]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
Remove global call sets: haifa-sched.c
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
a5544970 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec 155
df3e3493 156 * IRA creates live ranges of each allocno, calculates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66 194 the allocation. IRA uses some heuristics to improve the
41808d15
VM
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
1756cb66
VM
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
058e97ec
VM
234
235 * Popping the allocnos from the stack and assigning them hard
67914693 236 registers. If IRA cannot assign a hard register to an
058e97ec
VM
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
1756cb66 247 * Chaitin-Briggs coloring assigns as many pseudos as possible
df3e3493 248 to hard registers. After coloring we try to improve
1756cb66
VM
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
3447fefe 254 * After allocno assigning in the region, IRA modifies the hard
058e97ec
VM
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
1756cb66
VM
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
058e97ec
VM
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
1756cb66
VM
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
1756cb66
VM
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
058e97ec
VM
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
df3e3493 310 spilled allocnos. This is implemented by a simple and fast
058e97ec
VM
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
df3e3493 331 data are initialized in file ira.c.
058e97ec
VM
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
1756cb66
VM
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
058e97ec
VM
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
c7131fb2 369#include "backend.h"
957060b5 370#include "target.h"
058e97ec 371#include "rtl.h"
957060b5 372#include "tree.h"
c7131fb2 373#include "df.h"
4d0cdd0c 374#include "memmodel.h"
957060b5 375#include "tm_p.h"
957060b5 376#include "insn-config.h"
c7131fb2 377#include "regs.h"
957060b5
AM
378#include "ira.h"
379#include "ira-int.h"
380#include "diagnostic-core.h"
60393bbc
AM
381#include "cfgrtl.h"
382#include "cfgbuild.h"
383#include "cfgcleanup.h"
058e97ec 384#include "expr.h"
058e97ec
VM
385#include "tree-pass.h"
386#include "output.h"
387#include "reload.h"
c7131fb2 388#include "cfgloop.h"
55a2c322 389#include "lra.h"
b0c11403 390#include "dce.h"
acf41a74 391#include "dbgcnt.h"
40954ce5 392#include "rtl-iter.h"
a5e022d5 393#include "shrink-wrap.h"
013a8899 394#include "print-rtl.h"
058e97ec 395
afcc66c4 396struct target_ira default_target_ira;
99b1c316 397class target_ira_int default_target_ira_int;
afcc66c4
RS
398#if SWITCHABLE_TARGET
399struct target_ira *this_target_ira = &default_target_ira;
99b1c316 400class target_ira_int *this_target_ira_int = &default_target_ira_int;
afcc66c4
RS
401#endif
402
058e97ec
VM
403/* A modified value of flag `-fira-verbose' used internally. */
404int internal_flag_ira_verbose;
405
406/* Dump file of the allocator if it is not NULL. */
407FILE *ira_dump_file;
408
058e97ec
VM
409/* The number of elements in the following array. */
410int ira_spilled_reg_stack_slots_num;
411
412/* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
99b1c316 414class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
058e97ec 415
ae2b9cb6
BS
416/* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
2bf7560b
VM
421int64_t ira_overall_cost, overall_cost_before;
422int64_t ira_reg_cost, ira_mem_cost;
423int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec
VM
424int ira_move_loops_num, ira_additional_jumps_num;
425
2af2dbdc
VM
426/* All registers that can be eliminated. */
427
428HARD_REG_SET eliminable_regset;
429
70cc3288
VM
430/* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433static int max_regno_before_ira;
434
058e97ec
VM
435/* Temporary hard reg set used for a different calculation. */
436static HARD_REG_SET temp_hard_regset;
437
e80ccebc
RS
438#define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
440\f
441
442/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443static void
444setup_reg_mode_hard_regset (void)
445{
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
ad474626
RS
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
058e97ec
VM
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458}
459
460\f
afcc66c4
RS
461#define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
463
464/* The function sets up the three arrays declared above. */
465static void
466setup_class_hard_regs (void)
467{
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
d15e5131 474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
058e97ec 475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 477 {
854edfcd
VM
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
0583835c 480 }
058e97ec
VM
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483#ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485#else
486 hard_regno = i;
b8698a0f 487#endif
058e97ec
VM
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
0583835c
VM
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
504 }
505}
506
058e97ec
VM
507/* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510static void
511setup_alloc_regs (bool use_hard_frame_p)
512{
5a733826
BS
513#ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515#endif
6576d245 516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
058e97ec
VM
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
058e97ec
VM
520}
521
522\f
523
1756cb66
VM
524#define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
526
527/* Initialize the table of subclasses of each reg class. */
528static void
529setup_reg_subclasses (void)
530{
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
533
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537
538 for (i = 0; i < N_REG_CLASSES; i++)
539 {
540 if (i == (int) NO_REGS)
541 continue;
542
d15e5131 543 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1756cb66
VM
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
548 {
549 enum reg_class *p;
550
d15e5131 551 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
1756cb66
VM
552 if (! hard_reg_set_subset_p (temp_hard_regset,
553 temp_hard_regset2))
554 continue;
555 p = &alloc_reg_class_subclasses[j][0];
556 while (*p != LIM_REG_CLASSES) p++;
557 *p = (enum reg_class) i;
558 }
559 }
560}
561
562\f
563
564/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
565static void
566setup_class_subset_and_memory_move_costs (void)
567{
1756cb66 568 int cl, cl2, mode, cost;
058e97ec
VM
569 HARD_REG_SET temp_hard_regset2;
570
571 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
572 ira_memory_move_cost[mode][NO_REGS][0]
573 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
574 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
575 {
576 if (cl != (int) NO_REGS)
577 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
578 {
1756cb66
VM
579 ira_max_memory_move_cost[mode][cl][0]
580 = ira_memory_move_cost[mode][cl][0]
ef4bddc2 581 = memory_move_cost ((machine_mode) mode,
6f76a878 582 (reg_class_t) cl, false);
1756cb66
VM
583 ira_max_memory_move_cost[mode][cl][1]
584 = ira_memory_move_cost[mode][cl][1]
ef4bddc2 585 = memory_move_cost ((machine_mode) mode,
6f76a878 586 (reg_class_t) cl, true);
058e97ec
VM
587 /* Costs for NO_REGS are used in cost calculation on the
588 1st pass when the preferred register classes are not
589 known yet. In this case we take the best scenario. */
590 if (ira_memory_move_cost[mode][NO_REGS][0]
591 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
592 ira_max_memory_move_cost[mode][NO_REGS][0]
593 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
594 = ira_memory_move_cost[mode][cl][0];
595 if (ira_memory_move_cost[mode][NO_REGS][1]
596 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
597 ira_max_memory_move_cost[mode][NO_REGS][1]
598 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
599 = ira_memory_move_cost[mode][cl][1];
600 }
058e97ec 601 }
1756cb66
VM
602 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
603 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
604 {
d15e5131
RS
605 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
606 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1756cb66
VM
607 ira_class_subset_p[cl][cl2]
608 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
609 if (! hard_reg_set_empty_p (temp_hard_regset2)
610 && hard_reg_set_subset_p (reg_class_contents[cl2],
611 reg_class_contents[cl]))
612 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
613 {
614 cost = ira_memory_move_cost[mode][cl2][0];
615 if (cost > ira_max_memory_move_cost[mode][cl][0])
616 ira_max_memory_move_cost[mode][cl][0] = cost;
617 cost = ira_memory_move_cost[mode][cl2][1];
618 if (cost > ira_max_memory_move_cost[mode][cl][1])
619 ira_max_memory_move_cost[mode][cl][1] = cost;
620 }
621 }
622 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
623 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
624 {
625 ira_memory_move_cost[mode][cl][0]
626 = ira_max_memory_move_cost[mode][cl][0];
627 ira_memory_move_cost[mode][cl][1]
628 = ira_max_memory_move_cost[mode][cl][1];
629 }
630 setup_reg_subclasses ();
058e97ec
VM
631}
632
633\f
634
635/* Define the following macro if allocation through malloc if
636 preferable. */
637#define IRA_NO_OBSTACK
638
639#ifndef IRA_NO_OBSTACK
640/* Obstack used for storing all dynamic data (except bitmaps) of the
641 IRA. */
642static struct obstack ira_obstack;
643#endif
644
645/* Obstack used for storing all bitmaps of the IRA. */
646static struct bitmap_obstack ira_bitmap_obstack;
647
648/* Allocate memory of size LEN for IRA data. */
649void *
650ira_allocate (size_t len)
651{
652 void *res;
653
654#ifndef IRA_NO_OBSTACK
655 res = obstack_alloc (&ira_obstack, len);
656#else
657 res = xmalloc (len);
658#endif
659 return res;
660}
661
058e97ec
VM
662/* Free memory ADDR allocated for IRA data. */
663void
664ira_free (void *addr ATTRIBUTE_UNUSED)
665{
666#ifndef IRA_NO_OBSTACK
667 /* do nothing */
668#else
669 free (addr);
670#endif
671}
672
673
674/* Allocate and returns bitmap for IRA. */
675bitmap
676ira_allocate_bitmap (void)
677{
678 return BITMAP_ALLOC (&ira_bitmap_obstack);
679}
680
681/* Free bitmap B allocated for IRA. */
682void
683ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
684{
685 /* do nothing */
686}
687
688\f
689
690/* Output information about allocation of all allocnos (except for
691 caps) into file F. */
692void
693ira_print_disposition (FILE *f)
694{
695 int i, n, max_regno;
696 ira_allocno_t a;
697 basic_block bb;
698
699 fprintf (f, "Disposition:");
700 max_regno = max_reg_num ();
701 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
702 for (a = ira_regno_allocno_map[i];
703 a != NULL;
704 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
705 {
706 if (n % 4 == 0)
707 fprintf (f, "\n");
708 n++;
709 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
710 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
711 fprintf (f, "b%-3d", bb->index);
712 else
2608d841 713 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
714 if (ALLOCNO_HARD_REGNO (a) >= 0)
715 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
716 else
717 fprintf (f, " mem");
718 }
719 fprintf (f, "\n");
720}
721
722/* Outputs information about allocation of all allocnos into
723 stderr. */
724void
725ira_debug_disposition (void)
726{
727 ira_print_disposition (stderr);
728}
729
730\f
058e97ec 731
1756cb66
VM
732/* Set up ira_stack_reg_pressure_class which is the biggest pressure
733 register class containing stack registers or NO_REGS if there are
734 no stack registers. To find this class, we iterate through all
735 register pressure classes and choose the first register pressure
736 class containing all the stack registers and having the biggest
737 size. */
fe82cdfb 738static void
1756cb66
VM
739setup_stack_reg_pressure_class (void)
740{
741 ira_stack_reg_pressure_class = NO_REGS;
742#ifdef STACK_REGS
743 {
744 int i, best, size;
745 enum reg_class cl;
746 HARD_REG_SET temp_hard_regset2;
747
748 CLEAR_HARD_REG_SET (temp_hard_regset);
749 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
750 SET_HARD_REG_BIT (temp_hard_regset, i);
751 best = 0;
752 for (i = 0; i < ira_pressure_classes_num; i++)
753 {
754 cl = ira_pressure_classes[i];
dc333d8f 755 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
1756cb66
VM
756 size = hard_reg_set_size (temp_hard_regset2);
757 if (best < size)
758 {
759 best = size;
760 ira_stack_reg_pressure_class = cl;
761 }
762 }
763 }
764#endif
765}
766
767/* Find pressure classes which are register classes for which we
768 calculate register pressure in IRA, register pressure sensitive
769 insn scheduling, and register pressure sensitive loop invariant
770 motion.
771
772 To make register pressure calculation easy, we always use
773 non-intersected register pressure classes. A move of hard
774 registers from one register pressure class is not more expensive
775 than load and store of the hard registers. Most likely an allocno
776 class will be a subset of a register pressure class and in many
777 cases a register pressure class. That makes usage of register
778 pressure classes a good approximation to find a high register
779 pressure. */
780static void
781setup_pressure_classes (void)
058e97ec 782{
1756cb66
VM
783 int cost, i, n, curr;
784 int cl, cl2;
785 enum reg_class pressure_classes[N_REG_CLASSES];
786 int m;
058e97ec 787 HARD_REG_SET temp_hard_regset2;
1756cb66 788 bool insert_p;
058e97ec 789
b4ff394c
PH
790 if (targetm.compute_pressure_classes)
791 n = targetm.compute_pressure_classes (pressure_classes);
792 else
793 {
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 796 {
b4ff394c
PH
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
113a5be6 805 {
b4ff394c
PH
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
812 {
d15e5131
RS
813 temp_hard_regset
814 = (reg_class_contents[cl]
815 & ~(no_unit_alloc_regs
816 | ira_prohibited_class_mode_regs[cl][m]));
b4ff394c
PH
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
824 }
825 if (m >= NUM_MACHINE_MODES)
113a5be6 826 continue;
113a5be6 827 }
b4ff394c
PH
828 curr = 0;
829 insert_p = true;
d15e5131 830 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
b4ff394c
PH
831 /* Remove so far added pressure classes which are subset of the
832 current candidate class. Prefer GENERAL_REGS as a pressure
833 register class to another class containing the same
834 allocatable hard registers. We do this because machine
835 dependent cost hooks might give wrong costs for the latter
836 class but always give the right cost for the former class
837 (GENERAL_REGS). */
838 for (i = 0; i < n; i++)
1756cb66 839 {
b4ff394c 840 cl2 = pressure_classes[i];
d15e5131
RS
841 temp_hard_regset2 = (reg_class_contents[cl2]
842 & ~no_unit_alloc_regs);
b4ff394c 843 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
a8579651 844 && (temp_hard_regset != temp_hard_regset2
b4ff394c
PH
845 || cl2 == (int) GENERAL_REGS))
846 {
847 pressure_classes[curr++] = (enum reg_class) cl2;
848 insert_p = false;
849 continue;
850 }
851 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
a8579651 852 && (temp_hard_regset2 != temp_hard_regset
b4ff394c
PH
853 || cl == (int) GENERAL_REGS))
854 continue;
a8579651 855 if (temp_hard_regset2 == temp_hard_regset)
b4ff394c 856 insert_p = false;
1756cb66 857 pressure_classes[curr++] = (enum reg_class) cl2;
1756cb66 858 }
b4ff394c
PH
859 /* If the current candidate is a subset of a so far added
860 pressure class, don't add it to the list of the pressure
861 classes. */
862 if (insert_p)
863 pressure_classes[curr++] = (enum reg_class) cl;
864 n = curr;
1756cb66 865 }
fe82cdfb 866 }
1756cb66 867#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
868 {
869 HARD_REG_SET ignore_hard_regs;
870
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
6576d245 876 ignore_hard_regs = no_unit_alloc_regs;
113a5be6
VM
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
878 {
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
886 {
44942965 887 ignore_hard_regs |= reg_class_contents[cl];
113a5be6
VM
888 continue;
889 }
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
44942965 893 temp_hard_regset2 |= reg_class_contents[cl];
113a5be6 894 if (i < n)
44942965 895 temp_hard_regset |= reg_class_contents[cl];
113a5be6
VM
896 }
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
df3e3493 898 /* Some targets (like SPARC with ICC reg) have allocatable regs
113a5be6
VM
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
d15e5131
RS
902 temp_hard_regset &= ~ignore_hard_regs;
903 temp_hard_regset2 &= ~ignore_hard_regs;
113a5be6
VM
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
905 }
1756cb66
VM
906#endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
909 {
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
913 }
914 setup_stack_reg_pressure_class ();
058e97ec
VM
915}
916
165f639c
VM
917/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921static void
922setup_uniform_class_p (void)
923{
924 int i, cl, cl2, m;
925
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
927 {
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
67914693 931 /* We cannot use alloc_reg_class_subclasses here because move
165f639c
VM
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
937 {
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
942 {
ef4bddc2 943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
165f639c
VM
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
947 }
948 if (m < NUM_MACHINE_MODES)
949 break;
950 }
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
953 }
954}
955
1756cb66
VM
956/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
958
df3e3493 959 Target may have many subtargets and not all target hard registers can
67914693 960 be used for allocation, e.g. x86 port in 32-bit mode cannot use
1756cb66
VM
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
966
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
058e97ec 981static void
1756cb66 982setup_allocno_and_important_classes (void)
058e97ec 983{
32e8bb8e 984 int i, j, n, cl;
db1a8d98 985 bool set_p;
058e97ec 986 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
988
1756cb66
VM
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
a58dfa49 993 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 994 {
d15e5131 995 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
1756cb66 996 for (j = 0; j < n; j++)
7db7ed3c 997 {
1756cb66 998 cl = classes[j];
d15e5131 999 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
a8579651 1000 if (temp_hard_regset == temp_hard_regset2)
1756cb66 1001 break;
7db7ed3c 1002 }
e93f30a6 1003 if (j >= n || targetm.additional_allocno_class_p (i))
1756cb66
VM
1004 classes[n++] = (enum reg_class) i;
1005 else if (i == GENERAL_REGS)
1006 /* Prefer general regs. For i386 example, it means that
1007 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1008 (all of them consists of the same available hard
1009 registers). */
1010 classes[j] = (enum reg_class) i;
7db7ed3c 1011 }
1756cb66 1012 classes[n] = LIM_REG_CLASSES;
058e97ec 1013
1756cb66 1014 /* Set up classes which can be used for allocnos as classes
df3e3493 1015 containing non-empty unique sets of allocatable hard
1756cb66
VM
1016 registers. */
1017 ira_allocno_classes_num = 0;
058e97ec 1018 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1019 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1020 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1021 ira_important_classes_num = 0;
1756cb66
VM
1022 /* Add non-allocno classes containing to non-empty set of
1023 allocatable hard regs. */
058e97ec 1024 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1025 if (ira_class_hard_regs_num[cl] > 0)
1026 {
d15e5131 1027 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
3e575fe2
RS
1028 set_p = false;
1029 for (j = 0; j < ira_allocno_classes_num; j++)
1030 {
d15e5131
RS
1031 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1032 & ~no_unit_alloc_regs);
3e575fe2
RS
1033 if ((enum reg_class) cl == ira_allocno_classes[j])
1034 break;
1035 else if (hard_reg_set_subset_p (temp_hard_regset,
1036 temp_hard_regset2))
1037 set_p = true;
1038 }
1039 if (set_p && j >= ira_allocno_classes_num)
1040 ira_important_classes[ira_important_classes_num++]
1041 = (enum reg_class) cl;
1042 }
1756cb66
VM
1043 /* Now add allocno classes to the important classes. */
1044 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1045 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1046 = ira_allocno_classes[j];
1047 for (cl = 0; cl < N_REG_CLASSES; cl++)
1048 {
1049 ira_reg_allocno_class_p[cl] = false;
1050 ira_reg_pressure_class_p[cl] = false;
1051 }
1052 for (j = 0; j < ira_allocno_classes_num; j++)
1053 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1054 setup_pressure_classes ();
165f639c 1055 setup_uniform_class_p ();
058e97ec 1056}
058e97ec 1057
1756cb66
VM
1058/* Setup translation in CLASS_TRANSLATE of all classes into a class
1059 given by array CLASSES of length CLASSES_NUM. The function is used
1060 make translation any reg class to an allocno class or to an
1061 pressure class. This translation is necessary for some
1062 calculations when we can use only allocno or pressure classes and
1063 such translation represents an approximate representation of all
1064 classes.
1065
1066 The translation in case when allocatable hard register set of a
1067 given class is subset of allocatable hard register set of a class
1068 in CLASSES is pretty simple. We use smallest classes from CLASSES
1069 containing a given class. If allocatable hard register set of a
1070 given class is not a subset of any corresponding set of a class
1071 from CLASSES, we use the cheapest (with load/store point of view)
2b9c63a2 1072 class from CLASSES whose set intersects with given class set. */
058e97ec 1073static void
1756cb66
VM
1074setup_class_translate_array (enum reg_class *class_translate,
1075 int classes_num, enum reg_class *classes)
058e97ec 1076{
32e8bb8e 1077 int cl, mode;
1756cb66 1078 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1079 int i, cost, min_cost, best_cost;
1080
1081 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1082 class_translate[cl] = NO_REGS;
b8698a0f 1083
1756cb66 1084 for (i = 0; i < classes_num; i++)
058e97ec 1085 {
1756cb66
VM
1086 aclass = classes[i];
1087 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1088 (cl = *cl_ptr) != LIM_REG_CLASSES;
1089 cl_ptr++)
1090 if (class_translate[cl] == NO_REGS)
1091 class_translate[cl] = aclass;
1092 class_translate[aclass] = aclass;
058e97ec 1093 }
1756cb66
VM
1094 /* For classes which are not fully covered by one of given classes
1095 (in other words covered by more one given class), use the
1096 cheapest class. */
058e97ec
VM
1097 for (cl = 0; cl < N_REG_CLASSES; cl++)
1098 {
1756cb66 1099 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1100 continue;
1101 best_class = NO_REGS;
1102 best_cost = INT_MAX;
1756cb66 1103 for (i = 0; i < classes_num; i++)
058e97ec 1104 {
1756cb66 1105 aclass = classes[i];
dc333d8f 1106 temp_hard_regset = (reg_class_contents[aclass]
d15e5131
RS
1107 & reg_class_contents[cl]
1108 & ~no_unit_alloc_regs);
4f341ea0 1109 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1110 {
1111 min_cost = INT_MAX;
1112 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1113 {
761a8eb7
VM
1114 cost = (ira_memory_move_cost[mode][aclass][0]
1115 + ira_memory_move_cost[mode][aclass][1]);
058e97ec
VM
1116 if (min_cost > cost)
1117 min_cost = cost;
1118 }
1119 if (best_class == NO_REGS || best_cost > min_cost)
1120 {
1756cb66 1121 best_class = aclass;
058e97ec
VM
1122 best_cost = min_cost;
1123 }
1124 }
1125 }
1756cb66 1126 class_translate[cl] = best_class;
058e97ec
VM
1127 }
1128}
058e97ec 1129
1756cb66
VM
1130/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1131 IRA_PRESSURE_CLASS_TRANSLATE. */
1132static void
1133setup_class_translate (void)
1134{
1135 setup_class_translate_array (ira_allocno_class_translate,
1136 ira_allocno_classes_num, ira_allocno_classes);
1137 setup_class_translate_array (ira_pressure_class_translate,
1138 ira_pressure_classes_num, ira_pressure_classes);
1139}
1140
1141/* Order numbers of allocno classes in original target allocno class
1142 array, -1 for non-allocno classes. */
1143static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1144
1145/* The function used to sort the important classes. */
1146static int
1147comp_reg_classes_func (const void *v1p, const void *v2p)
1148{
1149 enum reg_class cl1 = *(const enum reg_class *) v1p;
1150 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1151 enum reg_class tcl1, tcl2;
db1a8d98
VM
1152 int diff;
1153
1756cb66
VM
1154 tcl1 = ira_allocno_class_translate[cl1];
1155 tcl2 = ira_allocno_class_translate[cl2];
1156 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1157 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1158 return diff;
1159 return (int) cl1 - (int) cl2;
1160}
1161
1756cb66
VM
1162/* For correct work of function setup_reg_class_relation we need to
1163 reorder important classes according to the order of their allocno
1164 classes. It places important classes containing the same
1165 allocatable hard register set adjacent to each other and allocno
1166 class with the allocatable hard register set right after the other
1167 important classes with the same set.
