]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
re PR bootstrap/38014 (in-tree gmp and mpfr libraries no longer work)
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec
VM
1/* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "cfgloop.h"
23#include "ira.h"
24#include "alloc-pool.h"
25
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29#ifdef ENABLE_CHECKING
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
36#define ira_assert(c)
37#endif
38
39/* Compute register frequency from edge frequency FREQ. It is
40 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
41 profile driven feedback is available and the function is never
42 executed, frequency is always equivalent. Otherwise rescale the
43 edge frequency. */
44#define REG_FREQ_FROM_EDGE_FREQ(freq) \
45 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
46 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
47 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
48
49/* All natural loops. */
50extern struct loops ira_loops;
51
52/* A modified value of flag `-fira-verbose' used internally. */
53extern int internal_flag_ira_verbose;
54
55/* Dump file of the allocator if it is not NULL. */
56extern FILE *ira_dump_file;
57
58/* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60typedef struct ira_allocno_live_range *allocno_live_range_t;
61typedef struct ira_allocno *ira_allocno_t;
62typedef struct ira_allocno_copy *ira_copy_t;
63
64/* Definition of vector of allocnos and copies. */
65DEF_VEC_P(ira_allocno_t);
66DEF_VEC_ALLOC_P(ira_allocno_t, heap);
67DEF_VEC_P(ira_copy_t);
68DEF_VEC_ALLOC_P(ira_copy_t, heap);
69
70/* Typedef for pointer to the subsequent structure. */
71typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
72
73/* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81struct ira_loop_tree_node
82{
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 struct loop *loop; /* NULL for BB. */
86 /* The next (loop) node of with the same parent. SUBLOOP_NEXT is
87 always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next, next;
89 /* The first (loop) node immediately inside the node. SUBLOOPS is
90 always NULL for BBs. */
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
94
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
97
98 /* All the following members are defined only for nodes representing
99 loops. */
100
101 /* Allocnos in the loop corresponding to their regnos. If it is
102 NULL the loop does not form a separate register allocation region
103 (e.g. because it has abnormal enter/exit edges and we can not put
104 code for register shuffling on the edges if a different
105 allocation is used for a pseudo-register on different sides of
106 the edges). Caps are not in the map (remember we can have more
107 one cap with the same regno in a region). */
108 ira_allocno_t *regno_allocno_map;
109
110 /* Maximal register pressure inside loop for given register class
111 (defined only for the cover classes). */
112 int reg_pressure[N_REG_CLASSES];
113
49d988e7
VM
114 /* Numbers of allocnos referred or living in the loop node (except
115 for its subloops). */
116 bitmap all_allocnos;
117
118 /* Numbers of allocnos living at the loop borders. */
119 bitmap border_allocnos;
058e97ec
VM
120
121 /* Regnos of pseudos modified in the loop node (including its
122 subloops). */
123 bitmap modified_regnos;
124
058e97ec
VM
125 /* Numbers of copies referred in the corresponding loop. */
126 bitmap local_copies;
127};
128
129/* The root of the loop tree corresponding to the all function. */
130extern ira_loop_tree_node_t ira_loop_tree_root;
131
132/* Height of the loop tree. */
133extern int ira_loop_tree_height;
134
135/* All nodes representing basic blocks are referred through the
136 following array. We can not use basic block member `aux' for this
137 because it is used for insertion of insns on edges. */
138extern ira_loop_tree_node_t ira_bb_nodes;
139
140/* Two access macros to the nodes representing basic blocks. */
141#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
142#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
143(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
144 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
145 { \
146 fprintf (stderr, \
147 "\n%s: %d: error in %s: it is not a block node\n", \
148 __FILE__, __LINE__, __FUNCTION__); \
149 gcc_unreachable (); \
150 } \
151 _node; }))
152#else
153#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
154#endif
155
156#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
157
158/* All nodes representing loops are referred through the following
159 array. */
160extern ira_loop_tree_node_t ira_loop_nodes;
161
162/* Two access macros to the nodes representing loops. */
163#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
164#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
165(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
166 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
167 { \
168 fprintf (stderr, \
169 "\n%s: %d: error in %s: it is not a loop node\n", \
170 __FILE__, __LINE__, __FUNCTION__); \
171 gcc_unreachable (); \
172 } \
173 _node; }))
174#else
175#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
176#endif
177
178#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
179
180\f
181
182/* The structure describes program points where a given allocno lives.
