]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira-int.h
PR c++/61339 - add mismatch between struct and class [-Wmismatched-tags] to non-bugs
[thirdparty/gcc.git] / gcc / ira-int.h
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) intercommunication header file.
a5544970 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
f1717f8d
KC
21#ifndef GCC_IRA_INT_H
22#define GCC_IRA_INT_H
23
68c6cacb
AM
24#include "recog.h"
25
058e97ec
VM
26/* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
28
b2b29377 29#if CHECKING_P
058e97ec
VM
30#define ENABLE_IRA_CHECKING
31#endif
32
33#ifdef ENABLE_IRA_CHECKING
34#define ira_assert(c) gcc_assert (c)
35#else
f7556aae 36/* Always define and include C, so that warnings for empty body in an
7b3b6ae4 37 'if' statement and unused variable do not occur. */
f7556aae 38#define ira_assert(c) ((void)(0 && (c)))
058e97ec
VM
39#endif
40
41/* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
45 edge frequency. */
cf40f973
DC
46#define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_function_for_size_p (cfun) \
fefa31b5 48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
058e97ec
VM
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50
058e97ec
VM
51/* A modified value of flag `-fira-verbose' used internally. */
52extern int internal_flag_ira_verbose;
53
54/* Dump file of the allocator if it is not NULL. */
55extern FILE *ira_dump_file;
56
57/* Typedefs for pointers to allocno live range, allocno, and copy of
58 allocnos. */
b14151b5 59typedef struct live_range *live_range_t;
058e97ec 60typedef struct ira_allocno *ira_allocno_t;
3b6d1699 61typedef struct ira_allocno_pref *ira_pref_t;
058e97ec 62typedef struct ira_allocno_copy *ira_copy_t;
a49ae217 63typedef struct ira_object *ira_object_t;
058e97ec
VM
64
65/* Definition of vector of allocnos and copies. */
058e97ec
VM
66
67/* Typedef for pointer to the subsequent structure. */
68typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
69
e80ccebc
RS
70typedef unsigned short move_table[N_REG_CLASSES];
71
058e97ec
VM
72/* In general case, IRA is a regional allocator. The regions are
73 nested and form a tree. Currently regions are natural loops. The
74 following structure describes loop tree node (representing basic
75 block or loop). We need such tree because the loop tree from
76 cfgloop.h is not convenient for the optimization: basic blocks are
77 not a part of the tree from cfgloop.h. We also use the nodes for
78 storing additional information about basic blocks/loops for the
79 register allocation purposes. */
80struct ira_loop_tree_node
81{
82 /* The node represents basic block if children == NULL. */
83 basic_block bb; /* NULL for loop. */
2608d841 84 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
99b1c316 85 class loop *loop;
af51c885
AN
86 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
87 SUBLOOP_NEXT is always NULL for BBs. */
058e97ec 88 ira_loop_tree_node_t subloop_next, next;
af51c885
AN
89 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
90 the node. They are NULL for BBs. */
058e97ec
VM
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
94
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
97
98 /* All the following members are defined only for nodes representing
99 loops. */
100
2608d841
VM
101 /* The loop number from CFG loop tree. The root number is 0. */
102 int loop_num;
103
30ea859e
VM
104 /* True if the loop was marked for removal from the register
105 allocation. */
106 bool to_remove_p;
107
058e97ec
VM
108 /* Allocnos in the loop corresponding to their regnos. If it is
109 NULL the loop does not form a separate register allocation region
67914693 110 (e.g. because it has abnormal enter/exit edges and we cannot put
058e97ec
VM
111 code for register shuffling on the edges if a different
112 allocation is used for a pseudo-register on different sides of
113 the edges). Caps are not in the map (remember we can have more
114 one cap with the same regno in a region). */
115 ira_allocno_t *regno_allocno_map;
116
ea1c67e6
VM
117 /* True if there is an entry to given loop not from its parent (or
118 grandparent) basic block. For example, it is possible for two
119 adjacent loops inside another loop. */
120 bool entered_from_non_parent_p;
121
058e97ec 122 /* Maximal register pressure inside loop for given register class
1756cb66 123 (defined only for the pressure classes). */
058e97ec
VM
124 int reg_pressure[N_REG_CLASSES];
125
49d988e7
VM
126 /* Numbers of allocnos referred or living in the loop node (except
127 for its subloops). */
128 bitmap all_allocnos;
129
130 /* Numbers of allocnos living at the loop borders. */
131 bitmap border_allocnos;
058e97ec
VM
132
133 /* Regnos of pseudos modified in the loop node (including its
134 subloops). */
135 bitmap modified_regnos;
136
058e97ec
VM
137 /* Numbers of copies referred in the corresponding loop. */
138 bitmap local_copies;
139};
140
141/* The root of the loop tree corresponding to the all function. */
142extern ira_loop_tree_node_t ira_loop_tree_root;
143
144/* Height of the loop tree. */
145extern int ira_loop_tree_height;
146
147/* All nodes representing basic blocks are referred through the
67914693 148 following array. We cannot use basic block member `aux' for this
058e97ec
VM
149 because it is used for insertion of insns on edges. */
150extern ira_loop_tree_node_t ira_bb_nodes;
151
152/* Two access macros to the nodes representing basic blocks. */
153#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
154#define IRA_BB_NODE_BY_INDEX(index) __extension__ \
2608d841 155(({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
058e97ec
VM
156 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
157 { \
158 fprintf (stderr, \
159 "\n%s: %d: error in %s: it is not a block node\n", \
160 __FILE__, __LINE__, __FUNCTION__); \
161 gcc_unreachable (); \
162 } \
163 _node; }))
164#else
165#define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
166#endif
167
168#define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
169
170/* All nodes representing loops are referred through the following
171 array. */
172extern ira_loop_tree_node_t ira_loop_nodes;
173
174/* Two access macros to the nodes representing loops. */
175#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
176#define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
2608d841
VM
177(({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
178 if (_node->children == NULL || _node->bb != NULL \
179 || (_node->loop == NULL && current_loops != NULL)) \
058e97ec
VM
180 { \
181 fprintf (stderr, \
182 "\n%s: %d: error in %s: it is not a loop node\n", \
183 __FILE__, __LINE__, __FUNCTION__); \
184 gcc_unreachable (); \
185 } \
186 _node; }))
187#else
188#define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
189#endif
190
191#define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
192
193\f
058e97ec 194/* The structure describes program points where a given allocno lives.
