]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
c-pretty-print.h (pp_c_flag_gnu_v3): New enumerator.
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
d652f226 2 Copyright (C) 2006, 2007, 2008, 2009, 2010
058e97ec
VM
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "cfgloop.h"
23#include "ira.h"
24#include "alloc-pool.h"
25
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
29#ifdef ENABLE_CHECKING
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
f7556aae
L
36/* Always define and include C, so that warnings for empty body in an
37 ‘if’ statement and unused variable do not occur. */
38#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
39#endif
40
41/* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
1756cb66
VM
46#define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
058e97ec
VM
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
51/* All natural loops. */
52extern struct loops ira_loops;
53
54/* A modified value of flag `-fira-verbose' used internally. */
55extern int internal_flag_ira_verbose;
56
57/* Dump file of the allocator if it is not NULL. */
58extern FILE *ira_dump_file;
59
60/* Typedefs for pointers to allocno live range, allocno, and copy of
61 allocnos. */
b14151b5 62typedef struct live_range *live_range_t;
058e97ec
VM
63typedef struct ira_allocno *ira_allocno_t;
64typedef struct ira_allocno_copy *ira_copy_t;
a49ae217 65typedef struct ira_object *ira_object_t;
058e97ec
VM
66
67/* Definition of vector of allocnos and copies. */
68DEF_VEC_P(ira_allocno_t);
69DEF_VEC_ALLOC_P(ira_allocno_t, heap);
a49ae217
BS
70DEF_VEC_P(ira_object_t);
71DEF_VEC_ALLOC_P(ira_object_t, heap);
058e97ec
VM
72DEF_VEC_P(ira_copy_t);
73DEF_VEC_ALLOC_P(ira_copy_t, heap);
74
75/* Typedef for pointer to the subsequent structure. */
76typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
77
e80ccebc
RS
78typedef unsigned short move_table[N_REG_CLASSES];
79
058e97ec
VM
80/* In general case, IRA is a regional allocator. The regions are
81 nested and form a tree. Currently regions are natural loops. The
82 following structure describes loop tree node (representing basic
83 block or loop). We need such tree because the loop tree from
84 cfgloop.h is not convenient for the optimization: basic blocks are
85 not a part of the tree from cfgloop.h. We also use the nodes for
86 storing additional information about basic blocks/loops for the
87 register allocation purposes. */
88struct ira_loop_tree_node
89{
90 /* The node represents basic block if children == NULL. */
91 basic_block bb; /* NULL for loop. */
2608d841
VM
92 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
93 struct loop *loop;
af51c885
AN
94 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
95 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 96 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
97 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
98 the node. They are NULL for BBs. */
058e97ec
VM
99 ira_loop_tree_node_t subloops, children;
100 /* The node immediately containing given node. */
101 ira_loop_tree_node_t parent;
102
103 /* Loop level in range [0, ira_loop_tree_height). */
104 int level;
105
106 /* All the following members are defined only for nodes representing
107 loops. */
108
2608d841
VM
109 /* The loop number from CFG loop tree. The root number is 0. */
110 int loop_num;
111
30ea859e
VM
112 /* True if the loop was marked for removal from the register
113 allocation. */
114 bool to_remove_p;
115
058e97ec
VM
116 /* Allocnos in the loop corresponding to their regnos. If it is
117 NULL the loop does not form a separate register allocation region
118 (e.g. because it has abnormal enter/exit edges and we can not put
119 code for register shuffling on the edges if a different
120 allocation is used for a pseudo-register on different sides of
121 the edges). Caps are not in the map (remember we can have more
122 one cap with the same regno in a region). */
123 ira_allocno_t *regno_allocno_map;
124
ea1c67e6
VM
125 /* True if there is an entry to given loop not from its parent (or
126 grandparent) basic block. For example, it is possible for two
127 adjacent loops inside another loop. */
128 bool entered_from_non_parent_p;
129
058e97ec 130 /* Maximal register pressure inside loop for given register class
1756cb66 131 (defined only for the pressure classes). */
058e97ec
VM
132 int reg_pressure[N_REG_CLASSES];
133
49d988e7
VM
134 /* Numbers of allocnos referred or living in the loop node (except
135 for its subloops). */
136 bitmap all_allocnos;
137
138 /* Numbers of allocnos living at the loop borders. */
139 bitmap border_allocnos;
058e97ec
VM
140
141 /* Regnos of pseudos modified in the loop node (including its
142 subloops). */
143 bitmap modified_regnos;
144
058e97ec
VM
145 /* Numbers of copies referred in the corresponding loop. */
146 bitmap local_copies;
147};
148
149/* The root of the loop tree corresponding to the all function. */
150extern ira_loop_tree_node_t ira_loop_tree_root;
151
152/* Height of the loop tree. */
153extern int ira_loop_tree_height;
154
155/* All nodes representing basic blocks are referred through the
156 following array. We can not use basic block member `aux' for this
157 because it is used for insertion of insns on edges. */
158extern ira_loop_tree_node_t ira_bb_nodes;
159
160/* Two access macros to the nodes representing basic blocks. */
161#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
162#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
2608d841 163(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
058e97ec
VM
164 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
165 { \
166 fprintf (stderr, \
167 "\n%s: %d: error in %s: it is not a block node\n", \
168 __FILE__, __LINE__, __FUNCTION__); \
169 gcc_unreachable (); \
170 } \
171 _node; }))
172#else
173#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
174#endif
175
176#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
177
178/* All nodes representing loops are referred through the following
179 array. */
180extern ira_loop_tree_node_t ira_loop_nodes;
181
182/* Two access macros to the nodes representing loops. */
183#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
184#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
2608d841
VM
185(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
186 if (_node->children == NULL || _node->bb != NULL \
187 || (_node->loop == NULL && current_loops != NULL)) \
058e97ec
VM
188 { \
189 fprintf (stderr, \
190 "\n%s: %d: error in %s: it is not a loop node\n", \
191 __FILE__, __LINE__, __FUNCTION__); \
192 gcc_unreachable (); \
193 } \
194 _node; }))
195#else
196#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
197#endif
198
199#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
200
201\f
058e97ec 202/* The structure describes program points where a given allocno lives.
