]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
ira-color.c (assign_hard_reg): Improve formatting of multi-line for statement.
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
66647d44 2 Copyright (C) 2006, 2007, 2008, 2009
058e97ec
VM
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "cfgloop.h"
23#include "ira.h"
24#include "alloc-pool.h"
25
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29#ifdef ENABLE_CHECKING
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
f7556aae
L
36/* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
39#endif
40
41/* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
46#define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
51/* All natural loops. */
52extern struct loops ira_loops;
53
54/* A modified value of flag `-fira-verbose' used internally. */
55extern int internal_flag_ira_verbose;
56
57/* Dump file of the allocator if it is not NULL. */
58extern FILE *ira_dump_file;
59
60/* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
62typedef struct ira_allocno_live_range *allocno_live_range_t;
63typedef struct ira_allocno *ira_allocno_t;
64typedef struct ira_allocno_copy *ira_copy_t;
65
66/* Definition of vector of allocnos and copies. */
67DEF_VEC_P(ira_allocno_t);
68DEF_VEC_ALLOC_P(ira_allocno_t, heap);
69DEF_VEC_P(ira_copy_t);
70DEF_VEC_ALLOC_P(ira_copy_t, heap);
71
72/* Typedef for pointer to the subsequent structure. */
73typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
74
75/* In general case, IRA is a regional allocator. The regions are
76 nested and form a tree. Currently regions are natural loops. The
77 following structure describes loop tree node (representing basic
78 block or loop). We need such tree because the loop tree from
79 cfgloop.h is not convenient for the optimization: basic blocks are
80 not a part of the tree from cfgloop.h. We also use the nodes for
81 storing additional information about basic blocks/loops for the
82 register allocation purposes. */
83struct ira_loop_tree_node
84{
85 /* The node represents basic block if children == NULL. */
86 basic_block bb; /* NULL for loop. */
87 struct loop *loop; /* NULL for BB. */
af51c885
AN
88 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
89 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 90 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
91 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
92 the node. They are NULL for BBs. */
058e97ec
VM
93 ira_loop_tree_node_t subloops, children;
94 /* The node immediately containing given node. */
95 ira_loop_tree_node_t parent;
96
97 /* Loop level in range [0, ira_loop_tree_height). */
98 int level;
99
100 /* All the following members are defined only for nodes representing
101 loops. */
102
30ea859e
VM
103 /* True if the loop was marked for removal from the register
104 allocation. */
105 bool to_remove_p;
106
058e97ec
VM
107 /* Allocnos in the loop corresponding to their regnos. If it is
108 NULL the loop does not form a separate register allocation region
109 (e.g. because it has abnormal enter/exit edges and we can not put
110 code for register shuffling on the edges if a different
111 allocation is used for a pseudo-register on different sides of
112 the edges). Caps are not in the map (remember we can have more
113 one cap with the same regno in a region). */
114 ira_allocno_t *regno_allocno_map;
115
ea1c67e6
VM
116 /* True if there is an entry to given loop not from its parent (or
117 grandparent) basic block. For example, it is possible for two
118 adjacent loops inside another loop. */
119 bool entered_from_non_parent_p;
120
058e97ec
VM
121 /* Maximal register pressure inside loop for given register class
122 (defined only for the cover classes). */
123 int reg_pressure[N_REG_CLASSES];
124
49d988e7
VM
125 /* Numbers of allocnos referred or living in the loop node (except
126 for its subloops). */
127 bitmap all_allocnos;
128
129 /* Numbers of allocnos living at the loop borders. */
130 bitmap border_allocnos;
058e97ec
VM
131
132 /* Regnos of pseudos modified in the loop node (including its
133 subloops). */
134 bitmap modified_regnos;
135
058e97ec
VM
136 /* Numbers of copies referred in the corresponding loop. */
137 bitmap local_copies;
138};
139
140/* The root of the loop tree corresponding to the all function. */
141extern ira_loop_tree_node_t ira_loop_tree_root;
142
143/* Height of the loop tree. */
144extern int ira_loop_tree_height;
145
146/* All nodes representing basic blocks are referred through the
147 following array. We can not use basic block member `aux' for this
148 because it is used for insertion of insns on edges. */
149extern ira_loop_tree_node_t ira_bb_nodes;
150
151/* Two access macros to the nodes representing basic blocks. */
152#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
153#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
154(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
155 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
156 { \
157 fprintf (stderr, \
158 "\n%s: %d: error in %s: it is not a block node\n", \
159 __FILE__, __LINE__, __FUNCTION__); \
160 gcc_unreachable (); \
161 } \
162 _node; }))
163#else
164#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
165#endif
166
167#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
168
169/* All nodes representing loops are referred through the following
170 array. */
171extern ira_loop_tree_node_t ira_loop_nodes;
172
173/* Two access macros to the nodes representing loops. */
174#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
175#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
176(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
177 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
178 { \
179 fprintf (stderr, \
180 "\n%s: %d: error in %s: it is not a loop node\n", \
181 __FILE__, __LINE__, __FUNCTION__); \
182 gcc_unreachable (); \
183 } \
184 _node; }))
185#else
186#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
187#endif
188
189#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
190
191\f
192
193/* The structure describes program points where a given allocno lives.
