]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
Zero-initialize pass_manager
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
d1e082c2 2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec
VM
155
156 * IRA creates live ranges of each allocno, calulates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66
VM
194 the allocation. IRA uses some heuristics to improve the
195 order.
196
197 We also use a modification of Chaitin-Briggs algorithm which
198 works for intersected register classes of allocnos. To
199 figure out trivial colorability of allocnos, the mentioned
200 above tree of hard register sets is used. To get an idea how
201 the algorithm works in i386 example, let us consider an
202 allocno to which any general hard register can be assigned.
203 If the allocno conflicts with eight allocnos to which only
204 EAX register can be assigned, given allocno is still
205 trivially colorable because all conflicting allocnos might be
206 assigned only to EAX and all other general hard registers are
207 still free.
208
209 To get an idea of the used trivial colorability criterion, it
210 is also useful to read article "Graph-Coloring Register
211 Allocation for Irregular Architectures" by Michael D. Smith
212 and Glen Holloway. Major difference between the article
213 approach and approach used in IRA is that Smith's approach
214 takes register classes only from machine description and IRA
215 calculate register classes from intermediate code too
216 (e.g. an explicit usage of hard registers in RTL code for
217 parameter passing can result in creation of additional
218 register classes which contain or exclude the hard
219 registers). That makes IRA approach useful for improving
220 coloring even for architectures with regular register files
221 and in fact some benchmarking shows the improvement for
222 regular class architectures is even bigger than for irregular
223 ones. Another difference is that Smith's approach chooses
224 intersection of classes of all insn operands in which a given
225 pseudo occurs. IRA can use bigger classes if it is still
226 more profitable than memory usage.
058e97ec
VM
227
228 * Popping the allocnos from the stack and assigning them hard
229 registers. If IRA can not assign a hard register to an
230 allocno and the allocno is coalesced, IRA undoes the
231 coalescing and puts the uncoalesced allocnos onto the stack in
232 the hope that some such allocnos will get a hard register
233 separately. If IRA fails to assign hard register or memory
234 is more profitable for it, IRA spills the allocno. IRA
235 assigns the allocno the hard-register with minimal full
236 allocation cost which reflects the cost of usage of the
237 hard-register for the allocno and cost of usage of the
238 hard-register for allocnos conflicting with given allocno.
239
1756cb66
VM
240 * Chaitin-Briggs coloring assigns as many pseudos as possible
241 to hard registers. After coloringh we try to improve
242 allocation with cost point of view. We improve the
243 allocation by spilling some allocnos and assigning the freed
244 hard registers to other allocnos if it decreases the overall
245 allocation cost.
246
058e97ec
VM
247 * After allono assigning in the region, IRA modifies the hard
248 register and memory costs for the corresponding allocnos in
249 the subregions to reflect the cost of possible loads, stores,
250 or moves on the border of the region and its subregions.
251 When default regional allocation algorithm is used
252 (-fira-algorithm=mixed), IRA just propagates the assignment
253 for allocnos if the register pressure in the region for the
1756cb66
VM
254 corresponding pressure class is less than number of available
255 hard registers for given pressure class.
058e97ec
VM
256
257 o Spill/restore code moving. When IRA performs an allocation
258 by traversing regions in top-down order, it does not know what
259 happens below in the region tree. Therefore, sometimes IRA
260 misses opportunities to perform a better allocation. A simple
261 optimization tries to improve allocation in a region having
262 subregions and containing in another region. If the
263 corresponding allocnos in the subregion are spilled, it spills
264 the region allocno if it is profitable. The optimization
265 implements a simple iterative algorithm performing profitable
266 transformations while they are still possible. It is fast in
267 practice, so there is no real need for a better time complexity
268 algorithm.
269
1756cb66
VM
270 o Code change. After coloring, two allocnos representing the
271 same pseudo-register outside and inside a region respectively
272 may be assigned to different locations (hard-registers or
273 memory). In this case IRA creates and uses a new
274 pseudo-register inside the region and adds code to move allocno
275 values on the region's borders. This is done during top-down
276 traversal of the regions (file ira-emit.c). In some
277 complicated cases IRA can create a new allocno to move allocno
278 values (e.g. when a swap of values stored in two hard-registers
279 is needed). At this stage, the new allocno is marked as
280 spilled. IRA still creates the pseudo-register and the moves
281 on the region borders even when both allocnos were assigned to
282 the same hard-register. If the reload pass spills a
283 pseudo-register for some reason, the effect will be smaller
284 because another allocno will still be in the hard-register. In
285 most cases, this is better then spilling both allocnos. If
286 reload does not change the allocation for the two
287 pseudo-registers, the trivial move will be removed by
288 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
289 allocnos assigned to the same hard register when the default
290 regional allocation algorithm is used and the register pressure
1756cb66
VM
291 in the region for the corresponding pressure class is less than
292 number of available hard registers for given pressure class.
058e97ec
VM
293 IRA also does some optimizations to remove redundant stores and
294 to reduce code duplication on the region borders.
295
296 o Flattening internal representation. After changing code, IRA
297 transforms its internal representation for several regions into
298 one region representation (file ira-build.c). This process is
299 called IR flattening. Such process is more complicated than IR
300 rebuilding would be, but is much faster.
301
302 o After IR flattening, IRA tries to assign hard registers to all
303 spilled allocnos. This is impelemented by a simple and fast
304 priority coloring algorithm (see function
305 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
306 created during the code change pass can be assigned to hard
307 registers.
308
309 o At the end IRA calls the reload pass. The reload pass
310 communicates with IRA through several functions in file
311 ira-color.c to improve its decisions in
312
313 * sharing stack slots for the spilled pseudos based on IRA info
314 about pseudo-register conflicts.
315
316 * reassigning hard-registers to all spilled pseudos at the end
317 of each reload iteration.
318
319 * choosing a better hard-register to spill based on IRA info
320 about pseudo-register live ranges and the register pressure
321 in places where the pseudo-register lives.
322
323 IRA uses a lot of data representing the target processors. These
324 data are initilized in file ira.c.
325
326 If function has no loops (or the loops are ignored when
327 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
328 coloring (only instead of separate pass of coalescing, we use hard
329 register preferencing). In such case, IRA works much faster
330 because many things are not made (like IR flattening, the
331 spill/restore optimization, and the code change).
332
333 Literature is worth to read for better understanding the code:
334
335 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
336 Graph Coloring Register Allocation.
337
338 o David Callahan, Brian Koblenz. Register allocation via
339 hierarchical graph coloring.
340
341 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
342 Coloring Register Allocation: A Study of the Chaitin-Briggs and
343 Callahan-Koblenz Algorithms.
344
345 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
346 Register Allocation Based on Graph Fusion.
347
1756cb66
VM
348 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
349 Allocation for Irregular Architectures
350
058e97ec
VM
351 o Vladimir Makarov. The Integrated Register Allocator for GCC.
352
353 o Vladimir Makarov. The top-down register allocator for irregular
354 register file architectures.
355
356*/
357
358
359#include "config.h"
360#include "system.h"
361#include "coretypes.h"
362#include "tm.h"
363#include "regs.h"
364#include "rtl.h"
365#include "tm_p.h"
366#include "target.h"
367#include "flags.h"
368#include "obstack.h"
369#include "bitmap.h"
370#include "hard-reg-set.h"
371#include "basic-block.h"
7a8cba34 372#include "df.h"
058e97ec
VM
373#include "expr.h"
374#include "recog.h"
375#include "params.h"
058e97ec
VM
376#include "tree-pass.h"
377#include "output.h"
2af2dbdc 378#include "except.h"
058e97ec 379#include "reload.h"
718f9c0f 380#include "diagnostic-core.h"
6399c0ab 381#include "function.h"
058e97ec
VM
382#include "ggc.h"
383#include "ira-int.h"
55a2c322 384#include "lra.h"
b0c11403 385#include "dce.h"
acf41a74 386#include "dbgcnt.h"
058e97ec 387
afcc66c4
RS
388struct target_ira default_target_ira;
389struct target_ira_int default_target_ira_int;
390#if SWITCHABLE_TARGET
391struct target_ira *this_target_ira = &default_target_ira;
392struct target_ira_int *this_target_ira_int = &default_target_ira_int;
393#endif
394
058e97ec
VM
395/* A modified value of flag `-fira-verbose' used internally. */
396int internal_flag_ira_verbose;
397
398/* Dump file of the allocator if it is not NULL. */
399FILE *ira_dump_file;
400
058e97ec
VM
401/* The number of elements in the following array. */
402int ira_spilled_reg_stack_slots_num;
403
404/* The following array contains info about spilled pseudo-registers
405 stack slots used in current function so far. */
406struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
407
ae2b9cb6
BS
408/* Correspondingly overall cost of the allocation, overall cost before
409 reload, cost of the allocnos assigned to hard-registers, cost of
410 the allocnos assigned to memory, cost of loads, stores and register
411 move insns generated for pseudo-register live range splitting (see
412 ira-emit.c). */
413int ira_overall_cost, overall_cost_before;
058e97ec
VM
414int ira_reg_cost, ira_mem_cost;
415int ira_load_cost, ira_store_cost, ira_shuffle_cost;
416int ira_move_loops_num, ira_additional_jumps_num;
417
2af2dbdc
VM
418/* All registers that can be eliminated. */
419
420HARD_REG_SET eliminable_regset;
421
70cc3288
VM
422/* Value of max_reg_num () before IRA work start. This value helps
423 us to recognize a situation when new pseudos were created during
424 IRA work. */
425static int max_regno_before_ira;
426
058e97ec
VM
427/* Temporary hard reg set used for a different calculation. */
428static HARD_REG_SET temp_hard_regset;
429
e80ccebc
RS
430#define last_mode_for_init_move_cost \
431 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
432\f
433
434/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
435static void
436setup_reg_mode_hard_regset (void)
437{
438 int i, m, hard_regno;
439
440 for (m = 0; m < NUM_MACHINE_MODES; m++)
441 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
442 {
443 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
444 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
445 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
446 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
447 hard_regno + i);
448 }
449}
450
451\f
afcc66c4
RS
452#define no_unit_alloc_regs \
453 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
454
455/* The function sets up the three arrays declared above. */
456static void
457setup_class_hard_regs (void)
458{
459 int cl, i, hard_regno, n;
460 HARD_REG_SET processed_hard_reg_set;
461
462 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
463 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
464 {
465 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
466 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
467 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 468 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 469 {
854edfcd
VM
470 ira_non_ordered_class_hard_regs[cl][i] = -1;
471 ira_class_hard_reg_index[cl][i] = -1;
0583835c 472 }
058e97ec
VM
473 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
474 {
475#ifdef REG_ALLOC_ORDER
476 hard_regno = reg_alloc_order[i];
477#else
478 hard_regno = i;
b8698a0f 479#endif
058e97ec
VM
480 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
481 continue;
482 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
483 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
484 ira_class_hard_reg_index[cl][hard_regno] = -1;
485 else
486 {
487 ira_class_hard_reg_index[cl][hard_regno] = n;
488 ira_class_hard_regs[cl][n++] = hard_regno;
489 }
490 }
491 ira_class_hard_regs_num[cl] = n;
0583835c
VM
492 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
493 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
494 ira_non_ordered_class_hard_regs[cl][n++] = i;
495 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
496 }
497}
498
058e97ec
VM
499/* Set up global variables defining info about hard registers for the
500 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
501 that we can use the hard frame pointer for the allocation. */
502static void
503setup_alloc_regs (bool use_hard_frame_p)
504{
5a733826
BS
505#ifdef ADJUST_REG_ALLOC_ORDER
506 ADJUST_REG_ALLOC_ORDER;
507#endif
058e97ec
VM
508 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
509 if (! use_hard_frame_p)
510 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
511 setup_class_hard_regs ();
058e97ec
VM
512}
513
514\f
515
1756cb66
VM
516#define alloc_reg_class_subclasses \
517 (this_target_ira_int->x_alloc_reg_class_subclasses)
518
519/* Initialize the table of subclasses of each reg class. */
520static void
521setup_reg_subclasses (void)
522{
523 int i, j;
524 HARD_REG_SET temp_hard_regset2;
525
526 for (i = 0; i < N_REG_CLASSES; i++)
527 for (j = 0; j < N_REG_CLASSES; j++)
528 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
529
530 for (i = 0; i < N_REG_CLASSES; i++)
531 {
532 if (i == (int) NO_REGS)
533 continue;
534
535 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
536 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
537 if (hard_reg_set_empty_p (temp_hard_regset))
538 continue;
539 for (j = 0; j < N_REG_CLASSES; j++)
540 if (i != j)
541 {
542 enum reg_class *p;
543
544 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
546 if (! hard_reg_set_subset_p (temp_hard_regset,
547 temp_hard_regset2))
548 continue;
549 p = &alloc_reg_class_subclasses[j][0];
550 while (*p != LIM_REG_CLASSES) p++;
551 *p = (enum reg_class) i;
552 }
553 }
554}
555
556\f
557
558/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
559static void
560setup_class_subset_and_memory_move_costs (void)
561{
1756cb66 562 int cl, cl2, mode, cost;
058e97ec
VM
563 HARD_REG_SET temp_hard_regset2;
564
565 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
566 ira_memory_move_cost[mode][NO_REGS][0]
567 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
568 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
569 {
570 if (cl != (int) NO_REGS)
571 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
572 {
1756cb66
VM
573 ira_max_memory_move_cost[mode][cl][0]
574 = ira_memory_move_cost[mode][cl][0]
575 = memory_move_cost ((enum machine_mode) mode,
6f76a878 576 (reg_class_t) cl, false);
1756cb66
VM
577 ira_max_memory_move_cost[mode][cl][1]
578 = ira_memory_move_cost[mode][cl][1]
579 = memory_move_cost ((enum machine_mode) mode,
6f76a878 580 (reg_class_t) cl, true);
058e97ec
VM
581 /* Costs for NO_REGS are used in cost calculation on the
582 1st pass when the preferred register classes are not
583 known yet. In this case we take the best scenario. */
584 if (ira_memory_move_cost[mode][NO_REGS][0]
585 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
586 ira_max_memory_move_cost[mode][NO_REGS][0]
587 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
588 = ira_memory_move_cost[mode][cl][0];
589 if (ira_memory_move_cost[mode][NO_REGS][1]
590 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
591 ira_max_memory_move_cost[mode][NO_REGS][1]
592 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
593 = ira_memory_move_cost[mode][cl][1];
594 }
058e97ec 595 }
1756cb66
VM
596 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
597 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
598 {
599 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
600 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
601 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
602 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
603 ira_class_subset_p[cl][cl2]
604 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
605 if (! hard_reg_set_empty_p (temp_hard_regset2)
606 && hard_reg_set_subset_p (reg_class_contents[cl2],
607 reg_class_contents[cl]))
608 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
609 {
610 cost = ira_memory_move_cost[mode][cl2][0];
611 if (cost > ira_max_memory_move_cost[mode][cl][0])
612 ira_max_memory_move_cost[mode][cl][0] = cost;
613 cost = ira_memory_move_cost[mode][cl2][1];
614 if (cost > ira_max_memory_move_cost[mode][cl][1])
615 ira_max_memory_move_cost[mode][cl][1] = cost;
616 }
617 }
618 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
619 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
620 {
621 ira_memory_move_cost[mode][cl][0]
622 = ira_max_memory_move_cost[mode][cl][0];
623 ira_memory_move_cost[mode][cl][1]
624 = ira_max_memory_move_cost[mode][cl][1];
625 }
626 setup_reg_subclasses ();
058e97ec
VM
627}
628
629\f
630
631/* Define the following macro if allocation through malloc if
632 preferable. */
633#define IRA_NO_OBSTACK
634
635#ifndef IRA_NO_OBSTACK
636/* Obstack used for storing all dynamic data (except bitmaps) of the
637 IRA. */
638static struct obstack ira_obstack;
639#endif
640
641/* Obstack used for storing all bitmaps of the IRA. */
642static struct bitmap_obstack ira_bitmap_obstack;
643
644/* Allocate memory of size LEN for IRA data. */
645void *
646ira_allocate (size_t len)
647{
648 void *res;
649
650#ifndef IRA_NO_OBSTACK
651 res = obstack_alloc (&ira_obstack, len);
652#else
653 res = xmalloc (len);
654#endif
655 return res;
656}
657
058e97ec
VM
658/* Free memory ADDR allocated for IRA data. */
659void
660ira_free (void *addr ATTRIBUTE_UNUSED)
661{
662#ifndef IRA_NO_OBSTACK
663 /* do nothing */
664#else
665 free (addr);
666#endif
667}
668
669
670/* Allocate and returns bitmap for IRA. */
671bitmap
672ira_allocate_bitmap (void)
673{
674 return BITMAP_ALLOC (&ira_bitmap_obstack);
675}
676
677/* Free bitmap B allocated for IRA. */
678void
679ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
680{
681 /* do nothing */
682}
683
684\f
685
686/* Output information about allocation of all allocnos (except for
687 caps) into file F. */
688void
689ira_print_disposition (FILE *f)
690{
691 int i, n, max_regno;
692 ira_allocno_t a;
693 basic_block bb;
694
695 fprintf (f, "Disposition:");
696 max_regno = max_reg_num ();
697 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
698 for (a = ira_regno_allocno_map[i];
699 a != NULL;
700 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
701 {
702 if (n % 4 == 0)
703 fprintf (f, "\n");
704 n++;
705 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
706 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
707 fprintf (f, "b%-3d", bb->index);
708 else
2608d841 709 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
710 if (ALLOCNO_HARD_REGNO (a) >= 0)
711 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
712 else
713 fprintf (f, " mem");
714 }
715 fprintf (f, "\n");
716}
717
718/* Outputs information about allocation of all allocnos into
719 stderr. */
720void
721ira_debug_disposition (void)
722{
723 ira_print_disposition (stderr);
724}
725
726\f
058e97ec 727
1756cb66
VM
728/* Set up ira_stack_reg_pressure_class which is the biggest pressure
729 register class containing stack registers or NO_REGS if there are
730 no stack registers. To find this class, we iterate through all
731 register pressure classes and choose the first register pressure
732 class containing all the stack registers and having the biggest
733 size. */
fe82cdfb 734static void
1756cb66
VM
735setup_stack_reg_pressure_class (void)
736{
737 ira_stack_reg_pressure_class = NO_REGS;
738#ifdef STACK_REGS
739 {
740 int i, best, size;
741 enum reg_class cl;
742 HARD_REG_SET temp_hard_regset2;
743
744 CLEAR_HARD_REG_SET (temp_hard_regset);
745 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
746 SET_HARD_REG_BIT (temp_hard_regset, i);
747 best = 0;
748 for (i = 0; i < ira_pressure_classes_num; i++)
749 {
750 cl = ira_pressure_classes[i];
751 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
752 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
753 size = hard_reg_set_size (temp_hard_regset2);
754 if (best < size)
755 {
756 best = size;
757 ira_stack_reg_pressure_class = cl;
758 }
759 }
760 }
761#endif
762}
763
764/* Find pressure classes which are register classes for which we
765 calculate register pressure in IRA, register pressure sensitive
766 insn scheduling, and register pressure sensitive loop invariant
767 motion.