1756cb66
VM
203 If the live ranges of two allocnos are intersected, the allocnos
204 are in conflict. */
b14151b5 205struct live_range
058e97ec 206{
ac0ab4f7 207 /* Object whose live range is described by given structure. */
9140d27b 208 ira_object_t object;
058e97ec
VM
209 /* Program point range. */
210 int start, finish;
211 /* Next structure describing program points where the allocno
212 lives. */
b14151b5 213 live_range_t next;
058e97ec 214 /* Pointer to structures with the same start/finish. */
b14151b5 215 live_range_t start_next, finish_next;
058e97ec
VM
216};
217
218/* Program points are enumerated by numbers from range
219 0..IRA_MAX_POINT-1. There are approximately two times more program
220 points than insns. Program points are places in the program where
221 liveness info can be changed. In most general case (there are more
222 complicated cases too) some program points correspond to places
223 where input operand dies and other ones correspond to places where
224 output operands are born. */
225extern int ira_max_point;
226
227/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
228 live ranges with given start/finish point. */
b14151b5 229extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
058e97ec 230
a49ae217
BS
231/* A structure representing conflict information for an allocno
232 (or one of its subwords). */
233struct ira_object
234{
235 /* The allocno associated with this record. */
236 ira_allocno_t allocno;
237 /* Vector of accumulated conflicting conflict_redords with NULL end
238 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
1756cb66 239 otherwise. */
a49ae217 240 void *conflicts_array;
9140d27b
BS
241 /* Pointer to structures describing at what program point the
242 object lives. We always maintain the list in such way that *the
243 ranges in the list are not intersected and ordered by decreasing
244 their program points*. */
245 live_range_t live_ranges;
ac0ab4f7
BS
246 /* The subword within ALLOCNO which is represented by this object.
247 Zero means the lowest-order subword (or the entire allocno in case
248 it is not being tracked in subwords). */
249 int subword;
9140d27b 250 /* Allocated size of the conflicts array. */
a49ae217 251 unsigned int conflicts_array_size;
ac0ab4f7 252 /* A unique number for every instance of this structure, which is used
a49ae217
BS
253 to represent it in conflict bit vectors. */
254 int id;
255 /* Before building conflicts, MIN and MAX are initialized to
256 correspondingly minimal and maximal points of the accumulated
ac0ab4f7
BS
257 live ranges. Afterwards, they hold the minimal and maximal ids
258 of other ira_objects that this one can conflict with. */
a49ae217
BS
259 int min, max;
260 /* Initial and accumulated hard registers conflicting with this
ac0ab4f7 261 object and as a consequences can not be assigned to the allocno.
1756cb66 262 All non-allocatable hard regs and hard regs of register classes
ac0ab4f7 263 different from given allocno one are included in the sets. */
a49ae217
BS
264 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
265 /* Number of accumulated conflicts in the vector of conflicting
ac0ab4f7 266 objects. */
a49ae217
BS
267 int num_accumulated_conflicts;
268 /* TRUE if conflicts are represented by a vector of pointers to
269 ira_object structures. Otherwise, we use a bit vector indexed
270 by conflict ID numbers. */
271 unsigned int conflict_vec_p : 1;
272};
273
058e97ec
VM
274/* A structure representing an allocno (allocation entity). Allocno
275 represents a pseudo-register in an allocation region. If
276 pseudo-register does not live in a region but it lives in the
277 nested regions, it is represented in the region by special allocno
278 called *cap*. There may be more one cap representing the same
279 pseudo-register in region. It means that the corresponding
280 pseudo-register lives in more one non-intersected subregion. */
281struct ira_allocno
282{
283 /* The allocno order number starting with 0. Each allocno has an
284 unique number and the number is never changed for the
285 allocno. */
286 int num;
287 /* Regno for allocno or cap. */
288 int regno;
289 /* Mode of the allocno which is the mode of the corresponding
290 pseudo-register. */
1756cb66
VM
291 ENUM_BITFIELD (machine_mode) mode : 8;
292 /* Register class which should be used for allocation for given
293 allocno. NO_REGS means that we should use memory. */
294 ENUM_BITFIELD (reg_class) aclass : 16;
295 /* During the reload, value TRUE means that we should not reassign a
296 hard register to the allocno got memory earlier. It is set up
297 when we removed memory-memory move insn before each iteration of
298 the reload. */
299 unsigned int dont_reassign_p : 1;
300#ifdef STACK_REGS
301 /* Set to TRUE if allocno can't be assigned to the stack hard
302 register correspondingly in this region and area including the
303 region and all its subregions recursively. */
304 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
305#endif
306 /* TRUE value means that there is no sense to spill the allocno
307 during coloring because the spill will result in additional
308 reloads in reload pass. */
309 unsigned int bad_spill_p : 1;
310 /* TRUE if a hard register or memory has been assigned to the
311 allocno. */
312 unsigned int assigned_p : 1;
313 /* TRUE if conflicts for given allocno are represented by vector of
314 pointers to the conflicting allocnos. Otherwise, we use a bit
315 vector where a bit with given index represents allocno with the
316 same number. */
317 unsigned int conflict_vec_p : 1;
058e97ec
VM
318 /* Hard register assigned to given allocno. Negative value means
319 that memory was allocated to the allocno. During the reload,
320 spilled allocno has value equal to the corresponding stack slot
321 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
322 reload (at this point pseudo-register has only one allocno) which
323 did not get stack slot yet. */
1756cb66 324 short int hard_regno;
058e97ec
VM
325 /* Allocnos with the same regno are linked by the following member.
326 Allocnos corresponding to inner loops are first in the list (it
327 corresponds to depth-first traverse of the loops). */
328 ira_allocno_t next_regno_allocno;
329 /* There may be different allocnos with the same regno in different
330 regions. Allocnos are bound to the corresponding loop tree node.
331 Pseudo-register may have only one regular allocno with given loop
332 tree node but more than one cap (see comments above). */
333 ira_loop_tree_node_t loop_tree_node;
334 /* Accumulated usage references of the allocno. Here and below,
335 word 'accumulated' means info for given region and all nested
336 subregions. In this case, 'accumulated' means sum of references
337 of the corresponding pseudo-register in this region and in all
338 nested subregions recursively. */
339 int nrefs;
340 /* Accumulated frequency of usage of the allocno. */
341 int freq;
cb1ca6ac 342 /* Minimal accumulated and updated costs of usage register of the
1756cb66
VM
343 allocno class. */
344 int class_cost, updated_class_cost;
058e97ec
VM
345 /* Minimal accumulated, and updated costs of memory for the allocno.
346 At the allocation start, the original and updated costs are
347 equal. The updated cost may be changed after finishing
348 allocation in a region and starting allocation in a subregion.