194 To save memory we store allocno conflicts only for the same cover
195 class allocnos which is enough to assign hard registers. To find
196 conflicts for other allocnos (e.g. to assign stack memory slot) we
197 use the live ranges. If the live ranges of two allocnos are
198 intersected, the allocnos are in conflict. */
199struct ira_allocno_live_range
200{
201 /* Allocno whose live range is described by given structure. */
202 ira_allocno_t allocno;
203 /* Program point range. */
204 int start, finish;
205 /* Next structure describing program points where the allocno
206 lives. */
207 allocno_live_range_t next;
208 /* Pointer to structures with the same start/finish. */
209 allocno_live_range_t start_next, finish_next;
210};
211
212/* Program points are enumerated by numbers from range
213 0..IRA_MAX_POINT-1. There are approximately two times more program
214 points than insns. Program points are places in the program where
215 liveness info can be changed. In most general case (there are more
216 complicated cases too) some program points correspond to places
217 where input operand dies and other ones correspond to places where
218 output operands are born. */
219extern int ira_max_point;
220
221/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
222 live ranges with given start/finish point. */
223extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
224
225/* A structure representing an allocno (allocation entity). Allocno
226 represents a pseudo-register in an allocation region. If
227 pseudo-register does not live in a region but it lives in the
228 nested regions, it is represented in the region by special allocno
229 called *cap*. There may be more one cap representing the same
230 pseudo-register in region. It means that the corresponding
231 pseudo-register lives in more one non-intersected subregion. */
232struct ira_allocno
233{
234 /* The allocno order number starting with 0. Each allocno has an
235 unique number and the number is never changed for the
236 allocno. */
237 int num;
238 /* Regno for allocno or cap. */
239 int regno;
240 /* Mode of the allocno which is the mode of the corresponding
241 pseudo-register. */
242 enum machine_mode mode;
058e97ec
VM
243 /* Hard register assigned to given allocno. Negative value means
244 that memory was allocated to the allocno. During the reload,
245 spilled allocno has value equal to the corresponding stack slot
246 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
247 reload (at this point pseudo-register has only one allocno) which
248 did not get stack slot yet. */
249 int hard_regno;
8f5929e1
JJ
250 /* Final rtx representation of the allocno. */
251 rtx reg;
058e97ec
VM
252 /* Allocnos with the same regno are linked by the following member.
253 Allocnos corresponding to inner loops are first in the list (it
254 corresponds to depth-first traverse of the loops). */
255 ira_allocno_t next_regno_allocno;
256 /* There may be different allocnos with the same regno in different
257 regions. Allocnos are bound to the corresponding loop tree node.
258 Pseudo-register may have only one regular allocno with given loop
259 tree node but more than one cap (see comments above). */
260 ira_loop_tree_node_t loop_tree_node;
261 /* Accumulated usage references of the allocno. Here and below,
262 word 'accumulated' means info for given region and all nested
263 subregions. In this case, 'accumulated' means sum of references
264 of the corresponding pseudo-register in this region and in all
265 nested subregions recursively. */
266 int nrefs;
267 /* Accumulated frequency of usage of the allocno. */
268 int freq;
269 /* Register class which should be used for allocation for given
270 allocno. NO_REGS means that we should use memory. */
271 enum reg_class cover_class;
cb1ca6ac
VM
272 /* Minimal accumulated and updated costs of usage register of the
273 cover class for the allocno. */
274 int cover_class_cost, updated_cover_class_cost;
058e97ec
VM
275 /* Minimal accumulated, and updated costs of memory for the allocno.
276 At the allocation start, the original and updated costs are
277 equal. The updated cost may be changed after finishing
278 allocation in a region and starting allocation in a subregion.
279 The change reflects the cost of spill/restore code on the
280 subregion border if we assign memory to the pseudo in the
281 subregion. */
282 int memory_cost, updated_memory_cost;
283 /* Accumulated number of points where the allocno lives and there is
284 excess pressure for its class. Excess pressure for a register
285 class at some point means that there are more allocnos of given
286 register class living at the point than number of hard-registers
287 of the class available for the allocation. */
288 int excess_pressure_points_num;
289 /* Copies to other non-conflicting allocnos. The copies can
290 represent move insn or potential move insn usually because of two
291 operand insn constraints. */
292 ira_copy_t allocno_copies;
293 /* It is a allocno (cap) representing given allocno on upper loop tree
294 level. */
295 ira_allocno_t cap;
296 /* It is a link to allocno (cap) on lower loop level represented by
297 given cap. Null if given allocno is not a cap. */
298 ira_allocno_t cap_member;
299 /* Coalesced allocnos form a cyclic list. One allocno given by
300 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
301 list is chained by NEXT_COALESCED_ALLOCNO. */
302 ira_allocno_t first_coalesced_allocno;
303 ira_allocno_t next_coalesced_allocno;
304 /* Pointer to structures describing at what program point the
305 allocno lives. We always maintain the list in such way that *the
306 ranges in the list are not intersected and ordered by decreasing
307 their program points*. */
308 allocno_live_range_t live_ranges;
309 /* Before building conflicts the two member values are
310 correspondingly minimal and maximal points of the accumulated
311 allocno live ranges. After building conflicts the values are
312 correspondingly minimal and maximal conflict ids of allocnos with
313 which given allocno can conflict. */
314 int min, max;
058e97ec
VM
315 /* Vector of accumulated conflicting allocnos with NULL end marker
316 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
317 Only allocnos with the same cover class are in the vector or in
318 the bit vector. */
319 void *conflict_allocno_array;
8f5929e1
JJ
320 /* The unique member value represents given allocno in conflict bit
321 vectors. */
322 int conflict_id;
058e97ec
VM
323 /* Allocated size of the previous array. */
324 unsigned int conflict_allocno_array_size;
058e97ec
VM
325 /* Initial and accumulated hard registers conflicting with this
326 allocno and as a consequences can not be assigned to the allocno.