768
769 To make register pressure calculation easy, we always use
770 non-intersected register pressure classes. A move of hard
771 registers from one register pressure class is not more expensive
772 than load and store of the hard registers. Most likely an allocno
773 class will be a subset of a register pressure class and in many
774 cases a register pressure class. That makes usage of register
775 pressure classes a good approximation to find a high register
776 pressure. */
777static void
778setup_pressure_classes (void)
058e97ec 779{
1756cb66
VM
780 int cost, i, n, curr;
781 int cl, cl2;
782 enum reg_class pressure_classes[N_REG_CLASSES];
783 int m;
058e97ec 784 HARD_REG_SET temp_hard_regset2;
1756cb66 785 bool insert_p;
058e97ec 786
1756cb66
VM
787 n = 0;
788 for (cl = 0; cl < N_REG_CLASSES; cl++)
058e97ec 789 {
f508f827 790 if (ira_class_hard_regs_num[cl] == 0)
058e97ec 791 continue;
f508f827 792 if (ira_class_hard_regs_num[cl] != 1
574e418a
VM
793 /* A register class without subclasses may contain a few
794 hard registers and movement between them is costly
795 (e.g. SPARC FPCC registers). We still should consider it
796 as a candidate for a pressure class. */
af2b97c4 797 && alloc_reg_class_subclasses[cl][0] < cl)
1756cb66 798 {
113a5be6
VM
799 /* Check that the moves between any hard registers of the
800 current class are not more expensive for a legal mode
801 than load/store of the hard registers of the current
802 class. Such class is a potential candidate to be a
803 register pressure class. */
804 for (m = 0; m < NUM_MACHINE_MODES; m++)
805 {
806 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
807 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
808 AND_COMPL_HARD_REG_SET (temp_hard_regset,
809 ira_prohibited_class_mode_regs[cl][m]);
810 if (hard_reg_set_empty_p (temp_hard_regset))
811 continue;
812 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
813 cost = ira_register_move_cost[m][cl][cl];
814 if (cost <= ira_max_memory_move_cost[m][cl][1]
815 || cost <= ira_max_memory_move_cost[m][cl][0])
816 break;
817 }
818 if (m >= NUM_MACHINE_MODES)
1756cb66 819 continue;
1756cb66 820 }
1756cb66
VM
821 curr = 0;
822 insert_p = true;
823 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
824 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
825 /* Remove so far added pressure classes which are subset of the
826 current candidate class. Prefer GENERAL_REGS as a pressure
827 register class to another class containing the same
828 allocatable hard registers. We do this because machine
829 dependent cost hooks might give wrong costs for the latter
830 class but always give the right cost for the former class
831 (GENERAL_REGS). */
832 for (i = 0; i < n; i++)
833 {
834 cl2 = pressure_classes[i];
835 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
836 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
837 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
838 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
839 || cl2 == (int) GENERAL_REGS))
840 {
841 pressure_classes[curr++] = (enum reg_class) cl2;
842 insert_p = false;
058e97ec 843 continue;
1756cb66
VM
844 }
845 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
846 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
847 || cl == (int) GENERAL_REGS))
848 continue;
113a5be6
VM
849 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
850 insert_p = false;
1756cb66
VM
851 pressure_classes[curr++] = (enum reg_class) cl2;
852 }
853 /* If the current candidate is a subset of a so far added
854 pressure class, don't add it to the list of the pressure
855 classes. */
856 if (insert_p)
857 pressure_classes[curr++] = (enum reg_class) cl;
858 n = curr;
fe82cdfb 859 }
1756cb66 860#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
861 {
862 HARD_REG_SET ignore_hard_regs;
863
864 /* Check pressure classes correctness: here we check that hard
865 registers from all register pressure classes contains all hard
866 registers available for the allocation. */
867 CLEAR_HARD_REG_SET (temp_hard_regset);
868 CLEAR_HARD_REG_SET (temp_hard_regset2);
869 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
870 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
871 {
872 /* For some targets (like MIPS with MD_REGS), there are some
873 classes with hard registers available for allocation but
874 not able to hold value of any mode. */
875 for (m = 0; m < NUM_MACHINE_MODES; m++)
876 if (contains_reg_of_mode[cl][m])
877 break;
878 if (m >= NUM_MACHINE_MODES)
879 {
880 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
881 continue;
882 }
883 for (i = 0; i < n; i++)
884 if ((int) pressure_classes[i] == cl)
885 break;
886 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
887 if (i < n)
888 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
889 }
890 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
891 /* Some targets (like SPARC with ICC reg) have alocatable regs
892 for which no reg class is defined. */
893 if (REGNO_REG_CLASS (i) == NO_REGS)
894 SET_HARD_REG_BIT (ignore_hard_regs, i);
895 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
896 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
897 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
898 }
1756cb66
VM
899#endif
900 ira_pressure_classes_num = 0;
901 for (i = 0; i < n; i++)
902 {
903 cl = (int) pressure_classes[i];
904 ira_reg_pressure_class_p[cl] = true;
905 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
906 }
907 setup_stack_reg_pressure_class ();
058e97ec
VM
908}
909
165f639c
VM
910/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
911 whose register move cost between any registers of the class is the
912 same as for all its subclasses. We use the data to speed up the
913 2nd pass of calculations of allocno costs. */
914static void
915setup_uniform_class_p (void)
916{
917 int i, cl, cl2, m;
918
919 for (cl = 0; cl < N_REG_CLASSES; cl++)
920 {
921 ira_uniform_class_p[cl] = false;
922 if (ira_class_hard_regs_num[cl] == 0)
923 continue;
924 /* We can not use alloc_reg_class_subclasses here because move
925 cost hooks does not take into account that some registers are
926 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
927 is element of alloc_reg_class_subclasses for GENERAL_REGS
928 because SSE regs are unavailable. */
929 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
930 {
931 if (ira_class_hard_regs_num[cl2] == 0)
932 continue;
933 for (m = 0; m < NUM_MACHINE_MODES; m++)
934 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
935 {
936 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
937 if (ira_register_move_cost[m][cl][cl]
938 != ira_register_move_cost[m][cl2][cl2])
939 break;
940 }
941 if (m < NUM_MACHINE_MODES)
942 break;
943 }
944 if (cl2 == LIM_REG_CLASSES)
945 ira_uniform_class_p[cl] = true;
946 }
947}
948
1756cb66
VM
949/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
950 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
951
952 Target may have many subtargets and not all target hard regiters can
953 be used for allocation, e.g. x86 port in 32-bit mode can not use
954 hard registers introduced in x86-64 like r8-r15). Some classes
955 might have the same allocatable hard registers, e.g. INDEX_REGS
956 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
957 calculations efforts we introduce allocno classes which contain
958 unique non-empty sets of allocatable hard-registers.
959
960 Pseudo class cost calculation in ira-costs.c is very expensive.
961 Therefore we are trying to decrease number of classes involved in
962 such calculation. Register classes used in the cost calculation
963 are called important classes. They are allocno classes and other
964 non-empty classes whose allocatable hard register sets are inside
965 of an allocno class hard register set. From the first sight, it
966 looks like that they are just allocno classes. It is not true. In
967 example of x86-port in 32-bit mode, allocno classes will contain
968 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
969 registers are the same for the both classes). The important
970 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
971 because a machine description insn constraint may refers for
972 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
973 of the insn constraints. */
058e97ec 974static void
1756cb66 975setup_allocno_and_important_classes (void)
058e97ec 976{
32e8bb8e 977 int i, j, n, cl;
db1a8d98 978 bool set_p;
058e97ec 979 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
980 static enum reg_class classes[LIM_REG_CLASSES + 1];
981
1756cb66
VM
982 n = 0;
983 /* Collect classes which contain unique sets of allocatable hard
984 registers. Prefer GENERAL_REGS to other classes containing the
985 same set of hard registers. */
a58dfa49 986 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 987 {
1756cb66
VM
988 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
989 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
990 for (j = 0; j < n; j++)
7db7ed3c 991 {
1756cb66
VM
992 cl = classes[j];
993 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
994 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
995 no_unit_alloc_regs);
996 if (hard_reg_set_equal_p (temp_hard_regset,
997 temp_hard_regset2))
998 break;
7db7ed3c 999 }
1756cb66
VM
1000 if (j >= n)
1001 classes[n++] = (enum reg_class) i;
1002 else if (i == GENERAL_REGS)
1003 /* Prefer general regs. For i386 example, it means that
1004 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1005 (all of them consists of the same available hard
1006 registers). */
1007 classes[j] = (enum reg_class) i;
7db7ed3c 1008 }
1756cb66 1009 classes[n] = LIM_REG_CLASSES;
058e97ec 1010
1756cb66
VM
1011 /* Set up classes which can be used for allocnos as classes
1012 conatining non-empty unique sets of allocatable hard
1013 registers. */
1014 ira_allocno_classes_num = 0;
058e97ec 1015 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1016 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1017 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1018 ira_important_classes_num = 0;
1756cb66
VM
1019 /* Add non-allocno classes containing to non-empty set of
1020 allocatable hard regs. */
058e97ec 1021 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1022 if (ira_class_hard_regs_num[cl] > 0)
1023 {
1024 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1025 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1026 set_p = false;
1027 for (j = 0; j < ira_allocno_classes_num; j++)
1028 {
1029 COPY_HARD_REG_SET (temp_hard_regset2,
1030 reg_class_contents[ira_allocno_classes[j]]);
1031 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1032 if ((enum reg_class) cl == ira_allocno_classes[j])
1033 break;
1034 else if (hard_reg_set_subset_p (temp_hard_regset,
1035 temp_hard_regset2))
1036 set_p = true;
1037 }
1038 if (set_p && j >= ira_allocno_classes_num)
1039 ira_important_classes[ira_important_classes_num++]
1040 = (enum reg_class) cl;
1041 }
1756cb66
VM
1042 /* Now add allocno classes to the important classes. */
1043 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1044 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1045 = ira_allocno_classes[j];
1046 for (cl = 0; cl < N_REG_CLASSES; cl++)
1047 {
1048 ira_reg_allocno_class_p[cl] = false;
1049 ira_reg_pressure_class_p[cl] = false;
1050 }
1051 for (j = 0; j < ira_allocno_classes_num; j++)
1052 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1053 setup_pressure_classes ();
165f639c 1054 setup_uniform_class_p ();
058e97ec 1055}
058e97ec 1056
1756cb66
VM
1057/* Setup translation in CLASS_TRANSLATE of all classes into a class
1058 given by array CLASSES of length CLASSES_NUM. The function is used
1059 make translation any reg class to an allocno class or to an
1060 pressure class. This translation is necessary for some
1061 calculations when we can use only allocno or pressure classes and
1062 such translation represents an approximate representation of all
1063 classes.
1064
1065 The translation in case when allocatable hard register set of a
1066 given class is subset of allocatable hard register set of a class
1067 in CLASSES is pretty simple. We use smallest classes from CLASSES
1068 containing a given class. If allocatable hard register set of a
1069 given class is not a subset of any corresponding set of a class
1070 from CLASSES, we use the cheapest (with load/store point of view)
1071 class from CLASSES whose set intersects with given class set */
058e97ec 1072static void
1756cb66
VM
1073setup_class_translate_array (enum reg_class *class_translate,
1074 int classes_num, enum reg_class *classes)
058e97ec 1075{
32e8bb8e 1076 int cl, mode;
1756cb66 1077 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1078 int i, cost, min_cost, best_cost;
1079
1080 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1081 class_translate[cl] = NO_REGS;
b8698a0f 1082
1756cb66 1083 for (i = 0; i < classes_num; i++)
058e97ec 1084 {
1756cb66
VM
1085 aclass = classes[i];
1086 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1087 (cl = *cl_ptr) != LIM_REG_CLASSES;
1088 cl_ptr++)
1089 if (class_translate[cl] == NO_REGS)
1090 class_translate[cl] = aclass;
1091 class_translate[aclass] = aclass;
058e97ec 1092 }
1756cb66
VM
1093 /* For classes which are not fully covered by one of given classes
1094 (in other words covered by more one given class), use the
1095 cheapest class. */
058e97ec
VM
1096 for (cl = 0; cl < N_REG_CLASSES; cl++)
1097 {
1756cb66 1098 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1099 continue;
1100 best_class = NO_REGS;
1101 best_cost = INT_MAX;
1756cb66 1102 for (i = 0; i < classes_num; i++)
058e97ec 1103 {
1756cb66 1104 aclass = classes[i];
058e97ec 1105 COPY_HARD_REG_SET (temp_hard_regset,
1756cb66 1106 reg_class_contents[aclass]);
058e97ec
VM
1107 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1108 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 1109 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1110 {
1111 min_cost = INT_MAX;
1112 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1113 {
1114 cost = (ira_memory_move_cost[mode][cl][0]
1115 + ira_memory_move_cost[mode][cl][1]);
1116 if (min_cost > cost)
1117 min_cost = cost;
1118 }
1119 if (best_class == NO_REGS || best_cost > min_cost)
1120 {
1756cb66 1121 best_class = aclass;
058e97ec
VM
1122 best_cost = min_cost;
1123 }
1124 }
1125 }
1756cb66 1126 class_translate[cl] = best_class;
058e97ec
VM
1127 }
1128}
058e97ec 1129
1756cb66
VM
1130/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1131 IRA_PRESSURE_CLASS_TRANSLATE. */
1132static void
1133setup_class_translate (void)
1134{
1135 setup_class_translate_array (ira_allocno_class_translate,
1136 ira_allocno_classes_num, ira_allocno_classes);
1137 setup_class_translate_array (ira_pressure_class_translate,
1138 ira_pressure_classes_num, ira_pressure_classes);
1139}
1140
1141/* Order numbers of allocno classes in original target allocno class
1142 array, -1 for non-allocno classes. */
1143static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1144
1145/* The function used to sort the important classes. */
1146static int
1147comp_reg_classes_func (const void *v1p, const void *v2p)
1148{
1149 enum reg_class cl1 = *(const enum reg_class *) v1p;
1150 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1151 enum reg_class tcl1, tcl2;
db1a8d98
VM
1152 int diff;
1153
1756cb66
VM
1154 tcl1 = ira_allocno_class_translate[cl1];
1155 tcl2 = ira_allocno_class_translate[cl2];
1156 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1157 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1158 return diff;
1159 return (int) cl1 - (int) cl2;
1160}
1161
1756cb66
VM
1162/* For correct work of function setup_reg_class_relation we need to
1163 reorder important classes according to the order of their allocno
1164 classes. It places important classes containing the same
1165 allocatable hard register set adjacent to each other and allocno
1166 class with the allocatable hard register set right after the other
1167 important classes with the same set.