349 The change reflects the cost of spill/restore code on the
350 subregion border if we assign memory to the pseudo in the
351 subregion. */
352 int memory_cost, updated_memory_cost;
353 /* Accumulated number of points where the allocno lives and there is
354 excess pressure for its class. Excess pressure for a register
355 class at some point means that there are more allocnos of given
356 register class living at the point than number of hard-registers
357 of the class available for the allocation. */
358 int excess_pressure_points_num;
359 /* Copies to other non-conflicting allocnos. The copies can
360 represent move insn or potential move insn usually because of two
361 operand insn constraints. */
362 ira_copy_t allocno_copies;
363 /* It is a allocno (cap) representing given allocno on upper loop tree
364 level. */
365 ira_allocno_t cap;
366 /* It is a link to allocno (cap) on lower loop level represented by
367 given cap. Null if given allocno is not a cap. */
368 ira_allocno_t cap_member;
ac0ab4f7
BS
369 /* The number of objects tracked in the following array. */
370 int num_objects;
371 /* An array of structures describing conflict information and live
372 ranges for each object associated with the allocno. There may be
373 more than one such object in cases where the allocno represents a
374 multi-word register. */
375 ira_object_t objects[2];
058e97ec
VM
376 /* Accumulated frequency of calls which given allocno
377 intersects. */
378 int call_freq;
a812fb07 379 /* Accumulated number of the intersected calls. */
058e97ec 380 int calls_crossed_num;
e384e6b5
BS
381 /* The number of calls across which it is live, but which should not
382 affect register preferences. */
383 int cheap_calls_crossed_num;
058e97ec 384 /* Array of usage costs (accumulated and the one updated during
1756cb66 385 coloring) for each hard register of the allocno class. The
058e97ec 386 member value can be NULL if all costs are the same and equal to
1756cb66 387 CLASS_COST. For example, the costs of two different hard
058e97ec
VM
388 registers can be different if one hard register is callee-saved
389 and another one is callee-used and the allocno lives through
390 calls. Another example can be case when for some insn the
391 corresponding pseudo-register value should be put in specific
392 register class (e.g. AREG for x86) which is a strict subset of
1756cb66
VM
393 the allocno class (GENERAL_REGS for x86). We have updated costs
394 to reflect the situation when the usage cost of a hard register
395 is decreased because the allocno is connected to another allocno
396 by a copy and the another allocno has been assigned to the hard
397 register. */
058e97ec
VM
398 int *hard_reg_costs, *updated_hard_reg_costs;
399 /* Array of decreasing costs (accumulated and the one updated during
400 coloring) for allocnos conflicting with given allocno for hard
1756cb66
VM
401 regno of the allocno class. The member value can be NULL if all
402 costs are the same. These costs are used to reflect preferences
403 of other allocnos not assigned yet during assigning to given
404 allocno. */
058e97ec 405 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
1756cb66
VM
406 /* Different additional data. It is used to decrease size of
407 allocno data footprint. */
408 void *add_data;
058e97ec
VM
409};
410
1756cb66 411
058e97ec
VM
412/* All members of the allocno structures should be accessed only
413 through the following macros. */
414#define ALLOCNO_NUM(A) ((A)->num)
415#define ALLOCNO_REGNO(A) ((A)->regno)
416#define ALLOCNO_REG(A) ((A)->reg)
417#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
418#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
419#define ALLOCNO_CAP(A) ((A)->cap)
420#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
058e97ec
VM
421#define ALLOCNO_NREFS(A) ((A)->nrefs)
422#define ALLOCNO_FREQ(A) ((A)->freq)
423#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
424#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
425#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
e384e6b5 426#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
058e97ec
VM
427#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
428#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
429#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
430#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
431#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
432#ifdef STACK_REGS
433#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
434#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
435#endif
927425df 436#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec 437#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
058e97ec
VM
438#define ALLOCNO_MODE(A) ((A)->mode)
439#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
440#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
441#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
442#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
443 ((A)->conflict_hard_reg_costs)
444#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
445 ((A)->updated_conflict_hard_reg_costs)
1756cb66
VM
446#define ALLOCNO_CLASS(A) ((A)->aclass)
447#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
448#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
058e97ec
VM
449#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
450#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
1756cb66
VM
451#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
452 ((A)->excess_pressure_points_num)
ac0ab4f7
BS
453#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
454#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
1756cb66 455#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
a49ae217 456
1756cb66
VM
457/* Typedef for pointer to the subsequent structure. */
458typedef struct ira_emit_data *ira_emit_data_t;
459
460/* Allocno bound data used for emit pseudo live range split insns and
461 to flattening IR. */
462struct ira_emit_data
463{
464 /* TRUE if the allocno assigned to memory was a destination of
465 removed move (see ira-emit.c) at loop exit because the value of
466 the corresponding pseudo-register is not changed inside the
467 loop. */
468 unsigned int mem_optimized_dest_p : 1;
469 /* TRUE if the corresponding pseudo-register has disjoint live
470 ranges and the other allocnos of the pseudo-register except this
471 one changed REG. */
472 unsigned int somewhere_renamed_p : 1;
473 /* TRUE if allocno with the same REGNO in a subregion has been
474 renamed, in other words, got a new pseudo-register. */
475 unsigned int child_renamed_p : 1;
476 /* Final rtx representation of the allocno. */
477 rtx reg;
478 /* Non NULL if we remove restoring value from given allocno to
479 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
480 allocno value is not changed inside the loop. */
481 ira_allocno_t mem_optimized_dest;
482};
483
484#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
485
486/* Data used to emit live range split insns and to flattening IR. */
487extern ira_emit_data_t ira_allocno_emit_data;
488
489/* Abbreviation for frequent emit data access. */
490static inline rtx
491allocno_emit_reg (ira_allocno_t a)
