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1008extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1009extern void ira_finish_live_range (live_range_t);
1010extern void ira_finish_live_range_list (live_range_t);
058e97ec 1011extern void ira_free_allocno_updated_costs (ira_allocno_t);
3b6d1699
VM
1012extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1013extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1014extern void ira_remove_pref (ira_pref_t);
1015extern void ira_remove_allocno_prefs (ira_allocno_t);
058e97ec 1016extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
070a1983
DM
1017 int, bool, rtx_insn *,
1018 ira_loop_tree_node_t);
548a6322 1019extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
070a1983
DM
1020 bool, rtx_insn *,
1021 ira_loop_tree_node_t);
058e97ec 1022
6f76a878
AS
1023extern int *ira_allocate_cost_vector (reg_class_t);
1024extern void ira_free_cost_vector (int *, reg_class_t);
058e97ec
VM
1025
1026extern void ira_flattening (int, int);
2608d841 1027extern bool ira_build (void);
058e97ec
VM
1028extern void ira_destroy (void);
1029
1030/* ira-costs.c */
1031extern void ira_init_costs_once (void);
1032extern void ira_init_costs (void);
058e97ec 1033extern void ira_costs (void);
1756cb66 1034extern void ira_tune_allocno_costs (void);
058e97ec
VM
1035
1036/* ira-lives.c */
1037
1038extern void ira_rebuild_start_finish_chains (void);
b14151b5 1039extern void ira_print_live_range_list (FILE *, live_range_t);
7b3b6ae4
LC
1040extern void debug (live_range &ref);
1041extern void debug (live_range *ptr);
b14151b5 1042extern void ira_debug_live_range_list (live_range_t);
058e97ec
VM
1043extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1044extern void ira_debug_live_ranges (void);
1045extern void ira_create_allocno_live_ranges (void);
b15a7ae6 1046extern void ira_compress_allocno_live_ranges (void);
058e97ec
VM
1047extern void ira_finish_allocno_live_ranges (void);
1048
1049/* ira-conflicts.c */
058e97ec
VM
1050extern void ira_debug_conflicts (bool);
1051extern void ira_build_conflicts (void);
1052
1053/* ira-color.c */
1756cb66 1054extern void ira_debug_hard_regs_forest (void);
058e97ec
VM
1055extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1056extern void ira_reassign_conflict_allocnos (int);
1057extern void ira_initiate_assign (void);
1058extern void ira_finish_assign (void);
1059extern void ira_color (void);
058e97ec
VM
1060
1061/* ira-emit.c */
1756cb66
VM
1062extern void ira_initiate_emit_data (void);
1063extern void ira_finish_emit_data (void);
058e97ec
VM
1064extern void ira_emit (bool);
1065
1066\f
1067
55a2c322
VM
1068/* Return true if equivalence of pseudo REGNO is not a lvalue. */
1069static inline bool
1070ira_equiv_no_lvalue_p (int regno)
1071{
1072 if (regno >= ira_reg_equiv_len)
1073 return false;
1074 return (ira_reg_equiv[regno].constant != NULL_RTX
1075 || ira_reg_equiv[regno].invariant != NULL_RTX
1076 || (ira_reg_equiv[regno].memory != NULL_RTX
1077 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1078}
1079
1080\f
1081
1756cb66
VM
1082/* Initialize register costs for MODE if necessary. */
1083static inline void
ef4bddc2 1084ira_init_register_move_cost_if_necessary (machine_mode mode)
6080348f
VM
1085{
1086 if (ira_register_move_cost[mode] == NULL)
1087 ira_init_register_move_cost (mode);
6080348f
VM
1088}
1089
1090\f
1091
058e97ec 1092/* The iterator for all allocnos. */
84562394 1093struct ira_allocno_iterator {
058e97ec
VM
1094 /* The number of the current element in IRA_ALLOCNOS. */
1095 int n;
84562394 1096};
058e97ec
VM
1097
1098/* Initialize the iterator I. */
1099static inline void
1100ira_allocno_iter_init (ira_allocno_iterator *i)
1101{
1102 i->n = 0;
1103}
1104
1105/* Return TRUE if we have more allocnos to visit, in which case *A is
1106 set to the allocno to be visited. Otherwise, return FALSE. */
1107static inline bool
1108ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1109{
1110 int n;
1111
1112 for (n = i->n; n < ira_allocnos_num; n++)
1113 if (ira_allocnos[n] != NULL)
1114 {
1115 *a = ira_allocnos[n];
1116 i->n = n + 1;
1117 return true;
1118 }
1119 return false;
1120}
1121
1122/* Loop over all allocnos. In each iteration, A is set to the next
