]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
Update copyright years.
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
85ec4feb 2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec 155
df3e3493 156 * IRA creates live ranges of each allocno, calculates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66 194 the allocation. IRA uses some heuristics to improve the
41808d15
VM
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
1756cb66
VM
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
058e97ec
VM
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
1756cb66 247 * Chaitin-Briggs coloring assigns as many pseudos as possible
df3e3493 248 to hard registers. After coloring we try to improve
1756cb66
VM
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
3447fefe 254 * After allocno assigning in the region, IRA modifies the hard
058e97ec
VM
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
1756cb66
VM
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
058e97ec
VM
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
1756cb66
VM
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
1756cb66
VM
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
058e97ec
VM
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
df3e3493 310 spilled allocnos. This is implemented by a simple and fast
058e97ec
VM
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
df3e3493 331 data are initialized in file ira.c.
058e97ec
VM
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
1756cb66
VM
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
058e97ec
VM
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
c7131fb2 369#include "backend.h"
957060b5 370#include "target.h"
058e97ec 371#include "rtl.h"
957060b5 372#include "tree.h"
c7131fb2 373#include "df.h"
4d0cdd0c 374#include "memmodel.h"
957060b5 375#include "tm_p.h"
957060b5 376#include "insn-config.h"
c7131fb2 377#include "regs.h"
957060b5
AM
378#include "ira.h"
379#include "ira-int.h"
380#include "diagnostic-core.h"
60393bbc
AM
381#include "cfgrtl.h"
382#include "cfgbuild.h"
383#include "cfgcleanup.h"
058e97ec 384#include "expr.h"
058e97ec
VM
385#include "tree-pass.h"
386#include "output.h"
387#include "reload.h"
c7131fb2 388#include "cfgloop.h"
55a2c322 389#include "lra.h"
b0c11403 390#include "dce.h"
acf41a74 391#include "dbgcnt.h"
40954ce5 392#include "rtl-iter.h"
a5e022d5 393#include "shrink-wrap.h"
013a8899 394#include "print-rtl.h"
058e97ec 395
afcc66c4
RS
396struct target_ira default_target_ira;
397struct target_ira_int default_target_ira_int;
398#if SWITCHABLE_TARGET
399struct target_ira *this_target_ira = &default_target_ira;
400struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401#endif
402
058e97ec
VM
403/* A modified value of flag `-fira-verbose' used internally. */
404int internal_flag_ira_verbose;
405
406/* Dump file of the allocator if it is not NULL. */
407FILE *ira_dump_file;
408
058e97ec
VM
409/* The number of elements in the following array. */
410int ira_spilled_reg_stack_slots_num;
411
412/* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
ae2b9cb6
BS
416/* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
2bf7560b
VM
421int64_t ira_overall_cost, overall_cost_before;
422int64_t ira_reg_cost, ira_mem_cost;
423int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
058e97ec
VM
424int ira_move_loops_num, ira_additional_jumps_num;
425
2af2dbdc
VM
426/* All registers that can be eliminated. */
427
428HARD_REG_SET eliminable_regset;
429
70cc3288
VM
430/* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433static int max_regno_before_ira;
434
058e97ec
VM
435/* Temporary hard reg set used for a different calculation. */
436static HARD_REG_SET temp_hard_regset;
437
e80ccebc
RS
438#define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
440\f
441
442/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443static void
444setup_reg_mode_hard_regset (void)
445{
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
ad474626
RS
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
058e97ec
VM
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458}
459
460\f
afcc66c4
RS
461#define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
463
464/* The function sets up the three arrays declared above. */
465static void
466setup_class_hard_regs (void)
467{
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 478 {
854edfcd
VM
479 ira_non_ordered_class_hard_regs[cl][i] = -1;
480 ira_class_hard_reg_index[cl][i] = -1;
0583835c 481 }
058e97ec
VM
482 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 {
484#ifdef REG_ALLOC_ORDER
485 hard_regno = reg_alloc_order[i];
486#else
487 hard_regno = i;
b8698a0f 488#endif
058e97ec
VM
489 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 continue;
491 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 ira_class_hard_reg_index[cl][hard_regno] = -1;
494 else
495 {
496 ira_class_hard_reg_index[cl][hard_regno] = n;
497 ira_class_hard_regs[cl][n++] = hard_regno;
498 }
499 }
500 ira_class_hard_regs_num[cl] = n;
0583835c
VM
501 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 ira_non_ordered_class_hard_regs[cl][n++] = i;
504 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
505 }
506}
507
058e97ec
VM
508/* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511static void
512setup_alloc_regs (bool use_hard_frame_p)
513{
5a733826
BS
514#ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516#endif