492{
493 return ALLOCNO_EMIT_DATA (a)->reg;
494}
495
496#define OBJECT_ALLOCNO(O) ((O)->allocno)
497#define OBJECT_SUBWORD(O) ((O)->subword)
498#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
499#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
500#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
501#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
502#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
503#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
504#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
505#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
506#define OBJECT_MIN(O) ((O)->min)
507#define OBJECT_MAX(O) ((O)->max)
508#define OBJECT_CONFLICT_ID(O) ((O)->id)
509#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
058e97ec 510
b8698a0f 511/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
512 allocno member `next_regno_allocno'). */
513extern ira_allocno_t *ira_regno_allocno_map;
514
515/* Array of references to all allocnos. The order number of the
516 allocno corresponds to the index in the array. Removed allocnos
517 have NULL element value. */
518extern ira_allocno_t *ira_allocnos;
519
a49ae217 520/* The size of the previous array. */
058e97ec
VM
521extern int ira_allocnos_num;
522
a49ae217
BS
523/* Map a conflict id to its corresponding ira_object structure. */
524extern ira_object_t *ira_object_id_map;
525
526/* The size of the previous array. */
527extern int ira_objects_num;
058e97ec
VM
528
529/* The following structure represents a copy of two allocnos. The
530 copies represent move insns or potential move insns usually because
531 of two operand insn constraints. To remove register shuffle, we
532 also create copies between allocno which is output of an insn and
533 allocno becoming dead in the insn. */
534struct ira_allocno_copy
535{
536 /* The unique order number of the copy node starting with 0. */
537 int num;
538 /* Allocnos connected by the copy. The first allocno should have
539 smaller order number than the second one. */
540 ira_allocno_t first, second;
541 /* Execution frequency of the copy. */
542 int freq;
548a6322 543 bool constraint_p;
058e97ec
VM
544 /* It is a move insn which is an origin of the copy. The member
545 value for the copy representing two operand insn constraints or
546 for the copy created to remove register shuffle is NULL. In last
547 case the copy frequency is smaller than the corresponding insn
548 execution frequency. */
549 rtx insn;
550 /* All copies with the same allocno as FIRST are linked by the two
551 following members. */
552 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
553 /* All copies with the same allocno as SECOND are linked by the two
554 following members. */
555 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
556 /* Region from which given copy is originated. */
557 ira_loop_tree_node_t loop_tree_node;
558};
559
560/* Array of references to all copies. The order number of the copy
561 corresponds to the index in the array. Removed copies have NULL
562 element value. */
563extern ira_copy_t *ira_copies;
564
565/* Size of the previous array. */
566extern int ira_copies_num;
567
568/* The following structure describes a stack slot used for spilled
569 pseudo-registers. */
570struct ira_spilled_reg_stack_slot
571{
572 /* pseudo-registers assigned to the stack slot. */
7a8cba34 573 bitmap_head spilled_regs;
058e97ec
VM
574 /* RTL representation of the stack slot. */
575 rtx mem;
576 /* Size of the stack slot. */
577 unsigned int width;
578};
579
580/* The number of elements in the following array. */
581extern int ira_spilled_reg_stack_slots_num;
582
583/* The following array contains info about spilled pseudo-registers
584 stack slots used in current function so far. */
585extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
586
587/* Correspondingly overall cost of the allocation, cost of the
588 allocnos assigned to hard-registers, cost of the allocnos assigned
589 to memory, cost of loads, stores and register move insns generated
590 for pseudo-register live range splitting (see ira-emit.c). */
591extern int ira_overall_cost;
592extern int ira_reg_cost, ira_mem_cost;
593extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
594extern int ira_move_loops_num, ira_additional_jumps_num;
1756cb66 595
42ce1cc4
BS
596\f
597/* This page contains a bitset implementation called 'min/max sets' used to
598 record conflicts in IRA.
599 They are named min/maxs set since we keep track of a minimum and a maximum
600 bit number for each set representing the bounds of valid elements. Otherwise,
601 the implementation resembles sbitmaps in that we store an array of integers
602 whose bits directly represent the members of the set. */
603
604/* The type used as elements in the array, and the number of bits in
605 this type. */
ac0ab4f7 606
058e97ec
VM
607#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
608#define IRA_INT_TYPE HOST_WIDE_INT
609
610/* Set, clear or test bit number I in R, a bit vector of elements with
611 minimal index and maximal index equal correspondingly to MIN and
612 MAX. */
613#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
614
42ce1cc4 615#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
616 (({ int _min = (MIN), _max = (MAX), _i = (I); \
617 if (_i < _min || _i > _max) \
618 { \
619 fprintf (stderr, \
620 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
621 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
622 gcc_unreachable (); \
623 } \
624 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
625 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 626
058e97ec 627
42ce1cc4 628#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
629 (({ int _min = (MIN), _max = (MAX), _i = (I); \
630 if (_i < _min || _i > _max) \
631 { \
632 fprintf (stderr, \
633 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
634 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
635 gcc_unreachable (); \
636 } \
637 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
638 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
639
42ce1cc4 640#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
641 (({ int _min = (MIN), _max = (MAX), _i = (I); \
642 if (_i < _min || _i > _max) \
643 { \
644 fprintf (stderr, \
645 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
646 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
647 gcc_unreachable (); \
648 } \
649 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
650 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
651
652#else
653
42ce1cc4 654#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
655 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
656 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
657
42ce1cc4 658#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
659 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
660 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
661
42ce1cc4 662#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
663 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
664 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
665
666#endif
667
42ce1cc4 668/* The iterator for min/max sets. */