1168
1169 In example from comments of function
1170 setup_allocno_and_important_classes, it places LEGACY_REGS and
1171 GENERAL_REGS close to each other and GENERAL_REGS is after
1172 LEGACY_REGS. */
db1a8d98
VM
1173static void
1174reorder_important_classes (void)
1175{
1176 int i;
1177
1178 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1179 allocno_class_order[i] = -1;
1180 for (i = 0; i < ira_allocno_classes_num; i++)
1181 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1182 qsort (ira_important_classes, ira_important_classes_num,
1183 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1184 for (i = 0; i < ira_important_classes_num; i++)
1185 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1186}
1187
1756cb66
VM
1188/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1189 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1190 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1191 please see corresponding comments in ira-int.h. */
058e97ec 1192static void
7db7ed3c 1193setup_reg_class_relations (void)
058e97ec
VM
1194{
1195 int i, cl1, cl2, cl3;
1196 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1197 bool important_class_p[N_REG_CLASSES];
058e97ec 1198
7db7ed3c
VM
1199 memset (important_class_p, 0, sizeof (important_class_p));
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1202 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1203 {
7db7ed3c 1204 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1205 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1206 {
7db7ed3c 1207 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1208 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1209 ira_reg_class_subset[cl1][cl2] = NO_REGS;
058e97ec
VM
1210 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1211 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1212 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1213 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1214 if (hard_reg_set_empty_p (temp_hard_regset)
1215 && hard_reg_set_empty_p (temp_set2))
058e97ec 1216 {
1756cb66
VM
1217 /* The both classes have no allocatable hard registers
1218 -- take all class hard registers into account and use
1219 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1220 for (i = 0;; i++)
1221 {
1222 cl3 = reg_class_subclasses[cl1][i];
1223 if (cl3 == LIM_REG_CLASSES)
1224 break;
1225 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1226 (enum reg_class) cl3))
1227 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1228 }
1756cb66
VM
1229 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1230 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1231 continue;
1232 }
7db7ed3c
VM
1233 ira_reg_classes_intersect_p[cl1][cl2]
1234 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1235 if (important_class_p[cl1] && important_class_p[cl2]
1236 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1237 {
1756cb66
VM
1238 /* CL1 and CL2 are important classes and CL1 allocatable
1239 hard register set is inside of CL2 allocatable hard
1240 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1241 enum reg_class *p;
1242
1243 p = &ira_reg_class_super_classes[cl1][0];
1244 while (*p != LIM_REG_CLASSES)
1245 p++;
1246 *p++ = (enum reg_class) cl2;
1247 *p = LIM_REG_CLASSES;
1248 }
1756cb66
VM
1249 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1250 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
058e97ec
VM
1251 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1252 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1253 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1254 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1255 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1256 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
55a2c322 1257 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1258 {
058e97ec
VM
1259 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1260 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1261 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1262 {
1756cb66
VM
1263 /* CL3 allocatable hard register set is inside of
1264 intersection of allocatable hard register sets
1265 of CL1 and CL2. */
55a2c322
VM
1266 if (important_class_p[cl3])
1267 {
1268 COPY_HARD_REG_SET
1269 (temp_set2,
1270 reg_class_contents
1271 [(int) ira_reg_class_intersect[cl1][cl2]]);
1272 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1273 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1274 /* If the allocatable hard register sets are
1275 the same, prefer GENERAL_REGS or the
1276 smallest class for debugging
1277 purposes. */
1278 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1279 && (cl3 == GENERAL_REGS
1280 || ((ira_reg_class_intersect[cl1][cl2]
1281 != GENERAL_REGS)
1282 && hard_reg_set_subset_p
1283 (reg_class_contents[cl3],
1284 reg_class_contents
1285 [(int)
1286 ira_reg_class_intersect[cl1][cl2]])))))
1287 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1288 }
058e97ec
VM
1289 COPY_HARD_REG_SET
1290 (temp_set2,
55a2c322 1291 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
058e97ec 1292 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
55a2c322
VM
1293 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1294 /* Ignore unavailable hard registers and prefer
1295 smallest class for debugging purposes. */
058e97ec 1296 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
55a2c322
VM
1297 && hard_reg_set_subset_p
1298 (reg_class_contents[cl3],
1299 reg_class_contents
1300 [(int) ira_reg_class_subset[cl1][cl2]])))
1301 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1302 }
55a2c322
VM
1303 if (important_class_p[cl3]
1304 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1305 {
1756cb66
VM
1306 /* CL3 allocatbale hard register set is inside of
1307 union of allocatable hard register sets of CL1
1308 and CL2. */
058e97ec
VM
1309 COPY_HARD_REG_SET
1310 (temp_set2,
1756cb66 1311 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
058e97ec 1312 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1756cb66 1313 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1314 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1315
1316 && (! hard_reg_set_equal_p (temp_set2,
1317 temp_hard_regset)
1318 || cl3 == GENERAL_REGS
1319 /* If the allocatable hard register sets are the
1320 same, prefer GENERAL_REGS or the smallest
1321 class for debugging purposes. */
1322 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1323 && hard_reg_set_subset_p
1324 (reg_class_contents[cl3],
1325 reg_class_contents
1326 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1327 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1328 }
1329 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1330 {
1331 /* CL3 allocatable hard register set contains union
1332 of allocatable hard register sets of CL1 and
1333 CL2. */
1334 COPY_HARD_REG_SET
1335 (temp_set2,
1336 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1337 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1338 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1339 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1340
058e97ec
VM
1341 && (! hard_reg_set_equal_p (temp_set2,
1342 temp_hard_regset)
1756cb66
VM
1343 || cl3 == GENERAL_REGS
1344 /* If the allocatable hard register sets are the
1345 same, prefer GENERAL_REGS or the smallest
1346 class for debugging purposes. */
1347 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1348 && hard_reg_set_subset_p
1349 (reg_class_contents[cl3],
1350 reg_class_contents
1351 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1352 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1353 }
1354 }
1355 }
1356 }
1357}
1358
165f639c
VM
1359/* Output all unifrom and important classes into file F. */
1360static void
1361print_unform_and_important_classes (FILE *f)
1362{
1363 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1364 int i, cl;
1365
1366 fprintf (f, "Uniform classes:\n");
1367 for (cl = 0; cl < N_REG_CLASSES; cl++)
1368 if (ira_uniform_class_p[cl])
1369 fprintf (f, " %s", reg_class_names[cl]);
1370 fprintf (f, "\nImportant classes:\n");
1371 for (i = 0; i < ira_important_classes_num; i++)
1372 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1373 fprintf (f, "\n");
1374}
1375
1376/* Output all possible allocno or pressure classes and their
1377 translation map into file F. */
058e97ec 1378static void
165f639c 1379print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1380{
1381 int classes_num = (pressure_p
1382 ? ira_pressure_classes_num : ira_allocno_classes_num);
1383 enum reg_class *classes = (pressure_p
1384 ? ira_pressure_classes : ira_allocno_classes);
1385 enum reg_class *class_translate = (pressure_p
1386 ? ira_pressure_class_translate
1387 : ira_allocno_class_translate);
058e97ec
VM
1388 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1389 int i;
1390
1756cb66
VM
1391 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1392 for (i = 0; i < classes_num; i++)
1393 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1394 fprintf (f, "\nClass translation:\n");
1395 for (i = 0; i < N_REG_CLASSES; i++)
1396 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1397 reg_class_names[class_translate[i]]);
058e97ec
VM
1398}
1399
1756cb66
VM
1400/* Output all possible allocno and translation classes and the
1401 translation maps into stderr. */
058e97ec 1402void
1756cb66 1403ira_debug_allocno_classes (void)
058e97ec 1404{
165f639c
VM
1405 print_unform_and_important_classes (stderr);
1406 print_translated_classes (stderr, false);
1407 print_translated_classes (stderr, true);
058e97ec
VM
1408}
1409
1756cb66 1410/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1411 important classes. */
1412static void
1756cb66 1413find_reg_classes (void)
058e97ec 1414{
1756cb66 1415 setup_allocno_and_important_classes ();
7db7ed3c 1416 setup_class_translate ();
db1a8d98 1417 reorder_important_classes ();
7db7ed3c 1418 setup_reg_class_relations ();
058e97ec
VM
1419}
1420
1421\f
1422
c0683a82
VM
1423/* Set up the array above. */
1424static void
1756cb66 1425setup_hard_regno_aclass (void)
c0683a82 1426{
7efcf910 1427 int i;
c0683a82
VM
1428
1429 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1430 {
1756cb66
VM
1431#if 1
1432 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1433 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1434 ? NO_REGS
1756cb66
VM
1435 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1436#else
1437 int j;
1438 enum reg_class cl;
1439 ira_hard_regno_allocno_class[i] = NO_REGS;
1440 for (j = 0; j < ira_allocno_classes_num; j++)
1441 {
1442 cl = ira_allocno_classes[j];
1443 if (ira_class_hard_reg_index[cl][i] >= 0)
1444 {
1445 ira_hard_regno_allocno_class[i] = cl;
1446 break;
1447 }
1448 }
1449#endif
c0683a82
VM
1450 }
1451}
1452
1453\f
1454
1756cb66 1455/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1456static void
1457setup_reg_class_nregs (void)
1458{
1756cb66 1459 int i, cl, cl2, m;
058e97ec 1460
1756cb66
VM
1461 for (m = 0; m < MAX_MACHINE_MODE; m++)
1462 {
1463 for (cl = 0; cl < N_REG_CLASSES; cl++)
1464 ira_reg_class_max_nregs[cl][m]
1465 = ira_reg_class_min_nregs[cl][m]
a8c44c52 1466 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1756cb66
VM
1467 for (cl = 0; cl < N_REG_CLASSES; cl++)
1468 for (i = 0;
1469 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1470 i++)
1471 if (ira_reg_class_min_nregs[cl2][m]
1472 < ira_reg_class_min_nregs[cl][m])
1473 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1474 }
058e97ec
VM
1475}
1476
1477\f
1478
c9d74da6
RS
1479/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1480 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1481static void
1482setup_prohibited_class_mode_regs (void)
1483{
c9d74da6 1484 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1485
1756cb66 1486 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1487 {
c9d74da6
RS
1488 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1489 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
058e97ec
VM
1490 for (j = 0; j < NUM_MACHINE_MODES; j++)
1491 {
c9d74da6
RS
1492 count = 0;
1493 last_hard_regno = -1;
1756cb66 1494 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1495 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1496 {
1497 hard_regno = ira_class_hard_regs[cl][k];
bbbbb16a 1498 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1756cb66 1499 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1500 hard_regno);
c9d74da6
RS
1501 else if (in_hard_reg_set_p (temp_hard_regset,
1502 (enum machine_mode) j, hard_regno))
1503 {
1504 last_hard_regno = hard_regno;
1505 count++;
1506 }
058e97ec 1507 }
c9d74da6 1508 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1509 }
1510 }
1511}
1512
1756cb66
VM
1513/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1514 spanning from one register pressure class to another one. It is
1515 called after defining the pressure classes. */
1516static void
1517clarify_prohibited_class_mode_regs (void)
1518{
1519 int j, k, hard_regno, cl, pclass, nregs;
1520
1521 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1522 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1523 {
1524 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1525 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1526 {
1527 hard_regno = ira_class_hard_regs[cl][k];
1528 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1529 continue;
1530 nregs = hard_regno_nregs[hard_regno][j];
1531 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1532 {
1533 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1534 hard_regno);
a2c19e93 1535 continue;
1756cb66 1536 }
a2c19e93
RS
1537 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1538 for (nregs-- ;nregs >= 0; nregs--)
1539 if (((enum reg_class) pclass
1540 != ira_pressure_class_translate[REGNO_REG_CLASS
1541 (hard_regno + nregs)]))
1542 {
1543 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1544 hard_regno);
1545 break;
1546 }
1547 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 hard_regno))
1549 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1550 (enum machine_mode) j, hard_regno);
1551 }
1552 }
1756cb66 1553}
058e97ec 1554\f
7cc61ee4
RS
1555/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1556 and IRA_MAY_MOVE_OUT_COST for MODE. */
1557void
1558ira_init_register_move_cost (enum machine_mode mode)
e80ccebc
RS
1559{
1560 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1561 bool all_match = true;
ed9e2ed0 1562 unsigned int cl1, cl2;
e80ccebc 1563
7cc61ee4
RS
1564 ira_assert (ira_register_move_cost[mode] == NULL
1565 && ira_may_move_in_cost[mode] == NULL
1566 && ira_may_move_out_cost[mode] == NULL);
ed9e2ed0
RS
1567 ira_assert (have_regs_of_mode[mode]);
1568 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1569 if (contains_reg_of_mode[cl1][mode])
1570 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
e80ccebc
RS
1571 {
1572 int cost;
ed9e2ed0 1573 if (!contains_reg_of_mode[cl2][mode])
e80ccebc
RS
1574 cost = 65535;
1575 else
1576 {
ed9e2ed0
RS
1577 cost = register_move_cost (mode, (enum reg_class) cl1,
1578 (enum reg_class) cl2);
1579 ira_assert (cost < 65535);
e80ccebc 1580 }
ed9e2ed0
RS
1581 all_match &= (last_move_cost[cl1][cl2] == cost);
1582 last_move_cost[cl1][cl2] = cost;
e80ccebc
RS
1583 }
1584 if (all_match && last_mode_for_init_move_cost != -1)
1585 {
7cc61ee4
RS
1586 ira_register_move_cost[mode]
1587 = ira_register_move_cost[last_mode_for_init_move_cost];
1588 ira_may_move_in_cost[mode]
1589 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1590 ira_may_move_out_cost[mode]
1591 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1592 return;
1593 }
ed9e2ed0 1594 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1595 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1596 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1597 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0
RS
1598 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1599 if (contains_reg_of_mode[cl1][mode])
1600 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
e80ccebc
RS
1601 {
1602 int cost;
1603 enum reg_class *p1, *p2;
1604
ed9e2ed0 1605 if (last_move_cost[cl1][cl2] == 65535)
e80ccebc 1606 {
7cc61ee4
RS
1607 ira_register_move_cost[mode][cl1][cl2] = 65535;
1608 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1609 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
e80ccebc
RS
1610 }
1611 else
1612 {
ed9e2ed0 1613 cost = last_move_cost[cl1][cl2];
e80ccebc 1614
ed9e2ed0 1615 for (p2 = &reg_class_subclasses[cl2][0];
e80ccebc 1616 *p2 != LIM_REG_CLASSES; p2++)
48e3d6e9
RS
1617 if (ira_class_hard_regs_num[*p2] > 0
1618 && (ira_reg_class_max_nregs[*p2][mode]
1619 <= ira_class_hard_regs_num[*p2]))
7cc61ee4 1620 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
e80ccebc 1621
ed9e2ed0 1622 for (p1 = &reg_class_subclasses[cl1][0];
e80ccebc 1623 *p1 != LIM_REG_CLASSES; p1++)
48e3d6e9
RS
1624 if (ira_class_hard_regs_num[*p1] > 0
1625 && (ira_reg_class_max_nregs[*p1][mode]
1626 <= ira_class_hard_regs_num[*p1]))
7cc61ee4 1627 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
e80ccebc 1628
ed9e2ed0 1629 ira_assert (cost <= 65535);
7cc61ee4 1630 ira_register_move_cost[mode][cl1][cl2] = cost;
e80ccebc 1631
48e3d6e9 1632 if (ira_class_subset_p[cl1][cl2])
7cc61ee4 1633 ira_may_move_in_cost[mode][cl1][cl2] = 0;
e80ccebc 1634 else
7cc61ee4 1635 ira_may_move_in_cost[mode][cl1][cl2] = cost;
e80ccebc 1636
48e3d6e9 1637 if (ira_class_subset_p[cl2][cl1])
7cc61ee4 1638 ira_may_move_out_cost[mode][cl1][cl2] = 0;
e80ccebc 1639 else
7cc61ee4 1640 ira_may_move_out_cost[mode][cl1][cl2] = cost;
e80ccebc
RS
1641 }
1642 }
1643 else
ed9e2ed0 1644 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
e80ccebc 1645 {
7cc61ee4
RS
1646 ira_register_move_cost[mode][cl1][cl2] = 65535;
1647 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1648 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
058e97ec 1649 }
058e97ec 1650}
058e97ec
VM
1651\f
1652
058e97ec
VM
1653/* This is called once during compiler work. It sets up
1654 different arrays whose values don't depend on the compiled
1655 function. */
1656void
1657ira_init_once (void)
1658{
058e97ec 1659 ira_init_costs_once ();
55a2c322 1660 lra_init_once ();
058e97ec
VM
1661}
1662
7cc61ee4
RS
1663/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1664 ira_may_move_out_cost for each mode. */
058e97ec
VM
1665static void
1666free_register_move_costs (void)
1667{
e80ccebc 1668 int mode, i;
058e97ec 1669
e80ccebc
RS
1670 /* Reset move_cost and friends, making sure we only free shared
1671 table entries once. */
1672 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
7cc61ee4 1673 if (ira_register_move_cost[mode])
e80ccebc 1674 {
7cc61ee4
RS
1675 for (i = 0;
1676 i < mode && (ira_register_move_cost[i]
1677 != ira_register_move_cost[mode]);
1678 i++)
e80ccebc
RS
1679 ;
1680 if (i == mode)
1681 {
7cc61ee4
RS
1682 free (ira_register_move_cost[mode]);
1683 free (ira_may_move_in_cost[mode]);
1684 free (ira_may_move_out_cost[mode]);
e80ccebc
RS
1685 }
1686 }
7cc61ee4
RS
1687 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1688 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1689 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
e80ccebc 1690 last_mode_for_init_move_cost = -1;
058e97ec
VM
1691}
1692
1693/* This is called every time when register related information is
1694 changed. */
1695void
1696ira_init (void)
1697{
1698 free_register_move_costs ();
1699 setup_reg_mode_hard_regset ();
1700 setup_alloc_regs (flag_omit_frame_pointer != 0);
1701 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1702 setup_reg_class_nregs ();
1703 setup_prohibited_class_mode_regs ();
1756cb66
VM
1704 find_reg_classes ();
1705 clarify_prohibited_class_mode_regs ();
1706 setup_hard_regno_aclass ();
058e97ec 1707 ira_init_costs ();
55a2c322 1708 lra_init ();
058e97ec
VM
1709}
1710
1711/* Function called once at the end of compiler work. */
1712void
1713ira_finish_once (void)
1714{
1715 ira_finish_costs_once ();
1716 free_register_move_costs ();
55a2c322 1717 lra_finish_once ();
058e97ec
VM
1718}
1719
1720\f
15e7b94f
RS
1721#define ira_prohibited_mode_move_regs_initialized_p \
1722 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1723
1724/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1725static void
1726setup_prohibited_mode_move_regs (void)
1727{
1728 int i, j;
1729 rtx test_reg1, test_reg2, move_pat, move_insn;
1730
1731 if (ira_prohibited_mode_move_regs_initialized_p)
1732 return;
1733 ira_prohibited_mode_move_regs_initialized_p = true;
1734 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1735 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1736 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
418e920f 1737 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1738 for (i = 0; i < NUM_MACHINE_MODES; i++)
1739 {
1740 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1741 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1742 {
bbbbb16a 1743 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
058e97ec 1744 continue;
5444da31 1745 SET_REGNO_RAW (test_reg1, j);
32e8bb8e 1746 PUT_MODE (test_reg1, (enum machine_mode) i);
5444da31 1747 SET_REGNO_RAW (test_reg2, j);
32e8bb8e 1748 PUT_MODE (test_reg2, (enum machine_mode) i);
058e97ec
VM
1749 INSN_CODE (move_insn) = -1;
1750 recog_memoized (move_insn);
1751 if (INSN_CODE (move_insn) < 0)
1752 continue;
1753 extract_insn (move_insn);
1754 if (! constrain_operands (1))
1755 continue;
1756 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1757 }
1758 }
1759}
1760
1761\f
1762
0896cc66
JL
1763/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1764static bool
1765ira_bad_reload_regno_1 (int regno, rtx x)
1766{
ac0ab4f7 1767 int x_regno, n, i;
0896cc66
JL
1768 ira_allocno_t a;
1769 enum reg_class pref;
1770
1771 /* We only deal with pseudo regs. */
1772 if (! x || GET_CODE (x) != REG)
1773 return false;
1774
1775 x_regno = REGNO (x);
1776 if (x_regno < FIRST_PSEUDO_REGISTER)
1777 return false;
1778
1779 /* If the pseudo prefers REGNO explicitly, then do not consider
1780 REGNO a bad spill choice. */
1781 pref = reg_preferred_class (x_regno);
1782 if (reg_class_size[pref] == 1)
1783 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1784
1785 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1786 poor choice for a reload regno. */
1787 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
1788 n = ALLOCNO_NUM_OBJECTS (a);
1789 for (i = 0; i < n; i++)
1790 {
1791 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1792 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1793 return true;
1794 }
0896cc66
JL
1795 return false;
1796}
1797
1798/* Return nonzero if REGNO is a particularly bad choice for reloading
1799 IN or OUT. */
1800bool
1801ira_bad_reload_regno (int regno, rtx in, rtx out)
1802{
1803 return (ira_bad_reload_regno_1 (regno, in)
1804 || ira_bad_reload_regno_1 (regno, out));
1805}
1806
058e97ec
VM
1807/* Return TRUE if *LOC contains an asm. */
1808static int
1809insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1810{
1811 if ( !*loc)
1812 return FALSE;
1813 if (GET_CODE (*loc) == ASM_OPERANDS)
1814 return TRUE;
1815 return FALSE;
1816}
1817
1818
1819/* Return TRUE if INSN contains an ASM. */
1820static bool
1821insn_contains_asm (rtx insn)
1822{
1823 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1824}
1825
b748fbd6 1826/* Add register clobbers from asm statements. */
058e97ec 1827static void
b748fbd6 1828compute_regs_asm_clobbered (void)
058e97ec
VM
1829{
1830 basic_block bb;
1831
058e97ec
VM
1832 FOR_EACH_BB (bb)
1833 {
1834 rtx insn;
1835 FOR_BB_INSNS_REVERSE (bb, insn)
1836 {
57512f53 1837 df_ref *def_rec;
058e97ec
VM
1838
1839 if (insn_contains_asm (insn))
1840 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1841 {
57512f53 1842 df_ref def = *def_rec;
058e97ec 1843 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
1844 if (HARD_REGISTER_NUM_P (dregno))
1845 add_to_hard_reg_set (&crtl->asm_clobbers,
1846 GET_MODE (DF_REF_REAL_REG (def)),
1847 dregno);
058e97ec
VM
1848 }
1849 }
1850 }
1851}
1852
1853
55a2c322
VM
1854/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
1855 If the function is called from IRA (not from the insn scheduler or
1856 RTL loop invariant motion), FROM_IRA_P is true. */
ce18efcb 1857void
55a2c322 1858ira_setup_eliminable_regset (bool from_ira_p)
058e97ec 1859{
058e97ec 1860#ifdef ELIMINABLE_REGS
89ceba31 1861 int i;
058e97ec
VM
1862 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1863#endif
1864 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1865 sp for alloca. So we can't eliminate the frame pointer in that
1866 case. At some point, we should improve this by emitting the
1867 sp-adjusting insns for this case. */
55a2c322 1868 frame_pointer_needed
058e97ec
VM
1869 = (! flag_omit_frame_pointer
1870 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
d809253a
EB
1871 /* We need the frame pointer to catch stack overflow exceptions
1872 if the stack pointer is moving. */
1873 || (flag_stack_check && STACK_CHECK_MOVING_SP)
058e97ec
VM
1874 || crtl->accesses_prior_frames
1875 || crtl->stack_realign_needed
b52b1749 1876 || targetm.frame_pointer_required ());
058e97ec 1877
55a2c322
VM
1878 if (from_ira_p && ira_use_lra_p)
1879 /* It can change FRAME_POINTER_NEEDED. We call it only from IRA
1880 because it is expensive. */
1881 lra_init_elimination ();
058e97ec 1882
55a2c322
VM
1883 if (frame_pointer_needed)
1884 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1885
058e97ec
VM
1886 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1887 CLEAR_HARD_REG_SET (eliminable_regset);
1888
b748fbd6
PB
1889 compute_regs_asm_clobbered ();
1890
058e97ec
VM
1891 /* Build the regset of all eliminable registers and show we can't
1892 use those that we already know won't be eliminated. */
1893#ifdef ELIMINABLE_REGS
1894 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1895 {
1896 bool cannot_elim
7b5cbb57 1897 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 1898 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 1899
b748fbd6 1900 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
1901 {
1902 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1903
1904 if (cannot_elim)
1905 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1906 }
1907 else if (cannot_elim)
1908 error ("%s cannot be used in asm here",
1909 reg_names[eliminables[i].from]);
1910 else
1911 df_set_regs_ever_live (eliminables[i].from, true);
1912 }
e3339d0f 1913#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
b748fbd6 1914 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
1915 {
1916 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
55a2c322 1917 if (frame_pointer_needed)
058e97ec
VM
1918 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1919 }
55a2c322 1920 else if (frame_pointer_needed)
058e97ec
VM
1921 error ("%s cannot be used in asm here",
1922 reg_names[HARD_FRAME_POINTER_REGNUM]);
1923 else
1924 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1925#endif
1926
1927#else
b748fbd6 1928 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
1929 {
1930 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
55a2c322 1931 if (frame_pointer_needed)
058e97ec
VM
1932 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1933 }
55a2c322 1934 else if (frame_pointer_needed)
058e97ec
VM
1935 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1936 else
1937 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1938#endif
1939}
1940
1941\f
1942
2af2dbdc
VM
1943/* Vector of substitutions of register numbers,
1944 used to map pseudo regs into hardware regs.