1168
1169 In example from comments of function
1170 setup_allocno_and_important_classes, it places LEGACY_REGS and
1171 GENERAL_REGS close to each other and GENERAL_REGS is after
1172 LEGACY_REGS. */
db1a8d98
VM
1173static void
1174reorder_important_classes (void)
1175{
1176 int i;
1177
1178 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1179 allocno_class_order[i] = -1;
1180 for (i = 0; i < ira_allocno_classes_num; i++)
1181 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1182 qsort (ira_important_classes, ira_important_classes_num,
1183 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1184 for (i = 0; i < ira_important_classes_num; i++)
1185 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1186}
1187
1756cb66
VM
1188/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1189 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1190 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1191 please see corresponding comments in ira-int.h. */
058e97ec 1192static void
7db7ed3c 1193setup_reg_class_relations (void)
058e97ec
VM
1194{
1195 int i, cl1, cl2, cl3;
1196 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1197 bool important_class_p[N_REG_CLASSES];
058e97ec 1198
7db7ed3c
VM
1199 memset (important_class_p, 0, sizeof (important_class_p));
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1202 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1203 {
7db7ed3c 1204 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1205 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1206 {
7db7ed3c 1207 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1208 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1209 ira_reg_class_subset[cl1][cl2] = NO_REGS;
d15e5131
RS
1210 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1211 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
4f341ea0
RS
1212 if (hard_reg_set_empty_p (temp_hard_regset)
1213 && hard_reg_set_empty_p (temp_set2))
058e97ec 1214 {
1756cb66
VM
1215 /* The both classes have no allocatable hard registers
1216 -- take all class hard registers into account and use
1217 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1218 for (i = 0;; i++)
1219 {
1220 cl3 = reg_class_subclasses[cl1][i];
1221 if (cl3 == LIM_REG_CLASSES)
1222 break;
1223 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1224 (enum reg_class) cl3))
1225 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1226 }
1756cb66
VM
1227 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1228 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1229 continue;
1230 }
7db7ed3c
VM
1231 ira_reg_classes_intersect_p[cl1][cl2]
1232 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1233 if (important_class_p[cl1] && important_class_p[cl2]
1234 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1235 {
1756cb66
VM
1236 /* CL1 and CL2 are important classes and CL1 allocatable
1237 hard register set is inside of CL2 allocatable hard
1238 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1239 enum reg_class *p;
1240
1241 p = &ira_reg_class_super_classes[cl1][0];
1242 while (*p != LIM_REG_CLASSES)
1243 p++;
1244 *p++ = (enum reg_class) cl2;
1245 *p = LIM_REG_CLASSES;
1246 }
1756cb66
VM
1247 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1248 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
dc333d8f 1249 intersection_set = (reg_class_contents[cl1]
d15e5131
RS
1250 & reg_class_contents[cl2]
1251 & ~no_unit_alloc_regs);
1252 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1253 & ~no_unit_alloc_regs);
55a2c322 1254 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1255 {
d15e5131 1256 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
058e97ec
VM
1257 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1258 {
1756cb66
VM
1259 /* CL3 allocatable hard register set is inside of
1260 intersection of allocatable hard register sets
1261 of CL1 and CL2. */
55a2c322
VM
1262 if (important_class_p[cl3])
1263 {
6576d245
RS
1264 temp_set2
1265 = (reg_class_contents
1266 [ira_reg_class_intersect[cl1][cl2]]);
d15e5131 1267 temp_set2 &= ~no_unit_alloc_regs;
55a2c322
VM
1268 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1269 /* If the allocatable hard register sets are
1270 the same, prefer GENERAL_REGS or the
1271 smallest class for debugging
1272 purposes. */
a8579651 1273 || (temp_hard_regset == temp_set2
55a2c322
VM
1274 && (cl3 == GENERAL_REGS
1275 || ((ira_reg_class_intersect[cl1][cl2]
1276 != GENERAL_REGS)
1277 && hard_reg_set_subset_p
1278 (reg_class_contents[cl3],
1279 reg_class_contents
1280 [(int)
1281 ira_reg_class_intersect[cl1][cl2]])))))
1282 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1283 }
6576d245 1284 temp_set2
d15e5131
RS
1285 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1286 & ~no_unit_alloc_regs);
55a2c322
VM
1287 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1288 /* Ignore unavailable hard registers and prefer
1289 smallest class for debugging purposes. */
a8579651 1290 || (temp_hard_regset == temp_set2
55a2c322
VM
1291 && hard_reg_set_subset_p
1292 (reg_class_contents[cl3],
1293 reg_class_contents
1294 [(int) ira_reg_class_subset[cl1][cl2]])))
1295 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1296 }
55a2c322
VM
1297 if (important_class_p[cl3]
1298 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1299 {
df3e3493 1300 /* CL3 allocatable hard register set is inside of
1756cb66
VM
1301 union of allocatable hard register sets of CL1
1302 and CL2. */
6576d245 1303 temp_set2
d15e5131
RS
1304 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1305 & ~no_unit_alloc_regs);
1756cb66 1306 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1307 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66 1308
a8579651 1309 && (temp_set2 != temp_hard_regset
1756cb66
VM
1310 || cl3 == GENERAL_REGS
1311 /* If the allocatable hard register sets are the
1312 same, prefer GENERAL_REGS or the smallest
1313 class for debugging purposes. */
1314 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1315 && hard_reg_set_subset_p
1316 (reg_class_contents[cl3],
1317 reg_class_contents
1318 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1319 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1320 }
1321 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1322 {
1323 /* CL3 allocatable hard register set contains union
1324 of allocatable hard register sets of CL1 and
1325 CL2. */
6576d245 1326 temp_set2
d15e5131
RS
1327 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1328 & ~no_unit_alloc_regs);
1756cb66
VM
1329 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1330 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1331
a8579651 1332 && (temp_set2 != temp_hard_regset
1756cb66
VM
1333 || cl3 == GENERAL_REGS
1334 /* If the allocatable hard register sets are the
1335 same, prefer GENERAL_REGS or the smallest
1336 class for debugging purposes. */
1337 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1338 && hard_reg_set_subset_p
1339 (reg_class_contents[cl3],
1340 reg_class_contents
1341 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1342 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1343 }
1344 }
1345 }
1346 }
1347}
1348
df3e3493 1349/* Output all uniform and important classes into file F. */
165f639c 1350static void
89e94470 1351print_uniform_and_important_classes (FILE *f)
165f639c 1352{
165f639c
VM
1353 int i, cl;
1354
1355 fprintf (f, "Uniform classes:\n");
1356 for (cl = 0; cl < N_REG_CLASSES; cl++)
1357 if (ira_uniform_class_p[cl])
1358 fprintf (f, " %s", reg_class_names[cl]);
1359 fprintf (f, "\nImportant classes:\n");
1360 for (i = 0; i < ira_important_classes_num; i++)
1361 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1362 fprintf (f, "\n");
1363}
1364
1365/* Output all possible allocno or pressure classes and their
1366 translation map into file F. */
058e97ec 1367static void
165f639c 1368print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1369{
1370 int classes_num = (pressure_p
1371 ? ira_pressure_classes_num : ira_allocno_classes_num);
1372 enum reg_class *classes = (pressure_p
1373 ? ira_pressure_classes : ira_allocno_classes);
1374 enum reg_class *class_translate = (pressure_p
1375 ? ira_pressure_class_translate
1376 : ira_allocno_class_translate);
058e97ec
VM
1377 int i;
1378
1756cb66
VM
1379 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1380 for (i = 0; i < classes_num; i++)
1381 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1382 fprintf (f, "\nClass translation:\n");
1383 for (i = 0; i < N_REG_CLASSES; i++)
1384 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1385 reg_class_names[class_translate[i]]);
058e97ec
VM
1386}
1387
1756cb66
VM
1388/* Output all possible allocno and translation classes and the
1389 translation maps into stderr. */
058e97ec 1390void
1756cb66 1391ira_debug_allocno_classes (void)
058e97ec 1392{
89e94470 1393 print_uniform_and_important_classes (stderr);
165f639c
VM
1394 print_translated_classes (stderr, false);
1395 print_translated_classes (stderr, true);
058e97ec
VM
1396}
1397
1756cb66 1398/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1399 important classes. */
1400static void
1756cb66 1401find_reg_classes (void)
058e97ec 1402{
1756cb66 1403 setup_allocno_and_important_classes ();
7db7ed3c 1404 setup_class_translate ();
db1a8d98 1405 reorder_important_classes ();
7db7ed3c 1406 setup_reg_class_relations ();
058e97ec
VM
1407}
1408
1409\f
1410
c0683a82
VM
1411/* Set up the array above. */
1412static void
1756cb66 1413setup_hard_regno_aclass (void)
c0683a82 1414{
7efcf910 1415 int i;
c0683a82
VM
1416
1417 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1418 {
1756cb66
VM
1419#if 1
1420 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1421 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1422 ? NO_REGS
1756cb66
VM
1423 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1424#else
1425 int j;
1426 enum reg_class cl;
1427 ira_hard_regno_allocno_class[i] = NO_REGS;
1428 for (j = 0; j < ira_allocno_classes_num; j++)
1429 {
1430 cl = ira_allocno_classes[j];
1431 if (ira_class_hard_reg_index[cl][i] >= 0)
1432 {
1433 ira_hard_regno_allocno_class[i] = cl;
1434 break;
1435 }
1436 }
1437#endif
c0683a82
VM
1438 }
1439}
1440
1441\f
1442
1756cb66 1443/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1444static void
1445setup_reg_class_nregs (void)
1446{
1756cb66 1447 int i, cl, cl2, m;
058e97ec 1448
1756cb66
VM
1449 for (m = 0; m < MAX_MACHINE_MODE; m++)
1450 {
1451 for (cl = 0; cl < N_REG_CLASSES; cl++)
1452 ira_reg_class_max_nregs[cl][m]
1453 = ira_reg_class_min_nregs[cl][m]
ef4bddc2 1454 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1756cb66
VM
1455 for (cl = 0; cl < N_REG_CLASSES; cl++)
1456 for (i = 0;
1457 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1458 i++)
1459 if (ira_reg_class_min_nregs[cl2][m]
1460 < ira_reg_class_min_nregs[cl][m])
1461 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1462 }
058e97ec
VM
1463}
1464
1465\f
1466
c9d74da6
RS
1467/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1468 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1469static void
1470setup_prohibited_class_mode_regs (void)
1471{
c9d74da6 1472 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1473
1756cb66 1474 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1475 {
d15e5131 1476 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
058e97ec
VM
1477 for (j = 0; j < NUM_MACHINE_MODES; j++)
1478 {
c9d74da6
RS
1479 count = 0;
1480 last_hard_regno = -1;
1756cb66 1481 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1482 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1483 {
1484 hard_regno = ira_class_hard_regs[cl][k];
f939c3e6 1485 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1756cb66 1486 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1487 hard_regno);
c9d74da6 1488 else if (in_hard_reg_set_p (temp_hard_regset,
ef4bddc2 1489 (machine_mode) j, hard_regno))
c9d74da6
RS
1490 {
1491 last_hard_regno = hard_regno;
1492 count++;
1493 }
058e97ec 1494 }
c9d74da6 1495 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1496 }
1497 }
1498}
1499
1756cb66
VM
1500/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1501 spanning from one register pressure class to another one. It is
1502 called after defining the pressure classes. */
1503static void
1504clarify_prohibited_class_mode_regs (void)
1505{
1506 int j, k, hard_regno, cl, pclass, nregs;
1507
1508 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1509 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1510 {
1511 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1512 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1513 {
1514 hard_regno = ira_class_hard_regs[cl][k];
1515 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1516 continue;
ad474626 1517 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
a2c19e93 1518 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1519 {
1520 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1521 hard_regno);
a2c19e93 1522 continue;
1756cb66 1523 }
a2c19e93
RS
1524 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1525 for (nregs-- ;nregs >= 0; nregs--)
1526 if (((enum reg_class) pclass
1527 != ira_pressure_class_translate[REGNO_REG_CLASS
1528 (hard_regno + nregs)]))
1529 {
1530 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1531 hard_regno);
1532 break;
1533 }
1534 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1535 hard_regno))
1536 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
ef4bddc2 1537 (machine_mode) j, hard_regno);
a2c19e93
RS
1538 }
1539 }
1756cb66 1540}
058e97ec 1541\f
7cc61ee4
RS
1542/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1543 and IRA_MAY_MOVE_OUT_COST for MODE. */
1544void
ef4bddc2 1545ira_init_register_move_cost (machine_mode mode)
e80ccebc
RS
1546{
1547 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1548 bool all_match = true;
e384094a
VM
1549 unsigned int i, cl1, cl2;
1550 HARD_REG_SET ok_regs;
e80ccebc 1551
7cc61ee4
RS
1552 ira_assert (ira_register_move_cost[mode] == NULL
1553 && ira_may_move_in_cost[mode] == NULL
1554 && ira_may_move_out_cost[mode] == NULL);
e384094a
VM
1555 CLEAR_HARD_REG_SET (ok_regs);
1556 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1557 if (targetm.hard_regno_mode_ok (i, mode))
1558 SET_HARD_REG_BIT (ok_regs, i);
1559
87e176df
RS
1560 /* Note that we might be asked about the move costs of modes that
1561 cannot be stored in any hard register, for example if an inline
1562 asm tries to create a register operand with an impossible mode.
1563 We therefore can't assert have_regs_of_mode[mode] here. */
ed9e2ed0 1564 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1565 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1566 {
1567 int cost;
e384094a
VM
1568 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1569 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
fef37404
VM
1570 {
1571 if ((ira_reg_class_max_nregs[cl1][mode]
1572 > ira_class_hard_regs_num[cl1])
1573 || (ira_reg_class_max_nregs[cl2][mode]
1574 > ira_class_hard_regs_num[cl2]))
1575 cost = 65535;
1576 else
1577 cost = (ira_memory_move_cost[mode][cl1][0]
1a788c05 1578 + ira_memory_move_cost[mode][cl2][1]) * 2;
fef37404
VM
1579 }
1580 else
1581 {
1582 cost = register_move_cost (mode, (enum reg_class) cl1,
1583 (enum reg_class) cl2);
1584 ira_assert (cost < 65535);
1585 }
1586 all_match &= (last_move_cost[cl1][cl2] == cost);
1587 last_move_cost[cl1][cl2] = cost;
1588 }
e80ccebc
RS
1589 if (all_match && last_mode_for_init_move_cost != -1)
1590 {
7cc61ee4
RS
1591 ira_register_move_cost[mode]
1592 = ira_register_move_cost[last_mode_for_init_move_cost];
1593 ira_may_move_in_cost[mode]
1594 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1595 ira_may_move_out_cost[mode]
1596 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1597 return;
1598 }
ed9e2ed0 1599 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1600 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1601 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0 1603 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1604 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1605 {
1606 int cost;
1607 enum reg_class *p1, *p2;
1608
1609 if (last_move_cost[cl1][cl2] == 65535)
1610 {
1611 ira_register_move_cost[mode][cl1][cl2] = 65535;
1612 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1613 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1614 }
1615 else
1616 {
1617 cost = last_move_cost[cl1][cl2];
1618
1619 for (p2 = &reg_class_subclasses[cl2][0];
1620 *p2 != LIM_REG_CLASSES; p2++)
1621 if (ira_class_hard_regs_num[*p2] > 0
1622 && (ira_reg_class_max_nregs[*p2][mode]
1623 <= ira_class_hard_regs_num[*p2]))
1624 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1625
1626 for (p1 = &reg_class_subclasses[cl1][0];
1627 *p1 != LIM_REG_CLASSES; p1++)
1628 if (ira_class_hard_regs_num[*p1] > 0
1629 && (ira_reg_class_max_nregs[*p1][mode]
1630 <= ira_class_hard_regs_num[*p1]))
1631 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1632
1633 ira_assert (cost <= 65535);
1634 ira_register_move_cost[mode][cl1][cl2] = cost;
1635
1636 if (ira_class_subset_p[cl1][cl2])
1637 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1638 else
1639 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1640
1641 if (ira_class_subset_p[cl2][cl1])
1642 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1643 else
1644 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1645 }
1646 }
058e97ec 1647}
fef37404 1648
058e97ec
VM
1649\f
1650
058e97ec
VM
1651/* This is called once during compiler work. It sets up
1652 different arrays whose values don't depend on the compiled
1653 function. */
1654void
1655ira_init_once (void)
1656{
058e97ec 1657 ira_init_costs_once ();
55a2c322 1658 lra_init_once ();
23427d51
RL
1659
1660 ira_use_lra_p = targetm.lra_p ();
058e97ec
VM
1661}
1662
7cc61ee4
RS
1663/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1664 ira_may_move_out_cost for each mode. */
19c708dc
RS
1665void
1666target_ira_int::free_register_move_costs (void)
058e97ec 1667{
e80ccebc 1668 int mode, i;
058e97ec 1669
e80ccebc
RS
1670 /* Reset move_cost and friends, making sure we only free shared
1671 table entries once. */
1672 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
19c708dc 1673 if (x_ira_register_move_cost[mode])
e80ccebc 1674 {
7cc61ee4 1675 for (i = 0;
19c708dc
RS
1676 i < mode && (x_ira_register_move_cost[i]
1677 != x_ira_register_move_cost[mode]);
7cc61ee4 1678 i++)
e80ccebc
RS
1679 ;
1680 if (i == mode)
1681 {
19c708dc
RS
1682 free (x_ira_register_move_cost[mode]);
1683 free (x_ira_may_move_in_cost[mode]);
1684 free (x_ira_may_move_out_cost[mode]);
e80ccebc
RS
1685 }
1686 }
19c708dc
RS
1687 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1688 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1689 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
e80ccebc 1690 last_mode_for_init_move_cost = -1;
058e97ec
VM
1691}
1692
19c708dc
RS
1693target_ira_int::~target_ira_int ()
1694{
1695 free_ira_costs ();
1696 free_register_move_costs ();
1697}
1698
058e97ec
VM
1699/* This is called every time when register related information is
1700 changed. */
1701void
1702ira_init (void)
1703{
19c708dc 1704 this_target_ira_int->free_register_move_costs ();
058e97ec
VM
1705 setup_reg_mode_hard_regset ();
1706 setup_alloc_regs (flag_omit_frame_pointer != 0);
1707 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1708 setup_reg_class_nregs ();
1709 setup_prohibited_class_mode_regs ();
1756cb66
VM
1710 find_reg_classes ();
1711 clarify_prohibited_class_mode_regs ();
1712 setup_hard_regno_aclass ();
058e97ec
VM
1713 ira_init_costs ();
1714}
1715
058e97ec 1716\f
15e7b94f
RS
1717#define ira_prohibited_mode_move_regs_initialized_p \
1718 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1719
1720/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1721static void
1722setup_prohibited_mode_move_regs (void)
1723{
1724 int i, j;
647d790d
DM
1725 rtx test_reg1, test_reg2, move_pat;
1726 rtx_insn *move_insn;
058e97ec
VM
1727
1728 if (ira_prohibited_mode_move_regs_initialized_p)
1729 return;
1730 ira_prohibited_mode_move_regs_initialized_p = true;
c3dc5e66
RS
1731 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1732 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 1733 move_pat = gen_rtx_SET (test_reg1, test_reg2);
ed8921dc 1734 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1735 for (i = 0; i < NUM_MACHINE_MODES; i++)
1736 {
1737 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1738 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1739 {
f939c3e6 1740 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
058e97ec 1741 continue;
8deccbb7
RS
1742 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1743 set_mode_and_regno (test_reg2, (machine_mode) i, j);
058e97ec
VM
1744 INSN_CODE (move_insn) = -1;
1745 recog_memoized (move_insn);
1746 if (INSN_CODE (move_insn) < 0)
1747 continue;
1748 extract_insn (move_insn);
daca1a96
RS
1749 /* We don't know whether the move will be in code that is optimized
1750 for size or speed, so consider all enabled alternatives. */
1751 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
058e97ec
VM
1752 continue;
1753 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1754 }
1755 }
1756}
1757
1758\f
1759
73bb8fe9
RS
1760/* Extract INSN and return the set of alternatives that we should consider.
