]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
Remove IOR_COMPL_HARD_REG_SET
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
a5544970 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec 155
df3e3493 156 * IRA creates live ranges of each allocno, calculates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66 194 the allocation. IRA uses some heuristics to improve the
41808d15
VM
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
1756cb66
VM
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
058e97ec
VM
234
235 * Popping the allocnos from the stack and assigning them hard
67914693 236 registers. If IRA cannot assign a hard register to an
058e97ec
VM
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
1756cb66 247 * Chaitin-Briggs coloring assigns as many pseudos as possible
df3e3493 248 to hard registers. After coloring we try to improve
1756cb66
VM
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
3447fefe 254 * After allocno assigning in the region, IRA modifies the hard
058e97ec
VM
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
1756cb66
VM
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
058e97ec
VM
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
1756cb66
VM
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
1756cb66
VM
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
058e97ec
VM
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
df3e3493 310 spilled allocnos. This is implemented by a simple and fast
058e97ec
VM
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
df3e3493 331 data are initialized in file ira.c.
058e97ec
VM
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
1756cb66
VM
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
058e97ec
VM
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
c7131fb2 369#include "backend.h"
957060b5 370#include "target.h"
058e97ec 371#include "rtl.h"
957060b5 372#include "tree.h"
c7131fb2 373#include "df.h"
4d0cdd0c 374#include "memmodel.h"
957060b5 375#include "tm_p.h"
957060b5 376#include "insn-config.h"
c7131fb2 377#include "regs.h"
957060b5
AM
378#include "ira.h"
379#include "ira-int.h"
380#include "diagnostic-core.h"
60393bbc
AM
381#include "cfgrtl.h"
382#include "cfgbuild.h"
383#include "cfgcleanup.h"
058e97ec 384#include "expr.h"
058e97ec
VM
385#include "tree-pass.h"
386#include "output.h"
387#include "reload.h"
c7131fb2 388#include "cfgloop.h"
55a2c322 389#include "lra.h"
b0c11403 390#include "dce.h"
acf41a74 391#include "dbgcnt.h"
40954ce5 392#include "rtl-iter.h"
a5e022d5 393#include "shrink-wrap.h"
013a8899 394#include "print-rtl.h"
058e97ec 395
afcc66c4 396struct target_ira default_target_ira;
99b1c316 397class target_ira_int default_target_ira_int;
afcc66c4
RS
398#if SWITCHABLE_TARGET
399struct target_ira *this_target_ira = &default_target_ira;
99b1c316 400class target_ira_int *this_target_ira_int = &default_target_ira_int;
afcc66c4
RS
401#endif
402
058e97ec
VM
403/* A modified value of flag `-fira-verbose' used internally. */
404int internal_flag_ira_verbose;
405
406/* Dump file of the allocator if it is not NULL. */
407FILE *ira_dump_file;
408
058e97ec
VM
409/* The number of elements in the following array. */
410int ira_spilled_reg_stack_slots_num;
411
412/* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
99b1c316 414class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
058e97ec 415
ae2b9cb6
BS
416/* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
2bf7560b
VM
421int64_t ira_overall_cost, overall_cost_before;
422int64_t ira_reg_cost, ira_mem_cost;
423int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec
VM
424int ira_move_loops_num, ira_additional_jumps_num;
425
2af2dbdc
VM
426/* All registers that can be eliminated. */
427
428HARD_REG_SET eliminable_regset;
429
70cc3288
VM
430/* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433static int max_regno_before_ira;
434
058e97ec
VM
435/* Temporary hard reg set used for a different calculation. */
436static HARD_REG_SET temp_hard_regset;
437
e80ccebc
RS
438#define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
440\f
441
442/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443static void
444setup_reg_mode_hard_regset (void)
445{
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
ad474626
RS
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
058e97ec
VM
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458}
459
460\f
afcc66c4
RS
461#define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
463
464/* The function sets up the three arrays declared above. */
465static void
466setup_class_hard_regs (void)
467{
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
d15e5131 474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
058e97ec 475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 477 {
854edfcd
VM
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
0583835c 480 }
058e97ec
VM
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483#ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485#else
486 hard_regno = i;
b8698a0f 487#endif
058e97ec
VM
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
0583835c
VM
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
504 }
505}
506
058e97ec
VM
507/* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510static void
511setup_alloc_regs (bool use_hard_frame_p)
512{
5a733826
BS
513#ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515#endif
6576d245 516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
058e97ec
VM
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
058e97ec
VM
520}
521
522\f
523
1756cb66
VM
524#define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
526
527/* Initialize the table of subclasses of each reg class. */
528static void
529setup_reg_subclasses (void)
530{
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
533
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537
538 for (i = 0; i < N_REG_CLASSES; i++)
539 {
540 if (i == (int) NO_REGS)
541 continue;
542
d15e5131 543 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1756cb66
VM
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
548 {
549 enum reg_class *p;
550
d15e5131 551 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
1756cb66
VM
552 if (! hard_reg_set_subset_p (temp_hard_regset,
553 temp_hard_regset2))
554 continue;
555 p = &alloc_reg_class_subclasses[j][0];
556 while (*p != LIM_REG_CLASSES) p++;
557 *p = (enum reg_class) i;
558 }
559 }
560}
561
562\f
563
564/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
565static void
566setup_class_subset_and_memory_move_costs (void)
567{
1756cb66 568 int cl, cl2, mode, cost;
058e97ec
VM
569 HARD_REG_SET temp_hard_regset2;
570
571 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
572 ira_memory_move_cost[mode][NO_REGS][0]
573 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
574 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
575 {
576 if (cl != (int) NO_REGS)
577 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
578 {
1756cb66
VM
579 ira_max_memory_move_cost[mode][cl][0]
580 = ira_memory_move_cost[mode][cl][0]
ef4bddc2 581 = memory_move_cost ((machine_mode) mode,
6f76a878 582 (reg_class_t) cl, false);
1756cb66
VM
583 ira_max_memory_move_cost[mode][cl][1]
584 = ira_memory_move_cost[mode][cl][1]
ef4bddc2 585 = memory_move_cost ((machine_mode) mode,
6f76a878 586 (reg_class_t) cl, true);
058e97ec
VM
587 /* Costs for NO_REGS are used in cost calculation on the
588 1st pass when the preferred register classes are not
589 known yet. In this case we take the best scenario. */
590 if (ira_memory_move_cost[mode][NO_REGS][0]
591 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
592 ira_max_memory_move_cost[mode][NO_REGS][0]
593 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
594 = ira_memory_move_cost[mode][cl][0];
595 if (ira_memory_move_cost[mode][NO_REGS][1]
596 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
597 ira_max_memory_move_cost[mode][NO_REGS][1]
598 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
599 = ira_memory_move_cost[mode][cl][1];
600 }
058e97ec 601 }
1756cb66
VM
602 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
603 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
604 {
d15e5131
RS
605 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
606 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1756cb66
VM
607 ira_class_subset_p[cl][cl2]
608 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
609 if (! hard_reg_set_empty_p (temp_hard_regset2)
610 && hard_reg_set_subset_p (reg_class_contents[cl2],
611 reg_class_contents[cl]))
612 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
613 {
614 cost = ira_memory_move_cost[mode][cl2][0];
615 if (cost > ira_max_memory_move_cost[mode][cl][0])
616 ira_max_memory_move_cost[mode][cl][0] = cost;
617 cost = ira_memory_move_cost[mode][cl2][1];
618 if (cost > ira_max_memory_move_cost[mode][cl][1])
619 ira_max_memory_move_cost[mode][cl][1] = cost;
620 }
621 }
622 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
623 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
624 {
625 ira_memory_move_cost[mode][cl][0]
626 = ira_max_memory_move_cost[mode][cl][0];
627 ira_memory_move_cost[mode][cl][1]
628 = ira_max_memory_move_cost[mode][cl][1];
629 }
630 setup_reg_subclasses ();
058e97ec
VM
631}
632
633\f
634
635/* Define the following macro if allocation through malloc if
636 preferable. */
637#define IRA_NO_OBSTACK
638
639#ifndef IRA_NO_OBSTACK
640/* Obstack used for storing all dynamic data (except bitmaps) of the
641 IRA. */
642static struct obstack ira_obstack;
643#endif
644
645/* Obstack used for storing all bitmaps of the IRA. */
646static struct bitmap_obstack ira_bitmap_obstack;
647
648/* Allocate memory of size LEN for IRA data. */
649void *
650ira_allocate (size_t len)
651{
652 void *res;
653
654#ifndef IRA_NO_OBSTACK
655 res = obstack_alloc (&ira_obstack, len);
656#else
657 res = xmalloc (len);
658#endif
659 return res;
660}
661
058e97ec
VM
662/* Free memory ADDR allocated for IRA data. */
663void
664ira_free (void *addr ATTRIBUTE_UNUSED)
665{
666#ifndef IRA_NO_OBSTACK
667 /* do nothing */
668#else
669 free (addr);
670#endif
671}
672
673
674/* Allocate and returns bitmap for IRA. */
675bitmap
676ira_allocate_bitmap (void)
677{
678 return BITMAP_ALLOC (&ira_bitmap_obstack);
679}
680
681/* Free bitmap B allocated for IRA. */
682void
683ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
684{
685 /* do nothing */
686}
687
688\f
689
690/* Output information about allocation of all allocnos (except for
691 caps) into file F. */
692void
693ira_print_disposition (FILE *f)
694{
695 int i, n, max_regno;
696 ira_allocno_t a;
697 basic_block bb;
698
699 fprintf (f, "Disposition:");
700 max_regno = max_reg_num ();
701 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
702 for (a = ira_regno_allocno_map[i];
703 a != NULL;
704 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
705 {
706 if (n % 4 == 0)
707 fprintf (f, "\n");
708 n++;
709 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
710 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
711 fprintf (f, "b%-3d", bb->index);
712 else
2608d841 713 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
714 if (ALLOCNO_HARD_REGNO (a) >= 0)
715 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
716 else
717 fprintf (f, " mem");
718 }
719 fprintf (f, "\n");
720}
721
722/* Outputs information about allocation of all allocnos into
723 stderr. */
724void
725ira_debug_disposition (void)
726{
727 ira_print_disposition (stderr);
728}
729
730\f
058e97ec 731
1756cb66
VM
732/* Set up ira_stack_reg_pressure_class which is the biggest pressure
733 register class containing stack registers or NO_REGS if there are
734 no stack registers. To find this class, we iterate through all
735 register pressure classes and choose the first register pressure
736 class containing all the stack registers and having the biggest
737 size. */
fe82cdfb 738static void
1756cb66
VM
739setup_stack_reg_pressure_class (void)
740{
741 ira_stack_reg_pressure_class = NO_REGS;
742#ifdef STACK_REGS
743 {
744 int i, best, size;
745 enum reg_class cl;
746 HARD_REG_SET temp_hard_regset2;
747
748 CLEAR_HARD_REG_SET (temp_hard_regset);
749 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
750 SET_HARD_REG_BIT (temp_hard_regset, i);
751 best = 0;
752 for (i = 0; i < ira_pressure_classes_num; i++)
753 {
754 cl = ira_pressure_classes[i];
dc333d8f 755 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
1756cb66
VM
756 size = hard_reg_set_size (temp_hard_regset2);
757 if (best < size)
758 {
759 best = size;
760 ira_stack_reg_pressure_class = cl;
761 }
762 }
763 }
764#endif
765}
766
767/* Find pressure classes which are register classes for which we
768 calculate register pressure in IRA, register pressure sensitive
769 insn scheduling, and register pressure sensitive loop invariant
770 motion.
771
772 To make register pressure calculation easy, we always use
773 non-intersected register pressure classes. A move of hard
774 registers from one register pressure class is not more expensive
775 than load and store of the hard registers. Most likely an allocno
776 class will be a subset of a register pressure class and in many
777 cases a register pressure class. That makes usage of register
778 pressure classes a good approximation to find a high register
779 pressure. */
780static void
781setup_pressure_classes (void)
058e97ec 782{
1756cb66
VM
783 int cost, i, n, curr;
784 int cl, cl2;
785 enum reg_class pressure_classes[N_REG_CLASSES];
786 int m;
058e97ec 787 HARD_REG_SET temp_hard_regset2;
1756cb66 788 bool insert_p;
058e97ec 789
b4ff394c
PH
790 if (targetm.compute_pressure_classes)
791 n = targetm.compute_pressure_classes (pressure_classes);
792 else
793 {
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 796 {
b4ff394c
PH
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
113a5be6 805 {
b4ff394c
PH
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
812 {
d15e5131
RS
813 temp_hard_regset
814 = (reg_class_contents[cl]
815 & ~(no_unit_alloc_regs
816 | ira_prohibited_class_mode_regs[cl][m]));
b4ff394c
PH
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
824 }
825 if (m >= NUM_MACHINE_MODES)
113a5be6 826 continue;
113a5be6 827 }
b4ff394c
PH
828 curr = 0;
829 insert_p = true;
d15e5131 830 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
b4ff394c
PH
831 /* Remove so far added pressure classes which are subset of the
832 current candidate class. Prefer GENERAL_REGS as a pressure
833 register class to another class containing the same
834 allocatable hard registers. We do this because machine
835 dependent cost hooks might give wrong costs for the latter
836 class but always give the right cost for the former class
837 (GENERAL_REGS). */
838 for (i = 0; i < n; i++)
1756cb66 839 {
b4ff394c 840 cl2 = pressure_classes[i];
d15e5131
RS
841 temp_hard_regset2 = (reg_class_contents[cl2]
842 & ~no_unit_alloc_regs);
b4ff394c
PH
843 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
844 && (! hard_reg_set_equal_p (temp_hard_regset,
845 temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2,
854 temp_hard_regset)
855 || cl == (int) GENERAL_REGS))
856 continue;
857 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
858 insert_p = false;
1756cb66 859 pressure_classes[curr++] = (enum reg_class) cl2;
1756cb66 860 }
b4ff394c
PH
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
863 classes. */
864 if (insert_p)
865 pressure_classes[curr++] = (enum reg_class) cl;
866 n = curr;
1756cb66 867 }
fe82cdfb 868 }
1756cb66 869#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
870 {
871 HARD_REG_SET ignore_hard_regs;
872
873 /* Check pressure classes correctness: here we check that hard
874 registers from all register pressure classes contains all hard
875 registers available for the allocation. */
876 CLEAR_HARD_REG_SET (temp_hard_regset);
877 CLEAR_HARD_REG_SET (temp_hard_regset2);
6576d245 878 ignore_hard_regs = no_unit_alloc_regs;
113a5be6
VM
879 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
880 {
881 /* For some targets (like MIPS with MD_REGS), there are some
882 classes with hard registers available for allocation but
883 not able to hold value of any mode. */
884 for (m = 0; m < NUM_MACHINE_MODES; m++)
885 if (contains_reg_of_mode[cl][m])
886 break;
887 if (m >= NUM_MACHINE_MODES)
888 {
44942965 889 ignore_hard_regs |= reg_class_contents[cl];
113a5be6
VM
890 continue;
891 }
892 for (i = 0; i < n; i++)
893 if ((int) pressure_classes[i] == cl)
894 break;
44942965 895 temp_hard_regset2 |= reg_class_contents[cl];
113a5be6 896 if (i < n)
44942965 897 temp_hard_regset |= reg_class_contents[cl];
113a5be6
VM
898 }
899 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
df3e3493 900 /* Some targets (like SPARC with ICC reg) have allocatable regs
113a5be6
VM
901 for which no reg class is defined. */
902 if (REGNO_REG_CLASS (i) == NO_REGS)
903 SET_HARD_REG_BIT (ignore_hard_regs, i);
d15e5131
RS
904 temp_hard_regset &= ~ignore_hard_regs;
905 temp_hard_regset2 &= ~ignore_hard_regs;
113a5be6
VM
906 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
907 }
1756cb66
VM
908#endif
909 ira_pressure_classes_num = 0;
910 for (i = 0; i < n; i++)
911 {
912 cl = (int) pressure_classes[i];
913 ira_reg_pressure_class_p[cl] = true;
914 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
915 }
916 setup_stack_reg_pressure_class ();
058e97ec
VM
917}
918
165f639c
VM
919/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
920 whose register move cost between any registers of the class is the
921 same as for all its subclasses. We use the data to speed up the
922 2nd pass of calculations of allocno costs. */
923static void
924setup_uniform_class_p (void)
925{
926 int i, cl, cl2, m;
927
928 for (cl = 0; cl < N_REG_CLASSES; cl++)
929 {
930 ira_uniform_class_p[cl] = false;
931 if (ira_class_hard_regs_num[cl] == 0)
932 continue;
67914693 933 /* We cannot use alloc_reg_class_subclasses here because move
165f639c
VM
934 cost hooks does not take into account that some registers are
935 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
936 is element of alloc_reg_class_subclasses for GENERAL_REGS
937 because SSE regs are unavailable. */
938 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
939 {
940 if (ira_class_hard_regs_num[cl2] == 0)
941 continue;
942 for (m = 0; m < NUM_MACHINE_MODES; m++)
943 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
944 {
ef4bddc2 945 ira_init_register_move_cost_if_necessary ((machine_mode) m);
165f639c
VM
946 if (ira_register_move_cost[m][cl][cl]
947 != ira_register_move_cost[m][cl2][cl2])
948 break;
949 }
950 if (m < NUM_MACHINE_MODES)
951 break;
952 }
953 if (cl2 == LIM_REG_CLASSES)
954 ira_uniform_class_p[cl] = true;
955 }
956}
957
1756cb66
VM
958/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
959 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960
df3e3493 961 Target may have many subtargets and not all target hard registers can
67914693 962 be used for allocation, e.g. x86 port in 32-bit mode cannot use
1756cb66
VM
963 hard registers introduced in x86-64 like r8-r15). Some classes
964 might have the same allocatable hard registers, e.g. INDEX_REGS
965 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
966 calculations efforts we introduce allocno classes which contain
967 unique non-empty sets of allocatable hard-registers.
968
969 Pseudo class cost calculation in ira-costs.c is very expensive.
970 Therefore we are trying to decrease number of classes involved in
971 such calculation. Register classes used in the cost calculation
972 are called important classes. They are allocno classes and other
973 non-empty classes whose allocatable hard register sets are inside
974 of an allocno class hard register set. From the first sight, it
975 looks like that they are just allocno classes. It is not true. In
976 example of x86-port in 32-bit mode, allocno classes will contain
977 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
978 registers are the same for the both classes). The important
979 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
980 because a machine description insn constraint may refers for
981 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
982 of the insn constraints. */
058e97ec 983static void
1756cb66 984setup_allocno_and_important_classes (void)
058e97ec 985{
32e8bb8e 986 int i, j, n, cl;
db1a8d98 987 bool set_p;
058e97ec 988 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
989 static enum reg_class classes[LIM_REG_CLASSES + 1];
990
1756cb66
VM
991 n = 0;
992 /* Collect classes which contain unique sets of allocatable hard
993 registers. Prefer GENERAL_REGS to other classes containing the
994 same set of hard registers. */
a58dfa49 995 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 996 {
d15e5131 997 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1756cb66 998 for (j = 0; j < n; j++)
7db7ed3c 999 {
1756cb66 1000 cl = classes[j];
d15e5131 1001 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1756cb66
VM
1002 if (hard_reg_set_equal_p (temp_hard_regset,
1003 temp_hard_regset2))
1004 break;
7db7ed3c 1005 }
e93f30a6 1006 if (j >= n || targetm.additional_allocno_class_p (i))
1756cb66
VM
1007 classes[n++] = (enum reg_class) i;
1008 else if (i == GENERAL_REGS)
1009 /* Prefer general regs. For i386 example, it means that
1010 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1011 (all of them consists of the same available hard
1012 registers). */
1013 classes[j] = (enum reg_class) i;
7db7ed3c 1014 }
1756cb66 1015 classes[n] = LIM_REG_CLASSES;
058e97ec 1016
1756cb66 1017 /* Set up classes which can be used for allocnos as classes
df3e3493 1018 containing non-empty unique sets of allocatable hard
1756cb66
VM
1019 registers. */
1020 ira_allocno_classes_num = 0;
058e97ec 1021 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1022 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1023 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1024 ira_important_classes_num = 0;
1756cb66
VM
1025 /* Add non-allocno classes containing to non-empty set of
1026 allocatable hard regs. */
058e97ec 1027 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1028 if (ira_class_hard_regs_num[cl] > 0)
1029 {
d15e5131 1030 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
3e575fe2
RS
1031 set_p = false;
1032 for (j = 0; j < ira_allocno_classes_num; j++)
1033 {
d15e5131
RS
1034 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1035 & ~no_unit_alloc_regs);
3e575fe2
RS
1036 if ((enum reg_class) cl == ira_allocno_classes[j])
1037 break;
1038 else if (hard_reg_set_subset_p (temp_hard_regset,
1039 temp_hard_regset2))
1040 set_p = true;
1041 }
1042 if (set_p && j >= ira_allocno_classes_num)
1043 ira_important_classes[ira_important_classes_num++]
1044 = (enum reg_class) cl;
1045 }
1756cb66
VM
1046 /* Now add allocno classes to the important classes. */
1047 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1048 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1049 = ira_allocno_classes[j];
1050 for (cl = 0; cl < N_REG_CLASSES; cl++)
1051 {
1052 ira_reg_allocno_class_p[cl] = false;
1053 ira_reg_pressure_class_p[cl] = false;
1054 }
1055 for (j = 0; j < ira_allocno_classes_num; j++)
1056 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1057 setup_pressure_classes ();
165f639c 1058 setup_uniform_class_p ();
058e97ec 1059}
058e97ec 1060
1756cb66
VM
1061/* Setup translation in CLASS_TRANSLATE of all classes into a class
1062 given by array CLASSES of length CLASSES_NUM. The function is used
1063 make translation any reg class to an allocno class or to an
1064 pressure class. This translation is necessary for some
1065 calculations when we can use only allocno or pressure classes and
1066 such translation represents an approximate representation of all
1067 classes.