327 All non-allocatable hard regs and hard regs of cover classes
328 different from given allocno one are included in the sets. */
329 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
8f5929e1
JJ
330 /* Number of accumulated conflicts in the vector of conflicting
331 allocnos. */
332 int conflict_allocnos_num;
058e97ec
VM
333 /* Accumulated frequency of calls which given allocno
334 intersects. */
335 int call_freq;
a812fb07 336 /* Accumulated number of the intersected calls. */
058e97ec 337 int calls_crossed_num;
058e97ec
VM
338 /* TRUE if the allocno assigned to memory was a destination of
339 removed move (see ira-emit.c) at loop exit because the value of
340 the corresponding pseudo-register is not changed inside the
341 loop. */
342 unsigned int mem_optimized_dest_p : 1;
343 /* TRUE if the corresponding pseudo-register has disjoint live
344 ranges and the other allocnos of the pseudo-register except this
345 one changed REG. */
346 unsigned int somewhere_renamed_p : 1;
347 /* TRUE if allocno with the same REGNO in a subregion has been
348 renamed, in other words, got a new pseudo-register. */
349 unsigned int child_renamed_p : 1;
350 /* During the reload, value TRUE means that we should not reassign a
351 hard register to the allocno got memory earlier. It is set up
352 when we removed memory-memory move insn before each iteration of
353 the reload. */
354 unsigned int dont_reassign_p : 1;
355#ifdef STACK_REGS
356 /* Set to TRUE if allocno can't be assigned to the stack hard
357 register correspondingly in this region and area including the
358 region and all its subregions recursively. */
359 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
360#endif
927425df
VM
361 /* TRUE value means that there is no sense to spill the allocno
362 during coloring because the spill will result in additional
363 reloads in reload pass. */
364 unsigned int bad_spill_p : 1;
058e97ec
VM
365 /* TRUE value means that the allocno was not removed yet from the
366 conflicting graph during colouring. */
367 unsigned int in_graph_p : 1;
368 /* TRUE if a hard register or memory has been assigned to the
369 allocno. */
370 unsigned int assigned_p : 1;
371 /* TRUE if it is put on the stack to make other allocnos
372 colorable. */
373 unsigned int may_be_spilled_p : 1;
374 /* TRUE if the allocno was removed from the splay tree used to
375 choose allocn for spilling (see ira-color.c::. */
376 unsigned int splay_removed_p : 1;
377 /* TRUE if conflicts for given allocno are represented by vector of
378 pointers to the conflicting allocnos. Otherwise, we use a bit
379 vector where a bit with given index represents allocno with the
380 same number. */
381 unsigned int conflict_vec_p : 1;
8f5929e1
JJ
382 /* Non NULL if we remove restoring value from given allocno to
383 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
384 allocno value is not changed inside the loop. */
385 ira_allocno_t mem_optimized_dest;
058e97ec
VM
386 /* Array of usage costs (accumulated and the one updated during
387 coloring) for each hard register of the allocno cover class. The
388 member value can be NULL if all costs are the same and equal to
389 COVER_CLASS_COST. For example, the costs of two different hard
390 registers can be different if one hard register is callee-saved
391 and another one is callee-used and the allocno lives through
392 calls. Another example can be case when for some insn the
393 corresponding pseudo-register value should be put in specific
394 register class (e.g. AREG for x86) which is a strict subset of
395 the allocno cover class (GENERAL_REGS for x86). We have updated
396 costs to reflect the situation when the usage cost of a hard
397 register is decreased because the allocno is connected to another
398 allocno by a copy and the another allocno has been assigned to
399 the hard register. */
400 int *hard_reg_costs, *updated_hard_reg_costs;
401 /* Array of decreasing costs (accumulated and the one updated during
402 coloring) for allocnos conflicting with given allocno for hard
403 regno of the allocno cover class. The member value can be NULL
404 if all costs are the same. These costs are used to reflect
405 preferences of other allocnos not assigned yet during assigning
406 to given allocno. */
407 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
5b0c0b2c
VM
408 /* Size (in hard registers) of the same cover class allocnos with
409 TRUE in_graph_p value and conflicting with given allocno during
410 each point of graph coloring. */
411 int left_conflicts_size;
058e97ec
VM
412 /* Number of hard registers of the allocno cover class really
413 available for the allocno allocation. */
414 int available_regs_num;
415 /* Allocnos in a bucket (used in coloring) chained by the following
416 two members. */
417 ira_allocno_t next_bucket_allocno;
418 ira_allocno_t prev_bucket_allocno;
419 /* Used for temporary purposes. */
420 int temp;
421};
422
423/* All members of the allocno structures should be accessed only
424 through the following macros. */
425#define ALLOCNO_NUM(A) ((A)->num)
426#define ALLOCNO_REGNO(A) ((A)->regno)
427#define ALLOCNO_REG(A) ((A)->reg)
428#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
429#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
430#define ALLOCNO_CAP(A) ((A)->cap)
431#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
432#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
433#define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
434 ((A)->conflict_allocno_array_size)
435#define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
436 ((A)->conflict_allocnos_num)
437#define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
438#define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
439#define ALLOCNO_NREFS(A) ((A)->nrefs)
440#define ALLOCNO_FREQ(A) ((A)->freq)
441#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