1761 This excludes any alternatives whose constraints are obviously impossible
1762 to meet (e.g. because the constraint requires a constant and the operand
ed680e2c
RS
1763 is nonconstant). It also excludes alternatives that are bound to need
1764 a spill or reload, as long as we have other alternatives that match
1765 exactly. */
73bb8fe9
RS
1766alternative_mask
1767ira_setup_alts (rtx_insn *insn)
3b6d1699 1768{
3b6d1699
VM
1769 int nop, nalt;
1770 bool curr_swapped;
1771 const char *p;
3b6d1699
VM
1772 int commutative = -1;
1773
1774 extract_insn (insn);
06a65e80 1775 preprocess_constraints (insn);
9840b2fa 1776 alternative_mask preferred = get_preferred_alternatives (insn);
73bb8fe9 1777 alternative_mask alts = 0;
ed680e2c 1778 alternative_mask exact_alts = 0;
3b6d1699
VM
1779 /* Check that the hard reg set is enough for holding all
1780 alternatives. It is hard to imagine the situation when the
1781 assertion is wrong. */
1782 ira_assert (recog_data.n_alternatives
1783 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1784 FIRST_PSEUDO_REGISTER));
06a65e80
RS
1785 for (nop = 0; nop < recog_data.n_operands; nop++)
1786 if (recog_data.constraints[nop][0] == '%')
1787 {
1788 commutative = nop;
1789 break;
1790 }
3b6d1699
VM
1791 for (curr_swapped = false;; curr_swapped = true)
1792 {
3b6d1699
VM
1793 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1794 {
ed680e2c 1795 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
3b6d1699
VM
1796 continue;
1797
06a65e80
RS
1798 const operand_alternative *op_alt
1799 = &recog_op_alt[nalt * recog_data.n_operands];
ed680e2c 1800 int this_reject = 0;
3b6d1699
VM
1801 for (nop = 0; nop < recog_data.n_operands; nop++)
1802 {
1803 int c, len;
1804
ed680e2c
RS
1805 this_reject += op_alt[nop].reject;
1806
fab27f52 1807 rtx op = recog_data.operand[nop];
06a65e80 1808 p = op_alt[nop].constraint;
3b6d1699
VM
1809 if (*p == 0 || *p == ',')
1810 continue;
ed680e2c
RS
1811
1812 bool win_p = false;
3b6d1699
VM
1813 do
1814 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1815 {
1816 case '#':
1817 case ',':
1818 c = '\0';
191816a3 1819 /* FALLTHRU */
3b6d1699
VM
1820 case '\0':
1821 len = 0;
1822 break;
1823
3b6d1699 1824 case '%':
3f12f020 1825 /* The commutative modifier is handled above. */
3b6d1699
VM
1826 break;
1827
3b6d1699
VM
1828 case '0': case '1': case '2': case '3': case '4':
1829 case '5': case '6': case '7': case '8': case '9':
ed680e2c
RS
1830 {
1831 rtx other = recog_data.operand[c - '0'];
1832 if (MEM_P (other)
1833 ? rtx_equal_p (other, op)
1834 : REG_P (op) || SUBREG_P (op))
1835 goto op_success;
1836 win_p = true;
1837 }
3b6d1699
VM
1838 break;
1839
3b6d1699 1840 case 'g':
3b6d1699
VM
1841 goto op_success;
1842 break;
1843
1844 default:
1845 {
777e635f
RS
1846 enum constraint_num cn = lookup_constraint (p);
1847 switch (get_constraint_type (cn))
1848 {
1849 case CT_REGISTER:
1850 if (reg_class_for_constraint (cn) != NO_REGS)
ed680e2c
RS
1851 {
1852 if (REG_P (op) || SUBREG_P (op))
1853 goto op_success;
1854 win_p = true;
1855 }
777e635f
RS
1856 break;
1857
d9c35eee
RS
1858 case CT_CONST_INT:
1859 if (CONST_INT_P (op)
1860 && (insn_const_int_ok_for_constraint
1861 (INTVAL (op), cn)))
1862 goto op_success;
1863 break;
1864
777e635f 1865 case CT_ADDRESS:
ed680e2c
RS
1866 goto op_success;
1867
777e635f 1868 case CT_MEMORY:
9eb1ca69 1869 case CT_SPECIAL_MEMORY:
ed680e2c
RS
1870 if (MEM_P (op))
1871 goto op_success;
1872 win_p = true;
1873 break;
777e635f
RS
1874
1875 case CT_FIXED_FORM:
1876 if (constraint_satisfied_p (op, cn))
1877 goto op_success;
1878 break;
1879 }
3b6d1699
VM
1880 break;
1881 }
1882 }
1883 while (p += len, c);
ed680e2c
RS
1884 if (!win_p)
1885 break;
1886 /* We can make the alternative match by spilling a register
1887 to memory or loading something into a register. Count a
1888 cost of one reload (the equivalent of the '?' constraint). */
1889 this_reject += 6;
3b6d1699
VM
1890 op_success:
1891 ;
1892 }
ed680e2c 1893
3b6d1699 1894 if (nop >= recog_data.n_operands)
ed680e2c
RS
1895 {
1896 alts |= ALTERNATIVE_BIT (nalt);
1897 if (this_reject == 0)
1898 exact_alts |= ALTERNATIVE_BIT (nalt);
1899 }
3b6d1699
VM
1900 }
1901 if (commutative < 0)
1902 break;
43f4a281 1903 /* Swap forth and back to avoid changing recog_data. */
fab27f52
MM
1904 std::swap (recog_data.operand[commutative],
1905 recog_data.operand[commutative + 1]);
43f4a281
RB
1906 if (curr_swapped)
1907 break;
3b6d1699 1908 }
ed680e2c 1909 return exact_alts ? exact_alts : alts;
3b6d1699
VM
1910}
1911
1912/* Return the number of the output non-early clobber operand which
1913 should be the same in any case as operand with number OP_NUM (or
ed680e2c
RS
1914 negative value if there is no such operand). ALTS is the mask
1915 of alternatives that we should consider. */
3b6d1699 1916int
73bb8fe9 1917ira_get_dup_out_num (int op_num, alternative_mask alts)
3b6d1699
VM
1918{
1919 int curr_alt, c, original, dup;
1920 bool ignore_p, use_commut_op_p;
1921 const char *str;
3b6d1699
VM
1922
1923 if (op_num < 0 || recog_data.n_alternatives == 0)
1924 return -1;
98f2f031
RS
1925 /* We should find duplications only for input operands. */
1926 if (recog_data.operand_type[op_num] != OP_IN)
1927 return -1;
3b6d1699 1928 str = recog_data.constraints[op_num];
98f2f031 1929 use_commut_op_p = false;
3b6d1699
VM
1930 for (;;)
1931 {
777e635f 1932 rtx op = recog_data.operand[op_num];
3b6d1699 1933
73bb8fe9 1934 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
98f2f031 1935 original = -1;;)
3b6d1699
VM
1936 {
1937 c = *str;
1938 if (c == '\0')
1939 break;
98f2f031 1940 if (c == '#')
3b6d1699
VM
1941 ignore_p = true;
1942 else if (c == ',')
1943 {
1944 curr_alt++;
73bb8fe9 1945 ignore_p = !TEST_BIT (alts, curr_alt);
3b6d1699
VM
1946 }
1947 else if (! ignore_p)
1948 switch (c)
1949 {
3b6d1699
VM
1950 case 'g':
1951 goto fail;
8677664e 1952 default:
3b6d1699 1953 {
777e635f
RS
1954 enum constraint_num cn = lookup_constraint (str);
1955 enum reg_class cl = reg_class_for_constraint (cn);
1956 if (cl != NO_REGS
1957 && !targetm.class_likely_spilled_p (cl))
1958 goto fail;
1959 if (constraint_satisfied_p (op, cn))
3b6d1699 1960 goto fail;
3b6d1699
VM
1961 break;
1962 }
1963
1964 case '0': case '1': case '2': case '3': case '4':
1965 case '5': case '6': case '7': case '8': case '9':
1966 if (original != -1 && original != c)
1967 goto fail;
1968 original = c;
1969 break;
1970 }
1971 str += CONSTRAINT_LEN (c, str);
1972 }
1973 if (original == -1)
1974 goto fail;
ae5569fa
RS
1975 dup = original - '0';
1976 if (recog_data.operand_type[dup] == OP_OUT)
3b6d1699
VM
1977 return dup;
1978 fail:
1979 if (use_commut_op_p)
1980 break;
1981 use_commut_op_p = true;
73f793e3 1982 if (recog_data.constraints[op_num][0] == '%')
3b6d1699 1983 str = recog_data.constraints[op_num + 1];
73f793e3 1984 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
3b6d1699
VM
1985 str = recog_data.constraints[op_num - 1];
1986 else
1987 break;
1988 }
1989 return -1;
1990}
1991
1992\f
1993
1994/* Search forward to see if the source register of a copy insn dies
1995 before either it or the destination register is modified, but don't
1996 scan past the end of the basic block. If so, we can replace the
1997 source with the destination and let the source die in the copy
1998 insn.
1999
2000 This will reduce the number of registers live in that range and may
2001 enable the destination and the source coalescing, thus often saving
2002 one register in addition to a register-register copy. */
2003
2004static void
2005decrease_live_ranges_number (void)
2006{
2007 basic_block bb;
070a1983 2008 rtx_insn *insn;
7da26277
TS
2009 rtx set, src, dest, dest_death, note;
2010 rtx_insn *p, *q;
3b6d1699
VM
2011 int sregno, dregno;
2012
2013 if (! flag_expensive_optimizations)
2014 return;
2015
2016 if (ira_dump_file)
2017 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2018
11cd3bed 2019 FOR_EACH_BB_FN (bb, cfun)
3b6d1699
VM
2020 FOR_BB_INSNS (bb, insn)
2021 {
2022 set = single_set (insn);
2023 if (! set)
2024 continue;
2025 src = SET_SRC (set);
2026 dest = SET_DEST (set);
2027 if (! REG_P (src) || ! REG_P (dest)
2028 || find_reg_note (insn, REG_DEAD, src))
2029 continue;
2030 sregno = REGNO (src);
2031 dregno = REGNO (dest);
2032
2033 /* We don't want to mess with hard regs if register classes
2034 are small. */
2035 if (sregno == dregno
2036 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2037 && (sregno < FIRST_PSEUDO_REGISTER
2038 || dregno < FIRST_PSEUDO_REGISTER))
2039 /* We don't see all updates to SP if they are in an
2040 auto-inc memory reference, so we must disallow this
2041 optimization on them. */
2042 || sregno == STACK_POINTER_REGNUM
2043 || dregno == STACK_POINTER_REGNUM)
2044 continue;
2045
2046 dest_death = NULL_RTX;
2047
2048 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2049 {
2050 if (! INSN_P (p))
2051 continue;
2052 if (BLOCK_FOR_INSN (p) != bb)
2053 break;
2054
2055 if (reg_set_p (src, p) || reg_set_p (dest, p)
2056 /* If SRC is an asm-declared register, it must not be
2057 replaced in any asm. Unfortunately, the REG_EXPR
2058 tree for the asm variable may be absent in the SRC
2059 rtx, so we can't check the actual register
2060 declaration easily (the asm operand will have it,
2061 though). To avoid complicating the test for a rare
2062 case, we just don't perform register replacement
2063 for a hard reg mentioned in an asm. */
2064 || (sregno < FIRST_PSEUDO_REGISTER
2065 && asm_noperands (PATTERN (p)) >= 0
2066 && reg_overlap_mentioned_p (src, PATTERN (p)))
2067 /* Don't change hard registers used by a call. */
2068 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2069 && find_reg_fusage (p, USE, src))
2070 /* Don't change a USE of a register. */
2071 || (GET_CODE (PATTERN (p)) == USE
2072 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2073 break;
2074
2075 /* See if all of SRC dies in P. This test is slightly
2076 more conservative than it needs to be. */
2077 if ((note = find_regno_note (p, REG_DEAD, sregno))
2078 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2079 {
2080 int failed = 0;
2081
2082 /* We can do the optimization. Scan forward from INSN
2083 again, replacing regs as we go. Set FAILED if a
2084 replacement can't be done. In that case, we can't
2085 move the death note for SRC. This should be
2086 rare. */
2087
2088 /* Set to stop at next insn. */
2089 for (q = next_real_insn (insn);
2090 q != next_real_insn (p);
2091 q = next_real_insn (q))
2092 {
2093 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2094 {
2095 /* If SRC is a hard register, we might miss
2096 some overlapping registers with
2097 validate_replace_rtx, so we would have to
2098 undo it. We can't if DEST is present in
2099 the insn, so fail in that combination of
2100 cases. */
2101 if (sregno < FIRST_PSEUDO_REGISTER
2102 && reg_mentioned_p (dest, PATTERN (q)))
2103 failed = 1;
2104
2105 /* Attempt to replace all uses. */
2106 else if (!validate_replace_rtx (src, dest, q))
2107 failed = 1;
2108
2109 /* If this succeeded, but some part of the
2110 register is still present, undo the
2111 replacement. */
2112 else if (sregno < FIRST_PSEUDO_REGISTER
2113 && reg_overlap_mentioned_p (src, PATTERN (q)))
2114 {
2115 validate_replace_rtx (dest, src, q);
2116 failed = 1;
2117 }
2118 }
2119
2120 /* If DEST dies here, remove the death note and
2121 save it for later. Make sure ALL of DEST dies
2122 here; again, this is overly conservative. */
2123 if (! dest_death
2124 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2125 {
2126 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2127 remove_note (q, dest_death);
2128 else
2129 {
2130 failed = 1;
2131 dest_death = 0;
2132 }
2133 }
2134 }
2135
2136 if (! failed)
2137 {
2138 /* Move death note of SRC from P to INSN. */
2139 remove_note (p, note);
2140 XEXP (note, 1) = REG_NOTES (insn);
2141 REG_NOTES (insn) = note;
2142 }
2143
2144 /* DEST is also dead if INSN has a REG_UNUSED note for
2145 DEST. */
2146 if (! dest_death
2147 && (dest_death
2148 = find_regno_note (insn, REG_UNUSED, dregno)))
2149 {
2150 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2151 remove_note (insn, dest_death);
2152 }
2153
2154 /* Put death note of DEST on P if we saw it die. */
2155 if (dest_death)
2156 {
2157 XEXP (dest_death, 1) = REG_NOTES (p);
2158 REG_NOTES (p) = dest_death;
2159 }
2160 break;
2161 }
2162
2163 /* If SRC is a hard register which is set or killed in
2164 some other way, we can't do this optimization. */
2165 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2166 break;
2167 }
2168 }
2169}
2170
2171\f
2172
0896cc66
JL
2173/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2174static bool
2175ira_bad_reload_regno_1 (int regno, rtx x)
2176{
ac0ab4f7 2177 int x_regno, n, i;
0896cc66
JL
2178 ira_allocno_t a;
2179 enum reg_class pref;
2180
2181 /* We only deal with pseudo regs. */
2182 if (! x || GET_CODE (x) != REG)
2183 return false;
2184
2185 x_regno = REGNO (x);
2186 if (x_regno < FIRST_PSEUDO_REGISTER)
2187 return false;
2188
2189 /* If the pseudo prefers REGNO explicitly, then do not consider
2190 REGNO a bad spill choice. */
2191 pref = reg_preferred_class (x_regno);
2192 if (reg_class_size[pref] == 1)
2193 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2194
2195 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2196 poor choice for a reload regno. */
2197 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
2198 n = ALLOCNO_NUM_OBJECTS (a);
2199 for (i = 0; i < n; i++)
2200 {
2201 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2202 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2203 return true;
2204 }
0896cc66
JL
2205 return false;
2206}
2207
2208/* Return nonzero if REGNO is a particularly bad choice for reloading
2209 IN or OUT. */
2210bool
2211ira_bad_reload_regno (int regno, rtx in, rtx out)
2212{
2213 return (ira_bad_reload_regno_1 (regno, in)
2214 || ira_bad_reload_regno_1 (regno, out));
2215}
2216
b748fbd6 2217/* Add register clobbers from asm statements. */
058e97ec 2218static void
b748fbd6 2219compute_regs_asm_clobbered (void)
058e97ec
VM
2220{
2221 basic_block bb;
2222
11cd3bed 2223 FOR_EACH_BB_FN (bb, cfun)
058e97ec 2224 {
070a1983 2225 rtx_insn *insn;
058e97ec
VM
2226 FOR_BB_INSNS_REVERSE (bb, insn)
2227 {
bfac633a 2228 df_ref def;
058e97ec 2229
93671519 2230 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
bfac633a 2231 FOR_EACH_INSN_DEF (def, insn)
058e97ec 2232 {
058e97ec 2233 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
2234 if (HARD_REGISTER_NUM_P (dregno))
2235 add_to_hard_reg_set (&crtl->asm_clobbers,
2236 GET_MODE (DF_REF_REAL_REG (def)),
2237 dregno);
058e97ec
VM
2238 }
2239 }
2240 }
2241}
2242
2243
8d49e7ef
VM
2244/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2245 REGS_EVER_LIVE. */
ce18efcb 2246void
8d49e7ef 2247ira_setup_eliminable_regset (void)
058e97ec 2248{
89ceba31 2249 int i;
058e97ec 2250 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
53680238 2251
0064f49e
WD
2252 /* Setup is_leaf as frame_pointer_required may use it. This function
2253 is called by sched_init before ira if scheduling is enabled. */
2254 crtl->is_leaf = leaf_function_p ();
2255
058e97ec
VM
2256 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2257 sp for alloca. So we can't eliminate the frame pointer in that
2258 case. At some point, we should improve this by emitting the
2259 sp-adjusting insns for this case. */
55a2c322 2260 frame_pointer_needed
058e97ec
VM
2261 = (! flag_omit_frame_pointer
2262 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
7700cd85
EB
2263 /* We need the frame pointer to catch stack overflow exceptions if
2264 the stack pointer is moving (as for the alloca case just above). */
2265 || (STACK_CHECK_MOVING_SP
2266 && flag_stack_check
2267 && flag_exceptions
2268 && cfun->can_throw_non_call_exceptions)
058e97ec 2269 || crtl->accesses_prior_frames
8d49e7ef 2270 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
b52b1749 2271 || targetm.frame_pointer_required ());
058e97ec 2272
8d49e7ef
VM
2273 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2274 RTL is very small. So if we use frame pointer for RA and RTL
2275 actually prevents this, we will spill pseudos assigned to the
2276 frame pointer in LRA. */
058e97ec 2277
55a2c322
VM
2278 if (frame_pointer_needed)
2279 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2280
6576d245 2281 ira_no_alloc_regs = no_unit_alloc_regs;
058e97ec
VM
2282 CLEAR_HARD_REG_SET (eliminable_regset);
2283
b748fbd6
PB
2284 compute_regs_asm_clobbered ();
2285
058e97ec
VM
2286 /* Build the regset of all eliminable registers and show we can't
2287 use those that we already know won't be eliminated. */
058e97ec
VM
2288 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2289 {
2290 bool cannot_elim
7b5cbb57 2291 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 2292 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 2293
b748fbd6 2294 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
2295 {
2296 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2297
2298 if (cannot_elim)
2299 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2300 }
2301 else if (cannot_elim)
a9c697b8 2302 error ("%s cannot be used in %<asm%> here",
058e97ec
VM
2303 reg_names[eliminables[i].from]);
2304 else
2305 df_set_regs_ever_live (eliminables[i].from, true);
2306 }
c3e08036 2307 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
058e97ec 2308 {
c3e08036
TS
2309 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2310 {
2311 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2312 if (frame_pointer_needed)
2313 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2314 }
2315 else if (frame_pointer_needed)
a9c697b8 2316 error ("%s cannot be used in %<asm%> here",
c3e08036
TS
2317 reg_names[HARD_FRAME_POINTER_REGNUM]);
2318 else
2319 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
058e97ec 2320 }
058e97ec
VM
2321}
2322
2323\f
2324
2af2dbdc
VM
2325/* Vector of substitutions of register numbers,
2326 used to map pseudo regs into hardware regs.
2327 This is set up as a result of register allocation.
2328 Element N is the hard reg assigned to pseudo reg N,
2329 or is -1 if no hard reg was assigned.