1068
1069 The translation in case when allocatable hard register set of a
1070 given class is subset of allocatable hard register set of a class
1071 in CLASSES is pretty simple. We use smallest classes from CLASSES
1072 containing a given class. If allocatable hard register set of a
1073 given class is not a subset of any corresponding set of a class
1074 from CLASSES, we use the cheapest (with load/store point of view)
2b9c63a2 1075 class from CLASSES whose set intersects with given class set. */
058e97ec 1076static void
1756cb66
VM
1077setup_class_translate_array (enum reg_class *class_translate,
1078 int classes_num, enum reg_class *classes)
058e97ec 1079{
32e8bb8e 1080 int cl, mode;
1756cb66 1081 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1082 int i, cost, min_cost, best_cost;
1083
1084 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1085 class_translate[cl] = NO_REGS;
b8698a0f 1086
1756cb66 1087 for (i = 0; i < classes_num; i++)
058e97ec 1088 {
1756cb66
VM
1089 aclass = classes[i];
1090 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1091 (cl = *cl_ptr) != LIM_REG_CLASSES;
1092 cl_ptr++)
1093 if (class_translate[cl] == NO_REGS)
1094 class_translate[cl] = aclass;
1095 class_translate[aclass] = aclass;
058e97ec 1096 }
1756cb66
VM
1097 /* For classes which are not fully covered by one of given classes
1098 (in other words covered by more one given class), use the
1099 cheapest class. */
058e97ec
VM
1100 for (cl = 0; cl < N_REG_CLASSES; cl++)
1101 {
1756cb66 1102 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1103 continue;
1104 best_class = NO_REGS;
1105 best_cost = INT_MAX;
1756cb66 1106 for (i = 0; i < classes_num; i++)
058e97ec 1107 {
1756cb66 1108 aclass = classes[i];
dc333d8f 1109 temp_hard_regset = (reg_class_contents[aclass]
d15e5131
RS
1110 & reg_class_contents[cl]
1111 & ~no_unit_alloc_regs);
4f341ea0 1112 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1113 {
1114 min_cost = INT_MAX;
1115 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1116 {
761a8eb7
VM
1117 cost = (ira_memory_move_cost[mode][aclass][0]
1118 + ira_memory_move_cost[mode][aclass][1]);
058e97ec
VM
1119 if (min_cost > cost)
1120 min_cost = cost;
1121 }
1122 if (best_class == NO_REGS || best_cost > min_cost)
1123 {
1756cb66 1124 best_class = aclass;
058e97ec
VM
1125 best_cost = min_cost;
1126 }
1127 }
1128 }
1756cb66 1129 class_translate[cl] = best_class;
058e97ec
VM
1130 }
1131}
058e97ec 1132
1756cb66
VM
1133/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1134 IRA_PRESSURE_CLASS_TRANSLATE. */
1135static void
1136setup_class_translate (void)
1137{
1138 setup_class_translate_array (ira_allocno_class_translate,
1139 ira_allocno_classes_num, ira_allocno_classes);
1140 setup_class_translate_array (ira_pressure_class_translate,
1141 ira_pressure_classes_num, ira_pressure_classes);
1142}
1143
1144/* Order numbers of allocno classes in original target allocno class
1145 array, -1 for non-allocno classes. */
1146static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1147
1148/* The function used to sort the important classes. */
1149static int
1150comp_reg_classes_func (const void *v1p, const void *v2p)
1151{
1152 enum reg_class cl1 = *(const enum reg_class *) v1p;
1153 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1154 enum reg_class tcl1, tcl2;
db1a8d98
VM
1155 int diff;
1156
1756cb66
VM
1157 tcl1 = ira_allocno_class_translate[cl1];
1158 tcl2 = ira_allocno_class_translate[cl2];
1159 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1160 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1161 return diff;
1162 return (int) cl1 - (int) cl2;
1163}
1164
1756cb66
VM
1165/* For correct work of function setup_reg_class_relation we need to
1166 reorder important classes according to the order of their allocno
1167 classes. It places important classes containing the same
1168 allocatable hard register set adjacent to each other and allocno
1169 class with the allocatable hard register set right after the other
1170 important classes with the same set.
1171
1172 In example from comments of function
1173 setup_allocno_and_important_classes, it places LEGACY_REGS and
1174 GENERAL_REGS close to each other and GENERAL_REGS is after
1175 LEGACY_REGS. */
db1a8d98
VM
1176static void
1177reorder_important_classes (void)
1178{
1179 int i;
1180
1181 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1182 allocno_class_order[i] = -1;
1183 for (i = 0; i < ira_allocno_classes_num; i++)
1184 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1185 qsort (ira_important_classes, ira_important_classes_num,
1186 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1187 for (i = 0; i < ira_important_classes_num; i++)
1188 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1189}
1190
1756cb66
VM
1191/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1192 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1193 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1194 please see corresponding comments in ira-int.h. */
058e97ec 1195static void
7db7ed3c 1196setup_reg_class_relations (void)
058e97ec
VM
1197{
1198 int i, cl1, cl2, cl3;
1199 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1200 bool important_class_p[N_REG_CLASSES];
058e97ec 1201
7db7ed3c
VM
1202 memset (important_class_p, 0, sizeof (important_class_p));
1203 for (i = 0; i < ira_important_classes_num; i++)
1204 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1205 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1206 {
7db7ed3c 1207 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1208 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1209 {
7db7ed3c 1210 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1211 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1212 ira_reg_class_subset[cl1][cl2] = NO_REGS;
d15e5131
RS
1213 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1214 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
4f341ea0
RS
1215 if (hard_reg_set_empty_p (temp_hard_regset)
1216 && hard_reg_set_empty_p (temp_set2))
058e97ec 1217 {
1756cb66
VM
1218 /* The both classes have no allocatable hard registers
1219 -- take all class hard registers into account and use
1220 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1221 for (i = 0;; i++)
1222 {
1223 cl3 = reg_class_subclasses[cl1][i];
1224 if (cl3 == LIM_REG_CLASSES)
1225 break;
1226 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1227 (enum reg_class) cl3))
1228 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1229 }
1756cb66
VM
1230 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1231 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1232 continue;
1233 }
7db7ed3c
VM
1234 ira_reg_classes_intersect_p[cl1][cl2]
1235 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1236 if (important_class_p[cl1] && important_class_p[cl2]
1237 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1238 {
1756cb66
VM
1239 /* CL1 and CL2 are important classes and CL1 allocatable
1240 hard register set is inside of CL2 allocatable hard
1241 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1242 enum reg_class *p;
1243
1244 p = &ira_reg_class_super_classes[cl1][0];
1245 while (*p != LIM_REG_CLASSES)
1246 p++;
1247 *p++ = (enum reg_class) cl2;
1248 *p = LIM_REG_CLASSES;
1249 }
1756cb66
VM
1250 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1251 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
dc333d8f 1252 intersection_set = (reg_class_contents[cl1]
d15e5131
RS
1253 & reg_class_contents[cl2]
1254 & ~no_unit_alloc_regs);
1255 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1256 & ~no_unit_alloc_regs);
55a2c322 1257 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1258 {
d15e5131 1259 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
058e97ec
VM
1260 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1261 {
1756cb66
VM
1262 /* CL3 allocatable hard register set is inside of
1263 intersection of allocatable hard register sets
1264 of CL1 and CL2. */
55a2c322
VM
1265 if (important_class_p[cl3])
1266 {
6576d245
RS
1267 temp_set2
1268 = (reg_class_contents
1269 [ira_reg_class_intersect[cl1][cl2]]);
d15e5131 1270 temp_set2 &= ~no_unit_alloc_regs;
55a2c322
VM
1271 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1272 /* If the allocatable hard register sets are
1273 the same, prefer GENERAL_REGS or the
1274 smallest class for debugging
1275 purposes. */
1276 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1277 && (cl3 == GENERAL_REGS
1278 || ((ira_reg_class_intersect[cl1][cl2]
1279 != GENERAL_REGS)
1280 && hard_reg_set_subset_p
1281 (reg_class_contents[cl3],
1282 reg_class_contents
1283 [(int)
1284 ira_reg_class_intersect[cl1][cl2]])))))
1285 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1286 }
6576d245 1287 temp_set2
d15e5131
RS
1288 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1289 & ~no_unit_alloc_regs);
55a2c322
VM
1290 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1291 /* Ignore unavailable hard registers and prefer
1292 smallest class for debugging purposes. */
058e97ec 1293 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
55a2c322
VM
1294 && hard_reg_set_subset_p
1295 (reg_class_contents[cl3],
1296 reg_class_contents
1297 [(int) ira_reg_class_subset[cl1][cl2]])))
1298 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1299 }
55a2c322
VM
1300 if (important_class_p[cl3]
1301 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1302 {
df3e3493 1303 /* CL3 allocatable hard register set is inside of
1756cb66
VM
1304 union of allocatable hard register sets of CL1
1305 and CL2. */
6576d245 1306 temp_set2
d15e5131
RS
1307 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1308 & ~no_unit_alloc_regs);
1756cb66 1309 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1310 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1311
1312 && (! hard_reg_set_equal_p (temp_set2,
1313 temp_hard_regset)
1314 || cl3 == GENERAL_REGS
1315 /* If the allocatable hard register sets are the
1316 same, prefer GENERAL_REGS or the smallest
1317 class for debugging purposes. */
1318 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1319 && hard_reg_set_subset_p
1320 (reg_class_contents[cl3],
1321 reg_class_contents
1322 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1323 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1324 }
1325 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1326 {
1327 /* CL3 allocatable hard register set contains union
1328 of allocatable hard register sets of CL1 and
1329 CL2. */
6576d245 1330 temp_set2
d15e5131
RS
1331 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1332 & ~no_unit_alloc_regs);
1756cb66
VM
1333 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1334 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1335
058e97ec
VM
1336 && (! hard_reg_set_equal_p (temp_set2,
1337 temp_hard_regset)
1756cb66
VM
1338 || cl3 == GENERAL_REGS
1339 /* If the allocatable hard register sets are the
1340 same, prefer GENERAL_REGS or the smallest
1341 class for debugging purposes. */
1342 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1343 && hard_reg_set_subset_p
1344 (reg_class_contents[cl3],
1345 reg_class_contents
1346 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1347 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1348 }
1349 }
1350 }
1351 }
1352}
1353
df3e3493 1354/* Output all uniform and important classes into file F. */
165f639c 1355static void
89e94470 1356print_uniform_and_important_classes (FILE *f)
165f639c 1357{
165f639c
VM
1358 int i, cl;
1359
1360 fprintf (f, "Uniform classes:\n");
1361 for (cl = 0; cl < N_REG_CLASSES; cl++)
1362 if (ira_uniform_class_p[cl])
1363 fprintf (f, " %s", reg_class_names[cl]);
1364 fprintf (f, "\nImportant classes:\n");
1365 for (i = 0; i < ira_important_classes_num; i++)
1366 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1367 fprintf (f, "\n");
1368}
1369
1370/* Output all possible allocno or pressure classes and their
1371 translation map into file F. */
058e97ec 1372static void
165f639c 1373print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1374{
1375 int classes_num = (pressure_p
1376 ? ira_pressure_classes_num : ira_allocno_classes_num);
1377 enum reg_class *classes = (pressure_p
1378 ? ira_pressure_classes : ira_allocno_classes);
1379 enum reg_class *class_translate = (pressure_p
1380 ? ira_pressure_class_translate
1381 : ira_allocno_class_translate);
058e97ec
VM
1382 int i;
1383
1756cb66
VM
1384 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1385 for (i = 0; i < classes_num; i++)
1386 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1387 fprintf (f, "\nClass translation:\n");
1388 for (i = 0; i < N_REG_CLASSES; i++)
1389 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1390 reg_class_names[class_translate[i]]);
058e97ec
VM
1391}
1392
1756cb66
VM
1393/* Output all possible allocno and translation classes and the
1394 translation maps into stderr. */
058e97ec 1395void
1756cb66 1396ira_debug_allocno_classes (void)
058e97ec 1397{
89e94470 1398 print_uniform_and_important_classes (stderr);
165f639c
VM
1399 print_translated_classes (stderr, false);
1400 print_translated_classes (stderr, true);
058e97ec
VM
1401}
1402
1756cb66 1403/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1404 important classes. */
1405static void
1756cb66 1406find_reg_classes (void)
058e97ec 1407{
1756cb66 1408 setup_allocno_and_important_classes ();
7db7ed3c 1409 setup_class_translate ();
db1a8d98 1410 reorder_important_classes ();
7db7ed3c 1411 setup_reg_class_relations ();
058e97ec
VM
1412}
1413
1414\f
1415
c0683a82
VM
1416/* Set up the array above. */
1417static void
1756cb66 1418setup_hard_regno_aclass (void)
c0683a82 1419{
7efcf910 1420 int i;
c0683a82
VM
1421
1422 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1423 {
1756cb66
VM
1424#if 1
1425 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1426 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1427 ? NO_REGS
1756cb66
VM
1428 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1429#else
1430 int j;
1431 enum reg_class cl;
1432 ira_hard_regno_allocno_class[i] = NO_REGS;
1433 for (j = 0; j < ira_allocno_classes_num; j++)
1434 {
1435 cl = ira_allocno_classes[j];
1436 if (ira_class_hard_reg_index[cl][i] >= 0)
1437 {
1438 ira_hard_regno_allocno_class[i] = cl;
1439 break;
1440 }
1441 }
1442#endif
c0683a82
VM
1443 }
1444}
1445
1446\f
1447
1756cb66 1448/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1449static void
1450setup_reg_class_nregs (void)
1451{
1756cb66 1452 int i, cl, cl2, m;
058e97ec 1453
1756cb66
VM
1454 for (m = 0; m < MAX_MACHINE_MODE; m++)
1455 {
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 ira_reg_class_max_nregs[cl][m]
1458 = ira_reg_class_min_nregs[cl][m]
ef4bddc2 1459 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1756cb66
VM
1460 for (cl = 0; cl < N_REG_CLASSES; cl++)
1461 for (i = 0;
1462 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1463 i++)
1464 if (ira_reg_class_min_nregs[cl2][m]
1465 < ira_reg_class_min_nregs[cl][m])
1466 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1467 }
058e97ec
VM
1468}
1469
1470\f
1471
c9d74da6
RS
1472/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1473 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1474static void
1475setup_prohibited_class_mode_regs (void)
1476{
c9d74da6 1477 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1478
1756cb66 1479 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1480 {
d15e5131 1481 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
058e97ec
VM
1482 for (j = 0; j < NUM_MACHINE_MODES; j++)
1483 {
c9d74da6
RS
1484 count = 0;
1485 last_hard_regno = -1;
1756cb66 1486 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1487 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1488 {
1489 hard_regno = ira_class_hard_regs[cl][k];
f939c3e6 1490 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1756cb66 1491 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1492 hard_regno);
c9d74da6 1493 else if (in_hard_reg_set_p (temp_hard_regset,
ef4bddc2 1494 (machine_mode) j, hard_regno))
c9d74da6
RS
1495 {
1496 last_hard_regno = hard_regno;
1497 count++;
1498 }
058e97ec 1499 }
c9d74da6 1500 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1501 }
1502 }
1503}
1504
1756cb66
VM
1505/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1506 spanning from one register pressure class to another one. It is
1507 called after defining the pressure classes. */
1508static void
1509clarify_prohibited_class_mode_regs (void)
1510{
1511 int j, k, hard_regno, cl, pclass, nregs;
1512
1513 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1514 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1515 {
1516 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1517 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1518 {
1519 hard_regno = ira_class_hard_regs[cl][k];
1520 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1521 continue;
ad474626 1522 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
a2c19e93 1523 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1524 {
1525 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1526 hard_regno);
a2c19e93 1527 continue;
1756cb66 1528 }
a2c19e93
RS
1529 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1530 for (nregs-- ;nregs >= 0; nregs--)
1531 if (((enum reg_class) pclass
1532 != ira_pressure_class_translate[REGNO_REG_CLASS
1533 (hard_regno + nregs)]))
1534 {
1535 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 hard_regno);
1537 break;
1538 }
1539 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1540 hard_regno))
1541 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
ef4bddc2 1542 (machine_mode) j, hard_regno);
a2c19e93
RS
1543 }
1544 }
1756cb66 1545}
058e97ec 1546\f
7cc61ee4
RS
1547/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1548 and IRA_MAY_MOVE_OUT_COST for MODE. */
1549void
ef4bddc2 1550ira_init_register_move_cost (machine_mode mode)
e80ccebc
RS
1551{
1552 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1553 bool all_match = true;
e384094a
VM
1554 unsigned int i, cl1, cl2;
1555 HARD_REG_SET ok_regs;
e80ccebc 1556
7cc61ee4
RS
1557 ira_assert (ira_register_move_cost[mode] == NULL
1558 && ira_may_move_in_cost[mode] == NULL
1559 && ira_may_move_out_cost[mode] == NULL);
e384094a
VM
1560 CLEAR_HARD_REG_SET (ok_regs);
1561 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1562 if (targetm.hard_regno_mode_ok (i, mode))
1563 SET_HARD_REG_BIT (ok_regs, i);
1564
87e176df
RS
1565 /* Note that we might be asked about the move costs of modes that
1566 cannot be stored in any hard register, for example if an inline
1567 asm tries to create a register operand with an impossible mode.
1568 We therefore can't assert have_regs_of_mode[mode] here. */
ed9e2ed0 1569 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1570 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1571 {
1572 int cost;
e384094a
VM
1573 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1574 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
fef37404
VM
1575 {
1576 if ((ira_reg_class_max_nregs[cl1][mode]
1577 > ira_class_hard_regs_num[cl1])
1578 || (ira_reg_class_max_nregs[cl2][mode]
1579 > ira_class_hard_regs_num[cl2]))
1580 cost = 65535;
1581 else
1582 cost = (ira_memory_move_cost[mode][cl1][0]
1a788c05 1583 + ira_memory_move_cost[mode][cl2][1]) * 2;
fef37404
VM
1584 }
1585 else
1586 {
1587 cost = register_move_cost (mode, (enum reg_class) cl1,
1588 (enum reg_class) cl2);
1589 ira_assert (cost < 65535);
1590 }
1591 all_match &= (last_move_cost[cl1][cl2] == cost);
1592 last_move_cost[cl1][cl2] = cost;
1593 }
e80ccebc
RS
1594 if (all_match && last_mode_for_init_move_cost != -1)
1595 {
7cc61ee4
RS
1596 ira_register_move_cost[mode]
1597 = ira_register_move_cost[last_mode_for_init_move_cost];
1598 ira_may_move_in_cost[mode]
1599 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1600 ira_may_move_out_cost[mode]
1601 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1602 return;
1603 }
ed9e2ed0 1604 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1605 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1606 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1607 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0 1608 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1609 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1610 {
1611 int cost;
1612 enum reg_class *p1, *p2;
1613
1614 if (last_move_cost[cl1][cl2] == 65535)
1615 {
1616 ira_register_move_cost[mode][cl1][cl2] = 65535;
1617 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1618 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1619 }
1620 else
1621 {
1622 cost = last_move_cost[cl1][cl2];
1623
1624 for (p2 = &reg_class_subclasses[cl2][0];
1625 *p2 != LIM_REG_CLASSES; p2++)
1626 if (ira_class_hard_regs_num[*p2] > 0
1627 && (ira_reg_class_max_nregs[*p2][mode]
1628 <= ira_class_hard_regs_num[*p2]))
1629 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1630
1631 for (p1 = &reg_class_subclasses[cl1][0];
1632 *p1 != LIM_REG_CLASSES; p1++)
1633 if (ira_class_hard_regs_num[*p1] > 0
1634 && (ira_reg_class_max_nregs[*p1][mode]
1635 <= ira_class_hard_regs_num[*p1]))
1636 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1637
1638 ira_assert (cost <= 65535);
1639 ira_register_move_cost[mode][cl1][cl2] = cost;
1640
1641 if (ira_class_subset_p[cl1][cl2])
1642 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1643 else
1644 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1645
1646 if (ira_class_subset_p[cl2][cl1])
1647 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1648 else
1649 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1650 }
1651 }
058e97ec 1652}
fef37404 1653
058e97ec
VM
1654\f
1655
058e97ec
VM
1656/* This is called once during compiler work. It sets up
1657 different arrays whose values don't depend on the compiled
1658 function. */
1659void
1660ira_init_once (void)
1661{
058e97ec 1662 ira_init_costs_once ();
55a2c322 1663 lra_init_once ();
23427d51
RL
1664
1665 ira_use_lra_p = targetm.lra_p ();
058e97ec
VM
1666}
1667
7cc61ee4
RS
1668/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1669 ira_may_move_out_cost for each mode. */
19c708dc
RS
1670void
1671target_ira_int::free_register_move_costs (void)
058e97ec 1672{
e80ccebc 1673 int mode, i;
058e97ec 1674
e80ccebc
RS
1675 /* Reset move_cost and friends, making sure we only free shared
1676 table entries once. */
1677 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
19c708dc 1678 if (x_ira_register_move_cost[mode])
e80ccebc 1679 {
7cc61ee4 1680 for (i = 0;
19c708dc
RS
1681 i < mode && (x_ira_register_move_cost[i]
1682 != x_ira_register_move_cost[mode]);
7cc61ee4 1683 i++)
e80ccebc
RS
1684 ;
1685 if (i == mode)
1686 {
19c708dc
RS
1687 free (x_ira_register_move_cost[mode]);
1688 free (x_ira_may_move_in_cost[mode]);
1689 free (x_ira_may_move_out_cost[mode]);
e80ccebc
RS
1690 }
1691 }
19c708dc
RS
1692 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1693 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1694 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
e80ccebc 1695 last_mode_for_init_move_cost = -1;
058e97ec
VM
1696}
1697
19c708dc
RS
1698target_ira_int::~target_ira_int ()
1699{
1700 free_ira_costs ();
1701 free_register_move_costs ();
1702}
1703
058e97ec
VM
1704/* This is called every time when register related information is
1705 changed. */
1706void
1707ira_init (void)
1708{
19c708dc 1709 this_target_ira_int->free_register_move_costs ();
058e97ec
VM
1710 setup_reg_mode_hard_regset ();
1711 setup_alloc_regs (flag_omit_frame_pointer != 0);
1712 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1713 setup_reg_class_nregs ();
1714 setup_prohibited_class_mode_regs ();
1756cb66
VM
1715 find_reg_classes ();
1716 clarify_prohibited_class_mode_regs ();
1717 setup_hard_regno_aclass ();
058e97ec
VM
1718 ira_init_costs ();
1719}
1720
058e97ec 1721\f
15e7b94f
RS
1722#define ira_prohibited_mode_move_regs_initialized_p \
1723 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1724
1725/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1726static void
1727setup_prohibited_mode_move_regs (void)
1728{
1729 int i, j;
647d790d
DM
1730 rtx test_reg1, test_reg2, move_pat;
1731 rtx_insn *move_insn;
058e97ec
VM
1732
1733 if (ira_prohibited_mode_move_regs_initialized_p)
1734 return;
1735 ira_prohibited_mode_move_regs_initialized_p = true;
c3dc5e66
RS
1736 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1737 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 1738 move_pat = gen_rtx_SET (test_reg1, test_reg2);
ed8921dc 1739 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1740 for (i = 0; i < NUM_MACHINE_MODES; i++)
1741 {
1742 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1743 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1744 {
f939c3e6 1745 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
058e97ec 1746 continue;
8deccbb7
RS
1747 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1748 set_mode_and_regno (test_reg2, (machine_mode) i, j);
058e97ec
VM
1749 INSN_CODE (move_insn) = -1;
1750 recog_memoized (move_insn);
1751 if (INSN_CODE (move_insn) < 0)
1752 continue;
1753 extract_insn (move_insn);
daca1a96
RS
1754 /* We don't know whether the move will be in code that is optimized
1755 for size or speed, so consider all enabled alternatives. */
1756 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
058e97ec
VM
1757 continue;
1758 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1759 }
1760 }
1761}
1762
1763\f
1764
73bb8fe9
RS
1765/* Extract INSN and return the set of alternatives that we should consider.