442#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
443#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
444#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
445#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
446#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
447#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
448#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
449#ifdef STACK_REGS
450#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
451#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
452#endif
927425df 453#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec
VM
454#define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
455#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
456#define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
457#define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
458#define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
459#define ALLOCNO_MODE(A) ((A)->mode)
460#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
461#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
462#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
463#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
464 ((A)->conflict_hard_reg_costs)
465#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
466 ((A)->updated_conflict_hard_reg_costs)
5b0c0b2c 467#define ALLOCNO_LEFT_CONFLICTS_SIZE(A) ((A)->left_conflicts_size)
058e97ec
VM
468#define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
469#define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
cb1ca6ac 470#define ALLOCNO_UPDATED_COVER_CLASS_COST(A) ((A)->updated_cover_class_cost)
058e97ec
VM
471#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
472#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
473#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
474#define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
475#define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
476#define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
b15a7ae6 477#define ALLOCNO_TEMP(A) ((A)->temp)
058e97ec
VM
478#define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
479#define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
480#define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
481#define ALLOCNO_MIN(A) ((A)->min)
482#define ALLOCNO_MAX(A) ((A)->max)
483#define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
484
b8698a0f 485/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
486 allocno member `next_regno_allocno'). */
487extern ira_allocno_t *ira_regno_allocno_map;
488
489/* Array of references to all allocnos. The order number of the
490 allocno corresponds to the index in the array. Removed allocnos
491 have NULL element value. */
492extern ira_allocno_t *ira_allocnos;
493
494/* Sizes of the previous array. */
495extern int ira_allocnos_num;
496
497/* Map conflict id -> allocno with given conflict id (see comments for
498 allocno member `conflict_id'). */
499extern ira_allocno_t *ira_conflict_id_allocno_map;
500
501/* The following structure represents a copy of two allocnos. The
502 copies represent move insns or potential move insns usually because
503 of two operand insn constraints. To remove register shuffle, we
504 also create copies between allocno which is output of an insn and
505 allocno becoming dead in the insn. */
506struct ira_allocno_copy
507{
508 /* The unique order number of the copy node starting with 0. */
509 int num;
510 /* Allocnos connected by the copy. The first allocno should have
511 smaller order number than the second one. */
512 ira_allocno_t first, second;
513 /* Execution frequency of the copy. */
514 int freq;
548a6322 515 bool constraint_p;
058e97ec
VM
516 /* It is a move insn which is an origin of the copy. The member
517 value for the copy representing two operand insn constraints or
518 for the copy created to remove register shuffle is NULL. In last
519 case the copy frequency is smaller than the corresponding insn
520 execution frequency. */
521 rtx insn;
522 /* All copies with the same allocno as FIRST are linked by the two
523 following members. */
524 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
525 /* All copies with the same allocno as SECOND are linked by the two
526 following members. */
527 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
528 /* Region from which given copy is originated. */
529 ira_loop_tree_node_t loop_tree_node;
530};
531
532/* Array of references to all copies. The order number of the copy
533 corresponds to the index in the array. Removed copies have NULL
534 element value. */
535extern ira_copy_t *ira_copies;
536
537/* Size of the previous array. */
538extern int ira_copies_num;
539
540/* The following structure describes a stack slot used for spilled
541 pseudo-registers. */
542struct ira_spilled_reg_stack_slot
543{
544 /* pseudo-registers assigned to the stack slot. */
7a8cba34 545 bitmap_head spilled_regs;
058e97ec
VM
546 /* RTL representation of the stack slot. */
547 rtx mem;
548 /* Size of the stack slot. */
549 unsigned int width;
550};
551
552/* The number of elements in the following array. */
553extern int ira_spilled_reg_stack_slots_num;
554
555/* The following array contains info about spilled pseudo-registers
556 stack slots used in current function so far. */
557extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
558
559/* Correspondingly overall cost of the allocation, cost of the
560 allocnos assigned to hard-registers, cost of the allocnos assigned
561 to memory, cost of loads, stores and register move insns generated
562 for pseudo-register live range splitting (see ira-emit.c). */
563extern int ira_overall_cost;
564extern int ira_reg_cost, ira_mem_cost;
565extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
566extern int ira_move_loops_num, ira_additional_jumps_num;
567