058e97ec
VM
669typedef struct {
670
42ce1cc4 671 /* Array containing the bit vector. */
058e97ec
VM
672 IRA_INT_TYPE *vec;
673
674 /* The number of the current element in the vector. */
675 unsigned int word_num;
676
677 /* The number of bits in the bit vector. */
678 unsigned int nel;
679
680 /* The current bit index of the bit vector. */
681 unsigned int bit_num;
682
683 /* Index corresponding to the 1st bit of the bit vector. */
684 int start_val;
685
686 /* The word of the bit vector currently visited. */
687 unsigned IRA_INT_TYPE word;
42ce1cc4 688} minmax_set_iterator;
058e97ec 689
42ce1cc4
BS
690/* Initialize the iterator I for bit vector VEC containing minimal and
691 maximal values MIN and MAX. */
058e97ec 692static inline void
42ce1cc4
BS
693minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
694 int max)
058e97ec
VM
695{
696 i->vec = vec;
697 i->word_num = 0;
698 i->nel = max < min ? 0 : max - min + 1;
699 i->start_val = min;
700 i->bit_num = 0;
701 i->word = i->nel == 0 ? 0 : vec[0];
702}
703
ac0ab4f7 704/* Return TRUE if we have more allocnos to visit, in which case *N is
42ce1cc4 705 set to the number of the element to be visited. Otherwise, return
058e97ec
VM
706 FALSE. */
707static inline bool
42ce1cc4 708minmax_set_iter_cond (minmax_set_iterator *i, int *n)
058e97ec
VM
709{
710 /* Skip words that are zeros. */
711 for (; i->word == 0; i->word = i->vec[i->word_num])
712 {
713 i->word_num++;
714 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 715
058e97ec
VM
716 /* If we have reached the end, break. */
717 if (i->bit_num >= i->nel)
718 return false;
719 }
b8698a0f 720
058e97ec
VM
721 /* Skip bits that are zero. */
722 for (; (i->word & 1) == 0; i->word >>= 1)
723 i->bit_num++;
b8698a0f 724
058e97ec 725 *n = (int) i->bit_num + i->start_val;
b8698a0f 726
058e97ec
VM
727 return true;
728}
729
42ce1cc4 730/* Advance to the next element in the set. */
058e97ec 731static inline void
42ce1cc4 732minmax_set_iter_next (minmax_set_iterator *i)
058e97ec
VM
733{
734 i->word >>= 1;
735 i->bit_num++;
736}
737
42ce1cc4 738/* Loop over all elements of a min/max set given by bit vector VEC and
058e97ec
VM
739 their minimal and maximal values MIN and MAX. In each iteration, N
740 is set to the number of next allocno. ITER is an instance of
42ce1cc4
BS
741 minmax_set_iterator used to iterate over the set. */
742#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
743 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
744 minmax_set_iter_cond (&(ITER), &(N)); \
745 minmax_set_iter_next (&(ITER)))
746\f
afcc66c4 747struct target_ira_int {
aa1c5d72
RS
748 /* Initialized once. It is a maximal possible size of the allocated
749 struct costs. */
750 int x_max_struct_costs_size;
751
752 /* Allocated and initialized once, and used to initialize cost values
753 for each insn. */
754 struct costs *x_init_cost;
755
756 /* Allocated once, and used for temporary purposes. */
757 struct costs *x_temp_costs;
758
759 /* Allocated once, and used for the cost calculation. */
760 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
761 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
762
afcc66c4
RS
763 /* Hard registers that can not be used for the register allocator for
764 all functions of the current compilation unit. */
765 HARD_REG_SET x_no_unit_alloc_regs;
766
767 /* Map: hard regs X modes -> set of hard registers for storing value
768 of given mode starting with given hard register. */
769 HARD_REG_SET (x_ira_reg_mode_hard_regset
770 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
771
e80ccebc
RS
772 /* Maximum cost of moving from a register in one class to a register
773 in another class. Based on TARGET_REGISTER_MOVE_COST. */
7cc61ee4 774 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
e80ccebc
RS
775
776 /* Similar, but here we don't have to move if the first index is a
777 subset of the second so in that case the cost is zero. */
7cc61ee4 778 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
e80ccebc
RS
779
780 /* Similar, but here we don't have to move if the first index is a
781 superset of the second so in that case the cost is zero. */
7cc61ee4 782 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
e80ccebc
RS
783
784 /* Keep track of the last mode we initialized move costs for. */
785 int x_last_mode_for_init_move_cost;
786
7cc61ee4
RS
787 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
788 cost not minimal. */
1756cb66 789 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
1756cb66
VM
790
791 /* Map class->true if class is a possible allocno class, false
792 otherwise. */
793 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
794
795 /* Map class->true if class is a pressure class, false otherwise. */
796 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
797
afcc66c4
RS
798 /* Register class subset relation: TRUE if the first class is a subset
799 of the second one considering only hard registers available for the
800 allocation. */
801 int x_ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
802
803 /* Array of the number of hard registers of given class which are
dd5a833e 804 available for allocation. The order is defined by the hard
afcc66c4
RS
805 register numbers. */
806 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
807
808 /* Index (in ira_class_hard_regs; for given register class and hard
809 register (in general case a hard register can belong to several
810 register classes;. The index is negative for hard registers
811 unavailable for the allocation. */
812 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
813
814 /* Array whose values are hard regset of hard registers available for
815 the allocation of given register class whose HARD_REGNO_MODE_OK
816 values for given mode are zero. */
1756cb66 817 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
afcc66c4
RS
818
819 /* The value is number of elements in the subsequent array. */
820 int x_ira_important_classes_num;
821
1756cb66 822 /* The array containing all non-empty classes. Such classes is
afcc66c4
RS
823 important for calculation of the hard register usage costs. */
824 enum reg_class x_ira_important_classes[N_REG_CLASSES];
825
1756cb66
VM
826 /* The array containing indexes of important classes in the previous
827 array. The array elements are defined only for important
828 classes. */
829 int x_ira_important_class_nums[N_REG_CLASSES];
830
afcc66c4
RS
831 /* The biggest important class inside of intersection of the two
832 classes (that is calculated taking only hard registers available
833 for allocation into account;. If the both classes contain no hard
834 registers available for allocation, the value is calculated with
835 taking all hard-registers including fixed ones into account. */
836 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
837
838 /* True if the two classes (that is calculated taking only hard
839 registers available for allocation into account; are
840 intersected. */
841 bool x_ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
842
843 /* Classes with end marker LIM_REG_CLASSES which are intersected with
844 given class (the first index;. That includes given class itself.