1766 This excludes any alternatives whose constraints are obviously impossible
1767 to meet (e.g. because the constraint requires a constant and the operand
ed680e2c
RS
1768 is nonconstant). It also excludes alternatives that are bound to need
1769 a spill or reload, as long as we have other alternatives that match
1770 exactly. */
73bb8fe9
RS
1771alternative_mask
1772ira_setup_alts (rtx_insn *insn)
3b6d1699 1773{
3b6d1699
VM
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
3b6d1699
VM
1777 int commutative = -1;
1778
1779 extract_insn (insn);
06a65e80 1780 preprocess_constraints (insn);
9840b2fa 1781 alternative_mask preferred = get_preferred_alternatives (insn);
73bb8fe9 1782 alternative_mask alts = 0;
ed680e2c 1783 alternative_mask exact_alts = 0;
3b6d1699
VM
1784 /* Check that the hard reg set is enough for holding all
1785 alternatives. It is hard to imagine the situation when the
1786 assertion is wrong. */
1787 ira_assert (recog_data.n_alternatives
1788 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1789 FIRST_PSEUDO_REGISTER));
06a65e80
RS
1790 for (nop = 0; nop < recog_data.n_operands; nop++)
1791 if (recog_data.constraints[nop][0] == '%')
1792 {
1793 commutative = nop;
1794 break;
1795 }
3b6d1699
VM
1796 for (curr_swapped = false;; curr_swapped = true)
1797 {
3b6d1699
VM
1798 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1799 {
ed680e2c 1800 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
3b6d1699
VM
1801 continue;
1802
06a65e80
RS
1803 const operand_alternative *op_alt
1804 = &recog_op_alt[nalt * recog_data.n_operands];
ed680e2c 1805 int this_reject = 0;
3b6d1699
VM
1806 for (nop = 0; nop < recog_data.n_operands; nop++)
1807 {
1808 int c, len;
1809
ed680e2c
RS
1810 this_reject += op_alt[nop].reject;
1811
fab27f52 1812 rtx op = recog_data.operand[nop];
06a65e80 1813 p = op_alt[nop].constraint;
3b6d1699
VM
1814 if (*p == 0 || *p == ',')
1815 continue;
ed680e2c
RS
1816
1817 bool win_p = false;
3b6d1699
VM
1818 do
1819 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1820 {
1821 case '#':
1822 case ',':
1823 c = '\0';
191816a3 1824 /* FALLTHRU */
3b6d1699
VM
1825 case '\0':
1826 len = 0;
1827 break;
1828
3b6d1699 1829 case '%':
3f12f020 1830 /* The commutative modifier is handled above. */
3b6d1699
VM
1831 break;
1832
3b6d1699
VM
1833 case '0': case '1': case '2': case '3': case '4':
1834 case '5': case '6': case '7': case '8': case '9':
ed680e2c
RS
1835 {
1836 rtx other = recog_data.operand[c - '0'];
1837 if (MEM_P (other)
1838 ? rtx_equal_p (other, op)
1839 : REG_P (op) || SUBREG_P (op))
1840 goto op_success;
1841 win_p = true;
1842 }
3b6d1699
VM
1843 break;
1844
3b6d1699 1845 case 'g':
3b6d1699
VM
1846 goto op_success;
1847 break;
1848
1849 default:
1850 {
777e635f
RS
1851 enum constraint_num cn = lookup_constraint (p);
1852 switch (get_constraint_type (cn))
1853 {
1854 case CT_REGISTER:
1855 if (reg_class_for_constraint (cn) != NO_REGS)
ed680e2c
RS
1856 {
1857 if (REG_P (op) || SUBREG_P (op))
1858 goto op_success;
1859 win_p = true;
1860 }
777e635f
RS
1861 break;
1862
d9c35eee
RS
1863 case CT_CONST_INT:
1864 if (CONST_INT_P (op)
1865 && (insn_const_int_ok_for_constraint
1866 (INTVAL (op), cn)))
1867 goto op_success;
1868 break;
1869
777e635f 1870 case CT_ADDRESS:
ed680e2c
RS
1871 goto op_success;
1872
777e635f 1873 case CT_MEMORY:
9eb1ca69 1874 case CT_SPECIAL_MEMORY:
ed680e2c
RS
1875 if (MEM_P (op))
1876 goto op_success;
1877 win_p = true;
1878 break;
777e635f
RS
1879
1880 case CT_FIXED_FORM:
1881 if (constraint_satisfied_p (op, cn))
1882 goto op_success;
1883 break;
1884 }
3b6d1699
VM
1885 break;
1886 }
1887 }
1888 while (p += len, c);
ed680e2c
RS
1889 if (!win_p)
1890 break;
1891 /* We can make the alternative match by spilling a register
1892 to memory or loading something into a register. Count a
1893 cost of one reload (the equivalent of the '?' constraint). */
1894 this_reject += 6;
3b6d1699
VM
1895 op_success:
1896 ;
1897 }
ed680e2c 1898
3b6d1699 1899 if (nop >= recog_data.n_operands)
ed680e2c
RS
1900 {
1901 alts |= ALTERNATIVE_BIT (nalt);
1902 if (this_reject == 0)
1903 exact_alts |= ALTERNATIVE_BIT (nalt);
1904 }
3b6d1699
VM
1905 }
1906 if (commutative < 0)
1907 break;
43f4a281 1908 /* Swap forth and back to avoid changing recog_data. */
fab27f52
MM
1909 std::swap (recog_data.operand[commutative],
1910 recog_data.operand[commutative + 1]);
43f4a281
RB
1911 if (curr_swapped)
1912 break;
3b6d1699 1913 }
ed680e2c 1914 return exact_alts ? exact_alts : alts;
3b6d1699
VM
1915}
1916
1917/* Return the number of the output non-early clobber operand which
1918 should be the same in any case as operand with number OP_NUM (or
ed680e2c
RS
1919 negative value if there is no such operand). ALTS is the mask
1920 of alternatives that we should consider. */
3b6d1699 1921int
73bb8fe9 1922ira_get_dup_out_num (int op_num, alternative_mask alts)
3b6d1699
VM
1923{
1924 int curr_alt, c, original, dup;
1925 bool ignore_p, use_commut_op_p;
1926 const char *str;
3b6d1699
VM
1927
1928 if (op_num < 0 || recog_data.n_alternatives == 0)
1929 return -1;
98f2f031
RS
1930 /* We should find duplications only for input operands. */
1931 if (recog_data.operand_type[op_num] != OP_IN)
1932 return -1;
3b6d1699 1933 str = recog_data.constraints[op_num];
98f2f031 1934 use_commut_op_p = false;
3b6d1699
VM
1935 for (;;)
1936 {
777e635f 1937 rtx op = recog_data.operand[op_num];
3b6d1699 1938
73bb8fe9 1939 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
98f2f031 1940 original = -1;;)
3b6d1699
VM
1941 {
1942 c = *str;
1943 if (c == '\0')
1944 break;
98f2f031 1945 if (c == '#')
3b6d1699
VM
1946 ignore_p = true;
1947 else if (c == ',')
1948 {
1949 curr_alt++;
73bb8fe9 1950 ignore_p = !TEST_BIT (alts, curr_alt);
3b6d1699
VM
1951 }
1952 else if (! ignore_p)
1953 switch (c)
1954 {
3b6d1699
VM
1955 case 'g':
1956 goto fail;
8677664e 1957 default:
3b6d1699 1958 {
777e635f
RS
1959 enum constraint_num cn = lookup_constraint (str);
1960 enum reg_class cl = reg_class_for_constraint (cn);
1961 if (cl != NO_REGS
1962 && !targetm.class_likely_spilled_p (cl))
1963 goto fail;
1964 if (constraint_satisfied_p (op, cn))
3b6d1699 1965 goto fail;
3b6d1699
VM
1966 break;
1967 }
1968
1969 case '0': case '1': case '2': case '3': case '4':
1970 case '5': case '6': case '7': case '8': case '9':
1971 if (original != -1 && original != c)
1972 goto fail;
1973 original = c;
1974 break;
1975 }
1976 str += CONSTRAINT_LEN (c, str);
1977 }
1978 if (original == -1)
1979 goto fail;
ae5569fa
RS
1980 dup = original - '0';
1981 if (recog_data.operand_type[dup] == OP_OUT)
3b6d1699
VM
1982 return dup;
1983 fail:
1984 if (use_commut_op_p)
1985 break;
1986 use_commut_op_p = true;
73f793e3 1987 if (recog_data.constraints[op_num][0] == '%')
3b6d1699 1988 str = recog_data.constraints[op_num + 1];
73f793e3 1989 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
3b6d1699
VM
1990 str = recog_data.constraints[op_num - 1];
1991 else
1992 break;
1993 }
1994 return -1;
1995}
1996
1997\f
1998
1999/* Search forward to see if the source register of a copy insn dies
2000 before either it or the destination register is modified, but don't
2001 scan past the end of the basic block. If so, we can replace the
2002 source with the destination and let the source die in the copy
2003 insn.
2004
2005 This will reduce the number of registers live in that range and may
2006 enable the destination and the source coalescing, thus often saving
2007 one register in addition to a register-register copy. */
2008
2009static void
2010decrease_live_ranges_number (void)
2011{
2012 basic_block bb;
070a1983 2013 rtx_insn *insn;
7da26277
TS
2014 rtx set, src, dest, dest_death, note;
2015 rtx_insn *p, *q;
3b6d1699
VM
2016 int sregno, dregno;
2017
2018 if (! flag_expensive_optimizations)
2019 return;
2020
2021 if (ira_dump_file)
2022 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2023
11cd3bed 2024 FOR_EACH_BB_FN (bb, cfun)
3b6d1699
VM
2025 FOR_BB_INSNS (bb, insn)
2026 {
2027 set = single_set (insn);
2028 if (! set)
2029 continue;
2030 src = SET_SRC (set);
2031 dest = SET_DEST (set);
2032 if (! REG_P (src) || ! REG_P (dest)
2033 || find_reg_note (insn, REG_DEAD, src))
2034 continue;
2035 sregno = REGNO (src);
2036 dregno = REGNO (dest);
2037
2038 /* We don't want to mess with hard regs if register classes
2039 are small. */
2040 if (sregno == dregno
2041 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2042 && (sregno < FIRST_PSEUDO_REGISTER
2043 || dregno < FIRST_PSEUDO_REGISTER))
2044 /* We don't see all updates to SP if they are in an
2045 auto-inc memory reference, so we must disallow this
2046 optimization on them. */
2047 || sregno == STACK_POINTER_REGNUM
2048 || dregno == STACK_POINTER_REGNUM)
2049 continue;
2050
2051 dest_death = NULL_RTX;
2052
2053 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2054 {
2055 if (! INSN_P (p))
2056 continue;
2057 if (BLOCK_FOR_INSN (p) != bb)
2058 break;
2059
2060 if (reg_set_p (src, p) || reg_set_p (dest, p)
2061 /* If SRC is an asm-declared register, it must not be
2062 replaced in any asm. Unfortunately, the REG_EXPR
2063 tree for the asm variable may be absent in the SRC
2064 rtx, so we can't check the actual register
2065 declaration easily (the asm operand will have it,
2066 though). To avoid complicating the test for a rare
2067 case, we just don't perform register replacement
2068 for a hard reg mentioned in an asm. */
2069 || (sregno < FIRST_PSEUDO_REGISTER
2070 && asm_noperands (PATTERN (p)) >= 0
2071 && reg_overlap_mentioned_p (src, PATTERN (p)))
2072 /* Don't change hard registers used by a call. */
2073 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2074 && find_reg_fusage (p, USE, src))
2075 /* Don't change a USE of a register. */
2076 || (GET_CODE (PATTERN (p)) == USE
2077 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2078 break;
2079
2080 /* See if all of SRC dies in P. This test is slightly
2081 more conservative than it needs to be. */
2082 if ((note = find_regno_note (p, REG_DEAD, sregno))
2083 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2084 {
2085 int failed = 0;
2086
2087 /* We can do the optimization. Scan forward from INSN
2088 again, replacing regs as we go. Set FAILED if a
2089 replacement can't be done. In that case, we can't
2090 move the death note for SRC. This should be
2091 rare. */
2092
2093 /* Set to stop at next insn. */
2094 for (q = next_real_insn (insn);
2095 q != next_real_insn (p);
2096 q = next_real_insn (q))
2097 {
2098 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2099 {
2100 /* If SRC is a hard register, we might miss
2101 some overlapping registers with
2102 validate_replace_rtx, so we would have to
2103 undo it. We can't if DEST is present in
2104 the insn, so fail in that combination of
2105 cases. */
2106 if (sregno < FIRST_PSEUDO_REGISTER
2107 && reg_mentioned_p (dest, PATTERN (q)))
2108 failed = 1;
2109
2110 /* Attempt to replace all uses. */
2111 else if (!validate_replace_rtx (src, dest, q))
2112 failed = 1;
2113
2114 /* If this succeeded, but some part of the
2115 register is still present, undo the
2116 replacement. */
2117 else if (sregno < FIRST_PSEUDO_REGISTER
2118 && reg_overlap_mentioned_p (src, PATTERN (q)))
2119 {
2120 validate_replace_rtx (dest, src, q);
2121 failed = 1;
2122 }
2123 }
2124
2125 /* If DEST dies here, remove the death note and
2126 save it for later. Make sure ALL of DEST dies
2127 here; again, this is overly conservative. */
2128 if (! dest_death
2129 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2130 {
2131 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2132 remove_note (q, dest_death);
2133 else
2134 {
2135 failed = 1;
2136 dest_death = 0;
2137 }
2138 }
2139 }
2140
2141 if (! failed)
2142 {
2143 /* Move death note of SRC from P to INSN. */
2144 remove_note (p, note);
2145 XEXP (note, 1) = REG_NOTES (insn);
2146 REG_NOTES (insn) = note;
2147 }
2148
2149 /* DEST is also dead if INSN has a REG_UNUSED note for
2150 DEST. */
2151 if (! dest_death
2152 && (dest_death
2153 = find_regno_note (insn, REG_UNUSED, dregno)))
2154 {
2155 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2156 remove_note (insn, dest_death);
2157 }
2158
2159 /* Put death note of DEST on P if we saw it die. */
2160 if (dest_death)
2161 {
2162 XEXP (dest_death, 1) = REG_NOTES (p);
2163 REG_NOTES (p) = dest_death;
2164 }
2165 break;
2166 }
2167
2168 /* If SRC is a hard register which is set or killed in
2169 some other way, we can't do this optimization. */
2170 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2171 break;
2172 }
2173 }
2174}
2175
2176\f
2177
0896cc66
JL
2178/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2179static bool
2180ira_bad_reload_regno_1 (int regno, rtx x)
2181{
ac0ab4f7 2182 int x_regno, n, i;
0896cc66
JL
2183 ira_allocno_t a;
2184 enum reg_class pref;
2185
2186 /* We only deal with pseudo regs. */
2187 if (! x || GET_CODE (x) != REG)
2188 return false;
2189
2190 x_regno = REGNO (x);
2191 if (x_regno < FIRST_PSEUDO_REGISTER)
2192 return false;
2193
2194 /* If the pseudo prefers REGNO explicitly, then do not consider
2195 REGNO a bad spill choice. */
2196 pref = reg_preferred_class (x_regno);
2197 if (reg_class_size[pref] == 1)
2198 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2199
2200 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2201 poor choice for a reload regno. */
2202 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
2203 n = ALLOCNO_NUM_OBJECTS (a);
2204 for (i = 0; i < n; i++)
2205 {
2206 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2207 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2208 return true;
2209 }
0896cc66
JL
2210 return false;
2211}
2212
2213/* Return nonzero if REGNO is a particularly bad choice for reloading
2214 IN or OUT. */
2215bool
2216ira_bad_reload_regno (int regno, rtx in, rtx out)
2217{
2218 return (ira_bad_reload_regno_1 (regno, in)
2219 || ira_bad_reload_regno_1 (regno, out));
2220}
2221
b748fbd6 2222/* Add register clobbers from asm statements. */
058e97ec 2223static void
b748fbd6 2224compute_regs_asm_clobbered (void)
058e97ec
VM
2225{
2226 basic_block bb;
2227
11cd3bed 2228 FOR_EACH_BB_FN (bb, cfun)
058e97ec 2229 {
070a1983 2230 rtx_insn *insn;
058e97ec
VM
2231 FOR_BB_INSNS_REVERSE (bb, insn)
2232 {
bfac633a 2233 df_ref def;
058e97ec 2234
93671519 2235 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
bfac633a 2236 FOR_EACH_INSN_DEF (def, insn)
058e97ec 2237 {
058e97ec 2238 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
2239 if (HARD_REGISTER_NUM_P (dregno))
2240 add_to_hard_reg_set (&crtl->asm_clobbers,
2241 GET_MODE (DF_REF_REAL_REG (def)),
2242 dregno);
058e97ec
VM
2243 }
2244 }
2245 }
2246}
2247
2248
8d49e7ef
VM
2249/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2250 REGS_EVER_LIVE. */
ce18efcb 2251void
8d49e7ef 2252ira_setup_eliminable_regset (void)
058e97ec 2253{
89ceba31 2254 int i;
058e97ec 2255 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
53680238 2256
0064f49e
WD
2257 /* Setup is_leaf as frame_pointer_required may use it. This function
2258 is called by sched_init before ira if scheduling is enabled. */
2259 crtl->is_leaf = leaf_function_p ();
2260
058e97ec
VM
2261 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2262 sp for alloca. So we can't eliminate the frame pointer in that
2263 case. At some point, we should improve this by emitting the
2264 sp-adjusting insns for this case. */
55a2c322 2265 frame_pointer_needed
058e97ec
VM
2266 = (! flag_omit_frame_pointer
2267 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
7700cd85
EB
2268 /* We need the frame pointer to catch stack overflow exceptions if
2269 the stack pointer is moving (as for the alloca case just above). */
2270 || (STACK_CHECK_MOVING_SP
2271 && flag_stack_check
2272 && flag_exceptions
2273 && cfun->can_throw_non_call_exceptions)
058e97ec 2274 || crtl->accesses_prior_frames
8d49e7ef 2275 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
b52b1749 2276 || targetm.frame_pointer_required ());
058e97ec 2277
8d49e7ef
VM
2278 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2279 RTL is very small. So if we use frame pointer for RA and RTL
2280 actually prevents this, we will spill pseudos assigned to the
2281 frame pointer in LRA. */
058e97ec 2282
55a2c322
VM
2283 if (frame_pointer_needed)
2284 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2285
6576d245 2286 ira_no_alloc_regs = no_unit_alloc_regs;
058e97ec
VM
2287 CLEAR_HARD_REG_SET (eliminable_regset);
2288
b748fbd6
PB
2289 compute_regs_asm_clobbered ();
2290
058e97ec
VM
2291 /* Build the regset of all eliminable registers and show we can't
2292 use those that we already know won't be eliminated. */
058e97ec
VM
2293 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2294 {
2295 bool cannot_elim
7b5cbb57 2296 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 2297 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 2298
b748fbd6 2299 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
2300 {
2301 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2302
2303 if (cannot_elim)
2304 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2305 }
2306 else if (cannot_elim)
a9c697b8 2307 error ("%s cannot be used in %<asm%> here",
058e97ec
VM
2308 reg_names[eliminables[i].from]);
2309 else
2310 df_set_regs_ever_live (eliminables[i].from, true);
2311 }
c3e08036 2312 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
058e97ec 2313 {
c3e08036
TS
2314 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2315 {
2316 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2317 if (frame_pointer_needed)
2318 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2319 }
2320 else if (frame_pointer_needed)
a9c697b8 2321 error ("%s cannot be used in %<asm%> here",
c3e08036
TS
2322 reg_names[HARD_FRAME_POINTER_REGNUM]);
2323 else
2324 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
058e97ec 2325 }
058e97ec
VM
2326}
2327
2328\f
2329
2af2dbdc
VM
2330/* Vector of substitutions of register numbers,
2331 used to map pseudo regs into hardware regs.
2332 This is set up as a result of register allocation.
2333 Element N is the hard reg assigned to pseudo reg N,
2334 or is -1 if no hard reg was assigned.