1756cb66
VM
195 If the live ranges of two allocnos are intersected, the allocnos
196 are in conflict. */
b14151b5 197struct live_range
058e97ec 198{
ac0ab4f7 199 /* Object whose live range is described by given structure. */
9140d27b 200 ira_object_t object;
058e97ec
VM
201 /* Program point range. */
202 int start, finish;
203 /* Next structure describing program points where the allocno
204 lives. */
b14151b5 205 live_range_t next;
058e97ec 206 /* Pointer to structures with the same start/finish. */
b14151b5 207 live_range_t start_next, finish_next;
058e97ec
VM
208};
209
210/* Program points are enumerated by numbers from range
211 0..IRA_MAX_POINT-1. There are approximately two times more program
212 points than insns. Program points are places in the program where
213 liveness info can be changed. In most general case (there are more
214 complicated cases too) some program points correspond to places
215 where input operand dies and other ones correspond to places where
216 output operands are born. */
217extern int ira_max_point;
218
219/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
220 live ranges with given start/finish point. */
b14151b5 221extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
058e97ec 222
a49ae217
BS
223/* A structure representing conflict information for an allocno
224 (or one of its subwords). */
225struct ira_object
226{
227 /* The allocno associated with this record. */
228 ira_allocno_t allocno;
229 /* Vector of accumulated conflicting conflict_redords with NULL end
230 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
1756cb66 231 otherwise. */
a49ae217 232 void *conflicts_array;
9140d27b
BS
233 /* Pointer to structures describing at what program point the
234 object lives. We always maintain the list in such way that *the
235 ranges in the list are not intersected and ordered by decreasing
236 their program points*. */
237 live_range_t live_ranges;
ac0ab4f7
BS
238 /* The subword within ALLOCNO which is represented by this object.
239 Zero means the lowest-order subword (or the entire allocno in case
240 it is not being tracked in subwords). */
241 int subword;
9140d27b 242 /* Allocated size of the conflicts array. */
a49ae217 243 unsigned int conflicts_array_size;
ac0ab4f7 244 /* A unique number for every instance of this structure, which is used
a49ae217
BS
245 to represent it in conflict bit vectors. */
246 int id;
247 /* Before building conflicts, MIN and MAX are initialized to
248 correspondingly minimal and maximal points of the accumulated
ac0ab4f7
BS
249 live ranges. Afterwards, they hold the minimal and maximal ids
250 of other ira_objects that this one can conflict with. */
a49ae217
BS
251 int min, max;
252 /* Initial and accumulated hard registers conflicting with this
67914693 253 object and as a consequences cannot be assigned to the allocno.
1756cb66 254 All non-allocatable hard regs and hard regs of register classes
ac0ab4f7 255 different from given allocno one are included in the sets. */
a49ae217
BS
256 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
257 /* Number of accumulated conflicts in the vector of conflicting
ac0ab4f7 258 objects. */
a49ae217
BS
259 int num_accumulated_conflicts;
260 /* TRUE if conflicts are represented by a vector of pointers to
261 ira_object structures. Otherwise, we use a bit vector indexed
262 by conflict ID numbers. */
263 unsigned int conflict_vec_p : 1;
264};
265
058e97ec
VM
266/* A structure representing an allocno (allocation entity). Allocno
267 represents a pseudo-register in an allocation region. If
268 pseudo-register does not live in a region but it lives in the
269 nested regions, it is represented in the region by special allocno
270 called *cap*. There may be more one cap representing the same
271 pseudo-register in region. It means that the corresponding
272 pseudo-register lives in more one non-intersected subregion. */
273struct ira_allocno
274{
275 /* The allocno order number starting with 0. Each allocno has an
276 unique number and the number is never changed for the
277 allocno. */
278 int num;
279 /* Regno for allocno or cap. */
280 int regno;
281 /* Mode of the allocno which is the mode of the corresponding
282 pseudo-register. */
1756cb66 283 ENUM_BITFIELD (machine_mode) mode : 8;
d1bb282e
DS
284 /* Widest mode of the allocno which in at least one case could be
285 for paradoxical subregs where wmode > mode. */
286 ENUM_BITFIELD (machine_mode) wmode : 8;
1756cb66
VM
287 /* Register class which should be used for allocation for given
288 allocno. NO_REGS means that we should use memory. */
289 ENUM_BITFIELD (reg_class) aclass : 16;
290 /* During the reload, value TRUE means that we should not reassign a
291 hard register to the allocno got memory earlier. It is set up
292 when we removed memory-memory move insn before each iteration of
293 the reload. */
294 unsigned int dont_reassign_p : 1;
295#ifdef STACK_REGS
296 /* Set to TRUE if allocno can't be assigned to the stack hard
297 register correspondingly in this region and area including the
298 region and all its subregions recursively. */
299 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
300#endif
301 /* TRUE value means that there is no sense to spill the allocno
302 during coloring because the spill will result in additional
303 reloads in reload pass. */
304 unsigned int bad_spill_p : 1;
305 /* TRUE if a hard register or memory has been assigned to the
306 allocno. */
307 unsigned int assigned_p : 1;
308 /* TRUE if conflicts for given allocno are represented by vector of
309 pointers to the conflicting allocnos. Otherwise, we use a bit
310 vector where a bit with given index represents allocno with the
311 same number. */
312 unsigned int conflict_vec_p : 1;
058e97ec
VM
313 /* Hard register assigned to given allocno. Negative value means
314 that memory was allocated to the allocno. During the reload,
315 spilled allocno has value equal to the corresponding stack slot
316 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
317 reload (at this point pseudo-register has only one allocno) which
318 did not get stack slot yet. */
8684302d 319 signed int hard_regno : 16;
058e97ec
VM
320 /* Allocnos with the same regno are linked by the following member.
321 Allocnos corresponding to inner loops are first in the list (it
322 corresponds to depth-first traverse of the loops). */
323 ira_allocno_t next_regno_allocno;
324 /* There may be different allocnos with the same regno in different
325 regions. Allocnos are bound to the corresponding loop tree node.
326 Pseudo-register may have only one regular allocno with given loop
327 tree node but more than one cap (see comments above). */
328 ira_loop_tree_node_t loop_tree_node;
329 /* Accumulated usage references of the allocno. Here and below,
330 word 'accumulated' means info for given region and all nested
331 subregions. In this case, 'accumulated' means sum of references
332 of the corresponding pseudo-register in this region and in all
333 nested subregions recursively. */
334 int nrefs;
335 /* Accumulated frequency of usage of the allocno. */
336 int freq;
cb1ca6ac 337 /* Minimal accumulated and updated costs of usage register of the
1756cb66
VM
338 allocno class. */
339 int class_cost, updated_class_cost;
058e97ec
VM
340 /* Minimal accumulated, and updated costs of memory for the allocno.
341 At the allocation start, the original and updated costs are
342 equal. The updated cost may be changed after finishing
343 allocation in a region and starting allocation in a subregion.