1945 This is set up as a result of register allocation.
1946 Element N is the hard reg assigned to pseudo reg N,
1947 or is -1 if no hard reg was assigned.
1948 If N is a hard reg number, element N is N. */
1949short *reg_renumber;
1950
058e97ec
VM
1951/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1952 the allocation found by IRA. */
1953static void
1954setup_reg_renumber (void)
1955{
1956 int regno, hard_regno;
1957 ira_allocno_t a;
1958 ira_allocno_iterator ai;
1959
1960 caller_save_needed = 0;
1961 FOR_EACH_ALLOCNO (a, ai)
1962 {
55a2c322
VM
1963 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
1964 continue;
058e97ec
VM
1965 /* There are no caps at this point. */
1966 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1967 if (! ALLOCNO_ASSIGNED_P (a))
1968 /* It can happen if A is not referenced but partially anticipated
1969 somewhere in a region. */
1970 ALLOCNO_ASSIGNED_P (a) = true;
1971 ira_free_allocno_updated_costs (a);
1972 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 1973 regno = ALLOCNO_REGNO (a);
058e97ec 1974 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 1975 if (hard_regno >= 0)
058e97ec 1976 {
1756cb66
VM
1977 int i, nwords;
1978 enum reg_class pclass;
1979 ira_object_t obj;
1980
1981 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1982 nwords = ALLOCNO_NUM_OBJECTS (a);
1983 for (i = 0; i < nwords; i++)
1984 {
1985 obj = ALLOCNO_OBJECT (a, i);
1986 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1987 reg_class_contents[pclass]);
1988 }
1989 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
1990 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
1991 call_used_reg_set))
1756cb66
VM
1992 {
1993 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
1994 || (ALLOCNO_CALLS_CROSSED_NUM (a)
1995 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 1996 || regno >= ira_reg_equiv_len
55a2c322 1997 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
1998 caller_save_needed = 1;
1999 }
058e97ec
VM
2000 }
2001 }
2002}
2003
2004/* Set up allocno assignment flags for further allocation
2005 improvements. */
2006static void
2007setup_allocno_assignment_flags (void)
2008{
2009 int hard_regno;
2010 ira_allocno_t a;
2011 ira_allocno_iterator ai;
2012
2013 FOR_EACH_ALLOCNO (a, ai)
2014 {
2015 if (! ALLOCNO_ASSIGNED_P (a))
2016 /* It can happen if A is not referenced but partially anticipated
2017 somewhere in a region. */
2018 ira_free_allocno_updated_costs (a);
2019 hard_regno = ALLOCNO_HARD_REGNO (a);
2020 /* Don't assign hard registers to allocnos which are destination
2021 of removed store at the end of loop. It has no sense to keep
2022 the same value in different hard registers. It is also
2023 impossible to assign hard registers correctly to such
2024 allocnos because the cost info and info about intersected
2025 calls are incorrect for them. */
2026 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2027 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2028 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2029 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2030 ira_assert
2031 (hard_regno < 0
2032 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2033 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2034 }
2035}
2036
2037/* Evaluate overall allocation cost and the costs for using hard
2038 registers and memory for allocnos. */
2039static void
2040calculate_allocation_cost (void)
2041{
2042 int hard_regno, cost;
2043 ira_allocno_t a;
2044 ira_allocno_iterator ai;
2045
2046 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2047 FOR_EACH_ALLOCNO (a, ai)
2048 {
2049 hard_regno = ALLOCNO_HARD_REGNO (a);
2050 ira_assert (hard_regno < 0
9181a6e5
VM
2051 || (ira_hard_reg_in_set_p
2052 (hard_regno, ALLOCNO_MODE (a),
2053 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2054 if (hard_regno < 0)
2055 {
2056 cost = ALLOCNO_MEMORY_COST (a);
2057 ira_mem_cost += cost;
2058 }
2059 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2060 {
2061 cost = (ALLOCNO_HARD_REG_COSTS (a)
2062 [ira_class_hard_reg_index
1756cb66 2063 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2064 ira_reg_cost += cost;
2065 }
2066 else
2067 {
1756cb66 2068 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2069 ira_reg_cost += cost;
2070 }
2071 ira_overall_cost += cost;
2072 }
2073
2074 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2075 {
2076 fprintf (ira_dump_file,
2077 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2078 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2079 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2080 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2081 ira_move_loops_num, ira_additional_jumps_num);
2082 }
2083
2084}
2085
2086#ifdef ENABLE_IRA_CHECKING
2087/* Check the correctness of the allocation. We do need this because
2088 of complicated code to transform more one region internal
2089 representation into one region representation. */
2090static void
2091check_allocation (void)
2092{
fa86d337 2093 ira_allocno_t a;
ac0ab4f7 2094 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2095 ira_allocno_iterator ai;
2096
2097 FOR_EACH_ALLOCNO (a, ai)
2098 {
ac0ab4f7
BS
2099 int n = ALLOCNO_NUM_OBJECTS (a);
2100 int i;
fa86d337 2101
058e97ec
VM
2102 if (ALLOCNO_CAP_MEMBER (a) != NULL
2103 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2104 continue;
2105 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
8cfd82bf
BS
2106 if (nregs == 1)
2107 /* We allocated a single hard register. */
2108 n = 1;
2109 else if (n > 1)
2110 /* We allocated multiple hard registers, and we will test
2111 conflicts in a granularity of single hard regs. */
2112 nregs = 1;
2113
ac0ab4f7
BS
2114 for (i = 0; i < n; i++)
2115 {
2116 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2117 ira_object_t conflict_obj;
2118 ira_object_conflict_iterator oci;
2119 int this_regno = hard_regno;
2120 if (n > 1)
fa86d337 2121 {
2805e6c0 2122 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2123 this_regno += n - i - 1;
2124 else
2125 this_regno += i;
2126 }
2127 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2128 {
2129 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2130 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2131 if (conflict_hard_regno < 0)
2132 continue;
8cfd82bf
BS
2133
2134 conflict_nregs
2135 = (hard_regno_nregs
2136 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2137
2138 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2139 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2140 {
2805e6c0 2141 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2142 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2143 - OBJECT_SUBWORD (conflict_obj) - 1);
2144 else
2145 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2146 conflict_nregs = 1;
2147 }
ac0ab4f7
BS
2148
2149 if ((conflict_hard_regno <= this_regno
2150 && this_regno < conflict_hard_regno + conflict_nregs)
2151 || (this_regno <= conflict_hard_regno
2152 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2153 {
2154 fprintf (stderr, "bad allocation for %d and %d\n",
2155 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2156 gcc_unreachable ();
2157 }
2158 }
2159 }
058e97ec
VM
2160 }
2161}
2162#endif
2163
55a2c322
VM
2164/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2165 be already calculated. */
2166static void
2167setup_reg_equiv_init (void)
2168{
2169 int i;
2170 int max_regno = max_reg_num ();
2171
2172 for (i = 0; i < max_regno; i++)
2173 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2174}
2175
2176/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2177 are insns which were generated for such movement. It is assumed
2178 that FROM_REGNO and TO_REGNO always have the same value at the
2179 point of any move containing such registers. This function is used
2180 to update equiv info for register shuffles on the region borders
2181 and for caller save/restore insns. */
2182void
2183ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2184{
2185 rtx insn, x, note;
2186
2187 if (! ira_reg_equiv[from_regno].defined_p
2188 && (! ira_reg_equiv[to_regno].defined_p
2189 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2190 && ! MEM_READONLY_P (x))))
5a107a0f 2191 return;
55a2c322
VM
2192 insn = insns;
2193 if (NEXT_INSN (insn) != NULL_RTX)
2194 {
2195 if (! ira_reg_equiv[to_regno].defined_p)
2196 {
2197 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2198 return;
2199 }
2200 ira_reg_equiv[to_regno].defined_p = false;
2201 ira_reg_equiv[to_regno].memory
2202 = ira_reg_equiv[to_regno].constant
2203 = ira_reg_equiv[to_regno].invariant
2204 = ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2205 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2206 fprintf (ira_dump_file,
2207 " Invalidating equiv info for reg %d\n", to_regno);
2208 return;
2209 }
2210 /* It is possible that FROM_REGNO still has no equivalence because
2211 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2212 insn was not processed yet. */
2213 if (ira_reg_equiv[from_regno].defined_p)
2214 {
2215 ira_reg_equiv[to_regno].defined_p = true;
2216 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2217 {
2218 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2219 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2220 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2221 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2222 ira_reg_equiv[to_regno].memory = x;
2223 if (! MEM_READONLY_P (x))
2224 /* We don't add the insn to insn init list because memory
2225 equivalence is just to say what memory is better to use
2226 when the pseudo is spilled. */
2227 return;
2228 }
2229 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2230 {
2231 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2232 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2233 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2234 ira_reg_equiv[to_regno].constant = x;
2235 }
2236 else
2237 {
2238 x = ira_reg_equiv[from_regno].invariant;
2239 ira_assert (x != NULL_RTX);
2240 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2241 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2242 ira_reg_equiv[to_regno].invariant = x;
2243 }
2244 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2245 {
2246 note = set_unique_reg_note (insn, REG_EQUIV, x);
2247 gcc_assert (note != NULL_RTX);
2248 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2249 {
2250 fprintf (ira_dump_file,
2251 " Adding equiv note to insn %u for reg %d ",
2252 INSN_UID (insn), to_regno);
cfbeaedf 2253 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2254 fprintf (ira_dump_file, "\n");
2255 }
2256 }
2257 }
2258 ira_reg_equiv[to_regno].init_insns
2259 = gen_rtx_INSN_LIST (VOIDmode, insn,
2260 ira_reg_equiv[to_regno].init_insns);
2261 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2262 fprintf (ira_dump_file,
2263 " Adding equiv init move insn %u to reg %d\n",
2264 INSN_UID (insn), to_regno);
2265}
2266
058e97ec
VM
2267/* Fix values of array REG_EQUIV_INIT after live range splitting done
2268 by IRA. */
2269static void
2270fix_reg_equiv_init (void)
2271{
70cc3288 2272 int max_regno = max_reg_num ();
f2034d06 2273 int i, new_regno, max;
058e97ec 2274 rtx x, prev, next, insn, set;
b8698a0f 2275
70cc3288 2276 if (max_regno_before_ira < max_regno)
058e97ec 2277 {
9771b263 2278 max = vec_safe_length (reg_equivs);
f2034d06
JL
2279 grow_reg_equivs ();
2280 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2281 for (prev = NULL_RTX, x = reg_equiv_init (i);
2282 x != NULL_RTX;
2283 x = next)
058e97ec
VM
2284 {
2285 next = XEXP (x, 1);
2286 insn = XEXP (x, 0);
2287 set = single_set (insn);
2288 ira_assert (set != NULL_RTX
2289 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2290 if (REG_P (SET_DEST (set))
2291 && ((int) REGNO (SET_DEST (set)) == i
2292 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2293 new_regno = REGNO (SET_DEST (set));
2294 else if (REG_P (SET_SRC (set))
2295 && ((int) REGNO (SET_SRC (set)) == i
2296 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2297 new_regno = REGNO (SET_SRC (set));
2298 else
2299 gcc_unreachable ();
2300 if (new_regno == i)
2301 prev = x;
2302 else
2303 {
55a2c322 2304 /* Remove the wrong list element. */
058e97ec 2305 if (prev == NULL_RTX)
f2034d06 2306 reg_equiv_init (i) = next;
058e97ec
VM
2307 else
2308 XEXP (prev, 1) = next;
f2034d06
JL
2309 XEXP (x, 1) = reg_equiv_init (new_regno);
2310 reg_equiv_init (new_regno) = x;
058e97ec
VM
2311 }
2312 }
2313 }
2314}
2315
2316#ifdef ENABLE_IRA_CHECKING
2317/* Print redundant memory-memory copies. */
2318static void
2319print_redundant_copies (void)
2320{
2321 int hard_regno;
2322 ira_allocno_t a;
2323 ira_copy_t cp, next_cp;
2324 ira_allocno_iterator ai;
b8698a0f 2325
058e97ec
VM
2326 FOR_EACH_ALLOCNO (a, ai)
2327 {
2328 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2329 /* It is a cap. */
2330 continue;
2331 hard_regno = ALLOCNO_HARD_REGNO (a);
2332 if (hard_regno >= 0)
2333 continue;
2334 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2335 if (cp->first == a)
2336 next_cp = cp->next_first_allocno_copy;
2337 else
2338 {
2339 next_cp = cp->next_second_allocno_copy;
2340 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2341 && cp->insn != NULL_RTX
2342 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2343 fprintf (ira_dump_file,
2344 " Redundant move from %d(freq %d):%d\n",
2345 INSN_UID (cp->insn), cp->freq, hard_regno);
2346 }
2347 }
2348}
2349#endif
2350
2351/* Setup preferred and alternative classes for new pseudo-registers
2352 created by IRA starting with START. */
2353static void
2354setup_preferred_alternate_classes_for_new_pseudos (int start)
2355{
2356 int i, old_regno;
2357 int max_regno = max_reg_num ();
2358
2359 for (i = start; i < max_regno; i++)
2360 {
2361 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2362 ira_assert (i != old_regno);
058e97ec 2363 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2364 reg_alternate_class (old_regno),
1756cb66 2365 reg_allocno_class (old_regno));
058e97ec
VM
2366 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2367 fprintf (ira_dump_file,
2368 " New r%d: setting preferred %s, alternative %s\n",
2369 i, reg_class_names[reg_preferred_class (old_regno)],
2370 reg_class_names[reg_alternate_class (old_regno)]);
2371 }
2372}
2373
2374\f
fb99ee9b
BS
2375/* The number of entries allocated in teg_info. */
2376static int allocated_reg_info_size;
058e97ec
VM
2377
2378/* Regional allocation can create new pseudo-registers. This function
2379 expands some arrays for pseudo-registers. */
2380static void
fb99ee9b 2381expand_reg_info (void)
058e97ec
VM
2382{
2383 int i;
2384 int size = max_reg_num ();
2385
2386 resize_reg_info ();
fb99ee9b 2387 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2388 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2389 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2390 allocated_reg_info_size = size;
058e97ec
VM
2391}
2392
3553f0bb
VM
2393/* Return TRUE if there is too high register pressure in the function.
2394 It is used to decide when stack slot sharing is worth to do. */
2395static bool
2396too_high_register_pressure_p (void)
2397{
2398 int i;
1756cb66 2399 enum reg_class pclass;
b8698a0f 2400
1756cb66 2401 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2402 {
1756cb66
VM
2403 pclass = ira_pressure_classes[i];
2404 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2405 return true;
2406 }
2407 return false;
2408}
2409
058e97ec
VM
2410\f
2411
2af2dbdc
VM
2412/* Indicate that hard register number FROM was eliminated and replaced with
2413 an offset from hard register number TO. The status of hard registers live
2414 at the start of a basic block is updated by replacing a use of FROM with
2415 a use of TO. */
2416
2417void
2418mark_elimination (int from, int to)
2419{
2420 basic_block bb;
bf744527 2421 bitmap r;
2af2dbdc
VM
2422
2423 FOR_EACH_BB (bb)
2424 {
bf744527
SB
2425 r = DF_LR_IN (bb);
2426 if (bitmap_bit_p (r, from))
2427 {
2428 bitmap_clear_bit (r, from);
2429 bitmap_set_bit (r, to);
2430 }
2431 if (! df_live)
2432 continue;
2433 r = DF_LIVE_IN (bb);
2434 if (bitmap_bit_p (r, from))
2af2dbdc 2435 {
bf744527
SB
2436 bitmap_clear_bit (r, from);
2437 bitmap_set_bit (r, to);
2af2dbdc
VM
2438 }
2439 }
2440}
2441
2442\f
2443
55a2c322
VM
2444/* The length of the following array. */
2445int ira_reg_equiv_len;
2446
2447/* Info about equiv. info for each register. */
2448struct ira_reg_equiv *ira_reg_equiv;
2449
2450/* Expand ira_reg_equiv if necessary. */
2451void
2452ira_expand_reg_equiv (void)
2453{
2454 int old = ira_reg_equiv_len;
2455
2456 if (ira_reg_equiv_len > max_reg_num ())
2457 return;
2458 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2459 ira_reg_equiv
2460 = (struct ira_reg_equiv *) xrealloc (ira_reg_equiv,
2461 ira_reg_equiv_len
2462 * sizeof (struct ira_reg_equiv));
2463 gcc_assert (old < ira_reg_equiv_len);
2464 memset (ira_reg_equiv + old, 0,
2465 sizeof (struct ira_reg_equiv) * (ira_reg_equiv_len - old));
2466}
2467
2468static void
2469init_reg_equiv (void)
2470{
2471 ira_reg_equiv_len = 0;
2472 ira_reg_equiv = NULL;
2473 ira_expand_reg_equiv ();
2474}
2475
2476static void
2477finish_reg_equiv (void)
2478{
2479 free (ira_reg_equiv);
2480}
2481
2482\f
2483
2af2dbdc
VM
2484struct equivalence
2485{
2af2dbdc
VM
2486 /* Set when a REG_EQUIV note is found or created. Use to
2487 keep track of what memory accesses might be created later,
2488 e.g. by reload. */
2489 rtx replacement;
2490 rtx *src_p;
8f5929e1
JJ
2491 /* The list of each instruction which initializes this register. */
2492 rtx init_insns;
2af2dbdc
VM
2493 /* Loop depth is used to recognize equivalences which appear
2494 to be present within the same loop (or in an inner loop). */
2495 int loop_depth;
2af2dbdc
VM
2496 /* Nonzero if this had a preexisting REG_EQUIV note. */
2497 int is_arg_equivalence;
8f5929e1
JJ
2498 /* Set when an attempt should be made to replace a register
2499 with the associated src_p entry. */
2500 char replace;
2af2dbdc
VM
2501};
2502
2503/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2504 structure for that register. */
2505static struct equivalence *reg_equiv;
2506
2507/* Used for communication between the following two functions: contains
2508 a MEM that we wish to ensure remains unchanged. */
2509static rtx equiv_mem;
2510
2511/* Set nonzero if EQUIV_MEM is modified. */
2512static int equiv_mem_modified;
2513
2514/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2515 Called via note_stores. */
2516static void
2517validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2518 void *data ATTRIBUTE_UNUSED)
2519{
2520 if ((REG_P (dest)
2521 && reg_overlap_mentioned_p (dest, equiv_mem))
2522 || (MEM_P (dest)
a55757ea 2523 && anti_dependence (equiv_mem, dest)))
2af2dbdc
VM
2524 equiv_mem_modified = 1;
2525}
2526
2527/* Verify that no store between START and the death of REG invalidates
2528 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2529 by storing into an overlapping memory location, or with a non-const