1123 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1124 the allocnos. */
1125#define FOR_EACH_ALLOCNO(A, ITER) \
1126 for (ira_allocno_iter_init (&(ITER)); \
1127 ira_allocno_iter_cond (&(ITER), &(A));)
a49ae217
BS
1128\f
1129/* The iterator for all objects. */
84562394 1130struct ira_object_iterator {
ac0ab4f7 1131 /* The number of the current element in ira_object_id_map. */
a49ae217 1132 int n;
84562394 1133};
058e97ec 1134
a49ae217
BS
1135/* Initialize the iterator I. */
1136static inline void
1137ira_object_iter_init (ira_object_iterator *i)
1138{
1139 i->n = 0;
1140}
1141
1142/* Return TRUE if we have more objects to visit, in which case *OBJ is
1143 set to the object to be visited. Otherwise, return FALSE. */
1144static inline bool
1145ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1146{
1147 int n;
058e97ec 1148
a49ae217
BS
1149 for (n = i->n; n < ira_objects_num; n++)
1150 if (ira_object_id_map[n] != NULL)
1151 {
1152 *obj = ira_object_id_map[n];
1153 i->n = n + 1;
1154 return true;
1155 }
1156 return false;
1157}
1158
ac0ab4f7
BS
1159/* Loop over all objects. In each iteration, OBJ is set to the next
1160 object. ITER is an instance of ira_object_iterator used to iterate
a49ae217
BS
1161 the objects. */
1162#define FOR_EACH_OBJECT(OBJ, ITER) \
1163 for (ira_object_iter_init (&(ITER)); \
1164 ira_object_iter_cond (&(ITER), &(OBJ));)
058e97ec 1165\f
ac0ab4f7 1166/* The iterator for objects associated with an allocno. */
84562394 1167struct ira_allocno_object_iterator {
ac0ab4f7
BS
1168 /* The number of the element the allocno's object array. */
1169 int n;
84562394 1170};
ac0ab4f7
BS
1171
1172/* Initialize the iterator I. */
1173static inline void
1174ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1175{
1176 i->n = 0;
1177}
1178
1179/* Return TRUE if we have more objects to visit in allocno A, in which
1180 case *O is set to the object to be visited. Otherwise, return
1181 FALSE. */
1182static inline bool
1183ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1184 ira_object_t *o)
1185{
d0a854af
RG
1186 int n = i->n++;
1187 if (n < ALLOCNO_NUM_OBJECTS (a))
1188 {
1189 *o = ALLOCNO_OBJECT (a, n);
1190 return true;
1191 }
1192 return false;
ac0ab4f7
BS
1193}
1194
1195/* Loop over all objects associated with allocno A. In each
1196 iteration, O is set to the next object. ITER is an instance of
1197 ira_allocno_object_iterator used to iterate the conflicts. */
1198#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1199 for (ira_allocno_object_iter_init (&(ITER)); \
1200 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1201\f
058e97ec 1202
3b6d1699 1203/* The iterator for prefs. */
84562394 1204struct ira_pref_iterator {
3b6d1699
VM
1205 /* The number of the current element in IRA_PREFS. */
1206 int n;
84562394 1207};
3b6d1699
VM
1208
1209/* Initialize the iterator I. */
1210static inline void
1211ira_pref_iter_init (ira_pref_iterator *i)
1212{
1213 i->n = 0;
1214}
1215
1216/* Return TRUE if we have more prefs to visit, in which case *PREF is
1217 set to the pref to be visited. Otherwise, return FALSE. */
1218static inline bool
1219ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1220{
1221 int n;
1222
1223 for (n = i->n; n < ira_prefs_num; n++)
1224 if (ira_prefs[n] != NULL)
1225 {
1226 *pref = ira_prefs[n];
1227 i->n = n + 1;
1228 return true;
1229 }
1230 return false;
1231}
1232
1233/* Loop over all prefs. In each iteration, P is set to the next
1234 pref. ITER is an instance of ira_pref_iterator used to iterate
1235 the prefs. */
1236#define FOR_EACH_PREF(P, ITER) \
1237 for (ira_pref_iter_init (&(ITER)); \
1238 ira_pref_iter_cond (&(ITER), &(P));)
1239\f
1240
058e97ec 1241/* The iterator for copies. */
84562394 1242struct ira_copy_iterator {
058e97ec
VM
1243 /* The number of the current element in IRA_COPIES. */
1244 int n;
84562394 1245};
058e97ec
VM
1246
1247/* Initialize the iterator I. */
1248static inline void
1249ira_copy_iter_init (ira_copy_iterator *i)
1250{
1251 i->n = 0;
1252}
1253
1254/* Return TRUE if we have more copies to visit, in which case *CP is
1255 set to the copy to be visited. Otherwise, return FALSE. */
1256static inline bool
1257ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1258{