2335 If N is a hard reg number, element N is N. */
2336short *reg_renumber;
2337
058e97ec
VM
2338/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2339 the allocation found by IRA. */
2340static void
2341setup_reg_renumber (void)
2342{
2343 int regno, hard_regno;
2344 ira_allocno_t a;
2345 ira_allocno_iterator ai;
2346
2347 caller_save_needed = 0;
2348 FOR_EACH_ALLOCNO (a, ai)
2349 {
55a2c322
VM
2350 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2351 continue;
058e97ec
VM
2352 /* There are no caps at this point. */
2353 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2354 if (! ALLOCNO_ASSIGNED_P (a))
2355 /* It can happen if A is not referenced but partially anticipated
2356 somewhere in a region. */
2357 ALLOCNO_ASSIGNED_P (a) = true;
2358 ira_free_allocno_updated_costs (a);
2359 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2360 regno = ALLOCNO_REGNO (a);
058e97ec 2361 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2362 if (hard_regno >= 0)
058e97ec 2363 {
1756cb66
VM
2364 int i, nwords;
2365 enum reg_class pclass;
2366 ira_object_t obj;
2367
2368 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2369 nwords = ALLOCNO_NUM_OBJECTS (a);
2370 for (i = 0; i < nwords; i++)
2371 {
2372 obj = ALLOCNO_OBJECT (a, i);
4897c5aa
RS
2373 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2374 |= ~reg_class_contents[pclass];
1756cb66
VM
2375 }
2376 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
2377 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2378 call_used_reg_set))
1756cb66
VM
2379 {
2380 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2381 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2382 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 2383 || regno >= ira_reg_equiv_len
55a2c322 2384 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
2385 caller_save_needed = 1;
2386 }
058e97ec
VM
2387 }
2388 }
2389}
2390
2391/* Set up allocno assignment flags for further allocation
2392 improvements. */
2393static void
2394setup_allocno_assignment_flags (void)
2395{
2396 int hard_regno;
2397 ira_allocno_t a;
2398 ira_allocno_iterator ai;
2399
2400 FOR_EACH_ALLOCNO (a, ai)
2401 {
2402 if (! ALLOCNO_ASSIGNED_P (a))
2403 /* It can happen if A is not referenced but partially anticipated
2404 somewhere in a region. */
2405 ira_free_allocno_updated_costs (a);
2406 hard_regno = ALLOCNO_HARD_REGNO (a);
2407 /* Don't assign hard registers to allocnos which are destination
2408 of removed store at the end of loop. It has no sense to keep
2409 the same value in different hard registers. It is also
2410 impossible to assign hard registers correctly to such
2411 allocnos because the cost info and info about intersected
2412 calls are incorrect for them. */
2413 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2414 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2415 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2416 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2417 ira_assert
2418 (hard_regno < 0
2419 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2420 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2421 }
2422}
2423
2424/* Evaluate overall allocation cost and the costs for using hard
2425 registers and memory for allocnos. */
2426static void
2427calculate_allocation_cost (void)
2428{
2429 int hard_regno, cost;
2430 ira_allocno_t a;
2431 ira_allocno_iterator ai;
2432
2433 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2434 FOR_EACH_ALLOCNO (a, ai)
2435 {
2436 hard_regno = ALLOCNO_HARD_REGNO (a);
2437 ira_assert (hard_regno < 0
9181a6e5
VM
2438 || (ira_hard_reg_in_set_p
2439 (hard_regno, ALLOCNO_MODE (a),
2440 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2441 if (hard_regno < 0)
2442 {
2443 cost = ALLOCNO_MEMORY_COST (a);
2444 ira_mem_cost += cost;
2445 }
2446 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2447 {
2448 cost = (ALLOCNO_HARD_REG_COSTS (a)
2449 [ira_class_hard_reg_index
1756cb66 2450 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2451 ira_reg_cost += cost;
2452 }
2453 else
2454 {
1756cb66 2455 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2456 ira_reg_cost += cost;
2457 }
2458 ira_overall_cost += cost;
2459 }
2460
2461 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2462 {
2463 fprintf (ira_dump_file,
16998094
JM
2464 "+++Costs: overall %" PRId64
2465 ", reg %" PRId64
2466 ", mem %" PRId64
2467 ", ld %" PRId64
2468 ", st %" PRId64
2469 ", move %" PRId64,
058e97ec
VM
2470 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2471 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2bf7560b 2472 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
058e97ec
VM
2473 ira_move_loops_num, ira_additional_jumps_num);
2474 }
2475
2476}
2477
2478#ifdef ENABLE_IRA_CHECKING
2479/* Check the correctness of the allocation. We do need this because
2480 of complicated code to transform more one region internal
2481 representation into one region representation. */
2482static void
2483check_allocation (void)
2484{
fa86d337 2485 ira_allocno_t a;
ac0ab4f7 2486 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2487 ira_allocno_iterator ai;
2488
2489 FOR_EACH_ALLOCNO (a, ai)
2490 {
ac0ab4f7
BS
2491 int n = ALLOCNO_NUM_OBJECTS (a);
2492 int i;
fa86d337 2493
058e97ec
VM
2494 if (ALLOCNO_CAP_MEMBER (a) != NULL
2495 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2496 continue;
ad474626 2497 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
8cfd82bf
BS
2498 if (nregs == 1)
2499 /* We allocated a single hard register. */
2500 n = 1;
2501 else if (n > 1)
2502 /* We allocated multiple hard registers, and we will test
2503 conflicts in a granularity of single hard regs. */
2504 nregs = 1;
2505
ac0ab4f7
BS
2506 for (i = 0; i < n; i++)
2507 {
2508 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2509 ira_object_t conflict_obj;
2510 ira_object_conflict_iterator oci;
2511 int this_regno = hard_regno;
2512 if (n > 1)
fa86d337 2513 {
2805e6c0 2514 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2515 this_regno += n - i - 1;
2516 else
2517 this_regno += i;
2518 }
2519 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2520 {
2521 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2522 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2523 if (conflict_hard_regno < 0)
2524 continue;
8cfd82bf 2525
ad474626
RS
2526 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2527 ALLOCNO_MODE (conflict_a));
8cfd82bf
BS
2528
2529 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2530 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2531 {
2805e6c0 2532 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2533 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2534 - OBJECT_SUBWORD (conflict_obj) - 1);
2535 else
2536 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2537 conflict_nregs = 1;
2538 }
ac0ab4f7
BS
2539
2540 if ((conflict_hard_regno <= this_regno
2541 && this_regno < conflict_hard_regno + conflict_nregs)
2542 || (this_regno <= conflict_hard_regno
2543 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2544 {
2545 fprintf (stderr, "bad allocation for %d and %d\n",
2546 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2547 gcc_unreachable ();
2548 }
2549 }
2550 }
058e97ec
VM
2551 }
2552}
2553#endif
2554
55a2c322
VM
2555/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2556 be already calculated. */
2557static void
2558setup_reg_equiv_init (void)
2559{
2560 int i;
2561 int max_regno = max_reg_num ();
2562
2563 for (i = 0; i < max_regno; i++)
2564 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2565}
2566
2567/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2568 are insns which were generated for such movement. It is assumed
2569 that FROM_REGNO and TO_REGNO always have the same value at the
2570 point of any move containing such registers. This function is used
2571 to update equiv info for register shuffles on the region borders
2572 and for caller save/restore insns. */
2573void
b32d5189 2574ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
55a2c322 2575{
b32d5189
DM
2576 rtx_insn *insn;
2577 rtx x, note;
55a2c322
VM
2578
2579 if (! ira_reg_equiv[from_regno].defined_p
2580 && (! ira_reg_equiv[to_regno].defined_p
2581 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2582 && ! MEM_READONLY_P (x))))
5a107a0f 2583 return;
55a2c322
VM
2584 insn = insns;
2585 if (NEXT_INSN (insn) != NULL_RTX)
2586 {
2587 if (! ira_reg_equiv[to_regno].defined_p)
2588 {
2589 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2590 return;
2591 }
2592 ira_reg_equiv[to_regno].defined_p = false;
2593 ira_reg_equiv[to_regno].memory
2594 = ira_reg_equiv[to_regno].constant
2595 = ira_reg_equiv[to_regno].invariant
0cc97fc5 2596 = ira_reg_equiv[to_regno].init_insns = NULL;
55a2c322
VM
2597 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2598 fprintf (ira_dump_file,
2599 " Invalidating equiv info for reg %d\n", to_regno);
2600 return;
2601 }
2602 /* It is possible that FROM_REGNO still has no equivalence because
2603 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2604 insn was not processed yet. */
2605 if (ira_reg_equiv[from_regno].defined_p)
2606 {
2607 ira_reg_equiv[to_regno].defined_p = true;
2608 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2609 {
2610 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2611 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2612 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2613 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2614 ira_reg_equiv[to_regno].memory = x;
2615 if (! MEM_READONLY_P (x))
2616 /* We don't add the insn to insn init list because memory
2617 equivalence is just to say what memory is better to use
2618 when the pseudo is spilled. */
2619 return;
2620 }
2621 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2622 {
2623 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2624 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2625 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2626 ira_reg_equiv[to_regno].constant = x;
2627 }
2628 else
2629 {
2630 x = ira_reg_equiv[from_regno].invariant;
2631 ira_assert (x != NULL_RTX);
2632 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2633 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2634 ira_reg_equiv[to_regno].invariant = x;
2635 }
2636 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2637 {
2c797321 2638 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
55a2c322
VM
2639 gcc_assert (note != NULL_RTX);
2640 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2641 {
2642 fprintf (ira_dump_file,
2643 " Adding equiv note to insn %u for reg %d ",
2644 INSN_UID (insn), to_regno);
cfbeaedf 2645 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2646 fprintf (ira_dump_file, "\n");
2647 }
2648 }
2649 }
2650 ira_reg_equiv[to_regno].init_insns
2651 = gen_rtx_INSN_LIST (VOIDmode, insn,
2652 ira_reg_equiv[to_regno].init_insns);
2653 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2654 fprintf (ira_dump_file,
2655 " Adding equiv init move insn %u to reg %d\n",
2656 INSN_UID (insn), to_regno);
2657}
2658
058e97ec
VM
2659/* Fix values of array REG_EQUIV_INIT after live range splitting done
2660 by IRA. */
2661static void
2662fix_reg_equiv_init (void)
2663{
70cc3288 2664 int max_regno = max_reg_num ();
f2034d06 2665 int i, new_regno, max;
618bccf9
TS
2666 rtx set;
2667 rtx_insn_list *x, *next, *prev;
2668 rtx_insn *insn;
b8698a0f 2669
70cc3288 2670 if (max_regno_before_ira < max_regno)
058e97ec 2671 {
9771b263 2672 max = vec_safe_length (reg_equivs);
f2034d06
JL
2673 grow_reg_equivs ();
2674 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
618bccf9 2675 for (prev = NULL, x = reg_equiv_init (i);
f2034d06
JL
2676 x != NULL_RTX;
2677 x = next)
058e97ec 2678 {
618bccf9
TS
2679 next = x->next ();
2680 insn = x->insn ();
2681 set = single_set (insn);
058e97ec
VM
2682 ira_assert (set != NULL_RTX
2683 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2684 if (REG_P (SET_DEST (set))
2685 && ((int) REGNO (SET_DEST (set)) == i
2686 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2687 new_regno = REGNO (SET_DEST (set));
2688 else if (REG_P (SET_SRC (set))
2689 && ((int) REGNO (SET_SRC (set)) == i
2690 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2691 new_regno = REGNO (SET_SRC (set));
2692 else
2693 gcc_unreachable ();
2694 if (new_regno == i)
2695 prev = x;
2696 else
2697 {
55a2c322 2698 /* Remove the wrong list element. */
058e97ec 2699 if (prev == NULL_RTX)
f2034d06 2700 reg_equiv_init (i) = next;
058e97ec
VM
2701 else
2702 XEXP (prev, 1) = next;
f2034d06
JL
2703 XEXP (x, 1) = reg_equiv_init (new_regno);
2704 reg_equiv_init (new_regno) = x;
058e97ec
VM
2705 }
2706 }
2707 }
2708}
2709
2710#ifdef ENABLE_IRA_CHECKING
2711/* Print redundant memory-memory copies. */
2712static void
2713print_redundant_copies (void)
2714{
2715 int hard_regno;
2716 ira_allocno_t a;
2717 ira_copy_t cp, next_cp;
2718 ira_allocno_iterator ai;
b8698a0f 2719
058e97ec
VM
2720 FOR_EACH_ALLOCNO (a, ai)
2721 {
2722 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2b9c63a2 2723 /* It is a cap. */
058e97ec
VM
2724 continue;
2725 hard_regno = ALLOCNO_HARD_REGNO (a);
2726 if (hard_regno >= 0)
2727 continue;
2728 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2729 if (cp->first == a)
2730 next_cp = cp->next_first_allocno_copy;
2731 else
2732 {
2733 next_cp = cp->next_second_allocno_copy;
2734 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2735 && cp->insn != NULL_RTX
2736 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2737 fprintf (ira_dump_file,
2738 " Redundant move from %d(freq %d):%d\n",
2739 INSN_UID (cp->insn), cp->freq, hard_regno);
2740 }
2741 }
2742}
2743#endif
2744
2745/* Setup preferred and alternative classes for new pseudo-registers
2746 created by IRA starting with START. */
2747static void
2748setup_preferred_alternate_classes_for_new_pseudos (int start)
2749{
2750 int i, old_regno;
2751 int max_regno = max_reg_num ();
2752
2753 for (i = start; i < max_regno; i++)
2754 {
2755 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2756 ira_assert (i != old_regno);
058e97ec 2757 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2758 reg_alternate_class (old_regno),
1756cb66 2759 reg_allocno_class (old_regno));
058e97ec
VM
2760 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2761 fprintf (ira_dump_file,
2762 " New r%d: setting preferred %s, alternative %s\n",
2763 i, reg_class_names[reg_preferred_class (old_regno)],
2764 reg_class_names[reg_alternate_class (old_regno)]);
2765 }
2766}
2767
2768\f
df3e3493 2769/* The number of entries allocated in reg_info. */
fb99ee9b 2770static int allocated_reg_info_size;
058e97ec
VM
2771
2772/* Regional allocation can create new pseudo-registers. This function
2773 expands some arrays for pseudo-registers. */
2774static void
fb99ee9b 2775expand_reg_info (void)
058e97ec
VM
2776{
2777 int i;
2778 int size = max_reg_num ();
2779
2780 resize_reg_info ();
fb99ee9b 2781 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2782 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2783 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2784 allocated_reg_info_size = size;
058e97ec
VM
2785}
2786
3553f0bb
VM
2787/* Return TRUE if there is too high register pressure in the function.
2788 It is used to decide when stack slot sharing is worth to do. */
2789static bool
2790too_high_register_pressure_p (void)
2791{
2792 int i;
1756cb66 2793 enum reg_class pclass;
b8698a0f 2794
1756cb66 2795 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2796 {
1756cb66
VM
2797 pclass = ira_pressure_classes[i];
2798 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2799 return true;
2800 }
2801 return false;
2802}
2803
058e97ec
VM
2804\f
2805
2af2dbdc
VM
2806/* Indicate that hard register number FROM was eliminated and replaced with
2807 an offset from hard register number TO. The status of hard registers live
2808 at the start of a basic block is updated by replacing a use of FROM with
2809 a use of TO. */
2810
2811void
2812mark_elimination (int from, int to)
2813{
2814 basic_block bb;
bf744527 2815 bitmap r;
2af2dbdc 2816
11cd3bed 2817 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 2818 {
bf744527
SB
2819 r = DF_LR_IN (bb);
2820 if (bitmap_bit_p (r, from))
2821 {
2822 bitmap_clear_bit (r, from);
2823 bitmap_set_bit (r, to);
2824 }
2825 if (! df_live)
2826 continue;
2827 r = DF_LIVE_IN (bb);
2828 if (bitmap_bit_p (r, from))
2af2dbdc 2829 {
bf744527
SB
2830 bitmap_clear_bit (r, from);
2831 bitmap_set_bit (r, to);
2af2dbdc
VM
2832 }
2833 }
2834}
2835
2836\f
2837
55a2c322
VM
2838/* The length of the following array. */
2839int ira_reg_equiv_len;
2840
2841/* Info about equiv. info for each register. */
4c2b2d79 2842struct ira_reg_equiv_s *ira_reg_equiv;
55a2c322
VM
2843
2844/* Expand ira_reg_equiv if necessary. */
2845void
2846ira_expand_reg_equiv (void)
2847{
2848 int old = ira_reg_equiv_len;
2849
2850 if (ira_reg_equiv_len > max_reg_num ())
2851 return;
2852 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2853 ira_reg_equiv
4c2b2d79 2854 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
55a2c322 2855 ira_reg_equiv_len
4c2b2d79 2856 * sizeof (struct ira_reg_equiv_s));
55a2c322
VM
2857 gcc_assert (old < ira_reg_equiv_len);
2858 memset (ira_reg_equiv + old, 0,
4c2b2d79 2859 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
55a2c322
VM
2860}
2861
2862static void
2863init_reg_equiv (void)
2864{
2865 ira_reg_equiv_len = 0;
2866 ira_reg_equiv = NULL;
2867 ira_expand_reg_equiv ();
2868}
2869
2870static void
2871finish_reg_equiv (void)
2872{
2873 free (ira_reg_equiv);
2874}
2875
2876\f
2877
2af2dbdc
VM
2878struct equivalence
2879{
2af2dbdc
VM
2880 /* Set when a REG_EQUIV note is found or created. Use to
2881 keep track of what memory accesses might be created later,
2882 e.g. by reload. */
2883 rtx replacement;
2884 rtx *src_p;
fb0ab697
JL
2885
2886 /* The list of each instruction which initializes this register.
2887
2888 NULL indicates we know nothing about this register's equivalence
2889 properties.
2890
2891 An INSN_LIST with a NULL insn indicates this pseudo is already
2892 known to not have a valid equivalence. */
2893 rtx_insn_list *init_insns;
2894
2af2dbdc
VM
2895 /* Loop depth is used to recognize equivalences which appear
2896 to be present within the same loop (or in an inner loop). */
5ffa4e6a 2897 short loop_depth;
2af2dbdc 2898 /* Nonzero if this had a preexisting REG_EQUIV note. */
5ffa4e6a 2899 unsigned char is_arg_equivalence : 1;
8f5929e1
JJ
2900 /* Set when an attempt should be made to replace a register
2901 with the associated src_p entry. */
5ffa4e6a
FY
2902 unsigned char replace : 1;
2903 /* Set if this register has no known equivalence. */
2904 unsigned char no_equiv : 1;
8c1d8b59
AM
2905 /* Set if this register is mentioned in a paradoxical subreg. */
2906 unsigned char pdx_subregs : 1;
2af2dbdc
VM
2907};
2908
2909/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2910 structure for that register. */
2911static struct equivalence *reg_equiv;
2912
c7a99fc6
AM
2913/* Used for communication between the following two functions. */
2914struct equiv_mem_data
2915{
2916 /* A MEM that we wish to ensure remains unchanged. */
2917 rtx equiv_mem;
2af2dbdc 2918
c7a99fc6
AM
2919 /* Set true if EQUIV_MEM is modified. */
2920 bool equiv_mem_modified;
2921};
2af2dbdc
VM
2922
2923/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2924 Called via note_stores. */
2925static void
2926validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
c7a99fc6 2927 void *data)
2af2dbdc 2928{
c7a99fc6
AM
2929 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2930
2af2dbdc 2931 if ((REG_P (dest)
c7a99fc6 2932 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2af2dbdc 2933 || (MEM_P (dest)
c7a99fc6
AM
2934 && anti_dependence (info->equiv_mem, dest)))
2935 info->equiv_mem_modified = true;
2af2dbdc
VM
2936}
2937
63ce14e0
AM
2938enum valid_equiv { valid_none, valid_combine, valid_reload };
2939
2af2dbdc
VM
2940/* Verify that no store between START and the death of REG invalidates
2941 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2942 by storing into an overlapping memory location, or with a non-const
2943 CALL_INSN.
2944
63ce14e0
AM
2945 Return VALID_RELOAD if MEMREF remains valid for both reload and
2946 combine_and_move insns, VALID_COMBINE if only valid for
2947 combine_and_move_insns, and VALID_NONE otherwise. */
2948static enum valid_equiv
b32d5189 2949validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2af2dbdc 2950{
b32d5189 2951 rtx_insn *insn;
2af2dbdc 2952 rtx note;
c7a99fc6 2953 struct equiv_mem_data info = { memref, false };
63ce14e0 2954 enum valid_equiv ret = valid_reload;
2af2dbdc
VM
2955
2956 /* If the memory reference has side effects or is volatile, it isn't a
2957 valid equivalence. */
2958 if (side_effects_p (memref))
63ce14e0 2959 return valid_none;
2af2dbdc 2960
c7a99fc6 2961 for (insn = start; insn; insn = NEXT_INSN (insn))
2af2dbdc 2962 {
63ce14e0 2963 if (!INSN_P (insn))
2af2dbdc
VM
2964 continue;
2965
2966 if (find_reg_note (insn, REG_DEAD, reg))
63ce14e0 2967 return ret;
2af2dbdc 2968
a22265a4 2969 if (CALL_P (insn))
63ce14e0
AM
2970 {
2971 /* We can combine a reg def from one insn into a reg use in
2972 another over a call if the memory is readonly or the call
2973 const/pure. However, we can't set reg_equiv notes up for
2974 reload over any call. The problem is the equivalent form
2975 may reference a pseudo which gets assigned a call
2976 clobbered hard reg. When we later replace REG with its
2977 equivalent form, the value in the call-clobbered reg has
2978 been changed and all hell breaks loose. */
2979 ret = valid_combine;
2980 if (!MEM_READONLY_P (memref)
2981 && !RTL_CONST_OR_PURE_CALL_P (insn))
2982 return valid_none;
2983 }
2af2dbdc 2984
e8448ba5 2985 note_stores (insn, validate_equiv_mem_from_store, &info);
c7a99fc6 2986 if (info.equiv_mem_modified)
63ce14e0 2987 return valid_none;
2af2dbdc
VM
2988
2989 /* If a register mentioned in MEMREF is modified via an
2990 auto-increment, we lose the equivalence. Do the same if one
2991 dies; although we could extend the life, it doesn't seem worth
2992 the trouble. */
2993
2994 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2995 if ((REG_NOTE_KIND (note) == REG_INC
2996 || REG_NOTE_KIND (note) == REG_DEAD)
2997 && REG_P (XEXP (note, 0))
2998 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
63ce14e0 2999 return valid_none;
2af2dbdc
VM
3000 }
3001
63ce14e0 3002 return valid_none;
2af2dbdc
VM
3003}
3004
3005/* Returns zero if X is known to be invariant. */
3006static int
3007equiv_init_varies_p (rtx x)
3008{
3009 RTX_CODE code = GET_CODE (x);
3010 int i;
3011 const char *fmt;
3012
3013 switch (code)
3014 {
3015 case MEM:
3016 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3017
3018 case CONST:
d8116890 3019 CASE_CONST_ANY:
2af2dbdc
VM
3020 case SYMBOL_REF:
3021 case LABEL_REF:
3022 return 0;
3023
3024 case REG:
3025 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3026
3027 case ASM_OPERANDS:
3028 if (MEM_VOLATILE_P (x))
3029 return 1;
3030
3031 /* Fall through. */
3032
3033 default:
3034 break;
3035 }
3036
3037 fmt = GET_RTX_FORMAT (code);
3038 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3039 if (fmt[i] == 'e')
3040 {
3041 if (equiv_init_varies_p (XEXP (x, i)))
3042 return 1;
3043 }
3044 else if (fmt[i] == 'E')
3045 {
3046 int j;
3047 for (j = 0; j < XVECLEN (x, i); j++)
3048 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3049 return 1;
3050 }
3051
3052 return 0;
3053}
3054
3055/* Returns nonzero if X (used to initialize register REGNO) is movable.