344 The change reflects the cost of spill/restore code on the
345 subregion border if we assign memory to the pseudo in the
346 subregion. */
347 int memory_cost, updated_memory_cost;
348 /* Accumulated number of points where the allocno lives and there is
349 excess pressure for its class. Excess pressure for a register
350 class at some point means that there are more allocnos of given
351 register class living at the point than number of hard-registers
352 of the class available for the allocation. */
353 int excess_pressure_points_num;
3b6d1699
VM
354 /* Allocno hard reg preferences. */
355 ira_pref_t allocno_prefs;
058e97ec
VM
356 /* Copies to other non-conflicting allocnos. The copies can
357 represent move insn or potential move insn usually because of two
358 operand insn constraints. */
359 ira_copy_t allocno_copies;
360 /* It is a allocno (cap) representing given allocno on upper loop tree
361 level. */
362 ira_allocno_t cap;
363 /* It is a link to allocno (cap) on lower loop level represented by
364 given cap. Null if given allocno is not a cap. */
365 ira_allocno_t cap_member;
ac0ab4f7
BS
366 /* The number of objects tracked in the following array. */
367 int num_objects;
368 /* An array of structures describing conflict information and live
369 ranges for each object associated with the allocno. There may be
370 more than one such object in cases where the allocno represents a
371 multi-word register. */
372 ira_object_t objects[2];
058e97ec
VM
373 /* Accumulated frequency of calls which given allocno
374 intersects. */
375 int call_freq;
a812fb07 376 /* Accumulated number of the intersected calls. */
058e97ec 377 int calls_crossed_num;
e384e6b5
BS
378 /* The number of calls across which it is live, but which should not
379 affect register preferences. */
380 int cheap_calls_crossed_num;
c2ba7e7a
RO
381 /* Registers clobbered by intersected calls. */
382 HARD_REG_SET crossed_calls_clobbered_regs;
058e97ec 383 /* Array of usage costs (accumulated and the one updated during
1756cb66 384 coloring) for each hard register of the allocno class. The
058e97ec 385 member value can be NULL if all costs are the same and equal to
1756cb66 386 CLASS_COST. For example, the costs of two different hard
058e97ec
VM
387 registers can be different if one hard register is callee-saved
388 and another one is callee-used and the allocno lives through
389 calls. Another example can be case when for some insn the
390 corresponding pseudo-register value should be put in specific
391 register class (e.g. AREG for x86) which is a strict subset of
1756cb66
VM
392 the allocno class (GENERAL_REGS for x86). We have updated costs
393 to reflect the situation when the usage cost of a hard register
394 is decreased because the allocno is connected to another allocno
395 by a copy and the another allocno has been assigned to the hard
396 register. */
058e97ec
VM
397 int *hard_reg_costs, *updated_hard_reg_costs;
398 /* Array of decreasing costs (accumulated and the one updated during
399 coloring) for allocnos conflicting with given allocno for hard
1756cb66
VM
400 regno of the allocno class. The member value can be NULL if all
401 costs are the same. These costs are used to reflect preferences
402 of other allocnos not assigned yet during assigning to given
403 allocno. */
058e97ec 404 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
1756cb66
VM
405 /* Different additional data. It is used to decrease size of
406 allocno data footprint. */
407 void *add_data;
058e97ec
VM
408};
409
1756cb66 410
058e97ec
VM
411/* All members of the allocno structures should be accessed only
412 through the following macros. */
413#define ALLOCNO_NUM(A) ((A)->num)
414#define ALLOCNO_REGNO(A) ((A)->regno)
415#define ALLOCNO_REG(A) ((A)->reg)
416#define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
417#define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
418#define ALLOCNO_CAP(A) ((A)->cap)
419#define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
058e97ec
VM
420#define ALLOCNO_NREFS(A) ((A)->nrefs)
421#define ALLOCNO_FREQ(A) ((A)->freq)
422#define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
423#define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
424#define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
e384e6b5 425#define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
c2ba7e7a
RO
426#define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
427 ((A)->crossed_calls_clobbered_regs)
058e97ec
VM
428#define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
429#define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
430#define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
431#define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
432#define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
433#ifdef STACK_REGS
434#define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
435#define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
436#endif
927425df 437#define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
058e97ec 438#define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
058e97ec 439#define ALLOCNO_MODE(A) ((A)->mode)
d1bb282e 440#define ALLOCNO_WMODE(A) ((A)->wmode)
3b6d1699 441#define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
058e97ec
VM
442#define ALLOCNO_COPIES(A) ((A)->allocno_copies)
443#define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
444#define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
445#define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
446 ((A)->conflict_hard_reg_costs)
447#define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->updated_conflict_hard_reg_costs)
1756cb66
VM
449#define ALLOCNO_CLASS(A) ((A)->aclass)
450#define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
451#define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
058e97ec
VM
452#define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
453#define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
1756cb66
VM
454#define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
455 ((A)->excess_pressure_points_num)
ac0ab4f7
BS
456#define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
457#define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
1756cb66 458#define ALLOCNO_ADD_DATA(A) ((A)->add_data)
a49ae217 459
1756cb66
VM
460/* Typedef for pointer to the subsequent structure. */
461typedef struct ira_emit_data *ira_emit_data_t;
462
463/* Allocno bound data used for emit pseudo live range split insns and
464 to flattening IR. */
465struct ira_emit_data
466{
467 /* TRUE if the allocno assigned to memory was a destination of
468 removed move (see ira-emit.c) at loop exit because the value of
469 the corresponding pseudo-register is not changed inside the
470 loop. */
471 unsigned int mem_optimized_dest_p : 1;
472 /* TRUE if the corresponding pseudo-register has disjoint live
473 ranges and the other allocnos of the pseudo-register except this
474 one changed REG. */
475 unsigned int somewhere_renamed_p : 1;
476 /* TRUE if allocno with the same REGNO in a subregion has been
477 renamed, in other words, got a new pseudo-register. */
478 unsigned int child_renamed_p : 1;
479 /* Final rtx representation of the allocno. */
480 rtx reg;
481 /* Non NULL if we remove restoring value from given allocno to
482 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
483 allocno value is not changed inside the loop. */
484 ira_allocno_t mem_optimized_dest;
485};
486
487#define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
488
489/* Data used to emit live range split insns and to flattening IR. */
490extern ira_emit_data_t ira_allocno_emit_data;
491
492/* Abbreviation for frequent emit data access. */
493static inline rtx
