]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
Revert revsion 229087 changes in lra-spills.c
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
818ab71a 2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec 155
df3e3493 156 * IRA creates live ranges of each allocno, calculates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66 194 the allocation. IRA uses some heuristics to improve the
41808d15
VM
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
1756cb66
VM
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
058e97ec
VM
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
1756cb66 247 * Chaitin-Briggs coloring assigns as many pseudos as possible
df3e3493 248 to hard registers. After coloring we try to improve
1756cb66
VM
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
3447fefe 254 * After allocno assigning in the region, IRA modifies the hard
058e97ec
VM
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
1756cb66
VM
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
058e97ec
VM
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
1756cb66
VM
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
1756cb66
VM
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
058e97ec
VM
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
df3e3493 310 spilled allocnos. This is implemented by a simple and fast
058e97ec
VM
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
df3e3493 331 data are initialized in file ira.c.
058e97ec
VM
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
1756cb66
VM
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
058e97ec
VM
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
c7131fb2 369#include "backend.h"
957060b5 370#include "target.h"
058e97ec 371#include "rtl.h"
957060b5 372#include "tree.h"
c7131fb2 373#include "df.h"
957060b5 374#include "tm_p.h"
957060b5 375#include "insn-config.h"
c7131fb2 376#include "regs.h"
957060b5
AM
377#include "ira.h"
378#include "ira-int.h"
379#include "diagnostic-core.h"
60393bbc
AM
380#include "cfgrtl.h"
381#include "cfgbuild.h"
382#include "cfgcleanup.h"
058e97ec 383#include "expr.h"
058e97ec
VM
384#include "tree-pass.h"
385#include "output.h"
386#include "reload.h"
c7131fb2 387#include "cfgloop.h"
55a2c322 388#include "lra.h"
b0c11403 389#include "dce.h"
acf41a74 390#include "dbgcnt.h"
40954ce5 391#include "rtl-iter.h"
a5e022d5 392#include "shrink-wrap.h"
013a8899 393#include "print-rtl.h"
058e97ec 394
afcc66c4
RS
395struct target_ira default_target_ira;
396struct target_ira_int default_target_ira_int;
397#if SWITCHABLE_TARGET
398struct target_ira *this_target_ira = &default_target_ira;
399struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400#endif
401
058e97ec
VM
402/* A modified value of flag `-fira-verbose' used internally. */
403int internal_flag_ira_verbose;
404
405/* Dump file of the allocator if it is not NULL. */
406FILE *ira_dump_file;
407
058e97ec
VM
408/* The number of elements in the following array. */
409int ira_spilled_reg_stack_slots_num;
410
411/* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
414
ae2b9cb6
BS
415/* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
2bf7560b
VM
420int64_t ira_overall_cost, overall_cost_before;
421int64_t ira_reg_cost, ira_mem_cost;
422int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec
VM
423int ira_move_loops_num, ira_additional_jumps_num;
424
2af2dbdc
VM
425/* All registers that can be eliminated. */
426
427HARD_REG_SET eliminable_regset;
428
70cc3288
VM
429/* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432static int max_regno_before_ira;
433
058e97ec
VM
434/* Temporary hard reg set used for a different calculation. */
435static HARD_REG_SET temp_hard_regset;
436
e80ccebc
RS
437#define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
439\f
440
441/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442static void
443setup_reg_mode_hard_regset (void)
444{
445 int i, m, hard_regno;
446
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
449 {
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
455 }
456}
457
458\f
afcc66c4
RS
459#define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
461
462/* The function sets up the three arrays declared above. */
463static void
464setup_class_hard_regs (void)
465{
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
468
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
471 {
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 476 {
854edfcd
VM
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
0583835c 479 }
058e97ec
VM
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
481 {
482#ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484#else
485 hard_regno = i;
b8698a0f 486#endif
058e97ec
VM
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
493 {
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
496 }
497 }
498 ira_class_hard_regs_num[cl] = n;
0583835c
VM
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
503 }
504}
505
058e97ec
VM
506/* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509static void
510setup_alloc_regs (bool use_hard_frame_p)
511{
5a733826
BS
512#ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514#endif
058e97ec
VM
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
058e97ec
VM
519}
520
521\f
522
1756cb66
VM
523#define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
525
526/* Initialize the table of subclasses of each reg class. */
527static void
528setup_reg_subclasses (void)
529{
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
532
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
536
537 for (i = 0; i < N_REG_CLASSES; i++)
538 {
539 if (i == (int) NO_REGS)
540 continue;
541
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
548 {
549 enum reg_class *p;
550
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561}
562
563\f
564
565/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
566static void
567setup_class_subset_and_memory_move_costs (void)
568{
1756cb66 569 int cl, cl2, mode, cost;
058e97ec
VM
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
1756cb66
VM
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
ef4bddc2 582 = memory_move_cost ((machine_mode) mode,
6f76a878 583 (reg_class_t) cl, false);
1756cb66
VM
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
ef4bddc2 586 = memory_move_cost ((machine_mode) mode,
6f76a878 587 (reg_class_t) cl, true);
058e97ec
VM
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
600 = ira_memory_move_cost[mode][cl][1];
601 }
058e97ec 602 }
1756cb66
VM
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
616 {
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
623 }
624 }
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
627 {
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
632 }
633 setup_reg_subclasses ();
058e97ec
VM
634}
635
636\f
637
638/* Define the following macro if allocation through malloc if
639 preferable. */
640#define IRA_NO_OBSTACK
641
642#ifndef IRA_NO_OBSTACK
643/* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645static struct obstack ira_obstack;
646#endif
647
648/* Obstack used for storing all bitmaps of the IRA. */
649static struct bitmap_obstack ira_bitmap_obstack;
650
651/* Allocate memory of size LEN for IRA data. */
652void *
653ira_allocate (size_t len)
654{
655 void *res;
656
657#ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659#else
660 res = xmalloc (len);
661#endif
662 return res;
663}
664
058e97ec
VM
665/* Free memory ADDR allocated for IRA data. */
666void
667ira_free (void *addr ATTRIBUTE_UNUSED)
668{
669#ifndef IRA_NO_OBSTACK
670 /* do nothing */
671#else
672 free (addr);
673#endif
674}
675
676
677/* Allocate and returns bitmap for IRA. */
678bitmap
679ira_allocate_bitmap (void)
680{
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
682}
683
684/* Free bitmap B allocated for IRA. */
685void
686ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
687{
688 /* do nothing */
689}
690
691\f
692
693/* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695void
696ira_print_disposition (FILE *f)
697{
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
701
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
708 {
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
2608d841 716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
721 }
722 fprintf (f, "\n");
723}
724
725/* Outputs information about allocation of all allocnos into
726 stderr. */
727void
728ira_debug_disposition (void)
729{
730 ira_print_disposition (stderr);
731}
732
733\f
058e97ec 734
1756cb66
VM
735/* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
fe82cdfb 741static void
1756cb66
VM
742setup_stack_reg_pressure_class (void)
743{
744 ira_stack_reg_pressure_class = NO_REGS;
745#ifdef STACK_REGS
746 {
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
750
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
756 {
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
762 {
763 best = size;
764 ira_stack_reg_pressure_class = cl;
765 }
766 }
767 }
768#endif
769}
770
771/* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
775
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784static void
785setup_pressure_classes (void)
058e97ec 786{
1756cb66
VM
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
058e97ec 791 HARD_REG_SET temp_hard_regset2;
1756cb66 792 bool insert_p;
058e97ec 793
1756cb66
VM
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
058e97ec 796 {
f508f827 797 if (ira_class_hard_regs_num[cl] == 0)
058e97ec 798 continue;
f508f827 799 if (ira_class_hard_regs_num[cl] != 1
574e418a
VM
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
af2b97c4 804 && alloc_reg_class_subclasses[cl][0] < cl)
1756cb66 805 {
113a5be6
VM
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
812 {
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
ef4bddc2 819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
113a5be6
VM
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
824 }
825 if (m >= NUM_MACHINE_MODES)
1756cb66 826 continue;
1756cb66 827 }
1756cb66
VM
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
058e97ec 850 continue;
1756cb66
VM
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
113a5be6
VM
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
1756cb66
VM
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
fe82cdfb 866 }
1756cb66 867#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
868 {
869 HARD_REG_SET ignore_hard_regs;
870
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
878 {
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
886 {
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
889 }
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
896 }
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
df3e3493 898 /* Some targets (like SPARC with ICC reg) have allocatable regs
113a5be6
VM
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
905 }
1756cb66
VM
906#endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
909 {
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
913 }
914 setup_stack_reg_pressure_class ();
058e97ec
VM
915}
916
165f639c
VM
917/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921static void
922setup_uniform_class_p (void)
923{
924 int i, cl, cl2, m;
925
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
927 {
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
937 {
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
942 {
ef4bddc2 943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
165f639c
VM
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
947 }
948 if (m < NUM_MACHINE_MODES)
949 break;
950 }
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
953 }
954}
955
1756cb66
VM
956/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
958
df3e3493 959 Target may have many subtargets and not all target hard registers can
1756cb66
VM
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
966
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
058e97ec 981static void
1756cb66 982setup_allocno_and_important_classes (void)
058e97ec 983{
32e8bb8e 984 int i, j, n, cl;
db1a8d98 985 bool set_p;
058e97ec 986 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
988
1756cb66
VM
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
a58dfa49 993 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 994 {
1756cb66
VM
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
7db7ed3c 998 {
1756cb66
VM
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
7db7ed3c 1006 }
1756cb66
VM
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
7db7ed3c 1015 }
1756cb66 1016 classes[n] = LIM_REG_CLASSES;
058e97ec 1017
1756cb66 1018 /* Set up classes which can be used for allocnos as classes
df3e3493 1019 containing non-empty unique sets of allocatable hard
1756cb66
VM
1020 registers. */
1021 ira_allocno_classes_num = 0;
058e97ec 1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1023 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1025 ira_important_classes_num = 0;
1756cb66
VM
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
058e97ec 1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1029 if (ira_class_hard_regs_num[cl] > 0)
1030 {
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1035 {
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1044 }
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1048 }
1756cb66
VM
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1051 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1054 {
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1057 }
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
165f639c 1061 setup_uniform_class_p ();
058e97ec 1062}
058e97ec 1063
1756cb66
VM
1064/* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1071
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
2b9c63a2 1078 class from CLASSES whose set intersects with given class set. */
058e97ec 1079static void
1756cb66
VM
1080setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
058e97ec 1082{
32e8bb8e 1083 int cl, mode;
1756cb66 1084 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1085 int i, cost, min_cost, best_cost;
1086
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1088 class_translate[cl] = NO_REGS;
b8698a0f 1089
1756cb66 1090 for (i = 0; i < classes_num; i++)
058e97ec 1091 {
1756cb66
VM
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
058e97ec 1099 }
1756cb66
VM
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
058e97ec
VM
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1104 {
1756cb66 1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1756cb66 1109 for (i = 0; i < classes_num; i++)
058e97ec 1110 {
1756cb66 1111 aclass = classes[i];
058e97ec 1112 COPY_HARD_REG_SET (temp_hard_regset,
1756cb66 1113 reg_class_contents[aclass]);
058e97ec
VM
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 1116 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1117 {
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1120 {
761a8eb7
VM
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
058e97ec
VM
1123 if (min_cost > cost)
1124 min_cost = cost;
1125 }
1126 if (best_class == NO_REGS || best_cost > min_cost)
1127 {
1756cb66 1128 best_class = aclass;
058e97ec
VM
1129 best_cost = min_cost;
1130 }
1131 }
1132 }
1756cb66 1133 class_translate[cl] = best_class;
058e97ec
VM
1134 }
1135}
058e97ec 1136
1756cb66
VM
1137/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139static void
1140setup_class_translate (void)
1141{
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1146}
1147
1148/* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1151
1152/* The function used to sort the important classes. */
1153static int
1154comp_reg_classes_func (const void *v1p, const void *v2p)
1155{
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1158 enum reg_class tcl1, tcl2;
db1a8d98
VM
1159 int diff;
1160
1756cb66
VM
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1167}
1168
1756cb66
VM
1169/* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1175
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
db1a8d98
VM
1180static void
1181reorder_important_classes (void)
1182{
1183 int i;
1184
1185 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1193}
1194
1756cb66
VM
1195/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
058e97ec 1199static void
7db7ed3c 1200setup_reg_class_relations (void)
058e97ec
VM
1201{
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1204 bool important_class_p[N_REG_CLASSES];
058e97ec 1205
7db7ed3c
VM
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1210 {
7db7ed3c 1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1213 {
7db7ed3c 1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
058e97ec
VM
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
058e97ec 1223 {
1756cb66
VM
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1227 for (i = 0;; i++)
1228 {
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1235 }
1756cb66
VM
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1238 continue;
1239 }
7db7ed3c
VM
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1244 {
1756cb66
VM
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1248 enum reg_class *p;
1249
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1255 }
1756cb66
VM
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
058e97ec
VM
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
55a2c322 1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1265 {
058e97ec
VM
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1269 {
1756cb66
VM
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
55a2c322
VM
1273 if (important_class_p[cl3])
1274 {
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1295 }
058e97ec
VM
1296 COPY_HARD_REG_SET
1297 (temp_set2,
55a2c322 1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
058e97ec 1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
55a2c322
VM
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
058e97ec 1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
55a2c322
VM
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1309 }
55a2c322
VM
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1312 {
df3e3493 1313 /* CL3 allocatable hard register set is inside of
1756cb66
VM
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
058e97ec
VM
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1756cb66 1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
058e97ec 1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1756cb66 1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1322
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1335 }
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1337 {
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1347
058e97ec
VM
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1756cb66
VM
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1360 }
1361 }
1362 }
1363 }
1364}
1365
df3e3493 1366/* Output all uniform and important classes into file F. */
165f639c 1367static void
89e94470 1368print_uniform_and_important_classes (FILE *f)
165f639c 1369{
165f639c
VM
1370 int i, cl;
1371
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1380}
1381
1382/* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
058e97ec 1384static void
165f639c 1385print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1386{
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
058e97ec
VM
1394 int i;
1395
1756cb66
VM
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1402 reg_class_names[class_translate[i]]);
058e97ec
VM
1403}
1404
1756cb66
VM
1405/* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
058e97ec 1407void
1756cb66 1408ira_debug_allocno_classes (void)
058e97ec 1409{
89e94470 1410 print_uniform_and_important_classes (stderr);
165f639c
VM
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
058e97ec
VM
1413}
1414
1756cb66 1415/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1416 important classes. */
1417static void
1756cb66 1418find_reg_classes (void)
058e97ec 1419{
1756cb66 1420 setup_allocno_and_important_classes ();
7db7ed3c 1421 setup_class_translate ();
db1a8d98 1422 reorder_important_classes ();
7db7ed3c 1423 setup_reg_class_relations ();
058e97ec
VM
1424}
1425
1426\f
1427
c0683a82
VM
1428/* Set up the array above. */
1429static void
1756cb66 1430setup_hard_regno_aclass (void)
c0683a82 1431{
7efcf910 1432 int i;
c0683a82
VM
1433
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1435 {
1756cb66
VM
1436#if 1
1437 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1756cb66
VM
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441#else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1446 {
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1449 {
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1452 }
1453 }
1454#endif
c0683a82
VM
1455 }
1456}
1457
1458\f
1459
1756cb66 1460/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1461static void
1462setup_reg_class_nregs (void)
1463{
1756cb66 1464 int i, cl, cl2, m;
058e97ec 1465
1756cb66
VM
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1467 {
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
ef4bddc2 1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1756cb66
VM
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1479 }
058e97ec
VM
1480}
1481
1482\f
1483
c9d74da6
RS
1484/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1486static void
1487setup_prohibited_class_mode_regs (void)
1488{
c9d74da6 1489 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1490
1756cb66 1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1492 {
c9d74da6
RS
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
058e97ec
VM
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1496 {
c9d74da6
RS
1497 count = 0;
1498 last_hard_regno = -1;
1756cb66 1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1501 {
1502 hard_regno = ira_class_hard_regs[cl][k];
ef4bddc2 1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1756cb66 1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1505 hard_regno);