ce18efcb 568/* Maximal value of element of array ira_reg_class_nregs. */
058e97ec
VM
569extern int ira_max_nregs;
570
571/* The number of bits in each element of array used to implement a bit
572 vector of allocnos and what type that element has. We use the
573 largest integer format on the host machine. */
574#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
575#define IRA_INT_TYPE HOST_WIDE_INT
576
577/* Set, clear or test bit number I in R, a bit vector of elements with
578 minimal index and maximal index equal correspondingly to MIN and
579 MAX. */
580#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
581
582#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
583 (({ int _min = (MIN), _max = (MAX), _i = (I); \
584 if (_i < _min || _i > _max) \
585 { \
586 fprintf (stderr, \
587 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
588 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
589 gcc_unreachable (); \
590 } \
591 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
592 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 593
058e97ec
VM
594
595#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
596 (({ int _min = (MIN), _max = (MAX), _i = (I); \
597 if (_i < _min || _i > _max) \
598 { \
599 fprintf (stderr, \
600 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
601 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
602 gcc_unreachable (); \
603 } \
604 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
605 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
606
607#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
608 (({ int _min = (MIN), _max = (MAX), _i = (I); \
609 if (_i < _min || _i > _max) \
610 { \
611 fprintf (stderr, \
612 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
613 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
614 gcc_unreachable (); \
615 } \
616 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
617 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
618
619#else
620
621#define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
622 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
623 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
624
625#define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
626 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
627 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
628
629#define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
630 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
631 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
632
633#endif
634
635/* The iterator for allocno set implemented ed as allocno bit
636 vector. */
637typedef struct {
638
639 /* Array containing the allocno bit vector. */
640 IRA_INT_TYPE *vec;
641
642 /* The number of the current element in the vector. */
643 unsigned int word_num;
644
645 /* The number of bits in the bit vector. */
646 unsigned int nel;
647
648 /* The current bit index of the bit vector. */
649 unsigned int bit_num;
650
651 /* Index corresponding to the 1st bit of the bit vector. */
652 int start_val;
653
654 /* The word of the bit vector currently visited. */
655 unsigned IRA_INT_TYPE word;
656} ira_allocno_set_iterator;
657
658/* Initialize the iterator I for allocnos bit vector VEC containing
659 minimal and maximal values MIN and MAX. */
660static inline void
661ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
662 IRA_INT_TYPE *vec, int min, int max)
663{
664 i->vec = vec;
665 i->word_num = 0;
666 i->nel = max < min ? 0 : max - min + 1;
667 i->start_val = min;
668 i->bit_num = 0;
669 i->word = i->nel == 0 ? 0 : vec[0];
670}
671
672/* Return TRUE if we have more allocnos to visit, in which case *N is
673 set to the allocno number to be visited. Otherwise, return
674 FALSE. */
675static inline bool
676ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
677{
678 /* Skip words that are zeros. */
679 for (; i->word == 0; i->word = i->vec[i->word_num])
680 {
681 i->word_num++;
682 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 683
058e97ec
VM
684 /* If we have reached the end, break. */
685 if (i->bit_num >= i->nel)
686 return false;
687 }
b8698a0f 688
058e97ec
VM
689 /* Skip bits that are zero. */
690 for (; (i->word & 1) == 0; i->word >>= 1)
691 i->bit_num++;
b8698a0f 692
058e97ec 693 *n = (int) i->bit_num + i->start_val;
b8698a0f 694
058e97ec
VM
695 return true;
696}
697
698/* Advance to the next allocno in the set. */
699static inline void
700ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
701{
702 i->word >>= 1;
703 i->bit_num++;
704}
705
706/* Loop over all elements of allocno set given by bit vector VEC and
707 their minimal and maximal values MIN and MAX. In each iteration, N
708 is set to the number of next allocno. ITER is an instance of
709 ira_allocno_set_iterator used to iterate the allocnos in the set. */
710#define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
711 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
712 ira_allocno_set_iter_cond (&(ITER), &(N)); \
713 ira_allocno_set_iter_next (&(ITER)))
714
715/* ira.c: */
716
058e97ec
VM
717/* Map: hard regs X modes -> set of hard registers for storing value
718 of given mode starting with given hard register. */
719extern HARD_REG_SET ira_reg_mode_hard_regset
720 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
721
ce18efcb
VM
722/* Array analogous to macro REGISTER_MOVE_COST. Don't use
723 ira_register_move_cost directly. Use function of
6080348f 724 ira_get_may_move_cost instead. */
058e97ec
VM
725extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
726
727/* Similar to may_move_in_cost but it is calculated in IRA instead of
728 regclass. Another difference we take only available hard registers
729 into account to figure out that one register class is a subset of
6080348f
VM
730 the another one. Don't use it directly. Use function of