494allocno_emit_reg (ira_allocno_t a)
495{
496 return ALLOCNO_EMIT_DATA (a)->reg;
497}
498
499#define OBJECT_ALLOCNO(O) ((O)->allocno)
500#define OBJECT_SUBWORD(O) ((O)->subword)
501#define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
502#define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
503#define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
504#define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
505#define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
506#define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
507#define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
508#define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
509#define OBJECT_MIN(O) ((O)->min)
510#define OBJECT_MAX(O) ((O)->max)
511#define OBJECT_CONFLICT_ID(O) ((O)->id)
512#define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
058e97ec 513
b8698a0f 514/* Map regno -> allocnos with given regno (see comments for
058e97ec
VM
515 allocno member `next_regno_allocno'). */
516extern ira_allocno_t *ira_regno_allocno_map;
517
518/* Array of references to all allocnos. The order number of the
519 allocno corresponds to the index in the array. Removed allocnos
520 have NULL element value. */
521extern ira_allocno_t *ira_allocnos;
522
a49ae217 523/* The size of the previous array. */
058e97ec
VM
524extern int ira_allocnos_num;
525
a49ae217
BS
526/* Map a conflict id to its corresponding ira_object structure. */
527extern ira_object_t *ira_object_id_map;
528
529/* The size of the previous array. */
530extern int ira_objects_num;
058e97ec 531
df3e3493 532/* The following structure represents a hard register preference of
3b6d1699
VM
533 allocno. The preference represent move insns or potential move
534 insns usually because of two operand insn constraints. One move
535 operand is a hard register. */
536struct ira_allocno_pref
537{
538 /* The unique order number of the preference node starting with 0. */
539 int num;
540 /* Preferred hard register. */
541 int hard_regno;
542 /* Accumulated execution frequency of insns from which the
543 preference created. */
544 int freq;
545 /* Given allocno. */
546 ira_allocno_t allocno;
df3e3493 547 /* All preferences with the same allocno are linked by the following
3b6d1699
VM
548 member. */
549 ira_pref_t next_pref;
550};
551
552/* Array of references to all allocno preferences. The order number
553 of the preference corresponds to the index in the array. */
554extern ira_pref_t *ira_prefs;
555
556/* Size of the previous array. */
557extern int ira_prefs_num;
558
058e97ec
VM
559/* The following structure represents a copy of two allocnos. The
560 copies represent move insns or potential move insns usually because
561 of two operand insn constraints. To remove register shuffle, we
562 also create copies between allocno which is output of an insn and
563 allocno becoming dead in the insn. */
564struct ira_allocno_copy
565{
566 /* The unique order number of the copy node starting with 0. */
567 int num;
568 /* Allocnos connected by the copy. The first allocno should have
569 smaller order number than the second one. */
570 ira_allocno_t first, second;
571 /* Execution frequency of the copy. */
572 int freq;
548a6322 573 bool constraint_p;
058e97ec
VM
574 /* It is a move insn which is an origin of the copy. The member
575 value for the copy representing two operand insn constraints or
576 for the copy created to remove register shuffle is NULL. In last
577 case the copy frequency is smaller than the corresponding insn
578 execution frequency. */
070a1983 579 rtx_insn *insn;
058e97ec
VM
580 /* All copies with the same allocno as FIRST are linked by the two
581 following members. */
582 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
583 /* All copies with the same allocno as SECOND are linked by the two
584 following members. */
585 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
586 /* Region from which given copy is originated. */
587 ira_loop_tree_node_t loop_tree_node;
588};
589
590/* Array of references to all copies. The order number of the copy
591 corresponds to the index in the array. Removed copies have NULL
592 element value. */
593extern ira_copy_t *ira_copies;
594
595/* Size of the previous array. */
596extern int ira_copies_num;
597
598/* The following structure describes a stack slot used for spilled
599 pseudo-registers. */
6c1dae73 600class ira_spilled_reg_stack_slot
058e97ec 601{
6c1dae73 602public:
058e97ec 603 /* pseudo-registers assigned to the stack slot. */
7a8cba34 604 bitmap_head spilled_regs;
058e97ec
VM
605 /* RTL representation of the stack slot. */
606 rtx mem;
607 /* Size of the stack slot. */
80ce7eb4 608 poly_uint64_pod width;
058e97ec
VM
609};
610
611/* The number of elements in the following array. */
612extern int ira_spilled_reg_stack_slots_num;
613
614/* The following array contains info about spilled pseudo-registers
615 stack slots used in current function so far. */
99b1c316 616extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
058e97ec
VM
617
618/* Correspondingly overall cost of the allocation, cost of the
619 allocnos assigned to hard-registers, cost of the allocnos assigned
620 to memory, cost of loads, stores and register move insns generated
621 for pseudo-register live range splitting (see ira-emit.c). */
2bf7560b
VM
622extern int64_t ira_overall_cost;
623extern int64_t ira_reg_cost, ira_mem_cost;
624extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec 625extern int ira_move_loops_num, ira_additional_jumps_num;
1756cb66 626
42ce1cc4
BS
627\f
628/* This page contains a bitset implementation called 'min/max sets' used to
629 record conflicts in IRA.
630 They are named min/maxs set since we keep track of a minimum and a maximum
631 bit number for each set representing the bounds of valid elements. Otherwise,
632 the implementation resembles sbitmaps in that we store an array of integers
633 whose bits directly represent the members of the set. */
634
635/* The type used as elements in the array, and the number of bits in
636 this type. */
ac0ab4f7 637
058e97ec
VM
638#define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
639#define IRA_INT_TYPE HOST_WIDE_INT
640
641/* Set, clear or test bit number I in R, a bit vector of elements with
642 minimal index and maximal index equal correspondingly to MIN and
643 MAX. */
644#if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
645
42ce1cc4 646#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
647 (({ int _min = (MIN), _max = (MAX), _i = (I); \
648 if (_i < _min || _i > _max) \
649 { \
650 fprintf (stderr, \
651 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
652 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
653 gcc_unreachable (); \
654 } \
655 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
656 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
b8698a0f 657
058e97ec 658
42ce1cc4 659#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
660 (({ int _min = (MIN), _max = (MAX), _i = (I); \
661 if (_i < _min || _i > _max) \
662 { \
663 fprintf (stderr, \
664 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
665 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
666 gcc_unreachable (); \
667 } \
668 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
669 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
670
42ce1cc4 671#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
058e97ec
VM
672 (({ int _min = (MIN), _max = (MAX), _i = (I); \
673 if (_i < _min || _i > _max) \
674 { \
675 fprintf (stderr, \
676 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
677 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
678 gcc_unreachable (); \
679 } \
680 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