183 To save memory we store allocno conflicts only for the same cover
184 class allocnos which is enough to assign hard registers. To find
185 conflicts for other allocnos (e.g. to assign stack memory slot) we
186 use the live ranges. If the live ranges of two allocnos are
187 intersected, the allocnos are in conflict. */
188struct ira_allocno_live_range
189{
190 /* Allocno whose live range is described by given structure. */
191 ira_allocno_t allocno;
192 /* Program point range. */
193 int start, finish;
194 /* Next structure describing program points where the allocno
195 lives. */
196 allocno_live_range_t next;
197 /* Pointer to structures with the same start/finish. */
198 allocno_live_range_t start_next, finish_next;
199};
200
201/* Program points are enumerated by numbers from range
202 0..IRA_MAX_POINT-1. There are approximately two times more program
203 points than insns. Program points are places in the program where
204 liveness info can be changed. In most general case (there are more
205 complicated cases too) some program points correspond to places
206 where input operand dies and other ones correspond to places where
207 output operands are born. */
208extern int ira_max_point;
209
210/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
211 live ranges with given start/finish point. */
212extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
213
214/* A structure representing an allocno (allocation entity). Allocno
215 represents a pseudo-register in an allocation region. If
216 pseudo-register does not live in a region but it lives in the
217 nested regions, it is represented in the region by special allocno
218 called *cap*. There may be more one cap representing the same
219 pseudo-register in region. It means that the corresponding
220 pseudo-register lives in more one non-intersected subregion. */
221struct ira_allocno
222{
223 /* The allocno order number starting with 0. Each allocno has an
224 unique number and the number is never changed for the
225 allocno. */
226 int num;
227 /* Regno for allocno or cap. */
228 int regno;
229 /* Mode of the allocno which is the mode of the corresponding
230 pseudo-register. */
231 enum machine_mode mode;
232 /* Final rtx representation of the allocno. */
233 rtx reg;
234 /* Hard register assigned to given allocno. Negative value means
235 that memory was allocated to the allocno. During the reload,
236 spilled allocno has value equal to the corresponding stack slot
237 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
238 reload (at this point pseudo-register has only one allocno) which
239 did not get stack slot yet. */
240 int hard_regno;
241 /* Allocnos with the same regno are linked by the following member.
242 Allocnos corresponding to inner loops are first in the list (it
243 corresponds to depth-first traverse of the loops). */
244 ira_allocno_t next_regno_allocno;
245 /* There may be different allocnos with the same regno in different
246 regions. Allocnos are bound to the corresponding loop tree node.
247 Pseudo-register may have only one regular allocno with given loop
248 tree node but more than one cap (see comments above). */
249 ira_loop_tree_node_t loop_tree_node;
250 /* Accumulated usage references of the allocno. Here and below,
251 word 'accumulated' means info for given region and all nested
252 subregions. In this case, 'accumulated' means sum of references
253 of the corresponding pseudo-register in this region and in all
254 nested subregions recursively. */
255 int nrefs;
256 /* Accumulated frequency of usage of the allocno. */
257 int freq;
258 /* Register class which should be used for allocation for given
259 allocno. NO_REGS means that we should use memory. */
260 enum reg_class cover_class;
cb1ca6ac
VM
261 /* Minimal accumulated and updated costs of usage register of the
262 cover class for the allocno. */
263 int cover_class_cost, updated_cover_class_cost;
058e97ec
VM
264 /* Minimal accumulated, and updated costs of memory for the allocno.
265 At the allocation start, the original and updated costs are
266 equal. The updated cost may be changed after finishing
267 allocation in a region and starting allocation in a subregion.
268 The change reflects the cost of spill/restore code on the
269 subregion border if we assign memory to the pseudo in the
270 subregion. */
271 int memory_cost, updated_memory_cost;
272 /* Accumulated number of points where the allocno lives and there is
273 excess pressure for its class. Excess pressure for a register
274 class at some point means that there are more allocnos of given
275 register class living at the point than number of hard-registers
276 of the class available for the allocation. */
277 int excess_pressure_points_num;
278 /* Copies to other non-conflicting allocnos. The copies can
279 represent move insn or potential move insn usually because of two
280 operand insn constraints. */
281 ira_copy_t allocno_copies;
282 /* It is a allocno (cap) representing given allocno on upper loop tree
283 level. */
284 ira_allocno_t cap;
285 /* It is a link to allocno (cap) on lower loop level represented by
286 given cap. Null if given allocno is not a cap. */
287 ira_allocno_t cap_member;
288 /* Coalesced allocnos form a cyclic list. One allocno given by
289 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
290 list is chained by NEXT_COALESCED_ALLOCNO. */
291 ira_allocno_t first_coalesced_allocno;
292 ira_allocno_t next_coalesced_allocno;
293 /* Pointer to structures describing at what program point the
294 allocno lives. We always maintain the list in such way that *the
295 ranges in the list are not intersected and ordered by decreasing
296 their program points*. */
297 allocno_live_range_t live_ranges;
298 /* Before building conflicts the two member values are
299 correspondingly minimal and maximal points of the accumulated
300 allocno live ranges. After building conflicts the values are
301 correspondingly minimal and maximal conflict ids of allocnos with
302 which given allocno can conflict. */
303 int min, max;
304 /* The unique member value represents given allocno in conflict bit
305 vectors. */
306 int conflict_id;
307 /* Vector of accumulated conflicting allocnos with NULL end marker
308 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
309 Only allocnos with the same cover class are in the vector or in
310 the bit vector. */
311 void *conflict_allocno_array;
312 /* Allocated size of the previous array. */
313 unsigned int conflict_allocno_array_size;
314 /* Number of accumulated conflicts in the vector of conflicting
315 allocnos. */
316 int conflict_allocnos_num;
317 /* Initial and accumulated hard registers conflicting with this
318 allocno and as a consequences can not be assigned to the allocno.