2530 CALL_INSN.
2531
2532 Return 1 if MEMREF remains valid. */
2533static int
2534validate_equiv_mem (rtx start, rtx reg, rtx memref)
2535{
2536 rtx insn;
2537 rtx note;
2538
2539 equiv_mem = memref;
2540 equiv_mem_modified = 0;
2541
2542 /* If the memory reference has side effects or is volatile, it isn't a
2543 valid equivalence. */
2544 if (side_effects_p (memref))
2545 return 0;
2546
2547 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2548 {
2549 if (! INSN_P (insn))
2550 continue;
2551
2552 if (find_reg_note (insn, REG_DEAD, reg))
2553 return 1;
2554
a22265a4
JL
2555 /* This used to ignore readonly memory and const/pure calls. The problem
2556 is the equivalent form may reference a pseudo which gets assigned a
2557 call clobbered hard reg. When we later replace REG with its
2558 equivalent form, the value in the call-clobbered reg has been
2559 changed and all hell breaks loose. */
2560 if (CALL_P (insn))
2af2dbdc
VM
2561 return 0;
2562
2563 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2564
2565 /* If a register mentioned in MEMREF is modified via an
2566 auto-increment, we lose the equivalence. Do the same if one
2567 dies; although we could extend the life, it doesn't seem worth
2568 the trouble. */
2569
2570 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2571 if ((REG_NOTE_KIND (note) == REG_INC
2572 || REG_NOTE_KIND (note) == REG_DEAD)
2573 && REG_P (XEXP (note, 0))
2574 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2575 return 0;
2576 }
2577
2578 return 0;
2579}
2580
2581/* Returns zero if X is known to be invariant. */
2582static int
2583equiv_init_varies_p (rtx x)
2584{
2585 RTX_CODE code = GET_CODE (x);
2586 int i;
2587 const char *fmt;
2588
2589 switch (code)
2590 {
2591 case MEM:
2592 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2593
2594 case CONST:
d8116890 2595 CASE_CONST_ANY:
2af2dbdc
VM
2596 case SYMBOL_REF:
2597 case LABEL_REF:
2598 return 0;
2599
2600 case REG:
2601 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2602
2603 case ASM_OPERANDS:
2604 if (MEM_VOLATILE_P (x))
2605 return 1;
2606
2607 /* Fall through. */
2608
2609 default:
2610 break;
2611 }
2612
2613 fmt = GET_RTX_FORMAT (code);
2614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2615 if (fmt[i] == 'e')
2616 {
2617 if (equiv_init_varies_p (XEXP (x, i)))
2618 return 1;
2619 }
2620 else if (fmt[i] == 'E')
2621 {
2622 int j;
2623 for (j = 0; j < XVECLEN (x, i); j++)
2624 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2625 return 1;
2626 }
2627
2628 return 0;
2629}
2630
2631/* Returns nonzero if X (used to initialize register REGNO) is movable.
2632 X is only movable if the registers it uses have equivalent initializations
2633 which appear to be within the same loop (or in an inner loop) and movable
2634 or if they are not candidates for local_alloc and don't vary. */
2635static int
2636equiv_init_movable_p (rtx x, int regno)
2637{
2638 int i, j;
2639 const char *fmt;
2640 enum rtx_code code = GET_CODE (x);
2641
2642 switch (code)
2643 {
2644 case SET:
2645 return equiv_init_movable_p (SET_SRC (x), regno);
2646
2647 case CC0:
2648 case CLOBBER:
2649 return 0;
2650
2651 case PRE_INC:
2652 case PRE_DEC:
2653 case POST_INC:
2654 case POST_DEC:
2655 case PRE_MODIFY:
2656 case POST_MODIFY:
2657 return 0;
2658
2659 case REG:
1756cb66
VM
2660 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2661 && reg_equiv[REGNO (x)].replace)
2662 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2663 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
2664
2665 case UNSPEC_VOLATILE:
2666 return 0;
2667
2668 case ASM_OPERANDS:
2669 if (MEM_VOLATILE_P (x))
2670 return 0;
2671
2672 /* Fall through. */
2673
2674 default:
2675 break;
2676 }
2677
2678 fmt = GET_RTX_FORMAT (code);
2679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2680 switch (fmt[i])
2681 {
2682 case 'e':
2683 if (! equiv_init_movable_p (XEXP (x, i), regno))
2684 return 0;
2685 break;
2686 case 'E':
2687 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2688 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2689 return 0;
2690 break;
2691 }
2692
2693 return 1;
2694}
2695
1756cb66
VM
2696/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2697 true. */
2af2dbdc
VM
2698static int
2699contains_replace_regs (rtx x)
2700{
2701 int i, j;
2702 const char *fmt;
2703 enum rtx_code code = GET_CODE (x);
2704
2705 switch (code)
2706 {
2af2dbdc
VM
2707 case CONST:
2708 case LABEL_REF:
2709 case SYMBOL_REF:
d8116890 2710 CASE_CONST_ANY:
2af2dbdc
VM
2711 case PC:
2712 case CC0:
2713 case HIGH:
2714 return 0;
2715
2716 case REG:
2717 return reg_equiv[REGNO (x)].replace;
2718
2719 default:
2720 break;
2721 }
2722
2723 fmt = GET_RTX_FORMAT (code);
2724 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2725 switch (fmt[i])
2726 {
2727 case 'e':
2728 if (contains_replace_regs (XEXP (x, i)))
2729 return 1;
2730 break;
2731 case 'E':
2732 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2733 if (contains_replace_regs (XVECEXP (x, i, j)))
2734 return 1;
2735 break;
2736 }
2737
2738 return 0;
2739}
2740
2741/* TRUE if X references a memory location that would be affected by a store
2742 to MEMREF. */
2743static int
2744memref_referenced_p (rtx memref, rtx x)
2745{
2746 int i, j;
2747 const char *fmt;
2748 enum rtx_code code = GET_CODE (x);
2749
2750 switch (code)
2751 {
2af2dbdc
VM
2752 case CONST:
2753 case LABEL_REF:
2754 case SYMBOL_REF:
d8116890 2755 CASE_CONST_ANY:
2af2dbdc
VM
2756 case PC:
2757 case CC0:
2758 case HIGH:
2759 case LO_SUM:
2760 return 0;
2761
2762 case REG:
2763 return (reg_equiv[REGNO (x)].replacement
2764 && memref_referenced_p (memref,
2765 reg_equiv[REGNO (x)].replacement));
2766
2767 case MEM:
53d9622b 2768 if (true_dependence (memref, VOIDmode, x))
2af2dbdc
VM
2769 return 1;
2770 break;
2771
2772 case SET:
2773 /* If we are setting a MEM, it doesn't count (its address does), but any
2774 other SET_DEST that has a MEM in it is referencing the MEM. */
2775 if (MEM_P (SET_DEST (x)))
2776 {
2777 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2778 return 1;
2779 }
2780 else if (memref_referenced_p (memref, SET_DEST (x)))
2781 return 1;
2782
2783 return memref_referenced_p (memref, SET_SRC (x));
2784
2785 default:
2786 break;
2787 }
2788
2789 fmt = GET_RTX_FORMAT (code);
2790 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2791 switch (fmt[i])
2792 {
2793 case 'e':
2794 if (memref_referenced_p (memref, XEXP (x, i)))
2795 return 1;
2796 break;
2797 case 'E':
2798 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2799 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2800 return 1;
2801 break;
2802 }
2803
2804 return 0;
2805}
2806
2807/* TRUE if some insn in the range (START, END] references a memory location
2808 that would be affected by a store to MEMREF. */
2809static int
2810memref_used_between_p (rtx memref, rtx start, rtx end)
2811{
2812 rtx insn;
2813
2814 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2815 insn = NEXT_INSN (insn))
2816 {
b5b8b0ac 2817 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 2818 continue;
b8698a0f 2819
2af2dbdc
VM
2820 if (memref_referenced_p (memref, PATTERN (insn)))
2821 return 1;
2822
2823 /* Nonconst functions may access memory. */
2824 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2825 return 1;
2826 }
2827
2828 return 0;
2829}
2830
2831/* Mark REG as having no known equivalence.
2832 Some instructions might have been processed before and furnished
2833 with REG_EQUIV notes for this register; these notes will have to be
2834 removed.
2835 STORE is the piece of RTL that does the non-constant / conflicting
2836 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2837 but needs to be there because this function is called from note_stores. */
2838static void
1756cb66
VM
2839no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2840 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
2841{
2842 int regno;
2843 rtx list;
2844
2845 if (!REG_P (reg))
2846 return;
2847 regno = REGNO (reg);
2848 list = reg_equiv[regno].init_insns;
2849 if (list == const0_rtx)
2850 return;
2851 reg_equiv[regno].init_insns = const0_rtx;
2852 reg_equiv[regno].replacement = NULL_RTX;
2853 /* This doesn't matter for equivalences made for argument registers, we
2854 should keep their initialization insns. */
2855 if (reg_equiv[regno].is_arg_equivalence)
2856 return;
55a2c322
VM
2857 ira_reg_equiv[regno].defined_p = false;
2858 ira_reg_equiv[regno].init_insns = NULL_RTX;
2af2dbdc
VM
2859 for (; list; list = XEXP (list, 1))
2860 {
2861 rtx insn = XEXP (list, 0);
2862 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2863 }
2864}
2865
e3f9e0ac
WM
2866/* Check whether the SUBREG is a paradoxical subreg and set the result
2867 in PDX_SUBREGS. */
2868
2869static int
2870set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
2871{
2872 rtx reg;
2873
2874 if ((*subreg) == NULL_RTX)
2875 return 1;
2876 if (GET_CODE (*subreg) != SUBREG)
2877 return 0;
2878 reg = SUBREG_REG (*subreg);
2879 if (!REG_P (reg))
2880 return 0;
2881
2882 if (paradoxical_subreg_p (*subreg))
2883 ((bool *)pdx_subregs)[REGNO (reg)] = true;
2884
2885 return 0;
2886}
2887
3a6191b1
JJ
2888/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2889 equivalent replacement. */
2890
2891static rtx
2892adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2893{
2894 if (REG_P (loc))
2895 {
2896 bitmap cleared_regs = (bitmap) data;
2897 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2898 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2899 NULL_RTX, adjust_cleared_regs, data);
2900 }
2901 return NULL_RTX;
2902}
2903
2af2dbdc
VM
2904/* Nonzero if we recorded an equivalence for a LABEL_REF. */
2905static int recorded_label_ref;
2906
2907/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
2908 compilation (either because they can be referenced in memory or are
2909 set once from a single constant). Lower their priority for a
2910 register.
2af2dbdc 2911
1756cb66
VM
2912 If such a register is only referenced once, try substituting its
2913 value into the using insn. If it succeeds, we can eliminate the
2914 register completely.
2af2dbdc 2915
55a2c322 2916 Initialize init_insns in ira_reg_equiv array.
2af2dbdc
VM
2917
2918 Return non-zero if jump label rebuilding should be done. */
2919static int
2920update_equiv_regs (void)
2921{
2922 rtx insn;
2923 basic_block bb;
2924 int loop_depth;
2925 bitmap cleared_regs;
e3f9e0ac 2926 bool *pdx_subregs;
b8698a0f 2927
2af2dbdc
VM
2928 /* We need to keep track of whether or not we recorded a LABEL_REF so
2929 that we know if the jump optimizer needs to be rerun. */
2930 recorded_label_ref = 0;
2931
e3f9e0ac
WM
2932 /* Use pdx_subregs to show whether a reg is used in a paradoxical
2933 subreg. */
2934 pdx_subregs = XCNEWVEC (bool, max_regno);
2935
2af2dbdc 2936 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
f2034d06 2937 grow_reg_equivs ();
2af2dbdc
VM
2938
2939 init_alias_analysis ();
2940
e3f9e0ac
WM
2941 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
2942 paradoxical subreg. Don't set such reg sequivalent to a mem,
2943 because lra will not substitute such equiv memory in order to
2944 prevent access beyond allocated memory for paradoxical memory subreg. */
2945 FOR_EACH_BB (bb)
2946 FOR_BB_INSNS (bb, insn)
2947 {
2948 if (! INSN_P (insn))
2949 continue;
2950 for_each_rtx (&insn, set_paradoxical_subreg, (void *)pdx_subregs);
2951 }
2952
2af2dbdc
VM
2953 /* Scan the insns and find which registers have equivalences. Do this
2954 in a separate scan of the insns because (due to -fcse-follow-jumps)
2955 a register can be set below its use. */
2956 FOR_EACH_BB (bb)
2957 {
391886c8 2958 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
2959
2960 for (insn = BB_HEAD (bb);
2961 insn != NEXT_INSN (BB_END (bb));
2962 insn = NEXT_INSN (insn))
2963 {
2964 rtx note;
2965 rtx set;
2966 rtx dest, src;
2967 int regno;
2968
2969 if (! INSN_P (insn))
2970 continue;
2971
2972 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2973 if (REG_NOTE_KIND (note) == REG_INC)
2974 no_equiv (XEXP (note, 0), note, NULL);
2975
2976 set = single_set (insn);
2977
2978 /* If this insn contains more (or less) than a single SET,
2979 only mark all destinations as having no known equivalence. */
2980 if (set == 0)
2981 {
2982 note_stores (PATTERN (insn), no_equiv, NULL);
2983 continue;
2984 }
2985 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2986 {
2987 int i;
2988
2989 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2990 {
2991 rtx part = XVECEXP (PATTERN (insn), 0, i);
2992 if (part != set)
2993 note_stores (part, no_equiv, NULL);
2994 }
2995 }
2996
2997 dest = SET_DEST (set);
2998 src = SET_SRC (set);
2999
3000 /* See if this is setting up the equivalence between an argument
3001 register and its stack slot. */
3002 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3003 if (note)
3004 {
3005 gcc_assert (REG_P (dest));
3006 regno = REGNO (dest);
3007
55a2c322
VM
3008 /* Note that we don't want to clear init_insns in
3009 ira_reg_equiv even if there are multiple sets of this
3010 register. */
2af2dbdc
VM
3011 reg_equiv[regno].is_arg_equivalence = 1;
3012
5a107a0f
VM
3013 /* The insn result can have equivalence memory although
3014 the equivalence is not set up by the insn. We add
3015 this insn to init insns as it is a flag for now that
3016 regno has an equivalence. We will remove the insn
3017 from init insn list later. */
3018 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3019 ira_reg_equiv[regno].init_insns
3020 = gen_rtx_INSN_LIST (VOIDmode, insn,
3021 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3022
3023 /* Continue normally in case this is a candidate for
3024 replacements. */
3025 }
3026
3027 if (!optimize)
3028 continue;
3029
3030 /* We only handle the case of a pseudo register being set
3031 once, or always to the same value. */
1fe28116
VM
3032 /* ??? The mn10200 port breaks if we add equivalences for
3033 values that need an ADDRESS_REGS register and set them equivalent
3034 to a MEM of a pseudo. The actual problem is in the over-conservative
3035 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3036 calculate_needs, but we traditionally work around this problem
3037 here by rejecting equivalences when the destination is in a register
3038 that's likely spilled. This is fragile, of course, since the
3039 preferred class of a pseudo depends on all instructions that set
3040 or use it. */
3041
2af2dbdc
VM
3042 if (!REG_P (dest)
3043 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1fe28116 3044 || reg_equiv[regno].init_insns == const0_rtx
07b8f0a8 3045 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3046 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3047 {
3048 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3049 also set somewhere else to a constant. */
3050 note_stores (set, no_equiv, NULL);
3051 continue;
3052 }
3053
e3f9e0ac
WM
3054 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3055 if (MEM_P (src) && pdx_subregs[regno])
3056 {
3057 note_stores (set, no_equiv, NULL);
3058 continue;
3059 }
3060
2af2dbdc
VM
3061 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3062
3063 /* cse sometimes generates function invariants, but doesn't put a
3064 REG_EQUAL note on the insn. Since this note would be redundant,
3065 there's no point creating it earlier than here. */
3066 if (! note && ! rtx_varies_p (src, 0))
3067 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3068
3069 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3070 since it represents a function call */
3071 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3072 note = NULL_RTX;
3073
3074 if (DF_REG_DEF_COUNT (regno) != 1
3075 && (! note
3076 || rtx_varies_p (XEXP (note, 0), 0)
3077 || (reg_equiv[regno].replacement
3078 && ! rtx_equal_p (XEXP (note, 0),
3079 reg_equiv[regno].replacement))))
3080 {
3081 no_equiv (dest, set, NULL);
3082 continue;
3083 }
3084 /* Record this insn as initializing this register. */
3085 reg_equiv[regno].init_insns
3086 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3087
3088 /* If this register is known to be equal to a constant, record that
3089 it is always equivalent to the constant. */
3090 if (DF_REG_DEF_COUNT (regno) == 1
3091 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3092 {
3093 rtx note_value = XEXP (note, 0);
3094 remove_note (insn, note);
3095 set_unique_reg_note (insn, REG_EQUIV, note_value);
3096 }
3097
3098 /* If this insn introduces a "constant" register, decrease the priority
3099 of that register. Record this insn if the register is only used once
3100 more and the equivalence value is the same as our source.
3101
3102 The latter condition is checked for two reasons: First, it is an
3103 indication that it may be more efficient to actually emit the insn
3104 as written (if no registers are available, reload will substitute
3105 the equivalence). Secondly, it avoids problems with any registers
3106 dying in this insn whose death notes would be missed.