f80041ef 517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
058e97ec
VM
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
058e97ec
VM
521}
522
523\f
524
1756cb66
VM
525#define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528/* Initialize the table of subclasses of each reg class. */
529static void
530setup_reg_subclasses (void)
531{
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546 if (hard_reg_set_empty_p (temp_hard_regset))
547 continue;
548 for (j = 0; j < N_REG_CLASSES; j++)
549 if (i != j)
550 {
551 enum reg_class *p;
552
553 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 if (! hard_reg_set_subset_p (temp_hard_regset,
556 temp_hard_regset2))
557 continue;
558 p = &alloc_reg_class_subclasses[j][0];
559 while (*p != LIM_REG_CLASSES) p++;
560 *p = (enum reg_class) i;
561 }
562 }
563}
564
565\f
566
567/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
568static void
569setup_class_subset_and_memory_move_costs (void)
570{
1756cb66 571 int cl, cl2, mode, cost;
058e97ec
VM
572 HARD_REG_SET temp_hard_regset2;
573
574 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575 ira_memory_move_cost[mode][NO_REGS][0]
576 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 {
579 if (cl != (int) NO_REGS)
580 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 {
1756cb66
VM
582 ira_max_memory_move_cost[mode][cl][0]
583 = ira_memory_move_cost[mode][cl][0]
ef4bddc2 584 = memory_move_cost ((machine_mode) mode,
6f76a878 585 (reg_class_t) cl, false);
1756cb66
VM
586 ira_max_memory_move_cost[mode][cl][1]
587 = ira_memory_move_cost[mode][cl][1]
ef4bddc2 588 = memory_move_cost ((machine_mode) mode,
6f76a878 589 (reg_class_t) cl, true);
058e97ec
VM
590 /* Costs for NO_REGS are used in cost calculation on the
591 1st pass when the preferred register classes are not
592 known yet. In this case we take the best scenario. */
593 if (ira_memory_move_cost[mode][NO_REGS][0]
594 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
595 ira_max_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
597 = ira_memory_move_cost[mode][cl][0];
598 if (ira_memory_move_cost[mode][NO_REGS][1]
599 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
600 ira_max_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
602 = ira_memory_move_cost[mode][cl][1];
603 }
058e97ec 604 }
1756cb66
VM
605 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 {
608 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 if (! hard_reg_set_empty_p (temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 {
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
625 }
626 }
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 {
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
634 }
635 setup_reg_subclasses ();
058e97ec
VM
636}
637
638\f
639
640/* Define the following macro if allocation through malloc if
641 preferable. */
642#define IRA_NO_OBSTACK
643
644#ifndef IRA_NO_OBSTACK
645/* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647static struct obstack ira_obstack;
648#endif
649
650/* Obstack used for storing all bitmaps of the IRA. */
651static struct bitmap_obstack ira_bitmap_obstack;
652
653/* Allocate memory of size LEN for IRA data. */
654void *
655ira_allocate (size_t len)
656{
657 void *res;
658
659#ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661#else
662 res = xmalloc (len);
663#endif
664 return res;
665}
666
058e97ec
VM
667/* Free memory ADDR allocated for IRA data. */
668void
669ira_free (void *addr ATTRIBUTE_UNUSED)
670{
671#ifndef IRA_NO_OBSTACK
672 /* do nothing */
673#else
674 free (addr);
675#endif
676}
677
678
679/* Allocate and returns bitmap for IRA. */
680bitmap
681ira_allocate_bitmap (void)
682{
683 return BITMAP_ALLOC (&ira_bitmap_obstack);
684}
685
686/* Free bitmap B allocated for IRA. */
687void
688ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689{
690 /* do nothing */
691}
692
693\f
694
695/* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697void
698ira_print_disposition (FILE *f)
699{
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
703
704 fprintf (f, "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 {
711 if (n % 4 == 0)
712 fprintf (f, "\n");
713 n++;
714 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (f, "b%-3d", bb->index);
717 else
2608d841 718 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (f, " mem");
723 }
724 fprintf (f, "\n");
725}
726
727/* Outputs information about allocation of all allocnos into
728 stderr. */
729void
730ira_debug_disposition (void)
731{
732 ira_print_disposition (stderr);
733}
734
735\f
058e97ec 736
1756cb66
VM
737/* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
fe82cdfb 743static void
1756cb66
VM
744setup_stack_reg_pressure_class (void)
745{
746 ira_stack_reg_pressure_class = NO_REGS;
747#ifdef STACK_REGS
748 {
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
752
753 CLEAR_HARD_REG_SET (temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (temp_hard_regset, i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
758 {
759 cl = ira_pressure_classes[i];
760 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 size = hard_reg_set_size (temp_hard_regset2);
763 if (best < size)
764 {
765 best = size;
766 ira_stack_reg_pressure_class = cl;
767 }
768 }
769 }
770#endif
771}
772
773/* Find pressure classes which are register classes for which we
774 calculate register pressure in IRA, register pressure sensitive
775 insn scheduling, and register pressure sensitive loop invariant
776 motion.