319 All non-allocatable hard regs and hard regs of cover classes
320 different from given allocno one are included in the sets. */
321 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
322 /* Accumulated frequency of calls which given allocno
323 intersects. */
324 int call_freq;
325 /* Length of the previous array (number of the intersected calls). */
326 int calls_crossed_num;
327 /* Non NULL if we remove restoring value from given allocno to
328 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
329 allocno value is not changed inside the loop. */
330 ira_allocno_t mem_optimized_dest;
331 /* TRUE if the allocno assigned to memory was a destination of
332 removed move (see ira-emit.c) at loop exit because the value of
333 the corresponding pseudo-register is not changed inside the
334 loop. */
335 unsigned int mem_optimized_dest_p : 1;
336 /* TRUE if the corresponding pseudo-register has disjoint live
337 ranges and the other allocnos of the pseudo-register except this
338 one changed REG. */
339 unsigned int somewhere_renamed_p : 1;
340 /* TRUE if allocno with the same REGNO in a subregion has been
341 renamed, in other words, got a new pseudo-register. */
342 unsigned int child_renamed_p : 1;
343 /* During the reload, value TRUE means that we should not reassign a
344 hard register to the allocno got memory earlier. It is set up
345 when we removed memory-memory move insn before each iteration of
346 the reload. */
347 unsigned int dont_reassign_p : 1;
348#ifdef STACK_REGS
349 /* Set to TRUE if allocno can't be assigned to the stack hard
350 register correspondingly in this region and area including the
351 region and all its subregions recursively. */
352 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
353#endif
354 /* TRUE value means that the allocno was not removed yet from the
355 conflicting graph during colouring. */
356 unsigned int in_graph_p : 1;
357 /* TRUE if a hard register or memory has been assigned to the
358 allocno. */
359 unsigned int assigned_p : 1;
360 /* TRUE if it is put on the stack to make other allocnos
361 colorable. */
362 unsigned int may_be_spilled_p : 1;
363 /* TRUE if the allocno was removed from the splay tree used to
364 choose allocn for spilling (see ira-color.c::. */
365 unsigned int splay_removed_p : 1;
366 /* TRUE if conflicts for given allocno are represented by vector of
367 pointers to the conflicting allocnos. Otherwise, we use a bit
368 vector where a bit with given index represents allocno with the
369 same number. */
370 unsigned int conflict_vec_p : 1;
371 /* Array of usage costs (accumulated and the one updated during
372 coloring) for each hard register of the allocno cover class. The
373 member value can be NULL if all costs are the same and equal to
374 COVER_CLASS_COST. For example, the costs of two different hard
375 registers can be different if one hard register is callee-saved
376 and another one is callee-used and the allocno lives through
377 calls. Another example can be case when for some insn the
378 corresponding pseudo-register value should be put in specific
379 register class (e.g. AREG for x86) which is a strict subset of
380 the allocno cover class (GENERAL_REGS for x86). We have updated
381 costs to reflect the situation when the usage cost of a hard
382 register is decreased because the allocno is connected to another
383 allocno by a copy and the another allocno has been assigned to
384 the hard register. */
385 int *hard_reg_costs, *updated_hard_reg_costs;
386 /* Array of decreasing costs (accumulated and the one updated during
387 coloring) for allocnos conflicting with given allocno for hard
388 regno of the allocno cover class. The member value can be NULL
389 if all costs are the same. These costs are used to reflect
390 preferences of other allocnos not assigned yet during assigning
391 to given allocno. */
392 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
393 /* Number of the same cover class allocnos with TRUE in_graph_p
394 value and conflicting with given allocno during each point of
395 graph coloring. */
396 int left_conflicts_num;
397 /* Number of hard registers of the allocno cover class really
398 available for the allocno allocation. */
399 int available_regs_num;
400 /* Allocnos in a bucket (used in coloring) chained by the following
401 two members. */
402 ira_allocno_t next_bucket_allocno;
403 ira_allocno_t prev_bucket_allocno;
404 /* Used for temporary purposes. */
405 int temp;
406};
407
408/* All members of the allocno structures should be accessed only
409 through the following macros. */
410#define ALLOCNO_NUM(A) ((A)->num)
411#define ALLOCNO_REGNO(A) ((A)->regno)
412#define ALLOCNO_REG(A) ((A)->reg)
413#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
414#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
415#define ALLOCNO_CAP(A) ((A)->cap)
416#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
417#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
418#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
419 ((A)->conflict_allocno_array_size)
420#define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
421 ((A)->conflict_allocnos_num)
422#define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
423#define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
424#define ALLOCNO_NREFS(A) ((A)->nrefs)
425#define ALLOCNO_FREQ(A) ((A)->freq)
426#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
427#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
428#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
429#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