3107
3108 If we don't have a REG_EQUIV note, see if this insn is loading
3109 a register used only in one basic block from a MEM. If so, and the
3110 MEM remains unchanged for the life of the register, add a REG_EQUIV
3111 note. */
3112
3113 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3114
3115 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3116 && MEM_P (SET_SRC (set))
3117 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3118 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3119
3120 if (note)
3121 {
3122 int regno = REGNO (dest);
3123 rtx x = XEXP (note, 0);
3124
3125 /* If we haven't done so, record for reload that this is an
3126 equivalencing insn. */
3127 if (!reg_equiv[regno].is_arg_equivalence)
55a2c322
VM
3128 ira_reg_equiv[regno].init_insns
3129 = gen_rtx_INSN_LIST (VOIDmode, insn,
3130 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3131
3132 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3133 We might end up substituting the LABEL_REF for uses of the
3134 pseudo here or later. That kind of transformation may turn an
3135 indirect jump into a direct jump, in which case we must rerun the
3136 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3137 if (GET_CODE (x) == LABEL_REF
3138 || (GET_CODE (x) == CONST
3139 && GET_CODE (XEXP (x, 0)) == PLUS
3140 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3141 recorded_label_ref = 1;
3142
3143 reg_equiv[regno].replacement = x;
3144 reg_equiv[regno].src_p = &SET_SRC (set);
3145 reg_equiv[regno].loop_depth = loop_depth;
3146
3147 /* Don't mess with things live during setjmp. */
3148 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3149 {
3150 /* Note that the statement below does not affect the priority
3151 in local-alloc! */
3152 REG_LIVE_LENGTH (regno) *= 2;
3153
3154 /* If the register is referenced exactly twice, meaning it is
3155 set once and used once, indicate that the reference may be
3156 replaced by the equivalence we computed above. Do this
3157 even if the register is only used in one block so that
3158 dependencies can be handled where the last register is
3159 used in a different block (i.e. HIGH / LO_SUM sequences)
3160 and to reduce the number of registers alive across
3161 calls. */
3162
3163 if (REG_N_REFS (regno) == 2
3164 && (rtx_equal_p (x, src)
3165 || ! equiv_init_varies_p (src))
3166 && NONJUMP_INSN_P (insn)
3167 && equiv_init_movable_p (PATTERN (insn), regno))
3168 reg_equiv[regno].replace = 1;
3169 }
3170 }
3171 }
3172 }
3173
3174 if (!optimize)
3175 goto out;
3176
3177 /* A second pass, to gather additional equivalences with memory. This needs
3178 to be done after we know which registers we are going to replace. */
3179
3180 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3181 {
3182 rtx set, src, dest;
3183 unsigned regno;
3184
3185 if (! INSN_P (insn))
3186 continue;
3187
3188 set = single_set (insn);
3189 if (! set)
3190 continue;
3191
3192 dest = SET_DEST (set);
3193 src = SET_SRC (set);
3194
3195 /* If this sets a MEM to the contents of a REG that is only used
3196 in a single basic block, see if the register is always equivalent
3197 to that memory location and if moving the store from INSN to the
3198 insn that set REG is safe. If so, put a REG_EQUIV note on the
3199 initializing insn.
3200
3201 Don't add a REG_EQUIV note if the insn already has one. The existing
3202 REG_EQUIV is likely more useful than the one we are adding.
3203
3204 If one of the regs in the address has reg_equiv[REGNO].replace set,
3205 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3206 optimization may move the set of this register immediately before
3207 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3208 the mention in the REG_EQUIV note would be to an uninitialized
3209 pseudo. */
3210
3211 if (MEM_P (dest) && REG_P (src)
3212 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3213 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3214 && DF_REG_DEF_COUNT (regno) == 1
3215 && reg_equiv[regno].init_insns != 0
3216 && reg_equiv[regno].init_insns != const0_rtx
3217 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3218 REG_EQUIV, NULL_RTX)
e3f9e0ac
WM
3219 && ! contains_replace_regs (XEXP (dest, 0))
3220 && ! pdx_subregs[regno])
2af2dbdc
VM
3221 {
3222 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3223 if (validate_equiv_mem (init_insn, src, dest)
3224 && ! memref_used_between_p (dest, init_insn, insn)
3225 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3226 multiple sets. */
3227 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3228 {
3229 /* This insn makes the equivalence, not the one initializing
3230 the register. */
55a2c322 3231 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3232 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3233 df_notes_rescan (init_insn);
3234 }
3235 }
3236 }
3237
3238 cleared_regs = BITMAP_ALLOC (NULL);
3239 /* Now scan all regs killed in an insn to see if any of them are
3240 registers only used that once. If so, see if we can replace the
3241 reference with the equivalent form. If we can, delete the
3242 initializing reference and this register will go away. If we
3243 can't replace the reference, and the initializing reference is
3244 within the same loop (or in an inner loop), then move the register
3245 initialization just before the use, so that they are in the same
3246 basic block. */
3247 FOR_EACH_BB_REVERSE (bb)
3248 {
391886c8 3249 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3250 for (insn = BB_END (bb);
3251 insn != PREV_INSN (BB_HEAD (bb));
3252 insn = PREV_INSN (insn))
3253 {
3254 rtx link;
3255
3256 if (! INSN_P (insn))
3257 continue;
3258
3259 /* Don't substitute into a non-local goto, this confuses CFG. */
3260 if (JUMP_P (insn)
3261 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3262 continue;
3263
3264 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3265 {
3266 if (REG_NOTE_KIND (link) == REG_DEAD
3267 /* Make sure this insn still refers to the register. */
3268 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3269 {
3270 int regno = REGNO (XEXP (link, 0));
3271 rtx equiv_insn;
3272
3273 if (! reg_equiv[regno].replace
0cad4827
VM
3274 || reg_equiv[regno].loop_depth < loop_depth
3275 /* There is no sense to move insns if we did
3276 register pressure-sensitive scheduling was
3277 done because it will not improve allocation
3278 but worsen insn schedule with a big
3279 probability. */
3280 || (flag_sched_pressure && flag_schedule_insns))
2af2dbdc
VM
3281 continue;
3282
3283 /* reg_equiv[REGNO].replace gets set only when
3284 REG_N_REFS[REGNO] is 2, i.e. the register is set
55a2c322
VM
3285 once and used once. (If it were only set, but
3286 not used, flow would have deleted the setting
3287 insns.) Hence there can only be one insn in
3288 reg_equiv[REGNO].init_insns. */
2af2dbdc
VM
3289 gcc_assert (reg_equiv[regno].init_insns
3290 && !XEXP (reg_equiv[regno].init_insns, 1));
3291 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3292
3293 /* We may not move instructions that can throw, since
3294 that changes basic block boundaries and we are not
3295 prepared to adjust the CFG to match. */
3296 if (can_throw_internal (equiv_insn))
3297 continue;
3298
3299 if (asm_noperands (PATTERN (equiv_insn)) < 0
3300 && validate_replace_rtx (regno_reg_rtx[regno],
3301 *(reg_equiv[regno].src_p), insn))
3302 {
3303 rtx equiv_link;
3304 rtx last_link;
3305 rtx note;
3306
3307 /* Find the last note. */
3308 for (last_link = link; XEXP (last_link, 1);
3309 last_link = XEXP (last_link, 1))
3310 ;
3311
3312 /* Append the REG_DEAD notes from equiv_insn. */
3313 equiv_link = REG_NOTES (equiv_insn);
3314 while (equiv_link)
3315 {
3316 note = equiv_link;
3317 equiv_link = XEXP (equiv_link, 1);
3318 if (REG_NOTE_KIND (note) == REG_DEAD)
3319 {
3320 remove_note (equiv_insn, note);
3321 XEXP (last_link, 1) = note;
3322 XEXP (note, 1) = NULL_RTX;
3323 last_link = note;
3324 }
3325 }
3326
3327 remove_death (regno, insn);
3328 SET_REG_N_REFS (regno, 0);
3329 REG_FREQ (regno) = 0;
3330 delete_insn (equiv_insn);
3331
3332 reg_equiv[regno].init_insns
3333 = XEXP (reg_equiv[regno].init_insns, 1);
3334
55a2c322 3335 ira_reg_equiv[regno].init_insns = NULL_RTX;
2af2dbdc
VM
3336 bitmap_set_bit (cleared_regs, regno);
3337 }
3338 /* Move the initialization of the register to just before
3339 INSN. Update the flow information. */
b5b8b0ac 3340 else if (prev_nondebug_insn (insn) != equiv_insn)
2af2dbdc
VM
3341 {
3342 rtx new_insn;
3343
3344 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3345 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3346 REG_NOTES (equiv_insn) = 0;
3347 /* Rescan it to process the notes. */
3348 df_insn_rescan (new_insn);
3349
3350 /* Make sure this insn is recognized before
3351 reload begins, otherwise
3352 eliminate_regs_in_insn will die. */
3353 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3354
3355 delete_insn (equiv_insn);
3356
3357 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3358
3359 REG_BASIC_BLOCK (regno) = bb->index;
3360 REG_N_CALLS_CROSSED (regno) = 0;
3361 REG_FREQ_CALLS_CROSSED (regno) = 0;
3362 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3363 REG_LIVE_LENGTH (regno) = 2;
3364
3365 if (insn == BB_HEAD (bb))
3366 BB_HEAD (bb) = PREV_INSN (insn);
3367
55a2c322 3368 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3369 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3370 bitmap_set_bit (cleared_regs, regno);
3371 }
3372 }
3373 }
3374 }
3375 }
3376
3377 if (!bitmap_empty_p (cleared_regs))
3a6191b1
JJ
3378 {
3379 FOR_EACH_BB (bb)
3380 {
3a6191b1
JJ
3381 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3382 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
bf744527
SB
3383 if (! df_live)
3384 continue;
3385 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3386 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3387 }
3388
3389 /* Last pass - adjust debug insns referencing cleared regs. */
3390 if (MAY_HAVE_DEBUG_INSNS)
3391 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3392 if (DEBUG_INSN_P (insn))
3393 {
3394 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3395 INSN_VAR_LOCATION_LOC (insn)
3396 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3397 adjust_cleared_regs,
3398 (void *) cleared_regs);
3399 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3400 df_insn_rescan (insn);
3401 }
3402 }
2af2dbdc
VM
3403
3404 BITMAP_FREE (cleared_regs);
3405
3406 out:
3407 /* Clean up. */
3408
3409 end_alias_analysis ();
3410 free (reg_equiv);
e3f9e0ac 3411 free (pdx_subregs);
2af2dbdc
VM
3412 return recorded_label_ref;
3413}
3414
3415\f
3416
55a2c322
VM
3417/* Set up fields memory, constant, and invariant from init_insns in
3418 the structures of array ira_reg_equiv. */
3419static void
3420setup_reg_equiv (void)
3421{
3422 int i;
5a107a0f 3423 rtx elem, prev_elem, next_elem, insn, set, x;
55a2c322
VM
3424
3425 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3426 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3427 elem;
3428 prev_elem = elem, elem = next_elem)
55a2c322 3429 {
5a107a0f 3430 next_elem = XEXP (elem, 1);
55a2c322
VM
3431 insn = XEXP (elem, 0);
3432 set = single_set (insn);
3433
3434 /* Init insns can set up equivalence when the reg is a destination or
3435 a source (in this case the destination is memory). */
3436 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3437 {
3438 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3439 {
3440 x = XEXP (x, 0);
3441 if (REG_P (SET_DEST (set))
3442 && REGNO (SET_DEST (set)) == (unsigned int) i
3443 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3444 {
3445 /* This insn reporting the equivalence but
3446 actually not setting it. Remove it from the
3447 list. */
3448 if (prev_elem == NULL)
3449 ira_reg_equiv[i].init_insns = next_elem;
3450 else
3451 XEXP (prev_elem, 1) = next_elem;
3452 elem = prev_elem;
3453 }
3454 }
55a2c322
VM
3455 else if (REG_P (SET_DEST (set))
3456 && REGNO (SET_DEST (set)) == (unsigned int) i)
3457 x = SET_SRC (set);
3458 else
3459 {
3460 gcc_assert (REG_P (SET_SRC (set))
3461 && REGNO (SET_SRC (set)) == (unsigned int) i);
3462 x = SET_DEST (set);
3463 }
3464 if (! function_invariant_p (x)
3465 || ! flag_pic
3466 /* A function invariant is often CONSTANT_P but may
3467 include a register. We promise to only pass
3468 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3469 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3470 {
3471 /* It can happen that a REG_EQUIV note contains a MEM
3472 that is not a legitimate memory operand. As later
3473 stages of reload assume that all addresses found in
3474 the lra_regno_equiv_* arrays were originally
3475 legitimate, we ignore such REG_EQUIV notes. */
3476 if (memory_operand (x, VOIDmode))
3477 {
3478 ira_reg_equiv[i].defined_p = true;
3479 ira_reg_equiv[i].memory = x;
3480 continue;
3481 }
3482 else if (function_invariant_p (x))
3483 {
3484 enum machine_mode mode;
3485
3486 mode = GET_MODE (SET_DEST (set));
3487 if (GET_CODE (x) == PLUS
3488 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3489 /* This is PLUS of frame pointer and a constant,
3490 or fp, or argp. */
3491 ira_reg_equiv[i].invariant = x;
3492 else if (targetm.legitimate_constant_p (mode, x))
3493 ira_reg_equiv[i].constant = x;
3494 else
3495 {
3496 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3497 if (ira_reg_equiv[i].memory == NULL_RTX)
3498 {
3499 ira_reg_equiv[i].defined_p = false;
3500 ira_reg_equiv[i].init_insns = NULL_RTX;
3501 break;
3502 }
3503 }
3504 ira_reg_equiv[i].defined_p = true;
3505 continue;
3506 }
3507 }
3508 }
3509 ira_reg_equiv[i].defined_p = false;
3510 ira_reg_equiv[i].init_insns = NULL_RTX;
3511 break;
3512 }
3513}
3514
3515\f
3516
2af2dbdc
VM
3517/* Print chain C to FILE. */
3518static void
3519print_insn_chain (FILE *file, struct insn_chain *c)
3520{
3521 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3522 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3523 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3524}
3525
3526
3527/* Print all reload_insn_chains to FILE. */
3528static void
3529print_insn_chains (FILE *file)
3530{
3531 struct insn_chain *c;
3532 for (c = reload_insn_chain; c ; c = c->next)
3533 print_insn_chain (file, c);
3534}
3535
3536/* Return true if pseudo REGNO should be added to set live_throughout
3537 or dead_or_set of the insn chains for reload consideration. */
3538static bool
3539pseudo_for_reload_consideration_p (int regno)
3540{
3541 /* Consider spilled pseudos too for IRA because they still have a
3542 chance to get hard-registers in the reload when IRA is used. */
b100151b 3543 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
3544}
3545
3546/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3547 REG to the number of nregs, and INIT_VALUE to get the
3548 initialization. ALLOCNUM need not be the regno of REG. */
3549static void
3550init_live_subregs (bool init_value, sbitmap *live_subregs,
cee784f5 3551 bitmap live_subregs_used, int allocnum, rtx reg)
2af2dbdc
VM
3552{
3553 unsigned int regno = REGNO (SUBREG_REG (reg));
3554 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3555
3556 gcc_assert (size > 0);
3557
3558 /* Been there, done that. */
cee784f5 3559 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
3560 return;
3561
cee784f5 3562 /* Create a new one. */
2af2dbdc
VM
3563 if (live_subregs[allocnum] == NULL)
3564 live_subregs[allocnum] = sbitmap_alloc (size);
3565
3566 /* If the entire reg was live before blasting into subregs, we need
3567 to init all of the subregs to ones else init to 0. */
3568 if (init_value)
f61e445a 3569 bitmap_ones (live_subregs[allocnum]);
b8698a0f 3570 else
f61e445a 3571 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 3572
cee784f5 3573 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
3574}
3575
3576/* Walk the insns of the current function and build reload_insn_chain,
3577 and record register life information. */
3578static void
3579build_insn_chain (void)
3580{
3581 unsigned int i;
3582 struct insn_chain **p = &reload_insn_chain;
3583 basic_block bb;
3584 struct insn_chain *c = NULL;
3585 struct insn_chain *next = NULL;
3586 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3587 bitmap elim_regset = BITMAP_ALLOC (NULL);
3588 /* live_subregs is a vector used to keep accurate information about
3589 which hardregs are live in multiword pseudos. live_subregs and
3590 live_subregs_used are indexed by pseudo number. The live_subreg
3591 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
3592 element is non zero in live_subregs_used. The sbitmap size of
3593 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
3594 occupy. */
3595 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
cee784f5 3596 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
2af2dbdc
VM
3597
3598 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3599 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3600 bitmap_set_bit (elim_regset, i);
3601 FOR_EACH_BB_REVERSE (bb)
3602 {
3603 bitmap_iterator bi;
3604 rtx insn;
b8698a0f 3605
2af2dbdc 3606 CLEAR_REG_SET (live_relevant_regs);
cee784f5 3607 bitmap_clear (live_subregs_used);
b8698a0f 3608
bf744527 3609 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
3610 {
3611 if (i >= FIRST_PSEUDO_REGISTER)
3612 break;
3613 bitmap_set_bit (live_relevant_regs, i);
3614 }
3615
bf744527 3616 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
3617 FIRST_PSEUDO_REGISTER, i, bi)
3618 {
3619 if (pseudo_for_reload_consideration_p (i))
3620 bitmap_set_bit (live_relevant_regs, i);
3621 }
3622
3623 FOR_BB_INSNS_REVERSE (bb, insn)
3624 {
3625 if (!NOTE_P (insn) && !BARRIER_P (insn))
3626 {
3627 unsigned int uid = INSN_UID (insn);
3628 df_ref *def_rec;
3629 df_ref *use_rec;
3630
3631 c = new_insn_chain ();
3632 c->next = next;
3633 next = c;
3634 *p = c;
3635 p = &c->prev;
b8698a0f 3636
2af2dbdc
VM
3637 c->insn = insn;
3638 c->block = bb->index;
3639
4b71920a 3640 if (NONDEBUG_INSN_P (insn))
2af2dbdc
VM
3641 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3642 {
3643 df_ref def = *def_rec;
3644 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 3645
2af2dbdc
VM
3646 /* Ignore may clobbers because these are generated
3647 from calls. However, every other kind of def is
3648 added to dead_or_set. */
3649 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3650 {
3651 if (regno < FIRST_PSEUDO_REGISTER)
3652 {
3653 if (!fixed_regs[regno])
3654 bitmap_set_bit (&c->dead_or_set, regno);
3655 }
3656 else if (pseudo_for_reload_consideration_p (regno))
3657 bitmap_set_bit (&c->dead_or_set, regno);
3658 }
3659
3660 if ((regno < FIRST_PSEUDO_REGISTER
3661 || reg_renumber[regno] >= 0
3662 || ira_conflicts_p)
3663 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3664 {
3665 rtx reg = DF_REF_REG (def);
3666
3667 /* We can model subregs, but not if they are
3668 wrapped in ZERO_EXTRACTS. */
3669 if (GET_CODE (reg) == SUBREG
3670 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3671 {
3672 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 3673 unsigned int last = start
2af2dbdc
VM
3674 + GET_MODE_SIZE (GET_MODE (reg));
3675
3676 init_live_subregs
b8698a0f 3677 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc
VM
3678 live_subregs, live_subregs_used, regno, reg);
3679
3680 if (!DF_REF_FLAGS_IS_SET
3681 (def, DF_REF_STRICT_LOW_PART))
3682 {
3683 /* Expand the range to cover entire words.