2330 If N is a hard reg number, element N is N. */
2331short *reg_renumber;
2332
058e97ec
VM
2333/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2334 the allocation found by IRA. */
2335static void
2336setup_reg_renumber (void)
2337{
2338 int regno, hard_regno;
2339 ira_allocno_t a;
2340 ira_allocno_iterator ai;
2341
2342 caller_save_needed = 0;
2343 FOR_EACH_ALLOCNO (a, ai)
2344 {
55a2c322
VM
2345 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2346 continue;
058e97ec
VM
2347 /* There are no caps at this point. */
2348 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2349 if (! ALLOCNO_ASSIGNED_P (a))
2350 /* It can happen if A is not referenced but partially anticipated
2351 somewhere in a region. */
2352 ALLOCNO_ASSIGNED_P (a) = true;
2353 ira_free_allocno_updated_costs (a);
2354 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2355 regno = ALLOCNO_REGNO (a);
058e97ec 2356 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2357 if (hard_regno >= 0)
058e97ec 2358 {
1756cb66
VM
2359 int i, nwords;
2360 enum reg_class pclass;
2361 ira_object_t obj;
2362
2363 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2364 nwords = ALLOCNO_NUM_OBJECTS (a);
2365 for (i = 0; i < nwords; i++)
2366 {
2367 obj = ALLOCNO_OBJECT (a, i);
4897c5aa
RS
2368 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2369 |= ~reg_class_contents[pclass];
1756cb66
VM
2370 }
2371 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5 2372 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
a5647ae8 2373 call_used_or_fixed_regs))
1756cb66
VM
2374 {
2375 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2376 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2377 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 2378 || regno >= ira_reg_equiv_len
55a2c322 2379 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
2380 caller_save_needed = 1;
2381 }
058e97ec
VM
2382 }
2383 }
2384}
2385
2386/* Set up allocno assignment flags for further allocation
2387 improvements. */
2388static void
2389setup_allocno_assignment_flags (void)
2390{
2391 int hard_regno;
2392 ira_allocno_t a;
2393 ira_allocno_iterator ai;
2394
2395 FOR_EACH_ALLOCNO (a, ai)
2396 {
2397 if (! ALLOCNO_ASSIGNED_P (a))
2398 /* It can happen if A is not referenced but partially anticipated
2399 somewhere in a region. */
2400 ira_free_allocno_updated_costs (a);
2401 hard_regno = ALLOCNO_HARD_REGNO (a);
2402 /* Don't assign hard registers to allocnos which are destination
2403 of removed store at the end of loop. It has no sense to keep
2404 the same value in different hard registers. It is also
2405 impossible to assign hard registers correctly to such
2406 allocnos because the cost info and info about intersected
2407 calls are incorrect for them. */
2408 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2409 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2410 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2411 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2412 ira_assert
2413 (hard_regno < 0
2414 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2415 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2416 }
2417}
2418
2419/* Evaluate overall allocation cost and the costs for using hard
2420 registers and memory for allocnos. */
2421static void
2422calculate_allocation_cost (void)
2423{
2424 int hard_regno, cost;
2425 ira_allocno_t a;
2426 ira_allocno_iterator ai;
2427
2428 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2429 FOR_EACH_ALLOCNO (a, ai)
2430 {
2431 hard_regno = ALLOCNO_HARD_REGNO (a);
2432 ira_assert (hard_regno < 0
9181a6e5
VM
2433 || (ira_hard_reg_in_set_p
2434 (hard_regno, ALLOCNO_MODE (a),
2435 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2436 if (hard_regno < 0)
2437 {
2438 cost = ALLOCNO_MEMORY_COST (a);
2439 ira_mem_cost += cost;
2440 }
2441 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2442 {
2443 cost = (ALLOCNO_HARD_REG_COSTS (a)
2444 [ira_class_hard_reg_index
1756cb66 2445 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2446 ira_reg_cost += cost;
2447 }
2448 else
2449 {
1756cb66 2450 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2451 ira_reg_cost += cost;
2452 }
2453 ira_overall_cost += cost;
2454 }
2455
2456 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2457 {
2458 fprintf (ira_dump_file,
16998094
JM
2459 "+++Costs: overall %" PRId64
2460 ", reg %" PRId64
2461 ", mem %" PRId64
2462 ", ld %" PRId64
2463 ", st %" PRId64
2464 ", move %" PRId64,
058e97ec
VM
2465 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2466 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2bf7560b 2467 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
058e97ec
VM
2468 ira_move_loops_num, ira_additional_jumps_num);
2469 }
2470
2471}
2472
2473#ifdef ENABLE_IRA_CHECKING
2474/* Check the correctness of the allocation. We do need this because
2475 of complicated code to transform more one region internal
2476 representation into one region representation. */
2477static void
2478check_allocation (void)
2479{
fa86d337 2480 ira_allocno_t a;
ac0ab4f7 2481 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2482 ira_allocno_iterator ai;
2483
2484 FOR_EACH_ALLOCNO (a, ai)
2485 {
ac0ab4f7
BS
2486 int n = ALLOCNO_NUM_OBJECTS (a);
2487 int i;
fa86d337 2488
058e97ec
VM
2489 if (ALLOCNO_CAP_MEMBER (a) != NULL
2490 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2491 continue;
ad474626 2492 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
8cfd82bf
BS
2493 if (nregs == 1)
2494 /* We allocated a single hard register. */
2495 n = 1;
2496 else if (n > 1)
2497 /* We allocated multiple hard registers, and we will test
2498 conflicts in a granularity of single hard regs. */
2499 nregs = 1;
2500
ac0ab4f7
BS
2501 for (i = 0; i < n; i++)
2502 {
2503 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2504 ira_object_t conflict_obj;
2505 ira_object_conflict_iterator oci;
2506 int this_regno = hard_regno;
2507 if (n > 1)
fa86d337 2508 {
2805e6c0 2509 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2510 this_regno += n - i - 1;
2511 else
2512 this_regno += i;
2513 }
2514 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2515 {
2516 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2517 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2518 if (conflict_hard_regno < 0)
2519 continue;
8cfd82bf 2520
ad474626
RS
2521 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2522 ALLOCNO_MODE (conflict_a));
8cfd82bf
BS
2523
2524 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2525 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2526 {
2805e6c0 2527 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2528 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2529 - OBJECT_SUBWORD (conflict_obj) - 1);
2530 else
2531 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2532 conflict_nregs = 1;
2533 }
ac0ab4f7
BS
2534
2535 if ((conflict_hard_regno <= this_regno
2536 && this_regno < conflict_hard_regno + conflict_nregs)
2537 || (this_regno <= conflict_hard_regno
2538 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2539 {
2540 fprintf (stderr, "bad allocation for %d and %d\n",
2541 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2542 gcc_unreachable ();
2543 }
2544 }
2545 }
058e97ec
VM
2546 }
2547}
2548#endif
2549
55a2c322
VM
2550/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2551 be already calculated. */
2552static void
2553setup_reg_equiv_init (void)
2554{
2555 int i;
2556 int max_regno = max_reg_num ();
2557
2558 for (i = 0; i < max_regno; i++)
2559 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2560}
2561
2562/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2563 are insns which were generated for such movement. It is assumed
2564 that FROM_REGNO and TO_REGNO always have the same value at the
2565 point of any move containing such registers. This function is used
2566 to update equiv info for register shuffles on the region borders
2567 and for caller save/restore insns. */
2568void
b32d5189 2569ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
55a2c322 2570{
b32d5189
DM
2571 rtx_insn *insn;
2572 rtx x, note;
55a2c322
VM
2573
2574 if (! ira_reg_equiv[from_regno].defined_p
2575 && (! ira_reg_equiv[to_regno].defined_p
2576 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2577 && ! MEM_READONLY_P (x))))
5a107a0f 2578 return;
55a2c322
VM
2579 insn = insns;
2580 if (NEXT_INSN (insn) != NULL_RTX)
2581 {
2582 if (! ira_reg_equiv[to_regno].defined_p)
2583 {
2584 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2585 return;
2586 }
2587 ira_reg_equiv[to_regno].defined_p = false;
2588 ira_reg_equiv[to_regno].memory
2589 = ira_reg_equiv[to_regno].constant
2590 = ira_reg_equiv[to_regno].invariant
0cc97fc5 2591 = ira_reg_equiv[to_regno].init_insns = NULL;
55a2c322
VM
2592 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2593 fprintf (ira_dump_file,
2594 " Invalidating equiv info for reg %d\n", to_regno);
2595 return;
2596 }
2597 /* It is possible that FROM_REGNO still has no equivalence because
2598 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2599 insn was not processed yet. */
2600 if (ira_reg_equiv[from_regno].defined_p)
2601 {
2602 ira_reg_equiv[to_regno].defined_p = true;
2603 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2604 {
2605 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2606 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2607 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2608 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2609 ira_reg_equiv[to_regno].memory = x;
2610 if (! MEM_READONLY_P (x))
2611 /* We don't add the insn to insn init list because memory
2612 equivalence is just to say what memory is better to use
2613 when the pseudo is spilled. */
2614 return;
2615 }
2616 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2617 {
2618 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2619 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2620 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2621 ira_reg_equiv[to_regno].constant = x;
2622 }
2623 else
2624 {
2625 x = ira_reg_equiv[from_regno].invariant;
2626 ira_assert (x != NULL_RTX);
2627 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2628 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2629 ira_reg_equiv[to_regno].invariant = x;
2630 }
2631 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2632 {
2c797321 2633 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
55a2c322
VM
2634 gcc_assert (note != NULL_RTX);
2635 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2636 {
2637 fprintf (ira_dump_file,
2638 " Adding equiv note to insn %u for reg %d ",
2639 INSN_UID (insn), to_regno);
cfbeaedf 2640 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2641 fprintf (ira_dump_file, "\n");
2642 }
2643 }
2644 }
2645 ira_reg_equiv[to_regno].init_insns
2646 = gen_rtx_INSN_LIST (VOIDmode, insn,
2647 ira_reg_equiv[to_regno].init_insns);
2648 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2649 fprintf (ira_dump_file,
2650 " Adding equiv init move insn %u to reg %d\n",
2651 INSN_UID (insn), to_regno);
2652}
2653
058e97ec
VM
2654/* Fix values of array REG_EQUIV_INIT after live range splitting done
2655 by IRA. */
2656static void
2657fix_reg_equiv_init (void)
2658{
70cc3288 2659 int max_regno = max_reg_num ();
f2034d06 2660 int i, new_regno, max;
618bccf9
TS
2661 rtx set;
2662 rtx_insn_list *x, *next, *prev;
2663 rtx_insn *insn;
b8698a0f 2664
70cc3288 2665 if (max_regno_before_ira < max_regno)
058e97ec 2666 {
9771b263 2667 max = vec_safe_length (reg_equivs);
f2034d06
JL
2668 grow_reg_equivs ();
2669 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
618bccf9 2670 for (prev = NULL, x = reg_equiv_init (i);
f2034d06
JL
2671 x != NULL_RTX;
2672 x = next)
058e97ec 2673 {
618bccf9
TS
2674 next = x->next ();
2675 insn = x->insn ();
2676 set = single_set (insn);
058e97ec
VM
2677 ira_assert (set != NULL_RTX
2678 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2679 if (REG_P (SET_DEST (set))
2680 && ((int) REGNO (SET_DEST (set)) == i
2681 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2682 new_regno = REGNO (SET_DEST (set));
2683 else if (REG_P (SET_SRC (set))
2684 && ((int) REGNO (SET_SRC (set)) == i
2685 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2686 new_regno = REGNO (SET_SRC (set));
2687 else
2688 gcc_unreachable ();
2689 if (new_regno == i)
2690 prev = x;
2691 else
2692 {
55a2c322 2693 /* Remove the wrong list element. */
058e97ec 2694 if (prev == NULL_RTX)
f2034d06 2695 reg_equiv_init (i) = next;
058e97ec
VM
2696 else
2697 XEXP (prev, 1) = next;
f2034d06
JL
2698 XEXP (x, 1) = reg_equiv_init (new_regno);
2699 reg_equiv_init (new_regno) = x;
058e97ec
VM
2700 }
2701 }
2702 }
2703}
2704
2705#ifdef ENABLE_IRA_CHECKING
2706/* Print redundant memory-memory copies. */
2707static void
2708print_redundant_copies (void)
2709{
2710 int hard_regno;
2711 ira_allocno_t a;
2712 ira_copy_t cp, next_cp;
2713 ira_allocno_iterator ai;
b8698a0f 2714
058e97ec
VM
2715 FOR_EACH_ALLOCNO (a, ai)
2716 {
2717 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2b9c63a2 2718 /* It is a cap. */
058e97ec
VM
2719 continue;
2720 hard_regno = ALLOCNO_HARD_REGNO (a);
2721 if (hard_regno >= 0)
2722 continue;
2723 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2724 if (cp->first == a)
2725 next_cp = cp->next_first_allocno_copy;
2726 else
2727 {
2728 next_cp = cp->next_second_allocno_copy;
2729 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2730 && cp->insn != NULL_RTX
2731 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2732 fprintf (ira_dump_file,
2733 " Redundant move from %d(freq %d):%d\n",
2734 INSN_UID (cp->insn), cp->freq, hard_regno);
2735 }
2736 }
2737}
2738#endif
2739
2740/* Setup preferred and alternative classes for new pseudo-registers
2741 created by IRA starting with START. */
2742static void
2743setup_preferred_alternate_classes_for_new_pseudos (int start)
2744{
2745 int i, old_regno;
2746 int max_regno = max_reg_num ();
2747
2748 for (i = start; i < max_regno; i++)
2749 {
2750 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2751 ira_assert (i != old_regno);
058e97ec 2752 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2753 reg_alternate_class (old_regno),
1756cb66 2754 reg_allocno_class (old_regno));
058e97ec
VM
2755 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2756 fprintf (ira_dump_file,
2757 " New r%d: setting preferred %s, alternative %s\n",
2758 i, reg_class_names[reg_preferred_class (old_regno)],
2759 reg_class_names[reg_alternate_class (old_regno)]);
2760 }
2761}
2762
2763\f
df3e3493 2764/* The number of entries allocated in reg_info. */
fb99ee9b 2765static int allocated_reg_info_size;
058e97ec
VM
2766
2767/* Regional allocation can create new pseudo-registers. This function
2768 expands some arrays for pseudo-registers. */
2769static void
fb99ee9b 2770expand_reg_info (void)
058e97ec
VM
2771{
2772 int i;
2773 int size = max_reg_num ();
2774
2775 resize_reg_info ();
fb99ee9b 2776 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2777 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2778 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2779 allocated_reg_info_size = size;
058e97ec
VM
2780}
2781
3553f0bb
VM
2782/* Return TRUE if there is too high register pressure in the function.
2783 It is used to decide when stack slot sharing is worth to do. */
2784static bool
2785too_high_register_pressure_p (void)
2786{
2787 int i;
1756cb66 2788 enum reg_class pclass;
b8698a0f 2789
1756cb66 2790 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2791 {
1756cb66
VM
2792 pclass = ira_pressure_classes[i];
2793 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2794 return true;
2795 }
2796 return false;
2797}
2798
058e97ec
VM
2799\f
2800
2af2dbdc
VM
2801/* Indicate that hard register number FROM was eliminated and replaced with
2802 an offset from hard register number TO. The status of hard registers live
2803 at the start of a basic block is updated by replacing a use of FROM with
2804 a use of TO. */
2805
2806void
2807mark_elimination (int from, int to)
2808{
2809 basic_block bb;
bf744527 2810 bitmap r;
2af2dbdc 2811
11cd3bed 2812 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 2813 {
bf744527
SB
2814 r = DF_LR_IN (bb);
2815 if (bitmap_bit_p (r, from))
2816 {
2817 bitmap_clear_bit (r, from);
2818 bitmap_set_bit (r, to);
2819 }
2820 if (! df_live)
2821 continue;
2822 r = DF_LIVE_IN (bb);
2823 if (bitmap_bit_p (r, from))
2af2dbdc 2824 {
bf744527
SB
2825 bitmap_clear_bit (r, from);
2826 bitmap_set_bit (r, to);
2af2dbdc
VM
2827 }
2828 }
2829}
2830
2831\f
2832
55a2c322
VM
2833/* The length of the following array. */
2834int ira_reg_equiv_len;
2835
2836/* Info about equiv. info for each register. */
4c2b2d79 2837struct ira_reg_equiv_s *ira_reg_equiv;
55a2c322
VM
2838
2839/* Expand ira_reg_equiv if necessary. */
2840void
2841ira_expand_reg_equiv (void)
2842{
2843 int old = ira_reg_equiv_len;
2844
2845 if (ira_reg_equiv_len > max_reg_num ())
2846 return;
2847 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2848 ira_reg_equiv
4c2b2d79 2849 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
55a2c322 2850 ira_reg_equiv_len
4c2b2d79 2851 * sizeof (struct ira_reg_equiv_s));
55a2c322
VM
2852 gcc_assert (old < ira_reg_equiv_len);
2853 memset (ira_reg_equiv + old, 0,
4c2b2d79 2854 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
55a2c322
VM
2855}
2856
2857static void
2858init_reg_equiv (void)
2859{
2860 ira_reg_equiv_len = 0;
2861 ira_reg_equiv = NULL;
2862 ira_expand_reg_equiv ();
2863}
2864
2865static void
2866finish_reg_equiv (void)
2867{
2868 free (ira_reg_equiv);
2869}
2870
2871\f
2872
2af2dbdc
VM
2873struct equivalence
2874{
2af2dbdc
VM
2875 /* Set when a REG_EQUIV note is found or created. Use to
2876 keep track of what memory accesses might be created later,
2877 e.g. by reload. */
2878 rtx replacement;
2879 rtx *src_p;
fb0ab697
JL
2880
2881 /* The list of each instruction which initializes this register.
2882
2883 NULL indicates we know nothing about this register's equivalence
2884 properties.
2885
2886 An INSN_LIST with a NULL insn indicates this pseudo is already
2887 known to not have a valid equivalence. */
2888 rtx_insn_list *init_insns;
2889
2af2dbdc
VM
2890 /* Loop depth is used to recognize equivalences which appear
2891 to be present within the same loop (or in an inner loop). */
5ffa4e6a 2892 short loop_depth;
2af2dbdc 2893 /* Nonzero if this had a preexisting REG_EQUIV note. */
5ffa4e6a 2894 unsigned char is_arg_equivalence : 1;
8f5929e1
JJ
2895 /* Set when an attempt should be made to replace a register
2896 with the associated src_p entry. */
5ffa4e6a
FY
2897 unsigned char replace : 1;
2898 /* Set if this register has no known equivalence. */
2899 unsigned char no_equiv : 1;
8c1d8b59
AM
2900 /* Set if this register is mentioned in a paradoxical subreg. */
2901 unsigned char pdx_subregs : 1;
2af2dbdc
VM
2902};
2903
2904/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2905 structure for that register. */
2906static struct equivalence *reg_equiv;
2907
c7a99fc6
AM
2908/* Used for communication between the following two functions. */
2909struct equiv_mem_data
2910{
2911 /* A MEM that we wish to ensure remains unchanged. */
2912 rtx equiv_mem;
2af2dbdc 2913
c7a99fc6
AM
2914 /* Set true if EQUIV_MEM is modified. */
2915 bool equiv_mem_modified;
2916};
2af2dbdc
VM
2917
2918/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2919 Called via note_stores. */
2920static void
2921validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
c7a99fc6 2922 void *data)
2af2dbdc 2923{
c7a99fc6
AM
2924 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2925
2af2dbdc 2926 if ((REG_P (dest)
c7a99fc6 2927 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2af2dbdc 2928 || (MEM_P (dest)
c7a99fc6
AM
2929 && anti_dependence (info->equiv_mem, dest)))
2930 info->equiv_mem_modified = true;
2af2dbdc
VM
2931}
2932
63ce14e0
AM
2933enum valid_equiv { valid_none, valid_combine, valid_reload };
2934
2af2dbdc
VM
2935/* Verify that no store between START and the death of REG invalidates
2936 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2937 by storing into an overlapping memory location, or with a non-const
2938 CALL_INSN.
2939
63ce14e0
AM
2940 Return VALID_RELOAD if MEMREF remains valid for both reload and
2941 combine_and_move insns, VALID_COMBINE if only valid for
2942 combine_and_move_insns, and VALID_NONE otherwise. */
2943static enum valid_equiv
b32d5189 2944validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2af2dbdc 2945{
b32d5189 2946 rtx_insn *insn;
2af2dbdc 2947 rtx note;
c7a99fc6 2948 struct equiv_mem_data info = { memref, false };
63ce14e0 2949 enum valid_equiv ret = valid_reload;
2af2dbdc
VM
2950
2951 /* If the memory reference has side effects or is volatile, it isn't a
2952 valid equivalence. */
2953 if (side_effects_p (memref))
63ce14e0 2954 return valid_none;
2af2dbdc 2955
c7a99fc6 2956 for (insn = start; insn; insn = NEXT_INSN (insn))
2af2dbdc 2957 {
63ce14e0 2958 if (!INSN_P (insn))
2af2dbdc
VM
2959 continue;
2960
2961 if (find_reg_note (insn, REG_DEAD, reg))
63ce14e0 2962 return ret;
2af2dbdc 2963
a22265a4 2964 if (CALL_P (insn))
63ce14e0
AM
2965 {
2966 /* We can combine a reg def from one insn into a reg use in
2967 another over a call if the memory is readonly or the call
2968 const/pure. However, we can't set reg_equiv notes up for
2969 reload over any call. The problem is the equivalent form
2970 may reference a pseudo which gets assigned a call
2971 clobbered hard reg. When we later replace REG with its
2972 equivalent form, the value in the call-clobbered reg has
2973 been changed and all hell breaks loose. */
2974 ret = valid_combine;
2975 if (!MEM_READONLY_P (memref)
2976 && !RTL_CONST_OR_PURE_CALL_P (insn))
2977 return valid_none;
2978 }
2af2dbdc 2979
e8448ba5 2980 note_stores (insn, validate_equiv_mem_from_store, &info);
c7a99fc6 2981 if (info.equiv_mem_modified)
63ce14e0 2982 return valid_none;
2af2dbdc
VM
2983
2984 /* If a register mentioned in MEMREF is modified via an
2985 auto-increment, we lose the equivalence. Do the same if one
2986 dies; although we could extend the life, it doesn't seem worth
2987 the trouble. */
2988
2989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2990 if ((REG_NOTE_KIND (note) == REG_INC
2991 || REG_NOTE_KIND (note) == REG_DEAD)
2992 && REG_P (XEXP (note, 0))
2993 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
63ce14e0 2994 return valid_none;
2af2dbdc
VM
2995 }
2996
63ce14e0 2997 return valid_none;
2af2dbdc
VM
2998}
2999
3000/* Returns zero if X is known to be invariant. */
3001static int
3002equiv_init_varies_p (rtx x)
3003{
3004 RTX_CODE code = GET_CODE (x);
3005 int i;
3006 const char *fmt;
3007
3008 switch (code)
3009 {
3010 case MEM:
3011 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3012
3013 case CONST:
d8116890 3014 CASE_CONST_ANY:
2af2dbdc
VM
3015 case SYMBOL_REF:
3016 case LABEL_REF:
3017 return 0;
3018
3019 case REG:
3020 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3021
3022 case ASM_OPERANDS:
3023 if (MEM_VOLATILE_P (x))
3024 return 1;
3025
3026 /* Fall through. */
3027
3028 default:
3029 break;
3030 }
3031
3032 fmt = GET_RTX_FORMAT (code);
3033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3034 if (fmt[i] == 'e')
3035 {
3036 if (equiv_init_varies_p (XEXP (x, i)))
3037 return 1;
3038 }
3039 else if (fmt[i] == 'E')
3040 {
3041 int j;
3042 for (j = 0; j < XVECLEN (x, i); j++)
3043 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3044 return 1;
3045 }
3046
3047 return 0;
3048}
3049
3050/* Returns nonzero if X (used to initialize register REGNO) is movable.
3051 X is only movable if the registers it uses have equivalent initializations
3052 which appear to be within the same loop (or in an inner loop) and movable
3053 or if they are not candidates for local_alloc and don't vary. */
3054static int
3055equiv_init_movable_p (rtx x, int regno)
3056{
3057 int i, j;
3058 const char *fmt;
3059 enum rtx_code code = GET_CODE (x);
3060
3061 switch (code)
3062 {
3063 case SET:
3064 return equiv_init_movable_p (SET_SRC (x), regno);
3065
3066 case CC0:
3067 case CLOBBER:
8df47bdf 3068 case CLOBBER_HIGH:
2af2dbdc
VM
3069 return 0;
3070
3071 case PRE_INC:
3072 case PRE_DEC:
3073 case POST_INC:
3074 case POST_DEC:
3075 case PRE_MODIFY:
3076 case POST_MODIFY:
3077 return 0;
3078
3079 case REG:
1756cb66
VM
3080 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3081 && reg_equiv[REGNO (x)].replace)
3082 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3083 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
3084
3085 case UNSPEC_VOLATILE:
3086 return 0;
3087
3088 case ASM_OPERANDS:
3089 if (MEM_VOLATILE_P (x))
3090 return 0;
3091
3092 /* Fall through. */
3093
3094 default:
3095 break;
3096 }
3097
3098 fmt = GET_RTX_FORMAT (code);
3099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3100 switch (fmt[i])
3101 {
3102 case 'e':
3103 if (! equiv_init_movable_p (XEXP (x, i), regno))
3104 return 0;
3105 break;
3106 case 'E':
3107 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3108 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3109 return 0;
3110 break;
3111 }
3112
3113 return 1;
3114}
3115
cc30d932
VM
3116static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3117
3118/* Auxiliary function for memref_referenced_p. Process setting X for
3119 MEMREF store. */
3120static bool
3121process_set_for_memref_referenced_p (rtx memref, rtx x)
3122{
3123 /* If we are setting a MEM, it doesn't count (its address does), but any
3124 other SET_DEST that has a MEM in it is referencing the MEM. */
3125 if (MEM_P (x))
3126 {
3127 if (memref_referenced_p (memref, XEXP (x, 0), true))
3128 return true;
3129 }
3130 else if (memref_referenced_p (memref, x, false))
3131 return true;
3132
3133 return false;
3134}
3135
3136/* TRUE if X references a memory location (as a read if READ_P) that
3137 would be affected by a store to MEMREF. */
3138static bool
3139memref_referenced_p (rtx memref, rtx x, bool read_p)
2af2dbdc
VM
3140{
3141 int i, j;
3142 const char *fmt;
3143 enum rtx_code code = GET_CODE (x);
3144
3145 switch (code)
3146 {
2af2dbdc
VM
3147 case CONST:
3148 case LABEL_REF:
3149 case SYMBOL_REF:
d8116890 3150 CASE_CONST_ANY:
2af2dbdc
VM
3151 case PC:
3152 case CC0:
3153 case HIGH:
3154 case LO_SUM:
cc30d932 3155 return false;
2af2dbdc
VM
3156
3157 case REG:
3158 return (reg_equiv[REGNO (x)].replacement
3159 && memref_referenced_p (memref,
cc30d932 3160 reg_equiv[REGNO (x)].replacement, read_p));
2af2dbdc
VM
3161
3162 case MEM:
cc30d932
VM
3163 /* Memory X might have another effective type than MEMREF. */
3164 if (read_p || true_dependence (memref, VOIDmode, x))
3165 return true;
2af2dbdc
VM
3166 break;
3167
3168 case SET:
cc30d932
VM
3169 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3170 return true;
3171
3172 return memref_referenced_p (memref, SET_SRC (x), true);
3173
3174 case CLOBBER:
3175 case CLOBBER_HIGH:
3176 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3177 return true;
2af2dbdc 3178
cc30d932
VM
3179 return false;
3180
3181 case PRE_DEC:
3182 case POST_DEC:
3183 case PRE_INC:
3184 case POST_INC:
3185 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3186 return true;
3187
3188 return memref_referenced_p (memref, XEXP (x, 0), true);
3189
3190 case POST_MODIFY:
3191 case PRE_MODIFY:
3192 /* op0 = op0 + op1 */
3193 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3194 return true;
3195
3196 if (memref_referenced_p (memref, XEXP (x, 0), true))
3197 return true;
3198
3199 return memref_referenced_p (memref, XEXP (x, 1), true);
2af2dbdc
VM
3200
3201 default:
3202 break;
3203 }
3204
3205 fmt = GET_RTX_FORMAT (code);
3206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3207 switch (fmt[i])
3208 {
3209 case 'e':
cc30d932
VM
3210 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3211 return true;
2af2dbdc
VM
3212 break;
3213 case 'E':
3214 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
cc30d932
VM
3215 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3216 return true;
2af2dbdc
VM
3217 break;
3218 }
3219
cc30d932 3220 return false;
2af2dbdc
VM
3221}
3222
3223/* TRUE if some insn in the range (START, END] references a memory location
14d7d4be
JL
3224 that would be affected by a store to MEMREF.