3056 X is only movable if the registers it uses have equivalent initializations
3057 which appear to be within the same loop (or in an inner loop) and movable
3058 or if they are not candidates for local_alloc and don't vary. */
3059static int
3060equiv_init_movable_p (rtx x, int regno)
3061{
3062 int i, j;
3063 const char *fmt;
3064 enum rtx_code code = GET_CODE (x);
3065
3066 switch (code)
3067 {
3068 case SET:
3069 return equiv_init_movable_p (SET_SRC (x), regno);
3070
3071 case CC0:
3072 case CLOBBER:
8df47bdf 3073 case CLOBBER_HIGH:
2af2dbdc
VM
3074 return 0;
3075
3076 case PRE_INC:
3077 case PRE_DEC:
3078 case POST_INC:
3079 case POST_DEC:
3080 case PRE_MODIFY:
3081 case POST_MODIFY:
3082 return 0;
3083
3084 case REG:
1756cb66
VM
3085 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3086 && reg_equiv[REGNO (x)].replace)
3087 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3088 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
3089
3090 case UNSPEC_VOLATILE:
3091 return 0;
3092
3093 case ASM_OPERANDS:
3094 if (MEM_VOLATILE_P (x))
3095 return 0;
3096
3097 /* Fall through. */
3098
3099 default:
3100 break;
3101 }
3102
3103 fmt = GET_RTX_FORMAT (code);
3104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3105 switch (fmt[i])
3106 {
3107 case 'e':
3108 if (! equiv_init_movable_p (XEXP (x, i), regno))
3109 return 0;
3110 break;
3111 case 'E':
3112 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3113 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3114 return 0;
3115 break;
3116 }
3117
3118 return 1;
3119}
3120
cc30d932
VM
3121static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3122
3123/* Auxiliary function for memref_referenced_p. Process setting X for
3124 MEMREF store. */
3125static bool
3126process_set_for_memref_referenced_p (rtx memref, rtx x)
3127{
3128 /* If we are setting a MEM, it doesn't count (its address does), but any
3129 other SET_DEST that has a MEM in it is referencing the MEM. */
3130 if (MEM_P (x))
3131 {
3132 if (memref_referenced_p (memref, XEXP (x, 0), true))
3133 return true;
3134 }
3135 else if (memref_referenced_p (memref, x, false))
3136 return true;
3137
3138 return false;
3139}
3140
3141/* TRUE if X references a memory location (as a read if READ_P) that
3142 would be affected by a store to MEMREF. */
3143static bool
3144memref_referenced_p (rtx memref, rtx x, bool read_p)
2af2dbdc
VM
3145{
3146 int i, j;
3147 const char *fmt;
3148 enum rtx_code code = GET_CODE (x);
3149
3150 switch (code)
3151 {
2af2dbdc
VM
3152 case CONST:
3153 case LABEL_REF:
3154 case SYMBOL_REF:
d8116890 3155 CASE_CONST_ANY:
2af2dbdc
VM
3156 case PC:
3157 case CC0:
3158 case HIGH:
3159 case LO_SUM:
cc30d932 3160 return false;
2af2dbdc
VM
3161
3162 case REG:
3163 return (reg_equiv[REGNO (x)].replacement
3164 && memref_referenced_p (memref,
cc30d932 3165 reg_equiv[REGNO (x)].replacement, read_p));
2af2dbdc
VM
3166
3167 case MEM:
cc30d932
VM
3168 /* Memory X might have another effective type than MEMREF. */
3169 if (read_p || true_dependence (memref, VOIDmode, x))
3170 return true;
2af2dbdc
VM
3171 break;
3172
3173 case SET:
cc30d932
VM
3174 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3175 return true;
3176
3177 return memref_referenced_p (memref, SET_SRC (x), true);
3178
3179 case CLOBBER:
3180 case CLOBBER_HIGH:
3181 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3182 return true;
2af2dbdc 3183
cc30d932
VM
3184 return false;
3185
3186 case PRE_DEC:
3187 case POST_DEC:
3188 case PRE_INC:
3189 case POST_INC:
3190 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3191 return true;
3192
3193 return memref_referenced_p (memref, XEXP (x, 0), true);
3194
3195 case POST_MODIFY:
3196 case PRE_MODIFY:
3197 /* op0 = op0 + op1 */
3198 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3199 return true;
3200
3201 if (memref_referenced_p (memref, XEXP (x, 0), true))
3202 return true;
3203
3204 return memref_referenced_p (memref, XEXP (x, 1), true);
2af2dbdc
VM
3205
3206 default:
3207 break;
3208 }
3209
3210 fmt = GET_RTX_FORMAT (code);
3211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3212 switch (fmt[i])
3213 {
3214 case 'e':
cc30d932
VM
3215 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3216 return true;
2af2dbdc
VM
3217 break;
3218 case 'E':
3219 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cc30d932
VM
3220 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3221 return true;
2af2dbdc
VM
3222 break;
3223 }
3224
cc30d932 3225 return false;
2af2dbdc
VM
3226}
3227
3228/* TRUE if some insn in the range (START, END] references a memory location
14d7d4be
JL
3229 that would be affected by a store to MEMREF.
3230
3231 Callers should not call this routine if START is after END in the
3232 RTL chain. */
3233
2af2dbdc 3234static int
b32d5189 3235memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
2af2dbdc 3236{
b32d5189 3237 rtx_insn *insn;
2af2dbdc 3238
14d7d4be
JL
3239 for (insn = NEXT_INSN (start);
3240 insn && insn != NEXT_INSN (end);
2af2dbdc
VM
3241 insn = NEXT_INSN (insn))
3242 {
b5b8b0ac 3243 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 3244 continue;
b8698a0f 3245
cc30d932 3246 if (memref_referenced_p (memref, PATTERN (insn), false))
2af2dbdc
VM
3247 return 1;
3248
3249 /* Nonconst functions may access memory. */
3250 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3251 return 1;
3252 }
3253
14d7d4be 3254 gcc_assert (insn == NEXT_INSN (end));
2af2dbdc
VM
3255 return 0;
3256}
3257
3258/* Mark REG as having no known equivalence.
3259 Some instructions might have been processed before and furnished
3260 with REG_EQUIV notes for this register; these notes will have to be
3261 removed.
3262 STORE is the piece of RTL that does the non-constant / conflicting
3263 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3264 but needs to be there because this function is called from note_stores. */
3265static void
1756cb66
VM
3266no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3267 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
3268{
3269 int regno;
fb0ab697 3270 rtx_insn_list *list;
2af2dbdc
VM
3271
3272 if (!REG_P (reg))
3273 return;
3274 regno = REGNO (reg);
5ffa4e6a 3275 reg_equiv[regno].no_equiv = 1;
2af2dbdc 3276 list = reg_equiv[regno].init_insns;
fb0ab697 3277 if (list && list->insn () == NULL)
2af2dbdc 3278 return;
fb0ab697 3279 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
2af2dbdc
VM
3280 reg_equiv[regno].replacement = NULL_RTX;
3281 /* This doesn't matter for equivalences made for argument registers, we
3282 should keep their initialization insns. */
3283 if (reg_equiv[regno].is_arg_equivalence)
3284 return;
55a2c322 3285 ira_reg_equiv[regno].defined_p = false;
0cc97fc5 3286 ira_reg_equiv[regno].init_insns = NULL;
fb0ab697 3287 for (; list; list = list->next ())
2af2dbdc 3288 {
fb0ab697 3289 rtx_insn *insn = list->insn ();
2af2dbdc
VM
3290 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3291 }
3292}
3293
e3f9e0ac
WM
3294/* Check whether the SUBREG is a paradoxical subreg and set the result
3295 in PDX_SUBREGS. */
3296
40954ce5 3297static void
8c1d8b59 3298set_paradoxical_subreg (rtx_insn *insn)
e3f9e0ac 3299{
40954ce5
RS
3300 subrtx_iterator::array_type array;
3301 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3302 {
3303 const_rtx subreg = *iter;
3304 if (GET_CODE (subreg) == SUBREG)
3305 {
3306 const_rtx reg = SUBREG_REG (subreg);
3307 if (REG_P (reg) && paradoxical_subreg_p (subreg))
8c1d8b59 3308 reg_equiv[REGNO (reg)].pdx_subregs = true;
40954ce5
RS
3309 }
3310 }
e3f9e0ac
WM
3311}
3312
3a6191b1
JJ
3313/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3314 equivalent replacement. */
3315
3316static rtx
3317adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3318{
3319 if (REG_P (loc))
3320 {
3321 bitmap cleared_regs = (bitmap) data;
3322 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
b8f045e2 3323 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3a6191b1
JJ
3324 NULL_RTX, adjust_cleared_regs, data);
3325 }
3326 return NULL_RTX;
3327}
3328
a72b242e
AM
3329/* Given register REGNO is set only once, return true if the defining
3330 insn dominates all uses. */
3331
3332static bool
3333def_dominates_uses (int regno)
3334{
3335 df_ref def = DF_REG_DEF_CHAIN (regno);
3336
3337 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3338 /* If this is an artificial def (eh handler regs, hard frame pointer
3339 for non-local goto, regs defined on function entry) then def_info
3340 is NULL and the reg is always live before any use. We might
3341 reasonably return true in that case, but since the only call
3342 of this function is currently here in ira.c when we are looking
3343 at a defining insn we can't have an artificial def as that would
3344 bump DF_REG_DEF_COUNT. */
3345 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3346
3347 rtx_insn *def_insn = DF_REF_INSN (def);
3348 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3349
3350 for (df_ref use = DF_REG_USE_CHAIN (regno);
3351 use;
3352 use = DF_REF_NEXT_REG (use))
3353 {
3354 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3355 /* Only check real uses, not artificial ones. */
3356 if (use_info)
3357 {
3358 rtx_insn *use_insn = DF_REF_INSN (use);
3359 if (!DEBUG_INSN_P (use_insn))
3360 {
3361 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3362 if (use_bb != def_bb
3363 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3364 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3365 return false;
3366 }
3367 }
3368 }
3369 return true;
3370}
3371
2af2dbdc 3372/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
3373 compilation (either because they can be referenced in memory or are
3374 set once from a single constant). Lower their priority for a
3375 register.
2af2dbdc 3376
1756cb66
VM
3377 If such a register is only referenced once, try substituting its
3378 value into the using insn. If it succeeds, we can eliminate the
3379 register completely.
2af2dbdc 3380
ba52669f
AM
3381 Initialize init_insns in ira_reg_equiv array. */
3382static void
2af2dbdc
VM
3383update_equiv_regs (void)
3384{
b2908ba6 3385 rtx_insn *insn;
2af2dbdc 3386 basic_block bb;
2af2dbdc 3387
8c1d8b59
AM
3388 /* Scan insns and set pdx_subregs if the reg is used in a
3389 paradoxical subreg. Don't set such reg equivalent to a mem,
e3f9e0ac
WM
3390 because lra will not substitute such equiv memory in order to
3391 prevent access beyond allocated memory for paradoxical memory subreg. */
11cd3bed 3392 FOR_EACH_BB_FN (bb, cfun)
e3f9e0ac 3393 FOR_BB_INSNS (bb, insn)
c34c46dd 3394 if (NONDEBUG_INSN_P (insn))
8c1d8b59 3395 set_paradoxical_subreg (insn);
e3f9e0ac 3396
2af2dbdc
VM
3397 /* Scan the insns and find which registers have equivalences. Do this
3398 in a separate scan of the insns because (due to -fcse-follow-jumps)
3399 a register can be set below its use. */
91dabbb2 3400 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
11cd3bed 3401 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 3402 {
91dabbb2 3403 int loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3404
3405 for (insn = BB_HEAD (bb);
3406 insn != NEXT_INSN (BB_END (bb));
3407 insn = NEXT_INSN (insn))
3408 {
3409 rtx note;
3410 rtx set;
3411 rtx dest, src;
3412 int regno;
3413
3414 if (! INSN_P (insn))
3415 continue;
3416
3417 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3418 if (REG_NOTE_KIND (note) == REG_INC)
3419 no_equiv (XEXP (note, 0), note, NULL);
3420
3421 set = single_set (insn);
3422
3423 /* If this insn contains more (or less) than a single SET,
3424 only mark all destinations as having no known equivalence. */
07b38331
BS
3425 if (set == NULL_RTX
3426 || side_effects_p (SET_SRC (set)))
2af2dbdc 3427 {
e8448ba5 3428 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
2af2dbdc
VM
3429 continue;
3430 }
3431 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3432 {
3433 int i;
3434
3435 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3436 {
3437 rtx part = XVECEXP (PATTERN (insn), 0, i);
3438 if (part != set)
e8448ba5 3439 note_pattern_stores (part, no_equiv, NULL);
2af2dbdc
VM
3440 }
3441 }
3442
3443 dest = SET_DEST (set);
3444 src = SET_SRC (set);
3445
3446 /* See if this is setting up the equivalence between an argument
3447 register and its stack slot. */
3448 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3449 if (note)
3450 {
3451 gcc_assert (REG_P (dest));
3452 regno = REGNO (dest);
3453
55a2c322
VM
3454 /* Note that we don't want to clear init_insns in
3455 ira_reg_equiv even if there are multiple sets of this
3456 register. */
2af2dbdc
VM
3457 reg_equiv[regno].is_arg_equivalence = 1;
3458
5a107a0f
VM
3459 /* The insn result can have equivalence memory although
3460 the equivalence is not set up by the insn. We add
3461 this insn to init insns as it is a flag for now that
3462 regno has an equivalence. We will remove the insn
3463 from init insn list later. */
3464 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3465 ira_reg_equiv[regno].init_insns
3466 = gen_rtx_INSN_LIST (VOIDmode, insn,
3467 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3468
3469 /* Continue normally in case this is a candidate for
3470 replacements. */
3471 }
3472
3473 if (!optimize)
3474 continue;
3475
3476 /* We only handle the case of a pseudo register being set
3477 once, or always to the same value. */
1fe28116
VM
3478 /* ??? The mn10200 port breaks if we add equivalences for
3479 values that need an ADDRESS_REGS register and set them equivalent
3480 to a MEM of a pseudo. The actual problem is in the over-conservative
3481 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3482 calculate_needs, but we traditionally work around this problem
3483 here by rejecting equivalences when the destination is in a register
3484 that's likely spilled. This is fragile, of course, since the
3485 preferred class of a pseudo depends on all instructions that set
3486 or use it. */
3487
2af2dbdc
VM
3488 if (!REG_P (dest)
3489 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
fb0ab697
JL
3490 || (reg_equiv[regno].init_insns
3491 && reg_equiv[regno].init_insns->insn () == NULL)
07b8f0a8 3492 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3493 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3494 {
3495 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3496 also set somewhere else to a constant. */
e8448ba5 3497 note_pattern_stores (set, no_equiv, NULL);
2af2dbdc
VM
3498 continue;
3499 }
3500
8c1d8b59
AM
3501 /* Don't set reg mentioned in a paradoxical subreg
3502 equivalent to a mem. */
3503 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
e3f9e0ac 3504 {
e8448ba5 3505 note_pattern_stores (set, no_equiv, NULL);
e3f9e0ac
WM
3506 continue;
3507 }
3508
2af2dbdc
VM
3509 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3510
3511 /* cse sometimes generates function invariants, but doesn't put a
3512 REG_EQUAL note on the insn. Since this note would be redundant,
3513 there's no point creating it earlier than here. */
3514 if (! note && ! rtx_varies_p (src, 0))
3515 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3516
3517 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2b9c63a2 3518 since it represents a function call. */
2af2dbdc
VM
3519 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3520 note = NULL_RTX;
3521
5ffa4e6a
FY
3522 if (DF_REG_DEF_COUNT (regno) != 1)
3523 {
3524 bool equal_p = true;
3525 rtx_insn_list *list;
3526
3527 /* If we have already processed this pseudo and determined it
67914693 3528 cannot have an equivalence, then honor that decision. */
5ffa4e6a
FY
3529 if (reg_equiv[regno].no_equiv)
3530 continue;
3531
3532 if (! note
2af2dbdc
VM
3533 || rtx_varies_p (XEXP (note, 0), 0)
3534 || (reg_equiv[regno].replacement
3535 && ! rtx_equal_p (XEXP (note, 0),
5ffa4e6a
FY
3536 reg_equiv[regno].replacement)))
3537 {
3538 no_equiv (dest, set, NULL);
3539 continue;
3540 }
3541
3542 list = reg_equiv[regno].init_insns;
3543 for (; list; list = list->next ())
3544 {
3545 rtx note_tmp;
3546 rtx_insn *insn_tmp;
3547
3548 insn_tmp = list->insn ();
3549 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3550 gcc_assert (note_tmp);
3551 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3552 {
3553 equal_p = false;
3554 break;
3555 }
3556 }
3557
3558 if (! equal_p)
3559 {
3560 no_equiv (dest, set, NULL);
3561 continue;
3562 }
2af2dbdc 3563 }
5ffa4e6a 3564
2af2dbdc
VM
3565 /* Record this insn as initializing this register. */
3566 reg_equiv[regno].init_insns
3567 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3568
3569 /* If this register is known to be equal to a constant, record that
a72b242e
AM
3570 it is always equivalent to the constant.
3571 Note that it is possible to have a register use before
3572 the def in loops (see gcc.c-torture/execute/pr79286.c)
3573 where the reg is undefined on first use. If the def insn
3574 won't trap we can use it as an equivalence, effectively
3575 choosing the "undefined" value for the reg to be the
3576 same as the value set by the def. */
2af2dbdc 3577 if (DF_REG_DEF_COUNT (regno) == 1
a72b242e
AM
3578 && note
3579 && !rtx_varies_p (XEXP (note, 0), 0)
08f42414
BE
3580 && (!may_trap_or_fault_p (XEXP (note, 0))
3581 || def_dominates_uses (regno)))
2af2dbdc
VM
3582 {
3583 rtx note_value = XEXP (note, 0);
3584 remove_note (insn, note);
3585 set_unique_reg_note (insn, REG_EQUIV, note_value);
3586 }
3587
3588 /* If this insn introduces a "constant" register, decrease the priority
3589 of that register. Record this insn if the register is only used once
3590 more and the equivalence value is the same as our source.
3591
3592 The latter condition is checked for two reasons: First, it is an
3593 indication that it may be more efficient to actually emit the insn
3594 as written (if no registers are available, reload will substitute
3595 the equivalence). Secondly, it avoids problems with any registers
3596 dying in this insn whose death notes would be missed.
3597
3598 If we don't have a REG_EQUIV note, see if this insn is loading
3599 a register used only in one basic block from a MEM. If so, and the
3600 MEM remains unchanged for the life of the register, add a REG_EQUIV
3601 note. */
2af2dbdc
VM
3602 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3603
63ce14e0 3604 rtx replacement = NULL_RTX;
2af2dbdc 3605 if (note)
63ce14e0
AM
3606 replacement = XEXP (note, 0);
3607 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3608 && MEM_P (SET_SRC (set)))
2af2dbdc 3609 {
63ce14e0
AM
3610 enum valid_equiv validity;
3611 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3612 if (validity != valid_none)
3613 {
3614 replacement = copy_rtx (SET_SRC (set));
3615 if (validity == valid_reload)
3616 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3617 }
3618 }
2af2dbdc 3619
63ce14e0
AM
3620 /* If we haven't done so, record for reload that this is an
3621 equivalencing insn. */
3622 if (note && !reg_equiv[regno].is_arg_equivalence)
3623 ira_reg_equiv[regno].init_insns
3624 = gen_rtx_INSN_LIST (VOIDmode, insn,
3625 ira_reg_equiv[regno].init_insns);
2af2dbdc 3626
63ce14e0
AM
3627 if (replacement)
3628 {
3629 reg_equiv[regno].replacement = replacement;
2af2dbdc 3630 reg_equiv[regno].src_p = &SET_SRC (set);
5ffa4e6a 3631 reg_equiv[regno].loop_depth = (short) loop_depth;
2af2dbdc
VM
3632
3633 /* Don't mess with things live during setjmp. */
91dabbb2 3634 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
2af2dbdc 3635 {
2af2dbdc
VM
3636 /* If the register is referenced exactly twice, meaning it is
3637 set once and used once, indicate that the reference may be
3638 replaced by the equivalence we computed above. Do this
3639 even if the register is only used in one block so that
3640 dependencies can be handled where the last register is
3641 used in a different block (i.e. HIGH / LO_SUM sequences)
3642 and to reduce the number of registers alive across
3643 calls. */
3644
3645 if (REG_N_REFS (regno) == 2
63ce14e0 3646 && (rtx_equal_p (replacement, src)
2af2dbdc
VM
3647 || ! equiv_init_varies_p (src))
3648 && NONJUMP_INSN_P (insn)
3649 && equiv_init_movable_p (PATTERN (insn), regno))
3650 reg_equiv[regno].replace = 1;
3651 }
3652 }
3653 }
3654 }
42ae0d7f 3655}
2af2dbdc 3656
42ae0d7f
AM
3657/* For insns that set a MEM to the contents of a REG that is only used
3658 in a single basic block, see if the register is always equivalent
3659 to that memory location and if moving the store from INSN to the
3660 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3661 initializing insn. */
3662static void
3663add_store_equivs (void)
3664{
8f9b31f7 3665 auto_bitmap seen_insns;
2af2dbdc 3666
42ae0d7f 3667 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
2af2dbdc
VM
3668 {
3669 rtx set, src, dest;
3670 unsigned regno;
42ae0d7f 3671 rtx_insn *init_insn;
2af2dbdc 3672
8f9b31f7 3673 bitmap_set_bit (seen_insns, INSN_UID (insn));
14d7d4be 3674
2af2dbdc
VM
3675 if (! INSN_P (insn))
3676 continue;
3677
3678 set = single_set (insn);
3679 if (! set)
3680 continue;
3681
3682 dest = SET_DEST (set);
3683 src = SET_SRC (set);
3684
42ae0d7f 3685 /* Don't add a REG_EQUIV note if the insn already has one. The existing
10e04446 3686 REG_EQUIV is likely more useful than the one we are adding. */
2af2dbdc
VM
3687 if (MEM_P (dest) && REG_P (src)
3688 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3689 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3690 && DF_REG_DEF_COUNT (regno) == 1
8c1d8b59 3691 && ! reg_equiv[regno].pdx_subregs
fb0ab697 3692 && reg_equiv[regno].init_insns != NULL
42ae0d7f 3693 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
8f9b31f7 3694 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
42ae0d7f 3695 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
63ce14e0 3696 && validate_equiv_mem (init_insn, src, dest) == valid_reload
42ae0d7f
AM
3697 && ! memref_used_between_p (dest, init_insn, insn)
3698 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3699 multiple sets. */
3700 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2af2dbdc 3701 {
42ae0d7f
AM
3702 /* This insn makes the equivalence, not the one initializing
3703 the register. */
3704 ira_reg_equiv[regno].init_insns
3705 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3706 df_notes_rescan (init_insn);
3707 if (dump_file)
3708 fprintf (dump_file,
3709 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3710 INSN_UID (init_insn),
3711 INSN_UID (insn));
2af2dbdc
VM
3712 }
3713 }
42ae0d7f
AM
3714}
3715
3716/* Scan all regs killed in an insn to see if any of them are registers
3717 only used that once. If so, see if we can replace the reference
3718 with the equivalent form. If we can, delete the initializing
3719 reference and this register will go away. If we can't replace the
3720 reference, and the initializing reference is within the same loop
3721 (or in an inner loop), then move the register initialization just
3722 before the use, so that they are in the same basic block. */
3723static void
3724combine_and_move_insns (void)
3725{
0e3de1d4 3726 auto_bitmap cleared_regs;
b00544fa 3727 int max = max_reg_num ();
2af2dbdc 3728
b00544fa 3729 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
2af2dbdc 3730 {
b00544fa
AM
3731 if (!reg_equiv[regno].replace)
3732 continue;
2af2dbdc 3733
b00544fa
AM
3734 rtx_insn *use_insn = 0;
3735 for (df_ref use = DF_REG_USE_CHAIN (regno);
3736 use;
3737 use = DF_REF_NEXT_REG (use))
3738 if (DF_REF_INSN_INFO (use))
3739 {
3740 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3741 continue;
3742 gcc_assert (!use_insn);
3743 use_insn = DF_REF_INSN (use);
3744 }
3745 gcc_assert (use_insn);
2af2dbdc 3746
b00544fa
AM
3747 /* Don't substitute into jumps. indirect_jump_optimize does
3748 this for anything we are prepared to handle. */
3749 if (JUMP_P (use_insn))
3750 continue;
3751
17a938e8
SB
3752 /* Also don't substitute into a conditional trap insn -- it can become
3753 an unconditional trap, and that is a flow control insn. */
3754 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3755 continue;
3756
b00544fa
AM
3757 df_ref def = DF_REG_DEF_CHAIN (regno);
3758 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3759 rtx_insn *def_insn = DF_REF_INSN (def);
3760
3761 /* We may not move instructions that can throw, since that
3762 changes basic block boundaries and we are not prepared to
3763 adjust the CFG to match. */
3764 if (can_throw_internal (def_insn))
3765 continue;
3766
3767 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3768 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3769 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3770 continue;
2af2dbdc 3771
b00544fa
AM
3772 if (asm_noperands (PATTERN (def_insn)) < 0
3773 && validate_replace_rtx (regno_reg_rtx[regno],
3774 *reg_equiv[regno].src_p, use_insn))
3775 {
3776 rtx link;
3777 /* Append the REG_DEAD notes from def_insn. */
3778 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
2af2dbdc 3779 {
b00544fa 3780 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
2af2dbdc 3781 {
b00544fa
AM
3782 *p = XEXP (link, 1);
3783 XEXP (link, 1) = REG_NOTES (use_insn);
3784 REG_NOTES (use_insn) = link;
3785 }
3786 else
3787 p = &XEXP (link, 1);
3788 }
2af2dbdc 3789
b00544fa
AM
3790 remove_death (regno, use_insn);
3791 SET_REG_N_REFS (regno, 0);
3792 REG_FREQ (regno) = 0;
fba12165
BS
3793 df_ref use;
3794 FOR_EACH_INSN_USE (use, def_insn)
3795 {
3796 unsigned int use_regno = DF_REF_REGNO (use);
3797 if (!HARD_REGISTER_NUM_P (use_regno))
3798 reg_equiv[use_regno].replace = 0;
3799 }
3800
b00544fa 3801 delete_insn (def_insn);
2af2dbdc 3802
b00544fa
AM
3803 reg_equiv[regno].init_insns = NULL;
3804 ira_reg_equiv[regno].init_insns = NULL;
3805 bitmap_set_bit (cleared_regs, regno);
3806 }
2af2dbdc 3807
b00544fa
AM
3808 /* Move the initialization of the register to just before
3809 USE_INSN. Update the flow information. */
3810 else if (prev_nondebug_insn (use_insn) != def_insn)
3811 {
3812 rtx_insn *new_insn;
2af2dbdc 3813
b00544fa
AM
3814 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3815 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3816 REG_NOTES (def_insn) = 0;
3817 /* Rescan it to process the notes. */
3818 df_insn_rescan (new_insn);
2af2dbdc 3819
b00544fa
AM
3820 /* Make sure this insn is recognized before reload begins,
3821 otherwise eliminate_regs_in_insn will die. */
3822 INSN_CODE (new_insn) = INSN_CODE (def_insn);
2af2dbdc 3823
b00544fa 3824 delete_insn (def_insn);
2af2dbdc 3825
b00544fa 3826 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2af2dbdc 3827
b00544fa
AM
3828 REG_BASIC_BLOCK (regno) = use_bb->index;
3829 REG_N_CALLS_CROSSED (regno) = 0;
2af2dbdc 3830
b00544fa
AM
3831 if (use_insn == BB_HEAD (use_bb))
3832 BB_HEAD (use_bb) = new_insn;
2af2dbdc 3833
fcc861d9
AM
3834 /* We know regno dies in use_insn, but inside a loop
3835 REG_DEAD notes might be missing when def_insn was in
3836 another basic block. However, when we move def_insn into
3837 this bb we'll definitely get a REG_DEAD note and reload
3838 will see the death. It's possible that update_equiv_regs
3839 set up an equivalence referencing regno for a reg set by
3840 use_insn, when regno was seen as non-local. Now that
3841 regno is local to this block, and dies, such an
3842 equivalence is invalid. */
8972f7e9 3843 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
fcc861d9
AM
3844 {
3845 rtx set = single_set (use_insn);
3846 if (set && REG_P (SET_DEST (set)))
3847 no_equiv (SET_DEST (set), set, NULL);
3848 }
3849
b00544fa
AM
3850 ira_reg_equiv[regno].init_insns
3851 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3852 bitmap_set_bit (cleared_regs, regno);
2af2dbdc
VM
3853 }
3854 }
3855
3856 if (!bitmap_empty_p (cleared_regs))
3a6191b1 3857 {
b00544fa
AM
3858 basic_block bb;
3859
11cd3bed 3860 FOR_EACH_BB_FN (bb, cfun)
3a6191b1 3861 {
3a6191b1
JJ
3862 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3863 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
b00544fa 3864 if (!df_live)
bf744527
SB
3865 continue;
3866 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3867 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3868 }
3869
3870 /* Last pass - adjust debug insns referencing cleared regs. */
36f52e8f 3871 if (MAY_HAVE_DEBUG_BIND_INSNS)
b00544fa 3872 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
36f52e8f 3873 if (DEBUG_BIND_INSN_P (insn))
3a6191b1
JJ
3874 {
3875 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3876 INSN_VAR_LOCATION_LOC (insn)
3877 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3878 adjust_cleared_regs,
3879 (void *) cleared_regs);
3880 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3881 df_insn_rescan (insn);
3882 }
3883 }
2af2dbdc
VM
3884}
3885
6585b2e2
AM
3886/* A pass over indirect jumps, converting simple cases to direct jumps.