3684 Bytes added here are "don't care". */
3685 start
3686 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3687 last = ((last + UNITS_PER_WORD - 1)
3688 / UNITS_PER_WORD * UNITS_PER_WORD);
3689 }
3690
3691 /* Ignore the paradoxical bits. */
cee784f5
SB
3692 if (last > SBITMAP_SIZE (live_subregs[regno]))
3693 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
3694
3695 while (start < last)
3696 {
d7c028c0 3697 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
3698 start++;
3699 }
b8698a0f 3700
f61e445a 3701 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 3702 {
cee784f5 3703 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
3704 bitmap_clear_bit (live_relevant_regs, regno);
3705 }
3706 else
3707 /* Set live_relevant_regs here because
3708 that bit has to be true to get us to
3709 look at the live_subregs fields. */
3710 bitmap_set_bit (live_relevant_regs, regno);
3711 }
3712 else
3713 {
3714 /* DF_REF_PARTIAL is generated for
3715 subregs, STRICT_LOW_PART, and
3716 ZERO_EXTRACT. We handle the subreg
3717 case above so here we have to keep from
3718 modeling the def as a killing def. */
3719 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3720 {
cee784f5 3721 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 3722 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
3723 }
3724 }
3725 }
3726 }
b8698a0f 3727
2af2dbdc
VM
3728 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3729 bitmap_copy (&c->live_throughout, live_relevant_regs);
3730
4b71920a 3731 if (NONDEBUG_INSN_P (insn))
2af2dbdc
VM
3732 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3733 {
3734 df_ref use = *use_rec;
3735 unsigned int regno = DF_REF_REGNO (use);
3736 rtx reg = DF_REF_REG (use);
b8698a0f 3737
2af2dbdc
VM
3738 /* DF_REF_READ_WRITE on a use means that this use
3739 is fabricated from a def that is a partial set
3740 to a multiword reg. Here, we only model the
3741 subreg case that is not wrapped in ZERO_EXTRACT
3742 precisely so we do not need to look at the
3743 fabricated use. */
b8698a0f
L
3744 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3745 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
3746 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3747 continue;
b8698a0f 3748
2af2dbdc
VM
3749 /* Add the last use of each var to dead_or_set. */
3750 if (!bitmap_bit_p (live_relevant_regs, regno))
3751 {
3752 if (regno < FIRST_PSEUDO_REGISTER)
3753 {
3754 if (!fixed_regs[regno])
3755 bitmap_set_bit (&c->dead_or_set, regno);
3756 }
3757 else if (pseudo_for_reload_consideration_p (regno))
3758 bitmap_set_bit (&c->dead_or_set, regno);
3759 }
b8698a0f 3760
2af2dbdc
VM
3761 if (regno < FIRST_PSEUDO_REGISTER
3762 || pseudo_for_reload_consideration_p (regno))
3763 {
3764 if (GET_CODE (reg) == SUBREG
3765 && !DF_REF_FLAGS_IS_SET (use,
3766 DF_REF_SIGN_EXTRACT
b8698a0f 3767 | DF_REF_ZERO_EXTRACT))
2af2dbdc
VM
3768 {
3769 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 3770 unsigned int last = start
2af2dbdc 3771 + GET_MODE_SIZE (GET_MODE (reg));
b8698a0f 3772
2af2dbdc 3773 init_live_subregs
b8698a0f 3774 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc 3775 live_subregs, live_subregs_used, regno, reg);
b8698a0f 3776
2af2dbdc 3777 /* Ignore the paradoxical bits. */
cee784f5
SB
3778 if (last > SBITMAP_SIZE (live_subregs[regno]))
3779 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
3780
3781 while (start < last)
3782 {
d7c028c0 3783 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
3784 start++;
3785 }
3786 }
3787 else
3788 /* Resetting the live_subregs_used is
3789 effectively saying do not use the subregs
3790 because we are reading the whole
3791 pseudo. */
cee784f5 3792 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
3793 bitmap_set_bit (live_relevant_regs, regno);
3794 }
3795 }
3796 }
3797 }
3798
3799 /* FIXME!! The following code is a disaster. Reload needs to see the
3800 labels and jump tables that are just hanging out in between
3801 the basic blocks. See pr33676. */
3802 insn = BB_HEAD (bb);
b8698a0f 3803
2af2dbdc 3804 /* Skip over the barriers and cruft. */
b8698a0f 3805 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
3806 || BLOCK_FOR_INSN (insn) == bb))
3807 insn = PREV_INSN (insn);
b8698a0f 3808
2af2dbdc
VM
3809 /* While we add anything except barriers and notes, the focus is
3810 to get the labels and jump tables into the
3811 reload_insn_chain. */
3812 while (insn)
3813 {
3814 if (!NOTE_P (insn) && !BARRIER_P (insn))
3815 {
3816 if (BLOCK_FOR_INSN (insn))
3817 break;
b8698a0f 3818
2af2dbdc
VM
3819 c = new_insn_chain ();
3820 c->next = next;
3821 next = c;
3822 *p = c;
3823 p = &c->prev;
b8698a0f 3824
2af2dbdc
VM
3825 /* The block makes no sense here, but it is what the old
3826 code did. */
3827 c->block = bb->index;
3828 c->insn = insn;
3829 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 3830 }
2af2dbdc
VM
3831 insn = PREV_INSN (insn);
3832 }
3833 }
3834
2af2dbdc
VM
3835 reload_insn_chain = c;
3836 *p = NULL;
3837
cee784f5
SB
3838 for (i = 0; i < (unsigned int) max_regno; i++)
3839 if (live_subregs[i] != NULL)
3840 sbitmap_free (live_subregs[i]);
2af2dbdc 3841 free (live_subregs);
cee784f5 3842 BITMAP_FREE (live_subregs_used);
2af2dbdc
VM
3843 BITMAP_FREE (live_relevant_regs);
3844 BITMAP_FREE (elim_regset);
3845
3846 if (dump_file)
3847 print_insn_chains (dump_file);
3848}
acf41a74
BS
3849 \f
3850/* Examine the rtx found in *LOC, which is read or written to as determined
3851 by TYPE. Return false if we find a reason why an insn containing this
3852 rtx should not be moved (such as accesses to non-constant memory), true
3853 otherwise. */
3854static bool
3855rtx_moveable_p (rtx *loc, enum op_type type)
3856{
3857 const char *fmt;
3858 rtx x = *loc;
3859 enum rtx_code code = GET_CODE (x);
3860 int i, j;
3861
3862 code = GET_CODE (x);
3863 switch (code)
3864 {
3865 case CONST:
d8116890 3866 CASE_CONST_ANY:
acf41a74
BS
3867 case SYMBOL_REF:
3868 case LABEL_REF:
3869 return true;
3870
3871 case PC:
3872 return type == OP_IN;
3873
3874 case CC0:
3875 return false;
3876
3877 case REG:
3878 if (x == frame_pointer_rtx)
3879 return true;
3880 if (HARD_REGISTER_P (x))
3881 return false;
3882
3883 return true;
3884
3885 case MEM:
3886 if (type == OP_IN && MEM_READONLY_P (x))
3887 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
3888 return false;
3889
3890 case SET:
3891 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
3892 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
3893
3894 case STRICT_LOW_PART:
3895 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
3896
3897 case ZERO_EXTRACT:
3898 case SIGN_EXTRACT:
3899 return (rtx_moveable_p (&XEXP (x, 0), type)
3900 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
3901 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
3902
3903 case CLOBBER:
3904 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
3905
3906 default:
3907 break;
3908 }
3909
3910 fmt = GET_RTX_FORMAT (code);
3911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3912 {
3913 if (fmt[i] == 'e')
3914 {
3915 if (!rtx_moveable_p (&XEXP (x, i), type))
3916 return false;
3917 }
3918 else if (fmt[i] == 'E')
3919 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3920 {
3921 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
3922 return false;
3923 }
3924 }
3925 return true;
3926}
3927
3928/* A wrapper around dominated_by_p, which uses the information in UID_LUID
3929 to give dominance relationships between two insns I1 and I2. */
3930static bool
3931insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
3932{
3933 basic_block bb1 = BLOCK_FOR_INSN (i1);
3934 basic_block bb2 = BLOCK_FOR_INSN (i2);
3935
3936 if (bb1 == bb2)
3937 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
3938 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
3939}
3940
3941/* Record the range of register numbers added by find_moveable_pseudos. */
3942int first_moveable_pseudo, last_moveable_pseudo;
3943
3944/* These two vectors hold data for every register added by
3945 find_movable_pseudos, with index 0 holding data for the
3946 first_moveable_pseudo. */
3947/* The original home register. */
9771b263 3948static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
3949
3950/* Look for instances where we have an instruction that is known to increase
3951 register pressure, and whose result is not used immediately. If it is
3952 possible to move the instruction downwards to just before its first use,
3953 split its lifetime into two ranges. We create a new pseudo to compute the
3954 value, and emit a move instruction just before the first use. If, after
3955 register allocation, the new pseudo remains unallocated, the function
3956 move_unallocated_pseudos then deletes the move instruction and places
3957 the computation just before the first use.
3958
3959 Such a move is safe and profitable if all the input registers remain live
3960 and unchanged between the original computation and its first use. In such
3961 a situation, the computation is known to increase register pressure, and
3962 moving it is known to at least not worsen it.
3963
3964 We restrict moves to only those cases where a register remains unallocated,
3965 in order to avoid interfering too much with the instruction schedule. As
3966 an exception, we may move insns which only modify their input register
3967 (typically induction variables), as this increases the freedom for our
3968 intended transformation, and does not limit the second instruction
3969 scheduler pass. */
3970
3971static void
3972find_moveable_pseudos (void)
3973{
3974 unsigned i;
3975 int max_regs = max_reg_num ();
3976 int max_uid = get_max_uid ();
3977 basic_block bb;
3978 int *uid_luid = XNEWVEC (int, max_uid);
3979 rtx *closest_uses = XNEWVEC (rtx, max_regs);
3980 /* A set of registers which are live but not modified throughout a block. */
3981 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
3982 /* A set of registers which only exist in a given basic block. */
3983 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
3984 /* A set of registers which are set once, in an instruction that can be
3985 moved freely downwards, but are otherwise transparent to a block. */
3986 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
3987 bitmap_head live, used, set, interesting, unusable_as_input;
3988 bitmap_iterator bi;
3989 bitmap_initialize (&interesting, 0);
3990
3991 first_moveable_pseudo = max_regs;
9771b263
DN
3992 pseudo_replaced_reg.release ();
3993 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74
BS
3994
3995 df_analyze ();
3996 calculate_dominance_info (CDI_DOMINATORS);
3997
3998 i = 0;
3999 bitmap_initialize (&live, 0);
4000 bitmap_initialize (&used, 0);
4001 bitmap_initialize (&set, 0);
4002 bitmap_initialize (&unusable_as_input, 0);
4003 FOR_EACH_BB (bb)
4004 {
4005 rtx insn;
4006 bitmap transp = bb_transp_live + bb->index;
4007 bitmap moveable = bb_moveable_reg_sets + bb->index;
4008 bitmap local = bb_local + bb->index;
4009
4010 bitmap_initialize (local, 0);
4011 bitmap_initialize (transp, 0);
4012 bitmap_initialize (moveable, 0);
4013 bitmap_copy (&live, df_get_live_out (bb));
4014 bitmap_and_into (&live, df_get_live_in (bb));
4015 bitmap_copy (transp, &live);
4016 bitmap_clear (moveable);
4017 bitmap_clear (&live);
4018 bitmap_clear (&used);
4019 bitmap_clear (&set);
4020 FOR_BB_INSNS (bb, insn)
4021 if (NONDEBUG_INSN_P (insn))
4022 {
4023 df_ref *u_rec, *d_rec;
4024
4025 uid_luid[INSN_UID (insn)] = i++;
4026
4027 u_rec = DF_INSN_USES (insn);
4028 d_rec = DF_INSN_DEFS (insn);
4029 if (d_rec[0] != NULL && d_rec[1] == NULL
4030 && u_rec[0] != NULL && u_rec[1] == NULL
4031 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4032 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4033 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4034 {
4035 unsigned regno = DF_REF_REGNO (*u_rec);
4036 bitmap_set_bit (moveable, regno);
4037 bitmap_set_bit (&set, regno);
4038 bitmap_set_bit (&used, regno);
4039 bitmap_clear_bit (transp, regno);
4040 continue;
4041 }
4042 while (*u_rec)
4043 {
4044 unsigned regno = DF_REF_REGNO (*u_rec);
4045 bitmap_set_bit (&used, regno);
4046 if (bitmap_clear_bit (moveable, regno))
4047 bitmap_clear_bit (transp, regno);
4048 u_rec++;
4049 }
4050
4051 while (*d_rec)
4052 {
4053 unsigned regno = DF_REF_REGNO (*d_rec);
4054 bitmap_set_bit (&set, regno);
4055 bitmap_clear_bit (transp, regno);
4056 bitmap_clear_bit (moveable, regno);
4057 d_rec++;
4058 }
4059 }
4060 }
4061
4062 bitmap_clear (&live);
4063 bitmap_clear (&used);
4064 bitmap_clear (&set);
4065
4066 FOR_EACH_BB (bb)
4067 {
4068 bitmap local = bb_local + bb->index;
4069 rtx insn;
4070
4071 FOR_BB_INSNS (bb, insn)
4072 if (NONDEBUG_INSN_P (insn))
4073 {
4074 rtx def_insn, closest_use, note;
4075 df_ref *def_rec, def, use;
4076 unsigned regno;
4077 bool all_dominated, all_local;
4078 enum machine_mode mode;
4079
4080 def_rec = DF_INSN_DEFS (insn);
4081 /* There must be exactly one def in this insn. */
4082 def = *def_rec;
4083 if (!def || def_rec[1] || !single_set (insn))
4084 continue;
4085 /* This must be the only definition of the reg. We also limit
4086 which modes we deal with so that we can assume we can generate
4087 move instructions. */
4088 regno = DF_REF_REGNO (def);
4089 mode = GET_MODE (DF_REF_REG (def));
4090 if (DF_REG_DEF_COUNT (regno) != 1
4091 || !DF_REF_INSN_INFO (def)
4092 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4093 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4094 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4095 continue;
4096 def_insn = DF_REF_INSN (def);
4097
4098 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4099 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4100 break;
4101
4102 if (note)
4103 {
4104 if (dump_file)
4105 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4106 regno);
4107 bitmap_set_bit (&unusable_as_input, regno);
4108 continue;
4109 }
4110
4111 use = DF_REG_USE_CHAIN (regno);
4112 all_dominated = true;
4113 all_local = true;
4114 closest_use = NULL_RTX;
4115 for (; use; use = DF_REF_NEXT_REG (use))
4116 {
4117 rtx insn;
4118 if (!DF_REF_INSN_INFO (use))
4119 {
4120 all_dominated = false;
4121 all_local = false;
4122 break;
4123 }
4124 insn = DF_REF_INSN (use);
4125 if (DEBUG_INSN_P (insn))
4126 continue;
4127 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4128 all_local = false;
4129 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4130 all_dominated = false;
4131 if (closest_use != insn && closest_use != const0_rtx)
4132 {
4133 if (closest_use == NULL_RTX)
4134 closest_use = insn;
4135 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4136 closest_use = insn;
4137 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4138 closest_use = const0_rtx;
4139 }
4140 }
4141 if (!all_dominated)
4142 {
4143 if (dump_file)
4144 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4145 regno);
4146 continue;
4147 }
4148 if (all_local)
4149 bitmap_set_bit (local, regno);
4150 if (closest_use == const0_rtx || closest_use == NULL
4151 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4152 {
4153 if (dump_file)
4154 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4155 closest_use == const0_rtx || closest_use == NULL
4156 ? " (no unique first use)" : "");
4157 continue;
4158 }
4159#ifdef HAVE_cc0
4160 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4161 {
4162 if (dump_file)
4163 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4164 regno);
4165 continue;
4166 }
4167#endif
4168 bitmap_set_bit (&interesting, regno);
4169 closest_uses[regno] = closest_use;
4170
4171 if (dump_file && (all_local || all_dominated))
4172 {
4173 fprintf (dump_file, "Reg %u:", regno);
4174 if (all_local)
4175 fprintf (dump_file, " local to bb %d", bb->index);
4176 if (all_dominated)
4177 fprintf (dump_file, " def dominates all uses");
4178 if (closest_use != const0_rtx)
4179 fprintf (dump_file, " has unique first use");
4180 fputs ("\n", dump_file);
4181 }
4182 }
4183 }
4184
4185 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4186 {
4187 df_ref def = DF_REG_DEF_CHAIN (i);
4188 rtx def_insn = DF_REF_INSN (def);
4189 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4190 bitmap def_bb_local = bb_local + def_block->index;
4191 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4192 bitmap def_bb_transp = bb_transp_live + def_block->index;
4193 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4194 rtx use_insn = closest_uses[i];
4195 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4196 bool all_ok = true;
4197 bool all_transp = true;
4198
4199 if (!REG_P (DF_REF_REG (def)))
4200 continue;
4201
4202 if (!local_to_bb_p)
4203 {
4204 if (dump_file)
4205 fprintf (dump_file, "Reg %u not local to one basic block\n",
4206 i);
4207 continue;
4208 }
4209 if (reg_equiv_init (i) != NULL_RTX)
4210 {
4211 if (dump_file)
4212 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4213 i);
4214 continue;
4215 }
4216 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4217 {
4218 if (dump_file)
4219 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4220 INSN_UID (def_insn), i);
4221 continue;
4222 }
4223 if (dump_file)
4224 fprintf (dump_file, "Examining insn %d, def for %d\n",
4225 INSN_UID (def_insn), i);
4226 while (*def_insn_use_rec != NULL)
4227 {
4228 df_ref use = *def_insn_use_rec;
4229 unsigned regno = DF_REF_REGNO (use);
4230 if (bitmap_bit_p (&unusable_as_input, regno))
4231 {
4232 all_ok = false;
4233 if (dump_file)
4234 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4235 break;
4236 }
4237 if (!bitmap_bit_p (def_bb_transp, regno))
4238 {
4239 if (bitmap_bit_p (def_bb_moveable, regno)