681 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
682
683#else
684
42ce1cc4 685#define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
686 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
687 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
688
42ce1cc4 689#define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
690 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
691 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
692
42ce1cc4 693#define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
058e97ec
VM
694 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
695 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
696
697#endif
698
42ce1cc4 699/* The iterator for min/max sets. */
84562394 700struct minmax_set_iterator {
058e97ec 701
42ce1cc4 702 /* Array containing the bit vector. */
058e97ec
VM
703 IRA_INT_TYPE *vec;
704
705 /* The number of the current element in the vector. */
706 unsigned int word_num;
707
708 /* The number of bits in the bit vector. */
709 unsigned int nel;
710
711 /* The current bit index of the bit vector. */
712 unsigned int bit_num;
713
714 /* Index corresponding to the 1st bit of the bit vector. */
715 int start_val;
716
717 /* The word of the bit vector currently visited. */
718 unsigned IRA_INT_TYPE word;
84562394 719};
058e97ec 720
42ce1cc4
BS
721/* Initialize the iterator I for bit vector VEC containing minimal and
722 maximal values MIN and MAX. */
058e97ec 723static inline void
42ce1cc4
BS
724minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
725 int max)
058e97ec
VM
726{
727 i->vec = vec;
728 i->word_num = 0;
729 i->nel = max < min ? 0 : max - min + 1;
730 i->start_val = min;
731 i->bit_num = 0;
732 i->word = i->nel == 0 ? 0 : vec[0];
733}
734
ac0ab4f7 735/* Return TRUE if we have more allocnos to visit, in which case *N is
42ce1cc4 736 set to the number of the element to be visited. Otherwise, return
058e97ec
VM
737 FALSE. */
738static inline bool
42ce1cc4 739minmax_set_iter_cond (minmax_set_iterator *i, int *n)
058e97ec
VM
740{
741 /* Skip words that are zeros. */
742 for (; i->word == 0; i->word = i->vec[i->word_num])
743 {
744 i->word_num++;
745 i->bit_num = i->word_num * IRA_INT_BITS;
b8698a0f 746
058e97ec
VM
747 /* If we have reached the end, break. */
748 if (i->bit_num >= i->nel)
749 return false;
750 }
b8698a0f 751
058e97ec
VM
752 /* Skip bits that are zero. */
753 for (; (i->word & 1) == 0; i->word >>= 1)
754 i->bit_num++;
b8698a0f 755
058e97ec 756 *n = (int) i->bit_num + i->start_val;
b8698a0f 757
058e97ec
VM
758 return true;
759}
760
42ce1cc4 761/* Advance to the next element in the set. */
058e97ec 762static inline void
42ce1cc4 763minmax_set_iter_next (minmax_set_iterator *i)
058e97ec
VM
764{
765 i->word >>= 1;
766 i->bit_num++;
767}
768
42ce1cc4 769/* Loop over all elements of a min/max set given by bit vector VEC and
058e97ec
VM
770 their minimal and maximal values MIN and MAX. In each iteration, N
771 is set to the number of next allocno. ITER is an instance of
42ce1cc4
BS
772 minmax_set_iterator used to iterate over the set. */
773#define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
774 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
775 minmax_set_iter_cond (&(ITER), &(N)); \
776 minmax_set_iter_next (&(ITER)))
777\f
6c1dae73
MS
778class target_ira_int {
779public:
19c708dc
RS
780 ~target_ira_int ();
781
782 void free_ira_costs ();
783 void free_register_move_costs ();
784
aa1c5d72
RS
785 /* Initialized once. It is a maximal possible size of the allocated
786 struct costs. */
ff304c01 787 size_t x_max_struct_costs_size;
aa1c5d72
RS
788
789 /* Allocated and initialized once, and used to initialize cost values
790 for each insn. */
791 struct costs *x_init_cost;
792
793 /* Allocated once, and used for temporary purposes. */
794 struct costs *x_temp_costs;
795
796 /* Allocated once, and used for the cost calculation. */
797 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
798 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
799
67914693 800 /* Hard registers that cannot be used for the register allocator for
afcc66c4
RS
801 all functions of the current compilation unit. */
802 HARD_REG_SET x_no_unit_alloc_regs;
803
804 /* Map: hard regs X modes -> set of hard registers for storing value
805 of given mode starting with given hard register. */
806 HARD_REG_SET (x_ira_reg_mode_hard_regset
807 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
808
e80ccebc
RS
809 /* Maximum cost of moving from a register in one class to a register
810 in another class. Based on TARGET_REGISTER_MOVE_COST. */
7cc61ee4 811 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
e80ccebc
RS
812
813 /* Similar, but here we don't have to move if the first index is a
814 subset of the second so in that case the cost is zero. */
7cc61ee4 815 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
e80ccebc
RS
816
817 /* Similar, but here we don't have to move if the first index is a
818 superset of the second so in that case the cost is zero. */
7cc61ee4 819 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
e80ccebc
RS
820
821 /* Keep track of the last mode we initialized move costs for. */
822 int x_last_mode_for_init_move_cost;
823
7cc61ee4
RS
824 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
825 cost not minimal. */
1756cb66 826 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
1756cb66
VM
827
828 /* Map class->true if class is a possible allocno class, false
829 otherwise. */
830 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
831
832 /* Map class->true if class is a pressure class, false otherwise. */
833 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
834
afcc66c4 835 /* Array of the number of hard registers of given class which are
dd5a833e 836 available for allocation. The order is defined by the hard
afcc66c4
RS
837 register numbers. */
838 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
839
840 /* Index (in ira_class_hard_regs; for given register class and hard
841 register (in general case a hard register can belong to several
842 register classes;. The index is negative for hard registers
843 unavailable for the allocation. */
844 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
845
a2c19e93
RS
846 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
847
848 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
849
850 For example, if:
851
852 - (reg:M 2) is valid and occupies two registers;
853 - register 2 belongs to CL; and
854 - register 3 belongs to the same pressure class as CL
855
856 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
857 in the set. */
858 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
859
afcc66c4
RS
860 /* The value is number of elements in the subsequent array. */
861 int x_ira_important_classes_num;
862
1756cb66 863 /* The array containing all non-empty classes. Such classes is
afcc66c4
RS
864 important for calculation of the hard register usage costs. */
865 enum reg_class x_ira_important_classes[N_REG_CLASSES];
866
1756cb66
VM
867 /* The array containing indexes of important classes in the previous
868 array. The array elements are defined only for important
869 classes. */
870 int x_ira_important_class_nums[N_REG_CLASSES];
871
165f639c
VM
872 /* Map class->true if class is an uniform class, false otherwise. */
873 bool x_ira_uniform_class_p[N_REG_CLASSES];
874
afcc66c4
RS
875 /* The biggest important class inside of intersection of the two
876 classes (that is calculated taking only hard registers available
877 for allocation into account;. If the both classes contain no hard
878 registers available for allocation, the value is calculated with
879 taking all hard-registers including fixed ones into account. */