3887 Combine does this optimization too, but only within a basic block. */
ba52669f
AM
3888static void
3889indirect_jump_optimize (void)
3890{
3891 basic_block bb;
3892 bool rebuild_p = false;
3893
3894 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3895 {
3896 rtx_insn *insn = BB_END (bb);
97eb24c4
JJ
3897 if (!JUMP_P (insn)
3898 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
ba52669f
AM
3899 continue;
3900
3901 rtx x = pc_set (insn);
3902 if (!x || !REG_P (SET_SRC (x)))
3903 continue;
3904
3905 int regno = REGNO (SET_SRC (x));
3906 if (DF_REG_DEF_COUNT (regno) == 1)
3907 {
6585b2e2
AM
3908 df_ref def = DF_REG_DEF_CHAIN (regno);
3909 if (!DF_REF_IS_ARTIFICIAL (def))
ba52669f 3910 {
6585b2e2 3911 rtx_insn *def_insn = DF_REF_INSN (def);
97eb24c4
JJ
3912 rtx lab = NULL_RTX;
3913 rtx set = single_set (def_insn);
3914 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3915 lab = SET_SRC (set);
3916 else
6585b2e2 3917 {
97eb24c4
JJ
3918 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3919 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3920 lab = XEXP (eqnote, 0);
6585b2e2 3921 }
97eb24c4
JJ
3922 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3923 rebuild_p = true;
ba52669f
AM
3924 }
3925 }
3926 }
2af2dbdc 3927
ba52669f
AM
3928 if (rebuild_p)
3929 {
3930 timevar_push (TV_JUMP);
3931 rebuild_jump_labels (get_insns ());
3932 if (purge_all_dead_edges ())
3933 delete_unreachable_blocks ();
3934 timevar_pop (TV_JUMP);
3935 }
3936}
3937\f
55a2c322
VM
3938/* Set up fields memory, constant, and invariant from init_insns in
3939 the structures of array ira_reg_equiv. */
3940static void
3941setup_reg_equiv (void)
3942{
3943 int i;
0cc97fc5
DM
3944 rtx_insn_list *elem, *prev_elem, *next_elem;
3945 rtx_insn *insn;
3946 rtx set, x;
55a2c322
VM
3947
3948 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3949 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3950 elem;
3951 prev_elem = elem, elem = next_elem)
55a2c322 3952 {
0cc97fc5
DM
3953 next_elem = elem->next ();
3954 insn = elem->insn ();
55a2c322
VM
3955 set = single_set (insn);
3956
3957 /* Init insns can set up equivalence when the reg is a destination or
3958 a source (in this case the destination is memory). */
3959 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3960 {
3961 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3962 {
3963 x = XEXP (x, 0);
3964 if (REG_P (SET_DEST (set))
3965 && REGNO (SET_DEST (set)) == (unsigned int) i
3966 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3967 {
3968 /* This insn reporting the equivalence but
3969 actually not setting it. Remove it from the
3970 list. */
3971 if (prev_elem == NULL)
3972 ira_reg_equiv[i].init_insns = next_elem;
3973 else
3974 XEXP (prev_elem, 1) = next_elem;
3975 elem = prev_elem;
3976 }
3977 }
55a2c322
VM
3978 else if (REG_P (SET_DEST (set))
3979 && REGNO (SET_DEST (set)) == (unsigned int) i)
3980 x = SET_SRC (set);
3981 else
3982 {
3983 gcc_assert (REG_P (SET_SRC (set))
3984 && REGNO (SET_SRC (set)) == (unsigned int) i);
3985 x = SET_DEST (set);
3986 }
3987 if (! function_invariant_p (x)
3988 || ! flag_pic
3989 /* A function invariant is often CONSTANT_P but may
3990 include a register. We promise to only pass
3991 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3992 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3993 {
3994 /* It can happen that a REG_EQUIV note contains a MEM
3995 that is not a legitimate memory operand. As later
3996 stages of reload assume that all addresses found in
3997 the lra_regno_equiv_* arrays were originally
3998 legitimate, we ignore such REG_EQUIV notes. */
3999 if (memory_operand (x, VOIDmode))
4000 {
4001 ira_reg_equiv[i].defined_p = true;
4002 ira_reg_equiv[i].memory = x;
4003 continue;
4004 }
4005 else if (function_invariant_p (x))
4006 {
ef4bddc2 4007 machine_mode mode;
55a2c322
VM
4008
4009 mode = GET_MODE (SET_DEST (set));
4010 if (GET_CODE (x) == PLUS
4011 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4012 /* This is PLUS of frame pointer and a constant,
4013 or fp, or argp. */
4014 ira_reg_equiv[i].invariant = x;
4015 else if (targetm.legitimate_constant_p (mode, x))
4016 ira_reg_equiv[i].constant = x;
4017 else
4018 {
4019 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4020 if (ira_reg_equiv[i].memory == NULL_RTX)
4021 {
4022 ira_reg_equiv[i].defined_p = false;
0cc97fc5 4023 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
4024 break;
4025 }
4026 }
4027 ira_reg_equiv[i].defined_p = true;
4028 continue;
4029 }
4030 }
4031 }
4032 ira_reg_equiv[i].defined_p = false;
0cc97fc5 4033 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
4034 break;
4035 }
4036}
4037
4038\f
4039
2af2dbdc
VM
4040/* Print chain C to FILE. */
4041static void
99b1c316 4042print_insn_chain (FILE *file, class insn_chain *c)
2af2dbdc 4043{
c3284718 4044 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
2af2dbdc
VM
4045 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4046 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4047}
4048
4049
4050/* Print all reload_insn_chains to FILE. */
4051static void
4052print_insn_chains (FILE *file)
4053{
99b1c316 4054 class insn_chain *c;
2af2dbdc
VM
4055 for (c = reload_insn_chain; c ; c = c->next)
4056 print_insn_chain (file, c);
4057}
4058
4059/* Return true if pseudo REGNO should be added to set live_throughout
4060 or dead_or_set of the insn chains for reload consideration. */
4061static bool
4062pseudo_for_reload_consideration_p (int regno)
4063{
4064 /* Consider spilled pseudos too for IRA because they still have a
4065 chance to get hard-registers in the reload when IRA is used. */
b100151b 4066 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
4067}
4068
9dcf1f86
RS
4069/* Return true if we can track the individual bytes of subreg X.
4070 When returning true, set *OUTER_SIZE to the number of bytes in
4071 X itself, *INNER_SIZE to the number of bytes in the inner register
4072 and *START to the offset of the first byte. */
4073static bool
4074get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4075 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4076{
4077 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
cf098191
RS
4078 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4079 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4080 && SUBREG_BYTE (x).is_constant (start));
9dcf1f86
RS
4081}
4082
4083/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4084 a register with SIZE bytes, making the register live if INIT_VALUE. */
2af2dbdc
VM
4085static void
4086init_live_subregs (bool init_value, sbitmap *live_subregs,
9dcf1f86 4087 bitmap live_subregs_used, int allocnum, int size)
2af2dbdc 4088{
2af2dbdc
VM
4089 gcc_assert (size > 0);
4090
4091 /* Been there, done that. */
cee784f5 4092 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
4093 return;
4094
cee784f5 4095 /* Create a new one. */
2af2dbdc
VM
4096 if (live_subregs[allocnum] == NULL)
4097 live_subregs[allocnum] = sbitmap_alloc (size);
4098
4099 /* If the entire reg was live before blasting into subregs, we need
4100 to init all of the subregs to ones else init to 0. */
4101 if (init_value)
f61e445a 4102 bitmap_ones (live_subregs[allocnum]);
b8698a0f 4103 else
f61e445a 4104 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 4105
cee784f5 4106 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
4107}
4108
4109/* Walk the insns of the current function and build reload_insn_chain,
4110 and record register life information. */
4111static void
4112build_insn_chain (void)
4113{
4114 unsigned int i;
99b1c316 4115 class insn_chain **p = &reload_insn_chain;
2af2dbdc 4116 basic_block bb;
99b1c316
MS
4117 class insn_chain *c = NULL;
4118 class insn_chain *next = NULL;
0e3de1d4
TS
4119 auto_bitmap live_relevant_regs;
4120 auto_bitmap elim_regset;
2af2dbdc
VM
4121 /* live_subregs is a vector used to keep accurate information about
4122 which hardregs are live in multiword pseudos. live_subregs and
4123 live_subregs_used are indexed by pseudo number. The live_subreg
4124 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
4125 element is non zero in live_subregs_used. The sbitmap size of
4126 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
4127 occupy. */
4128 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
0e3de1d4 4129 auto_bitmap live_subregs_used;
2af2dbdc
VM
4130
4131 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4132 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4133 bitmap_set_bit (elim_regset, i);
4f42035e 4134 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc
VM
4135 {
4136 bitmap_iterator bi;
070a1983 4137 rtx_insn *insn;
b8698a0f 4138
2af2dbdc 4139 CLEAR_REG_SET (live_relevant_regs);
cee784f5 4140 bitmap_clear (live_subregs_used);
b8698a0f 4141
bf744527 4142 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
4143 {
4144 if (i >= FIRST_PSEUDO_REGISTER)
4145 break;
4146 bitmap_set_bit (live_relevant_regs, i);
4147 }
4148
bf744527 4149 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
4150 FIRST_PSEUDO_REGISTER, i, bi)
4151 {
4152 if (pseudo_for_reload_consideration_p (i))
4153 bitmap_set_bit (live_relevant_regs, i);
4154 }
4155
4156 FOR_BB_INSNS_REVERSE (bb, insn)
4157 {
4158 if (!NOTE_P (insn) && !BARRIER_P (insn))
4159 {
bfac633a
RS
4160 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4161 df_ref def, use;
2af2dbdc
VM
4162
4163 c = new_insn_chain ();
4164 c->next = next;
4165 next = c;
4166 *p = c;
4167 p = &c->prev;
b8698a0f 4168
2af2dbdc
VM
4169 c->insn = insn;
4170 c->block = bb->index;
4171
4b71920a 4172 if (NONDEBUG_INSN_P (insn))
bfac633a 4173 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2af2dbdc 4174 {
2af2dbdc 4175 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 4176
2af2dbdc
VM
4177 /* Ignore may clobbers because these are generated
4178 from calls. However, every other kind of def is
4179 added to dead_or_set. */
4180 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4181 {
4182 if (regno < FIRST_PSEUDO_REGISTER)
4183 {
4184 if (!fixed_regs[regno])
4185 bitmap_set_bit (&c->dead_or_set, regno);
4186 }
4187 else if (pseudo_for_reload_consideration_p (regno))
4188 bitmap_set_bit (&c->dead_or_set, regno);
4189 }
4190
4191 if ((regno < FIRST_PSEUDO_REGISTER
4192 || reg_renumber[regno] >= 0
4193 || ira_conflicts_p)
4194 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4195 {
4196 rtx reg = DF_REF_REG (def);
9dcf1f86
RS
4197 HOST_WIDE_INT outer_size, inner_size, start;
4198
4199 /* We can usually track the liveness of individual
4200 bytes within a subreg. The only exceptions are
4201 subregs wrapped in ZERO_EXTRACTs and subregs whose
4202 size is not known; in those cases we need to be
4203 conservative and treat the definition as a partial
4204 definition of the full register rather than a full
4205 definition of a specific part of the register. */
2af2dbdc 4206 if (GET_CODE (reg) == SUBREG
9dcf1f86
RS
4207 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4208 && get_subreg_tracking_sizes (reg, &outer_size,
4209 &inner_size, &start))
2af2dbdc 4210 {
9dcf1f86 4211 HOST_WIDE_INT last = start + outer_size;
2af2dbdc
VM
4212
4213 init_live_subregs
b8698a0f 4214 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4215 live_subregs, live_subregs_used, regno,
4216 inner_size);
2af2dbdc
VM
4217
4218 if (!DF_REF_FLAGS_IS_SET
4219 (def, DF_REF_STRICT_LOW_PART))
4220 {
4221 /* Expand the range to cover entire words.
4222 Bytes added here are "don't care". */
4223 start
4224 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4225 last = ((last + UNITS_PER_WORD - 1)
4226 / UNITS_PER_WORD * UNITS_PER_WORD);
4227 }
4228
4229 /* Ignore the paradoxical bits. */
cee784f5
SB
4230 if (last > SBITMAP_SIZE (live_subregs[regno]))
4231 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4232
4233 while (start < last)
4234 {
d7c028c0 4235 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
4236 start++;
4237 }
b8698a0f 4238
f61e445a 4239 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 4240 {
cee784f5 4241 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4242 bitmap_clear_bit (live_relevant_regs, regno);
4243 }
4244 else
4245 /* Set live_relevant_regs here because
4246 that bit has to be true to get us to
4247 look at the live_subregs fields. */
4248 bitmap_set_bit (live_relevant_regs, regno);
4249 }
4250 else
4251 {
4252 /* DF_REF_PARTIAL is generated for
4253 subregs, STRICT_LOW_PART, and
4254 ZERO_EXTRACT. We handle the subreg
4255 case above so here we have to keep from
4256 modeling the def as a killing def. */
4257 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4258 {
cee784f5 4259 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 4260 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
4261 }
4262 }
4263 }
4264 }
b8698a0f 4265
2af2dbdc
VM
4266 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4267 bitmap_copy (&c->live_throughout, live_relevant_regs);
4268
4b71920a 4269 if (NONDEBUG_INSN_P (insn))
bfac633a 4270 FOR_EACH_INSN_INFO_USE (use, insn_info)
2af2dbdc 4271 {
2af2dbdc
VM
4272 unsigned int regno = DF_REF_REGNO (use);
4273 rtx reg = DF_REF_REG (use);
b8698a0f 4274
2af2dbdc
VM
4275 /* DF_REF_READ_WRITE on a use means that this use
4276 is fabricated from a def that is a partial set
4277 to a multiword reg. Here, we only model the
4278 subreg case that is not wrapped in ZERO_EXTRACT
4279 precisely so we do not need to look at the
2b9c63a2 4280 fabricated use. */
b8698a0f
L
4281 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4282 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
4283 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4284 continue;
b8698a0f 4285
2af2dbdc
VM
4286 /* Add the last use of each var to dead_or_set. */
4287 if (!bitmap_bit_p (live_relevant_regs, regno))
4288 {
4289 if (regno < FIRST_PSEUDO_REGISTER)
4290 {
4291 if (!fixed_regs[regno])
4292 bitmap_set_bit (&c->dead_or_set, regno);
4293 }
4294 else if (pseudo_for_reload_consideration_p (regno))
4295 bitmap_set_bit (&c->dead_or_set, regno);
4296 }
b8698a0f 4297
2af2dbdc
VM
4298 if (regno < FIRST_PSEUDO_REGISTER
4299 || pseudo_for_reload_consideration_p (regno))
4300 {
9dcf1f86 4301 HOST_WIDE_INT outer_size, inner_size, start;
2af2dbdc
VM
4302 if (GET_CODE (reg) == SUBREG
4303 && !DF_REF_FLAGS_IS_SET (use,
4304 DF_REF_SIGN_EXTRACT
9dcf1f86
RS
4305 | DF_REF_ZERO_EXTRACT)
4306 && get_subreg_tracking_sizes (reg, &outer_size,
4307 &inner_size, &start))
2af2dbdc 4308 {
9dcf1f86 4309 HOST_WIDE_INT last = start + outer_size;
b8698a0f 4310
2af2dbdc 4311 init_live_subregs
b8698a0f 4312 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4313 live_subregs, live_subregs_used, regno,
4314 inner_size);
b8698a0f 4315
2af2dbdc 4316 /* Ignore the paradoxical bits. */
cee784f5
SB
4317 if (last > SBITMAP_SIZE (live_subregs[regno]))
4318 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4319
4320 while (start < last)
4321 {
d7c028c0 4322 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
4323 start++;
4324 }
4325 }
4326 else
4327 /* Resetting the live_subregs_used is
4328 effectively saying do not use the subregs
4329 because we are reading the whole
4330 pseudo. */
cee784f5 4331 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4332 bitmap_set_bit (live_relevant_regs, regno);
4333 }
4334 }
4335 }
4336 }
4337
4338 /* FIXME!! The following code is a disaster. Reload needs to see the
4339 labels and jump tables that are just hanging out in between
4340 the basic blocks. See pr33676. */
4341 insn = BB_HEAD (bb);
b8698a0f 4342
2af2dbdc 4343 /* Skip over the barriers and cruft. */
b8698a0f 4344 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
4345 || BLOCK_FOR_INSN (insn) == bb))
4346 insn = PREV_INSN (insn);
b8698a0f 4347
2af2dbdc
VM
4348 /* While we add anything except barriers and notes, the focus is
4349 to get the labels and jump tables into the
4350 reload_insn_chain. */
4351 while (insn)
4352 {
4353 if (!NOTE_P (insn) && !BARRIER_P (insn))
4354 {
4355 if (BLOCK_FOR_INSN (insn))
4356 break;
b8698a0f 4357
2af2dbdc
VM
4358 c = new_insn_chain ();
4359 c->next = next;
4360 next = c;
4361 *p = c;
4362 p = &c->prev;
b8698a0f 4363
2af2dbdc
VM
4364 /* The block makes no sense here, but it is what the old
4365 code did. */
4366 c->block = bb->index;
4367 c->insn = insn;
4368 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 4369 }
2af2dbdc
VM
4370 insn = PREV_INSN (insn);
4371 }
4372 }
4373
2af2dbdc
VM
4374 reload_insn_chain = c;
4375 *p = NULL;
4376
cee784f5
SB
4377 for (i = 0; i < (unsigned int) max_regno; i++)
4378 if (live_subregs[i] != NULL)
4379 sbitmap_free (live_subregs[i]);
2af2dbdc 4380 free (live_subregs);
2af2dbdc
VM
4381
4382 if (dump_file)
4383 print_insn_chains (dump_file);
4384}
acf41a74
BS
4385 \f
4386/* Examine the rtx found in *LOC, which is read or written to as determined
4387 by TYPE. Return false if we find a reason why an insn containing this
4388 rtx should not be moved (such as accesses to non-constant memory), true
4389 otherwise. */
4390static bool
4391rtx_moveable_p (rtx *loc, enum op_type type)
4392{
4393 const char *fmt;
4394 rtx x = *loc;
acf41a74
BS
4395 int i, j;
4396
45309d28 4397 enum rtx_code code = GET_CODE (x);
acf41a74
BS
4398 switch (code)
4399 {
4400 case CONST:
d8116890 4401 CASE_CONST_ANY:
acf41a74
BS
4402 case SYMBOL_REF:
4403 case LABEL_REF:
4404 return true;
4405
4406 case PC:
4407 return type == OP_IN;
4408
4409 case CC0:
4410 return false;
4411
4412 case REG:
4413 if (x == frame_pointer_rtx)
4414 return true;
4415 if (HARD_REGISTER_P (x))
4416 return false;
4417
4418 return true;
4419
4420 case MEM:
4421 if (type == OP_IN && MEM_READONLY_P (x))
4422 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4423 return false;
4424
4425 case SET:
4426 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4427 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4428
4429 case STRICT_LOW_PART:
4430 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4431
4432 case ZERO_EXTRACT:
4433 case SIGN_EXTRACT:
4434 return (rtx_moveable_p (&XEXP (x, 0), type)
4435 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4436 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4437
4438 case CLOBBER:
8df47bdf 4439 case CLOBBER_HIGH:
acf41a74
BS
4440 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4441
d8c16744 4442 case UNSPEC_VOLATILE:
026c3cfd 4443 /* It is a bad idea to consider insns with such rtl
d8c16744
VM
4444 as moveable ones. The insn scheduler also considers them as barrier
4445 for a reason. */
4446 return false;
4447
9d0d0a5a
SB
4448 case ASM_OPERANDS:
4449 /* The same is true for volatile asm: it has unknown side effects, it
4450 cannot be moved at will. */
4451 if (MEM_VOLATILE_P (x))
4452 return false;
4453
acf41a74
BS
4454 default:
4455 break;
4456 }
4457
4458 fmt = GET_RTX_FORMAT (code);
4459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4460 {
4461 if (fmt[i] == 'e')
4462 {
4463 if (!rtx_moveable_p (&XEXP (x, i), type))
4464 return false;
4465 }
4466 else if (fmt[i] == 'E')
4467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4468 {
4469 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4470 return false;
4471 }
4472 }
4473 return true;
4474}
4475
4476/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4477 to give dominance relationships between two insns I1 and I2. */
4478static bool
4479insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4480{
4481 basic_block bb1 = BLOCK_FOR_INSN (i1);
4482 basic_block bb2 = BLOCK_FOR_INSN (i2);
4483
4484 if (bb1 == bb2)
4485 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4486 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4487}
4488
4489/* Record the range of register numbers added by find_moveable_pseudos. */
4490int first_moveable_pseudo, last_moveable_pseudo;
4491
4492/* These two vectors hold data for every register added by
4493 find_movable_pseudos, with index 0 holding data for the
4494 first_moveable_pseudo. */
4495/* The original home register. */
9771b263 4496static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
4497
4498/* Look for instances where we have an instruction that is known to increase
4499 register pressure, and whose result is not used immediately. If it is
4500 possible to move the instruction downwards to just before its first use,
4501 split its lifetime into two ranges. We create a new pseudo to compute the
4502 value, and emit a move instruction just before the first use. If, after
4503 register allocation, the new pseudo remains unallocated, the function
4504 move_unallocated_pseudos then deletes the move instruction and places
4505 the computation just before the first use.