c9d74da6 1506 else if (in_hard_reg_set_p (temp_hard_regset,
ef4bddc2 1507 (machine_mode) j, hard_regno))
c9d74da6
RS
1508 {
1509 last_hard_regno = hard_regno;
1510 count++;
1511 }
058e97ec 1512 }
c9d74da6 1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1514 }
1515 }
1516}
1517
1756cb66
VM
1518/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521static void
1522clarify_prohibited_class_mode_regs (void)
1523{
1524 int j, k, hard_regno, cl, pclass, nregs;
1525
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1528 {
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1531 {
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1537 {
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
a2c19e93 1540 continue;
1756cb66 1541 }
a2c19e93
RS
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1547 {
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1551 }
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
ef4bddc2 1555 (machine_mode) j, hard_regno);
a2c19e93
RS
1556 }
1557 }
1756cb66 1558}
058e97ec 1559\f
7cc61ee4
RS
1560/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562void
ef4bddc2 1563ira_init_register_move_cost (machine_mode mode)
e80ccebc
RS
1564{
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
ed9e2ed0 1567 unsigned int cl1, cl2;
e80ccebc 1568
7cc61ee4
RS
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
ed9e2ed0
RS
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1575 {
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1579 {
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1a788c05 1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
fef37404
VM
1588 }
1589 else
1590 {
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1594 }
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1597 }
e80ccebc
RS
1598 if (all_match && last_mode_for_init_move_cost != -1)
1599 {
7cc61ee4
RS
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1606 return;
1607 }
ed9e2ed0 1608 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0 1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1614 {
1615 int cost;
1616 enum reg_class *p1, *p2;
1617
1618 if (last_move_cost[cl1][cl2] == 65535)
1619 {
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1623 }
1624 else
1625 {
1626 cost = last_move_cost[cl1][cl2];
1627
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1634
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1641
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1644
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1649
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1654 }
1655 }
058e97ec 1656}
fef37404 1657
058e97ec
VM
1658\f
1659
058e97ec
VM
1660/* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663void
1664ira_init_once (void)
1665{
058e97ec 1666 ira_init_costs_once ();
55a2c322 1667 lra_init_once ();
058e97ec
VM
1668}
1669
7cc61ee4
RS
1670/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
19c708dc
RS
1672void
1673target_ira_int::free_register_move_costs (void)
058e97ec 1674{
e80ccebc 1675 int mode, i;
058e97ec 1676
e80ccebc
RS
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
19c708dc 1680 if (x_ira_register_move_cost[mode])
e80ccebc 1681 {
7cc61ee4 1682 for (i = 0;
19c708dc
RS
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
7cc61ee4 1685 i++)
e80ccebc
RS
1686 ;
1687 if (i == mode)
1688 {
19c708dc
RS
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
e80ccebc
RS
1692 }
1693 }
19c708dc
RS
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
e80ccebc 1697 last_mode_for_init_move_cost = -1;
058e97ec
VM
1698}
1699
19c708dc
RS
1700target_ira_int::~target_ira_int ()
1701{
1702 free_ira_costs ();
1703 free_register_move_costs ();
1704}
1705
058e97ec
VM
1706/* This is called every time when register related information is
1707 changed. */
1708void
1709ira_init (void)
1710{
19c708dc 1711 this_target_ira_int->free_register_move_costs ();
058e97ec
VM
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1756cb66
VM
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
058e97ec
VM
1720 ira_init_costs ();
1721}
1722
058e97ec 1723\f
15e7b94f
RS
1724#define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1726
1727/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728static void
1729setup_prohibited_mode_move_regs (void)
1730{
1731 int i, j;
647d790d
DM
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
058e97ec
VM
1734
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
c3dc5e66
RS
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
ed8921dc 1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1743 {
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1746 {
ef4bddc2 1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
058e97ec 1748 continue;
8deccbb7
RS
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
058e97ec
VM
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
daca1a96
RS
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
058e97ec
VM
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1761 }
1762 }
1763}
1764
1765\f
1766
3b6d1699
VM
1767/* Setup possible alternatives in ALTS for INSN. */
1768void
647d790d 1769ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
3b6d1699
VM
1770{
1771 /* MAP nalt * nop -> start of constraints for given operand and
2b9c63a2 1772 alternative. */
3b6d1699
VM
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
3b6d1699
VM
1777 int commutative = -1;
1778
1779 extract_insn (insn);
9840b2fa 1780 alternative_mask preferred = get_preferred_alternatives (insn);
3b6d1699
VM
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1792 {
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1796 {
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1800 {
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
3f12f020
AK
1803 {
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1809 }
3b6d1699
VM
1810 if (*p)
1811 p++;
1812 }
1813 }
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1815 {
9840b2fa 1816 if (!TEST_BIT (preferred, nalt)
4cc8d9d2 1817 || TEST_HARD_REG_BIT (alts, nalt))
3b6d1699
VM
1818 continue;
1819
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1821 {
1822 int c, len;
1823
fab27f52 1824 rtx op = recog_data.operand[nop];
3b6d1699
VM
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1828
1829 do
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1831 {
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 case '\0':
1836 len = 0;
1837 break;
1838
3b6d1699 1839 case '%':
3f12f020 1840 /* The commutative modifier is handled above. */
3b6d1699
VM
1841 break;
1842
3b6d1699
VM
1843 case '0': case '1': case '2': case '3': case '4':
1844 case '5': case '6': case '7': case '8': case '9':
1845 goto op_success;
1846 break;
1847
3b6d1699 1848 case 'g':
3b6d1699
VM
1849 goto op_success;
1850 break;
1851
1852 default:
1853 {
777e635f
RS
1854 enum constraint_num cn = lookup_constraint (p);
1855 switch (get_constraint_type (cn))
1856 {
1857 case CT_REGISTER:
1858 if (reg_class_for_constraint (cn) != NO_REGS)
1859 goto op_success;
1860 break;
1861
d9c35eee
RS
1862 case CT_CONST_INT:
1863 if (CONST_INT_P (op)
1864 && (insn_const_int_ok_for_constraint
1865 (INTVAL (op), cn)))
1866 goto op_success;
1867 break;
1868
777e635f
RS
1869 case CT_ADDRESS:
1870 case CT_MEMORY:
1871 goto op_success;
1872
1873 case CT_FIXED_FORM:
1874 if (constraint_satisfied_p (op, cn))
1875 goto op_success;
1876 break;
1877 }
3b6d1699
VM
1878 break;
1879 }
1880 }
1881 while (p += len, c);
1882 break;
1883 op_success:
1884 ;
1885 }
1886 if (nop >= recog_data.n_operands)
1887 SET_HARD_REG_BIT (alts, nalt);
1888 }
1889 if (commutative < 0)
1890 break;
1891 if (curr_swapped)
1892 break;
fab27f52
MM
1893 std::swap (recog_data.operand[commutative],
1894 recog_data.operand[commutative + 1]);
3b6d1699
VM
1895 }
1896}
1897
1898/* Return the number of the output non-early clobber operand which
1899 should be the same in any case as operand with number OP_NUM (or
1900 negative value if there is no such operand). The function takes
1901 only really possible alternatives into consideration. */
1902int
1903ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1904{
1905 int curr_alt, c, original, dup;
1906 bool ignore_p, use_commut_op_p;
1907 const char *str;
3b6d1699
VM
1908
1909 if (op_num < 0 || recog_data.n_alternatives == 0)
1910 return -1;
98f2f031
RS
1911 /* We should find duplications only for input operands. */
1912 if (recog_data.operand_type[op_num] != OP_IN)
1913 return -1;
3b6d1699 1914 str = recog_data.constraints[op_num];
98f2f031 1915 use_commut_op_p = false;
3b6d1699
VM
1916 for (;;)
1917 {
777e635f 1918 rtx op = recog_data.operand[op_num];
3b6d1699 1919
98f2f031
RS
1920 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1921 original = -1;;)
3b6d1699
VM
1922 {
1923 c = *str;
1924 if (c == '\0')
1925 break;
98f2f031 1926 if (c == '#')
3b6d1699
VM
1927 ignore_p = true;
1928 else if (c == ',')
1929 {
1930 curr_alt++;
98f2f031 1931 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
3b6d1699
VM
1932 }
1933 else if (! ignore_p)
1934 switch (c)
1935 {
3b6d1699
VM
1936 case 'g':
1937 goto fail;
8677664e 1938 default:
3b6d1699 1939 {
777e635f
RS
1940 enum constraint_num cn = lookup_constraint (str);
1941 enum reg_class cl = reg_class_for_constraint (cn);
1942 if (cl != NO_REGS
1943 && !targetm.class_likely_spilled_p (cl))
1944 goto fail;
1945 if (constraint_satisfied_p (op, cn))
3b6d1699 1946 goto fail;
3b6d1699
VM
1947 break;
1948 }
1949
1950 case '0': case '1': case '2': case '3': case '4':
1951 case '5': case '6': case '7': case '8': case '9':
1952 if (original != -1 && original != c)
1953 goto fail;
1954 original = c;
1955 break;
1956 }
1957 str += CONSTRAINT_LEN (c, str);
1958 }
1959 if (original == -1)
1960 goto fail;
1961 dup = -1;
1962 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1963 *str != 0;
1964 str++)
1965 if (ignore_p)
1966 {
1967 if (*str == ',')
1968 ignore_p = false;
1969 }
1970 else if (*str == '#')
1971 ignore_p = true;
1972 else if (! ignore_p)
1973 {
1974 if (*str == '=')
1975 dup = original - '0';
1976 /* It is better ignore an alternative with early clobber. */
1977 else if (*str == '&')
1978 goto fail;
1979 }
1980 if (dup >= 0)
1981 return dup;
1982 fail:
1983 if (use_commut_op_p)
1984 break;
1985 use_commut_op_p = true;
73f793e3 1986 if (recog_data.constraints[op_num][0] == '%')
3b6d1699 1987 str = recog_data.constraints[op_num + 1];
73f793e3 1988 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
3b6d1699
VM
1989 str = recog_data.constraints[op_num - 1];
1990 else
1991 break;
1992 }
1993 return -1;
1994}
1995
1996\f
1997
1998/* Search forward to see if the source register of a copy insn dies
1999 before either it or the destination register is modified, but don't
2000 scan past the end of the basic block. If so, we can replace the
2001 source with the destination and let the source die in the copy
2002 insn.
2003
2004 This will reduce the number of registers live in that range and may
2005 enable the destination and the source coalescing, thus often saving
2006 one register in addition to a register-register copy. */
2007
2008static void
2009decrease_live_ranges_number (void)
2010{
2011 basic_block bb;
070a1983 2012 rtx_insn *insn;
7da26277
TS
2013 rtx set, src, dest, dest_death, note;
2014 rtx_insn *p, *q;
3b6d1699
VM
2015 int sregno, dregno;
2016
2017 if (! flag_expensive_optimizations)
2018 return;
2019
2020 if (ira_dump_file)
2021 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2022
11cd3bed 2023 FOR_EACH_BB_FN (bb, cfun)
3b6d1699
VM
2024 FOR_BB_INSNS (bb, insn)
2025 {
2026 set = single_set (insn);
2027 if (! set)
2028 continue;
2029 src = SET_SRC (set);
2030 dest = SET_DEST (set);
2031 if (! REG_P (src) || ! REG_P (dest)
2032 || find_reg_note (insn, REG_DEAD, src))
2033 continue;
2034 sregno = REGNO (src);
2035 dregno = REGNO (dest);
2036
2037 /* We don't want to mess with hard regs if register classes
2038 are small. */
2039 if (sregno == dregno
2040 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2041 && (sregno < FIRST_PSEUDO_REGISTER
2042 || dregno < FIRST_PSEUDO_REGISTER))
2043 /* We don't see all updates to SP if they are in an
2044 auto-inc memory reference, so we must disallow this
2045 optimization on them. */
2046 || sregno == STACK_POINTER_REGNUM
2047 || dregno == STACK_POINTER_REGNUM)
2048 continue;
2049
2050 dest_death = NULL_RTX;
2051
2052 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2053 {
2054 if (! INSN_P (p))
2055 continue;
2056 if (BLOCK_FOR_INSN (p) != bb)
2057 break;
2058
2059 if (reg_set_p (src, p) || reg_set_p (dest, p)
2060 /* If SRC is an asm-declared register, it must not be
2061 replaced in any asm. Unfortunately, the REG_EXPR
2062 tree for the asm variable may be absent in the SRC
2063 rtx, so we can't check the actual register
2064 declaration easily (the asm operand will have it,
2065 though). To avoid complicating the test for a rare
2066 case, we just don't perform register replacement
2067 for a hard reg mentioned in an asm. */
2068 || (sregno < FIRST_PSEUDO_REGISTER
2069 && asm_noperands (PATTERN (p)) >= 0
2070 && reg_overlap_mentioned_p (src, PATTERN (p)))
2071 /* Don't change hard registers used by a call. */
2072 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2073 && find_reg_fusage (p, USE, src))
2074 /* Don't change a USE of a register. */
2075 || (GET_CODE (PATTERN (p)) == USE
2076 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2077 break;
2078
2079 /* See if all of SRC dies in P. This test is slightly
2080 more conservative than it needs to be. */
2081 if ((note = find_regno_note (p, REG_DEAD, sregno))
2082 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2083 {
2084 int failed = 0;
2085
2086 /* We can do the optimization. Scan forward from INSN
2087 again, replacing regs as we go. Set FAILED if a
2088 replacement can't be done. In that case, we can't
2089 move the death note for SRC. This should be
2090 rare. */
2091
2092 /* Set to stop at next insn. */
2093 for (q = next_real_insn (insn);
2094 q != next_real_insn (p);
2095 q = next_real_insn (q))
2096 {
2097 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2098 {
2099 /* If SRC is a hard register, we might miss
2100 some overlapping registers with
2101 validate_replace_rtx, so we would have to
2102 undo it. We can't if DEST is present in
2103 the insn, so fail in that combination of
2104 cases. */
2105 if (sregno < FIRST_PSEUDO_REGISTER
2106 && reg_mentioned_p (dest, PATTERN (q)))
2107 failed = 1;
2108
2109 /* Attempt to replace all uses. */
2110 else if (!validate_replace_rtx (src, dest, q))
2111 failed = 1;
2112
2113 /* If this succeeded, but some part of the
2114 register is still present, undo the
2115 replacement. */
2116 else if (sregno < FIRST_PSEUDO_REGISTER
2117 && reg_overlap_mentioned_p (src, PATTERN (q)))
2118 {
2119 validate_replace_rtx (dest, src, q);
2120 failed = 1;
2121 }
2122 }
2123
2124 /* If DEST dies here, remove the death note and
2125 save it for later. Make sure ALL of DEST dies
2126 here; again, this is overly conservative. */
2127 if (! dest_death
2128 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2129 {
2130 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2131 remove_note (q, dest_death);
2132 else
2133 {
2134 failed = 1;
2135 dest_death = 0;
2136 }
2137 }
2138 }
2139
2140 if (! failed)
2141 {
2142 /* Move death note of SRC from P to INSN. */
2143 remove_note (p, note);
2144 XEXP (note, 1) = REG_NOTES (insn);
2145 REG_NOTES (insn) = note;
2146 }
2147
2148 /* DEST is also dead if INSN has a REG_UNUSED note for
2149 DEST. */
2150 if (! dest_death
2151 && (dest_death
2152 = find_regno_note (insn, REG_UNUSED, dregno)))
2153 {
2154 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2155 remove_note (insn, dest_death);
2156 }
2157
2158 /* Put death note of DEST on P if we saw it die. */
2159 if (dest_death)
2160 {
2161 XEXP (dest_death, 1) = REG_NOTES (p);
2162 REG_NOTES (p) = dest_death;
2163 }
2164 break;
2165 }
2166
2167 /* If SRC is a hard register which is set or killed in
2168 some other way, we can't do this optimization. */
2169 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2170 break;
2171 }
2172 }
2173}
2174
2175\f
2176
0896cc66
JL
2177/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2178static bool
2179ira_bad_reload_regno_1 (int regno, rtx x)
2180{
ac0ab4f7 2181 int x_regno, n, i;
0896cc66
JL
2182 ira_allocno_t a;
2183 enum reg_class pref;
2184
2185 /* We only deal with pseudo regs. */
2186 if (! x || GET_CODE (x) != REG)
2187 return false;
2188
2189 x_regno = REGNO (x);
2190 if (x_regno < FIRST_PSEUDO_REGISTER)
2191 return false;
2192
2193 /* If the pseudo prefers REGNO explicitly, then do not consider
2194 REGNO a bad spill choice. */
2195 pref = reg_preferred_class (x_regno);
2196 if (reg_class_size[pref] == 1)
2197 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2198
2199 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2200 poor choice for a reload regno. */
2201 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
2202 n = ALLOCNO_NUM_OBJECTS (a);
2203 for (i = 0; i < n; i++)
2204 {
2205 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2206 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2207 return true;
2208 }
0896cc66
JL
2209 return false;
2210}
2211
2212/* Return nonzero if REGNO is a particularly bad choice for reloading
2213 IN or OUT. */
2214bool
2215ira_bad_reload_regno (int regno, rtx in, rtx out)
2216{
2217 return (ira_bad_reload_regno_1 (regno, in)
2218 || ira_bad_reload_regno_1 (regno, out));
2219}
2220
b748fbd6 2221/* Add register clobbers from asm statements. */
058e97ec 2222static void
b748fbd6 2223compute_regs_asm_clobbered (void)
058e97ec
VM
2224{
2225 basic_block bb;
2226
11cd3bed 2227 FOR_EACH_BB_FN (bb, cfun)
058e97ec 2228 {
070a1983 2229 rtx_insn *insn;
058e97ec
VM
2230 FOR_BB_INSNS_REVERSE (bb, insn)
2231 {
bfac633a 2232 df_ref def;
058e97ec 2233
f33a8d10 2234 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
bfac633a 2235 FOR_EACH_INSN_DEF (def, insn)
058e97ec 2236 {
058e97ec 2237 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
2238 if (HARD_REGISTER_NUM_P (dregno))
2239 add_to_hard_reg_set (&crtl->asm_clobbers,
2240 GET_MODE (DF_REF_REAL_REG (def)),
2241 dregno);
058e97ec
VM
2242 }
2243 }
2244 }
2245}
2246
2247
8d49e7ef
VM
2248/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2249 REGS_EVER_LIVE. */
ce18efcb 2250void
8d49e7ef 2251ira_setup_eliminable_regset (void)
058e97ec 2252{
058e97ec 2253#ifdef ELIMINABLE_REGS
89ceba31 2254 int i;
058e97ec
VM
2255 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2256#endif
2257 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2258 sp for alloca. So we can't eliminate the frame pointer in that
2259 case. At some point, we should improve this by emitting the
2260 sp-adjusting insns for this case. */
55a2c322 2261 frame_pointer_needed
058e97ec
VM
2262 = (! flag_omit_frame_pointer
2263 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
7700cd85
EB
2264 /* We need the frame pointer to catch stack overflow exceptions if
2265 the stack pointer is moving (as for the alloca case just above). */
2266 || (STACK_CHECK_MOVING_SP
2267 && flag_stack_check
2268 && flag_exceptions
2269 && cfun->can_throw_non_call_exceptions)
058e97ec 2270 || crtl->accesses_prior_frames
8d49e7ef 2271 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
939b37da
BI
2272 /* We need a frame pointer for all Cilk Plus functions that use
2273 Cilk keywords. */
b72271b9 2274 || (flag_cilkplus && cfun->is_cilk_function)
b52b1749 2275 || targetm.frame_pointer_required ());
058e97ec 2276
8d49e7ef
VM
2277 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2278 RTL is very small. So if we use frame pointer for RA and RTL
2279 actually prevents this, we will spill pseudos assigned to the
2280 frame pointer in LRA. */
058e97ec 2281
55a2c322
VM
2282 if (frame_pointer_needed)
2283 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2284
058e97ec
VM
2285 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2286 CLEAR_HARD_REG_SET (eliminable_regset);
2287
b748fbd6
PB
2288 compute_regs_asm_clobbered ();
2289
058e97ec
VM
2290 /* Build the regset of all eliminable registers and show we can't
2291 use those that we already know won't be eliminated. */
2292#ifdef ELIMINABLE_REGS
2293 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2294 {
2295 bool cannot_elim
7b5cbb57 2296 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 2297 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 2298
b748fbd6 2299 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
2300 {
2301 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2302
2303 if (cannot_elim)
2304 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2305 }
2306 else if (cannot_elim)
2307 error ("%s cannot be used in asm here",
2308 reg_names[eliminables[i].from]);
2309 else
2310 df_set_regs_ever_live (eliminables[i].from, true);
2311 }
c3e08036 2312 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
058e97ec 2313 {
c3e08036
TS
2314 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2315 {
2316 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2317 if (frame_pointer_needed)
2318 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2319 }
2320 else if (frame_pointer_needed)
2321 error ("%s cannot be used in asm here",
2322 reg_names[HARD_FRAME_POINTER_REGNUM]);
2323 else
2324 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
058e97ec 2325 }
058e97ec
VM
2326
2327#else
b748fbd6 2328 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
2329 {
2330 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
55a2c322 2331 if (frame_pointer_needed)
058e97ec
VM
2332 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2333 }
55a2c322 2334 else if (frame_pointer_needed)
058e97ec
VM
2335 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2336 else
2337 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2338#endif
2339}
2340
2341\f
2342
2af2dbdc
VM
2343/* Vector of substitutions of register numbers,
2344 used to map pseudo regs into hardware regs.