1259 int n;
1260
1261 for (n = i->n; n < ira_copies_num; n++)
1262 if (ira_copies[n] != NULL)
1263 {
1264 *cp = ira_copies[n];
1265 i->n = n + 1;
1266 return true;
1267 }
1268 return false;
1269}
1270
1271/* Loop over all copies. In each iteration, C is set to the next
1272 copy. ITER is an instance of ira_copy_iterator used to iterate
1273 the copies. */
1274#define FOR_EACH_COPY(C, ITER) \
1275 for (ira_copy_iter_init (&(ITER)); \
1276 ira_copy_iter_cond (&(ITER), &(C));)
058e97ec 1277\f
ac0ab4f7 1278/* The iterator for object conflicts. */
84562394 1279struct ira_object_conflict_iterator {
ac0ab4f7
BS
1280
1281 /* TRUE if the conflicts are represented by vector of allocnos. */
a49ae217 1282 bool conflict_vec_p;
058e97ec
VM
1283
1284 /* The conflict vector or conflict bit vector. */
1285 void *vec;
1286
1287 /* The number of the current element in the vector (of type
a49ae217 1288 ira_object_t or IRA_INT_TYPE). */
058e97ec
VM
1289 unsigned int word_num;
1290
1291 /* The bit vector size. It is defined only if
a49ae217 1292 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1293 unsigned int size;
1294
1295 /* The current bit index of bit vector. It is defined only if
a49ae217 1296 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1297 unsigned int bit_num;
1298
a49ae217
BS
1299 /* The object id corresponding to the 1st bit of the bit vector. It
1300 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1301 int base_conflict_id;
1302
1303 /* The word of bit vector currently visited. It is defined only if
a49ae217 1304 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec 1305 unsigned IRA_INT_TYPE word;
84562394 1306};
058e97ec
VM
1307
1308/* Initialize the iterator I with ALLOCNO conflicts. */
1309static inline void
fa86d337
BS
1310ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1311 ira_object_t obj)
058e97ec 1312{
a49ae217
BS
1313 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1314 i->vec = OBJECT_CONFLICT_ARRAY (obj);
058e97ec 1315 i->word_num = 0;
a49ae217 1316 if (i->conflict_vec_p)
058e97ec
VM
1317 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1318 else
1319 {
a49ae217 1320 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
058e97ec
VM
1321 i->size = 0;
1322 else
a49ae217 1323 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
058e97ec
VM
1324 + IRA_INT_BITS)
1325 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1326 i->bit_num = 0;
a49ae217 1327 i->base_conflict_id = OBJECT_MIN (obj);
058e97ec
VM
1328 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1329 }
1330}
1331
1332/* Return TRUE if we have more conflicting allocnos to visit, in which
1333 case *A is set to the allocno to be visited. Otherwise, return
1334 FALSE. */
1335static inline bool
fa86d337
BS
1336ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1337 ira_object_t *pobj)
058e97ec 1338{
a49ae217 1339 ira_object_t obj;
058e97ec 1340
a49ae217 1341 if (i->conflict_vec_p)
058e97ec 1342 {
1756cb66 1343 obj = ((ira_object_t *) i->vec)[i->word_num++];
a49ae217 1344 if (obj == NULL)
058e97ec 1345 return false;
058e97ec
VM
1346 }
1347 else
1348 {
1756cb66
VM
1349 unsigned IRA_INT_TYPE word = i->word;
1350 unsigned int bit_num = i->bit_num;
1351
058e97ec 1352 /* Skip words that are zeros. */
1756cb66 1353 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
058e97ec
VM
1354 {
1355 i->word_num++;
b8698a0f 1356
058e97ec
VM
1357 /* If we have reached the end, break. */
1358 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1359 return false;
b8698a0f 1360
1756cb66 1361 bit_num = i->word_num * IRA_INT_BITS;
058e97ec 1362 }
b8698a0f 1363
058e97ec 1364 /* Skip bits that are zero. */
1756cb66
VM
1365 for (; (word & 1) == 0; word >>= 1)
1366 bit_num++;
b8698a0f 1367
1756cb66
VM
1368 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1369 i->bit_num = bit_num + 1;
1370 i->word = word >> 1;
058e97ec 1371 }
a49ae217 1372
fa86d337 1373 *pobj = obj;
a49ae217 1374 return true;
058e97ec
VM
1375}
1376
fa86d337
BS
1377/* Loop over all objects conflicting with OBJ. In each iteration,
1378 CONF is set to the next conflicting object. ITER is an instance
1379 of ira_object_conflict_iterator used to iterate the conflicts. */