845 This is calculated taking only hard registers available for
846 allocation into account. */
847 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
848
1756cb66
VM
849 /* The biggest (smallest) important class inside of (covering) union
850 of the two classes (that is calculated taking only hard registers
851 available for allocation into account). If the both classes
852 contain no hard registers available for allocation, the value is
853 calculated with taking all hard-registers including fixed ones
854 into account. In other words, the value is the corresponding
855 reg_class_subunion (reg_class_superunion) value. */
856 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
857 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
afcc66c4
RS
858
859 /* For each reg class, table listing all the classes contained in it
860 (excluding the class itself. Non-allocatable registers are
861 excluded from the consideration;. */
862 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
15e7b94f
RS
863
864 /* Array whose values are hard regset of hard registers for which
865 move of the hard register in given mode into itself is
866 prohibited. */
867 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
868
869 /* Flag of that the above array has been initialized. */
870 bool x_ira_prohibited_mode_move_regs_initialized_p;
afcc66c4
RS
871};
872
873extern struct target_ira_int default_target_ira_int;
874#if SWITCHABLE_TARGET
875extern struct target_ira_int *this_target_ira_int;
876#else
877#define this_target_ira_int (&default_target_ira_int)
878#endif
058e97ec 879
afcc66c4
RS
880#define ira_reg_mode_hard_regset \
881 (this_target_ira_int->x_ira_reg_mode_hard_regset)
882#define ira_register_move_cost \
883 (this_target_ira_int->x_ira_register_move_cost)
1756cb66
VM
884#define ira_max_memory_move_cost \
885 (this_target_ira_int->x_ira_max_memory_move_cost)
afcc66c4
RS
886#define ira_may_move_in_cost \
887 (this_target_ira_int->x_ira_may_move_in_cost)
888#define ira_may_move_out_cost \
889 (this_target_ira_int->x_ira_may_move_out_cost)
1756cb66
VM
890#define ira_reg_allocno_class_p \
891 (this_target_ira_int->x_ira_reg_allocno_class_p)
892#define ira_reg_pressure_class_p \
893 (this_target_ira_int->x_ira_reg_pressure_class_p)
afcc66c4
RS
894#define ira_class_subset_p \
895 (this_target_ira_int->x_ira_class_subset_p)
896#define ira_non_ordered_class_hard_regs \
897 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
898#define ira_class_hard_reg_index \
899 (this_target_ira_int->x_ira_class_hard_reg_index)
1756cb66
VM
900#define ira_prohibited_class_mode_regs \
901 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
afcc66c4
RS
902#define ira_important_classes_num \
903 (this_target_ira_int->x_ira_important_classes_num)
904#define ira_important_classes \
905 (this_target_ira_int->x_ira_important_classes)
1756cb66
VM
906#define ira_important_class_nums \
907 (this_target_ira_int->x_ira_important_class_nums)
afcc66c4
RS
908#define ira_reg_class_intersect \
909 (this_target_ira_int->x_ira_reg_class_intersect)
910#define ira_reg_classes_intersect_p \
911 (this_target_ira_int->x_ira_reg_classes_intersect_p)
912#define ira_reg_class_super_classes \
913 (this_target_ira_int->x_ira_reg_class_super_classes)
1756cb66
VM
914#define ira_reg_class_subunion \
915 (this_target_ira_int->x_ira_reg_class_subunion)
916#define ira_reg_class_superunion \
917 (this_target_ira_int->x_ira_reg_class_superunion)
15e7b94f
RS
918#define ira_prohibited_mode_move_regs \
919 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
afcc66c4
RS
920\f
921/* ira.c: */
058e97ec 922
058e97ec 923extern void *ira_allocate (size_t);
058e97ec
VM
924extern void ira_free (void *addr);
925extern bitmap ira_allocate_bitmap (void);
926extern void ira_free_bitmap (bitmap);
927extern void ira_print_disposition (FILE *);
928extern void ira_debug_disposition (void);
1756cb66 929extern void ira_debug_allocno_classes (void);
058e97ec
VM
930extern void ira_init_register_move_cost (enum machine_mode);
931
932/* The length of the two following arrays. */
933extern int ira_reg_equiv_len;
934
935/* The element value is TRUE if the corresponding regno value is
936 invariant. */
937extern bool *ira_reg_equiv_invariant_p;
938
939/* The element value is equiv constant of given pseudo-register or
940 NULL_RTX. */
941extern rtx *ira_reg_equiv_const;
942
943/* ira-build.c */
944
945/* The current loop tree node and its regno allocno map. */
946extern ira_loop_tree_node_t ira_curr_loop_tree_node;
947extern ira_allocno_t *ira_curr_regno_allocno_map;
948
4cda38d5
VM
949extern void ira_debug_copy (ira_copy_t);
950extern void ira_debug_copies (void);
058e97ec
VM
951extern void ira_debug_allocno_copies (ira_allocno_t);
952
953extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
954 void (*) (ira_loop_tree_node_t),
955 void (*) (ira_loop_tree_node_t));
029da7d4
BS
956extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
957extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec 958extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
ac0ab4f7 959extern void ira_create_allocno_objects (ira_allocno_t);
1756cb66 960extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
a49ae217
BS
961extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
962extern void ira_allocate_conflict_vec (ira_object_t, int);
963extern void ira_allocate_object_conflicts (ira_object_t, int);
ac0ab4f7 964extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
058e97ec 965extern void ira_print_expanded_allocno (ira_allocno_t);
ac0ab4f7 966extern void ira_add_live_range_to_object (ira_object_t, int, int);
9140d27b
BS
967extern live_range_t ira_create_live_range (ira_object_t, int, int,
968 live_range_t);
969extern live_range_t ira_copy_live_range_list (live_range_t);
970extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
971extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
972extern void ira_finish_live_range (live_range_t);
973extern void ira_finish_live_range_list (live_range_t);
058e97ec
VM
974extern void ira_free_allocno_updated_costs (ira_allocno_t);
975extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
548a6322 976 int, bool, rtx, ira_loop_tree_node_t);
058e97ec
VM
977extern void ira_add_allocno_copy_to_list (ira_copy_t);
978extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
548a6322
VM
979extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
980 bool, rtx, ira_loop_tree_node_t);
058e97ec 981
6f76a878
AS
982extern int *ira_allocate_cost_vector (reg_class_t);
983extern void ira_free_cost_vector (int *, reg_class_t);
058e97ec
VM
984
985extern void ira_flattening (int, int);
2608d841 986extern bool ira_build (void);
058e97ec
VM
987extern void ira_destroy (void);
988
989/* ira-costs.c */
990extern void ira_init_costs_once (void);
991extern void ira_init_costs (void);
992extern void ira_finish_costs_once (void);
993extern void ira_costs (void);