2345 This is set up as a result of register allocation.
2346 Element N is the hard reg assigned to pseudo reg N,
2347 or is -1 if no hard reg was assigned.
2348 If N is a hard reg number, element N is N. */
2349short *reg_renumber;
2350
058e97ec
VM
2351/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2352 the allocation found by IRA. */
2353static void
2354setup_reg_renumber (void)
2355{
2356 int regno, hard_regno;
2357 ira_allocno_t a;
2358 ira_allocno_iterator ai;
2359
2360 caller_save_needed = 0;
2361 FOR_EACH_ALLOCNO (a, ai)
2362 {
55a2c322
VM
2363 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2364 continue;
058e97ec
VM
2365 /* There are no caps at this point. */
2366 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2367 if (! ALLOCNO_ASSIGNED_P (a))
2368 /* It can happen if A is not referenced but partially anticipated
2369 somewhere in a region. */
2370 ALLOCNO_ASSIGNED_P (a) = true;
2371 ira_free_allocno_updated_costs (a);
2372 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2373 regno = ALLOCNO_REGNO (a);
058e97ec 2374 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2375 if (hard_regno >= 0)
058e97ec 2376 {
1756cb66
VM
2377 int i, nwords;
2378 enum reg_class pclass;
2379 ira_object_t obj;
2380
2381 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2382 nwords = ALLOCNO_NUM_OBJECTS (a);
2383 for (i = 0; i < nwords; i++)
2384 {
2385 obj = ALLOCNO_OBJECT (a, i);
2386 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2387 reg_class_contents[pclass]);
2388 }
2389 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
2390 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2391 call_used_reg_set))
1756cb66
VM
2392 {
2393 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2394 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2395 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 2396 || regno >= ira_reg_equiv_len
55a2c322 2397 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
2398 caller_save_needed = 1;
2399 }
058e97ec
VM
2400 }
2401 }
2402}
2403
2404/* Set up allocno assignment flags for further allocation
2405 improvements. */
2406static void
2407setup_allocno_assignment_flags (void)
2408{
2409 int hard_regno;
2410 ira_allocno_t a;
2411 ira_allocno_iterator ai;
2412
2413 FOR_EACH_ALLOCNO (a, ai)
2414 {
2415 if (! ALLOCNO_ASSIGNED_P (a))
2416 /* It can happen if A is not referenced but partially anticipated
2417 somewhere in a region. */
2418 ira_free_allocno_updated_costs (a);
2419 hard_regno = ALLOCNO_HARD_REGNO (a);
2420 /* Don't assign hard registers to allocnos which are destination
2421 of removed store at the end of loop. It has no sense to keep
2422 the same value in different hard registers. It is also
2423 impossible to assign hard registers correctly to such
2424 allocnos because the cost info and info about intersected
2425 calls are incorrect for them. */
2426 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2427 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2428 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2429 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2430 ira_assert
2431 (hard_regno < 0
2432 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2433 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2434 }
2435}
2436
2437/* Evaluate overall allocation cost and the costs for using hard
2438 registers and memory for allocnos. */
2439static void
2440calculate_allocation_cost (void)
2441{
2442 int hard_regno, cost;
2443 ira_allocno_t a;
2444 ira_allocno_iterator ai;
2445
2446 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2447 FOR_EACH_ALLOCNO (a, ai)
2448 {
2449 hard_regno = ALLOCNO_HARD_REGNO (a);
2450 ira_assert (hard_regno < 0
9181a6e5
VM
2451 || (ira_hard_reg_in_set_p
2452 (hard_regno, ALLOCNO_MODE (a),
2453 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2454 if (hard_regno < 0)
2455 {
2456 cost = ALLOCNO_MEMORY_COST (a);
2457 ira_mem_cost += cost;
2458 }
2459 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2460 {
2461 cost = (ALLOCNO_HARD_REG_COSTS (a)
2462 [ira_class_hard_reg_index
1756cb66 2463 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2464 ira_reg_cost += cost;
2465 }
2466 else
2467 {
1756cb66 2468 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2469 ira_reg_cost += cost;
2470 }
2471 ira_overall_cost += cost;
2472 }
2473
2474 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2475 {
2476 fprintf (ira_dump_file,
16998094
JM
2477 "+++Costs: overall %" PRId64
2478 ", reg %" PRId64
2479 ", mem %" PRId64
2480 ", ld %" PRId64
2481 ", st %" PRId64
2482 ", move %" PRId64,
058e97ec
VM
2483 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2484 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2bf7560b 2485 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
058e97ec
VM
2486 ira_move_loops_num, ira_additional_jumps_num);
2487 }
2488
2489}
2490
2491#ifdef ENABLE_IRA_CHECKING
2492/* Check the correctness of the allocation. We do need this because
2493 of complicated code to transform more one region internal
2494 representation into one region representation. */
2495static void
2496check_allocation (void)
2497{
fa86d337 2498 ira_allocno_t a;
ac0ab4f7 2499 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2500 ira_allocno_iterator ai;
2501
2502 FOR_EACH_ALLOCNO (a, ai)
2503 {
ac0ab4f7
BS
2504 int n = ALLOCNO_NUM_OBJECTS (a);
2505 int i;
fa86d337 2506
058e97ec
VM
2507 if (ALLOCNO_CAP_MEMBER (a) != NULL
2508 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2509 continue;
2510 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
8cfd82bf
BS
2511 if (nregs == 1)
2512 /* We allocated a single hard register. */
2513 n = 1;
2514 else if (n > 1)
2515 /* We allocated multiple hard registers, and we will test
2516 conflicts in a granularity of single hard regs. */
2517 nregs = 1;
2518
ac0ab4f7
BS
2519 for (i = 0; i < n; i++)
2520 {
2521 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2522 ira_object_t conflict_obj;
2523 ira_object_conflict_iterator oci;
2524 int this_regno = hard_regno;
2525 if (n > 1)
fa86d337 2526 {
2805e6c0 2527 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2528 this_regno += n - i - 1;
2529 else
2530 this_regno += i;
2531 }
2532 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2533 {
2534 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2535 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2536 if (conflict_hard_regno < 0)
2537 continue;
8cfd82bf
BS
2538
2539 conflict_nregs
2540 = (hard_regno_nregs
2541 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2542
2543 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2544 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2545 {
2805e6c0 2546 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2547 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2548 - OBJECT_SUBWORD (conflict_obj) - 1);
2549 else
2550 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2551 conflict_nregs = 1;
2552 }
ac0ab4f7
BS
2553
2554 if ((conflict_hard_regno <= this_regno
2555 && this_regno < conflict_hard_regno + conflict_nregs)
2556 || (this_regno <= conflict_hard_regno
2557 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2558 {
2559 fprintf (stderr, "bad allocation for %d and %d\n",
2560 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2561 gcc_unreachable ();
2562 }
2563 }
2564 }
058e97ec
VM
2565 }
2566}
2567#endif
2568
55a2c322
VM
2569/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2570 be already calculated. */
2571static void
2572setup_reg_equiv_init (void)
2573{
2574 int i;
2575 int max_regno = max_reg_num ();
2576
2577 for (i = 0; i < max_regno; i++)
2578 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2579}
2580
2581/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2582 are insns which were generated for such movement. It is assumed
2583 that FROM_REGNO and TO_REGNO always have the same value at the
2584 point of any move containing such registers. This function is used
2585 to update equiv info for register shuffles on the region borders
2586 and for caller save/restore insns. */
2587void
b32d5189 2588ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
55a2c322 2589{
b32d5189
DM
2590 rtx_insn *insn;
2591 rtx x, note;
55a2c322
VM
2592
2593 if (! ira_reg_equiv[from_regno].defined_p
2594 && (! ira_reg_equiv[to_regno].defined_p
2595 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2596 && ! MEM_READONLY_P (x))))
5a107a0f 2597 return;
55a2c322
VM
2598 insn = insns;
2599 if (NEXT_INSN (insn) != NULL_RTX)
2600 {
2601 if (! ira_reg_equiv[to_regno].defined_p)
2602 {
2603 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2604 return;
2605 }
2606 ira_reg_equiv[to_regno].defined_p = false;
2607 ira_reg_equiv[to_regno].memory
2608 = ira_reg_equiv[to_regno].constant
2609 = ira_reg_equiv[to_regno].invariant
0cc97fc5 2610 = ira_reg_equiv[to_regno].init_insns = NULL;
55a2c322
VM
2611 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2612 fprintf (ira_dump_file,
2613 " Invalidating equiv info for reg %d\n", to_regno);
2614 return;
2615 }
2616 /* It is possible that FROM_REGNO still has no equivalence because
2617 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2618 insn was not processed yet. */
2619 if (ira_reg_equiv[from_regno].defined_p)
2620 {
2621 ira_reg_equiv[to_regno].defined_p = true;
2622 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2623 {
2624 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2625 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2626 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2627 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2628 ira_reg_equiv[to_regno].memory = x;
2629 if (! MEM_READONLY_P (x))
2630 /* We don't add the insn to insn init list because memory
2631 equivalence is just to say what memory is better to use
2632 when the pseudo is spilled. */
2633 return;
2634 }
2635 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2636 {
2637 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2638 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2639 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2640 ira_reg_equiv[to_regno].constant = x;
2641 }
2642 else
2643 {
2644 x = ira_reg_equiv[from_regno].invariant;
2645 ira_assert (x != NULL_RTX);
2646 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2647 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2648 ira_reg_equiv[to_regno].invariant = x;
2649 }
2650 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2651 {
2652 note = set_unique_reg_note (insn, REG_EQUIV, x);
2653 gcc_assert (note != NULL_RTX);
2654 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2655 {
2656 fprintf (ira_dump_file,
2657 " Adding equiv note to insn %u for reg %d ",
2658 INSN_UID (insn), to_regno);
cfbeaedf 2659 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2660 fprintf (ira_dump_file, "\n");
2661 }
2662 }
2663 }
2664 ira_reg_equiv[to_regno].init_insns
2665 = gen_rtx_INSN_LIST (VOIDmode, insn,
2666 ira_reg_equiv[to_regno].init_insns);
2667 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2668 fprintf (ira_dump_file,
2669 " Adding equiv init move insn %u to reg %d\n",
2670 INSN_UID (insn), to_regno);
2671}
2672
058e97ec
VM
2673/* Fix values of array REG_EQUIV_INIT after live range splitting done
2674 by IRA. */
2675static void
2676fix_reg_equiv_init (void)
2677{
70cc3288 2678 int max_regno = max_reg_num ();
f2034d06 2679 int i, new_regno, max;
618bccf9
TS
2680 rtx set;
2681 rtx_insn_list *x, *next, *prev;
2682 rtx_insn *insn;
b8698a0f 2683
70cc3288 2684 if (max_regno_before_ira < max_regno)
058e97ec 2685 {
9771b263 2686 max = vec_safe_length (reg_equivs);
f2034d06
JL
2687 grow_reg_equivs ();
2688 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
618bccf9 2689 for (prev = NULL, x = reg_equiv_init (i);
f2034d06
JL
2690 x != NULL_RTX;
2691 x = next)
058e97ec 2692 {
618bccf9
TS
2693 next = x->next ();
2694 insn = x->insn ();
2695 set = single_set (insn);
058e97ec
VM
2696 ira_assert (set != NULL_RTX
2697 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2698 if (REG_P (SET_DEST (set))
2699 && ((int) REGNO (SET_DEST (set)) == i
2700 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2701 new_regno = REGNO (SET_DEST (set));
2702 else if (REG_P (SET_SRC (set))
2703 && ((int) REGNO (SET_SRC (set)) == i
2704 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2705 new_regno = REGNO (SET_SRC (set));
2706 else
2707 gcc_unreachable ();
2708 if (new_regno == i)
2709 prev = x;
2710 else
2711 {
55a2c322 2712 /* Remove the wrong list element. */
058e97ec 2713 if (prev == NULL_RTX)
f2034d06 2714 reg_equiv_init (i) = next;
058e97ec
VM
2715 else
2716 XEXP (prev, 1) = next;
f2034d06
JL
2717 XEXP (x, 1) = reg_equiv_init (new_regno);
2718 reg_equiv_init (new_regno) = x;
058e97ec
VM
2719 }
2720 }
2721 }
2722}
2723
2724#ifdef ENABLE_IRA_CHECKING
2725/* Print redundant memory-memory copies. */
2726static void
2727print_redundant_copies (void)
2728{
2729 int hard_regno;
2730 ira_allocno_t a;
2731 ira_copy_t cp, next_cp;
2732 ira_allocno_iterator ai;
b8698a0f 2733
058e97ec
VM
2734 FOR_EACH_ALLOCNO (a, ai)
2735 {
2736 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2b9c63a2 2737 /* It is a cap. */
058e97ec
VM
2738 continue;
2739 hard_regno = ALLOCNO_HARD_REGNO (a);
2740 if (hard_regno >= 0)
2741 continue;
2742 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2743 if (cp->first == a)
2744 next_cp = cp->next_first_allocno_copy;
2745 else
2746 {
2747 next_cp = cp->next_second_allocno_copy;
2748 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2749 && cp->insn != NULL_RTX
2750 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2751 fprintf (ira_dump_file,
2752 " Redundant move from %d(freq %d):%d\n",
2753 INSN_UID (cp->insn), cp->freq, hard_regno);
2754 }
2755 }
2756}
2757#endif
2758
2759/* Setup preferred and alternative classes for new pseudo-registers
2760 created by IRA starting with START. */
2761static void
2762setup_preferred_alternate_classes_for_new_pseudos (int start)
2763{
2764 int i, old_regno;
2765 int max_regno = max_reg_num ();
2766
2767 for (i = start; i < max_regno; i++)
2768 {
2769 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2770 ira_assert (i != old_regno);
058e97ec 2771 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2772 reg_alternate_class (old_regno),
1756cb66 2773 reg_allocno_class (old_regno));
058e97ec
VM
2774 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2775 fprintf (ira_dump_file,
2776 " New r%d: setting preferred %s, alternative %s\n",
2777 i, reg_class_names[reg_preferred_class (old_regno)],
2778 reg_class_names[reg_alternate_class (old_regno)]);
2779 }
2780}
2781
2782\f
df3e3493 2783/* The number of entries allocated in reg_info. */
fb99ee9b 2784static int allocated_reg_info_size;
058e97ec
VM
2785
2786/* Regional allocation can create new pseudo-registers. This function
2787 expands some arrays for pseudo-registers. */
2788static void
fb99ee9b 2789expand_reg_info (void)
058e97ec
VM
2790{
2791 int i;
2792 int size = max_reg_num ();
2793
2794 resize_reg_info ();
fb99ee9b 2795 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2796 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2797 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2798 allocated_reg_info_size = size;
058e97ec
VM
2799}
2800
3553f0bb
VM
2801/* Return TRUE if there is too high register pressure in the function.
2802 It is used to decide when stack slot sharing is worth to do. */
2803static bool
2804too_high_register_pressure_p (void)
2805{
2806 int i;
1756cb66 2807 enum reg_class pclass;
b8698a0f 2808
1756cb66 2809 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2810 {
1756cb66
VM
2811 pclass = ira_pressure_classes[i];
2812 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2813 return true;
2814 }
2815 return false;
2816}
2817
058e97ec
VM
2818\f
2819
2af2dbdc
VM
2820/* Indicate that hard register number FROM was eliminated and replaced with
2821 an offset from hard register number TO. The status of hard registers live
2822 at the start of a basic block is updated by replacing a use of FROM with
2823 a use of TO. */
2824
2825void
2826mark_elimination (int from, int to)
2827{
2828 basic_block bb;
bf744527 2829 bitmap r;
2af2dbdc 2830
11cd3bed 2831 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 2832 {
bf744527
SB
2833 r = DF_LR_IN (bb);
2834 if (bitmap_bit_p (r, from))
2835 {
2836 bitmap_clear_bit (r, from);
2837 bitmap_set_bit (r, to);
2838 }
2839 if (! df_live)
2840 continue;
2841 r = DF_LIVE_IN (bb);
2842 if (bitmap_bit_p (r, from))
2af2dbdc 2843 {
bf744527
SB
2844 bitmap_clear_bit (r, from);
2845 bitmap_set_bit (r, to);
2af2dbdc
VM
2846 }
2847 }
2848}
2849
2850\f
2851
55a2c322
VM
2852/* The length of the following array. */
2853int ira_reg_equiv_len;
2854
2855/* Info about equiv. info for each register. */
4c2b2d79 2856struct ira_reg_equiv_s *ira_reg_equiv;
55a2c322
VM
2857
2858/* Expand ira_reg_equiv if necessary. */
2859void
2860ira_expand_reg_equiv (void)
2861{
2862 int old = ira_reg_equiv_len;
2863
2864 if (ira_reg_equiv_len > max_reg_num ())
2865 return;
2866 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2867 ira_reg_equiv
4c2b2d79 2868 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
55a2c322 2869 ira_reg_equiv_len
4c2b2d79 2870 * sizeof (struct ira_reg_equiv_s));
55a2c322
VM
2871 gcc_assert (old < ira_reg_equiv_len);
2872 memset (ira_reg_equiv + old, 0,
4c2b2d79 2873 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
55a2c322
VM
2874}
2875
2876static void
2877init_reg_equiv (void)
2878{
2879 ira_reg_equiv_len = 0;
2880 ira_reg_equiv = NULL;
2881 ira_expand_reg_equiv ();
2882}
2883
2884static void
2885finish_reg_equiv (void)
2886{
2887 free (ira_reg_equiv);
2888}
2889
2890\f
2891
2af2dbdc
VM
2892struct equivalence
2893{
2af2dbdc
VM
2894 /* Set when a REG_EQUIV note is found or created. Use to
2895 keep track of what memory accesses might be created later,
2896 e.g. by reload. */
2897 rtx replacement;
2898 rtx *src_p;
fb0ab697
JL
2899
2900 /* The list of each instruction which initializes this register.