3225
3226 Callers should not call this routine if START is after END in the
3227 RTL chain. */
3228
2af2dbdc 3229static int
b32d5189 3230memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
2af2dbdc 3231{
b32d5189 3232 rtx_insn *insn;
2af2dbdc 3233
14d7d4be
JL
3234 for (insn = NEXT_INSN (start);
3235 insn && insn != NEXT_INSN (end);
2af2dbdc
VM
3236 insn = NEXT_INSN (insn))
3237 {
b5b8b0ac 3238 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 3239 continue;
b8698a0f 3240
cc30d932 3241 if (memref_referenced_p (memref, PATTERN (insn), false))
2af2dbdc
VM
3242 return 1;
3243
3244 /* Nonconst functions may access memory. */
3245 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3246 return 1;
3247 }
3248
14d7d4be 3249 gcc_assert (insn == NEXT_INSN (end));
2af2dbdc
VM
3250 return 0;
3251}
3252
3253/* Mark REG as having no known equivalence.
3254 Some instructions might have been processed before and furnished
3255 with REG_EQUIV notes for this register; these notes will have to be
3256 removed.
3257 STORE is the piece of RTL that does the non-constant / conflicting
3258 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3259 but needs to be there because this function is called from note_stores. */
3260static void
1756cb66
VM
3261no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3262 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
3263{
3264 int regno;
fb0ab697 3265 rtx_insn_list *list;
2af2dbdc
VM
3266
3267 if (!REG_P (reg))
3268 return;
3269 regno = REGNO (reg);
5ffa4e6a 3270 reg_equiv[regno].no_equiv = 1;
2af2dbdc 3271 list = reg_equiv[regno].init_insns;
fb0ab697 3272 if (list && list->insn () == NULL)
2af2dbdc 3273 return;
fb0ab697 3274 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
2af2dbdc
VM
3275 reg_equiv[regno].replacement = NULL_RTX;
3276 /* This doesn't matter for equivalences made for argument registers, we
3277 should keep their initialization insns. */
3278 if (reg_equiv[regno].is_arg_equivalence)
3279 return;
55a2c322 3280 ira_reg_equiv[regno].defined_p = false;
0cc97fc5 3281 ira_reg_equiv[regno].init_insns = NULL;
fb0ab697 3282 for (; list; list = list->next ())
2af2dbdc 3283 {
fb0ab697 3284 rtx_insn *insn = list->insn ();
2af2dbdc
VM
3285 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3286 }
3287}
3288
e3f9e0ac
WM
3289/* Check whether the SUBREG is a paradoxical subreg and set the result
3290 in PDX_SUBREGS. */
3291
40954ce5 3292static void
8c1d8b59 3293set_paradoxical_subreg (rtx_insn *insn)
e3f9e0ac 3294{
40954ce5
RS
3295 subrtx_iterator::array_type array;
3296 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3297 {
3298 const_rtx subreg = *iter;
3299 if (GET_CODE (subreg) == SUBREG)
3300 {
3301 const_rtx reg = SUBREG_REG (subreg);
3302 if (REG_P (reg) && paradoxical_subreg_p (subreg))
8c1d8b59 3303 reg_equiv[REGNO (reg)].pdx_subregs = true;
40954ce5
RS
3304 }
3305 }
e3f9e0ac
WM
3306}
3307
3a6191b1
JJ
3308/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3309 equivalent replacement. */
3310
3311static rtx
3312adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3313{
3314 if (REG_P (loc))
3315 {
3316 bitmap cleared_regs = (bitmap) data;
3317 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
b8f045e2 3318 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3a6191b1
JJ
3319 NULL_RTX, adjust_cleared_regs, data);
3320 }
3321 return NULL_RTX;
3322}
3323
a72b242e
AM
3324/* Given register REGNO is set only once, return true if the defining
3325 insn dominates all uses. */
3326
3327static bool
3328def_dominates_uses (int regno)
3329{
3330 df_ref def = DF_REG_DEF_CHAIN (regno);
3331
3332 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3333 /* If this is an artificial def (eh handler regs, hard frame pointer
3334 for non-local goto, regs defined on function entry) then def_info
3335 is NULL and the reg is always live before any use. We might
3336 reasonably return true in that case, but since the only call
3337 of this function is currently here in ira.c when we are looking
3338 at a defining insn we can't have an artificial def as that would
3339 bump DF_REG_DEF_COUNT. */
3340 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3341
3342 rtx_insn *def_insn = DF_REF_INSN (def);
3343 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3344
3345 for (df_ref use = DF_REG_USE_CHAIN (regno);
3346 use;
3347 use = DF_REF_NEXT_REG (use))
3348 {
3349 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3350 /* Only check real uses, not artificial ones. */
3351 if (use_info)
3352 {
3353 rtx_insn *use_insn = DF_REF_INSN (use);
3354 if (!DEBUG_INSN_P (use_insn))
3355 {
3356 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3357 if (use_bb != def_bb
3358 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3359 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3360 return false;
3361 }
3362 }
3363 }
3364 return true;
3365}
3366
2af2dbdc 3367/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
3368 compilation (either because they can be referenced in memory or are
3369 set once from a single constant). Lower their priority for a
3370 register.
2af2dbdc 3371
1756cb66
VM
3372 If such a register is only referenced once, try substituting its
3373 value into the using insn. If it succeeds, we can eliminate the
3374 register completely.
2af2dbdc 3375
ba52669f
AM
3376 Initialize init_insns in ira_reg_equiv array. */
3377static void
2af2dbdc
VM
3378update_equiv_regs (void)
3379{
b2908ba6 3380 rtx_insn *insn;
2af2dbdc 3381 basic_block bb;
2af2dbdc 3382
8c1d8b59
AM
3383 /* Scan insns and set pdx_subregs if the reg is used in a
3384 paradoxical subreg. Don't set such reg equivalent to a mem,
e3f9e0ac
WM
3385 because lra will not substitute such equiv memory in order to
3386 prevent access beyond allocated memory for paradoxical memory subreg. */
11cd3bed 3387 FOR_EACH_BB_FN (bb, cfun)
e3f9e0ac 3388 FOR_BB_INSNS (bb, insn)
c34c46dd 3389 if (NONDEBUG_INSN_P (insn))
8c1d8b59 3390 set_paradoxical_subreg (insn);
e3f9e0ac 3391
2af2dbdc
VM
3392 /* Scan the insns and find which registers have equivalences. Do this
3393 in a separate scan of the insns because (due to -fcse-follow-jumps)
3394 a register can be set below its use. */
91dabbb2 3395 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
11cd3bed 3396 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 3397 {
91dabbb2 3398 int loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3399
3400 for (insn = BB_HEAD (bb);
3401 insn != NEXT_INSN (BB_END (bb));
3402 insn = NEXT_INSN (insn))
3403 {
3404 rtx note;
3405 rtx set;
3406 rtx dest, src;
3407 int regno;
3408
3409 if (! INSN_P (insn))
3410 continue;
3411
3412 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3413 if (REG_NOTE_KIND (note) == REG_INC)
3414 no_equiv (XEXP (note, 0), note, NULL);
3415
3416 set = single_set (insn);
3417
3418 /* If this insn contains more (or less) than a single SET,
3419 only mark all destinations as having no known equivalence. */
07b38331
BS
3420 if (set == NULL_RTX
3421 || side_effects_p (SET_SRC (set)))
2af2dbdc 3422 {
e8448ba5 3423 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
2af2dbdc
VM
3424 continue;
3425 }
3426 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3427 {
3428 int i;
3429
3430 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3431 {
3432 rtx part = XVECEXP (PATTERN (insn), 0, i);
3433 if (part != set)
e8448ba5 3434 note_pattern_stores (part, no_equiv, NULL);
2af2dbdc
VM
3435 }
3436 }
3437
3438 dest = SET_DEST (set);
3439 src = SET_SRC (set);
3440
3441 /* See if this is setting up the equivalence between an argument
3442 register and its stack slot. */
3443 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3444 if (note)
3445 {
3446 gcc_assert (REG_P (dest));
3447 regno = REGNO (dest);
3448
55a2c322
VM
3449 /* Note that we don't want to clear init_insns in
3450 ira_reg_equiv even if there are multiple sets of this
3451 register. */
2af2dbdc
VM
3452 reg_equiv[regno].is_arg_equivalence = 1;
3453
5a107a0f
VM
3454 /* The insn result can have equivalence memory although
3455 the equivalence is not set up by the insn. We add
3456 this insn to init insns as it is a flag for now that
3457 regno has an equivalence. We will remove the insn
3458 from init insn list later. */
3459 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3460 ira_reg_equiv[regno].init_insns
3461 = gen_rtx_INSN_LIST (VOIDmode, insn,
3462 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3463
3464 /* Continue normally in case this is a candidate for
3465 replacements. */
3466 }
3467
3468 if (!optimize)
3469 continue;
3470
3471 /* We only handle the case of a pseudo register being set
3472 once, or always to the same value. */
1fe28116
VM
3473 /* ??? The mn10200 port breaks if we add equivalences for
3474 values that need an ADDRESS_REGS register and set them equivalent
3475 to a MEM of a pseudo. The actual problem is in the over-conservative
3476 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3477 calculate_needs, but we traditionally work around this problem
3478 here by rejecting equivalences when the destination is in a register
3479 that's likely spilled. This is fragile, of course, since the
3480 preferred class of a pseudo depends on all instructions that set
3481 or use it. */
3482
2af2dbdc
VM
3483 if (!REG_P (dest)
3484 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
fb0ab697
JL
3485 || (reg_equiv[regno].init_insns
3486 && reg_equiv[regno].init_insns->insn () == NULL)
07b8f0a8 3487 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3488 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3489 {
3490 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3491 also set somewhere else to a constant. */
e8448ba5 3492 note_pattern_stores (set, no_equiv, NULL);
2af2dbdc
VM
3493 continue;
3494 }
3495
8c1d8b59
AM
3496 /* Don't set reg mentioned in a paradoxical subreg
3497 equivalent to a mem. */
3498 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
e3f9e0ac 3499 {
e8448ba5 3500 note_pattern_stores (set, no_equiv, NULL);
e3f9e0ac
WM
3501 continue;
3502 }
3503
2af2dbdc
VM
3504 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3505
3506 /* cse sometimes generates function invariants, but doesn't put a
3507 REG_EQUAL note on the insn. Since this note would be redundant,
3508 there's no point creating it earlier than here. */
3509 if (! note && ! rtx_varies_p (src, 0))
3510 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3511
3512 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2b9c63a2 3513 since it represents a function call. */
2af2dbdc
VM
3514 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3515 note = NULL_RTX;
3516
5ffa4e6a
FY
3517 if (DF_REG_DEF_COUNT (regno) != 1)
3518 {
3519 bool equal_p = true;
3520 rtx_insn_list *list;
3521
3522 /* If we have already processed this pseudo and determined it
67914693 3523 cannot have an equivalence, then honor that decision. */
5ffa4e6a
FY
3524 if (reg_equiv[regno].no_equiv)
3525 continue;
3526
3527 if (! note
2af2dbdc
VM
3528 || rtx_varies_p (XEXP (note, 0), 0)
3529 || (reg_equiv[regno].replacement
3530 && ! rtx_equal_p (XEXP (note, 0),
5ffa4e6a
FY
3531 reg_equiv[regno].replacement)))
3532 {
3533 no_equiv (dest, set, NULL);
3534 continue;
3535 }
3536
3537 list = reg_equiv[regno].init_insns;
3538 for (; list; list = list->next ())
3539 {
3540 rtx note_tmp;
3541 rtx_insn *insn_tmp;
3542
3543 insn_tmp = list->insn ();
3544 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3545 gcc_assert (note_tmp);
3546 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3547 {
3548 equal_p = false;
3549 break;
3550 }
3551 }
3552
3553 if (! equal_p)
3554 {
3555 no_equiv (dest, set, NULL);
3556 continue;
3557 }
2af2dbdc 3558 }
5ffa4e6a 3559
2af2dbdc
VM
3560 /* Record this insn as initializing this register. */
3561 reg_equiv[regno].init_insns
3562 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3563
3564 /* If this register is known to be equal to a constant, record that
a72b242e
AM
3565 it is always equivalent to the constant.
3566 Note that it is possible to have a register use before
3567 the def in loops (see gcc.c-torture/execute/pr79286.c)
3568 where the reg is undefined on first use. If the def insn
3569 won't trap we can use it as an equivalence, effectively
3570 choosing the "undefined" value for the reg to be the
3571 same as the value set by the def. */
2af2dbdc 3572 if (DF_REG_DEF_COUNT (regno) == 1
a72b242e
AM
3573 && note
3574 && !rtx_varies_p (XEXP (note, 0), 0)
08f42414
BE
3575 && (!may_trap_or_fault_p (XEXP (note, 0))
3576 || def_dominates_uses (regno)))
2af2dbdc
VM
3577 {
3578 rtx note_value = XEXP (note, 0);
3579 remove_note (insn, note);
3580 set_unique_reg_note (insn, REG_EQUIV, note_value);
3581 }
3582
3583 /* If this insn introduces a "constant" register, decrease the priority
3584 of that register. Record this insn if the register is only used once
3585 more and the equivalence value is the same as our source.
3586
3587 The latter condition is checked for two reasons: First, it is an
3588 indication that it may be more efficient to actually emit the insn
3589 as written (if no registers are available, reload will substitute
3590 the equivalence). Secondly, it avoids problems with any registers
3591 dying in this insn whose death notes would be missed.
3592
3593 If we don't have a REG_EQUIV note, see if this insn is loading
3594 a register used only in one basic block from a MEM. If so, and the
3595 MEM remains unchanged for the life of the register, add a REG_EQUIV
3596 note. */
2af2dbdc
VM
3597 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3598
63ce14e0 3599 rtx replacement = NULL_RTX;
2af2dbdc 3600 if (note)
63ce14e0
AM
3601 replacement = XEXP (note, 0);
3602 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3603 && MEM_P (SET_SRC (set)))
2af2dbdc 3604 {
63ce14e0
AM
3605 enum valid_equiv validity;
3606 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3607 if (validity != valid_none)
3608 {
3609 replacement = copy_rtx (SET_SRC (set));
3610 if (validity == valid_reload)
3611 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3612 }
3613 }
2af2dbdc 3614
63ce14e0
AM
3615 /* If we haven't done so, record for reload that this is an
3616 equivalencing insn. */
3617 if (note && !reg_equiv[regno].is_arg_equivalence)
3618 ira_reg_equiv[regno].init_insns
3619 = gen_rtx_INSN_LIST (VOIDmode, insn,
3620 ira_reg_equiv[regno].init_insns);
2af2dbdc 3621
63ce14e0
AM
3622 if (replacement)
3623 {
3624 reg_equiv[regno].replacement = replacement;
2af2dbdc 3625 reg_equiv[regno].src_p = &SET_SRC (set);
5ffa4e6a 3626 reg_equiv[regno].loop_depth = (short) loop_depth;
2af2dbdc
VM
3627
3628 /* Don't mess with things live during setjmp. */
91dabbb2 3629 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
2af2dbdc 3630 {
2af2dbdc
VM
3631 /* If the register is referenced exactly twice, meaning it is
3632 set once and used once, indicate that the reference may be
3633 replaced by the equivalence we computed above. Do this
3634 even if the register is only used in one block so that
3635 dependencies can be handled where the last register is
3636 used in a different block (i.e. HIGH / LO_SUM sequences)
3637 and to reduce the number of registers alive across
3638 calls. */
3639
3640 if (REG_N_REFS (regno) == 2
63ce14e0 3641 && (rtx_equal_p (replacement, src)
2af2dbdc
VM
3642 || ! equiv_init_varies_p (src))
3643 && NONJUMP_INSN_P (insn)
3644 && equiv_init_movable_p (PATTERN (insn), regno))
3645 reg_equiv[regno].replace = 1;
3646 }
3647 }
3648 }
3649 }
42ae0d7f 3650}
2af2dbdc 3651
42ae0d7f
AM
3652/* For insns that set a MEM to the contents of a REG that is only used
3653 in a single basic block, see if the register is always equivalent
3654 to that memory location and if moving the store from INSN to the
3655 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3656 initializing insn. */
3657static void
3658add_store_equivs (void)
3659{
8f9b31f7 3660 auto_bitmap seen_insns;
2af2dbdc 3661
42ae0d7f 3662 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
2af2dbdc
VM
3663 {
3664 rtx set, src, dest;
3665 unsigned regno;
42ae0d7f 3666 rtx_insn *init_insn;
2af2dbdc 3667
8f9b31f7 3668 bitmap_set_bit (seen_insns, INSN_UID (insn));
14d7d4be 3669
2af2dbdc
VM
3670 if (! INSN_P (insn))
3671 continue;
3672
3673 set = single_set (insn);
3674 if (! set)
3675 continue;
3676
3677 dest = SET_DEST (set);
3678 src = SET_SRC (set);
3679
42ae0d7f 3680 /* Don't add a REG_EQUIV note if the insn already has one. The existing
10e04446 3681 REG_EQUIV is likely more useful than the one we are adding. */
2af2dbdc
VM
3682 if (MEM_P (dest) && REG_P (src)
3683 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3684 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3685 && DF_REG_DEF_COUNT (regno) == 1
8c1d8b59 3686 && ! reg_equiv[regno].pdx_subregs
fb0ab697 3687 && reg_equiv[regno].init_insns != NULL
42ae0d7f 3688 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
8f9b31f7 3689 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
42ae0d7f 3690 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
63ce14e0 3691 && validate_equiv_mem (init_insn, src, dest) == valid_reload
42ae0d7f
AM
3692 && ! memref_used_between_p (dest, init_insn, insn)
3693 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3694 multiple sets. */
3695 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2af2dbdc 3696 {
42ae0d7f
AM
3697 /* This insn makes the equivalence, not the one initializing
3698 the register. */
3699 ira_reg_equiv[regno].init_insns
3700 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3701 df_notes_rescan (init_insn);
3702 if (dump_file)
3703 fprintf (dump_file,
3704 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3705 INSN_UID (init_insn),
3706 INSN_UID (insn));
2af2dbdc
VM
3707 }
3708 }
42ae0d7f
AM
3709}
3710
3711/* Scan all regs killed in an insn to see if any of them are registers
3712 only used that once. If so, see if we can replace the reference
3713 with the equivalent form. If we can, delete the initializing
3714 reference and this register will go away. If we can't replace the
3715 reference, and the initializing reference is within the same loop
3716 (or in an inner loop), then move the register initialization just
3717 before the use, so that they are in the same basic block. */
3718static void
3719combine_and_move_insns (void)
3720{
0e3de1d4 3721 auto_bitmap cleared_regs;
b00544fa 3722 int max = max_reg_num ();
2af2dbdc 3723
b00544fa 3724 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
2af2dbdc 3725 {
b00544fa
AM
3726 if (!reg_equiv[regno].replace)
3727 continue;
2af2dbdc 3728
b00544fa
AM
3729 rtx_insn *use_insn = 0;
3730 for (df_ref use = DF_REG_USE_CHAIN (regno);
3731 use;
3732 use = DF_REF_NEXT_REG (use))
3733 if (DF_REF_INSN_INFO (use))
3734 {
3735 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3736 continue;
3737 gcc_assert (!use_insn);
3738 use_insn = DF_REF_INSN (use);
3739 }
3740 gcc_assert (use_insn);
2af2dbdc 3741
b00544fa
AM
3742 /* Don't substitute into jumps. indirect_jump_optimize does
3743 this for anything we are prepared to handle. */
3744 if (JUMP_P (use_insn))
3745 continue;
3746
17a938e8
SB
3747 /* Also don't substitute into a conditional trap insn -- it can become
3748 an unconditional trap, and that is a flow control insn. */
3749 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3750 continue;
3751
b00544fa
AM
3752 df_ref def = DF_REG_DEF_CHAIN (regno);
3753 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3754 rtx_insn *def_insn = DF_REF_INSN (def);
3755
3756 /* We may not move instructions that can throw, since that
3757 changes basic block boundaries and we are not prepared to
3758 adjust the CFG to match. */
3759 if (can_throw_internal (def_insn))
3760 continue;
3761
3762 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3763 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3764 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3765 continue;
2af2dbdc 3766
b00544fa
AM
3767 if (asm_noperands (PATTERN (def_insn)) < 0
3768 && validate_replace_rtx (regno_reg_rtx[regno],
3769 *reg_equiv[regno].src_p, use_insn))
3770 {
3771 rtx link;
3772 /* Append the REG_DEAD notes from def_insn. */
3773 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
2af2dbdc 3774 {
b00544fa 3775 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
2af2dbdc 3776 {
b00544fa
AM
3777 *p = XEXP (link, 1);
3778 XEXP (link, 1) = REG_NOTES (use_insn);
3779 REG_NOTES (use_insn) = link;
3780 }
3781 else
3782 p = &XEXP (link, 1);
3783 }
2af2dbdc 3784
b00544fa
AM
3785 remove_death (regno, use_insn);
3786 SET_REG_N_REFS (regno, 0);
3787 REG_FREQ (regno) = 0;
fba12165
BS
3788 df_ref use;
3789 FOR_EACH_INSN_USE (use, def_insn)
3790 {
3791 unsigned int use_regno = DF_REF_REGNO (use);
3792 if (!HARD_REGISTER_NUM_P (use_regno))
3793 reg_equiv[use_regno].replace = 0;
3794 }
3795
b00544fa 3796 delete_insn (def_insn);
2af2dbdc 3797
b00544fa
AM
3798 reg_equiv[regno].init_insns = NULL;
3799 ira_reg_equiv[regno].init_insns = NULL;
3800 bitmap_set_bit (cleared_regs, regno);
3801 }
2af2dbdc 3802
b00544fa
AM
3803 /* Move the initialization of the register to just before
3804 USE_INSN. Update the flow information. */
3805 else if (prev_nondebug_insn (use_insn) != def_insn)
3806 {
3807 rtx_insn *new_insn;
2af2dbdc 3808
b00544fa
AM
3809 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3810 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3811 REG_NOTES (def_insn) = 0;
3812 /* Rescan it to process the notes. */
3813 df_insn_rescan (new_insn);
2af2dbdc 3814
b00544fa
AM
3815 /* Make sure this insn is recognized before reload begins,
3816 otherwise eliminate_regs_in_insn will die. */
3817 INSN_CODE (new_insn) = INSN_CODE (def_insn);
2af2dbdc 3818
b00544fa 3819 delete_insn (def_insn);
2af2dbdc 3820
b00544fa 3821 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2af2dbdc 3822
b00544fa
AM
3823 REG_BASIC_BLOCK (regno) = use_bb->index;
3824 REG_N_CALLS_CROSSED (regno) = 0;
2af2dbdc 3825
b00544fa
AM
3826 if (use_insn == BB_HEAD (use_bb))
3827 BB_HEAD (use_bb) = new_insn;
2af2dbdc 3828
fcc861d9
AM
3829 /* We know regno dies in use_insn, but inside a loop
3830 REG_DEAD notes might be missing when def_insn was in
3831 another basic block. However, when we move def_insn into
3832 this bb we'll definitely get a REG_DEAD note and reload
3833 will see the death. It's possible that update_equiv_regs
3834 set up an equivalence referencing regno for a reg set by
3835 use_insn, when regno was seen as non-local. Now that
3836 regno is local to this block, and dies, such an
3837 equivalence is invalid. */
8972f7e9 3838 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
fcc861d9
AM
3839 {
3840 rtx set = single_set (use_insn);
3841 if (set && REG_P (SET_DEST (set)))
3842 no_equiv (SET_DEST (set), set, NULL);
3843 }
3844
b00544fa
AM
3845 ira_reg_equiv[regno].init_insns
3846 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3847 bitmap_set_bit (cleared_regs, regno);
2af2dbdc
VM
3848 }
3849 }
3850
3851 if (!bitmap_empty_p (cleared_regs))
3a6191b1 3852 {
b00544fa
AM
3853 basic_block bb;
3854
11cd3bed 3855 FOR_EACH_BB_FN (bb, cfun)
3a6191b1 3856 {
3a6191b1
JJ
3857 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3858 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
b00544fa 3859 if (!df_live)
bf744527
SB
3860 continue;
3861 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3862 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3863 }
3864
3865 /* Last pass - adjust debug insns referencing cleared regs. */
36f52e8f 3866 if (MAY_HAVE_DEBUG_BIND_INSNS)
b00544fa 3867 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
36f52e8f 3868 if (DEBUG_BIND_INSN_P (insn))
3a6191b1
JJ
3869 {
3870 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3871 INSN_VAR_LOCATION_LOC (insn)
3872 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3873 adjust_cleared_regs,
3874 (void *) cleared_regs);
3875 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3876 df_insn_rescan (insn);
3877 }
3878 }
2af2dbdc
VM
3879}
3880
6585b2e2
AM
3881/* A pass over indirect jumps, converting simple cases to direct jumps.