430#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
431#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
432#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
433#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
434#ifdef STACK_REGS
435#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
436#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
437#endif
438#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
439#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
440#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
441#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
442#define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
443#define ALLOCNO_MODE(A) ((A)->mode)
444#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->conflict_hard_reg_costs)
449#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450 ((A)->updated_conflict_hard_reg_costs)
451#define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
452#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
453#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
cb1ca6ac 454#define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
058e97ec
VM
455#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
456#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
457#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
458#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
459#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
460#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
b15a7ae6 461#define ALLOCNO_TEMP(A) ((A)->temp)
058e97ec
VM
462#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
463#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
464#define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
465#define ALLOCNO_MIN(A) ((A)->min)
466#define ALLOCNO_MAX(A) ((A)->max)
467#define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
468
469/* Map regno -> allocnos with given regno (see comments for
470 allocno member `next_regno_allocno'). */
471extern ira_allocno_t *ira_regno_allocno_map;
472
473/* Array of references to all allocnos. The order number of the
474 allocno corresponds to the index in the array. Removed allocnos
475 have NULL element value. */
476extern ira_allocno_t *ira_allocnos;
477
478/* Sizes of the previous array. */
479extern int ira_allocnos_num;
480
481/* Map conflict id -> allocno with given conflict id (see comments for
482 allocno member `conflict_id'). */
483extern ira_allocno_t *ira_conflict_id_allocno_map;
484
485/* The following structure represents a copy of two allocnos. The
486 copies represent move insns or potential move insns usually because
487 of two operand insn constraints. To remove register shuffle, we
488 also create copies between allocno which is output of an insn and
489 allocno becoming dead in the insn. */
490struct ira_allocno_copy
491{
492 /* The unique order number of the copy node starting with 0. */
493 int num;
494 /* Allocnos connected by the copy. The first allocno should have
495 smaller order number than the second one. */
496 ira_allocno_t first, second;
497 /* Execution frequency of the copy. */
498 int freq;
548a6322 499 bool constraint_p;
058e97ec
VM
500 /* It is a move insn which is an origin of the copy. The member
501 value for the copy representing two operand insn constraints or
502 for the copy created to remove register shuffle is NULL. In last
503 case the copy frequency is smaller than the corresponding insn
504 execution frequency. */
505 rtx insn;
506 /* All copies with the same allocno as FIRST are linked by the two
507 following members. */
508 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
509 /* All copies with the same allocno as SECOND are linked by the two
510 following members. */
511 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
512 /* Region from which given copy is originated. */
513 ira_loop_tree_node_t loop_tree_node;
514};
515
516/* Array of references to all copies. The order number of the copy
517 corresponds to the index in the array. Removed copies have NULL
518 element value. */
519extern ira_copy_t *ira_copies;
520
521/* Size of the previous array. */
522extern int ira_copies_num;
523
524/* The following structure describes a stack slot used for spilled
525 pseudo-registers. */
526struct ira_spilled_reg_stack_slot
527{
528 /* pseudo-registers assigned to the stack slot. */
529 regset_head spilled_regs;
530 /* RTL representation of the stack slot. */
531 rtx mem;
532 /* Size of the stack slot. */
533 unsigned int width;
534};
535
536/* The number of elements in the following array. */
537extern int ira_spilled_reg_stack_slots_num;
538
539/* The following array contains info about spilled pseudo-registers
540 stack slots used in current function so far. */
541extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
542
543/* Correspondingly overall cost of the allocation, cost of the
544 allocnos assigned to hard-registers, cost of the allocnos assigned
545 to memory, cost of loads, stores and register move insns generated
546 for pseudo-register live range splitting (see ira-emit.c). */
547extern int ira_overall_cost;
548extern int ira_reg_cost, ira_mem_cost;
549extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
550extern int ira_move_loops_num, ira_additional_jumps_num;
551
c0683a82
VM
552/* Map: hard register number -> cover class it belongs to. If the
553 corresponding class is NO_REGS, the hard register is not available
554 for allocation. */
555extern enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
556
058e97ec
VM