2901
2902 NULL indicates we know nothing about this register's equivalence
2903 properties.
2904
2905 An INSN_LIST with a NULL insn indicates this pseudo is already
2906 known to not have a valid equivalence. */
2907 rtx_insn_list *init_insns;
2908
2af2dbdc
VM
2909 /* Loop depth is used to recognize equivalences which appear
2910 to be present within the same loop (or in an inner loop). */
5ffa4e6a 2911 short loop_depth;
2af2dbdc 2912 /* Nonzero if this had a preexisting REG_EQUIV note. */
5ffa4e6a 2913 unsigned char is_arg_equivalence : 1;
8f5929e1
JJ
2914 /* Set when an attempt should be made to replace a register
2915 with the associated src_p entry. */
5ffa4e6a
FY
2916 unsigned char replace : 1;
2917 /* Set if this register has no known equivalence. */
2918 unsigned char no_equiv : 1;
2af2dbdc
VM
2919};
2920
2921/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2922 structure for that register. */
2923static struct equivalence *reg_equiv;
2924
2925/* Used for communication between the following two functions: contains
2926 a MEM that we wish to ensure remains unchanged. */
2927static rtx equiv_mem;
2928
2929/* Set nonzero if EQUIV_MEM is modified. */
2930static int equiv_mem_modified;
2931
2932/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2933 Called via note_stores. */
2934static void
2935validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2936 void *data ATTRIBUTE_UNUSED)
2937{
2938 if ((REG_P (dest)
2939 && reg_overlap_mentioned_p (dest, equiv_mem))
2940 || (MEM_P (dest)
a55757ea 2941 && anti_dependence (equiv_mem, dest)))
2af2dbdc
VM
2942 equiv_mem_modified = 1;
2943}
2944
2945/* Verify that no store between START and the death of REG invalidates
2946 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2947 by storing into an overlapping memory location, or with a non-const
2948 CALL_INSN.
2949
2950 Return 1 if MEMREF remains valid. */
2951static int
b32d5189 2952validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2af2dbdc 2953{
b32d5189 2954 rtx_insn *insn;
2af2dbdc
VM
2955 rtx note;
2956
2957 equiv_mem = memref;
2958 equiv_mem_modified = 0;
2959
2960 /* If the memory reference has side effects or is volatile, it isn't a
2961 valid equivalence. */
2962 if (side_effects_p (memref))
2963 return 0;
2964
2965 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2966 {
2967 if (! INSN_P (insn))
2968 continue;
2969
2970 if (find_reg_note (insn, REG_DEAD, reg))
2971 return 1;
2972
a22265a4
JL
2973 /* This used to ignore readonly memory and const/pure calls. The problem
2974 is the equivalent form may reference a pseudo which gets assigned a
2975 call clobbered hard reg. When we later replace REG with its
2976 equivalent form, the value in the call-clobbered reg has been
2977 changed and all hell breaks loose. */
2978 if (CALL_P (insn))
2af2dbdc
VM
2979 return 0;
2980
2981 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2982
2983 /* If a register mentioned in MEMREF is modified via an
2984 auto-increment, we lose the equivalence. Do the same if one
2985 dies; although we could extend the life, it doesn't seem worth
2986 the trouble. */
2987
2988 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2989 if ((REG_NOTE_KIND (note) == REG_INC
2990 || REG_NOTE_KIND (note) == REG_DEAD)
2991 && REG_P (XEXP (note, 0))
2992 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2993 return 0;
2994 }
2995
2996 return 0;
2997}
2998
2999/* Returns zero if X is known to be invariant. */
3000static int
3001equiv_init_varies_p (rtx x)
3002{
3003 RTX_CODE code = GET_CODE (x);
3004 int i;
3005 const char *fmt;
3006
3007 switch (code)
3008 {
3009 case MEM:
3010 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3011
3012 case CONST:
d8116890 3013 CASE_CONST_ANY:
2af2dbdc
VM
3014 case SYMBOL_REF:
3015 case LABEL_REF:
3016 return 0;
3017
3018 case REG:
3019 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3020
3021 case ASM_OPERANDS:
3022 if (MEM_VOLATILE_P (x))
3023 return 1;
3024
3025 /* Fall through. */
3026
3027 default:
3028 break;
3029 }
3030
3031 fmt = GET_RTX_FORMAT (code);
3032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3033 if (fmt[i] == 'e')
3034 {
3035 if (equiv_init_varies_p (XEXP (x, i)))
3036 return 1;
3037 }
3038 else if (fmt[i] == 'E')
3039 {
3040 int j;
3041 for (j = 0; j < XVECLEN (x, i); j++)
3042 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3043 return 1;
3044 }
3045
3046 return 0;
3047}
3048
3049/* Returns nonzero if X (used to initialize register REGNO) is movable.
3050 X is only movable if the registers it uses have equivalent initializations
3051 which appear to be within the same loop (or in an inner loop) and movable
3052 or if they are not candidates for local_alloc and don't vary. */
3053static int
3054equiv_init_movable_p (rtx x, int regno)
3055{
3056 int i, j;
3057 const char *fmt;
3058 enum rtx_code code = GET_CODE (x);
3059
3060 switch (code)
3061 {
3062 case SET:
3063 return equiv_init_movable_p (SET_SRC (x), regno);
3064
3065 case CC0:
3066 case CLOBBER:
3067 return 0;
3068
3069 case PRE_INC:
3070 case PRE_DEC:
3071 case POST_INC:
3072 case POST_DEC:
3073 case PRE_MODIFY:
3074 case POST_MODIFY:
3075 return 0;
3076
3077 case REG:
1756cb66
VM
3078 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3079 && reg_equiv[REGNO (x)].replace)
3080 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3081 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
3082
3083 case UNSPEC_VOLATILE:
3084 return 0;
3085
3086 case ASM_OPERANDS:
3087 if (MEM_VOLATILE_P (x))
3088 return 0;
3089
3090 /* Fall through. */
3091
3092 default:
3093 break;
3094 }
3095
3096 fmt = GET_RTX_FORMAT (code);
3097 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3098 switch (fmt[i])
3099 {
3100 case 'e':
3101 if (! equiv_init_movable_p (XEXP (x, i), regno))
3102 return 0;
3103 break;
3104 case 'E':
3105 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3106 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3107 return 0;
3108 break;
3109 }
3110
3111 return 1;
3112}
3113
1756cb66
VM
3114/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3115 true. */
2af2dbdc
VM
3116static int
3117contains_replace_regs (rtx x)
3118{
3119 int i, j;
3120 const char *fmt;
3121 enum rtx_code code = GET_CODE (x);
3122
3123 switch (code)
3124 {
2af2dbdc
VM
3125 case CONST:
3126 case LABEL_REF:
3127 case SYMBOL_REF:
d8116890 3128 CASE_CONST_ANY:
2af2dbdc
VM
3129 case PC:
3130 case CC0:
3131 case HIGH:
3132 return 0;
3133
3134 case REG:
3135 return reg_equiv[REGNO (x)].replace;
3136
3137 default:
3138 break;
3139 }
3140
3141 fmt = GET_RTX_FORMAT (code);
3142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3143 switch (fmt[i])
3144 {
3145 case 'e':
3146 if (contains_replace_regs (XEXP (x, i)))
3147 return 1;
3148 break;
3149 case 'E':
3150 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3151 if (contains_replace_regs (XVECEXP (x, i, j)))
3152 return 1;
3153 break;
3154 }
3155
3156 return 0;
3157}
3158
3159/* TRUE if X references a memory location that would be affected by a store
3160 to MEMREF. */
3161static int
3162memref_referenced_p (rtx memref, rtx x)
3163{
3164 int i, j;
3165 const char *fmt;
3166 enum rtx_code code = GET_CODE (x);
3167
3168 switch (code)
3169 {
2af2dbdc
VM
3170 case CONST:
3171 case LABEL_REF:
3172 case SYMBOL_REF:
d8116890 3173 CASE_CONST_ANY:
2af2dbdc
VM
3174 case PC:
3175 case CC0:
3176 case HIGH:
3177 case LO_SUM:
3178 return 0;
3179
3180 case REG:
3181 return (reg_equiv[REGNO (x)].replacement
3182 && memref_referenced_p (memref,
3183 reg_equiv[REGNO (x)].replacement));
3184
3185 case MEM:
53d9622b 3186 if (true_dependence (memref, VOIDmode, x))
2af2dbdc
VM
3187 return 1;
3188 break;
3189
3190 case SET:
3191 /* If we are setting a MEM, it doesn't count (its address does), but any
3192 other SET_DEST that has a MEM in it is referencing the MEM. */
3193 if (MEM_P (SET_DEST (x)))
3194 {
3195 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3196 return 1;
3197 }
3198 else if (memref_referenced_p (memref, SET_DEST (x)))
3199 return 1;
3200
3201 return memref_referenced_p (memref, SET_SRC (x));
3202
3203 default:
3204 break;
3205 }
3206
3207 fmt = GET_RTX_FORMAT (code);
3208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3209 switch (fmt[i])
3210 {
3211 case 'e':
3212 if (memref_referenced_p (memref, XEXP (x, i)))
3213 return 1;
3214 break;
3215 case 'E':
3216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3217 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3218 return 1;
3219 break;
3220 }
3221
3222 return 0;
3223}
3224
3225/* TRUE if some insn in the range (START, END] references a memory location
3226 that would be affected by a store to MEMREF. */
3227static int
b32d5189 3228memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
2af2dbdc 3229{
b32d5189 3230 rtx_insn *insn;
2af2dbdc
VM
3231
3232 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3233 insn = NEXT_INSN (insn))
3234 {
b5b8b0ac 3235 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 3236 continue;
b8698a0f 3237
2af2dbdc
VM
3238 if (memref_referenced_p (memref, PATTERN (insn)))
3239 return 1;
3240
3241 /* Nonconst functions may access memory. */
3242 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3243 return 1;
3244 }
3245
3246 return 0;
3247}
3248
3249/* Mark REG as having no known equivalence.
3250 Some instructions might have been processed before and furnished
3251 with REG_EQUIV notes for this register; these notes will have to be
3252 removed.
3253 STORE is the piece of RTL that does the non-constant / conflicting
3254 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3255 but needs to be there because this function is called from note_stores. */
3256static void
1756cb66
VM
3257no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3258 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
3259{
3260 int regno;
fb0ab697 3261 rtx_insn_list *list;
2af2dbdc
VM
3262
3263 if (!REG_P (reg))
3264 return;
3265 regno = REGNO (reg);
5ffa4e6a 3266 reg_equiv[regno].no_equiv = 1;
2af2dbdc 3267 list = reg_equiv[regno].init_insns;
fb0ab697 3268 if (list && list->insn () == NULL)
2af2dbdc 3269 return;
fb0ab697 3270 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
2af2dbdc
VM
3271 reg_equiv[regno].replacement = NULL_RTX;
3272 /* This doesn't matter for equivalences made for argument registers, we
3273 should keep their initialization insns. */
3274 if (reg_equiv[regno].is_arg_equivalence)
3275 return;
55a2c322 3276 ira_reg_equiv[regno].defined_p = false;
0cc97fc5 3277 ira_reg_equiv[regno].init_insns = NULL;
fb0ab697 3278 for (; list; list = list->next ())
2af2dbdc 3279 {
fb0ab697 3280 rtx_insn *insn = list->insn ();
2af2dbdc
VM
3281 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3282 }
3283}
3284
e3f9e0ac
WM
3285/* Check whether the SUBREG is a paradoxical subreg and set the result
3286 in PDX_SUBREGS. */
3287
40954ce5
RS
3288static void
3289set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
e3f9e0ac 3290{
40954ce5
RS
3291 subrtx_iterator::array_type array;
3292 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3293 {
3294 const_rtx subreg = *iter;
3295 if (GET_CODE (subreg) == SUBREG)
3296 {
3297 const_rtx reg = SUBREG_REG (subreg);
3298 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3299 pdx_subregs[REGNO (reg)] = true;
3300 }
3301 }
e3f9e0ac
WM
3302}
3303
3a6191b1
JJ
3304/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3305 equivalent replacement. */
3306
3307static rtx
3308adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3309{
3310 if (REG_P (loc))
3311 {
3312 bitmap cleared_regs = (bitmap) data;
3313 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
b8f045e2 3314 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3a6191b1
JJ
3315 NULL_RTX, adjust_cleared_regs, data);
3316 }
3317 return NULL_RTX;
3318}
3319
2af2dbdc
VM
3320/* Nonzero if we recorded an equivalence for a LABEL_REF. */
3321static int recorded_label_ref;
3322
3323/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
3324 compilation (either because they can be referenced in memory or are
3325 set once from a single constant). Lower their priority for a
3326 register.
2af2dbdc 3327
1756cb66
VM
3328 If such a register is only referenced once, try substituting its
3329 value into the using insn. If it succeeds, we can eliminate the
3330 register completely.
2af2dbdc 3331
55a2c322 3332 Initialize init_insns in ira_reg_equiv array.
2af2dbdc
VM
3333
3334 Return non-zero if jump label rebuilding should be done. */
3335static int
3336update_equiv_regs (void)
3337{
b2908ba6 3338 rtx_insn *insn;
2af2dbdc
VM
3339 basic_block bb;
3340 int loop_depth;
3341 bitmap cleared_regs;
e3f9e0ac 3342 bool *pdx_subregs;
b8698a0f 3343
2af2dbdc
VM
3344 /* We need to keep track of whether or not we recorded a LABEL_REF so
3345 that we know if the jump optimizer needs to be rerun. */
3346 recorded_label_ref = 0;
3347
e3f9e0ac
WM
3348 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3349 subreg. */
3350 pdx_subregs = XCNEWVEC (bool, max_regno);
3351
2af2dbdc 3352 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
f2034d06 3353 grow_reg_equivs ();
2af2dbdc
VM
3354
3355 init_alias_analysis ();
3356
e3f9e0ac 3357 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
df3e3493 3358 paradoxical subreg. Don't set such reg equivalent to a mem,
e3f9e0ac
WM
3359 because lra will not substitute such equiv memory in order to
3360 prevent access beyond allocated memory for paradoxical memory subreg. */
11cd3bed 3361 FOR_EACH_BB_FN (bb, cfun)
e3f9e0ac 3362 FOR_BB_INSNS (bb, insn)
c34c46dd 3363 if (NONDEBUG_INSN_P (insn))
40954ce5 3364 set_paradoxical_subreg (insn, pdx_subregs);
e3f9e0ac 3365
2af2dbdc
VM
3366 /* Scan the insns and find which registers have equivalences. Do this
3367 in a separate scan of the insns because (due to -fcse-follow-jumps)
3368 a register can be set below its use. */
11cd3bed 3369 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 3370 {
391886c8 3371 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3372
3373 for (insn = BB_HEAD (bb);
3374 insn != NEXT_INSN (BB_END (bb));
3375 insn = NEXT_INSN (insn))
3376 {
3377 rtx note;
3378 rtx set;
3379 rtx dest, src;
3380 int regno;
3381
3382 if (! INSN_P (insn))
3383 continue;
3384
3385 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3386 if (REG_NOTE_KIND (note) == REG_INC)
3387 no_equiv (XEXP (note, 0), note, NULL);
3388
3389 set = single_set (insn);
3390
3391 /* If this insn contains more (or less) than a single SET,
3392 only mark all destinations as having no known equivalence. */
5ffa4e6a 3393 if (set == NULL_RTX)
2af2dbdc
VM
3394 {
3395 note_stores (PATTERN (insn), no_equiv, NULL);
3396 continue;
3397 }
3398 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3399 {
3400 int i;
3401
3402 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3403 {
3404 rtx part = XVECEXP (PATTERN (insn), 0, i);
3405 if (part != set)
3406 note_stores (part, no_equiv, NULL);
3407 }
3408 }
3409
3410 dest = SET_DEST (set);
3411 src = SET_SRC (set);
3412
3413 /* See if this is setting up the equivalence between an argument
3414 register and its stack slot. */
3415 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3416 if (note)
3417 {
3418 gcc_assert (REG_P (dest));
3419 regno = REGNO (dest);
3420
55a2c322
VM
3421 /* Note that we don't want to clear init_insns in
3422 ira_reg_equiv even if there are multiple sets of this
3423 register. */
2af2dbdc
VM
3424 reg_equiv[regno].is_arg_equivalence = 1;
3425
5a107a0f
VM
3426 /* The insn result can have equivalence memory although
3427 the equivalence is not set up by the insn. We add
3428 this insn to init insns as it is a flag for now that
3429 regno has an equivalence. We will remove the insn
3430 from init insn list later. */
3431 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3432 ira_reg_equiv[regno].init_insns
3433 = gen_rtx_INSN_LIST (VOIDmode, insn,
3434 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3435
3436 /* Continue normally in case this is a candidate for
3437 replacements. */
3438 }
3439
3440 if (!optimize)
3441 continue;
3442
3443 /* We only handle the case of a pseudo register being set
3444 once, or always to the same value. */
1fe28116
VM
3445 /* ??? The mn10200 port breaks if we add equivalences for
3446 values that need an ADDRESS_REGS register and set them equivalent
3447 to a MEM of a pseudo. The actual problem is in the over-conservative
3448 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3449 calculate_needs, but we traditionally work around this problem
3450 here by rejecting equivalences when the destination is in a register
3451 that's likely spilled. This is fragile, of course, since the
3452 preferred class of a pseudo depends on all instructions that set
3453 or use it. */
3454
2af2dbdc
VM
3455 if (!REG_P (dest)
3456 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
fb0ab697
JL
3457 || (reg_equiv[regno].init_insns
3458 && reg_equiv[regno].init_insns->insn () == NULL)
07b8f0a8 3459 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3460 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3461 {
3462 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3463 also set somewhere else to a constant. */
3464 note_stores (set, no_equiv, NULL);
3465 continue;
3466 }
3467
e3f9e0ac
WM
3468 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3469 if (MEM_P (src) && pdx_subregs[regno])
3470 {
3471 note_stores (set, no_equiv, NULL);
3472 continue;
3473 }
3474
2af2dbdc
VM
3475 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3476
3477 /* cse sometimes generates function invariants, but doesn't put a
3478 REG_EQUAL note on the insn. Since this note would be redundant,
3479 there's no point creating it earlier than here. */
3480 if (! note && ! rtx_varies_p (src, 0))
3481 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3482
3483 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2b9c63a2 3484 since it represents a function call. */
2af2dbdc
VM
3485 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3486 note = NULL_RTX;
3487
5ffa4e6a
FY
3488 if (DF_REG_DEF_COUNT (regno) != 1)
3489 {
3490 bool equal_p = true;
3491 rtx_insn_list *list;
3492
3493 /* If we have already processed this pseudo and determined it
3494 can not have an equivalence, then honor that decision. */
3495 if (reg_equiv[regno].no_equiv)
3496 continue;
3497
3498 if (! note
2af2dbdc
VM
3499 || rtx_varies_p (XEXP (note, 0), 0)
3500 || (reg_equiv[regno].replacement
3501 && ! rtx_equal_p (XEXP (note, 0),
5ffa4e6a
FY
3502 reg_equiv[regno].replacement)))
3503 {
3504 no_equiv (dest, set, NULL);
3505 continue;
3506 }
3507
3508 list = reg_equiv[regno].init_insns;
3509 for (; list; list = list->next ())
3510 {
3511 rtx note_tmp;
3512 rtx_insn *insn_tmp;
3513
3514 insn_tmp = list->insn ();
3515 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3516 gcc_assert (note_tmp);
3517 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3518 {
3519 equal_p = false;
3520 break;
3521 }
3522 }
3523
3524 if (! equal_p)
3525 {
3526 no_equiv (dest, set, NULL);
3527 continue;
3528 }
2af2dbdc 3529 }
5ffa4e6a 3530
2af2dbdc
VM
3531 /* Record this insn as initializing this register. */
3532 reg_equiv[regno].init_insns
3533 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3534
3535 /* If this register is known to be equal to a constant, record that
3536 it is always equivalent to the constant. */
3537 if (DF_REG_DEF_COUNT (regno) == 1
3538 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3539 {
3540 rtx note_value = XEXP (note, 0);
3541 remove_note (insn, note);
3542 set_unique_reg_note (insn, REG_EQUIV, note_value);
3543 }
3544
3545 /* If this insn introduces a "constant" register, decrease the priority
3546 of that register. Record this insn if the register is only used once
3547 more and the equivalence value is the same as our source.