731 ira_get_may_move_cost instead. */
058e97ec
VM
732extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
733
734/* Similar to may_move_out_cost but it is calculated in IRA instead of
735 regclass. Another difference we take only available hard registers
736 into account to figure out that one register class is a subset of
6080348f
VM
737 the another one. Don't use it directly. Use function of
738 ira_get_may_move_cost instead. */
058e97ec
VM
739extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
740
741/* Register class subset relation: TRUE if the first class is a subset
742 of the second one considering only hard registers available for the
743 allocation. */
744extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
745
0583835c
VM
746/* Array of the number of hard registers of given class which are
747 available for allocation. The order is defined by the the hard
748 register numbers. */
749extern short ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
750
058e97ec
VM
751/* Index (in ira_class_hard_regs) for given register class and hard
752 register (in general case a hard register can belong to several
753 register classes). The index is negative for hard registers
754 unavailable for the allocation. */
755extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
756
058e97ec
VM
757/* Array whose values are hard regset of hard registers available for
758 the allocation of given register class whose HARD_REGNO_MODE_OK
759 values for given mode are zero. */
760extern HARD_REG_SET prohibited_class_mode_regs
761 [N_REG_CLASSES][NUM_MACHINE_MODES];
762
763/* Array whose values are hard regset of hard registers for which
764 move of the hard register in given mode into itself is
765 prohibited. */
766extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
767
058e97ec
VM
768/* The value is number of elements in the subsequent array. */
769extern int ira_important_classes_num;
770
771/* The array containing non-empty classes (including non-empty cover
772 classes) which are subclasses of cover classes. Such classes is
773 important for calculation of the hard register usage costs. */
774extern enum reg_class ira_important_classes[N_REG_CLASSES];
775
776/* The array containing indexes of important classes in the previous
777 array. The array elements are defined only for important
778 classes. */
779extern int ira_important_class_nums[N_REG_CLASSES];
780
058e97ec
VM
781/* The biggest important class inside of intersection of the two
782 classes (that is calculated taking only hard registers available
783 for allocation into account). If the both classes contain no hard
784 registers available for allocation, the value is calculated with
785 taking all hard-registers including fixed ones into account. */
786extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
787
7db7ed3c
VM
788/* True if the two classes (that is calculated taking only hard
789 registers available for allocation into account) are
790 intersected. */
791extern bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
792
793/* Classes with end marker LIM_REG_CLASSES which are intersected with
794 given class (the first index). That includes given class itself.
795 This is calculated taking only hard registers available for
796 allocation into account. */
797extern enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
058e97ec
VM
798/* The biggest important class inside of union of the two classes
799 (that is calculated taking only hard registers available for
800 allocation into account). If the both classes contain no hard
801 registers available for allocation, the value is calculated with
802 taking all hard-registers including fixed ones into account. In
803 other words, the value is the corresponding reg_class_subunion
804 value. */
805extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
806
807extern void *ira_allocate (size_t);
808extern void *ira_reallocate (void *, size_t);
809extern void ira_free (void *addr);
810extern bitmap ira_allocate_bitmap (void);
811extern void ira_free_bitmap (bitmap);
812extern void ira_print_disposition (FILE *);
813extern void ira_debug_disposition (void);
814extern void ira_debug_class_cover (void);
815extern void ira_init_register_move_cost (enum machine_mode);
816
817/* The length of the two following arrays. */
818extern int ira_reg_equiv_len;
819
820/* The element value is TRUE if the corresponding regno value is
821 invariant. */
822extern bool *ira_reg_equiv_invariant_p;
823
824/* The element value is equiv constant of given pseudo-register or
825 NULL_RTX. */
826extern rtx *ira_reg_equiv_const;
827
828/* ira-build.c */
829
830/* The current loop tree node and its regno allocno map. */
831extern ira_loop_tree_node_t ira_curr_loop_tree_node;
832extern ira_allocno_t *ira_curr_regno_allocno_map;
833
4cda38d5
VM
834extern void ira_debug_copy (ira_copy_t);
835extern void ira_debug_copies (void);
058e97ec
VM
836extern void ira_debug_allocno_copies (ira_allocno_t);
837
838extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
839 void (*) (ira_loop_tree_node_t),
840 void (*) (ira_loop_tree_node_t));
029da7d4
BS
841extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
842extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec
VM
843extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
844extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
845extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
846extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
847extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
848extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
849extern void ira_print_expanded_allocno (ira_allocno_t);
850extern allocno_live_range_t ira_create_allocno_live_range
851 (ira_allocno_t, int, int, allocno_live_range_t);
3553f0bb
VM
852extern allocno_live_range_t ira_copy_allocno_live_range_list
853 (allocno_live_range_t);