777
778 To make register pressure calculation easy, we always use
779 non-intersected register pressure classes. A move of hard
780 registers from one register pressure class is not more expensive
781 than load and store of the hard registers. Most likely an allocno
782 class will be a subset of a register pressure class and in many
783 cases a register pressure class. That makes usage of register
784 pressure classes a good approximation to find a high register
785 pressure. */
786static void
787setup_pressure_classes (void)
058e97ec 788{
1756cb66
VM
789 int cost, i, n, curr;
790 int cl, cl2;
791 enum reg_class pressure_classes[N_REG_CLASSES];
792 int m;
058e97ec 793 HARD_REG_SET temp_hard_regset2;
1756cb66 794 bool insert_p;
058e97ec 795
b4ff394c
PH
796 if (targetm.compute_pressure_classes)
797 n = targetm.compute_pressure_classes (pressure_classes);
798 else
799 {
800 n = 0;
801 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 802 {
b4ff394c
PH
803 if (ira_class_hard_regs_num[cl] == 0)
804 continue;
805 if (ira_class_hard_regs_num[cl] != 1
806 /* A register class without subclasses may contain a few
807 hard registers and movement between them is costly
808 (e.g. SPARC FPCC registers). We still should consider it
809 as a candidate for a pressure class. */
810 && alloc_reg_class_subclasses[cl][0] < cl)
113a5be6 811 {
b4ff394c
PH
812 /* Check that the moves between any hard registers of the
813 current class are not more expensive for a legal mode
814 than load/store of the hard registers of the current
815 class. Such class is a potential candidate to be a
816 register pressure class. */
817 for (m = 0; m < NUM_MACHINE_MODES; m++)
818 {
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 ira_prohibited_class_mode_regs[cl][m]);
823 if (hard_reg_set_empty_p (temp_hard_regset))
824 continue;
825 ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 cost = ira_register_move_cost[m][cl][cl];
827 if (cost <= ira_max_memory_move_cost[m][cl][1]
828 || cost <= ira_max_memory_move_cost[m][cl][0])
829 break;
830 }
831 if (m >= NUM_MACHINE_MODES)
113a5be6 832 continue;
113a5be6 833 }
b4ff394c
PH
834 curr = 0;
835 insert_p = true;
836 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 /* Remove so far added pressure classes which are subset of the
839 current candidate class. Prefer GENERAL_REGS as a pressure
840 register class to another class containing the same
841 allocatable hard registers. We do this because machine
842 dependent cost hooks might give wrong costs for the latter
843 class but always give the right cost for the former class
844 (GENERAL_REGS). */
845 for (i = 0; i < n; i++)
1756cb66 846 {
b4ff394c
PH
847 cl2 = pressure_classes[i];
848 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 && (! hard_reg_set_equal_p (temp_hard_regset,
852 temp_hard_regset2)
853 || cl2 == (int) GENERAL_REGS))
854 {
855 pressure_classes[curr++] = (enum reg_class) cl2;
856 insert_p = false;
857 continue;
858 }
859 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 && (! hard_reg_set_equal_p (temp_hard_regset2,
861 temp_hard_regset)
862 || cl == (int) GENERAL_REGS))
863 continue;
864 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 insert_p = false;
1756cb66 866 pressure_classes[curr++] = (enum reg_class) cl2;
1756cb66 867 }
b4ff394c
PH
868 /* If the current candidate is a subset of a so far added
869 pressure class, don't add it to the list of the pressure
870 classes. */
871 if (insert_p)
872 pressure_classes[curr++] = (enum reg_class) cl;
873 n = curr;
1756cb66 874 }
fe82cdfb 875 }
1756cb66 876#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
877 {
878 HARD_REG_SET ignore_hard_regs;
879
880 /* Check pressure classes correctness: here we check that hard
881 registers from all register pressure classes contains all hard
882 registers available for the allocation. */
883 CLEAR_HARD_REG_SET (temp_hard_regset);
884 CLEAR_HARD_REG_SET (temp_hard_regset2);
885 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
887 {
888 /* For some targets (like MIPS with MD_REGS), there are some
889 classes with hard registers available for allocation but
890 not able to hold value of any mode. */
891 for (m = 0; m < NUM_MACHINE_MODES; m++)
892 if (contains_reg_of_mode[cl][m])
893 break;
894 if (m >= NUM_MACHINE_MODES)
895 {
896 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 continue;
898 }
899 for (i = 0; i < n; i++)
900 if ((int) pressure_classes[i] == cl)
901 break;