3548
3549 The latter condition is checked for two reasons: First, it is an
3550 indication that it may be more efficient to actually emit the insn
3551 as written (if no registers are available, reload will substitute
3552 the equivalence). Secondly, it avoids problems with any registers
3553 dying in this insn whose death notes would be missed.
3554
3555 If we don't have a REG_EQUIV note, see if this insn is loading
3556 a register used only in one basic block from a MEM. If so, and the
3557 MEM remains unchanged for the life of the register, add a REG_EQUIV
3558 note. */
2af2dbdc
VM
3559 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3560
5ffa4e6a 3561 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2af2dbdc
VM
3562 && MEM_P (SET_SRC (set))
3563 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3564 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3565
3566 if (note)
3567 {
3568 int regno = REGNO (dest);
3569 rtx x = XEXP (note, 0);
3570
3571 /* If we haven't done so, record for reload that this is an
3572 equivalencing insn. */
3573 if (!reg_equiv[regno].is_arg_equivalence)
55a2c322
VM
3574 ira_reg_equiv[regno].init_insns
3575 = gen_rtx_INSN_LIST (VOIDmode, insn,
3576 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3577
3578 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3579 We might end up substituting the LABEL_REF for uses of the
3580 pseudo here or later. That kind of transformation may turn an
3581 indirect jump into a direct jump, in which case we must rerun the
3582 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3583 if (GET_CODE (x) == LABEL_REF
3584 || (GET_CODE (x) == CONST
3585 && GET_CODE (XEXP (x, 0)) == PLUS
3586 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3587 recorded_label_ref = 1;
3588
3589 reg_equiv[regno].replacement = x;
3590 reg_equiv[regno].src_p = &SET_SRC (set);
5ffa4e6a 3591 reg_equiv[regno].loop_depth = (short) loop_depth;
2af2dbdc
VM
3592
3593 /* Don't mess with things live during setjmp. */
3594 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3595 {
3596 /* Note that the statement below does not affect the priority
3597 in local-alloc! */
3598 REG_LIVE_LENGTH (regno) *= 2;
3599
3600 /* If the register is referenced exactly twice, meaning it is
3601 set once and used once, indicate that the reference may be
3602 replaced by the equivalence we computed above. Do this
3603 even if the register is only used in one block so that
3604 dependencies can be handled where the last register is
3605 used in a different block (i.e. HIGH / LO_SUM sequences)
3606 and to reduce the number of registers alive across
3607 calls. */
3608
3609 if (REG_N_REFS (regno) == 2
3610 && (rtx_equal_p (x, src)
3611 || ! equiv_init_varies_p (src))
3612 && NONJUMP_INSN_P (insn)
3613 && equiv_init_movable_p (PATTERN (insn), regno))
3614 reg_equiv[regno].replace = 1;
3615 }
3616 }
3617 }
3618 }
3619
3620 if (!optimize)
3621 goto out;
3622
3623 /* A second pass, to gather additional equivalences with memory. This needs
3624 to be done after we know which registers we are going to replace. */
3625
3626 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3627 {
3628 rtx set, src, dest;
3629 unsigned regno;
3630
3631 if (! INSN_P (insn))
3632 continue;
3633
3634 set = single_set (insn);
3635 if (! set)
3636 continue;
3637
3638 dest = SET_DEST (set);
3639 src = SET_SRC (set);
3640
3641 /* If this sets a MEM to the contents of a REG that is only used
3642 in a single basic block, see if the register is always equivalent
3643 to that memory location and if moving the store from INSN to the
3644 insn that set REG is safe. If so, put a REG_EQUIV note on the
3645 initializing insn.
3646
3647 Don't add a REG_EQUIV note if the insn already has one. The existing
3648 REG_EQUIV is likely more useful than the one we are adding.
3649
3650 If one of the regs in the address has reg_equiv[REGNO].replace set,
3651 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3652 optimization may move the set of this register immediately before
3653 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3654 the mention in the REG_EQUIV note would be to an uninitialized
3655 pseudo. */
3656
3657 if (MEM_P (dest) && REG_P (src)
3658 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3659 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3660 && DF_REG_DEF_COUNT (regno) == 1
fb0ab697
JL
3661 && reg_equiv[regno].init_insns != NULL
3662 && reg_equiv[regno].init_insns->insn () != NULL
2af2dbdc
VM
3663 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3664 REG_EQUIV, NULL_RTX)
e3f9e0ac
WM
3665 && ! contains_replace_regs (XEXP (dest, 0))
3666 && ! pdx_subregs[regno])
2af2dbdc 3667 {
b2908ba6
DM
3668 rtx_insn *init_insn =
3669 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
2af2dbdc
VM
3670 if (validate_equiv_mem (init_insn, src, dest)
3671 && ! memref_used_between_p (dest, init_insn, insn)
3672 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 multiple sets. */
3674 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3675 {
3676 /* This insn makes the equivalence, not the one initializing
3677 the register. */
55a2c322 3678 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3679 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 df_notes_rescan (init_insn);
3681 }
3682 }
3683 }
3684
3685 cleared_regs = BITMAP_ALLOC (NULL);
3686 /* Now scan all regs killed in an insn to see if any of them are
3687 registers only used that once. If so, see if we can replace the
3688 reference with the equivalent form. If we can, delete the
3689 initializing reference and this register will go away. If we
3690 can't replace the reference, and the initializing reference is
3691 within the same loop (or in an inner loop), then move the register
3692 initialization just before the use, so that they are in the same
3693 basic block. */
4f42035e 3694 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc 3695 {
391886c8 3696 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3697 for (insn = BB_END (bb);
3698 insn != PREV_INSN (BB_HEAD (bb));
3699 insn = PREV_INSN (insn))
3700 {
3701 rtx link;
3702
3703 if (! INSN_P (insn))
3704 continue;
3705
3706 /* Don't substitute into a non-local goto, this confuses CFG. */
3707 if (JUMP_P (insn)
3708 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3709 continue;
3710
3711 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3712 {
3713 if (REG_NOTE_KIND (link) == REG_DEAD
3714 /* Make sure this insn still refers to the register. */
3715 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3716 {
3717 int regno = REGNO (XEXP (link, 0));
3718 rtx equiv_insn;
3719
3720 if (! reg_equiv[regno].replace
5ffa4e6a 3721 || reg_equiv[regno].loop_depth < (short) loop_depth
f20f2613
VM
3722 /* There is no sense to move insns if live range
3723 shrinkage or register pressure-sensitive
3724 scheduling were done because it will not
3725 improve allocation but worsen insn schedule
3726 with a big probability. */
3727 || flag_live_range_shrinkage
0cad4827 3728 || (flag_sched_pressure && flag_schedule_insns))
2af2dbdc
VM
3729 continue;
3730
3731 /* reg_equiv[REGNO].replace gets set only when
3732 REG_N_REFS[REGNO] is 2, i.e. the register is set
55a2c322
VM
3733 once and used once. (If it were only set, but
3734 not used, flow would have deleted the setting
3735 insns.) Hence there can only be one insn in
3736 reg_equiv[REGNO].init_insns. */
2af2dbdc
VM
3737 gcc_assert (reg_equiv[regno].init_insns
3738 && !XEXP (reg_equiv[regno].init_insns, 1));
3739 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3740
3741 /* We may not move instructions that can throw, since
3742 that changes basic block boundaries and we are not
3743 prepared to adjust the CFG to match. */
3744 if (can_throw_internal (equiv_insn))
3745 continue;
3746
3747 if (asm_noperands (PATTERN (equiv_insn)) < 0
3748 && validate_replace_rtx (regno_reg_rtx[regno],
3749 *(reg_equiv[regno].src_p), insn))
3750 {
3751 rtx equiv_link;
3752 rtx last_link;
3753 rtx note;
3754
3755 /* Find the last note. */
3756 for (last_link = link; XEXP (last_link, 1);
3757 last_link = XEXP (last_link, 1))
3758 ;
3759
3760 /* Append the REG_DEAD notes from equiv_insn. */
3761 equiv_link = REG_NOTES (equiv_insn);
3762 while (equiv_link)
3763 {
3764 note = equiv_link;
3765 equiv_link = XEXP (equiv_link, 1);
3766 if (REG_NOTE_KIND (note) == REG_DEAD)
3767 {
3768 remove_note (equiv_insn, note);
3769 XEXP (last_link, 1) = note;
3770 XEXP (note, 1) = NULL_RTX;
3771 last_link = note;
3772 }
3773 }
3774
3775 remove_death (regno, insn);
3776 SET_REG_N_REFS (regno, 0);
3777 REG_FREQ (regno) = 0;
3778 delete_insn (equiv_insn);
3779
3780 reg_equiv[regno].init_insns
fb0ab697 3781 = reg_equiv[regno].init_insns->next ();
2af2dbdc 3782
0cc97fc5 3783 ira_reg_equiv[regno].init_insns = NULL;
2af2dbdc
VM
3784 bitmap_set_bit (cleared_regs, regno);
3785 }
3786 /* Move the initialization of the register to just before
3787 INSN. Update the flow information. */
b5b8b0ac 3788 else if (prev_nondebug_insn (insn) != equiv_insn)
2af2dbdc 3789 {
b2908ba6 3790 rtx_insn *new_insn;
2af2dbdc
VM
3791
3792 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3793 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3794 REG_NOTES (equiv_insn) = 0;
3795 /* Rescan it to process the notes. */
3796 df_insn_rescan (new_insn);
3797
3798 /* Make sure this insn is recognized before
3799 reload begins, otherwise
3800 eliminate_regs_in_insn will die. */
3801 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3802
3803 delete_insn (equiv_insn);
3804
3805 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3806
3807 REG_BASIC_BLOCK (regno) = bb->index;
3808 REG_N_CALLS_CROSSED (regno) = 0;
3809 REG_FREQ_CALLS_CROSSED (regno) = 0;
3810 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3811 REG_LIVE_LENGTH (regno) = 2;
3812
3813 if (insn == BB_HEAD (bb))
1130d5e3 3814 BB_HEAD (bb) = PREV_INSN (insn);
2af2dbdc 3815
55a2c322 3816 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3817 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3818 bitmap_set_bit (cleared_regs, regno);
3819 }
3820 }
3821 }
3822 }
3823 }
3824
3825 if (!bitmap_empty_p (cleared_regs))
3a6191b1 3826 {
11cd3bed 3827 FOR_EACH_BB_FN (bb, cfun)
3a6191b1 3828 {
3a6191b1
JJ
3829 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3830 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
bf744527
SB
3831 if (! df_live)
3832 continue;
3833 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3834 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3835 }
3836
3837 /* Last pass - adjust debug insns referencing cleared regs. */
3838 if (MAY_HAVE_DEBUG_INSNS)
3839 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3840 if (DEBUG_INSN_P (insn))
3841 {
3842 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3843 INSN_VAR_LOCATION_LOC (insn)
3844 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3845 adjust_cleared_regs,
3846 (void *) cleared_regs);
3847 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3848 df_insn_rescan (insn);
3849 }
3850 }
2af2dbdc
VM
3851
3852 BITMAP_FREE (cleared_regs);
3853
3854 out:
3855 /* Clean up. */
3856
3857 end_alias_analysis ();
3858 free (reg_equiv);
e3f9e0ac 3859 free (pdx_subregs);
2af2dbdc
VM
3860 return recorded_label_ref;
3861}
3862
3863\f
3864
55a2c322
VM
3865/* Set up fields memory, constant, and invariant from init_insns in
3866 the structures of array ira_reg_equiv. */
3867static void
3868setup_reg_equiv (void)
3869{
3870 int i;
0cc97fc5
DM
3871 rtx_insn_list *elem, *prev_elem, *next_elem;
3872 rtx_insn *insn;
3873 rtx set, x;
55a2c322
VM
3874
3875 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3876 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3877 elem;
3878 prev_elem = elem, elem = next_elem)
55a2c322 3879 {
0cc97fc5
DM
3880 next_elem = elem->next ();
3881 insn = elem->insn ();
55a2c322
VM
3882 set = single_set (insn);
3883
3884 /* Init insns can set up equivalence when the reg is a destination or
3885 a source (in this case the destination is memory). */
3886 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3887 {
3888 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3889 {
3890 x = XEXP (x, 0);
3891 if (REG_P (SET_DEST (set))
3892 && REGNO (SET_DEST (set)) == (unsigned int) i
3893 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3894 {
3895 /* This insn reporting the equivalence but
3896 actually not setting it. Remove it from the
3897 list. */
3898 if (prev_elem == NULL)
3899 ira_reg_equiv[i].init_insns = next_elem;
3900 else
3901 XEXP (prev_elem, 1) = next_elem;
3902 elem = prev_elem;
3903 }
3904 }
55a2c322
VM
3905 else if (REG_P (SET_DEST (set))
3906 && REGNO (SET_DEST (set)) == (unsigned int) i)
3907 x = SET_SRC (set);
3908 else
3909 {
3910 gcc_assert (REG_P (SET_SRC (set))
3911 && REGNO (SET_SRC (set)) == (unsigned int) i);
3912 x = SET_DEST (set);
3913 }
3914 if (! function_invariant_p (x)
3915 || ! flag_pic
3916 /* A function invariant is often CONSTANT_P but may
3917 include a register. We promise to only pass
3918 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3919 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3920 {
3921 /* It can happen that a REG_EQUIV note contains a MEM
3922 that is not a legitimate memory operand. As later
3923 stages of reload assume that all addresses found in
3924 the lra_regno_equiv_* arrays were originally
3925 legitimate, we ignore such REG_EQUIV notes. */
3926 if (memory_operand (x, VOIDmode))
3927 {
3928 ira_reg_equiv[i].defined_p = true;
3929 ira_reg_equiv[i].memory = x;
3930 continue;
3931 }
3932 else if (function_invariant_p (x))
3933 {
ef4bddc2 3934 machine_mode mode;
55a2c322
VM
3935
3936 mode = GET_MODE (SET_DEST (set));
3937 if (GET_CODE (x) == PLUS
3938 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3939 /* This is PLUS of frame pointer and a constant,
3940 or fp, or argp. */
3941 ira_reg_equiv[i].invariant = x;
3942 else if (targetm.legitimate_constant_p (mode, x))
3943 ira_reg_equiv[i].constant = x;
3944 else
3945 {
3946 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3947 if (ira_reg_equiv[i].memory == NULL_RTX)
3948 {
3949 ira_reg_equiv[i].defined_p = false;
0cc97fc5 3950 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
3951 break;
3952 }
3953 }
3954 ira_reg_equiv[i].defined_p = true;
3955 continue;
3956 }
3957 }
3958 }
3959 ira_reg_equiv[i].defined_p = false;
0cc97fc5 3960 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
3961 break;
3962 }
3963}
3964
3965\f
3966
2af2dbdc
VM
3967/* Print chain C to FILE. */
3968static void
3969print_insn_chain (FILE *file, struct insn_chain *c)
3970{
c3284718 3971 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
2af2dbdc
VM
3972 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3973 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3974}
3975
3976
3977/* Print all reload_insn_chains to FILE. */
3978static void
3979print_insn_chains (FILE *file)
3980{
3981 struct insn_chain *c;
3982 for (c = reload_insn_chain; c ; c = c->next)
3983 print_insn_chain (file, c);
3984}
3985
3986/* Return true if pseudo REGNO should be added to set live_throughout
3987 or dead_or_set of the insn chains for reload consideration. */
3988static bool
3989pseudo_for_reload_consideration_p (int regno)
3990{
3991 /* Consider spilled pseudos too for IRA because they still have a
3992 chance to get hard-registers in the reload when IRA is used. */
b100151b 3993 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
3994}
3995
3996/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3997 REG to the number of nregs, and INIT_VALUE to get the
3998 initialization. ALLOCNUM need not be the regno of REG. */
3999static void
4000init_live_subregs (bool init_value, sbitmap *live_subregs,
cee784f5 4001 bitmap live_subregs_used, int allocnum, rtx reg)
2af2dbdc
VM
4002{
4003 unsigned int regno = REGNO (SUBREG_REG (reg));
4004 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4005
4006 gcc_assert (size > 0);
4007
4008 /* Been there, done that. */
cee784f5 4009 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
4010 return;
4011
cee784f5 4012 /* Create a new one. */
2af2dbdc
VM
4013 if (live_subregs[allocnum] == NULL)
4014 live_subregs[allocnum] = sbitmap_alloc (size);
4015
4016 /* If the entire reg was live before blasting into subregs, we need
4017 to init all of the subregs to ones else init to 0. */
4018 if (init_value)
f61e445a 4019 bitmap_ones (live_subregs[allocnum]);
b8698a0f 4020 else
f61e445a 4021 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 4022
cee784f5 4023 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
4024}
4025
4026/* Walk the insns of the current function and build reload_insn_chain,
4027 and record register life information. */
4028static void
4029build_insn_chain (void)
4030{
4031 unsigned int i;
4032 struct insn_chain **p = &reload_insn_chain;
4033 basic_block bb;
4034 struct insn_chain *c = NULL;
4035 struct insn_chain *next = NULL;
4036 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4037 bitmap elim_regset = BITMAP_ALLOC (NULL);
4038 /* live_subregs is a vector used to keep accurate information about
4039 which hardregs are live in multiword pseudos. live_subregs and
4040 live_subregs_used are indexed by pseudo number. The live_subreg
4041 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
4042 element is non zero in live_subregs_used. The sbitmap size of
4043 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
4044 occupy. */
4045 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
cee784f5 4046 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
2af2dbdc
VM
4047
4048 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4049 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4050 bitmap_set_bit (elim_regset, i);
4f42035e 4051 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc
VM
4052 {
4053 bitmap_iterator bi;
070a1983 4054 rtx_insn *insn;
b8698a0f 4055
2af2dbdc 4056 CLEAR_REG_SET (live_relevant_regs);
cee784f5 4057 bitmap_clear (live_subregs_used);
b8698a0f 4058
bf744527 4059 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
4060 {
4061 if (i >= FIRST_PSEUDO_REGISTER)
4062 break;
4063 bitmap_set_bit (live_relevant_regs, i);
4064 }
4065
bf744527 4066 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
4067 FIRST_PSEUDO_REGISTER, i, bi)
4068 {
4069 if (pseudo_for_reload_consideration_p (i))
4070 bitmap_set_bit (live_relevant_regs, i);
4071 }
4072
4073 FOR_BB_INSNS_REVERSE (bb, insn)
4074 {
4075 if (!NOTE_P (insn) && !BARRIER_P (insn))
4076 {
bfac633a
RS
4077 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4078 df_ref def, use;
2af2dbdc
VM
4079
4080 c = new_insn_chain ();
4081 c->next = next;
4082 next = c;
4083 *p = c;
4084 p = &c->prev;
b8698a0f 4085
2af2dbdc
VM
4086 c->insn = insn;
4087 c->block = bb->index;
4088
4b71920a 4089 if (NONDEBUG_INSN_P (insn))
bfac633a 4090 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2af2dbdc 4091 {
2af2dbdc 4092 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 4093
2af2dbdc
VM
4094 /* Ignore may clobbers because these are generated
4095 from calls. However, every other kind of def is
4096 added to dead_or_set. */
4097 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4098 {
4099 if (regno < FIRST_PSEUDO_REGISTER)
4100 {
4101 if (!fixed_regs[regno])
4102 bitmap_set_bit (&c->dead_or_set, regno);
4103 }
4104 else if (pseudo_for_reload_consideration_p (regno))
4105 bitmap_set_bit (&c->dead_or_set, regno);
4106 }
4107
4108 if ((regno < FIRST_PSEUDO_REGISTER
4109 || reg_renumber[regno] >= 0
4110 || ira_conflicts_p)
4111 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4112 {
4113 rtx reg = DF_REF_REG (def);
4114
4115 /* We can model subregs, but not if they are
4116 wrapped in ZERO_EXTRACTS. */
4117 if (GET_CODE (reg) == SUBREG
4118 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4119 {
4120 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 4121 unsigned int last = start
2af2dbdc
VM
4122 + GET_MODE_SIZE (GET_MODE (reg));
4123
4124 init_live_subregs
b8698a0f 4125 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc
VM
4126 live_subregs, live_subregs_used, regno, reg);
4127
4128 if (!DF_REF_FLAGS_IS_SET
4129 (def, DF_REF_STRICT_LOW_PART))
4130 {
4131 /* Expand the range to cover entire words.