4506
4507 Such a move is safe and profitable if all the input registers remain live
4508 and unchanged between the original computation and its first use. In such
4509 a situation, the computation is known to increase register pressure, and
4510 moving it is known to at least not worsen it.
4511
4512 We restrict moves to only those cases where a register remains unallocated,
4513 in order to avoid interfering too much with the instruction schedule. As
4514 an exception, we may move insns which only modify their input register
4515 (typically induction variables), as this increases the freedom for our
4516 intended transformation, and does not limit the second instruction
4517 scheduler pass. */
4518
4519static void
4520find_moveable_pseudos (void)
4521{
4522 unsigned i;
4523 int max_regs = max_reg_num ();
4524 int max_uid = get_max_uid ();
4525 basic_block bb;
4526 int *uid_luid = XNEWVEC (int, max_uid);
070a1983 4527 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
acf41a74 4528 /* A set of registers which are live but not modified throughout a block. */
8b1c6fd7
DM
4529 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4530 last_basic_block_for_fn (cfun));
acf41a74 4531 /* A set of registers which only exist in a given basic block. */
8b1c6fd7
DM
4532 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4533 last_basic_block_for_fn (cfun));
acf41a74
BS
4534 /* A set of registers which are set once, in an instruction that can be
4535 moved freely downwards, but are otherwise transparent to a block. */
8b1c6fd7
DM
4536 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4537 last_basic_block_for_fn (cfun));
8f9b31f7 4538 auto_bitmap live, used, set, interesting, unusable_as_input;
acf41a74 4539 bitmap_iterator bi;
acf41a74
BS
4540
4541 first_moveable_pseudo = max_regs;
9771b263
DN
4542 pseudo_replaced_reg.release ();
4543 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74 4544
2d73cc45
MJ
4545 df_analyze ();
4546 calculate_dominance_info (CDI_DOMINATORS);
4547
acf41a74 4548 i = 0;
11cd3bed 4549 FOR_EACH_BB_FN (bb, cfun)
acf41a74 4550 {
070a1983 4551 rtx_insn *insn;
acf41a74
BS
4552 bitmap transp = bb_transp_live + bb->index;
4553 bitmap moveable = bb_moveable_reg_sets + bb->index;
4554 bitmap local = bb_local + bb->index;
4555
4556 bitmap_initialize (local, 0);
4557 bitmap_initialize (transp, 0);
4558 bitmap_initialize (moveable, 0);
8f9b31f7
TS
4559 bitmap_copy (live, df_get_live_out (bb));
4560 bitmap_and_into (live, df_get_live_in (bb));
4561 bitmap_copy (transp, live);
acf41a74 4562 bitmap_clear (moveable);
8f9b31f7
TS
4563 bitmap_clear (live);
4564 bitmap_clear (used);
4565 bitmap_clear (set);
acf41a74
BS
4566 FOR_BB_INSNS (bb, insn)
4567 if (NONDEBUG_INSN_P (insn))
4568 {
bfac633a 4569 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
bfac633a 4570 df_ref def, use;
acf41a74
BS
4571
4572 uid_luid[INSN_UID (insn)] = i++;
4573
74e59b6c
RS
4574 def = df_single_def (insn_info);
4575 use = df_single_use (insn_info);
4576 if (use
4577 && def
4578 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
8f9b31f7 4579 && !bitmap_bit_p (set, DF_REF_REGNO (use))
acf41a74
BS
4580 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4581 {
74e59b6c 4582 unsigned regno = DF_REF_REGNO (use);
acf41a74 4583 bitmap_set_bit (moveable, regno);
8f9b31f7
TS
4584 bitmap_set_bit (set, regno);
4585 bitmap_set_bit (used, regno);
acf41a74
BS
4586 bitmap_clear_bit (transp, regno);
4587 continue;
4588 }
bfac633a 4589 FOR_EACH_INSN_INFO_USE (use, insn_info)
acf41a74 4590 {
bfac633a 4591 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4592 bitmap_set_bit (used, regno);
acf41a74
BS
4593 if (bitmap_clear_bit (moveable, regno))
4594 bitmap_clear_bit (transp, regno);
acf41a74
BS
4595 }
4596
bfac633a 4597 FOR_EACH_INSN_INFO_DEF (def, insn_info)
acf41a74 4598 {
bfac633a 4599 unsigned regno = DF_REF_REGNO (def);
8f9b31f7 4600 bitmap_set_bit (set, regno);
acf41a74
BS
4601 bitmap_clear_bit (transp, regno);
4602 bitmap_clear_bit (moveable, regno);
acf41a74
BS
4603 }
4604 }
4605 }
4606
11cd3bed 4607 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4608 {
4609 bitmap local = bb_local + bb->index;
070a1983 4610 rtx_insn *insn;
acf41a74
BS
4611
4612 FOR_BB_INSNS (bb, insn)
4613 if (NONDEBUG_INSN_P (insn))
4614 {
74e59b6c 4615 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
070a1983
DM
4616 rtx_insn *def_insn;
4617 rtx closest_use, note;
74e59b6c 4618 df_ref def, use;
acf41a74
BS
4619 unsigned regno;
4620 bool all_dominated, all_local;
ef4bddc2 4621 machine_mode mode;
acf41a74 4622
74e59b6c 4623 def = df_single_def (insn_info);
acf41a74 4624 /* There must be exactly one def in this insn. */
74e59b6c 4625 if (!def || !single_set (insn))
acf41a74
BS
4626 continue;
4627 /* This must be the only definition of the reg. We also limit
4628 which modes we deal with so that we can assume we can generate
4629 move instructions. */
4630 regno = DF_REF_REGNO (def);
4631 mode = GET_MODE (DF_REF_REG (def));
4632 if (DF_REG_DEF_COUNT (regno) != 1
4633 || !DF_REF_INSN_INFO (def)
4634 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4635 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4636 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4637 continue;
4638 def_insn = DF_REF_INSN (def);
4639
4640 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4641 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4642 break;
4643
4644 if (note)
4645 {
4646 if (dump_file)
4647 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4648 regno);
8f9b31f7 4649 bitmap_set_bit (unusable_as_input, regno);
acf41a74
BS
4650 continue;
4651 }
4652
4653 use = DF_REG_USE_CHAIN (regno);
4654 all_dominated = true;
4655 all_local = true;
4656 closest_use = NULL_RTX;
4657 for (; use; use = DF_REF_NEXT_REG (use))
4658 {
070a1983 4659 rtx_insn *insn;
acf41a74
BS
4660 if (!DF_REF_INSN_INFO (use))
4661 {
4662 all_dominated = false;
4663 all_local = false;
4664 break;
4665 }
4666 insn = DF_REF_INSN (use);
4667 if (DEBUG_INSN_P (insn))
4668 continue;
4669 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4670 all_local = false;
4671 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4672 all_dominated = false;
4673 if (closest_use != insn && closest_use != const0_rtx)
4674 {
4675 if (closest_use == NULL_RTX)
4676 closest_use = insn;
4677 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4678 closest_use = insn;
4679 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4680 closest_use = const0_rtx;
4681 }
4682 }
4683 if (!all_dominated)
4684 {
4685 if (dump_file)
4686 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4687 regno);
4688 continue;
4689 }
4690 if (all_local)
4691 bitmap_set_bit (local, regno);
4692 if (closest_use == const0_rtx || closest_use == NULL
4693 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4694 {
4695 if (dump_file)
4696 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4697 closest_use == const0_rtx || closest_use == NULL
4698 ? " (no unique first use)" : "");
4699 continue;
4700 }
058eb3b0 4701 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
acf41a74
BS
4702 {
4703 if (dump_file)
4704 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4705 regno);
4706 continue;
4707 }
058eb3b0 4708
8f9b31f7 4709 bitmap_set_bit (interesting, regno);
070a1983
DM
4710 /* If we get here, we know closest_use is a non-NULL insn
4711 (as opposed to const_0_rtx). */
4712 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
acf41a74
BS
4713
4714 if (dump_file && (all_local || all_dominated))
4715 {
4716 fprintf (dump_file, "Reg %u:", regno);
4717 if (all_local)
4718 fprintf (dump_file, " local to bb %d", bb->index);
4719 if (all_dominated)
4720 fprintf (dump_file, " def dominates all uses");
4721 if (closest_use != const0_rtx)
4722 fprintf (dump_file, " has unique first use");
4723 fputs ("\n", dump_file);
4724 }
4725 }
4726 }
4727
8f9b31f7 4728 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
acf41a74
BS
4729 {
4730 df_ref def = DF_REG_DEF_CHAIN (i);
070a1983 4731 rtx_insn *def_insn = DF_REF_INSN (def);
acf41a74
BS
4732 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4733 bitmap def_bb_local = bb_local + def_block->index;
4734 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4735 bitmap def_bb_transp = bb_transp_live + def_block->index;
4736 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
070a1983 4737 rtx_insn *use_insn = closest_uses[i];
bfac633a 4738 df_ref use;
acf41a74
BS
4739 bool all_ok = true;
4740 bool all_transp = true;
4741
4742 if (!REG_P (DF_REF_REG (def)))
4743 continue;
4744
4745 if (!local_to_bb_p)
4746 {
4747 if (dump_file)
4748 fprintf (dump_file, "Reg %u not local to one basic block\n",
4749 i);
4750 continue;
4751 }
4752 if (reg_equiv_init (i) != NULL_RTX)
4753 {
4754 if (dump_file)
4755 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4756 i);
4757 continue;
4758 }
4759 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4760 {
4761 if (dump_file)
4762 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4763 INSN_UID (def_insn), i);
4764 continue;
4765 }
4766 if (dump_file)
4767 fprintf (dump_file, "Examining insn %d, def for %d\n",
4768 INSN_UID (def_insn), i);
bfac633a 4769 FOR_EACH_INSN_USE (use, def_insn)
acf41a74 4770 {
acf41a74 4771 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4772 if (bitmap_bit_p (unusable_as_input, regno))
acf41a74
BS
4773 {
4774 all_ok = false;
4775 if (dump_file)
4776 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4777 break;
4778 }
4779 if (!bitmap_bit_p (def_bb_transp, regno))
4780 {
4781 if (bitmap_bit_p (def_bb_moveable, regno)
4782 && !control_flow_insn_p (use_insn)
618f4073 4783 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
acf41a74
BS
4784 {
4785 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4786 {
070a1983 4787 rtx_insn *x = NEXT_INSN (def_insn);
acf41a74
BS
4788 while (!modified_in_p (DF_REF_REG (use), x))
4789 {
4790 gcc_assert (x != use_insn);
4791 x = NEXT_INSN (x);
4792 }
4793 if (dump_file)
4794 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4795 regno, INSN_UID (x));
4796 emit_insn_after (PATTERN (x), use_insn);
4797 set_insn_deleted (x);
4798 }
4799 else
4800 {
4801 if (dump_file)
4802 fprintf (dump_file, " input reg %u modified between def and use\n",
4803 regno);
4804 all_transp = false;
4805 }
4806 }
4807 else
4808 all_transp = false;
4809 }
acf41a74
BS
4810 }
4811 if (!all_ok)
4812 continue;
4813 if (!dbg_cnt (ira_move))
4814 break;
4815 if (dump_file)
4816 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4817
4818 if (all_transp)
4819 {
4820 rtx def_reg = DF_REF_REG (def);
4821 rtx newreg = ira_create_new_reg (def_reg);
9e3de74c 4822 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
acf41a74
BS
4823 {
4824 unsigned nregno = REGNO (newreg);
a36b2706 4825 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4826 nregno -= max_regs;
9771b263 4827 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4828 }
4829 }
4830 }
4831
11cd3bed 4832 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4833 {
4834 bitmap_clear (bb_local + bb->index);
4835 bitmap_clear (bb_transp_live + bb->index);
4836 bitmap_clear (bb_moveable_reg_sets + bb->index);
4837 }
acf41a74
BS
4838 free (uid_luid);
4839 free (closest_uses);
4840 free (bb_local);
4841 free (bb_transp_live);
4842 free (bb_moveable_reg_sets);
4843
4844 last_moveable_pseudo = max_reg_num ();
2d73cc45
MJ
4845
4846 fix_reg_equiv_init ();
4847 expand_reg_info ();
4848 regstat_free_n_sets_and_refs ();
4849 regstat_free_ri ();
4850 regstat_init_n_sets_and_refs ();
4851 regstat_compute_ri ();
4852 free_dominance_info (CDI_DOMINATORS);
732dad8f 4853}
acf41a74 4854
3e749749
MJ
4855/* If SET pattern SET is an assignment from a hard register to a pseudo which
4856 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4857 the destination. Otherwise return NULL. */
732dad8f
MJ
4858
4859static rtx
3e749749 4860interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
732dad8f 4861{
732dad8f
MJ
4862 rtx src = SET_SRC (set);
4863 rtx dest = SET_DEST (set);
4864 if (!REG_P (src) || !HARD_REGISTER_P (src)
4865 || !REG_P (dest) || HARD_REGISTER_P (dest)
4866 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4867 return NULL;
4868 return dest;
4869}
4870
df3e3493 4871/* If insn is interesting for parameter range-splitting shrink-wrapping
3e749749
MJ
4872 preparation, i.e. it is a single set from a hard register to a pseudo, which
4873 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4874 parallel statement with only one such statement, return the destination.
4875 Otherwise return NULL. */
4876
4877static rtx
070a1983 4878interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
3e749749
MJ
4879{
4880 if (!INSN_P (insn))
4881 return NULL;
4882 rtx pat = PATTERN (insn);
4883 if (GET_CODE (pat) == SET)
4884 return interesting_dest_for_shprep_1 (pat, call_dom);
4885
4886 if (GET_CODE (pat) != PARALLEL)
4887 return NULL;
4888 rtx ret = NULL;
4889 for (int i = 0; i < XVECLEN (pat, 0); i++)
4890 {
4891 rtx sub = XVECEXP (pat, 0, i);
8df47bdf
AH
4892 if (GET_CODE (sub) == USE
4893 || GET_CODE (sub) == CLOBBER
4894 || GET_CODE (sub) == CLOBBER_HIGH)
3e749749
MJ
4895 continue;
4896 if (GET_CODE (sub) != SET
4897 || side_effects_p (sub))
4898 return NULL;
4899 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4900 if (dest && ret)
4901 return NULL;
4902 if (dest)
4903 ret = dest;
4904 }
4905 return ret;
4906}
4907
732dad8f
MJ
4908/* Split live ranges of pseudos that are loaded from hard registers in the
4909 first BB in a BB that dominates all non-sibling call if such a BB can be
4910 found and is not in a loop. Return true if the function has made any
4911 changes. */
4912
4913static bool
4914split_live_ranges_for_shrink_wrap (void)
4915{
4916 basic_block bb, call_dom = NULL;
fefa31b5 4917 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
070a1983 4918 rtx_insn *insn, *last_interesting_insn = NULL;
8f9b31f7 4919 auto_bitmap need_new, reachable;
732dad8f
MJ
4920 vec<basic_block> queue;
4921
a5e022d5 4922 if (!SHRINK_WRAPPING_ENABLED)
732dad8f
MJ
4923 return false;
4924
0cae8d31 4925 queue.create (n_basic_blocks_for_fn (cfun));
732dad8f 4926
11cd3bed 4927 FOR_EACH_BB_FN (bb, cfun)
732dad8f
MJ
4928 FOR_BB_INSNS (bb, insn)
4929 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4930 {
4931 if (bb == first)
4932 {
732dad8f
MJ
4933 queue.release ();
4934 return false;
4935 }
4936
8f9b31f7
TS
4937 bitmap_set_bit (need_new, bb->index);
4938 bitmap_set_bit (reachable, bb->index);
732dad8f
MJ
4939 queue.quick_push (bb);
4940 break;
4941 }
4942
4943 if (queue.is_empty ())
4944 {
732dad8f
MJ
4945 queue.release ();
4946 return false;
4947 }
4948
4949 while (!queue.is_empty ())
4950 {
4951 edge e;
4952 edge_iterator ei;
4953
4954 bb = queue.pop ();
4955 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 4956 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
8f9b31f7 4957 && bitmap_set_bit (reachable, e->dest->index))
732dad8f
MJ
4958 queue.quick_push (e->dest);
4959 }
4960 queue.release ();
4961
4962 FOR_BB_INSNS (first, insn)
4963 {
4964 rtx dest = interesting_dest_for_shprep (insn, NULL);
4965 if (!dest)
4966 continue;
4967
4968 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
8f9b31f7 4969 return false;
732dad8f
MJ
4970
4971 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4972 use;
4973 use = DF_REF_NEXT_REG (use))
4974 {
732dad8f 4975 int ubbi = DF_REF_BB (use)->index;
8f9b31f7
TS
4976 if (bitmap_bit_p (reachable, ubbi))
4977 bitmap_set_bit (need_new, ubbi);
732dad8f
MJ
4978 }
4979 last_interesting_insn = insn;
4980 }
4981
732dad8f 4982 if (!last_interesting_insn)
8f9b31f7 4983 return false;
732dad8f 4984
8f9b31f7 4985 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
732dad8f
MJ
4986 if (call_dom == first)
4987 return false;
4988
4989 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4990 while (bb_loop_depth (call_dom) > 0)
4991 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4992 loop_optimizer_finalize ();
4993
4994 if (call_dom == first)
4995 return false;
4996
4997 calculate_dominance_info (CDI_POST_DOMINATORS);
4998 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4999 {
5000 free_dominance_info (CDI_POST_DOMINATORS);
5001 return false;
5002 }
5003 free_dominance_info (CDI_POST_DOMINATORS);
5004
5005 if (dump_file)
5006 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5007 call_dom->index);
5008
5009 bool ret = false;
5010 FOR_BB_INSNS (first, insn)
5011 {
5012 rtx dest = interesting_dest_for_shprep (insn, call_dom);
bcb21886 5013 if (!dest || dest == pic_offset_table_rtx)
732dad8f
MJ
5014 continue;
5015
fd1ca3fe 5016 bool need_newreg = false;
732dad8f 5017 df_ref use, next;
9e3de74c 5018 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
732dad8f 5019 {
070a1983 5020 rtx_insn *uin = DF_REF_INSN (use);
732dad8f
MJ
5021 next = DF_REF_NEXT_REG (use);
5022
fd1ca3fe
SB
5023 if (DEBUG_INSN_P (uin))
5024 continue;
5025
732dad8f
MJ
5026 basic_block ubb = BLOCK_FOR_INSN (uin);
5027 if (ubb == call_dom
5028 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5029 {
fd1ca3fe
SB
5030 need_newreg = true;
5031 break;
732dad8f
MJ
5032 }
5033 }
5034
fd1ca3fe 5035 if (need_newreg)
732dad8f 5036 {
fd1ca3fe
SB
5037 rtx newreg = ira_create_new_reg (dest);
5038
5039 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5040 {
5041 rtx_insn *uin = DF_REF_INSN (use);
5042 next = DF_REF_NEXT_REG (use);
5043
5044 basic_block ubb = BLOCK_FOR_INSN (uin);
5045 if (ubb == call_dom
5046 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5047 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5048 }
5049
1476d1bd 5050 rtx_insn *new_move = gen_move_insn (newreg, dest);
732dad8f
MJ
5051 emit_insn_after (new_move, bb_note (call_dom));
5052 if (dump_file)
5053 {
5054 fprintf (dump_file, "Split live-range of register ");
5055 print_rtl_single (dump_file, dest);
5056 }
5057 ret = true;
5058 }
5059
5060 if (insn == last_interesting_insn)
5061 break;
5062 }
5063 apply_change_group ();
5064 return ret;
acf41a74 5065}
8ff49c29 5066
acf41a74
BS
5067/* Perform the second half of the transformation started in
5068 find_moveable_pseudos. We look for instances where the newly introduced
5069 pseudo remains unallocated, and remove it by moving the definition to
5070 just before its use, replacing the move instruction generated by
5071 find_moveable_pseudos. */
5072static void
5073move_unallocated_pseudos (void)
5074{
5075 int i;
5076 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5077 if (reg_renumber[i] < 0)
5078 {
acf41a74 5079 int idx = i - first_moveable_pseudo;
9771b263 5080 rtx other_reg = pseudo_replaced_reg[idx];
070a1983 5081 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
a36b2706
RS
5082 /* The use must follow all definitions of OTHER_REG, so we can
5083 insert the new definition immediately after any of them. */
5084 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
070a1983
DM
5085 rtx_insn *move_insn = DF_REF_INSN (other_def);
5086 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 5087 rtx set;
acf41a74
BS
5088 int success;
5089
5090 if (dump_file)
5091 fprintf (dump_file, "moving def of %d (insn %d now) ",
5092 REGNO (other_reg), INSN_UID (def_insn));
5093
a36b2706
RS
5094 delete_insn (move_insn);
5095 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5096 delete_insn (DF_REF_INSN (other_def));
5097 delete_insn (def_insn);
5098
acf41a74
BS
5099 set = single_set (newinsn);
5100 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5101 gcc_assert (success);
5102 if (dump_file)
5103 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5104 INSN_UID (newinsn), i);
acf41a74
BS
5105 SET_REG_N_REFS (i, 0);
5106 }
5107}
f2034d06 5108\f
6399c0ab
SB
5109/* If the backend knows where to allocate pseudos for hard
5110 register initial values, register these allocations now. */
a932fb89 5111static void
6399c0ab
SB
5112allocate_initial_values (void)
5113{
5114 if (targetm.allocate_initial_value)
5115 {
5116 rtx hreg, preg, x;
5117 int i, regno;
5118
5119 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5120 {
5121 if (! initial_value_entry (i, &hreg, &preg))
5122 break;
5123
5124 x = targetm.allocate_initial_value (hreg);
5125 regno = REGNO (preg);
5126 if (x && REG_N_SETS (regno) <= 1)
5127 {
5128 if (MEM_P (x))
5129 reg_equiv_memory_loc (regno) = x;
5130 else
5131 {
5132 basic_block bb;
5133 int new_regno;
5134
5135 gcc_assert (REG_P (x));
5136 new_regno = REGNO (x);
5137 reg_renumber[regno] = new_regno;
5138 /* Poke the regno right into regno_reg_rtx so that even
5139 fixed regs are accepted. */
5140 SET_REGNO (preg, new_regno);
5141 /* Update global register liveness information. */
11cd3bed 5142 FOR_EACH_BB_FN (bb, cfun)
6399c0ab 5143 {
c3284718 5144 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
6399c0ab 5145 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
c3284718 5146 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
6399c0ab
SB
5147 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5148 }
5149 }
5150 }
5151 }
2af2dbdc 5152
6399c0ab
SB
5153 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5154 &hreg, &preg));
5155 }
5156}
5157\f
55a2c322
VM
5158
5159/* True when we use LRA instead of reload pass for the current
5160 function. */
5161bool ira_use_lra_p;
5162
311aab06
VM
5163/* True if we have allocno conflicts. It is false for non-optimized
5164 mode or when the conflict table is too big. */
5165bool ira_conflicts_p;
5166
ae2b9cb6
BS
5167/* Saved between IRA and reload. */
5168static int saved_flag_ira_share_spill_slots;
5169
058e97ec
VM
5170/* This is the main entry of IRA. */
5171static void
5172ira (FILE *f)
5173{
058e97ec 5174 bool loops_p;
70cc3288 5175 int ira_max_point_before_emit;
55a2c322
VM
5176 bool saved_flag_caller_saves = flag_caller_saves;
5177 enum ira_region saved_flag_ira_region = flag_ira_region;
891f31f9
AK
5178 unsigned int i;
5179 int num_used_regs = 0;
55a2c322 5180
62869a1c
RB
5181 clear_bb_flags ();
5182
0064f49e
WD
5183 /* Determine if the current function is a leaf before running IRA
5184 since this can impact optimizations done by the prologue and
5185 epilogue thus changing register elimination offsets.