880 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
881
afcc66c4 882 /* Classes with end marker LIM_REG_CLASSES which are intersected with
55a2c322 883 given class (the first index). That includes given class itself.
afcc66c4
RS
884 This is calculated taking only hard registers available for
885 allocation into account. */
886 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
887
1756cb66
VM
888 /* The biggest (smallest) important class inside of (covering) union
889 of the two classes (that is calculated taking only hard registers
890 available for allocation into account). If the both classes
891 contain no hard registers available for allocation, the value is
892 calculated with taking all hard-registers including fixed ones
893 into account. In other words, the value is the corresponding
894 reg_class_subunion (reg_class_superunion) value. */
895 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
896 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
afcc66c4
RS
897
898 /* For each reg class, table listing all the classes contained in it
899 (excluding the class itself. Non-allocatable registers are
55a2c322 900 excluded from the consideration). */
afcc66c4 901 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
15e7b94f
RS
902
903 /* Array whose values are hard regset of hard registers for which
904 move of the hard register in given mode into itself is
905 prohibited. */
906 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
907
908 /* Flag of that the above array has been initialized. */
909 bool x_ira_prohibited_mode_move_regs_initialized_p;
afcc66c4
RS
910};
911
99b1c316 912extern class target_ira_int default_target_ira_int;
afcc66c4 913#if SWITCHABLE_TARGET
99b1c316 914extern class target_ira_int *this_target_ira_int;
afcc66c4
RS
915#else
916#define this_target_ira_int (&default_target_ira_int)
917#endif
058e97ec 918
afcc66c4
RS
919#define ira_reg_mode_hard_regset \
920 (this_target_ira_int->x_ira_reg_mode_hard_regset)
921#define ira_register_move_cost \
922 (this_target_ira_int->x_ira_register_move_cost)
1756cb66
VM
923#define ira_max_memory_move_cost \
924 (this_target_ira_int->x_ira_max_memory_move_cost)
afcc66c4
RS
925#define ira_may_move_in_cost \
926 (this_target_ira_int->x_ira_may_move_in_cost)
927#define ira_may_move_out_cost \
928 (this_target_ira_int->x_ira_may_move_out_cost)
1756cb66
VM
929#define ira_reg_allocno_class_p \
930 (this_target_ira_int->x_ira_reg_allocno_class_p)
931#define ira_reg_pressure_class_p \
932 (this_target_ira_int->x_ira_reg_pressure_class_p)
afcc66c4
RS
933#define ira_non_ordered_class_hard_regs \
934 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
935#define ira_class_hard_reg_index \
936 (this_target_ira_int->x_ira_class_hard_reg_index)
a2c19e93
RS
937#define ira_useful_class_mode_regs \
938 (this_target_ira_int->x_ira_useful_class_mode_regs)
afcc66c4
RS
939#define ira_important_classes_num \
940 (this_target_ira_int->x_ira_important_classes_num)
941#define ira_important_classes \
942 (this_target_ira_int->x_ira_important_classes)
1756cb66
VM
943#define ira_important_class_nums \
944 (this_target_ira_int->x_ira_important_class_nums)
165f639c
VM
945#define ira_uniform_class_p \
946 (this_target_ira_int->x_ira_uniform_class_p)
afcc66c4
RS
947#define ira_reg_class_intersect \
948 (this_target_ira_int->x_ira_reg_class_intersect)
afcc66c4
RS
949#define ira_reg_class_super_classes \
950 (this_target_ira_int->x_ira_reg_class_super_classes)
1756cb66
VM
951#define ira_reg_class_subunion \
952 (this_target_ira_int->x_ira_reg_class_subunion)
953#define ira_reg_class_superunion \
954 (this_target_ira_int->x_ira_reg_class_superunion)
15e7b94f
RS
955#define ira_prohibited_mode_move_regs \
956 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
afcc66c4
RS
957\f
958/* ira.c: */
058e97ec 959
058e97ec 960extern void *ira_allocate (size_t);
058e97ec
VM
961extern void ira_free (void *addr);
962extern bitmap ira_allocate_bitmap (void);
963extern void ira_free_bitmap (bitmap);
964extern void ira_print_disposition (FILE *);
965extern void ira_debug_disposition (void);
1756cb66 966extern void ira_debug_allocno_classes (void);
ef4bddc2 967extern void ira_init_register_move_cost (machine_mode);
73bb8fe9
RS
968extern alternative_mask ira_setup_alts (rtx_insn *);
969extern int ira_get_dup_out_num (int, alternative_mask);
058e97ec 970
058e97ec
VM
971/* ira-build.c */
972
973/* The current loop tree node and its regno allocno map. */
974extern ira_loop_tree_node_t ira_curr_loop_tree_node;
975extern ira_allocno_t *ira_curr_regno_allocno_map;
976
3b6d1699
VM
977extern void ira_debug_pref (ira_pref_t);
978extern void ira_debug_prefs (void);
979extern void ira_debug_allocno_prefs (ira_allocno_t);
980
4cda38d5 981extern void ira_debug_copy (ira_copy_t);
7b3b6ae4
LC
982extern void debug (ira_allocno_copy &ref);
983extern void debug (ira_allocno_copy *ptr);
984
4cda38d5 985extern void ira_debug_copies (void);
058e97ec 986extern void ira_debug_allocno_copies (ira_allocno_t);
7b3b6ae4
LC
987extern void debug (ira_allocno &ref);
988extern void debug (ira_allocno *ptr);
058e97ec
VM
989
990extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
991 void (*) (ira_loop_tree_node_t),
992 void (*) (ira_loop_tree_node_t));
029da7d4
BS
993extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
994extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
058e97ec 995extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
ac0ab4f7 996extern void ira_create_allocno_objects (ira_allocno_t);
1756cb66 997extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
a49ae217
BS
998extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
999extern void ira_allocate_conflict_vec (ira_object_t, int);
1000extern void ira_allocate_object_conflicts (ira_object_t, int);
ac0ab4f7 1001extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
058e97ec 1002extern void ira_print_expanded_allocno (ira_allocno_t);
ac0ab4f7 1003extern void ira_add_live_range_to_object (ira_object_t, int, int);
9140d27b
BS
1004extern live_range_t ira_create_live_range (ira_object_t, int, int,
1005 live_range_t);
1006extern live_range_t ira_copy_live_range_list (live_range_t);
1007extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1008extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1009extern void ira_finish_live_range (live_range_t);
1010extern void ira_finish_live_range_list (live_range_t);
058e97ec 1011extern void ira_free_allocno_updated_costs (ira_allocno_t);
3b6d1699
VM
1012extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1013extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1014extern void ira_remove_pref (ira_pref_t);
1015extern void ira_remove_allocno_prefs (ira_allocno_t);
058e97ec 1016extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
070a1983
DM
1017 int, bool, rtx_insn *,
1018 ira_loop_tree_node_t);
548a6322 1019extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
070a1983
DM
1020 bool, rtx_insn *,
1021 ira_loop_tree_node_t);
058e97ec 1022
6f76a878
AS
1023extern int *ira_allocate_cost_vector (reg_class_t);
1024extern void ira_free_cost_vector (int *, reg_class_t);
058e97ec
VM
1025
1026extern void ira_flattening (int, int);
2608d841 1027extern bool ira_build (void);
058e97ec
VM
1028extern void ira_destroy (void);
1029
1030/* ira-costs.c */
1031extern void ira_init_costs_once (void);
1032extern void ira_init_costs (void);
058e97ec 1033extern void ira_costs (void);
1756cb66 1034extern void ira_tune_allocno_costs (void);
058e97ec
VM
1035
1036/* ira-lives.c */
1037
1038extern void ira_rebuild_start_finish_chains (void);
b14151b5 1039extern void ira_print_live_range_list (FILE *, live_range_t);
7b3b6ae4
LC
1040extern void debug (live_range &ref);