557/* Map: register class x machine mode -> number of hard registers of
558 given class needed to store value of given mode. If the number for
559 some hard-registers of the register class is different, the size
560 will be negative. */
561extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
562
563/* Maximal value of the previous array elements. */
564extern int ira_max_nregs;
565
566/* The number of bits in each element of array used to implement a bit
567 vector of allocnos and what type that element has. We use the
568 largest integer format on the host machine. */
569#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
570#define IRA_INT_TYPE HOST_WIDE_INT
571
572/* Set, clear or test bit number I in R, a bit vector of elements with
573 minimal index and maximal index equal correspondingly to MIN and
574 MAX. */
575#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
576
577#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
578 (({ int _min = (MIN), _max = (MAX), _i = (I); \
579 if (_i < _min || _i > _max) \
580 { \
581 fprintf (stderr, \
582 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
583 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
584 gcc_unreachable (); \
585 } \
586 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
587 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
588
589
590#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
591 (({ int _min = (MIN), _max = (MAX), _i = (I); \
592 if (_i < _min || _i > _max) \
593 { \
594 fprintf (stderr, \
595 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
596 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
597 gcc_unreachable (); \
598 } \
599 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
600 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
601
602#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
603 (({ int _min = (MIN), _max = (MAX), _i = (I); \
604 if (_i < _min || _i > _max) \
605 { \
606 fprintf (stderr, \
607 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
608 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
609 gcc_unreachable (); \
610 } \
611 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
612 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
613
614#else
615
616#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
617 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
618 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
619
620#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
621 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
622 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
623
624#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
625 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
626 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
627
628#endif
629
630/* The iterator for allocno set implemented ed as allocno bit
631 vector. */
632typedef struct {
633
634 /* Array containing the allocno bit vector. */
635 IRA_INT_TYPE *vec;
636
637 /* The number of the current element in the vector. */
638 unsigned int word_num;
639
640 /* The number of bits in the bit vector. */
641 unsigned int nel;
642
643 /* The current bit index of the bit vector. */
644 unsigned int bit_num;
645
646 /* Index corresponding to the 1st bit of the bit vector. */
647 int start_val;
648
649 /* The word of the bit vector currently visited. */
650 unsigned IRA_INT_TYPE word;
651} ira_allocno_set_iterator;
652
653/* Initialize the iterator I for allocnos bit vector VEC containing
654 minimal and maximal values MIN and MAX. */
655static inline void
656ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
657 IRA_INT_TYPE *vec, int min, int max)
658{
659 i->vec = vec;
660 i->word_num = 0;
661 i->nel = max < min ? 0 : max - min + 1;
662 i->start_val = min;
663 i->bit_num = 0;
664 i->word = i->nel == 0 ? 0 : vec[0];
665}
666
667/* Return TRUE if we have more allocnos to visit, in which case *N is
668 set to the allocno number to be visited. Otherwise, return
669 FALSE. */
670static inline bool
671ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
672{
673 /* Skip words that are zeros. */
674 for (; i->word == 0; i->word = i->vec[i->word_num])
675 {
676 i->word_num++;
677 i->bit_num = i->word_num * IRA_INT_BITS;
678
679 /* If we have reached the end, break. */
680 if (i->bit_num >= i->nel)
681 return false;
682 }
683
684 /* Skip bits that are zero. */
685 for (; (i->word & 1) == 0; i->word >>= 1)
686 i->bit_num++;
687
688 *n = (int) i->bit_num + i->start_val;
689
690 return true;
691}
692
693/* Advance to the next allocno in the set. */
694static inline void
695ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
696{
697 i->word >>= 1;
698 i->bit_num++;
699}
700
701/* Loop over all elements of allocno set given by bit vector VEC and
702 their minimal and maximal values MIN and MAX. In each iteration, N
703 is set to the number of next allocno. ITER is an instance of
704 ira_allocno_set_iterator used to iterate the allocnos in the set. */
705#define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
706 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
707 ira_allocno_set_iter_cond (&(ITER), &(N)); \
708 ira_allocno_set_iter_next (&(ITER)))
709
710/* ira.c: */
711
058e97ec
VM
712/* Map: hard regs X modes -> set of hard registers for storing value
713 of given mode starting with given hard register. */
714extern HARD_REG_SET ira_reg_mode_hard_regset
715 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
716
717/* Arrays analogous to macros MEMORY_MOVE_COST and
718 REGISTER_MOVE_COST. */
719extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
720extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
721
722/* Similar to may_move_in_cost but it is calculated in IRA instead of
723 regclass. Another difference we take only available hard registers
724 into account to figure out that one register class is a subset of
725 the another one. */
726extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
727
728/* Similar to may_move_out_cost but it is calculated in IRA instead of
729 regclass. Another difference we take only available hard registers
730 into account to figure out that one register class is a subset of
731 the another one. */
732extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
733
734/* Register class subset relation: TRUE if the first class is a subset
735 of the second one considering only hard registers available for the
736 allocation. */
737extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
738
739/* Array of number of hard registers of given class which are
740 available for the allocation. The order is defined by the
741 allocation order. */
742extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
743
744/* The number of elements of the above array for given register
745 class. */
746extern int ira_class_hard_regs_num[N_REG_CLASSES];
747
748/* Index (in ira_class_hard_regs) for given register class and hard
749 register (in general case a hard register can belong to several
750 register classes). The index is negative for hard registers
751 unavailable for the allocation. */
752extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
753
754/* Function specific hard registers can not be used for the register
755 allocation. */
756extern HARD_REG_SET ira_no_alloc_regs;
757
758/* Number of given class hard registers available for the register
759 allocation for given classes. */
760extern int ira_available_class_regs[N_REG_CLASSES];
761
762/* Array whose values are hard regset of hard registers available for
763 the allocation of given register class whose HARD_REGNO_MODE_OK
764 values for given mode are zero. */
765extern HARD_REG_SET prohibited_class_mode_regs
766 [N_REG_CLASSES][NUM_MACHINE_MODES];
767
768/* Array whose values are hard regset of hard registers for which
769 move of the hard register in given mode into itself is
770 prohibited. */
771extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
772
773/* Number of cover classes. Cover classes is non-intersected register
774 classes containing all hard-registers available for the
775 allocation. */
776extern int ira_reg_class_cover_size;
777
778/* The array containing cover classes (see also comments for macro
779 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
780 used for this. */
781extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
782
783/* The value is number of elements in the subsequent array. */
784extern int ira_important_classes_num;
785
786/* The array containing non-empty classes (including non-empty cover
787 classes) which are subclasses of cover classes. Such classes is
788 important for calculation of the hard register usage costs. */
789extern enum reg_class ira_important_classes[N_REG_CLASSES];
790
791/* The array containing indexes of important classes in the previous
792 array. The array elements are defined only for important
793 classes. */
794extern int ira_important_class_nums[N_REG_CLASSES];
795
796/* Map of all register classes to corresponding cover class containing
797 the given class. If given class is not a subset of a cover class,
798 we translate it into the cheapest cover class. */
799extern enum reg_class ira_class_translate[N_REG_CLASSES];
800
801/* The biggest important class inside of intersection of the two
802 classes (that is calculated taking only hard registers available
803 for allocation into account). If the both classes contain no hard
804 registers available for allocation, the value is calculated with
805 taking all hard-registers including fixed ones into account. */
806extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
807
808/* The biggest important class inside of union of the two classes
809 (that is calculated taking only hard registers available for
810 allocation into account). If the both classes contain no hard
811 registers available for allocation, the value is calculated with
812 taking all hard-registers including fixed ones into account. In
813 other words, the value is the corresponding reg_class_subunion
814 value. */
815extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
816
817extern void *ira_allocate (size_t);
818extern void *ira_reallocate (void *, size_t);
819extern void ira_free (void *addr);
820extern bitmap ira_allocate_bitmap (void);
821extern void ira_free_bitmap (bitmap);
822extern void ira_print_disposition (FILE *);
823extern void ira_debug_disposition (void);
824extern void ira_debug_class_cover (void);
825extern void ira_init_register_move_cost (enum machine_mode);
826
827/* The length of the two following arrays. */
828extern int ira_reg_equiv_len;
829
830/* The element value is TRUE if the corresponding regno value is
831 invariant. */
832extern bool *ira_reg_equiv_invariant_p;
833
834/* The element value is equiv constant of given pseudo-register or
835 NULL_RTX. */
836extern rtx *ira_reg_equiv_const;
837
838/* ira-build.c */
839
840/* The current loop tree node and its regno allocno map. */
841extern ira_loop_tree_node_t ira_curr_loop_tree_node;
842extern ira_allocno_t *ira_curr_regno_allocno_map;
843
4cda38d5
VM
844extern void ira_debug_copy (ira_copy_t);
845extern void ira_debug_copies (void);
058e97ec
VM