1380#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1381 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1756cb66 1382 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
058e97ec
VM
1383
1384\f
1385
1756cb66
VM
1386/* The function returns TRUE if at least one hard register from ones
1387 starting with HARD_REGNO and containing value of MODE are in set
1388 HARD_REGSET. */
1389static inline bool
ef4bddc2 1390ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1756cb66
VM
1391 HARD_REG_SET hard_regset)
1392{
1393 int i;
1394
1395 gcc_assert (hard_regno >= 0);
1396 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1397 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1398 return true;
1399 return false;
1400}
1401
1402/* Return number of hard registers in hard register SET. */
1403static inline int
1404hard_reg_set_size (HARD_REG_SET set)
1405{
1406 int i, size;
1407
1408 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1409 if (TEST_HARD_REG_BIT (set, i))
1410 size++;
1411 return size;
1412}
1413
058e97ec 1414/* The function returns TRUE if hard registers starting with
9181a6e5 1415 HARD_REGNO and containing value of MODE are fully in set
058e97ec
VM
1416 HARD_REGSET. */
1417static inline bool
ef4bddc2 1418ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
9181a6e5 1419 HARD_REG_SET hard_regset)
058e97ec
VM
1420{
1421 int i;
1422
1423 ira_assert (hard_regno >= 0);
1424 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
9181a6e5 1425 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
058e97ec
VM
1426 return false;
1427 return true;
1428}
1429
1430\f
1431
1432/* To save memory we use a lazy approach for allocation and
1433 initialization of the cost vectors. We do this only when it is
1434 really necessary. */
1435
1756cb66 1436/* Allocate cost vector *VEC for hard registers of ACLASS and
058e97ec
VM
1437 initialize the elements by VAL if it is necessary */
1438static inline void
6f76a878 1439ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
058e97ec
VM
1440{
1441 int i, *reg_costs;
1442 int len;
1443
1444 if (*vec != NULL)
1445 return;
1756cb66 1446 *vec = reg_costs = ira_allocate_cost_vector (aclass);
6f76a878 1447 len = ira_class_hard_regs_num[(int) aclass];
058e97ec
VM
1448 for (i = 0; i < len; i++)
1449 reg_costs[i] = val;
1450}
1451
1756cb66
VM
1452/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1453 values of vector SRC into the vector if it is necessary */
058e97ec 1454static inline void
1756cb66 1455ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1456{
1457 int len;
1458
1459 if (*vec != NULL || src == NULL)
1460 return;
1756cb66
VM
1461 *vec = ira_allocate_cost_vector (aclass);
1462 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1463 memcpy (*vec, src, sizeof (int) * len);
1464}
1465
1756cb66
VM
1466/* Allocate cost vector *VEC for hard registers of ACLASS and add
1467 values of vector SRC into the vector if it is necessary */
058e97ec 1468static inline void
1756cb66 1469ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1470{
1471 int i, len;
1472
1473 if (src == NULL)
1474 return;
1756cb66 1475 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1476 if (*vec == NULL)
1477 {
1756cb66 1478 *vec = ira_allocate_cost_vector (aclass);
058e97ec
VM
1479 memset (*vec, 0, sizeof (int) * len);
1480 }
1481 for (i = 0; i < len; i++)
1482 (*vec)[i] += src[i];
1483}
1484
1756cb66
VM
1485/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1486 values of vector SRC into the vector or initialize it by VAL (if
1487 SRC is null). */
058e97ec 1488static inline void
1756cb66 1489ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
058e97ec
VM
1490 int val, int *src)
1491{
1492 int i, *reg_costs;
1493 int len;
1494
1495 if (*vec != NULL)
1496 return;
1756cb66
VM
1497 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1498 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1499 if (src != NULL)
1500 memcpy (reg_costs, src, sizeof (int) * len);
1501 else
1502 {
1503 for (i = 0; i < len; i++)
1504 reg_costs[i] = val;
1505 }
1506}
acf41a74
BS
1507
1508extern rtx ira_create_new_reg (rtx);
1509extern int first_moveable_pseudo, last_moveable_pseudo;
f1717f8d
KC
1510
1511#endif /* GCC_IRA_INT_H */