1041extern void debug (live_range *ptr);
b14151b5 1042extern void ira_debug_live_range_list (live_range_t);
058e97ec
VM
1043extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1044extern void ira_debug_live_ranges (void);
1045extern void ira_create_allocno_live_ranges (void);
b15a7ae6 1046extern void ira_compress_allocno_live_ranges (void);
058e97ec 1047extern void ira_finish_allocno_live_ranges (void);
8f3f5ac0
L
1048extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *,
1049 alternative_mask);
058e97ec
VM
1050
1051/* ira-conflicts.c */
058e97ec
VM
1052extern void ira_debug_conflicts (bool);
1053extern void ira_build_conflicts (void);
1054
1055/* ira-color.c */
1756cb66 1056extern void ira_debug_hard_regs_forest (void);
058e97ec
VM
1057extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1058extern void ira_reassign_conflict_allocnos (int);
1059extern void ira_initiate_assign (void);
1060extern void ira_finish_assign (void);
1061extern void ira_color (void);
058e97ec
VM
1062
1063/* ira-emit.c */
1756cb66
VM
1064extern void ira_initiate_emit_data (void);
1065extern void ira_finish_emit_data (void);
058e97ec
VM
1066extern void ira_emit (bool);
1067
1068\f
1069
55a2c322
VM
1070/* Return true if equivalence of pseudo REGNO is not a lvalue. */
1071static inline bool
1072ira_equiv_no_lvalue_p (int regno)
1073{
1074 if (regno >= ira_reg_equiv_len)
1075 return false;
1076 return (ira_reg_equiv[regno].constant != NULL_RTX
1077 || ira_reg_equiv[regno].invariant != NULL_RTX
1078 || (ira_reg_equiv[regno].memory != NULL_RTX
1079 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1080}
1081
1082\f
1083
1756cb66
VM
1084/* Initialize register costs for MODE if necessary. */
1085static inline void
ef4bddc2 1086ira_init_register_move_cost_if_necessary (machine_mode mode)
6080348f
VM
1087{
1088 if (ira_register_move_cost[mode] == NULL)
1089 ira_init_register_move_cost (mode);
6080348f
VM
1090}
1091
1092\f
1093
058e97ec 1094/* The iterator for all allocnos. */
84562394 1095struct ira_allocno_iterator {
058e97ec
VM
1096 /* The number of the current element in IRA_ALLOCNOS. */
1097 int n;
84562394 1098};
058e97ec
VM
1099
1100/* Initialize the iterator I. */
1101static inline void
1102ira_allocno_iter_init (ira_allocno_iterator *i)
1103{
1104 i->n = 0;
1105}
1106
1107/* Return TRUE if we have more allocnos to visit, in which case *A is
1108 set to the allocno to be visited. Otherwise, return FALSE. */
1109static inline bool
1110ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1111{
1112 int n;
1113
1114 for (n = i->n; n < ira_allocnos_num; n++)
1115 if (ira_allocnos[n] != NULL)
1116 {
1117 *a = ira_allocnos[n];
1118 i->n = n + 1;
1119 return true;
1120 }
1121 return false;
1122}
1123
1124/* Loop over all allocnos. In each iteration, A is set to the next
1125 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1126 the allocnos. */
1127#define FOR_EACH_ALLOCNO(A, ITER) \
1128 for (ira_allocno_iter_init (&(ITER)); \
1129 ira_allocno_iter_cond (&(ITER), &(A));)
a49ae217
BS
1130\f
1131/* The iterator for all objects. */
84562394 1132struct ira_object_iterator {
ac0ab4f7 1133 /* The number of the current element in ira_object_id_map. */
a49ae217 1134 int n;
84562394 1135};
058e97ec 1136
a49ae217
BS
1137/* Initialize the iterator I. */
1138static inline void
1139ira_object_iter_init (ira_object_iterator *i)
1140{
1141 i->n = 0;
1142}
1143
1144/* Return TRUE if we have more objects to visit, in which case *OBJ is
1145 set to the object to be visited. Otherwise, return FALSE. */
1146static inline bool
1147ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1148{
1149 int n;
058e97ec 1150
a49ae217
BS
1151 for (n = i->n; n < ira_objects_num; n++)
1152 if (ira_object_id_map[n] != NULL)
1153 {
1154 *obj = ira_object_id_map[n];
1155 i->n = n + 1;
1156 return true;
1157 }
1158 return false;
1159}
1160
ac0ab4f7
BS
1161/* Loop over all objects. In each iteration, OBJ is set to the next
1162 object. ITER is an instance of ira_object_iterator used to iterate
a49ae217
BS
1163 the objects. */
1164#define FOR_EACH_OBJECT(OBJ, ITER) \
1165 for (ira_object_iter_init (&(ITER)); \
1166 ira_object_iter_cond (&(ITER), &(OBJ));)
058e97ec 1167\f
ac0ab4f7 1168/* The iterator for objects associated with an allocno. */
84562394 1169struct ira_allocno_object_iterator {
ac0ab4f7
BS
1170 /* The number of the element the allocno's object array. */
1171 int n;
84562394 1172};
ac0ab4f7
BS
1173
1174/* Initialize the iterator I. */
1175static inline void
1176ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1177{
1178 i->n = 0;
1179}
1180
1181/* Return TRUE if we have more objects to visit in allocno A, in which
1182 case *O is set to the object to be visited. Otherwise, return
1183 FALSE. */
1184static inline bool
1185ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1186 ira_object_t *o)
1187{
d0a854af
RG
1188 int n = i->n++;
1189 if (n < ALLOCNO_NUM_OBJECTS (a))
1190 {
1191 *o = ALLOCNO_OBJECT (a, n);
1192 return true;
1193 }
1194 return false;
ac0ab4f7
BS
1195}
1196
1197/* Loop over all objects associated with allocno A. In each
1198 iteration, O is set to the next object. ITER is an instance of
1199 ira_allocno_object_iterator used to iterate the conflicts. */
1200#define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1201 for (ira_allocno_object_iter_init (&(ITER)); \
1202 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1203\f
058e97ec 1204
3b6d1699 1205/* The iterator for prefs. */
84562394 1206struct ira_pref_iterator {
3b6d1699
VM
1207 /* The number of the current element in IRA_PREFS. */
1208 int n;
84562394 1209};
3b6d1699
VM
1210
1211/* Initialize the iterator I. */
1212static inline void
1213ira_pref_iter_init (ira_pref_iterator *i)
1214{
1215 i->n = 0;
1216}
1217
1218/* Return TRUE if we have more prefs to visit, in which case *PREF is
1219 set to the pref to be visited. Otherwise, return FALSE. */
1220static inline bool
1221ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1222{
1223 int n;
1224
1225 for (n = i->n; n < ira_prefs_num; n++)
1226 if (ira_prefs[n] != NULL)
1227 {
1228 *pref = ira_prefs[n];
1229 i->n = n + 1;
1230 return true;
1231 }
1232 return false;
1233}
1234
1235/* Loop over all prefs. In each iteration, P is set to the next
1236 pref. ITER is an instance of ira_pref_iterator used to iterate
1237 the prefs. */
1238#define FOR_EACH_PREF(P, ITER) \
1239 for (ira_pref_iter_init (&(ITER)); \
1240 ira_pref_iter_cond (&(ITER), &(P));)
1241\f
1242
058e97ec 1243/* The iterator for copies. */
84562394 1244struct ira_copy_iterator {
058e97ec
VM
1245 /* The number of the current element in IRA_COPIES. */
1246 int n;
84562394 1247};
058e97ec
VM
1248
1249/* Initialize the iterator I. */
1250static inline void
1251ira_copy_iter_init (ira_copy_iterator *i)
1252{
1253 i->n = 0;
1254}
1255
1256/* Return TRUE if we have more copies to visit, in which case *CP is
1257 set to the copy to be visited. Otherwise, return FALSE. */
1258static inline bool
1259ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1260{
1261 int n;
1262
1263 for (n = i->n; n < ira_copies_num; n++)
1264 if (ira_copies[n] != NULL)
1265 {
1266 *cp = ira_copies[n];
1267 i->n = n + 1;
1268 return true;
1269 }
1270 return false;
1271}
1272
1273/* Loop over all copies. In each iteration, C is set to the next
1274 copy. ITER is an instance of ira_copy_iterator used to iterate
1275 the copies. */
1276#define FOR_EACH_COPY(C, ITER) \
1277 for (ira_copy_iter_init (&(ITER)); \
1278 ira_copy_iter_cond (&(ITER), &(C));)
058e97ec 1279\f
ac0ab4f7 1280/* The iterator for object conflicts. */
84562394 1281struct ira_object_conflict_iterator {
ac0ab4f7
BS
1282
1283 /* TRUE if the conflicts are represented by vector of allocnos. */
a49ae217 1284 bool conflict_vec_p;