4132 Bytes added here are "don't care". */
4133 start
4134 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4135 last = ((last + UNITS_PER_WORD - 1)
4136 / UNITS_PER_WORD * UNITS_PER_WORD);
4137 }
4138
4139 /* Ignore the paradoxical bits. */
cee784f5
SB
4140 if (last > SBITMAP_SIZE (live_subregs[regno]))
4141 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4142
4143 while (start < last)
4144 {
d7c028c0 4145 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
4146 start++;
4147 }
b8698a0f 4148
f61e445a 4149 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 4150 {
cee784f5 4151 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4152 bitmap_clear_bit (live_relevant_regs, regno);
4153 }
4154 else
4155 /* Set live_relevant_regs here because
4156 that bit has to be true to get us to
4157 look at the live_subregs fields. */
4158 bitmap_set_bit (live_relevant_regs, regno);
4159 }
4160 else
4161 {
4162 /* DF_REF_PARTIAL is generated for
4163 subregs, STRICT_LOW_PART, and
4164 ZERO_EXTRACT. We handle the subreg
4165 case above so here we have to keep from
4166 modeling the def as a killing def. */
4167 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4168 {
cee784f5 4169 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 4170 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
4171 }
4172 }
4173 }
4174 }
b8698a0f 4175
2af2dbdc
VM
4176 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4177 bitmap_copy (&c->live_throughout, live_relevant_regs);
4178
4b71920a 4179 if (NONDEBUG_INSN_P (insn))
bfac633a 4180 FOR_EACH_INSN_INFO_USE (use, insn_info)
2af2dbdc 4181 {
2af2dbdc
VM
4182 unsigned int regno = DF_REF_REGNO (use);
4183 rtx reg = DF_REF_REG (use);
b8698a0f 4184
2af2dbdc
VM
4185 /* DF_REF_READ_WRITE on a use means that this use
4186 is fabricated from a def that is a partial set
4187 to a multiword reg. Here, we only model the
4188 subreg case that is not wrapped in ZERO_EXTRACT
4189 precisely so we do not need to look at the
2b9c63a2 4190 fabricated use. */
b8698a0f
L
4191 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4192 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
4193 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4194 continue;
b8698a0f 4195
2af2dbdc
VM
4196 /* Add the last use of each var to dead_or_set. */
4197 if (!bitmap_bit_p (live_relevant_regs, regno))
4198 {
4199 if (regno < FIRST_PSEUDO_REGISTER)
4200 {
4201 if (!fixed_regs[regno])
4202 bitmap_set_bit (&c->dead_or_set, regno);
4203 }
4204 else if (pseudo_for_reload_consideration_p (regno))
4205 bitmap_set_bit (&c->dead_or_set, regno);
4206 }
b8698a0f 4207
2af2dbdc
VM
4208 if (regno < FIRST_PSEUDO_REGISTER
4209 || pseudo_for_reload_consideration_p (regno))
4210 {
4211 if (GET_CODE (reg) == SUBREG
4212 && !DF_REF_FLAGS_IS_SET (use,
4213 DF_REF_SIGN_EXTRACT
b8698a0f 4214 | DF_REF_ZERO_EXTRACT))
2af2dbdc
VM
4215 {
4216 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 4217 unsigned int last = start
2af2dbdc 4218 + GET_MODE_SIZE (GET_MODE (reg));
b8698a0f 4219
2af2dbdc 4220 init_live_subregs
b8698a0f 4221 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc 4222 live_subregs, live_subregs_used, regno, reg);
b8698a0f 4223
2af2dbdc 4224 /* Ignore the paradoxical bits. */
cee784f5
SB
4225 if (last > SBITMAP_SIZE (live_subregs[regno]))
4226 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4227
4228 while (start < last)
4229 {
d7c028c0 4230 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
4231 start++;
4232 }
4233 }
4234 else
4235 /* Resetting the live_subregs_used is
4236 effectively saying do not use the subregs
4237 because we are reading the whole
4238 pseudo. */
cee784f5 4239 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4240 bitmap_set_bit (live_relevant_regs, regno);
4241 }
4242 }
4243 }
4244 }
4245
4246 /* FIXME!! The following code is a disaster. Reload needs to see the
4247 labels and jump tables that are just hanging out in between
4248 the basic blocks. See pr33676. */
4249 insn = BB_HEAD (bb);
b8698a0f 4250
2af2dbdc 4251 /* Skip over the barriers and cruft. */
b8698a0f 4252 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
4253 || BLOCK_FOR_INSN (insn) == bb))
4254 insn = PREV_INSN (insn);
b8698a0f 4255
2af2dbdc
VM
4256 /* While we add anything except barriers and notes, the focus is
4257 to get the labels and jump tables into the
4258 reload_insn_chain. */
4259 while (insn)
4260 {
4261 if (!NOTE_P (insn) && !BARRIER_P (insn))
4262 {
4263 if (BLOCK_FOR_INSN (insn))
4264 break;
b8698a0f 4265
2af2dbdc
VM
4266 c = new_insn_chain ();
4267 c->next = next;
4268 next = c;
4269 *p = c;
4270 p = &c->prev;
b8698a0f 4271
2af2dbdc
VM
4272 /* The block makes no sense here, but it is what the old
4273 code did. */
4274 c->block = bb->index;
4275 c->insn = insn;
4276 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 4277 }
2af2dbdc
VM
4278 insn = PREV_INSN (insn);
4279 }
4280 }
4281
2af2dbdc
VM
4282 reload_insn_chain = c;
4283 *p = NULL;
4284
cee784f5
SB
4285 for (i = 0; i < (unsigned int) max_regno; i++)
4286 if (live_subregs[i] != NULL)
4287 sbitmap_free (live_subregs[i]);
2af2dbdc 4288 free (live_subregs);
cee784f5 4289 BITMAP_FREE (live_subregs_used);
2af2dbdc
VM
4290 BITMAP_FREE (live_relevant_regs);
4291 BITMAP_FREE (elim_regset);
4292
4293 if (dump_file)
4294 print_insn_chains (dump_file);
4295}
acf41a74
BS
4296 \f
4297/* Examine the rtx found in *LOC, which is read or written to as determined
4298 by TYPE. Return false if we find a reason why an insn containing this
4299 rtx should not be moved (such as accesses to non-constant memory), true
4300 otherwise. */
4301static bool
4302rtx_moveable_p (rtx *loc, enum op_type type)
4303{
4304 const char *fmt;
4305 rtx x = *loc;
4306 enum rtx_code code = GET_CODE (x);
4307 int i, j;
4308
4309 code = GET_CODE (x);
4310 switch (code)
4311 {
4312 case CONST:
d8116890 4313 CASE_CONST_ANY:
acf41a74
BS
4314 case SYMBOL_REF:
4315 case LABEL_REF:
4316 return true;
4317
4318 case PC:
4319 return type == OP_IN;
4320
4321 case CC0:
4322 return false;
4323
4324 case REG:
4325 if (x == frame_pointer_rtx)
4326 return true;
4327 if (HARD_REGISTER_P (x))
4328 return false;
4329
4330 return true;
4331
4332 case MEM:
4333 if (type == OP_IN && MEM_READONLY_P (x))
4334 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4335 return false;
4336
4337 case SET:
4338 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4339 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4340
4341 case STRICT_LOW_PART:
4342 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4343
4344 case ZERO_EXTRACT:
4345 case SIGN_EXTRACT:
4346 return (rtx_moveable_p (&XEXP (x, 0), type)
4347 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4348 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4349
4350 case CLOBBER:
4351 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4352
d8c16744 4353 case UNSPEC_VOLATILE:
026c3cfd 4354 /* It is a bad idea to consider insns with such rtl
d8c16744
VM
4355 as moveable ones. The insn scheduler also considers them as barrier
4356 for a reason. */
4357 return false;
4358
acf41a74
BS
4359 default:
4360 break;
4361 }
4362
4363 fmt = GET_RTX_FORMAT (code);
4364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4365 {
4366 if (fmt[i] == 'e')
4367 {
4368 if (!rtx_moveable_p (&XEXP (x, i), type))
4369 return false;
4370 }
4371 else if (fmt[i] == 'E')
4372 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4373 {
4374 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4375 return false;
4376 }
4377 }
4378 return true;
4379}
4380
4381/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4382 to give dominance relationships between two insns I1 and I2. */
4383static bool
4384insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4385{
4386 basic_block bb1 = BLOCK_FOR_INSN (i1);
4387 basic_block bb2 = BLOCK_FOR_INSN (i2);
4388
4389 if (bb1 == bb2)
4390 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4391 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4392}
4393
4394/* Record the range of register numbers added by find_moveable_pseudos. */
4395int first_moveable_pseudo, last_moveable_pseudo;
4396
4397/* These two vectors hold data for every register added by
4398 find_movable_pseudos, with index 0 holding data for the
4399 first_moveable_pseudo. */
4400/* The original home register. */
9771b263 4401static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
4402
4403/* Look for instances where we have an instruction that is known to increase
4404 register pressure, and whose result is not used immediately. If it is
4405 possible to move the instruction downwards to just before its first use,
4406 split its lifetime into two ranges. We create a new pseudo to compute the
4407 value, and emit a move instruction just before the first use. If, after
4408 register allocation, the new pseudo remains unallocated, the function
4409 move_unallocated_pseudos then deletes the move instruction and places
4410 the computation just before the first use.
4411
4412 Such a move is safe and profitable if all the input registers remain live
4413 and unchanged between the original computation and its first use. In such
4414 a situation, the computation is known to increase register pressure, and
4415 moving it is known to at least not worsen it.