846extern void ira_debug_allocno_copies (ira_allocno_t);
847
848extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
849 void (*) (ira_loop_tree_node_t),
850 void (*) (ira_loop_tree_node_t));
851extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
852extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
853extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
854extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
855extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
856extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
857extern void ira_print_expanded_allocno (ira_allocno_t);
858extern allocno_live_range_t ira_create_allocno_live_range
859 (ira_allocno_t, int, int, allocno_live_range_t);
860extern void ira_finish_allocno_live_range (allocno_live_range_t);
861extern void ira_free_allocno_updated_costs (ira_allocno_t);
862extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
548a6322 863 int, bool, rtx, ira_loop_tree_node_t);
058e97ec
VM
864extern void ira_add_allocno_copy_to_list (ira_copy_t);
865extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
866extern void ira_remove_allocno_copy_from_list (ira_copy_t);
548a6322
VM
867extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
868 bool, rtx, ira_loop_tree_node_t);
058e97ec
VM
869
870extern int *ira_allocate_cost_vector (enum reg_class);
871extern void ira_free_cost_vector (int *, enum reg_class);
872
873extern void ira_flattening (int, int);
874extern bool ira_build (bool);
875extern void ira_destroy (void);
876
877/* ira-costs.c */
878extern void ira_init_costs_once (void);
879extern void ira_init_costs (void);
880extern void ira_finish_costs_once (void);
881extern void ira_costs (void);
882extern void ira_tune_allocno_costs_and_cover_classes (void);
883
884/* ira-lives.c */
885
886extern void ira_rebuild_start_finish_chains (void);
887extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
888extern void ira_debug_live_range_list (allocno_live_range_t);
889extern void ira_debug_allocno_live_ranges (ira_allocno_t);
890extern void ira_debug_live_ranges (void);
891extern void ira_create_allocno_live_ranges (void);
b15a7ae6 892extern void ira_compress_allocno_live_ranges (void);
058e97ec
VM
893extern void ira_finish_allocno_live_ranges (void);
894
895/* ira-conflicts.c */
896extern bool ira_allocno_live_ranges_intersect_p (ira_allocno_t, ira_allocno_t);
897extern bool ira_pseudo_live_ranges_intersect_p (int, int);
898extern void ira_debug_conflicts (bool);
899extern void ira_build_conflicts (void);
900
901/* ira-color.c */
902extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
903extern void ira_reassign_conflict_allocnos (int);
904extern void ira_initiate_assign (void);
905extern void ira_finish_assign (void);
906extern void ira_color (void);
058e97ec
VM
907
908/* ira-emit.c */
909extern void ira_emit (bool);
910
911\f
912
913/* The iterator for all allocnos. */
914typedef struct {
915 /* The number of the current element in IRA_ALLOCNOS. */
916 int n;
917} ira_allocno_iterator;
918
919/* Initialize the iterator I. */
920static inline void
921ira_allocno_iter_init (ira_allocno_iterator *i)
922{
923 i->n = 0;
924}
925
926/* Return TRUE if we have more allocnos to visit, in which case *A is
927 set to the allocno to be visited. Otherwise, return FALSE. */
928static inline bool
929ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
930{
931 int n;
932
933 for (n = i->n; n < ira_allocnos_num; n++)
934 if (ira_allocnos[n] != NULL)
935 {
936 *a = ira_allocnos[n];
937 i->n = n + 1;
938 return true;
939 }
940 return false;
941}
942
943/* Loop over all allocnos. In each iteration, A is set to the next
944 allocno. ITER is an instance of ira_allocno_iterator used to iterate
945 the allocnos. */
946#define FOR_EACH_ALLOCNO(A, ITER) \
947 for (ira_allocno_iter_init (&(ITER)); \
948 ira_allocno_iter_cond (&(ITER), &(A));)
949
950
951\f
952
953/* The iterator for copies. */
954typedef struct {
955 /* The number of the current element in IRA_COPIES. */
956 int n;
957} ira_copy_iterator;
958
959/* Initialize the iterator I. */
960static inline void
961ira_copy_iter_init (ira_copy_iterator *i)
962{
963 i->n = 0;
964}
965
966/* Return TRUE if we have more copies to visit, in which case *CP is
967 set to the copy to be visited. Otherwise, return FALSE. */
968static inline bool
969ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
970{
971 int n;
972
973 for (n = i->n; n < ira_copies_num; n++)
974 if (ira_copies[n] != NULL)
975 {
976 *cp = ira_copies[n];
977 i->n = n + 1;
978 return true;
979 }
980 return false;
981}
982
983/* Loop over all copies. In each iteration, C is set to the next
984 copy. ITER is an instance of ira_copy_iterator used to iterate
985 the copies. */
986#define FOR_EACH_COPY(C, ITER) \
987 for (ira_copy_iter_init (&(ITER)); \
988 ira_copy_iter_cond (&(ITER), &(C));)
989
990
991\f
992
993/* The iterator for allocno conflicts. */
994typedef struct {
995
996 /* TRUE if the conflicts are represented by vector of allocnos. */
997 bool allocno_conflict_vec_p;
998
999 /* The conflict vector or conflict bit vector. */
1000 void *vec;
1001
1002 /* The number of the current element in the vector (of type
1003 ira_allocno_t or IRA_INT_TYPE). */
1004 unsigned int word_num;
1005
1006 /* The bit vector size. It is defined only if
1007 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1008 unsigned int size;
1009
1010 /* The current bit index of bit vector. It is defined only if
1011 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1012 unsigned int bit_num;
1013
1014 /* Allocno conflict id corresponding to the 1st bit of the bit