058e97ec
VM
1285
1286 /* The conflict vector or conflict bit vector. */
1287 void *vec;
1288
1289 /* The number of the current element in the vector (of type
a49ae217 1290 ira_object_t or IRA_INT_TYPE). */
058e97ec
VM
1291 unsigned int word_num;
1292
1293 /* The bit vector size. It is defined only if
a49ae217 1294 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1295 unsigned int size;
1296
1297 /* The current bit index of bit vector. It is defined only if
a49ae217 1298 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1299 unsigned int bit_num;
1300
a49ae217
BS
1301 /* The object id corresponding to the 1st bit of the bit vector. It
1302 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec
VM
1303 int base_conflict_id;
1304
1305 /* The word of bit vector currently visited. It is defined only if
a49ae217 1306 OBJECT_CONFLICT_VEC_P is FALSE. */
058e97ec 1307 unsigned IRA_INT_TYPE word;
84562394 1308};
058e97ec
VM
1309
1310/* Initialize the iterator I with ALLOCNO conflicts. */
1311static inline void
fa86d337
BS
1312ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1313 ira_object_t obj)
058e97ec 1314{
a49ae217
BS
1315 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1316 i->vec = OBJECT_CONFLICT_ARRAY (obj);
058e97ec 1317 i->word_num = 0;
a49ae217 1318 if (i->conflict_vec_p)
058e97ec
VM
1319 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1320 else
1321 {
a49ae217 1322 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
058e97ec
VM
1323 i->size = 0;
1324 else
a49ae217 1325 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
058e97ec
VM
1326 + IRA_INT_BITS)
1327 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1328 i->bit_num = 0;
a49ae217 1329 i->base_conflict_id = OBJECT_MIN (obj);
058e97ec
VM
1330 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1331 }
1332}
1333
1334/* Return TRUE if we have more conflicting allocnos to visit, in which
1335 case *A is set to the allocno to be visited. Otherwise, return
1336 FALSE. */
1337static inline bool
fa86d337
BS
1338ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1339 ira_object_t *pobj)
058e97ec 1340{
a49ae217 1341 ira_object_t obj;
058e97ec 1342
a49ae217 1343 if (i->conflict_vec_p)
058e97ec 1344 {
1756cb66 1345 obj = ((ira_object_t *) i->vec)[i->word_num++];
a49ae217 1346 if (obj == NULL)
058e97ec 1347 return false;
058e97ec
VM
1348 }
1349 else
1350 {
1756cb66
VM
1351 unsigned IRA_INT_TYPE word = i->word;
1352 unsigned int bit_num = i->bit_num;
1353
058e97ec 1354 /* Skip words that are zeros. */
1756cb66 1355 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
058e97ec
VM
1356 {
1357 i->word_num++;
b8698a0f 1358
058e97ec
VM
1359 /* If we have reached the end, break. */
1360 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1361 return false;
b8698a0f 1362
1756cb66 1363 bit_num = i->word_num * IRA_INT_BITS;
058e97ec 1364 }
b8698a0f 1365
058e97ec 1366 /* Skip bits that are zero. */
1756cb66
VM
1367 for (; (word & 1) == 0; word >>= 1)
1368 bit_num++;
b8698a0f 1369
1756cb66
VM
1370 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1371 i->bit_num = bit_num + 1;
1372 i->word = word >> 1;
058e97ec 1373 }
a49ae217 1374
fa86d337 1375 *pobj = obj;
a49ae217 1376 return true;
058e97ec
VM
1377}
1378
fa86d337
BS
1379/* Loop over all objects conflicting with OBJ. In each iteration,
1380 CONF is set to the next conflicting object. ITER is an instance
1381 of ira_object_conflict_iterator used to iterate the conflicts. */
1382#define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1383 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1756cb66 1384 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
058e97ec
VM
1385
1386\f
1387
1756cb66
VM
1388/* The function returns TRUE if at least one hard register from ones
1389 starting with HARD_REGNO and containing value of MODE are in set
1390 HARD_REGSET. */
1391static inline bool
ef4bddc2 1392ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode,
1756cb66
VM
1393 HARD_REG_SET hard_regset)
1394{
1395 int i;
1396
1397 gcc_assert (hard_regno >= 0);
ad474626 1398 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1756cb66
VM
1399 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1400 return true;
1401 return false;
1402}
1403
1404/* Return number of hard registers in hard register SET. */
1405static inline int
1406hard_reg_set_size (HARD_REG_SET set)
1407{
1408 int i, size;
1409
1410 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1411 if (TEST_HARD_REG_BIT (set, i))
1412 size++;
1413 return size;
1414}
1415
058e97ec 1416/* The function returns TRUE if hard registers starting with
9181a6e5 1417 HARD_REGNO and containing value of MODE are fully in set
058e97ec
VM
1418 HARD_REGSET. */
1419static inline bool
ef4bddc2 1420ira_hard_reg_in_set_p (int hard_regno, machine_mode mode,
9181a6e5 1421 HARD_REG_SET hard_regset)
058e97ec
VM
1422{
1423 int i;
1424
1425 ira_assert (hard_regno >= 0);
ad474626 1426 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
9181a6e5 1427 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
058e97ec
VM
1428 return false;
1429 return true;
1430}
1431
1432\f
1433
1434/* To save memory we use a lazy approach for allocation and
1435 initialization of the cost vectors. We do this only when it is
1436 really necessary. */
1437
1756cb66 1438/* Allocate cost vector *VEC for hard registers of ACLASS and
058e97ec
VM
1439 initialize the elements by VAL if it is necessary */
1440static inline void
6f76a878 1441ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
058e97ec
VM
1442{
1443 int i, *reg_costs;
1444 int len;
1445
1446 if (*vec != NULL)
1447 return;
1756cb66 1448 *vec = reg_costs = ira_allocate_cost_vector (aclass);
6f76a878 1449 len = ira_class_hard_regs_num[(int) aclass];
058e97ec
VM
1450 for (i = 0; i < len; i++)
1451 reg_costs[i] = val;
1452}
1453
1756cb66
VM
1454/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1455 values of vector SRC into the vector if it is necessary */
058e97ec 1456static inline void
1756cb66 1457ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1458{
1459 int len;
1460
1461 if (*vec != NULL || src == NULL)
1462 return;
1756cb66
VM
1463 *vec = ira_allocate_cost_vector (aclass);
1464 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1465 memcpy (*vec, src, sizeof (int) * len);
1466}
1467
1756cb66
VM
1468/* Allocate cost vector *VEC for hard registers of ACLASS and add
1469 values of vector SRC into the vector if it is necessary */
058e97ec 1470static inline void
1756cb66 1471ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
058e97ec
VM
1472{
1473 int i, len;
1474
1475 if (src == NULL)
1476 return;
1756cb66 1477 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1478 if (*vec == NULL)
1479 {
1756cb66 1480 *vec = ira_allocate_cost_vector (aclass);
058e97ec
VM
1481 memset (*vec, 0, sizeof (int) * len);
1482 }
1483 for (i = 0; i < len; i++)
1484 (*vec)[i] += src[i];
1485}
1486
1756cb66
VM
1487/* Allocate cost vector *VEC for hard registers of ACLASS and copy
1488 values of vector SRC into the vector or initialize it by VAL (if
1489 SRC is null). */
058e97ec 1490static inline void
1756cb66 1491ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
058e97ec
VM
1492 int val, int *src)
1493{
1494 int i, *reg_costs;
1495 int len;
1496
1497 if (*vec != NULL)
1498 return;
1756cb66
VM
1499 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1500 len = ira_class_hard_regs_num[aclass];
058e97ec
VM
1501 if (src != NULL)
1502 memcpy (reg_costs, src, sizeof (int) * len);
1503 else
1504 {
1505 for (i = 0; i < len; i++)
1506 reg_costs[i] = val;
1507 }
1508}
acf41a74
BS
1509
1510extern rtx ira_create_new_reg (rtx);
1511extern int first_moveable_pseudo, last_moveable_pseudo;
f1717f8d
KC
1512
1513#endif /* GCC_IRA_INT_H */