3882 Combine does this optimization too, but only within a basic block. */
ba52669f
AM
3883static void
3884indirect_jump_optimize (void)
3885{
3886 basic_block bb;
3887 bool rebuild_p = false;
3888
3889 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3890 {
3891 rtx_insn *insn = BB_END (bb);
97eb24c4
JJ
3892 if (!JUMP_P (insn)
3893 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
ba52669f
AM
3894 continue;
3895
3896 rtx x = pc_set (insn);
3897 if (!x || !REG_P (SET_SRC (x)))
3898 continue;
3899
3900 int regno = REGNO (SET_SRC (x));
3901 if (DF_REG_DEF_COUNT (regno) == 1)
3902 {
6585b2e2
AM
3903 df_ref def = DF_REG_DEF_CHAIN (regno);
3904 if (!DF_REF_IS_ARTIFICIAL (def))
ba52669f 3905 {
6585b2e2 3906 rtx_insn *def_insn = DF_REF_INSN (def);
97eb24c4
JJ
3907 rtx lab = NULL_RTX;
3908 rtx set = single_set (def_insn);
3909 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3910 lab = SET_SRC (set);
3911 else
6585b2e2 3912 {
97eb24c4
JJ
3913 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3914 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3915 lab = XEXP (eqnote, 0);
6585b2e2 3916 }
97eb24c4
JJ
3917 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3918 rebuild_p = true;
ba52669f
AM
3919 }
3920 }
3921 }
2af2dbdc 3922
ba52669f
AM
3923 if (rebuild_p)
3924 {
3925 timevar_push (TV_JUMP);
3926 rebuild_jump_labels (get_insns ());
3927 if (purge_all_dead_edges ())
3928 delete_unreachable_blocks ();
3929 timevar_pop (TV_JUMP);
3930 }
3931}
3932\f
55a2c322
VM
3933/* Set up fields memory, constant, and invariant from init_insns in
3934 the structures of array ira_reg_equiv. */
3935static void
3936setup_reg_equiv (void)
3937{
3938 int i;
0cc97fc5
DM
3939 rtx_insn_list *elem, *prev_elem, *next_elem;
3940 rtx_insn *insn;
3941 rtx set, x;
55a2c322
VM
3942
3943 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3944 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3945 elem;
3946 prev_elem = elem, elem = next_elem)
55a2c322 3947 {
0cc97fc5
DM
3948 next_elem = elem->next ();
3949 insn = elem->insn ();
55a2c322
VM
3950 set = single_set (insn);
3951
3952 /* Init insns can set up equivalence when the reg is a destination or
3953 a source (in this case the destination is memory). */
3954 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3955 {
3956 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3957 {
3958 x = XEXP (x, 0);
3959 if (REG_P (SET_DEST (set))
3960 && REGNO (SET_DEST (set)) == (unsigned int) i
3961 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3962 {
3963 /* This insn reporting the equivalence but
3964 actually not setting it. Remove it from the
3965 list. */
3966 if (prev_elem == NULL)
3967 ira_reg_equiv[i].init_insns = next_elem;
3968 else
3969 XEXP (prev_elem, 1) = next_elem;
3970 elem = prev_elem;
3971 }
3972 }
55a2c322
VM
3973 else if (REG_P (SET_DEST (set))
3974 && REGNO (SET_DEST (set)) == (unsigned int) i)
3975 x = SET_SRC (set);
3976 else
3977 {
3978 gcc_assert (REG_P (SET_SRC (set))
3979 && REGNO (SET_SRC (set)) == (unsigned int) i);
3980 x = SET_DEST (set);
3981 }
3982 if (! function_invariant_p (x)
3983 || ! flag_pic
3984 /* A function invariant is often CONSTANT_P but may
3985 include a register. We promise to only pass
3986 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3987 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3988 {
3989 /* It can happen that a REG_EQUIV note contains a MEM
3990 that is not a legitimate memory operand. As later
3991 stages of reload assume that all addresses found in
3992 the lra_regno_equiv_* arrays were originally
3993 legitimate, we ignore such REG_EQUIV notes. */
3994 if (memory_operand (x, VOIDmode))
3995 {
3996 ira_reg_equiv[i].defined_p = true;
3997 ira_reg_equiv[i].memory = x;
3998 continue;
3999 }
4000 else if (function_invariant_p (x))
4001 {
ef4bddc2 4002 machine_mode mode;
55a2c322
VM
4003
4004 mode = GET_MODE (SET_DEST (set));
4005 if (GET_CODE (x) == PLUS
4006 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4007 /* This is PLUS of frame pointer and a constant,
4008 or fp, or argp. */
4009 ira_reg_equiv[i].invariant = x;
4010 else if (targetm.legitimate_constant_p (mode, x))
4011 ira_reg_equiv[i].constant = x;
4012 else
4013 {
4014 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4015 if (ira_reg_equiv[i].memory == NULL_RTX)
4016 {
4017 ira_reg_equiv[i].defined_p = false;
0cc97fc5 4018 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
4019 break;
4020 }
4021 }
4022 ira_reg_equiv[i].defined_p = true;
4023 continue;
4024 }
4025 }
4026 }
4027 ira_reg_equiv[i].defined_p = false;
0cc97fc5 4028 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
4029 break;
4030 }
4031}
4032
4033\f
4034
2af2dbdc
VM
4035/* Print chain C to FILE. */
4036static void
99b1c316 4037print_insn_chain (FILE *file, class insn_chain *c)
2af2dbdc 4038{
c3284718 4039 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
2af2dbdc
VM
4040 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4041 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4042}
4043
4044
4045/* Print all reload_insn_chains to FILE. */
4046static void
4047print_insn_chains (FILE *file)
4048{
99b1c316 4049 class insn_chain *c;
2af2dbdc
VM
4050 for (c = reload_insn_chain; c ; c = c->next)
4051 print_insn_chain (file, c);
4052}
4053
4054/* Return true if pseudo REGNO should be added to set live_throughout
4055 or dead_or_set of the insn chains for reload consideration. */
4056static bool
4057pseudo_for_reload_consideration_p (int regno)
4058{
4059 /* Consider spilled pseudos too for IRA because they still have a
4060 chance to get hard-registers in the reload when IRA is used. */
b100151b 4061 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
4062}
4063
9dcf1f86
RS
4064/* Return true if we can track the individual bytes of subreg X.
4065 When returning true, set *OUTER_SIZE to the number of bytes in
4066 X itself, *INNER_SIZE to the number of bytes in the inner register
4067 and *START to the offset of the first byte. */
4068static bool
4069get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4070 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4071{
4072 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
cf098191
RS
4073 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4074 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4075 && SUBREG_BYTE (x).is_constant (start));
9dcf1f86
RS
4076}
4077
4078/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4079 a register with SIZE bytes, making the register live if INIT_VALUE. */
2af2dbdc
VM
4080static void
4081init_live_subregs (bool init_value, sbitmap *live_subregs,
9dcf1f86 4082 bitmap live_subregs_used, int allocnum, int size)
2af2dbdc 4083{
2af2dbdc
VM
4084 gcc_assert (size > 0);
4085
4086 /* Been there, done that. */
cee784f5 4087 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
4088 return;
4089
cee784f5 4090 /* Create a new one. */
2af2dbdc
VM
4091 if (live_subregs[allocnum] == NULL)
4092 live_subregs[allocnum] = sbitmap_alloc (size);
4093
4094 /* If the entire reg was live before blasting into subregs, we need
4095 to init all of the subregs to ones else init to 0. */
4096 if (init_value)
f61e445a 4097 bitmap_ones (live_subregs[allocnum]);
b8698a0f 4098 else
f61e445a 4099 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 4100
cee784f5 4101 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
4102}
4103
4104/* Walk the insns of the current function and build reload_insn_chain,
4105 and record register life information. */
4106static void
4107build_insn_chain (void)
4108{
4109 unsigned int i;
99b1c316 4110 class insn_chain **p = &reload_insn_chain;
2af2dbdc 4111 basic_block bb;
99b1c316
MS
4112 class insn_chain *c = NULL;
4113 class insn_chain *next = NULL;
0e3de1d4
TS
4114 auto_bitmap live_relevant_regs;
4115 auto_bitmap elim_regset;
2af2dbdc
VM
4116 /* live_subregs is a vector used to keep accurate information about
4117 which hardregs are live in multiword pseudos. live_subregs and
4118 live_subregs_used are indexed by pseudo number. The live_subreg
4119 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
4120 element is non zero in live_subregs_used. The sbitmap size of
4121 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
4122 occupy. */
4123 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
0e3de1d4 4124 auto_bitmap live_subregs_used;
2af2dbdc
VM
4125
4126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4127 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4128 bitmap_set_bit (elim_regset, i);
4f42035e 4129 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc
VM
4130 {
4131 bitmap_iterator bi;
070a1983 4132 rtx_insn *insn;
b8698a0f 4133
2af2dbdc 4134 CLEAR_REG_SET (live_relevant_regs);
cee784f5 4135 bitmap_clear (live_subregs_used);
b8698a0f 4136
bf744527 4137 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
4138 {
4139 if (i >= FIRST_PSEUDO_REGISTER)
4140 break;
4141 bitmap_set_bit (live_relevant_regs, i);
4142 }
4143
bf744527 4144 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
4145 FIRST_PSEUDO_REGISTER, i, bi)
4146 {
4147 if (pseudo_for_reload_consideration_p (i))
4148 bitmap_set_bit (live_relevant_regs, i);
4149 }
4150
4151 FOR_BB_INSNS_REVERSE (bb, insn)
4152 {
4153 if (!NOTE_P (insn) && !BARRIER_P (insn))
4154 {
bfac633a
RS
4155 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4156 df_ref def, use;
2af2dbdc
VM
4157
4158 c = new_insn_chain ();
4159 c->next = next;
4160 next = c;
4161 *p = c;
4162 p = &c->prev;
b8698a0f 4163
2af2dbdc
VM
4164 c->insn = insn;
4165 c->block = bb->index;
4166
4b71920a 4167 if (NONDEBUG_INSN_P (insn))
bfac633a 4168 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2af2dbdc 4169 {
2af2dbdc 4170 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 4171
2af2dbdc
VM
4172 /* Ignore may clobbers because these are generated
4173 from calls. However, every other kind of def is
4174 added to dead_or_set. */
4175 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4176 {
4177 if (regno < FIRST_PSEUDO_REGISTER)
4178 {
4179 if (!fixed_regs[regno])
4180 bitmap_set_bit (&c->dead_or_set, regno);
4181 }
4182 else if (pseudo_for_reload_consideration_p (regno))
4183 bitmap_set_bit (&c->dead_or_set, regno);
4184 }
4185
4186 if ((regno < FIRST_PSEUDO_REGISTER
4187 || reg_renumber[regno] >= 0
4188 || ira_conflicts_p)
4189 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4190 {
4191 rtx reg = DF_REF_REG (def);
9dcf1f86
RS
4192 HOST_WIDE_INT outer_size, inner_size, start;
4193
4194 /* We can usually track the liveness of individual
4195 bytes within a subreg. The only exceptions are
4196 subregs wrapped in ZERO_EXTRACTs and subregs whose
4197 size is not known; in those cases we need to be
4198 conservative and treat the definition as a partial
4199 definition of the full register rather than a full
4200 definition of a specific part of the register. */
2af2dbdc 4201 if (GET_CODE (reg) == SUBREG
9dcf1f86
RS
4202 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4203 && get_subreg_tracking_sizes (reg, &outer_size,
4204 &inner_size, &start))
2af2dbdc 4205 {
9dcf1f86 4206 HOST_WIDE_INT last = start + outer_size;
2af2dbdc
VM
4207
4208 init_live_subregs
b8698a0f 4209 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4210 live_subregs, live_subregs_used, regno,
4211 inner_size);
2af2dbdc
VM
4212
4213 if (!DF_REF_FLAGS_IS_SET
4214 (def, DF_REF_STRICT_LOW_PART))
4215 {
4216 /* Expand the range to cover entire words.
4217 Bytes added here are "don't care". */
4218 start
4219 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4220 last = ((last + UNITS_PER_WORD - 1)
4221 / UNITS_PER_WORD * UNITS_PER_WORD);
4222 }
4223
4224 /* Ignore the paradoxical bits. */
cee784f5
SB
4225 if (last > SBITMAP_SIZE (live_subregs[regno]))
4226 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4227
4228 while (start < last)
4229 {
d7c028c0 4230 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
4231 start++;
4232 }
b8698a0f 4233
f61e445a 4234 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 4235 {
cee784f5 4236 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4237 bitmap_clear_bit (live_relevant_regs, regno);
4238 }
4239 else
4240 /* Set live_relevant_regs here because
4241 that bit has to be true to get us to
4242 look at the live_subregs fields. */
4243 bitmap_set_bit (live_relevant_regs, regno);
4244 }
4245 else
4246 {
4247 /* DF_REF_PARTIAL is generated for
4248 subregs, STRICT_LOW_PART, and
4249 ZERO_EXTRACT. We handle the subreg
4250 case above so here we have to keep from
4251 modeling the def as a killing def. */
4252 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4253 {
cee784f5 4254 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 4255 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
4256 }
4257 }
4258 }
4259 }
b8698a0f 4260
2af2dbdc
VM
4261 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4262 bitmap_copy (&c->live_throughout, live_relevant_regs);
4263
4b71920a 4264 if (NONDEBUG_INSN_P (insn))
bfac633a 4265 FOR_EACH_INSN_INFO_USE (use, insn_info)
2af2dbdc 4266 {
2af2dbdc
VM
4267 unsigned int regno = DF_REF_REGNO (use);
4268 rtx reg = DF_REF_REG (use);
b8698a0f 4269
2af2dbdc
VM
4270 /* DF_REF_READ_WRITE on a use means that this use
4271 is fabricated from a def that is a partial set
4272 to a multiword reg. Here, we only model the
4273 subreg case that is not wrapped in ZERO_EXTRACT
4274 precisely so we do not need to look at the
2b9c63a2 4275 fabricated use. */
b8698a0f
L
4276 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4277 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
4278 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4279 continue;
b8698a0f 4280
2af2dbdc
VM
4281 /* Add the last use of each var to dead_or_set. */
4282 if (!bitmap_bit_p (live_relevant_regs, regno))
4283 {
4284 if (regno < FIRST_PSEUDO_REGISTER)
4285 {
4286 if (!fixed_regs[regno])
4287 bitmap_set_bit (&c->dead_or_set, regno);
4288 }
4289 else if (pseudo_for_reload_consideration_p (regno))
4290 bitmap_set_bit (&c->dead_or_set, regno);
4291 }
b8698a0f 4292
2af2dbdc
VM
4293 if (regno < FIRST_PSEUDO_REGISTER
4294 || pseudo_for_reload_consideration_p (regno))
4295 {
9dcf1f86 4296 HOST_WIDE_INT outer_size, inner_size, start;
2af2dbdc
VM
4297 if (GET_CODE (reg) == SUBREG
4298 && !DF_REF_FLAGS_IS_SET (use,
4299 DF_REF_SIGN_EXTRACT
9dcf1f86
RS
4300 | DF_REF_ZERO_EXTRACT)
4301 && get_subreg_tracking_sizes (reg, &outer_size,
4302 &inner_size, &start))
2af2dbdc 4303 {
9dcf1f86 4304 HOST_WIDE_INT last = start + outer_size;
b8698a0f 4305
2af2dbdc 4306 init_live_subregs
b8698a0f 4307 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4308 live_subregs, live_subregs_used, regno,
4309 inner_size);
b8698a0f 4310
2af2dbdc 4311 /* Ignore the paradoxical bits. */
cee784f5
SB
4312 if (last > SBITMAP_SIZE (live_subregs[regno]))
4313 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4314
4315 while (start < last)
4316 {
d7c028c0 4317 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
4318 start++;
4319 }
4320 }
4321 else
4322 /* Resetting the live_subregs_used is
4323 effectively saying do not use the subregs
4324 because we are reading the whole
4325 pseudo. */
cee784f5 4326 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4327 bitmap_set_bit (live_relevant_regs, regno);
4328 }
4329 }
4330 }
4331 }
4332
4333 /* FIXME!! The following code is a disaster. Reload needs to see the
4334 labels and jump tables that are just hanging out in between
4335 the basic blocks. See pr33676. */
4336 insn = BB_HEAD (bb);
b8698a0f 4337
2af2dbdc 4338 /* Skip over the barriers and cruft. */
b8698a0f 4339 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
4340 || BLOCK_FOR_INSN (insn) == bb))
4341 insn = PREV_INSN (insn);
b8698a0f 4342
2af2dbdc
VM
4343 /* While we add anything except barriers and notes, the focus is
4344 to get the labels and jump tables into the
4345 reload_insn_chain. */
4346 while (insn)
4347 {
4348 if (!NOTE_P (insn) && !BARRIER_P (insn))
4349 {
4350 if (BLOCK_FOR_INSN (insn))
4351 break;
b8698a0f 4352
2af2dbdc
VM
4353 c = new_insn_chain ();
4354 c->next = next;
4355 next = c;
4356 *p = c;
4357 p = &c->prev;
b8698a0f 4358
2af2dbdc
VM
4359 /* The block makes no sense here, but it is what the old
4360 code did. */
4361 c->block = bb->index;
4362 c->insn = insn;
4363 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 4364 }
2af2dbdc
VM
4365 insn = PREV_INSN (insn);
4366 }
4367 }
4368
2af2dbdc
VM
4369 reload_insn_chain = c;
4370 *p = NULL;
4371
cee784f5
SB
4372 for (i = 0; i < (unsigned int) max_regno; i++)
4373 if (live_subregs[i] != NULL)
4374 sbitmap_free (live_subregs[i]);
2af2dbdc 4375 free (live_subregs);
2af2dbdc
VM
4376
4377 if (dump_file)
4378 print_insn_chains (dump_file);
4379}
acf41a74
BS
4380 \f
4381/* Examine the rtx found in *LOC, which is read or written to as determined
4382 by TYPE. Return false if we find a reason why an insn containing this
4383 rtx should not be moved (such as accesses to non-constant memory), true
4384 otherwise. */
4385static bool
4386rtx_moveable_p (rtx *loc, enum op_type type)
4387{
4388 const char *fmt;
4389 rtx x = *loc;
acf41a74
BS
4390 int i, j;
4391
45309d28 4392 enum rtx_code code = GET_CODE (x);
acf41a74
BS
4393 switch (code)
4394 {
4395 case CONST:
d8116890 4396 CASE_CONST_ANY:
acf41a74
BS
4397 case SYMBOL_REF:
4398 case LABEL_REF:
4399 return true;
4400
4401 case PC:
4402 return type == OP_IN;
4403
4404 case CC0:
4405 return false;
4406
4407 case REG:
4408 if (x == frame_pointer_rtx)
4409 return true;
4410 if (HARD_REGISTER_P (x))
4411 return false;
4412
4413 return true;
4414
4415 case MEM:
4416 if (type == OP_IN && MEM_READONLY_P (x))
4417 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4418 return false;
4419
4420 case SET:
4421 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4422 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4423
4424 case STRICT_LOW_PART:
4425 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4426
4427 case ZERO_EXTRACT:
4428 case SIGN_EXTRACT:
4429 return (rtx_moveable_p (&XEXP (x, 0), type)
4430 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4431 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4432
4433 case CLOBBER:
8df47bdf 4434 case CLOBBER_HIGH:
acf41a74
BS
4435 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4436
d8c16744 4437 case UNSPEC_VOLATILE:
026c3cfd 4438 /* It is a bad idea to consider insns with such rtl
d8c16744
VM
4439 as moveable ones. The insn scheduler also considers them as barrier
4440 for a reason. */
4441 return false;
4442
9d0d0a5a
SB
4443 case ASM_OPERANDS:
4444 /* The same is true for volatile asm: it has unknown side effects, it
4445 cannot be moved at will. */
4446 if (MEM_VOLATILE_P (x))
4447 return false;
4448
acf41a74
BS
4449 default:
4450 break;
4451 }
4452
4453 fmt = GET_RTX_FORMAT (code);
4454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4455 {
4456 if (fmt[i] == 'e')
4457 {
4458 if (!rtx_moveable_p (&XEXP (x, i), type))
4459 return false;
4460 }
4461 else if (fmt[i] == 'E')
4462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4463 {
4464 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4465 return false;
4466 }
4467 }
4468 return true;
4469}
4470
4471/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4472 to give dominance relationships between two insns I1 and I2. */
4473static bool
4474insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4475{
4476 basic_block bb1 = BLOCK_FOR_INSN (i1);
4477 basic_block bb2 = BLOCK_FOR_INSN (i2);
4478
4479 if (bb1 == bb2)
4480 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4481 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4482}
4483
4484/* Record the range of register numbers added by find_moveable_pseudos. */
4485int first_moveable_pseudo, last_moveable_pseudo;
4486
4487/* These two vectors hold data for every register added by
4488 find_movable_pseudos, with index 0 holding data for the
4489 first_moveable_pseudo. */
4490/* The original home register. */
9771b263 4491static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
4492
4493/* Look for instances where we have an instruction that is known to increase
4494 register pressure, and whose result is not used immediately. If it is
4495 possible to move the instruction downwards to just before its first use,
4496 split its lifetime into two ranges. We create a new pseudo to compute the
4497 value, and emit a move instruction just before the first use. If, after
4498 register allocation, the new pseudo remains unallocated, the function
4499 move_unallocated_pseudos then deletes the move instruction and places
4500 the computation just before the first use.