4240 && !control_flow_insn_p (use_insn)
4241#ifdef HAVE_cc0
4242 && !sets_cc0_p (use_insn)
4243#endif
4244 )
4245 {
4246 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4247 {
4248 rtx x = NEXT_INSN (def_insn);
4249 while (!modified_in_p (DF_REF_REG (use), x))
4250 {
4251 gcc_assert (x != use_insn);
4252 x = NEXT_INSN (x);
4253 }
4254 if (dump_file)
4255 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4256 regno, INSN_UID (x));
4257 emit_insn_after (PATTERN (x), use_insn);
4258 set_insn_deleted (x);
4259 }
4260 else
4261 {
4262 if (dump_file)
4263 fprintf (dump_file, " input reg %u modified between def and use\n",
4264 regno);
4265 all_transp = false;
4266 }
4267 }
4268 else
4269 all_transp = false;
4270 }
4271
4272 def_insn_use_rec++;
4273 }
4274 if (!all_ok)
4275 continue;
4276 if (!dbg_cnt (ira_move))
4277 break;
4278 if (dump_file)
4279 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4280
4281 if (all_transp)
4282 {
4283 rtx def_reg = DF_REF_REG (def);
4284 rtx newreg = ira_create_new_reg (def_reg);
4285 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
4286 {
4287 unsigned nregno = REGNO (newreg);
a36b2706 4288 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4289 nregno -= max_regs;
9771b263 4290 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4291 }
4292 }
4293 }
4294
4295 FOR_EACH_BB (bb)
4296 {
4297 bitmap_clear (bb_local + bb->index);
4298 bitmap_clear (bb_transp_live + bb->index);
4299 bitmap_clear (bb_moveable_reg_sets + bb->index);
4300 }
4301 bitmap_clear (&interesting);
4302 bitmap_clear (&unusable_as_input);
4303 free (uid_luid);
4304 free (closest_uses);
4305 free (bb_local);
4306 free (bb_transp_live);
4307 free (bb_moveable_reg_sets);
4308
4309 last_moveable_pseudo = max_reg_num ();
4310
81c082ec 4311 fix_reg_equiv_init ();
fb99ee9b 4312 expand_reg_info ();
acf41a74
BS
4313 regstat_free_n_sets_and_refs ();
4314 regstat_free_ri ();
4315 regstat_init_n_sets_and_refs ();
4316 regstat_compute_ri ();
4317 free_dominance_info (CDI_DOMINATORS);
4318}
8ff49c29 4319
acf41a74
BS
4320/* Perform the second half of the transformation started in
4321 find_moveable_pseudos. We look for instances where the newly introduced
4322 pseudo remains unallocated, and remove it by moving the definition to
4323 just before its use, replacing the move instruction generated by
4324 find_moveable_pseudos. */
4325static void
4326move_unallocated_pseudos (void)
4327{
4328 int i;
4329 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4330 if (reg_renumber[i] < 0)
4331 {
acf41a74 4332 int idx = i - first_moveable_pseudo;
9771b263 4333 rtx other_reg = pseudo_replaced_reg[idx];
a36b2706
RS
4334 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4335 /* The use must follow all definitions of OTHER_REG, so we can
4336 insert the new definition immediately after any of them. */
4337 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4338 rtx move_insn = DF_REF_INSN (other_def);
acf41a74 4339 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 4340 rtx set;
acf41a74
BS
4341 int success;
4342
4343 if (dump_file)
4344 fprintf (dump_file, "moving def of %d (insn %d now) ",
4345 REGNO (other_reg), INSN_UID (def_insn));
4346
a36b2706
RS
4347 delete_insn (move_insn);
4348 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4349 delete_insn (DF_REF_INSN (other_def));
4350 delete_insn (def_insn);
4351
acf41a74
BS
4352 set = single_set (newinsn);
4353 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4354 gcc_assert (success);
4355 if (dump_file)
4356 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4357 INSN_UID (newinsn), i);
acf41a74
BS
4358 SET_REG_N_REFS (i, 0);
4359 }
4360}
f2034d06 4361\f
6399c0ab
SB
4362/* If the backend knows where to allocate pseudos for hard
4363 register initial values, register these allocations now. */
a932fb89 4364static void
6399c0ab
SB
4365allocate_initial_values (void)
4366{
4367 if (targetm.allocate_initial_value)
4368 {
4369 rtx hreg, preg, x;
4370 int i, regno;
4371
4372 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4373 {
4374 if (! initial_value_entry (i, &hreg, &preg))
4375 break;
4376
4377 x = targetm.allocate_initial_value (hreg);
4378 regno = REGNO (preg);
4379 if (x && REG_N_SETS (regno) <= 1)
4380 {
4381 if (MEM_P (x))
4382 reg_equiv_memory_loc (regno) = x;
4383 else
4384 {
4385 basic_block bb;
4386 int new_regno;
4387
4388 gcc_assert (REG_P (x));
4389 new_regno = REGNO (x);
4390 reg_renumber[regno] = new_regno;
4391 /* Poke the regno right into regno_reg_rtx so that even
4392 fixed regs are accepted. */
4393 SET_REGNO (preg, new_regno);
4394 /* Update global register liveness information. */
4395 FOR_EACH_BB (bb)
4396 {
4397 if (REGNO_REG_SET_P(df_get_live_in (bb), regno))
4398 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4399 if (REGNO_REG_SET_P(df_get_live_out (bb), regno))
4400 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4401 }
4402 }
4403 }
4404 }
2af2dbdc 4405
6399c0ab
SB
4406 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4407 &hreg, &preg));
4408 }
4409}
4410\f
55a2c322
VM
4411
4412/* True when we use LRA instead of reload pass for the current
4413 function. */
4414bool ira_use_lra_p;
4415
311aab06
VM
4416/* True if we have allocno conflicts. It is false for non-optimized
4417 mode or when the conflict table is too big. */
4418bool ira_conflicts_p;
4419
ae2b9cb6
BS
4420/* Saved between IRA and reload. */
4421static int saved_flag_ira_share_spill_slots;
4422
058e97ec
VM
4423/* This is the main entry of IRA. */
4424static void
4425ira (FILE *f)
4426{
058e97ec 4427 bool loops_p;
70cc3288 4428 int ira_max_point_before_emit;
058e97ec 4429 int rebuild_p;
55a2c322
VM
4430 bool saved_flag_caller_saves = flag_caller_saves;
4431 enum ira_region saved_flag_ira_region = flag_ira_region;
4432
4433 ira_conflicts_p = optimize > 0;
4434
4435 ira_use_lra_p = targetm.lra_p ();
4436 /* If there are too many pseudos and/or basic blocks (e.g. 10K
4437 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
4438 use simplified and faster algorithms in LRA. */
4439 lra_simple_p
4440 = (ira_use_lra_p && max_reg_num () >= (1 << 26) / last_basic_block);
4441 if (lra_simple_p)
4442 {
4443 /* It permits to skip live range splitting in LRA. */
4444 flag_caller_saves = false;
4445 /* There is no sense to do regional allocation when we use
4446 simplified LRA. */
4447 flag_ira_region = IRA_REGION_ONE;
4448 ira_conflicts_p = false;
4449 }
4450
4451#ifndef IRA_NO_OBSTACK
4452 gcc_obstack_init (&ira_obstack);
4453#endif
4454 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 4455
dc12b70e
JZ
4456 if (flag_caller_saves)
4457 init_caller_save ();
4458
058e97ec
VM
4459 if (flag_ira_verbose < 10)
4460 {
4461 internal_flag_ira_verbose = flag_ira_verbose;
4462 ira_dump_file = f;
4463 }
4464 else
4465 {
4466 internal_flag_ira_verbose = flag_ira_verbose - 10;
4467 ira_dump_file = stderr;
4468 }
4469
4470 setup_prohibited_mode_move_regs ();
4471
4472 df_note_add_problem ();
5d517141
SB
4473
4474 /* DF_LIVE can't be used in the register allocator, too many other
4475 parts of the compiler depend on using the "classic" liveness
4476 interpretation of the DF_LR problem. See PR38711.
4477 Remove the problem, so that we don't spend time updating it in
4478 any of the df_analyze() calls during IRA/LRA. */
4479 if (optimize > 1)
4480 df_remove_problem (df_live);
4481 gcc_checking_assert (df_live == NULL);
4482
058e97ec
VM
4483#ifdef ENABLE_CHECKING
4484 df->changeable_flags |= DF_VERIFY_SCHEDULED;
4485#endif
4486 df_analyze ();
4487 df_clear_flags (DF_NO_INSN_RESCAN);
4488 regstat_init_n_sets_and_refs ();
4489 regstat_compute_ri ();
4490
4491 /* If we are not optimizing, then this is the only place before
4492 register allocation where dataflow is done. And that is needed
4493 to generate these warnings. */
4494 if (warn_clobbered)
4495 generate_setjmp_warnings ();
4496
ace984c8
RS
4497 /* Determine if the current function is a leaf before running IRA
4498 since this can impact optimizations done by the prologue and
4499 epilogue thus changing register elimination offsets. */
416ff32e 4500 crtl->is_leaf = leaf_function_p ();
ace984c8 4501
1833192f 4502 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 4503 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 4504
55a2c322 4505 init_reg_equiv ();
058e97ec 4506 rebuild_p = update_equiv_regs ();
55a2c322
VM
4507 setup_reg_equiv ();
4508 setup_reg_equiv_init ();
058e97ec 4509
55a2c322 4510 if (optimize && rebuild_p)
b8698a0f 4511 {
55a2c322
VM
4512 timevar_push (TV_JUMP);
4513 rebuild_jump_labels (get_insns ());
4514 if (purge_all_dead_edges ())
4515 delete_unreachable_blocks ();
4516 timevar_pop (TV_JUMP);
058e97ec
VM
4517 }
4518
fb99ee9b 4519 allocated_reg_info_size = max_reg_num ();
e8d7e3e7 4520
dbabddf3
JJ
4521 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4522 df_analyze ();
4523
e8d7e3e7
VM
4524 /* It is not worth to do such improvement when we use a simple
4525 allocation because of -O0 usage or because the function is too
4526 big. */
4527 if (ira_conflicts_p)
4528 find_moveable_pseudos ();
acf41a74 4529
fb99ee9b 4530 max_regno_before_ira = max_reg_num ();
55a2c322 4531 ira_setup_eliminable_regset (true);
b8698a0f 4532
058e97ec
VM
4533 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
4534 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
4535 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 4536
058e97ec 4537 ira_assert (current_loops == NULL);
2608d841 4538 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 4539 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 4540
058e97ec
VM
4541 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4542 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 4543 loops_p = ira_build ();
b8698a0f 4544
311aab06 4545 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
4546
4547 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 4548 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 4549 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
4550 stack slots in this case -- prohibit it. We also do this if
4551 there is setjmp call because a variable not modified between
4552 setjmp and longjmp the compiler is required to preserve its
4553 value and sharing slots does not guarantee it. */
3553f0bb
VM
4554 flag_ira_share_spill_slots = FALSE;
4555
cb1ca6ac 4556 ira_color ();
b8698a0f 4557
058e97ec 4558 ira_max_point_before_emit = ira_max_point;
b8698a0f 4559
1756cb66
VM
4560 ira_initiate_emit_data ();
4561
058e97ec 4562 ira_emit (loops_p);
b8698a0f 4563
55a2c322 4564 max_regno = max_reg_num ();
311aab06 4565 if (ira_conflicts_p)
058e97ec 4566 {
058e97ec 4567 if (! loops_p)
55a2c322
VM
4568 {
4569 if (! ira_use_lra_p)
4570 ira_initiate_assign ();
4571 }
058e97ec
VM
4572 else
4573 {
fb99ee9b 4574 expand_reg_info ();
b8698a0f 4575
55a2c322
VM
4576 if (ira_use_lra_p)
4577 {
4578 ira_allocno_t a;
4579 ira_allocno_iterator ai;
4580
4581 FOR_EACH_ALLOCNO (a, ai)
4582 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
4583 }
4584 else
4585 {
4586 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4587 fprintf (ira_dump_file, "Flattening IR\n");
4588 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
4589 }
058e97ec
VM
4590 /* New insns were generated: add notes and recalculate live
4591 info. */
4592 df_analyze ();
b8698a0f 4593
544e7e78
SB
4594 /* ??? Rebuild the loop tree, but why? Does the loop tree
4595 change if new insns were generated? Can that be handled
4596 by updating the loop tree incrementally? */
661bc682 4597 loop_optimizer_finalize ();
57548aa2 4598 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
4599 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
4600 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 4601
55a2c322
VM
4602 if (! ira_use_lra_p)
4603 {
4604 setup_allocno_assignment_flags ();
4605 ira_initiate_assign ();
4606 ira_reassign_conflict_allocnos (max_regno);
4607 }
058e97ec
VM
4608 }
4609 }
4610
1756cb66
VM
4611 ira_finish_emit_data ();
4612
058e97ec 4613 setup_reg_renumber ();
b8698a0f 4614
058e97ec 4615 calculate_allocation_cost ();
b8698a0f 4616
058e97ec 4617#ifdef ENABLE_IRA_CHECKING
311aab06 4618 if (ira_conflicts_p)
058e97ec
VM
4619 check_allocation ();
4620#endif
b8698a0f 4621
058e97ec
VM
4622 if (max_regno != max_regno_before_ira)
4623 {
4624 regstat_free_n_sets_and_refs ();
4625 regstat_free_ri ();
4626 regstat_init_n_sets_and_refs ();
4627 regstat_compute_ri ();
4628 }
4629
058e97ec 4630 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
4631 if (! ira_conflicts_p)
4632 grow_reg_equivs ();
4633 else
058e97ec
VM
4634 {
4635 fix_reg_equiv_init ();
b8698a0f 4636
058e97ec
VM
4637#ifdef ENABLE_IRA_CHECKING
4638 print_redundant_copies ();
4639#endif
4640
4641 ira_spilled_reg_stack_slots_num = 0;
4642 ira_spilled_reg_stack_slots
4643 = ((struct ira_spilled_reg_stack_slot *)
4644 ira_allocate (max_regno
4645 * sizeof (struct ira_spilled_reg_stack_slot)));
4646 memset (ira_spilled_reg_stack_slots, 0,
4647 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
4648 }
6399c0ab 4649 allocate_initial_values ();
e8d7e3e7
VM
4650
4651 /* See comment for find_moveable_pseudos call. */
4652 if (ira_conflicts_p)
4653 move_unallocated_pseudos ();
55a2c322
VM
4654
4655 /* Restore original values. */
4656 if (lra_simple_p)
4657 {
4658 flag_caller_saves = saved_flag_caller_saves;
4659 flag_ira_region = saved_flag_ira_region;
4660 }
d3afd9aa
RB
4661}
4662
4663static void
4664do_reload (void)
4665{
4666 basic_block bb;
4667 bool need_dce;
ae2b9cb6 4668
67463efb 4669 if (flag_ira_verbose < 10)
ae2b9cb6 4670 ira_dump_file = dump_file;
058e97ec 4671
55a2c322
VM
4672 timevar_push (TV_RELOAD);
4673 if (ira_use_lra_p)
4674 {
4675 if (current_loops != NULL)
4676 {
661bc682 4677 loop_optimizer_finalize ();
55a2c322
VM
4678 free_dominance_info (CDI_DOMINATORS);
4679 }
4680 FOR_ALL_BB (bb)
4681 bb->loop_father = NULL;
4682 current_loops = NULL;
4683
4684 if (ira_conflicts_p)
4685 ira_free (ira_spilled_reg_stack_slots);
4686
4687 ira_destroy ();
058e97ec 4688
55a2c322
VM
4689 lra (ira_dump_file);
4690 /* ???!!! Move it before lra () when we use ira_reg_equiv in
4691 LRA. */
9771b263 4692 vec_free (reg_equivs);
55a2c322
VM
4693 reg_equivs = NULL;
4694 need_dce = false;
4695 }
4696 else
4697 {
4698 df_set_flags (DF_NO_INSN_RESCAN);
4699 build_insn_chain ();
4700
4701 need_dce = reload (get_insns (), ira_conflicts_p);
4702
4703 }
4704
4705 timevar_pop (TV_RELOAD);
058e97ec 4706
d3afd9aa
RB
4707 timevar_push (TV_IRA);
4708
55a2c322 4709 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
4710 {
4711 ira_free (ira_spilled_reg_stack_slots);
058e97ec 4712 ira_finish_assign ();
b8698a0f 4713 }
55a2c322 4714
058e97ec
VM
4715 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
4716 && overall_cost_before != ira_overall_cost)
4717 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
b8698a0f 4718
3553f0bb
VM
4719 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
4720
55a2c322 4721 if (! ira_use_lra_p)
2608d841 4722 {
55a2c322
VM
4723 ira_destroy ();
4724 if (current_loops != NULL)
4725 {
661bc682 4726 loop_optimizer_finalize ();
55a2c322
VM
4727 free_dominance_info (CDI_DOMINATORS);
4728 }
4729 FOR_ALL_BB (bb)
4730 bb->loop_father = NULL;
4731 current_loops = NULL;
4732
4733 regstat_free_ri ();
4734 regstat_free_n_sets_and_refs ();
2608d841 4735 }
b8698a0f 4736
058e97ec 4737 if (optimize)
55a2c322 4738 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 4739
55a2c322 4740 finish_reg_equiv ();
058e97ec
VM
4741
4742 bitmap_obstack_release (&ira_bitmap_obstack);
4743#ifndef IRA_NO_OBSTACK
4744 obstack_free (&ira_obstack, NULL);
4745#endif
4746
4747 /* The code after the reload has changed so much that at this point
b0c11403 4748 we might as well just rescan everything. Note that
058e97ec
VM
4749 df_rescan_all_insns is not going to help here because it does not
4750 touch the artificial uses and defs. */
4751 df_finish_pass (true);
058e97ec
VM
4752 df_scan_alloc (NULL);
4753 df_scan_blocks ();
4754
5d517141
SB
4755 if (optimize > 1)
4756 {
4757 df_live_add_problem ();
4758 df_live_set_all_dirty ();
4759 }
4760
058e97ec
VM
4761 if (optimize)
4762 df_analyze ();
4763
b0c11403
JL
4764 if (need_dce && optimize)
4765 run_fast_dce ();
d3afd9aa
RB
4766
4767 timevar_pop (TV_IRA);
058e97ec 4768}
058e97ec 4769\f
058e97ec
VM
4770/* Run the integrated register allocator. */
4771static unsigned int
4772rest_of_handle_ira (void)
4773{
4774 ira (dump_file);
4775 return 0;
4776}
4777
4778struct rtl_opt_pass pass_ira =
4779{
4780 {
4781 RTL_PASS,
4782 "ira", /* name */
2b4e6bf1 4783 OPTGROUP_NONE, /* optinfo_flags */
ae2b9cb6 4784 NULL, /* gate */
058e97ec
VM
4785 rest_of_handle_ira, /* execute */
4786 NULL, /* sub */
4787 NULL, /* next */
4788 0, /* static_pass_number */
ae2b9cb6
BS
4789 TV_IRA, /* tv_id */
4790 0, /* properties_required */
4791 0, /* properties_provided */
4792 0, /* properties_destroyed */
4793 0, /* todo_flags_start */
d3afd9aa
RB
4794 TODO_do_not_ggc_collect /* todo_flags_finish */
4795 }
4796};
4797
4798static unsigned int
4799rest_of_handle_reload (void)
4800{
4801 do_reload ();
4802 return 0;
4803}
4804
4805struct rtl_opt_pass pass_reload =
4806{
4807 {
4808 RTL_PASS,
4809 "reload", /* name */
4810 OPTGROUP_NONE, /* optinfo_flags */
4811 NULL, /* gate */
4812 rest_of_handle_reload, /* execute */
4813 NULL, /* sub */
4814 NULL, /* next */
4815 0, /* static_pass_number */
4816 TV_RELOAD, /* tv_id */
4817 0, /* properties_required */
4818 0, /* properties_provided */
4819 0, /* properties_destroyed */
4820 0, /* todo_flags_start */
4821 0 /* todo_flags_finish */
058e97ec
VM
4822 }
4823};