4416
4417 We restrict moves to only those cases where a register remains unallocated,
4418 in order to avoid interfering too much with the instruction schedule. As
4419 an exception, we may move insns which only modify their input register
4420 (typically induction variables), as this increases the freedom for our
4421 intended transformation, and does not limit the second instruction
4422 scheduler pass. */
4423
4424static void
4425find_moveable_pseudos (void)
4426{
4427 unsigned i;
4428 int max_regs = max_reg_num ();
4429 int max_uid = get_max_uid ();
4430 basic_block bb;
4431 int *uid_luid = XNEWVEC (int, max_uid);
070a1983 4432 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
acf41a74 4433 /* A set of registers which are live but not modified throughout a block. */
8b1c6fd7
DM
4434 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4435 last_basic_block_for_fn (cfun));
acf41a74 4436 /* A set of registers which only exist in a given basic block. */
8b1c6fd7
DM
4437 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4438 last_basic_block_for_fn (cfun));
acf41a74
BS
4439 /* A set of registers which are set once, in an instruction that can be
4440 moved freely downwards, but are otherwise transparent to a block. */
8b1c6fd7
DM
4441 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4442 last_basic_block_for_fn (cfun));
acf41a74
BS
4443 bitmap_head live, used, set, interesting, unusable_as_input;
4444 bitmap_iterator bi;
4445 bitmap_initialize (&interesting, 0);
4446
4447 first_moveable_pseudo = max_regs;
9771b263
DN
4448 pseudo_replaced_reg.release ();
4449 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74 4450
2d73cc45
MJ
4451 df_analyze ();
4452 calculate_dominance_info (CDI_DOMINATORS);
4453
acf41a74
BS
4454 i = 0;
4455 bitmap_initialize (&live, 0);
4456 bitmap_initialize (&used, 0);
4457 bitmap_initialize (&set, 0);
4458 bitmap_initialize (&unusable_as_input, 0);
11cd3bed 4459 FOR_EACH_BB_FN (bb, cfun)
acf41a74 4460 {
070a1983 4461 rtx_insn *insn;
acf41a74
BS
4462 bitmap transp = bb_transp_live + bb->index;
4463 bitmap moveable = bb_moveable_reg_sets + bb->index;
4464 bitmap local = bb_local + bb->index;
4465
4466 bitmap_initialize (local, 0);
4467 bitmap_initialize (transp, 0);
4468 bitmap_initialize (moveable, 0);
4469 bitmap_copy (&live, df_get_live_out (bb));
4470 bitmap_and_into (&live, df_get_live_in (bb));
4471 bitmap_copy (transp, &live);
4472 bitmap_clear (moveable);
4473 bitmap_clear (&live);
4474 bitmap_clear (&used);
4475 bitmap_clear (&set);
4476 FOR_BB_INSNS (bb, insn)
4477 if (NONDEBUG_INSN_P (insn))
4478 {
bfac633a 4479 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
bfac633a 4480 df_ref def, use;
acf41a74
BS
4481
4482 uid_luid[INSN_UID (insn)] = i++;
4483
74e59b6c
RS
4484 def = df_single_def (insn_info);
4485 use = df_single_use (insn_info);
4486 if (use
4487 && def
4488 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4489 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
acf41a74
BS
4490 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4491 {
74e59b6c 4492 unsigned regno = DF_REF_REGNO (use);
acf41a74
BS
4493 bitmap_set_bit (moveable, regno);
4494 bitmap_set_bit (&set, regno);
4495 bitmap_set_bit (&used, regno);
4496 bitmap_clear_bit (transp, regno);
4497 continue;
4498 }
bfac633a 4499 FOR_EACH_INSN_INFO_USE (use, insn_info)
acf41a74 4500 {
bfac633a 4501 unsigned regno = DF_REF_REGNO (use);
acf41a74
BS
4502 bitmap_set_bit (&used, regno);
4503 if (bitmap_clear_bit (moveable, regno))
4504 bitmap_clear_bit (transp, regno);
acf41a74
BS
4505 }
4506
bfac633a 4507 FOR_EACH_INSN_INFO_DEF (def, insn_info)
acf41a74 4508 {
bfac633a 4509 unsigned regno = DF_REF_REGNO (def);
acf41a74
BS
4510 bitmap_set_bit (&set, regno);
4511 bitmap_clear_bit (transp, regno);
4512 bitmap_clear_bit (moveable, regno);
acf41a74
BS
4513 }
4514 }
4515 }
4516
4517 bitmap_clear (&live);
4518 bitmap_clear (&used);
4519 bitmap_clear (&set);
4520
11cd3bed 4521 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4522 {
4523 bitmap local = bb_local + bb->index;
070a1983 4524 rtx_insn *insn;
acf41a74
BS
4525
4526 FOR_BB_INSNS (bb, insn)
4527 if (NONDEBUG_INSN_P (insn))
4528 {
74e59b6c 4529 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
070a1983
DM
4530 rtx_insn *def_insn;
4531 rtx closest_use, note;
74e59b6c 4532 df_ref def, use;
acf41a74
BS
4533 unsigned regno;
4534 bool all_dominated, all_local;
ef4bddc2 4535 machine_mode mode;
acf41a74 4536
74e59b6c 4537 def = df_single_def (insn_info);
acf41a74 4538 /* There must be exactly one def in this insn. */
74e59b6c 4539 if (!def || !single_set (insn))
acf41a74
BS
4540 continue;
4541 /* This must be the only definition of the reg. We also limit
4542 which modes we deal with so that we can assume we can generate
4543 move instructions. */
4544 regno = DF_REF_REGNO (def);
4545 mode = GET_MODE (DF_REF_REG (def));
4546 if (DF_REG_DEF_COUNT (regno) != 1
4547 || !DF_REF_INSN_INFO (def)
4548 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4549 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4550 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4551 continue;
4552 def_insn = DF_REF_INSN (def);
4553
4554 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4555 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4556 break;
4557
4558 if (note)
4559 {
4560 if (dump_file)
4561 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4562 regno);
4563 bitmap_set_bit (&unusable_as_input, regno);
4564 continue;
4565 }
4566
4567 use = DF_REG_USE_CHAIN (regno);
4568 all_dominated = true;
4569 all_local = true;
4570 closest_use = NULL_RTX;
4571 for (; use; use = DF_REF_NEXT_REG (use))
4572 {
070a1983 4573 rtx_insn *insn;
acf41a74
BS
4574 if (!DF_REF_INSN_INFO (use))
4575 {
4576 all_dominated = false;
4577 all_local = false;
4578 break;
4579 }
4580 insn = DF_REF_INSN (use);
4581 if (DEBUG_INSN_P (insn))
4582 continue;
4583 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4584 all_local = false;
4585 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4586 all_dominated = false;
4587 if (closest_use != insn && closest_use != const0_rtx)
4588 {
4589 if (closest_use == NULL_RTX)
4590 closest_use = insn;
4591 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4592 closest_use = insn;
4593 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4594 closest_use = const0_rtx;
4595 }
4596 }
4597 if (!all_dominated)
4598 {
4599 if (dump_file)
4600 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4601 regno);
4602 continue;
4603 }
4604 if (all_local)
4605 bitmap_set_bit (local, regno);
4606 if (closest_use == const0_rtx || closest_use == NULL
4607 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4608 {
4609 if (dump_file)
4610 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4611 closest_use == const0_rtx || closest_use == NULL
4612 ? " (no unique first use)" : "");
4613 continue;
4614 }
058eb3b0 4615 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
acf41a74
BS
4616 {
4617 if (dump_file)
4618 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4619 regno);
4620 continue;
4621 }
058eb3b0 4622
acf41a74 4623 bitmap_set_bit (&interesting, regno);
070a1983
DM
4624 /* If we get here, we know closest_use is a non-NULL insn
4625 (as opposed to const_0_rtx). */
4626 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
acf41a74
BS
4627
4628 if (dump_file && (all_local || all_dominated))
4629 {
4630 fprintf (dump_file, "Reg %u:", regno);
4631 if (all_local)
4632 fprintf (dump_file, " local to bb %d", bb->index);
4633 if (all_dominated)
4634 fprintf (dump_file, " def dominates all uses");
4635 if (closest_use != const0_rtx)
4636 fprintf (dump_file, " has unique first use");
4637 fputs ("\n", dump_file);
4638 }
4639 }
4640 }
4641
4642 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4643 {
4644 df_ref def = DF_REG_DEF_CHAIN (i);
070a1983 4645 rtx_insn *def_insn = DF_REF_INSN (def);
acf41a74
BS
4646 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4647 bitmap def_bb_local = bb_local + def_block->index;
4648 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4649 bitmap def_bb_transp = bb_transp_live + def_block->index;
4650 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
070a1983 4651 rtx_insn *use_insn = closest_uses[i];
bfac633a 4652 df_ref use;
acf41a74
BS
4653 bool all_ok = true;
4654 bool all_transp = true;
4655
4656 if (!REG_P (DF_REF_REG (def)))
4657 continue;
4658
4659 if (!local_to_bb_p)
4660 {
4661 if (dump_file)
4662 fprintf (dump_file, "Reg %u not local to one basic block\n",
4663 i);
4664 continue;
4665 }
4666 if (reg_equiv_init (i) != NULL_RTX)
4667 {
4668 if (dump_file)
4669 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4670 i);
4671 continue;
4672 }
4673 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4674 {
4675 if (dump_file)
4676 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4677 INSN_UID (def_insn), i);
4678 continue;
4679 }
4680 if (dump_file)
4681 fprintf (dump_file, "Examining insn %d, def for %d\n",
4682 INSN_UID (def_insn), i);
bfac633a 4683 FOR_EACH_INSN_USE (use, def_insn)
acf41a74 4684 {
acf41a74
BS
4685 unsigned regno = DF_REF_REGNO (use);
4686 if (bitmap_bit_p (&unusable_as_input, regno))
4687 {
4688 all_ok = false;
4689 if (dump_file)
4690 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4691 break;
4692 }
4693 if (!bitmap_bit_p (def_bb_transp, regno))
4694 {
4695 if (bitmap_bit_p (def_bb_moveable, regno)
4696 && !control_flow_insn_p (use_insn)
618f4073 4697 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
acf41a74
BS
4698 {
4699 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4700 {
070a1983 4701 rtx_insn *x = NEXT_INSN (def_insn);
acf41a74
BS
4702 while (!modified_in_p (DF_REF_REG (use), x))
4703 {
4704 gcc_assert (x != use_insn);
4705 x = NEXT_INSN (x);
4706 }
4707 if (dump_file)
4708 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4709 regno, INSN_UID (x));
4710 emit_insn_after (PATTERN (x), use_insn);
4711 set_insn_deleted (x);
4712 }
4713 else
4714 {
4715 if (dump_file)
4716 fprintf (dump_file, " input reg %u modified between def and use\n",
4717 regno);
4718 all_transp = false;
4719 }
4720 }
4721 else
4722 all_transp = false;
4723 }
acf41a74
BS
4724 }
4725 if (!all_ok)
4726 continue;
4727 if (!dbg_cnt (ira_move))
4728 break;
4729 if (dump_file)
4730 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4731
4732 if (all_transp)
4733 {
4734 rtx def_reg = DF_REF_REG (def);
4735 rtx newreg = ira_create_new_reg (def_reg);
9e3de74c 4736 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
acf41a74
BS
4737 {
4738 unsigned nregno = REGNO (newreg);
a36b2706 4739 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4740 nregno -= max_regs;
9771b263 4741 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4742 }
4743 }
4744 }
4745
11cd3bed 4746 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4747 {
4748 bitmap_clear (bb_local + bb->index);
4749 bitmap_clear (bb_transp_live + bb->index);
4750 bitmap_clear (bb_moveable_reg_sets + bb->index);
4751 }
4752 bitmap_clear (&interesting);
4753 bitmap_clear (&unusable_as_input);
4754 free (uid_luid);
4755 free (closest_uses);
4756 free (bb_local);
4757 free (bb_transp_live);
4758 free (bb_moveable_reg_sets);
4759
4760 last_moveable_pseudo = max_reg_num ();
2d73cc45
MJ
4761
4762 fix_reg_equiv_init ();
4763 expand_reg_info ();
4764 regstat_free_n_sets_and_refs ();
4765 regstat_free_ri ();
4766 regstat_init_n_sets_and_refs ();
4767 regstat_compute_ri ();
4768 free_dominance_info (CDI_DOMINATORS);
732dad8f 4769}
acf41a74 4770
3e749749
MJ
4771/* If SET pattern SET is an assignment from a hard register to a pseudo which
4772 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4773 the destination. Otherwise return NULL. */
732dad8f
MJ
4774
4775static rtx
3e749749 4776interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
732dad8f 4777{
732dad8f
MJ
4778 rtx src = SET_SRC (set);
4779 rtx dest = SET_DEST (set);
4780 if (!REG_P (src) || !HARD_REGISTER_P (src)
4781 || !REG_P (dest) || HARD_REGISTER_P (dest)
4782 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4783 return NULL;
4784 return dest;
4785}
4786
df3e3493 4787/* If insn is interesting for parameter range-splitting shrink-wrapping
3e749749
MJ
4788 preparation, i.e. it is a single set from a hard register to a pseudo, which
4789 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4790 parallel statement with only one such statement, return the destination.
4791 Otherwise return NULL. */
4792
4793static rtx
070a1983 4794interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
3e749749
MJ
4795{
4796 if (!INSN_P (insn))
4797 return NULL;
4798 rtx pat = PATTERN (insn);
4799 if (GET_CODE (pat) == SET)
4800 return interesting_dest_for_shprep_1 (pat, call_dom);
4801
4802 if (GET_CODE (pat) != PARALLEL)
4803 return NULL;
4804 rtx ret = NULL;
4805 for (int i = 0; i < XVECLEN (pat, 0); i++)
4806 {
4807 rtx sub = XVECEXP (pat, 0, i);
4808 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4809 continue;
4810 if (GET_CODE (sub) != SET
4811 || side_effects_p (sub))
4812 return NULL;
4813 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4814 if (dest && ret)
4815 return NULL;
4816 if (dest)
4817 ret = dest;
4818 }
4819 return ret;
4820}
4821
732dad8f
MJ
4822/* Split live ranges of pseudos that are loaded from hard registers in the
4823 first BB in a BB that dominates all non-sibling call if such a BB can be
4824 found and is not in a loop. Return true if the function has made any
4825 changes. */
4826
4827static bool
4828split_live_ranges_for_shrink_wrap (void)
4829{
4830 basic_block bb, call_dom = NULL;
fefa31b5 4831 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
070a1983 4832 rtx_insn *insn, *last_interesting_insn = NULL;
732dad8f
MJ
4833 bitmap_head need_new, reachable;
4834 vec<basic_block> queue;
4835
a5e022d5 4836 if (!SHRINK_WRAPPING_ENABLED)
732dad8f
MJ
4837 return false;
4838
4839 bitmap_initialize (&need_new, 0);
4840 bitmap_initialize (&reachable, 0);
0cae8d31 4841 queue.create (n_basic_blocks_for_fn (cfun));
732dad8f 4842
11cd3bed 4843 FOR_EACH_BB_FN (bb, cfun)
732dad8f
MJ
4844 FOR_BB_INSNS (bb, insn)
4845 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4846 {
4847 if (bb == first)
4848 {
4849 bitmap_clear (&need_new);
4850 bitmap_clear (&reachable);
4851 queue.release ();
4852 return false;
4853 }
4854
4855 bitmap_set_bit (&need_new, bb->index);
4856 bitmap_set_bit (&reachable, bb->index);
4857 queue.quick_push (bb);
4858 break;
4859 }
4860
4861 if (queue.is_empty ())
4862 {
4863 bitmap_clear (&need_new);
4864 bitmap_clear (&reachable);
4865 queue.release ();
4866 return false;
4867 }
4868
4869 while (!queue.is_empty ())
4870 {
4871 edge e;
4872 edge_iterator ei;
4873
4874 bb = queue.pop ();
4875 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 4876 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
732dad8f
MJ
4877 && bitmap_set_bit (&reachable, e->dest->index))
4878 queue.quick_push (e->dest);
4879 }
4880 queue.release ();
4881
4882 FOR_BB_INSNS (first, insn)
4883 {
4884 rtx dest = interesting_dest_for_shprep (insn, NULL);
4885 if (!dest)
4886 continue;
4887
4888 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4889 {
4890 bitmap_clear (&need_new);
4891 bitmap_clear (&reachable);
4892 return false;
4893 }
4894
4895 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4896 use;
4897 use = DF_REF_NEXT_REG (use))
4898 {
732dad8f
MJ
4899 int ubbi = DF_REF_BB (use)->index;
4900 if (bitmap_bit_p (&reachable, ubbi))
4901 bitmap_set_bit (&need_new, ubbi);
4902 }
4903 last_interesting_insn = insn;
4904 }
4905
4906 bitmap_clear (&reachable);
4907 if (!last_interesting_insn)
4908 {
4909 bitmap_clear (&need_new);
4910 return false;
4911 }
4912
4913 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4914 bitmap_clear (&need_new);
4915 if (call_dom == first)
4916 return false;
4917
4918 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4919 while (bb_loop_depth (call_dom) > 0)
4920 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4921 loop_optimizer_finalize ();
4922
4923 if (call_dom == first)
4924 return false;
4925
4926 calculate_dominance_info (CDI_POST_DOMINATORS);
4927 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4928 {
4929 free_dominance_info (CDI_POST_DOMINATORS);
4930 return false;
4931 }
4932 free_dominance_info (CDI_POST_DOMINATORS);
4933
4934 if (dump_file)
4935 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4936 call_dom->index);
4937
4938 bool ret = false;
4939 FOR_BB_INSNS (first, insn)
4940 {
4941 rtx dest = interesting_dest_for_shprep (insn, call_dom);
bcb21886 4942 if (!dest || dest == pic_offset_table_rtx)
732dad8f
MJ
4943 continue;
4944
4945 rtx newreg = NULL_RTX;
4946 df_ref use, next;
9e3de74c 4947 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
732dad8f 4948 {
070a1983 4949 rtx_insn *uin = DF_REF_INSN (use);
732dad8f
MJ
4950 next = DF_REF_NEXT_REG (use);
4951
4952 basic_block ubb = BLOCK_FOR_INSN (uin);
4953 if (ubb == call_dom
4954 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4955 {
4956 if (!newreg)
4957 newreg = ira_create_new_reg (dest);
9e3de74c 4958 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
732dad8f
MJ
4959 }
4960 }
4961
4962 if (newreg)
4963 {
1476d1bd 4964 rtx_insn *new_move = gen_move_insn (newreg, dest);
732dad8f
MJ
4965 emit_insn_after (new_move, bb_note (call_dom));
4966 if (dump_file)
4967 {
4968 fprintf (dump_file, "Split live-range of register ");
4969 print_rtl_single (dump_file, dest);
4970 }
4971 ret = true;
4972 }
4973
4974 if (insn == last_interesting_insn)
4975 break;
4976 }
4977 apply_change_group ();
4978 return ret;
acf41a74 4979}
8ff49c29 4980
acf41a74
BS
4981/* Perform the second half of the transformation started in
4982 find_moveable_pseudos. We look for instances where the newly introduced
4983 pseudo remains unallocated, and remove it by moving the definition to
4984 just before its use, replacing the move instruction generated by
4985 find_moveable_pseudos. */
4986static void
4987move_unallocated_pseudos (void)
4988{
4989 int i;
4990 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4991 if (reg_renumber[i] < 0)
4992 {
acf41a74 4993 int idx = i - first_moveable_pseudo;
9771b263 4994 rtx other_reg = pseudo_replaced_reg[idx];
070a1983 4995 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
a36b2706
RS
4996 /* The use must follow all definitions of OTHER_REG, so we can
4997 insert the new definition immediately after any of them. */
4998 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
070a1983
DM
4999 rtx_insn *move_insn = DF_REF_INSN (other_def);
5000 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 5001 rtx set;
acf41a74
BS
5002 int success;
5003
5004 if (dump_file)
5005 fprintf (dump_file, "moving def of %d (insn %d now) ",
5006 REGNO (other_reg), INSN_UID (def_insn));
5007
a36b2706
RS
5008 delete_insn (move_insn);
5009 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5010 delete_insn (DF_REF_INSN (other_def));
5011 delete_insn (def_insn);
5012
acf41a74
BS
5013 set = single_set (newinsn);
5014 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5015 gcc_assert (success);
5016 if (dump_file)
5017 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5018 INSN_UID (newinsn), i);
acf41a74
BS
5019 SET_REG_N_REFS (i, 0);
5020 }
5021}
f2034d06 5022\f
6399c0ab
SB
5023/* If the backend knows where to allocate pseudos for hard
5024 register initial values, register these allocations now. */
a932fb89 5025static void
6399c0ab
SB
5026allocate_initial_values (void)
5027{
5028 if (targetm.allocate_initial_value)
5029 {
5030 rtx hreg, preg, x;
5031 int i, regno;
5032
5033 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5034 {
5035 if (! initial_value_entry (i, &hreg, &preg))
5036 break;
5037
5038 x = targetm.allocate_initial_value (hreg);
5039 regno = REGNO (preg);
5040 if (x && REG_N_SETS (regno) <= 1)
5041 {
5042 if (MEM_P (x))
5043 reg_equiv_memory_loc (regno) = x;
5044 else
5045 {
5046 basic_block bb;
5047 int new_regno;
5048
5049 gcc_assert (REG_P (x));
5050 new_regno = REGNO (x);
5051 reg_renumber[regno] = new_regno;
5052 /* Poke the regno right into regno_reg_rtx so that even
5053 fixed regs are accepted. */
5054 SET_REGNO (preg, new_regno);
5055 /* Update global register liveness information. */
11cd3bed 5056 FOR_EACH_BB_FN (bb, cfun)
6399c0ab 5057 {
c3284718 5058 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
6399c0ab 5059 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
c3284718 5060 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
6399c0ab
SB
5061 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5062 }
5063 }
5064 }
5065 }
2af2dbdc 5066
6399c0ab
SB
5067 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5068 &hreg, &preg));
5069 }
5070}
5071\f
55a2c322
VM
5072
5073/* True when we use LRA instead of reload pass for the current
5074 function. */
5075bool ira_use_lra_p;
5076
311aab06
VM
5077/* True if we have allocno conflicts. It is false for non-optimized
5078 mode or when the conflict table is too big. */
5079bool ira_conflicts_p;
5080
ae2b9cb6
BS
5081/* Saved between IRA and reload. */
5082static int saved_flag_ira_share_spill_slots;
5083
058e97ec
VM
5084/* This is the main entry of IRA. */
5085static void
5086ira (FILE *f)
5087{
058e97ec 5088 bool loops_p;
70cc3288 5089 int ira_max_point_before_emit;
058e97ec 5090 int rebuild_p;
55a2c322
VM
5091 bool saved_flag_caller_saves = flag_caller_saves;
5092 enum ira_region saved_flag_ira_region = flag_ira_region;
5093
bcb21886
KY
5094 /* Perform target specific PIC register initialization. */
5095 targetm.init_pic_reg ();
5096
55a2c322
VM
5097 ira_conflicts_p = optimize > 0;
5098
5099 ira_use_lra_p = targetm.lra_p ();
5100 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5101 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5102 use simplified and faster algorithms in LRA. */
5103 lra_simple_p
8b1c6fd7
DM
5104 = (ira_use_lra_p
5105 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
55a2c322
VM
5106 if (lra_simple_p)
5107 {
5108 /* It permits to skip live range splitting in LRA. */
5109 flag_caller_saves = false;
5110 /* There is no sense to do regional allocation when we use
5111 simplified LRA. */
5112 flag_ira_region = IRA_REGION_ONE;
5113 ira_conflicts_p = false;
5114 }
5115
5116#ifndef IRA_NO_OBSTACK
5117 gcc_obstack_init (&ira_obstack);
5118#endif
5119 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 5120
001010df
KC
5121 /* LRA uses its own infrastructure to handle caller save registers. */
5122 if (flag_caller_saves && !ira_use_lra_p)
dc12b70e
JZ
5123 init_caller_save ();
5124
058e97ec
VM
5125 if (flag_ira_verbose < 10)
5126 {
5127 internal_flag_ira_verbose = flag_ira_verbose;
5128 ira_dump_file = f;
5129 }
5130 else
5131 {
5132 internal_flag_ira_verbose = flag_ira_verbose - 10;
5133 ira_dump_file = stderr;
5134 }
5135
5136 setup_prohibited_mode_move_regs ();
3b6d1699 5137 decrease_live_ranges_number ();
058e97ec 5138 df_note_add_problem ();
5d517141
SB
5139
5140 /* DF_LIVE can't be used in the register allocator, too many other
5141 parts of the compiler depend on using the "classic" liveness
5142 interpretation of the DF_LR problem. See PR38711.