4501
4502 Such a move is safe and profitable if all the input registers remain live
4503 and unchanged between the original computation and its first use. In such
4504 a situation, the computation is known to increase register pressure, and
4505 moving it is known to at least not worsen it.
4506
4507 We restrict moves to only those cases where a register remains unallocated,
4508 in order to avoid interfering too much with the instruction schedule. As
4509 an exception, we may move insns which only modify their input register
4510 (typically induction variables), as this increases the freedom for our
4511 intended transformation, and does not limit the second instruction
4512 scheduler pass. */
4513
4514static void
4515find_moveable_pseudos (void)
4516{
4517 unsigned i;
4518 int max_regs = max_reg_num ();
4519 int max_uid = get_max_uid ();
4520 basic_block bb;
4521 int *uid_luid = XNEWVEC (int, max_uid);
070a1983 4522 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
acf41a74 4523 /* A set of registers which are live but not modified throughout a block. */
8b1c6fd7
DM
4524 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4525 last_basic_block_for_fn (cfun));
acf41a74 4526 /* A set of registers which only exist in a given basic block. */
8b1c6fd7
DM
4527 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4528 last_basic_block_for_fn (cfun));
acf41a74
BS
4529 /* A set of registers which are set once, in an instruction that can be
4530 moved freely downwards, but are otherwise transparent to a block. */
8b1c6fd7
DM
4531 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4532 last_basic_block_for_fn (cfun));
8f9b31f7 4533 auto_bitmap live, used, set, interesting, unusable_as_input;
acf41a74 4534 bitmap_iterator bi;
acf41a74
BS
4535
4536 first_moveable_pseudo = max_regs;
9771b263
DN
4537 pseudo_replaced_reg.release ();
4538 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74 4539
2d73cc45
MJ
4540 df_analyze ();
4541 calculate_dominance_info (CDI_DOMINATORS);
4542
acf41a74 4543 i = 0;
11cd3bed 4544 FOR_EACH_BB_FN (bb, cfun)
acf41a74 4545 {
070a1983 4546 rtx_insn *insn;
acf41a74
BS
4547 bitmap transp = bb_transp_live + bb->index;
4548 bitmap moveable = bb_moveable_reg_sets + bb->index;
4549 bitmap local = bb_local + bb->index;
4550
4551 bitmap_initialize (local, 0);
4552 bitmap_initialize (transp, 0);
4553 bitmap_initialize (moveable, 0);
8f9b31f7
TS
4554 bitmap_copy (live, df_get_live_out (bb));
4555 bitmap_and_into (live, df_get_live_in (bb));
4556 bitmap_copy (transp, live);
acf41a74 4557 bitmap_clear (moveable);
8f9b31f7
TS
4558 bitmap_clear (live);
4559 bitmap_clear (used);
4560 bitmap_clear (set);
acf41a74
BS
4561 FOR_BB_INSNS (bb, insn)
4562 if (NONDEBUG_INSN_P (insn))
4563 {
bfac633a 4564 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
bfac633a 4565 df_ref def, use;
acf41a74
BS
4566
4567 uid_luid[INSN_UID (insn)] = i++;
4568
74e59b6c
RS
4569 def = df_single_def (insn_info);
4570 use = df_single_use (insn_info);
4571 if (use
4572 && def
4573 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
8f9b31f7 4574 && !bitmap_bit_p (set, DF_REF_REGNO (use))
acf41a74
BS
4575 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4576 {
74e59b6c 4577 unsigned regno = DF_REF_REGNO (use);
acf41a74 4578 bitmap_set_bit (moveable, regno);
8f9b31f7
TS
4579 bitmap_set_bit (set, regno);
4580 bitmap_set_bit (used, regno);
acf41a74
BS
4581 bitmap_clear_bit (transp, regno);
4582 continue;
4583 }
bfac633a 4584 FOR_EACH_INSN_INFO_USE (use, insn_info)
acf41a74 4585 {
bfac633a 4586 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4587 bitmap_set_bit (used, regno);
acf41a74
BS
4588 if (bitmap_clear_bit (moveable, regno))
4589 bitmap_clear_bit (transp, regno);
acf41a74
BS
4590 }
4591
bfac633a 4592 FOR_EACH_INSN_INFO_DEF (def, insn_info)
acf41a74 4593 {
bfac633a 4594 unsigned regno = DF_REF_REGNO (def);
8f9b31f7 4595 bitmap_set_bit (set, regno);
acf41a74
BS
4596 bitmap_clear_bit (transp, regno);
4597 bitmap_clear_bit (moveable, regno);
acf41a74
BS
4598 }
4599 }
4600 }
4601
11cd3bed 4602 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4603 {
4604 bitmap local = bb_local + bb->index;
070a1983 4605 rtx_insn *insn;
acf41a74
BS
4606
4607 FOR_BB_INSNS (bb, insn)
4608 if (NONDEBUG_INSN_P (insn))
4609 {
74e59b6c 4610 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
070a1983
DM
4611 rtx_insn *def_insn;
4612 rtx closest_use, note;
74e59b6c 4613 df_ref def, use;
acf41a74
BS
4614 unsigned regno;
4615 bool all_dominated, all_local;
ef4bddc2 4616 machine_mode mode;
acf41a74 4617
74e59b6c 4618 def = df_single_def (insn_info);
acf41a74 4619 /* There must be exactly one def in this insn. */
74e59b6c 4620 if (!def || !single_set (insn))
acf41a74
BS
4621 continue;
4622 /* This must be the only definition of the reg. We also limit
4623 which modes we deal with so that we can assume we can generate
4624 move instructions. */
4625 regno = DF_REF_REGNO (def);
4626 mode = GET_MODE (DF_REF_REG (def));
4627 if (DF_REG_DEF_COUNT (regno) != 1
4628 || !DF_REF_INSN_INFO (def)
4629 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4630 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4631 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4632 continue;
4633 def_insn = DF_REF_INSN (def);
4634
4635 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4636 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4637 break;
4638
4639 if (note)
4640 {
4641 if (dump_file)
4642 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4643 regno);
8f9b31f7 4644 bitmap_set_bit (unusable_as_input, regno);
acf41a74
BS
4645 continue;
4646 }
4647
4648 use = DF_REG_USE_CHAIN (regno);
4649 all_dominated = true;
4650 all_local = true;
4651 closest_use = NULL_RTX;
4652 for (; use; use = DF_REF_NEXT_REG (use))
4653 {
070a1983 4654 rtx_insn *insn;
acf41a74
BS
4655 if (!DF_REF_INSN_INFO (use))
4656 {
4657 all_dominated = false;
4658 all_local = false;
4659 break;
4660 }
4661 insn = DF_REF_INSN (use);
4662 if (DEBUG_INSN_P (insn))
4663 continue;
4664 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4665 all_local = false;
4666 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4667 all_dominated = false;
4668 if (closest_use != insn && closest_use != const0_rtx)
4669 {
4670 if (closest_use == NULL_RTX)
4671 closest_use = insn;
4672 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4673 closest_use = insn;
4674 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4675 closest_use = const0_rtx;
4676 }
4677 }
4678 if (!all_dominated)
4679 {
4680 if (dump_file)
4681 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4682 regno);
4683 continue;
4684 }
4685 if (all_local)
4686 bitmap_set_bit (local, regno);
4687 if (closest_use == const0_rtx || closest_use == NULL
4688 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4689 {
4690 if (dump_file)
4691 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4692 closest_use == const0_rtx || closest_use == NULL
4693 ? " (no unique first use)" : "");
4694 continue;
4695 }
058eb3b0 4696 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
acf41a74
BS
4697 {
4698 if (dump_file)
4699 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4700 regno);
4701 continue;
4702 }
058eb3b0 4703
8f9b31f7 4704 bitmap_set_bit (interesting, regno);
070a1983
DM
4705 /* If we get here, we know closest_use is a non-NULL insn
4706 (as opposed to const_0_rtx). */
4707 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
acf41a74
BS
4708
4709 if (dump_file && (all_local || all_dominated))
4710 {
4711 fprintf (dump_file, "Reg %u:", regno);
4712 if (all_local)
4713 fprintf (dump_file, " local to bb %d", bb->index);
4714 if (all_dominated)
4715 fprintf (dump_file, " def dominates all uses");
4716 if (closest_use != const0_rtx)
4717 fprintf (dump_file, " has unique first use");
4718 fputs ("\n", dump_file);
4719 }
4720 }
4721 }
4722
8f9b31f7 4723 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
acf41a74
BS
4724 {
4725 df_ref def = DF_REG_DEF_CHAIN (i);
070a1983 4726 rtx_insn *def_insn = DF_REF_INSN (def);
acf41a74
BS
4727 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4728 bitmap def_bb_local = bb_local + def_block->index;
4729 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4730 bitmap def_bb_transp = bb_transp_live + def_block->index;
4731 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
070a1983 4732 rtx_insn *use_insn = closest_uses[i];
bfac633a 4733 df_ref use;
acf41a74
BS
4734 bool all_ok = true;
4735 bool all_transp = true;
4736
4737 if (!REG_P (DF_REF_REG (def)))
4738 continue;
4739
4740 if (!local_to_bb_p)
4741 {
4742 if (dump_file)
4743 fprintf (dump_file, "Reg %u not local to one basic block\n",
4744 i);
4745 continue;
4746 }
4747 if (reg_equiv_init (i) != NULL_RTX)
4748 {
4749 if (dump_file)
4750 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4751 i);
4752 continue;
4753 }
4754 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4755 {
4756 if (dump_file)
4757 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4758 INSN_UID (def_insn), i);
4759 continue;
4760 }
4761 if (dump_file)
4762 fprintf (dump_file, "Examining insn %d, def for %d\n",
4763 INSN_UID (def_insn), i);
bfac633a 4764 FOR_EACH_INSN_USE (use, def_insn)
acf41a74 4765 {
acf41a74 4766 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4767 if (bitmap_bit_p (unusable_as_input, regno))
acf41a74
BS
4768 {
4769 all_ok = false;
4770 if (dump_file)
4771 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4772 break;
4773 }
4774 if (!bitmap_bit_p (def_bb_transp, regno))
4775 {
4776 if (bitmap_bit_p (def_bb_moveable, regno)
4777 && !control_flow_insn_p (use_insn)
618f4073 4778 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
acf41a74
BS
4779 {
4780 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4781 {
070a1983 4782 rtx_insn *x = NEXT_INSN (def_insn);
acf41a74
BS
4783 while (!modified_in_p (DF_REF_REG (use), x))
4784 {
4785 gcc_assert (x != use_insn);
4786 x = NEXT_INSN (x);
4787 }
4788 if (dump_file)
4789 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4790 regno, INSN_UID (x));
4791 emit_insn_after (PATTERN (x), use_insn);
4792 set_insn_deleted (x);
4793 }
4794 else
4795 {
4796 if (dump_file)
4797 fprintf (dump_file, " input reg %u modified between def and use\n",
4798 regno);
4799 all_transp = false;
4800 }
4801 }
4802 else
4803 all_transp = false;
4804 }
acf41a74
BS
4805 }
4806 if (!all_ok)
4807 continue;
4808 if (!dbg_cnt (ira_move))
4809 break;
4810 if (dump_file)
4811 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4812
4813 if (all_transp)
4814 {
4815 rtx def_reg = DF_REF_REG (def);
4816 rtx newreg = ira_create_new_reg (def_reg);
9e3de74c 4817 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
acf41a74
BS
4818 {
4819 unsigned nregno = REGNO (newreg);
a36b2706 4820 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4821 nregno -= max_regs;
9771b263 4822 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4823 }
4824 }
4825 }
4826
11cd3bed 4827 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4828 {
4829 bitmap_clear (bb_local + bb->index);
4830 bitmap_clear (bb_transp_live + bb->index);
4831 bitmap_clear (bb_moveable_reg_sets + bb->index);
4832 }
acf41a74
BS
4833 free (uid_luid);
4834 free (closest_uses);
4835 free (bb_local);
4836 free (bb_transp_live);
4837 free (bb_moveable_reg_sets);
4838
4839 last_moveable_pseudo = max_reg_num ();
2d73cc45
MJ
4840
4841 fix_reg_equiv_init ();
4842 expand_reg_info ();
4843 regstat_free_n_sets_and_refs ();
4844 regstat_free_ri ();
4845 regstat_init_n_sets_and_refs ();
4846 regstat_compute_ri ();
4847 free_dominance_info (CDI_DOMINATORS);
732dad8f 4848}
acf41a74 4849
3e749749
MJ
4850/* If SET pattern SET is an assignment from a hard register to a pseudo which
4851 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4852 the destination. Otherwise return NULL. */
732dad8f
MJ
4853
4854static rtx
3e749749 4855interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
732dad8f 4856{
732dad8f
MJ
4857 rtx src = SET_SRC (set);
4858 rtx dest = SET_DEST (set);
4859 if (!REG_P (src) || !HARD_REGISTER_P (src)
4860 || !REG_P (dest) || HARD_REGISTER_P (dest)
4861 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4862 return NULL;
4863 return dest;
4864}
4865
df3e3493 4866/* If insn is interesting for parameter range-splitting shrink-wrapping
3e749749
MJ
4867 preparation, i.e. it is a single set from a hard register to a pseudo, which
4868 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4869 parallel statement with only one such statement, return the destination.
4870 Otherwise return NULL. */
4871
4872static rtx
070a1983 4873interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
3e749749
MJ
4874{
4875 if (!INSN_P (insn))
4876 return NULL;
4877 rtx pat = PATTERN (insn);
4878 if (GET_CODE (pat) == SET)
4879 return interesting_dest_for_shprep_1 (pat, call_dom);
4880
4881 if (GET_CODE (pat) != PARALLEL)
4882 return NULL;
4883 rtx ret = NULL;
4884 for (int i = 0; i < XVECLEN (pat, 0); i++)
4885 {
4886 rtx sub = XVECEXP (pat, 0, i);
8df47bdf
AH
4887 if (GET_CODE (sub) == USE
4888 || GET_CODE (sub) == CLOBBER
4889 || GET_CODE (sub) == CLOBBER_HIGH)
3e749749
MJ
4890 continue;
4891 if (GET_CODE (sub) != SET
4892 || side_effects_p (sub))
4893 return NULL;
4894 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4895 if (dest && ret)
4896 return NULL;
4897 if (dest)
4898 ret = dest;
4899 }
4900 return ret;
4901}
4902
732dad8f
MJ
4903/* Split live ranges of pseudos that are loaded from hard registers in the
4904 first BB in a BB that dominates all non-sibling call if such a BB can be
4905 found and is not in a loop. Return true if the function has made any
4906 changes. */
4907
4908static bool
4909split_live_ranges_for_shrink_wrap (void)
4910{
4911 basic_block bb, call_dom = NULL;
fefa31b5 4912 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
070a1983 4913 rtx_insn *insn, *last_interesting_insn = NULL;
8f9b31f7 4914 auto_bitmap need_new, reachable;
732dad8f
MJ
4915 vec<basic_block> queue;
4916
a5e022d5 4917 if (!SHRINK_WRAPPING_ENABLED)
732dad8f
MJ
4918 return false;
4919
0cae8d31 4920 queue.create (n_basic_blocks_for_fn (cfun));
732dad8f 4921
11cd3bed 4922 FOR_EACH_BB_FN (bb, cfun)
732dad8f
MJ
4923 FOR_BB_INSNS (bb, insn)
4924 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4925 {
4926 if (bb == first)
4927 {
732dad8f
MJ
4928 queue.release ();
4929 return false;
4930 }
4931
8f9b31f7
TS
4932 bitmap_set_bit (need_new, bb->index);
4933 bitmap_set_bit (reachable, bb->index);
732dad8f
MJ
4934 queue.quick_push (bb);
4935 break;
4936 }
4937
4938 if (queue.is_empty ())
4939 {
732dad8f
MJ
4940 queue.release ();
4941 return false;
4942 }
4943
4944 while (!queue.is_empty ())
4945 {
4946 edge e;
4947 edge_iterator ei;
4948
4949 bb = queue.pop ();
4950 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 4951 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
8f9b31f7 4952 && bitmap_set_bit (reachable, e->dest->index))
732dad8f
MJ
4953 queue.quick_push (e->dest);
4954 }
4955 queue.release ();
4956
4957 FOR_BB_INSNS (first, insn)
4958 {
4959 rtx dest = interesting_dest_for_shprep (insn, NULL);
4960 if (!dest)
4961 continue;
4962
4963 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
8f9b31f7 4964 return false;
732dad8f
MJ
4965
4966 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4967 use;
4968 use = DF_REF_NEXT_REG (use))
4969 {
732dad8f 4970 int ubbi = DF_REF_BB (use)->index;
8f9b31f7
TS
4971 if (bitmap_bit_p (reachable, ubbi))
4972 bitmap_set_bit (need_new, ubbi);
732dad8f
MJ
4973 }
4974 last_interesting_insn = insn;
4975 }
4976
732dad8f 4977 if (!last_interesting_insn)
8f9b31f7 4978 return false;
732dad8f 4979
8f9b31f7 4980 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
732dad8f
MJ
4981 if (call_dom == first)
4982 return false;
4983
4984 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4985 while (bb_loop_depth (call_dom) > 0)
4986 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4987 loop_optimizer_finalize ();
4988
4989 if (call_dom == first)
4990 return false;
4991
4992 calculate_dominance_info (CDI_POST_DOMINATORS);
4993 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4994 {
4995 free_dominance_info (CDI_POST_DOMINATORS);
4996 return false;
4997 }
4998 free_dominance_info (CDI_POST_DOMINATORS);
4999
5000 if (dump_file)
5001 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5002 call_dom->index);
5003
5004 bool ret = false;
5005 FOR_BB_INSNS (first, insn)
5006 {
5007 rtx dest = interesting_dest_for_shprep (insn, call_dom);
bcb21886 5008 if (!dest || dest == pic_offset_table_rtx)
732dad8f
MJ
5009 continue;
5010
fd1ca3fe 5011 bool need_newreg = false;
732dad8f 5012 df_ref use, next;
9e3de74c 5013 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
732dad8f 5014 {
070a1983 5015 rtx_insn *uin = DF_REF_INSN (use);
732dad8f
MJ
5016 next = DF_REF_NEXT_REG (use);
5017
fd1ca3fe
SB
5018 if (DEBUG_INSN_P (uin))
5019 continue;
5020
732dad8f
MJ
5021 basic_block ubb = BLOCK_FOR_INSN (uin);
5022 if (ubb == call_dom
5023 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5024 {
fd1ca3fe
SB
5025 need_newreg = true;
5026 break;
732dad8f
MJ
5027 }
5028 }
5029
fd1ca3fe 5030 if (need_newreg)
732dad8f 5031 {
fd1ca3fe
SB
5032 rtx newreg = ira_create_new_reg (dest);
5033
5034 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5035 {
5036 rtx_insn *uin = DF_REF_INSN (use);
5037 next = DF_REF_NEXT_REG (use);
5038
5039 basic_block ubb = BLOCK_FOR_INSN (uin);
5040 if (ubb == call_dom
5041 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5042 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5043 }
5044
1476d1bd 5045 rtx_insn *new_move = gen_move_insn (newreg, dest);
732dad8f
MJ
5046 emit_insn_after (new_move, bb_note (call_dom));
5047 if (dump_file)
5048 {
5049 fprintf (dump_file, "Split live-range of register ");
5050 print_rtl_single (dump_file, dest);
5051 }
5052 ret = true;
5053 }
5054
5055 if (insn == last_interesting_insn)
5056 break;
5057 }
5058 apply_change_group ();
5059 return ret;
acf41a74 5060}
8ff49c29 5061
acf41a74
BS
5062/* Perform the second half of the transformation started in
5063 find_moveable_pseudos. We look for instances where the newly introduced
5064 pseudo remains unallocated, and remove it by moving the definition to
5065 just before its use, replacing the move instruction generated by
5066 find_moveable_pseudos. */
5067static void
5068move_unallocated_pseudos (void)
5069{
5070 int i;
5071 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5072 if (reg_renumber[i] < 0)
5073 {
acf41a74 5074 int idx = i - first_moveable_pseudo;
9771b263 5075 rtx other_reg = pseudo_replaced_reg[idx];
070a1983 5076 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
a36b2706
RS
5077 /* The use must follow all definitions of OTHER_REG, so we can
5078 insert the new definition immediately after any of them. */
5079 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
070a1983
DM
5080 rtx_insn *move_insn = DF_REF_INSN (other_def);
5081 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 5082 rtx set;
acf41a74
BS
5083 int success;
5084
5085 if (dump_file)
5086 fprintf (dump_file, "moving def of %d (insn %d now) ",
5087 REGNO (other_reg), INSN_UID (def_insn));
5088
a36b2706
RS
5089 delete_insn (move_insn);
5090 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5091 delete_insn (DF_REF_INSN (other_def));
5092 delete_insn (def_insn);
5093
acf41a74
BS
5094 set = single_set (newinsn);
5095 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5096 gcc_assert (success);
5097 if (dump_file)
5098 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5099 INSN_UID (newinsn), i);
acf41a74
BS
5100 SET_REG_N_REFS (i, 0);
5101 }
5102}
f2034d06 5103\f
6399c0ab
SB
5104/* If the backend knows where to allocate pseudos for hard
5105 register initial values, register these allocations now. */
a932fb89 5106static void
6399c0ab
SB
5107allocate_initial_values (void)
5108{
5109 if (targetm.allocate_initial_value)
5110 {
5111 rtx hreg, preg, x;
5112 int i, regno;
5113
5114 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5115 {
5116 if (! initial_value_entry (i, &hreg, &preg))
5117 break;
5118
5119 x = targetm.allocate_initial_value (hreg);
5120 regno = REGNO (preg);
5121 if (x && REG_N_SETS (regno) <= 1)
5122 {
5123 if (MEM_P (x))
5124 reg_equiv_memory_loc (regno) = x;
5125 else
5126 {
5127 basic_block bb;
5128 int new_regno;
5129
5130 gcc_assert (REG_P (x));
5131 new_regno = REGNO (x);
5132 reg_renumber[regno] = new_regno;
5133 /* Poke the regno right into regno_reg_rtx so that even
5134 fixed regs are accepted. */
5135 SET_REGNO (preg, new_regno);
5136 /* Update global register liveness information. */
11cd3bed 5137 FOR_EACH_BB_FN (bb, cfun)
6399c0ab 5138 {
c3284718 5139 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
6399c0ab 5140 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
c3284718 5141 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
6399c0ab
SB
5142 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5143 }
5144 }
5145 }
5146 }
2af2dbdc 5147
6399c0ab
SB
5148 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5149 &hreg, &preg));
5150 }
5151}
5152\f
55a2c322
VM
5153
5154/* True when we use LRA instead of reload pass for the current
5155 function. */
5156bool ira_use_lra_p;
5157
311aab06
VM
5158/* True if we have allocno conflicts. It is false for non-optimized
5159 mode or when the conflict table is too big. */
5160bool ira_conflicts_p;
5161
ae2b9cb6
BS
5162/* Saved between IRA and reload. */
5163static int saved_flag_ira_share_spill_slots;
5164
058e97ec
VM
5165/* This is the main entry of IRA. */
5166static void
5167ira (FILE *f)
5168{
058e97ec 5169 bool loops_p;
70cc3288 5170 int ira_max_point_before_emit;
55a2c322
VM
5171 bool saved_flag_caller_saves = flag_caller_saves;
5172 enum ira_region saved_flag_ira_region = flag_ira_region;
891f31f9
AK
5173 unsigned int i;
5174 int num_used_regs = 0;
55a2c322 5175
62869a1c
RB
5176 clear_bb_flags ();
5177
0064f49e
WD
5178 /* Determine if the current function is a leaf before running IRA
5179 since this can impact optimizations done by the prologue and
5180 epilogue thus changing register elimination offsets.