854extern allocno_live_range_t ira_merge_allocno_live_ranges
855 (allocno_live_range_t, allocno_live_range_t);
856extern bool ira_allocno_live_ranges_intersect_p (allocno_live_range_t,
857 allocno_live_range_t);
058e97ec 858extern void ira_finish_allocno_live_range (allocno_live_range_t);
3553f0bb 859extern void ira_finish_allocno_live_range_list (allocno_live_range_t);
058e97ec
VM
860extern void ira_free_allocno_updated_costs (ira_allocno_t);
861extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
548a6322 862 int, bool, rtx, ira_loop_tree_node_t);
058e97ec
VM
863extern void ira_add_allocno_copy_to_list (ira_copy_t);
864extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
865extern void ira_remove_allocno_copy_from_list (ira_copy_t);
548a6322
VM
866extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
867 bool, rtx, ira_loop_tree_node_t);
058e97ec
VM
868
869extern int *ira_allocate_cost_vector (enum reg_class);
870extern void ira_free_cost_vector (int *, enum reg_class);
871
872extern void ira_flattening (int, int);
873extern bool ira_build (bool);
874extern void ira_destroy (void);
875
876/* ira-costs.c */
877extern void ira_init_costs_once (void);
878extern void ira_init_costs (void);
879extern void ira_finish_costs_once (void);
880extern void ira_costs (void);
881extern void ira_tune_allocno_costs_and_cover_classes (void);
882
883/* ira-lives.c */
884
885extern void ira_rebuild_start_finish_chains (void);
886extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
887extern void ira_debug_live_range_list (allocno_live_range_t);
888extern void ira_debug_allocno_live_ranges (ira_allocno_t);
889extern void ira_debug_live_ranges (void);
890extern void ira_create_allocno_live_ranges (void);
b15a7ae6 891extern void ira_compress_allocno_live_ranges (void);
058e97ec
VM
892extern void ira_finish_allocno_live_ranges (void);
893
894/* ira-conflicts.c */
058e97ec
VM
895extern void ira_debug_conflicts (bool);
896extern void ira_build_conflicts (void);
897
898/* ira-color.c */
899extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
900extern void ira_reassign_conflict_allocnos (int);
901extern void ira_initiate_assign (void);
902extern void ira_finish_assign (void);
903extern void ira_color (void);
058e97ec
VM
904
905/* ira-emit.c */
906extern void ira_emit (bool);
907
908\f
909
6080348f
VM
910/* Return cost of moving value of MODE from register of class FROM to
911 register of class TO. */
912static inline int
913ira_get_register_move_cost (enum machine_mode mode,
914 enum reg_class from, enum reg_class to)
915{
916 if (ira_register_move_cost[mode] == NULL)
917 ira_init_register_move_cost (mode);
918 return ira_register_move_cost[mode][from][to];
919}
920
921/* Return cost of moving value of MODE from register of class FROM to
922 register of class TO. Return zero if IN_P is true and FROM is
923 subset of TO or if IN_P is false and FROM is superset of TO. */
924static inline int
925ira_get_may_move_cost (enum machine_mode mode,
926 enum reg_class from, enum reg_class to,
927 bool in_p)
928{
929 if (ira_register_move_cost[mode] == NULL)
930 ira_init_register_move_cost (mode);
931 return (in_p
932 ? ira_may_move_in_cost[mode][from][to]
933 : ira_may_move_out_cost[mode][from][to]);
934}
935
936\f
937
058e97ec
VM
938/* The iterator for all allocnos. */
939typedef struct {
940 /* The number of the current element in IRA_ALLOCNOS. */
941 int n;
942} ira_allocno_iterator;
943
944/* Initialize the iterator I. */
945static inline void
946ira_allocno_iter_init (ira_allocno_iterator *i)
947{
948 i->n = 0;
949}
950
951/* Return TRUE if we have more allocnos to visit, in which case *A is
952 set to the allocno to be visited. Otherwise, return FALSE. */
953static inline bool
954ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
955{
956 int n;
957
958 for (n = i->n; n < ira_allocnos_num; n++)
959 if (ira_allocnos[n] != NULL)
960 {
961 *a = ira_allocnos[n];
962 i->n = n + 1;
963 return true;
964 }
965 return false;
966}
967
968/* Loop over all allocnos. In each iteration, A is set to the next
969 allocno. ITER is an instance of ira_allocno_iterator used to iterate
970 the allocnos. */
971#define FOR_EACH_ALLOCNO(A, ITER) \
972 for (ira_allocno_iter_init (&(ITER)); \
973 ira_allocno_iter_cond (&(ITER), &(A));)
974
975
976\f
977
978/* The iterator for copies. */
979typedef struct {
980 /* The number of the current element in IRA_COPIES. */
981 int n;
982} ira_copy_iterator;
983
984/* Initialize the iterator I. */
985static inline void
986ira_copy_iter_init (ira_copy_iterator *i)
987{
988 i->n = 0;
989}
990
991/* Return TRUE if we have more copies to visit, in which case *CP is
992 set to the copy to be visited. Otherwise, return FALSE. */
993static inline bool
994ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
995{
996 int n;
997
998 for (n = i->n; n < ira_copies_num; n++)
999 if (ira_copies[n] != NULL)
1000 {
1001 *cp = ira_copies[n];
1002 i->n = n + 1;
1003 return true;
1004 }
1005 return false;
1006}
1007
1008/* Loop over all copies. In each iteration, C is set to the next
1009 copy. ITER is an instance of ira_copy_iterator used to iterate
1010 the copies. */
1011#define FOR_EACH_COPY(C, ITER) \
1012 for (ira_copy_iter_init (&(ITER)); \
1013 ira_copy_iter_cond (&(ITER), &(C));)
1014
1015
1016\f
1017
1018/* The iterator for allocno conflicts. */
1019typedef struct {
1020
1021 /* TRUE if the conflicts are represented by vector of allocnos. */
1022 bool allocno_conflict_vec_p;
1023
1024 /* The conflict vector or conflict bit vector. */
1025 void *vec;
1026
1027 /* The number of the current element in the vector (of type
1028 ira_allocno_t or IRA_INT_TYPE). */
1029 unsigned int word_num;
1030
1031 /* The bit vector size. It is defined only if
1032 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1033 unsigned int size;
1034