1756cb66 994extern void ira_tune_allocno_costs (void);
058e97ec
VM
995
996/* ira-lives.c */
997
998extern void ira_rebuild_start_finish_chains (void);
b14151b5
BS
999extern void ira_print_live_range_list (FILE *, live_range_t);
1000extern void ira_debug_live_range_list (live_range_t);
058e97ec
VM
1001extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1002extern void ira_debug_live_ranges (void);
1003extern void ira_create_allocno_live_ranges (void);
b15a7ae6 1004extern void ira_compress_allocno_live_ranges (void);
058e97ec
VM
1005extern void ira_finish_allocno_live_ranges (void);
1006
1007/* ira-conflicts.c */
058e97ec
VM
1008extern void ira_debug_conflicts (bool);
1009extern void ira_build_conflicts (void);
1010
1011/* ira-color.c */
1756cb66 1012extern void ira_debug_hard_regs_forest (void);
058e97ec
VM
1013extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1014extern void ira_reassign_conflict_allocnos (int);
1015extern void ira_initiate_assign (void);
1016extern void ira_finish_assign (void);
1017extern void ira_color (void);
058e97ec
VM
1018
1019/* ira-emit.c */
1756cb66
VM
1020extern void ira_initiate_emit_data (void);
1021extern void ira_finish_emit_data (void);
058e97ec
VM
1022extern void ira_emit (bool);
1023
1024\f
1025
1756cb66
VM
1026/* Initialize register costs for MODE if necessary. */
1027static inline void
1028ira_init_register_move_cost_if_necessary (enum machine_mode mode)
6080348f
VM
1029{
1030 if (ira_register_move_cost[mode] == NULL)
1031 ira_init_register_move_cost (mode);
6080348f
VM
1032}
1033
1034\f
1035
058e97ec
VM
1036/* The iterator for all allocnos. */
1037typedef struct {
1038 /* The number of the current element in IRA_ALLOCNOS. */
1039 int n;
1040} ira_allocno_iterator;
1041
1042/* Initialize the iterator I. */
1043static inline void
1044ira_allocno_iter_init (ira_allocno_iterator *i)
1045{
1046 i->n = 0;
1047}
1048
1049/* Return TRUE if we have more allocnos to visit, in which case *A is
1050 set to the allocno to be visited. Otherwise, return FALSE. */
1051static inline bool
1052ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1053{
1054 int n;
1055
1056 for (n = i->n; n < ira_allocnos_num; n++)
1057 if (ira_allocnos[n] != NULL)
1058 {
1059 *a = ira_allocnos[n];
1060 i->n = n + 1;
1061 return true;
1062 }
1063 return false;
1064}
1065
1066/* Loop over all allocnos. In each iteration, A is set to the next
1067 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1068 the allocnos. */
1069#define FOR_EACH_ALLOCNO(A, ITER) \
1070 for (ira_allocno_iter_init (&(ITER)); \
1071 ira_allocno_iter_cond (&(ITER), &(A));)
a49ae217
BS
1072\f
1073/* The iterator for all objects. */
1074typedef struct {
ac0ab4f7 1075 /* The number of the current element in ira_object_id_map. */
a49ae217
BS
1076 int n;
1077} ira_object_iterator;
058e97ec 1078
a49ae217
BS
1079/* Initialize the iterator I. */
1080static inline void
1081ira_object_iter_init (ira_object_iterator *i)
1082{
1083 i->n = 0;
1084}
1085
1086/* Return TRUE if we have more objects to visit, in which case *OBJ is
1087 set to the object to be visited. Otherwise, return FALSE. */
1088static inline bool
1089ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1090{
1091 int n;
058e97ec 1092
a49ae217
BS
1093 for (n = i->n; n < ira_objects_num; n++)
1094 if (ira_object_id_map[n] != NULL)
1095 {
1096 *obj = ira_object_id_map[n];
1097 i->n = n + 1;
1098 return true;
1099 }
1100 return false;
1101}
1102
ac0ab4f7
BS
1103/* Loop over all objects. In each iteration, OBJ is set to the next
1104 object. ITER is an instance of ira_object_iterator used to iterate
a49ae217
BS
1105 the objects. */
1106#define FOR_EACH_OBJECT(OBJ, ITER) \
1107 for (ira_object_iter_init (&(ITER)); \
1108 ira_object_iter_cond (&(ITER), &(OBJ));)
058e97ec 1109\f
ac0ab4f7
BS
1110/* The iterator for objects associated with an allocno. */
1111typedef struct {
1112 /* The number of the element the allocno's object array. */
1113 int n;
1114} ira_allocno_object_iterator;
1115
1116/* Initialize the iterator I. */
1117static inline void
1118ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1119{
1120 i->n = 0;
1121}
1122
1123/* Return TRUE if we have more objects to visit in allocno A, in which
1124 case *O is set to the object to be visited. Otherwise, return
1125 FALSE. */
1126static inline bool
1127ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1128 ira_object_t *o)
1129{
d0a854af
RG
1130 int n = i->n++;
1131 if (n < ALLOCNO_NUM_OBJECTS (a))
1132 {
1133 *o = ALLOCNO_OBJECT (a, n);
1134 return true;
1135 }
1136 return false;
ac0ab4f7
BS
1137}
1138
1139/* Loop over all objects associated with allocno A. In each
1140 iteration, O is set to the next object. ITER is an instance of
1141 ira_allocno_object_iterator used to iterate the conflicts. */
1142#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1143 for (ira_allocno_object_iter_init (&(ITER)); \
1144 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1145\f
058e97ec
VM
1146
1147/* The iterator for copies. */
1148typedef struct {
1149 /* The number of the current element in IRA_COPIES. */
1150 int n;
1151} ira_copy_iterator;
1152
1153/* Initialize the iterator I. */
1154static inline void
1155ira_copy_iter_init (ira_copy_iterator *i)
1156{
1157 i->n = 0;
1158}
1159
1160/* Return TRUE if we have more copies to visit, in which case *CP is
1161 set to the copy to be visited. Otherwise, return FALSE. */
1162static inline bool
1163ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1164{
1165 int n;
1166
1167 for (n = i->n; n < ira_copies_num; n++)
1168 if (ira_copies[n] != NULL)
1169 {
1170 *cp = ira_copies[n];
1171 i->n = n + 1;
1172 return true;
1173 }
1174 return false;
1175}
1176
1177/* Loop over all copies. In each iteration, C is set to the next
1178 copy. ITER is an instance of ira_copy_iterator used to iterate
1179 the copies. */
1180#define FOR_EACH_COPY(C, ITER) \
1181 for (ira_copy_iter_init (&(ITER)); \
1182 ira_copy_iter_cond (&(ITER), &(C));)
058e97ec 1183\f
ac0ab4f7 1184/* The iterator for object conflicts. */
058e97ec 1185typedef struct {
ac0ab4f7
BS
1186
1187 /* TRUE if the conflicts are represented by vector of allocnos. */
a49ae217 1188 bool conflict_vec_p;
058e97ec
VM
1189
1190 /* The conflict vector or conflict bit vector. */
1191 void *vec;
1192
1193 /* The number of the current element in the vector (of type
a49ae217 1194 ira_object_t or IRA_INT_TYPE). */
058e97ec
VM
1195 unsigned int word_num;
1196
1197 /* The bit vector size. It is defined only if
a49ae217 1198 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1199 unsigned int size;
1200
1201 /* The current bit index of bit vector. It is defined only if
a49ae217 1202 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1203 unsigned int bit_num;
1204
a49ae217
BS
1205 /* The object id corresponding to the 1st bit of the bit vector. It
1206 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1207 int base_conflict_id;