5143 Remove the problem, so that we don't spend time updating it in
5144 any of the df_analyze() calls during IRA/LRA. */
5145 if (optimize > 1)
5146 df_remove_problem (df_live);
5147 gcc_checking_assert (df_live == NULL);
5148
b2b29377
MM
5149 if (flag_checking)
5150 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5151
058e97ec 5152 df_analyze ();
3b6d1699 5153
2d73cc45
MJ
5154 init_reg_equiv ();
5155 if (ira_conflicts_p)
5156 {
5157 calculate_dominance_info (CDI_DOMINATORS);
5158
5159 if (split_live_ranges_for_shrink_wrap ())
5160 df_analyze ();
5161
5162 free_dominance_info (CDI_DOMINATORS);
5163 }
5164
058e97ec 5165 df_clear_flags (DF_NO_INSN_RESCAN);
2d73cc45 5166
058e97ec
VM
5167 regstat_init_n_sets_and_refs ();
5168 regstat_compute_ri ();
5169
5170 /* If we are not optimizing, then this is the only place before
5171 register allocation where dataflow is done. And that is needed
5172 to generate these warnings. */
5173 if (warn_clobbered)
5174 generate_setjmp_warnings ();
5175
ace984c8
RS
5176 /* Determine if the current function is a leaf before running IRA
5177 since this can impact optimizations done by the prologue and
5178 epilogue thus changing register elimination offsets. */
416ff32e 5179 crtl->is_leaf = leaf_function_p ();
ace984c8 5180
1833192f 5181 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 5182 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 5183
058e97ec 5184 rebuild_p = update_equiv_regs ();
55a2c322
VM
5185 setup_reg_equiv ();
5186 setup_reg_equiv_init ();
058e97ec 5187
d20c47fc
BS
5188 bool update_regstat = false;
5189
55a2c322 5190 if (optimize && rebuild_p)
b8698a0f 5191 {
55a2c322 5192 timevar_push (TV_JUMP);
29f3fd5b 5193 rebuild_jump_labels (get_insns ());
55a2c322 5194 if (purge_all_dead_edges ())
d20c47fc
BS
5195 {
5196 delete_unreachable_blocks ();
5197 update_regstat = true;
5198 }
55a2c322 5199 timevar_pop (TV_JUMP);
058e97ec
VM
5200 }
5201
fb99ee9b 5202 allocated_reg_info_size = max_reg_num ();
e8d7e3e7 5203
dbabddf3 5204 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
d20c47fc
BS
5205 {
5206 df_analyze ();
5207 update_regstat = true;
5208 }
dbabddf3 5209
e8d7e3e7
VM
5210 /* It is not worth to do such improvement when we use a simple
5211 allocation because of -O0 usage or because the function is too
5212 big. */
5213 if (ira_conflicts_p)
2d73cc45 5214 find_moveable_pseudos ();
acf41a74 5215
fb99ee9b 5216 max_regno_before_ira = max_reg_num ();
8d49e7ef 5217 ira_setup_eliminable_regset ();
b8698a0f 5218
058e97ec
VM
5219 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5220 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5221 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 5222
058e97ec 5223 ira_assert (current_loops == NULL);
2608d841 5224 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 5225 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 5226
058e97ec
VM
5227 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5228 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 5229 loops_p = ira_build ();
b8698a0f 5230
311aab06 5231 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
5232
5233 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 5234 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 5235 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
5236 stack slots in this case -- prohibit it. We also do this if
5237 there is setjmp call because a variable not modified between
5238 setjmp and longjmp the compiler is required to preserve its
5239 value and sharing slots does not guarantee it. */
3553f0bb
VM
5240 flag_ira_share_spill_slots = FALSE;
5241
cb1ca6ac 5242 ira_color ();
b8698a0f 5243
058e97ec 5244 ira_max_point_before_emit = ira_max_point;
b8698a0f 5245
1756cb66
VM
5246 ira_initiate_emit_data ();
5247
058e97ec 5248 ira_emit (loops_p);
b8698a0f 5249
55a2c322 5250 max_regno = max_reg_num ();
311aab06 5251 if (ira_conflicts_p)
058e97ec 5252 {
058e97ec 5253 if (! loops_p)
55a2c322
VM
5254 {
5255 if (! ira_use_lra_p)
5256 ira_initiate_assign ();
5257 }
058e97ec
VM
5258 else
5259 {
fb99ee9b 5260 expand_reg_info ();
b8698a0f 5261
55a2c322
VM
5262 if (ira_use_lra_p)
5263 {
5264 ira_allocno_t a;
5265 ira_allocno_iterator ai;
5266
5267 FOR_EACH_ALLOCNO (a, ai)
9d6e10c7
RL
5268 {
5269 int old_regno = ALLOCNO_REGNO (a);
5270 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5271
5272 ALLOCNO_REGNO (a) = new_regno;
5273
5274 if (old_regno != new_regno)
5275 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5276 reg_alternate_class (old_regno),
5277 reg_allocno_class (old_regno));
5278 }
5279
55a2c322
VM
5280 }
5281 else
5282 {
5283 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5284 fprintf (ira_dump_file, "Flattening IR\n");
5285 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5286 }
058e97ec
VM
5287 /* New insns were generated: add notes and recalculate live
5288 info. */
5289 df_analyze ();
b8698a0f 5290
544e7e78
SB
5291 /* ??? Rebuild the loop tree, but why? Does the loop tree
5292 change if new insns were generated? Can that be handled
5293 by updating the loop tree incrementally? */
661bc682 5294 loop_optimizer_finalize ();
57548aa2 5295 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
5296 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5297 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 5298
55a2c322
VM
5299 if (! ira_use_lra_p)
5300 {
5301 setup_allocno_assignment_flags ();
5302 ira_initiate_assign ();
5303 ira_reassign_conflict_allocnos (max_regno);
5304 }
058e97ec
VM
5305 }
5306 }
5307
1756cb66
VM
5308 ira_finish_emit_data ();
5309
058e97ec 5310 setup_reg_renumber ();
b8698a0f 5311
058e97ec 5312 calculate_allocation_cost ();
b8698a0f 5313
058e97ec 5314#ifdef ENABLE_IRA_CHECKING
311aab06 5315 if (ira_conflicts_p)
058e97ec
VM
5316 check_allocation ();
5317#endif
b8698a0f 5318
d20c47fc 5319 if (update_regstat || max_regno != max_regno_before_ira)
058e97ec
VM
5320 {
5321 regstat_free_n_sets_and_refs ();
5322 regstat_free_ri ();
5323 regstat_init_n_sets_and_refs ();
5324 regstat_compute_ri ();
5325 }
5326
058e97ec 5327 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
5328 if (! ira_conflicts_p)
5329 grow_reg_equivs ();
5330 else
058e97ec
VM
5331 {
5332 fix_reg_equiv_init ();
b8698a0f 5333
058e97ec
VM
5334#ifdef ENABLE_IRA_CHECKING
5335 print_redundant_copies ();
5336#endif
9994ad20
KC
5337 if (! ira_use_lra_p)
5338 {
5339 ira_spilled_reg_stack_slots_num = 0;
5340 ira_spilled_reg_stack_slots
5341 = ((struct ira_spilled_reg_stack_slot *)
5342 ira_allocate (max_regno
5343 * sizeof (struct ira_spilled_reg_stack_slot)));
5344 memset (ira_spilled_reg_stack_slots, 0,
5345 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5346 }
058e97ec 5347 }
6399c0ab 5348 allocate_initial_values ();
e8d7e3e7
VM
5349
5350 /* See comment for find_moveable_pseudos call. */
5351 if (ira_conflicts_p)
5352 move_unallocated_pseudos ();
55a2c322
VM
5353
5354 /* Restore original values. */
5355 if (lra_simple_p)
5356 {
5357 flag_caller_saves = saved_flag_caller_saves;
5358 flag_ira_region = saved_flag_ira_region;
5359 }
d3afd9aa
RB
5360}
5361
5362static void
5363do_reload (void)
5364{
5365 basic_block bb;
5366 bool need_dce;
bcb21886 5367 unsigned pic_offset_table_regno = INVALID_REGNUM;
ae2b9cb6 5368
67463efb 5369 if (flag_ira_verbose < 10)
ae2b9cb6 5370 ira_dump_file = dump_file;
058e97ec 5371
bcb21886
KY
5372 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5373 after reload to avoid possible wrong usages of hard reg assigned
5374 to it. */
5375 if (pic_offset_table_rtx
5376 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5377 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5378
55a2c322
VM
5379 timevar_push (TV_RELOAD);
5380 if (ira_use_lra_p)
5381 {
5382 if (current_loops != NULL)
5383 {
661bc682 5384 loop_optimizer_finalize ();
55a2c322
VM
5385 free_dominance_info (CDI_DOMINATORS);
5386 }
04a90bec 5387 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5388 bb->loop_father = NULL;
5389 current_loops = NULL;
55a2c322
VM
5390
5391 ira_destroy ();
058e97ec 5392
55a2c322
VM
5393 lra (ira_dump_file);
5394 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5395 LRA. */
9771b263 5396 vec_free (reg_equivs);
55a2c322
VM
5397 reg_equivs = NULL;
5398 need_dce = false;
5399 }
5400 else
5401 {
5402 df_set_flags (DF_NO_INSN_RESCAN);
5403 build_insn_chain ();
5404
5405 need_dce = reload (get_insns (), ira_conflicts_p);
5406
5407 }
5408
5409 timevar_pop (TV_RELOAD);
058e97ec 5410
d3afd9aa
RB
5411 timevar_push (TV_IRA);
5412
55a2c322 5413 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
5414 {
5415 ira_free (ira_spilled_reg_stack_slots);
058e97ec 5416 ira_finish_assign ();
b8698a0f 5417 }
55a2c322 5418
058e97ec
VM
5419 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5420 && overall_cost_before != ira_overall_cost)
16998094 5421 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
2bf7560b 5422 ira_overall_cost);
b8698a0f 5423
3553f0bb
VM
5424 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5425
55a2c322 5426 if (! ira_use_lra_p)
2608d841 5427 {
55a2c322
VM
5428 ira_destroy ();
5429 if (current_loops != NULL)
5430 {
661bc682 5431 loop_optimizer_finalize ();
55a2c322
VM
5432 free_dominance_info (CDI_DOMINATORS);
5433 }
04a90bec 5434 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5435 bb->loop_father = NULL;
5436 current_loops = NULL;
5437
5438 regstat_free_ri ();
5439 regstat_free_n_sets_and_refs ();
2608d841 5440 }
b8698a0f 5441
058e97ec 5442 if (optimize)
55a2c322 5443 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 5444
55a2c322 5445 finish_reg_equiv ();
058e97ec
VM
5446
5447 bitmap_obstack_release (&ira_bitmap_obstack);
5448#ifndef IRA_NO_OBSTACK
5449 obstack_free (&ira_obstack, NULL);
5450#endif
5451
5452 /* The code after the reload has changed so much that at this point
b0c11403 5453 we might as well just rescan everything. Note that
058e97ec
VM
5454 df_rescan_all_insns is not going to help here because it does not
5455 touch the artificial uses and defs. */
5456 df_finish_pass (true);
058e97ec
VM
5457 df_scan_alloc (NULL);
5458 df_scan_blocks ();
5459
5d517141
SB
5460 if (optimize > 1)
5461 {
5462 df_live_add_problem ();
5463 df_live_set_all_dirty ();
5464 }
5465
058e97ec
VM
5466 if (optimize)
5467 df_analyze ();
5468
b0c11403
JL
5469 if (need_dce && optimize)
5470 run_fast_dce ();
d3afd9aa 5471
af6e8467
RH
5472 /* Diagnose uses of the hard frame pointer when it is used as a global
5473 register. Often we can get away with letting the user appropriate
5474 the frame pointer, but we should let them know when code generation
5475 makes that impossible. */
5476 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5477 {
5478 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5479 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5480 "frame pointer required, but reserved");
5481 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5482 }
5483
bcb21886
KY
5484 if (pic_offset_table_regno != INVALID_REGNUM)
5485 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5486
d3afd9aa 5487 timevar_pop (TV_IRA);
058e97ec 5488}
058e97ec 5489\f
058e97ec 5490/* Run the integrated register allocator. */
058e97ec 5491
27a4cd48
DM
5492namespace {
5493
5494const pass_data pass_data_ira =
058e97ec 5495{
27a4cd48
DM
5496 RTL_PASS, /* type */
5497 "ira", /* name */
5498 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5499 TV_IRA, /* tv_id */
5500 0, /* properties_required */
5501 0, /* properties_provided */
5502 0, /* properties_destroyed */
5503 0, /* todo_flags_start */
5504 TODO_do_not_ggc_collect, /* todo_flags_finish */
d3afd9aa
RB
5505};
5506
27a4cd48
DM
5507class pass_ira : public rtl_opt_pass
5508{
5509public:
c3284718
RS
5510 pass_ira (gcc::context *ctxt)
5511 : rtl_opt_pass (pass_data_ira, ctxt)
27a4cd48
DM
5512 {}
5513
5514 /* opt_pass methods: */
a50fa76a
BS
5515 virtual bool gate (function *)
5516 {
5517 return !targetm.no_register_allocation;
5518 }
be55bfe6
TS
5519 virtual unsigned int execute (function *)
5520 {
5521 ira (dump_file);
5522 return 0;
5523 }
27a4cd48
DM
5524
5525}; // class pass_ira
5526
5527} // anon namespace
5528
5529rtl_opt_pass *
5530make_pass_ira (gcc::context *ctxt)
5531{
5532 return new pass_ira (ctxt);
5533}
5534
27a4cd48
DM
5535namespace {
5536
5537const pass_data pass_data_reload =
d3afd9aa 5538{
27a4cd48
DM
5539 RTL_PASS, /* type */
5540 "reload", /* name */
5541 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5542 TV_RELOAD, /* tv_id */
5543 0, /* properties_required */
5544 0, /* properties_provided */
5545 0, /* properties_destroyed */
5546 0, /* todo_flags_start */
5547 0, /* todo_flags_finish */
058e97ec 5548};
27a4cd48
DM
5549
5550class pass_reload : public rtl_opt_pass
5551{
5552public:
c3284718
RS
5553 pass_reload (gcc::context *ctxt)
5554 : rtl_opt_pass (pass_data_reload, ctxt)
27a4cd48
DM
5555 {}
5556
5557 /* opt_pass methods: */
a50fa76a
BS
5558 virtual bool gate (function *)
5559 {
5560 return !targetm.no_register_allocation;
5561 }
be55bfe6
TS
5562 virtual unsigned int execute (function *)
5563 {
5564 do_reload ();
5565 return 0;
5566 }
27a4cd48
DM
5567
5568}; // class pass_reload
5569
5570} // anon namespace
5571
5572rtl_opt_pass *
5573make_pass_reload (gcc::context *ctxt)
5574{
5575 return new pass_reload (ctxt);
5576}