1015 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1016 FALSE. */
1017 int base_conflict_id;
1018
1019 /* The word of bit vector currently visited. It is defined only if
1020 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1021 unsigned IRA_INT_TYPE word;
1022} ira_allocno_conflict_iterator;
1023
1024/* Initialize the iterator I with ALLOCNO conflicts. */
1025static inline void
1026ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1027 ira_allocno_t allocno)
1028{
1029 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1030 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1031 i->word_num = 0;
1032 if (i->allocno_conflict_vec_p)
1033 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1034 else
1035 {
1036 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1037 i->size = 0;
1038 else
1039 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1040 + IRA_INT_BITS)
1041 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1042 i->bit_num = 0;
1043 i->base_conflict_id = ALLOCNO_MIN (allocno);
1044 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1045 }
1046}
1047
1048/* Return TRUE if we have more conflicting allocnos to visit, in which
1049 case *A is set to the allocno to be visited. Otherwise, return
1050 FALSE. */
1051static inline bool
1052ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1053 ira_allocno_t *a)
1054{
1055 ira_allocno_t conflict_allocno;
1056
1057 if (i->allocno_conflict_vec_p)
1058 {
1059 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1060 if (conflict_allocno == NULL)
1061 return false;
1062 *a = conflict_allocno;
1063 return true;
1064 }
1065 else
1066 {
1067 /* Skip words that are zeros. */
1068 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1069 {
1070 i->word_num++;
1071
1072 /* If we have reached the end, break. */
1073 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1074 return false;
1075
1076 i->bit_num = i->word_num * IRA_INT_BITS;
1077 }
1078
1079 /* Skip bits that are zero. */
1080 for (; (i->word & 1) == 0; i->word >>= 1)
1081 i->bit_num++;
1082
1083 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1084
1085 return true;
1086 }
1087}
1088
1089/* Advance to the next conflicting allocno. */
1090static inline void
1091ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1092{
1093 if (i->allocno_conflict_vec_p)
1094 i->word_num++;
1095 else
1096 {
1097 i->word >>= 1;
1098 i->bit_num++;
1099 }
1100}
1101
1102/* Loop over all allocnos conflicting with ALLOCNO. In each
1103 iteration, A is set to the next conflicting allocno. ITER is an
1104 instance of ira_allocno_conflict_iterator used to iterate the
1105 conflicts. */
1106#define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1107 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1108 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1109 ira_allocno_conflict_iter_next (&(ITER)))
1110
1111\f
1112
1113/* The function returns TRUE if hard registers starting with
1114 HARD_REGNO and containing value of MODE are not in set
1115 HARD_REGSET. */
1116static inline bool
1117ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1118 HARD_REG_SET hard_regset)
1119{
1120 int i;
1121
1122 ira_assert (hard_regno >= 0);
1123 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1124 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1125 return false;
1126 return true;
1127}
1128
1129\f
1130
1131/* To save memory we use a lazy approach for allocation and
1132 initialization of the cost vectors. We do this only when it is
1133 really necessary. */
1134
1135/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1136 initialize the elements by VAL if it is necessary */
1137static inline void
1138ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1139{
1140 int i, *reg_costs;
1141 int len;
1142
1143 if (*vec != NULL)
1144 return;
1145 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1146 len = ira_class_hard_regs_num[cover_class];
1147 for (i = 0; i < len; i++)
1148 reg_costs[i] = val;
1149}
1150
1151/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1152 copy values of vector SRC into the vector if it is necessary */
1153static inline void
1154ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1155{
1156 int len;
1157
1158 if (*vec != NULL || src == NULL)
1159 return;
1160 *vec = ira_allocate_cost_vector (cover_class);
1161 len = ira_class_hard_regs_num[cover_class];
1162 memcpy (*vec, src, sizeof (int) * len);
1163}
1164
1165/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1166 add values of vector SRC into the vector if it is necessary */
1167static inline void
1168ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1169 int *src)
1170{
1171 int i, len;
1172
1173 if (src == NULL)
1174 return;
1175 len = ira_class_hard_regs_num[cover_class];
1176 if (*vec == NULL)
1177 {
1178 *vec = ira_allocate_cost_vector (cover_class);
1179 memset (*vec, 0, sizeof (int) * len);
1180 }
1181 for (i = 0; i < len; i++)
1182 (*vec)[i] += src[i];
1183}
1184
1185/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1186 copy values of vector SRC into the vector or initialize it by VAL
1187 (if SRC is null). */
1188static inline void
1189ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1190 int val, int *src)
1191{
1192 int i, *reg_costs;
1193 int len;
1194
1195 if (*vec != NULL)
1196 return;
1197 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1198 len = ira_class_hard_regs_num[cover_class];
1199 if (src != NULL)
1200 memcpy (reg_costs, src, sizeof (int) * len);
1201 else
1202 {
1203 for (i = 0; i < len; i++)
1204 reg_costs[i] = val;
1205 }
1206}