1035 /* The current bit index of bit vector. It is defined only if
1036 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1037 unsigned int bit_num;
1038
1039 /* Allocno conflict id corresponding to the 1st bit of the bit
1040 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1041 FALSE. */
1042 int base_conflict_id;
1043
1044 /* The word of bit vector currently visited. It is defined only if
1045 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1046 unsigned IRA_INT_TYPE word;
1047} ira_allocno_conflict_iterator;
1048
1049/* Initialize the iterator I with ALLOCNO conflicts. */
1050static inline void
1051ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1052 ira_allocno_t allocno)
1053{
1054 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1055 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1056 i->word_num = 0;
1057 if (i->allocno_conflict_vec_p)
1058 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1059 else
1060 {
1061 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1062 i->size = 0;
1063 else
1064 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1065 + IRA_INT_BITS)
1066 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1067 i->bit_num = 0;
1068 i->base_conflict_id = ALLOCNO_MIN (allocno);
1069 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1070 }
1071}
1072
1073/* Return TRUE if we have more conflicting allocnos to visit, in which
1074 case *A is set to the allocno to be visited. Otherwise, return
1075 FALSE. */
1076static inline bool
1077ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1078 ira_allocno_t *a)
1079{
1080 ira_allocno_t conflict_allocno;
1081
1082 if (i->allocno_conflict_vec_p)
1083 {
1084 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1085 if (conflict_allocno == NULL)
1086 return false;
1087 *a = conflict_allocno;
1088 return true;
1089 }
1090 else
1091 {
1092 /* Skip words that are zeros. */
1093 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1094 {
1095 i->word_num++;
b8698a0f 1096
058e97ec
VM
1097 /* If we have reached the end, break. */
1098 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1099 return false;
b8698a0f 1100
058e97ec
VM
1101 i->bit_num = i->word_num * IRA_INT_BITS;
1102 }
b8698a0f 1103
058e97ec
VM
1104 /* Skip bits that are zero. */
1105 for (; (i->word & 1) == 0; i->word >>= 1)
1106 i->bit_num++;
b8698a0f 1107
058e97ec 1108 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
b8698a0f 1109
058e97ec
VM
1110 return true;
1111 }
1112}
1113
1114/* Advance to the next conflicting allocno. */
1115static inline void
1116ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1117{
1118 if (i->allocno_conflict_vec_p)
1119 i->word_num++;
1120 else
1121 {
1122 i->word >>= 1;
1123 i->bit_num++;
1124 }
1125}
1126
1127/* Loop over all allocnos conflicting with ALLOCNO. In each
1128 iteration, A is set to the next conflicting allocno. ITER is an
1129 instance of ira_allocno_conflict_iterator used to iterate the
1130 conflicts. */
1131#define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1132 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1133 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1134 ira_allocno_conflict_iter_next (&(ITER)))
1135
1136\f
1137
1138/* The function returns TRUE if hard registers starting with
1139 HARD_REGNO and containing value of MODE are not in set
1140 HARD_REGSET. */
1141static inline bool
1142ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1143 HARD_REG_SET hard_regset)
1144{
1145 int i;
1146
1147 ira_assert (hard_regno >= 0);
1148 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1149 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1150 return false;
1151 return true;
1152}
1153
1154\f
1155
1156/* To save memory we use a lazy approach for allocation and
1157 initialization of the cost vectors. We do this only when it is
1158 really necessary. */
1159
1160/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1161 initialize the elements by VAL if it is necessary */
1162static inline void
1163ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1164{
1165 int i, *reg_costs;
1166 int len;
1167
1168 if (*vec != NULL)
1169 return;
1170 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1171 len = ira_class_hard_regs_num[cover_class];
1172 for (i = 0; i < len; i++)
1173 reg_costs[i] = val;
1174}
1175
1176/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1177 copy values of vector SRC into the vector if it is necessary */
1178static inline void
1179ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1180{
1181 int len;
1182
1183 if (*vec != NULL || src == NULL)
1184 return;
1185 *vec = ira_allocate_cost_vector (cover_class);
1186 len = ira_class_hard_regs_num[cover_class];
1187 memcpy (*vec, src, sizeof (int) * len);
1188}
1189
1190/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1191 add values of vector SRC into the vector if it is necessary */
1192static inline void
1193ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1194 int *src)
1195{
1196 int i, len;
1197
1198 if (src == NULL)
1199 return;
1200 len = ira_class_hard_regs_num[cover_class];
1201 if (*vec == NULL)
1202 {
1203 *vec = ira_allocate_cost_vector (cover_class);
1204 memset (*vec, 0, sizeof (int) * len);
1205 }
1206 for (i = 0; i < len; i++)
1207 (*vec)[i] += src[i];
1208}
1209
1210/* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1211 copy values of vector SRC into the vector or initialize it by VAL
1212 (if SRC is null). */
1213static inline void
1214ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1215 int val, int *src)
1216{
1217 int i, *reg_costs;
1218 int len;
1219
1220 if (*vec != NULL)
1221 return;
1222 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1223 len = ira_class_hard_regs_num[cover_class];
1224 if (src != NULL)
1225 memcpy (reg_costs, src, sizeof (int) * len);
1226 else
1227 {
1228 for (i = 0; i < len; i++)
1229 reg_costs[i] = val;
1230 }
1231}