5186 Other target callbacks may use crtl->is_leaf too, including
5187 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5188 crtl->is_leaf = leaf_function_p ();
5189
bcb21886
KY
5190 /* Perform target specific PIC register initialization. */
5191 targetm.init_pic_reg ();
5192
55a2c322
VM
5193 ira_conflicts_p = optimize > 0;
5194
891f31f9
AK
5195 /* Determine the number of pseudos actually requiring coloring. */
5196 for (i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5197 num_used_regs += !!(DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i));
5198
55a2c322
VM
5199 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5200 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5201 use simplified and faster algorithms in LRA. */
5202 lra_simple_p
8b1c6fd7 5203 = (ira_use_lra_p
891f31f9
AK
5204 && num_used_regs >= (1 << 26) / last_basic_block_for_fn (cfun));
5205
55a2c322
VM
5206 if (lra_simple_p)
5207 {
5208 /* It permits to skip live range splitting in LRA. */
5209 flag_caller_saves = false;
5210 /* There is no sense to do regional allocation when we use
5211 simplified LRA. */
5212 flag_ira_region = IRA_REGION_ONE;
5213 ira_conflicts_p = false;
5214 }
5215
5216#ifndef IRA_NO_OBSTACK
5217 gcc_obstack_init (&ira_obstack);
5218#endif
5219 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 5220
001010df
KC
5221 /* LRA uses its own infrastructure to handle caller save registers. */
5222 if (flag_caller_saves && !ira_use_lra_p)
dc12b70e
JZ
5223 init_caller_save ();
5224
058e97ec
VM
5225 if (flag_ira_verbose < 10)
5226 {
5227 internal_flag_ira_verbose = flag_ira_verbose;
5228 ira_dump_file = f;
5229 }
5230 else
5231 {
5232 internal_flag_ira_verbose = flag_ira_verbose - 10;
5233 ira_dump_file = stderr;
5234 }
5235
5236 setup_prohibited_mode_move_regs ();
3b6d1699 5237 decrease_live_ranges_number ();
058e97ec 5238 df_note_add_problem ();
5d517141
SB
5239
5240 /* DF_LIVE can't be used in the register allocator, too many other
5241 parts of the compiler depend on using the "classic" liveness
5242 interpretation of the DF_LR problem. See PR38711.
5243 Remove the problem, so that we don't spend time updating it in
5244 any of the df_analyze() calls during IRA/LRA. */
5245 if (optimize > 1)
5246 df_remove_problem (df_live);
5247 gcc_checking_assert (df_live == NULL);
5248
b2b29377
MM
5249 if (flag_checking)
5250 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5251
058e97ec 5252 df_analyze ();
3b6d1699 5253
2d73cc45
MJ
5254 init_reg_equiv ();
5255 if (ira_conflicts_p)
5256 {
5257 calculate_dominance_info (CDI_DOMINATORS);
5258
5259 if (split_live_ranges_for_shrink_wrap ())
5260 df_analyze ();
5261
5262 free_dominance_info (CDI_DOMINATORS);
5263 }
5264
058e97ec 5265 df_clear_flags (DF_NO_INSN_RESCAN);
2d73cc45 5266
ba52669f
AM
5267 indirect_jump_optimize ();
5268 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5269 df_analyze ();
5270
058e97ec
VM
5271 regstat_init_n_sets_and_refs ();
5272 regstat_compute_ri ();
5273
5274 /* If we are not optimizing, then this is the only place before
5275 register allocation where dataflow is done. And that is needed
5276 to generate these warnings. */
5277 if (warn_clobbered)
5278 generate_setjmp_warnings ();
5279
1833192f 5280 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 5281 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 5282
42ae0d7f 5283 init_alias_analysis ();
c38c11a1 5284 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
10e04446 5285 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
ba52669f 5286 update_equiv_regs ();
10e04446
AM
5287
5288 /* Don't move insns if live range shrinkage or register
5289 pressure-sensitive scheduling were done because it will not
5290 improve allocation but likely worsen insn scheduling. */
5291 if (optimize
5292 && !flag_live_range_shrinkage
5293 && !(flag_sched_pressure && flag_schedule_insns))
5294 combine_and_move_insns ();
5295
5296 /* Gather additional equivalences with memory. */
42ae0d7f 5297 if (optimize)
10e04446
AM
5298 add_store_equivs ();
5299
c38c11a1 5300 loop_optimizer_finalize ();
f3c82ff9 5301 free_dominance_info (CDI_DOMINATORS);
42ae0d7f
AM
5302 end_alias_analysis ();
5303 free (reg_equiv);
5304
55a2c322 5305 setup_reg_equiv ();
10e04446 5306 grow_reg_equivs ();
55a2c322 5307 setup_reg_equiv_init ();
058e97ec 5308
fb99ee9b 5309 allocated_reg_info_size = max_reg_num ();
e8d7e3e7
VM
5310
5311 /* It is not worth to do such improvement when we use a simple
5312 allocation because of -O0 usage or because the function is too
5313 big. */
5314 if (ira_conflicts_p)
2d73cc45 5315 find_moveable_pseudos ();
acf41a74 5316
fb99ee9b 5317 max_regno_before_ira = max_reg_num ();
8d49e7ef 5318 ira_setup_eliminable_regset ();
b8698a0f 5319
058e97ec
VM
5320 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5321 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5322 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 5323
058e97ec 5324 ira_assert (current_loops == NULL);
2608d841 5325 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 5326 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 5327
058e97ec
VM
5328 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5329 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 5330 loops_p = ira_build ();
b8698a0f 5331
311aab06 5332 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
5333
5334 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 5335 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 5336 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
5337 stack slots in this case -- prohibit it. We also do this if
5338 there is setjmp call because a variable not modified between
5339 setjmp and longjmp the compiler is required to preserve its
5340 value and sharing slots does not guarantee it. */
3553f0bb
VM
5341 flag_ira_share_spill_slots = FALSE;
5342
cb1ca6ac 5343 ira_color ();
b8698a0f 5344
058e97ec 5345 ira_max_point_before_emit = ira_max_point;
b8698a0f 5346
1756cb66
VM
5347 ira_initiate_emit_data ();
5348
058e97ec 5349 ira_emit (loops_p);
b8698a0f 5350
55a2c322 5351 max_regno = max_reg_num ();
311aab06 5352 if (ira_conflicts_p)
058e97ec 5353 {
058e97ec 5354 if (! loops_p)
55a2c322
VM
5355 {
5356 if (! ira_use_lra_p)
5357 ira_initiate_assign ();
5358 }
058e97ec
VM
5359 else
5360 {
fb99ee9b 5361 expand_reg_info ();
b8698a0f 5362
55a2c322
VM
5363 if (ira_use_lra_p)
5364 {
5365 ira_allocno_t a;
5366 ira_allocno_iterator ai;
5367
5368 FOR_EACH_ALLOCNO (a, ai)
9d6e10c7
RL
5369 {
5370 int old_regno = ALLOCNO_REGNO (a);
5371 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5372
5373 ALLOCNO_REGNO (a) = new_regno;
5374
5375 if (old_regno != new_regno)
5376 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5377 reg_alternate_class (old_regno),
5378 reg_allocno_class (old_regno));
5379 }
55a2c322
VM
5380 }
5381 else
5382 {
5383 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5384 fprintf (ira_dump_file, "Flattening IR\n");
5385 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5386 }
058e97ec
VM
5387 /* New insns were generated: add notes and recalculate live
5388 info. */
5389 df_analyze ();
b8698a0f 5390
544e7e78
SB
5391 /* ??? Rebuild the loop tree, but why? Does the loop tree
5392 change if new insns were generated? Can that be handled
5393 by updating the loop tree incrementally? */
661bc682 5394 loop_optimizer_finalize ();
57548aa2 5395 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
5396 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5397 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 5398
55a2c322
VM
5399 if (! ira_use_lra_p)
5400 {
5401 setup_allocno_assignment_flags ();
5402 ira_initiate_assign ();
5403 ira_reassign_conflict_allocnos (max_regno);
5404 }
058e97ec
VM
5405 }
5406 }
5407
1756cb66
VM
5408 ira_finish_emit_data ();
5409
058e97ec 5410 setup_reg_renumber ();
b8698a0f 5411
058e97ec 5412 calculate_allocation_cost ();
b8698a0f 5413
058e97ec 5414#ifdef ENABLE_IRA_CHECKING
e5119fab
VM
5415 if (ira_conflicts_p && ! ira_use_lra_p)
5416 /* Opposite to reload pass, LRA does not use any conflict info
5417 from IRA. We don't rebuild conflict info for LRA (through
67914693 5418 ira_flattening call) and cannot use the check here. We could
e5119fab
VM
5419 rebuild this info for LRA in the check mode but there is a risk
5420 that code generated with the check and without it will be a bit
5421 different. Calling ira_flattening in any mode would be a
5422 wasting CPU time. So do not check the allocation for LRA. */
058e97ec
VM
5423 check_allocation ();
5424#endif
b8698a0f 5425
ba52669f 5426 if (max_regno != max_regno_before_ira)
058e97ec
VM
5427 {
5428 regstat_free_n_sets_and_refs ();
5429 regstat_free_ri ();
5430 regstat_init_n_sets_and_refs ();
5431 regstat_compute_ri ();
5432 }
5433
058e97ec 5434 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
5435 if (! ira_conflicts_p)
5436 grow_reg_equivs ();
5437 else
058e97ec
VM
5438 {
5439 fix_reg_equiv_init ();
b8698a0f 5440
058e97ec
VM
5441#ifdef ENABLE_IRA_CHECKING
5442 print_redundant_copies ();
5443#endif
9994ad20
KC
5444 if (! ira_use_lra_p)
5445 {
5446 ira_spilled_reg_stack_slots_num = 0;
5447 ira_spilled_reg_stack_slots
99b1c316 5448 = ((class ira_spilled_reg_stack_slot *)
9994ad20 5449 ira_allocate (max_regno
99b1c316 5450 * sizeof (class ira_spilled_reg_stack_slot)));
1c252ef3 5451 memset ((void *)ira_spilled_reg_stack_slots, 0,
99b1c316 5452 max_regno * sizeof (class ira_spilled_reg_stack_slot));
9994ad20 5453 }
058e97ec 5454 }
6399c0ab 5455 allocate_initial_values ();
e8d7e3e7
VM
5456
5457 /* See comment for find_moveable_pseudos call. */
5458 if (ira_conflicts_p)
5459 move_unallocated_pseudos ();
55a2c322
VM
5460
5461 /* Restore original values. */
5462 if (lra_simple_p)
5463 {
5464 flag_caller_saves = saved_flag_caller_saves;
5465 flag_ira_region = saved_flag_ira_region;
5466 }
d3afd9aa
RB
5467}
5468
5469static void
5470do_reload (void)
5471{
5472 basic_block bb;
5473 bool need_dce;
bcb21886 5474 unsigned pic_offset_table_regno = INVALID_REGNUM;
ae2b9cb6 5475
67463efb 5476 if (flag_ira_verbose < 10)
ae2b9cb6 5477 ira_dump_file = dump_file;
058e97ec 5478
bcb21886
KY
5479 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5480 after reload to avoid possible wrong usages of hard reg assigned
5481 to it. */
5482 if (pic_offset_table_rtx
5483 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5484 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5485
55a2c322
VM
5486 timevar_push (TV_RELOAD);
5487 if (ira_use_lra_p)
5488 {
5489 if (current_loops != NULL)
5490 {
661bc682 5491 loop_optimizer_finalize ();
55a2c322
VM
5492 free_dominance_info (CDI_DOMINATORS);
5493 }
04a90bec 5494 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5495 bb->loop_father = NULL;
5496 current_loops = NULL;
55a2c322
VM
5497
5498 ira_destroy ();
058e97ec 5499
55a2c322
VM
5500 lra (ira_dump_file);
5501 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5502 LRA. */
9771b263 5503 vec_free (reg_equivs);
55a2c322
VM
5504 reg_equivs = NULL;
5505 need_dce = false;
5506 }
5507 else
5508 {
5509 df_set_flags (DF_NO_INSN_RESCAN);
5510 build_insn_chain ();
55a2c322 5511
355a43a1 5512 need_dce = reload (get_insns (), ira_conflicts_p);
55a2c322
VM
5513 }
5514
5515 timevar_pop (TV_RELOAD);
058e97ec 5516
d3afd9aa
RB
5517 timevar_push (TV_IRA);
5518
55a2c322 5519 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
5520 {
5521 ira_free (ira_spilled_reg_stack_slots);
058e97ec 5522 ira_finish_assign ();
b8698a0f 5523 }
55a2c322 5524
058e97ec
VM
5525 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5526 && overall_cost_before != ira_overall_cost)
16998094 5527 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
2bf7560b 5528 ira_overall_cost);
b8698a0f 5529
3553f0bb
VM
5530 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5531
55a2c322 5532 if (! ira_use_lra_p)
2608d841 5533 {
55a2c322
VM
5534 ira_destroy ();
5535 if (current_loops != NULL)
5536 {
661bc682 5537 loop_optimizer_finalize ();
55a2c322
VM
5538 free_dominance_info (CDI_DOMINATORS);
5539 }
04a90bec 5540 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5541 bb->loop_father = NULL;
5542 current_loops = NULL;
5543
5544 regstat_free_ri ();
5545 regstat_free_n_sets_and_refs ();
2608d841 5546 }
b8698a0f 5547
058e97ec 5548 if (optimize)
55a2c322 5549 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 5550
55a2c322 5551 finish_reg_equiv ();
058e97ec
VM
5552
5553 bitmap_obstack_release (&ira_bitmap_obstack);
5554#ifndef IRA_NO_OBSTACK
5555 obstack_free (&ira_obstack, NULL);
5556#endif
5557
5558 /* The code after the reload has changed so much that at this point
b0c11403 5559 we might as well just rescan everything. Note that
058e97ec
VM
5560 df_rescan_all_insns is not going to help here because it does not
5561 touch the artificial uses and defs. */
5562 df_finish_pass (true);
058e97ec
VM
5563 df_scan_alloc (NULL);
5564 df_scan_blocks ();
5565
5d517141
SB
5566 if (optimize > 1)
5567 {
5568 df_live_add_problem ();
5569 df_live_set_all_dirty ();
5570 }
5571
058e97ec
VM
5572 if (optimize)
5573 df_analyze ();
5574
b0c11403
JL
5575 if (need_dce && optimize)
5576 run_fast_dce ();
d3afd9aa 5577
af6e8467
RH
5578 /* Diagnose uses of the hard frame pointer when it is used as a global
5579 register. Often we can get away with letting the user appropriate
5580 the frame pointer, but we should let them know when code generation
5581 makes that impossible. */
5582 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5583 {
5584 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5585 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5586 "frame pointer required, but reserved");
5587 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5588 }
5589
355a43a1
EB
5590 /* If we are doing generic stack checking, give a warning if this
5591 function's frame size is larger than we expect. */
5592 if (flag_stack_check == GENERIC_STACK_CHECK)
5593 {
f075bd95 5594 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
355a43a1
EB
5595
5596 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5597 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5598 size += UNITS_PER_WORD;
5599
f075bd95 5600 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
355a43a1
EB
5601 warning (0, "frame size too large for reliable stack checking");
5602 }
5603
bcb21886
KY
5604 if (pic_offset_table_regno != INVALID_REGNUM)
5605 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5606
d3afd9aa 5607 timevar_pop (TV_IRA);
058e97ec 5608}
058e97ec 5609\f
058e97ec 5610/* Run the integrated register allocator. */
058e97ec 5611
27a4cd48
DM
5612namespace {
5613
5614const pass_data pass_data_ira =
058e97ec 5615{
27a4cd48
DM
5616 RTL_PASS, /* type */
5617 "ira", /* name */
5618 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5619 TV_IRA, /* tv_id */
5620 0, /* properties_required */
5621 0, /* properties_provided */
5622 0, /* properties_destroyed */
5623 0, /* todo_flags_start */
5624 TODO_do_not_ggc_collect, /* todo_flags_finish */
d3afd9aa
RB
5625};
5626
27a4cd48
DM
5627class pass_ira : public rtl_opt_pass
5628{
5629public:
c3284718
RS
5630 pass_ira (gcc::context *ctxt)
5631 : rtl_opt_pass (pass_data_ira, ctxt)
27a4cd48
DM
5632 {}
5633
5634 /* opt_pass methods: */
a50fa76a
BS
5635 virtual bool gate (function *)
5636 {
5637 return !targetm.no_register_allocation;
5638 }
be55bfe6
TS
5639 virtual unsigned int execute (function *)
5640 {
5641 ira (dump_file);
5642 return 0;
5643 }
27a4cd48
DM
5644
5645}; // class pass_ira
5646
5647} // anon namespace
5648
5649rtl_opt_pass *
5650make_pass_ira (gcc::context *ctxt)
5651{
5652 return new pass_ira (ctxt);
5653}
5654
27a4cd48
DM
5655namespace {
5656
5657const pass_data pass_data_reload =
d3afd9aa 5658{
27a4cd48
DM
5659 RTL_PASS, /* type */
5660 "reload", /* name */
5661 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5662 TV_RELOAD, /* tv_id */
5663 0, /* properties_required */
5664 0, /* properties_provided */
5665 0, /* properties_destroyed */
5666 0, /* todo_flags_start */
5667 0, /* todo_flags_finish */
058e97ec 5668};
27a4cd48
DM
5669
5670class pass_reload : public rtl_opt_pass
5671{
5672public:
c3284718
RS
5673 pass_reload (gcc::context *ctxt)
5674 : rtl_opt_pass (pass_data_reload, ctxt)
27a4cd48
DM
5675 {}
5676
5677 /* opt_pass methods: */
a50fa76a
BS
5678 virtual bool gate (function *)
5679 {
5680 return !targetm.no_register_allocation;
5681 }
be55bfe6
TS
5682 virtual unsigned int execute (function *)
5683 {
5684 do_reload ();
5685 return 0;
5686 }
27a4cd48
DM
5687
5688}; // class pass_reload
5689
5690} // anon namespace
5691
5692rtl_opt_pass *
5693make_pass_reload (gcc::context *ctxt)
5694{
5695 return new pass_reload (ctxt);
5696}