5181 Other target callbacks may use crtl->is_leaf too, including
5182 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5183 crtl->is_leaf = leaf_function_p ();
5184
bcb21886
KY
5185 /* Perform target specific PIC register initialization. */
5186 targetm.init_pic_reg ();
5187
55a2c322
VM
5188 ira_conflicts_p = optimize > 0;
5189
891f31f9
AK
5190 /* Determine the number of pseudos actually requiring coloring. */
5191 for (i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5192 num_used_regs += !!(DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i));
5193
55a2c322
VM
5194 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5195 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5196 use simplified and faster algorithms in LRA. */
5197 lra_simple_p
8b1c6fd7 5198 = (ira_use_lra_p
891f31f9
AK
5199 && num_used_regs >= (1 << 26) / last_basic_block_for_fn (cfun));
5200
55a2c322
VM
5201 if (lra_simple_p)
5202 {
5203 /* It permits to skip live range splitting in LRA. */
5204 flag_caller_saves = false;
5205 /* There is no sense to do regional allocation when we use
5206 simplified LRA. */
5207 flag_ira_region = IRA_REGION_ONE;
5208 ira_conflicts_p = false;
5209 }
5210
5211#ifndef IRA_NO_OBSTACK
5212 gcc_obstack_init (&ira_obstack);
5213#endif
5214 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 5215
001010df
KC
5216 /* LRA uses its own infrastructure to handle caller save registers. */
5217 if (flag_caller_saves && !ira_use_lra_p)
dc12b70e
JZ
5218 init_caller_save ();
5219
058e97ec
VM
5220 if (flag_ira_verbose < 10)
5221 {
5222 internal_flag_ira_verbose = flag_ira_verbose;
5223 ira_dump_file = f;
5224 }
5225 else
5226 {
5227 internal_flag_ira_verbose = flag_ira_verbose - 10;
5228 ira_dump_file = stderr;
5229 }
5230
5231 setup_prohibited_mode_move_regs ();
3b6d1699 5232 decrease_live_ranges_number ();
058e97ec 5233 df_note_add_problem ();
5d517141
SB
5234
5235 /* DF_LIVE can't be used in the register allocator, too many other
5236 parts of the compiler depend on using the "classic" liveness
5237 interpretation of the DF_LR problem. See PR38711.
5238 Remove the problem, so that we don't spend time updating it in
5239 any of the df_analyze() calls during IRA/LRA. */
5240 if (optimize > 1)
5241 df_remove_problem (df_live);
5242 gcc_checking_assert (df_live == NULL);
5243
b2b29377
MM
5244 if (flag_checking)
5245 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5246
058e97ec 5247 df_analyze ();
3b6d1699 5248
2d73cc45
MJ
5249 init_reg_equiv ();
5250 if (ira_conflicts_p)
5251 {
5252 calculate_dominance_info (CDI_DOMINATORS);
5253
5254 if (split_live_ranges_for_shrink_wrap ())
5255 df_analyze ();
5256
5257 free_dominance_info (CDI_DOMINATORS);
5258 }
5259
058e97ec 5260 df_clear_flags (DF_NO_INSN_RESCAN);
2d73cc45 5261
ba52669f
AM
5262 indirect_jump_optimize ();
5263 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5264 df_analyze ();
5265
058e97ec
VM
5266 regstat_init_n_sets_and_refs ();
5267 regstat_compute_ri ();
5268
5269 /* If we are not optimizing, then this is the only place before
5270 register allocation where dataflow is done. And that is needed
5271 to generate these warnings. */
5272 if (warn_clobbered)
5273 generate_setjmp_warnings ();
5274
1833192f 5275 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 5276 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 5277
42ae0d7f 5278 init_alias_analysis ();
c38c11a1 5279 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
10e04446 5280 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
ba52669f 5281 update_equiv_regs ();
10e04446
AM
5282
5283 /* Don't move insns if live range shrinkage or register
5284 pressure-sensitive scheduling were done because it will not
5285 improve allocation but likely worsen insn scheduling. */
5286 if (optimize
5287 && !flag_live_range_shrinkage
5288 && !(flag_sched_pressure && flag_schedule_insns))
5289 combine_and_move_insns ();
5290
5291 /* Gather additional equivalences with memory. */
42ae0d7f 5292 if (optimize)
10e04446
AM
5293 add_store_equivs ();
5294
c38c11a1 5295 loop_optimizer_finalize ();
f3c82ff9 5296 free_dominance_info (CDI_DOMINATORS);
42ae0d7f
AM
5297 end_alias_analysis ();
5298 free (reg_equiv);
5299
55a2c322 5300 setup_reg_equiv ();
10e04446 5301 grow_reg_equivs ();
55a2c322 5302 setup_reg_equiv_init ();
058e97ec 5303
fb99ee9b 5304 allocated_reg_info_size = max_reg_num ();
e8d7e3e7
VM
5305
5306 /* It is not worth to do such improvement when we use a simple
5307 allocation because of -O0 usage or because the function is too
5308 big. */
5309 if (ira_conflicts_p)
2d73cc45 5310 find_moveable_pseudos ();
acf41a74 5311
fb99ee9b 5312 max_regno_before_ira = max_reg_num ();
8d49e7ef 5313 ira_setup_eliminable_regset ();
b8698a0f 5314
058e97ec
VM
5315 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5316 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5317 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 5318
058e97ec 5319 ira_assert (current_loops == NULL);
2608d841 5320 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 5321 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 5322
058e97ec
VM
5323 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5324 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 5325 loops_p = ira_build ();
b8698a0f 5326
311aab06 5327 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
5328
5329 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 5330 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 5331 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
5332 stack slots in this case -- prohibit it. We also do this if
5333 there is setjmp call because a variable not modified between
5334 setjmp and longjmp the compiler is required to preserve its
5335 value and sharing slots does not guarantee it. */
3553f0bb
VM
5336 flag_ira_share_spill_slots = FALSE;
5337
cb1ca6ac 5338 ira_color ();
b8698a0f 5339
058e97ec 5340 ira_max_point_before_emit = ira_max_point;
b8698a0f 5341
1756cb66
VM
5342 ira_initiate_emit_data ();
5343
058e97ec 5344 ira_emit (loops_p);
b8698a0f 5345
55a2c322 5346 max_regno = max_reg_num ();
311aab06 5347 if (ira_conflicts_p)
058e97ec 5348 {
058e97ec 5349 if (! loops_p)
55a2c322
VM
5350 {
5351 if (! ira_use_lra_p)
5352 ira_initiate_assign ();
5353 }
058e97ec
VM
5354 else
5355 {
fb99ee9b 5356 expand_reg_info ();
b8698a0f 5357
55a2c322
VM
5358 if (ira_use_lra_p)
5359 {
5360 ira_allocno_t a;
5361 ira_allocno_iterator ai;
5362
5363 FOR_EACH_ALLOCNO (a, ai)
9d6e10c7
RL
5364 {
5365 int old_regno = ALLOCNO_REGNO (a);
5366 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5367
5368 ALLOCNO_REGNO (a) = new_regno;
5369
5370 if (old_regno != new_regno)
5371 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5372 reg_alternate_class (old_regno),
5373 reg_allocno_class (old_regno));
5374 }
55a2c322
VM
5375 }
5376 else
5377 {
5378 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5379 fprintf (ira_dump_file, "Flattening IR\n");
5380 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5381 }
058e97ec
VM
5382 /* New insns were generated: add notes and recalculate live
5383 info. */
5384 df_analyze ();
b8698a0f 5385
544e7e78
SB
5386 /* ??? Rebuild the loop tree, but why? Does the loop tree
5387 change if new insns were generated? Can that be handled
5388 by updating the loop tree incrementally? */
661bc682 5389 loop_optimizer_finalize ();
57548aa2 5390 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
5391 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5392 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 5393
55a2c322
VM
5394 if (! ira_use_lra_p)
5395 {
5396 setup_allocno_assignment_flags ();
5397 ira_initiate_assign ();
5398 ira_reassign_conflict_allocnos (max_regno);
5399 }
058e97ec
VM
5400 }
5401 }
5402
1756cb66
VM
5403 ira_finish_emit_data ();
5404
058e97ec 5405 setup_reg_renumber ();
b8698a0f 5406
058e97ec 5407 calculate_allocation_cost ();
b8698a0f 5408
058e97ec 5409#ifdef ENABLE_IRA_CHECKING
e5119fab
VM
5410 if (ira_conflicts_p && ! ira_use_lra_p)
5411 /* Opposite to reload pass, LRA does not use any conflict info
5412 from IRA. We don't rebuild conflict info for LRA (through
67914693 5413 ira_flattening call) and cannot use the check here. We could
e5119fab
VM
5414 rebuild this info for LRA in the check mode but there is a risk
5415 that code generated with the check and without it will be a bit
5416 different. Calling ira_flattening in any mode would be a
5417 wasting CPU time. So do not check the allocation for LRA. */
058e97ec
VM
5418 check_allocation ();
5419#endif
b8698a0f 5420
ba52669f 5421 if (max_regno != max_regno_before_ira)
058e97ec
VM
5422 {
5423 regstat_free_n_sets_and_refs ();
5424 regstat_free_ri ();
5425 regstat_init_n_sets_and_refs ();
5426 regstat_compute_ri ();
5427 }
5428
058e97ec 5429 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
5430 if (! ira_conflicts_p)
5431 grow_reg_equivs ();
5432 else
058e97ec
VM
5433 {
5434 fix_reg_equiv_init ();
b8698a0f 5435
058e97ec
VM
5436#ifdef ENABLE_IRA_CHECKING
5437 print_redundant_copies ();
5438#endif
9994ad20
KC
5439 if (! ira_use_lra_p)
5440 {
5441 ira_spilled_reg_stack_slots_num = 0;
5442 ira_spilled_reg_stack_slots
99b1c316 5443 = ((class ira_spilled_reg_stack_slot *)
9994ad20 5444 ira_allocate (max_regno
99b1c316 5445 * sizeof (class ira_spilled_reg_stack_slot)));
1c252ef3 5446 memset ((void *)ira_spilled_reg_stack_slots, 0,
99b1c316 5447 max_regno * sizeof (class ira_spilled_reg_stack_slot));
9994ad20 5448 }
058e97ec 5449 }
6399c0ab 5450 allocate_initial_values ();
e8d7e3e7
VM
5451
5452 /* See comment for find_moveable_pseudos call. */
5453 if (ira_conflicts_p)
5454 move_unallocated_pseudos ();
55a2c322
VM
5455
5456 /* Restore original values. */
5457 if (lra_simple_p)
5458 {
5459 flag_caller_saves = saved_flag_caller_saves;
5460 flag_ira_region = saved_flag_ira_region;
5461 }
d3afd9aa
RB
5462}
5463
5464static void
5465do_reload (void)
5466{
5467 basic_block bb;
5468 bool need_dce;
bcb21886 5469 unsigned pic_offset_table_regno = INVALID_REGNUM;
ae2b9cb6 5470
67463efb 5471 if (flag_ira_verbose < 10)
ae2b9cb6 5472 ira_dump_file = dump_file;
058e97ec 5473
bcb21886
KY
5474 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5475 after reload to avoid possible wrong usages of hard reg assigned
5476 to it. */
5477 if (pic_offset_table_rtx
5478 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5479 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5480
55a2c322
VM
5481 timevar_push (TV_RELOAD);
5482 if (ira_use_lra_p)
5483 {
5484 if (current_loops != NULL)
5485 {
661bc682 5486 loop_optimizer_finalize ();
55a2c322
VM
5487 free_dominance_info (CDI_DOMINATORS);
5488 }
04a90bec 5489 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5490 bb->loop_father = NULL;
5491 current_loops = NULL;
55a2c322
VM
5492
5493 ira_destroy ();
058e97ec 5494
55a2c322
VM
5495 lra (ira_dump_file);
5496 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5497 LRA. */
9771b263 5498 vec_free (reg_equivs);
55a2c322
VM
5499 reg_equivs = NULL;
5500 need_dce = false;
5501 }
5502 else
5503 {
5504 df_set_flags (DF_NO_INSN_RESCAN);
5505 build_insn_chain ();
55a2c322 5506
355a43a1 5507 need_dce = reload (get_insns (), ira_conflicts_p);
55a2c322
VM
5508 }
5509
5510 timevar_pop (TV_RELOAD);
058e97ec 5511
d3afd9aa
RB
5512 timevar_push (TV_IRA);
5513
55a2c322 5514 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
5515 {
5516 ira_free (ira_spilled_reg_stack_slots);
058e97ec 5517 ira_finish_assign ();
b8698a0f 5518 }
55a2c322 5519
058e97ec
VM
5520 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5521 && overall_cost_before != ira_overall_cost)
16998094 5522 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
2bf7560b 5523 ira_overall_cost);
b8698a0f 5524
3553f0bb
VM
5525 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5526
55a2c322 5527 if (! ira_use_lra_p)
2608d841 5528 {
55a2c322
VM
5529 ira_destroy ();
5530 if (current_loops != NULL)
5531 {
661bc682 5532 loop_optimizer_finalize ();
55a2c322
VM
5533 free_dominance_info (CDI_DOMINATORS);
5534 }
04a90bec 5535 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5536 bb->loop_father = NULL;
5537 current_loops = NULL;
5538
5539 regstat_free_ri ();
5540 regstat_free_n_sets_and_refs ();
2608d841 5541 }
b8698a0f 5542
058e97ec 5543 if (optimize)
55a2c322 5544 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 5545
55a2c322 5546 finish_reg_equiv ();
058e97ec
VM
5547
5548 bitmap_obstack_release (&ira_bitmap_obstack);
5549#ifndef IRA_NO_OBSTACK
5550 obstack_free (&ira_obstack, NULL);
5551#endif
5552
5553 /* The code after the reload has changed so much that at this point
b0c11403 5554 we might as well just rescan everything. Note that
058e97ec
VM
5555 df_rescan_all_insns is not going to help here because it does not
5556 touch the artificial uses and defs. */
5557 df_finish_pass (true);
058e97ec
VM
5558 df_scan_alloc (NULL);
5559 df_scan_blocks ();
5560
5d517141
SB
5561 if (optimize > 1)
5562 {
5563 df_live_add_problem ();
5564 df_live_set_all_dirty ();
5565 }
5566
058e97ec
VM
5567 if (optimize)
5568 df_analyze ();
5569
b0c11403
JL
5570 if (need_dce && optimize)
5571 run_fast_dce ();
d3afd9aa 5572
af6e8467
RH
5573 /* Diagnose uses of the hard frame pointer when it is used as a global
5574 register. Often we can get away with letting the user appropriate
5575 the frame pointer, but we should let them know when code generation
5576 makes that impossible. */
5577 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5578 {
5579 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5580 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5581 "frame pointer required, but reserved");
5582 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5583 }
5584
355a43a1
EB
5585 /* If we are doing generic stack checking, give a warning if this
5586 function's frame size is larger than we expect. */
5587 if (flag_stack_check == GENERIC_STACK_CHECK)
5588 {
f075bd95 5589 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
355a43a1
EB
5590
5591 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
a365fa06
RS
5592 if (df_regs_ever_live_p (i)
5593 && !fixed_regs[i]
5594 && call_used_or_fixed_reg_p (i))
355a43a1
EB
5595 size += UNITS_PER_WORD;
5596
f075bd95 5597 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
355a43a1
EB
5598 warning (0, "frame size too large for reliable stack checking");
5599 }
5600
bcb21886
KY
5601 if (pic_offset_table_regno != INVALID_REGNUM)
5602 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5603
d3afd9aa 5604 timevar_pop (TV_IRA);
058e97ec 5605}
058e97ec 5606\f
058e97ec 5607/* Run the integrated register allocator. */
058e97ec 5608
27a4cd48
DM
5609namespace {
5610
5611const pass_data pass_data_ira =
058e97ec 5612{
27a4cd48
DM
5613 RTL_PASS, /* type */
5614 "ira", /* name */
5615 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5616 TV_IRA, /* tv_id */
5617 0, /* properties_required */
5618 0, /* properties_provided */
5619 0, /* properties_destroyed */
5620 0, /* todo_flags_start */
5621 TODO_do_not_ggc_collect, /* todo_flags_finish */
d3afd9aa
RB
5622};
5623
27a4cd48
DM
5624class pass_ira : public rtl_opt_pass
5625{
5626public:
c3284718
RS
5627 pass_ira (gcc::context *ctxt)
5628 : rtl_opt_pass (pass_data_ira, ctxt)
27a4cd48
DM
5629 {}
5630
5631 /* opt_pass methods: */
a50fa76a
BS
5632 virtual bool gate (function *)
5633 {
5634 return !targetm.no_register_allocation;
5635 }
be55bfe6
TS
5636 virtual unsigned int execute (function *)
5637 {
5638 ira (dump_file);
5639 return 0;
5640 }
27a4cd48
DM
5641
5642}; // class pass_ira
5643
5644} // anon namespace
5645
5646rtl_opt_pass *
5647make_pass_ira (gcc::context *ctxt)
5648{
5649 return new pass_ira (ctxt);
5650}
5651
27a4cd48
DM
5652namespace {
5653
5654const pass_data pass_data_reload =
d3afd9aa 5655{
27a4cd48
DM
5656 RTL_PASS, /* type */
5657 "reload", /* name */
5658 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5659 TV_RELOAD, /* tv_id */
5660 0, /* properties_required */
5661 0, /* properties_provided */
5662 0, /* properties_destroyed */
5663 0, /* todo_flags_start */
5664 0, /* todo_flags_finish */
058e97ec 5665};
27a4cd48
DM
5666
5667class pass_reload : public rtl_opt_pass
5668{
5669public:
c3284718
RS
5670 pass_reload (gcc::context *ctxt)
5671 : rtl_opt_pass (pass_data_reload, ctxt)
27a4cd48
DM
5672 {}
5673
5674 /* opt_pass methods: */
a50fa76a
BS
5675 virtual bool gate (function *)
5676 {
5677 return !targetm.no_register_allocation;
5678 }
be55bfe6
TS
5679 virtual unsigned int execute (function *)
5680 {
5681 do_reload ();
5682 return 0;
5683 }
27a4cd48
DM
5684
5685}; // class pass_reload
5686
5687} // anon namespace
5688
5689rtl_opt_pass *
5690make_pass_reload (gcc::context *ctxt)
5691{
5692 return new pass_reload (ctxt);
5693}