1208
1209 /* The word of bit vector currently visited. It is defined only if
a49ae217 1210 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec 1211 unsigned IRA_INT_TYPE word;
fa86d337 1212} ira_object_conflict_iterator;
058e97ec
VM
1213
1214/* Initialize the iterator I with ALLOCNO conflicts. */
1215static inline void
fa86d337
BS
1216ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1217 ira_object_t obj)
058e97ec 1218{
a49ae217
BS
1219 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1220 i->vec = OBJECT_CONFLICT_ARRAY (obj);
058e97ec 1221 i->word_num = 0;
a49ae217 1222 if (i->conflict_vec_p)
058e97ec
VM
1223 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1224 else
1225 {
a49ae217 1226 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
058e97ec
VM
1227 i->size = 0;
1228 else
a49ae217 1229 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
058e97ec
VM
1230 + IRA_INT_BITS)
1231 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1232 i->bit_num = 0;
a49ae217 1233 i->base_conflict_id = OBJECT_MIN (obj);
058e97ec
VM
1234 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1235 }
1236}
1237
1238/* Return TRUE if we have more conflicting allocnos to visit, in which
1239 case *A is set to the allocno to be visited. Otherwise, return
1240 FALSE. */
1241static inline bool
fa86d337
BS
1242ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1243 ira_object_t *pobj)
058e97ec 1244{
a49ae217 1245 ira_object_t obj;
058e97ec 1246
a49ae217 1247 if (i->conflict_vec_p)
058e97ec 1248 {
1756cb66 1249 obj = ((ira_object_t *) i->vec)[i->word_num++];
a49ae217 1250 if (obj == NULL)
058e97ec 1251 return false;
058e97ec
VM
1252 }
1253 else
1254 {
1756cb66
VM
1255 unsigned IRA_INT_TYPE word = i->word;
1256 unsigned int bit_num = i->bit_num;
1257
058e97ec 1258 /* Skip words that are zeros. */
1756cb66 1259 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
058e97ec
VM
1260 {
1261 i->word_num++;
b8698a0f 1262
058e97ec
VM
1263 /* If we have reached the end, break. */
1264 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1265 return false;
b8698a0f 1266
1756cb66 1267 bit_num = i->word_num * IRA_INT_BITS;
058e97ec 1268 }
b8698a0f 1269
058e97ec 1270 /* Skip bits that are zero. */
1756cb66
VM
1271 for (; (word & 1) == 0; word >>= 1)
1272 bit_num++;
b8698a0f 1273
1756cb66
VM
1274 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1275 i->bit_num = bit_num + 1;
1276 i->word = word >> 1;
058e97ec 1277 }
a49ae217 1278
fa86d337 1279 *pobj = obj;
a49ae217 1280 return true;
058e97ec
VM
1281}
1282
fa86d337
BS
1283/* Loop over all objects conflicting with OBJ. In each iteration,
1284 CONF is set to the next conflicting object. ITER is an instance
1285 of ira_object_conflict_iterator used to iterate the conflicts. */
1286#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1287 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1756cb66 1288 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
058e97ec
VM
1289
1290\f
1291
1756cb66
VM
1292/* The function returns TRUE if at least one hard register from ones
1293 starting with HARD_REGNO and containing value of MODE are in set
1294 HARD_REGSET. */
1295static inline bool
1296ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1297 HARD_REG_SET hard_regset)
1298{
1299 int i;
1300
1301 gcc_assert (hard_regno >= 0);
1302 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1303 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1304 return true;
1305 return false;
1306}
1307
1308/* Return number of hard registers in hard register SET. */
1309static inline int
1310hard_reg_set_size (HARD_REG_SET set)
1311{
1312 int i, size;
1313
1314 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1315 if (TEST_HARD_REG_BIT (set, i))
1316 size++;
1317 return size;
1318}
1319
058e97ec 1320/* The function returns TRUE if hard registers starting with
9181a6e5 1321 HARD_REGNO and containing value of MODE are fully in set
058e97ec
VM
1322 HARD_REGSET. */
1323static inline bool
9181a6e5
VM
1324ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1325 HARD_REG_SET hard_regset)
058e97ec
VM
1326{
1327 int i;
1328
1329 ira_assert (hard_regno >= 0);
1330 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
9181a6e5 1331 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
058e97ec
VM
1332 return false;
1333 return true;
1334}
1335
1336\f
1337
1338/* To save memory we use a lazy approach for allocation and
1339 initialization of the cost vectors. We do this only when it is
1340 really necessary. */
1341
1756cb66 1342/* Allocate cost vector *VEC for hard registers of ACLASS and
058e97ec
VM
1343 initialize the elements by VAL if it is necessary */
1344static inline void
6f76a878 1345ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
058e97ec
VM
1346{
1347 int i, *reg_costs;
1348 int len;
1349
1350 if (*vec != NULL)
1351 return;
1756cb66 1352 *vec = reg_costs = ira_allocate_cost_vector (aclass);
6f76a878 1353 len = ira_class_hard_regs_num[(int) aclass];
058e97ec
VM
1354 for (i = 0; i < len; i++)
1355 reg_costs[i] = val;
1356}
1357
1756cb66
VM
1358/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1359 values of vector SRC into the vector if it is necessary */
058e97ec 1360static inline void
1756cb66 1361ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1362{
1363 int len;
1364
1365 if (*vec != NULL || src == NULL)
1366 return;
1756cb66
VM
1367 *vec = ira_allocate_cost_vector (aclass);
1368 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1369 memcpy (*vec, src, sizeof (int) * len);
1370}
1371
1756cb66
VM
1372/* Allocate cost vector *VEC for hard registers of ACLASS and add
1373 values of vector SRC into the vector if it is necessary */
058e97ec 1374static inline void
1756cb66 1375ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1376{
1377 int i, len;
1378
1379 if (src == NULL)
1380 return;
1756cb66 1381 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1382 if (*vec == NULL)
1383 {
1756cb66 1384 *vec = ira_allocate_cost_vector (aclass);
058e97ec
VM
1385 memset (*vec, 0, sizeof (int) * len);
1386 }
1387 for (i = 0; i < len; i++)
1388 (*vec)[i] += src[i];
1389}
1390
1756cb66
VM
1391/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1392 values of vector SRC into the vector or initialize it by VAL (if
1393 SRC is null). */
058e97ec 1394static inline void
1756cb66 1395ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
058e97ec
VM
1396 int val, int *src)
1397{
1398 int i, *reg_costs;
1399 int len;
1400
1401 if (*vec != NULL)
1402 return;
1756cb66
VM
1403 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1404 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1405 if (src != NULL)
1406 memcpy (reg_costs, src, sizeof (int) * len);
1407 else
1408 {
1409 for (i = 0; i < len; i++)
1410 reg_costs[i] = val;
1411 }
1412}
acf41a74
BS
1413
1414extern rtx ira_create_new_reg (rtx);
1415extern int first_moveable_pseudo, last_moveable_pseudo;