902 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 if (i < n)
904 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905 }
906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
df3e3493 907 /* Some targets (like SPARC with ICC reg) have allocatable regs
113a5be6
VM
908 for which no reg class is defined. */
909 if (REGNO_REG_CLASS (i) == NO_REGS)
910 SET_HARD_REG_BIT (ignore_hard_regs, i);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
914 }
1756cb66
VM
915#endif
916 ira_pressure_classes_num = 0;
917 for (i = 0; i < n; i++)
918 {
919 cl = (int) pressure_classes[i];
920 ira_reg_pressure_class_p[cl] = true;
921 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
922 }
923 setup_stack_reg_pressure_class ();
058e97ec
VM
924}
925
165f639c
VM
926/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
927 whose register move cost between any registers of the class is the
928 same as for all its subclasses. We use the data to speed up the
929 2nd pass of calculations of allocno costs. */
930static void
931setup_uniform_class_p (void)
932{
933 int i, cl, cl2, m;
934
935 for (cl = 0; cl < N_REG_CLASSES; cl++)
936 {
937 ira_uniform_class_p[cl] = false;
938 if (ira_class_hard_regs_num[cl] == 0)
939 continue;
940 /* We can not use alloc_reg_class_subclasses here because move
941 cost hooks does not take into account that some registers are
942 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
943 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 because SSE regs are unavailable. */
945 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
946 {
947 if (ira_class_hard_regs_num[cl2] == 0)
948 continue;
949 for (m = 0; m < NUM_MACHINE_MODES; m++)
950 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
951 {
ef4bddc2 952 ira_init_register_move_cost_if_necessary ((machine_mode) m);
165f639c
VM
953 if (ira_register_move_cost[m][cl][cl]
954 != ira_register_move_cost[m][cl2][cl2])
955 break;
956 }
957 if (m < NUM_MACHINE_MODES)
958 break;
959 }
960 if (cl2 == LIM_REG_CLASSES)
961 ira_uniform_class_p[cl] = true;
962 }
963}
964
1756cb66
VM
965/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
967
df3e3493 968 Target may have many subtargets and not all target hard registers can
1756cb66
VM
969 be used for allocation, e.g. x86 port in 32-bit mode can not use
970 hard registers introduced in x86-64 like r8-r15). Some classes
971 might have the same allocatable hard registers, e.g. INDEX_REGS
972 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
973 calculations efforts we introduce allocno classes which contain
974 unique non-empty sets of allocatable hard-registers.
975
976 Pseudo class cost calculation in ira-costs.c is very expensive.
977 Therefore we are trying to decrease number of classes involved in
978 such calculation. Register classes used in the cost calculation
979 are called important classes. They are allocno classes and other
980 non-empty classes whose allocatable hard register sets are inside
981 of an allocno class hard register set. From the first sight, it
982 looks like that they are just allocno classes. It is not true. In
983 example of x86-port in 32-bit mode, allocno classes will contain
984 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985 registers are the same for the both classes). The important
986 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
987 because a machine description insn constraint may refers for
988 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989 of the insn constraints. */
058e97ec 990static void
1756cb66 991setup_allocno_and_important_classes (void)
058e97ec 992{
32e8bb8e 993 int i, j, n, cl;
db1a8d98 994 bool set_p;
058e97ec 995 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
996 static enum reg_class classes[LIM_REG_CLASSES + 1];
997
1756cb66
VM
998 n = 0;
999 /* Collect classes which contain unique sets of allocatable hard
1000 registers. Prefer GENERAL_REGS to other classes containing the
1001 same set of hard registers. */
a58dfa49 1002 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 1003 {
1756cb66
VM
1004 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006 for (j = 0; j < n; j++)
7db7ed3c 1007 {
1756cb66
VM
1008 cl = classes[j];
1009 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 no_unit_alloc_regs);
1012 if (hard_reg_set_equal_p (temp_hard_regset,
1013 temp_hard_regset2))
1014 break;
7db7ed3c 1015 }
e93f30a6 1016 if (j >= n || targetm.additional_allocno_class_p (i))
1756cb66
VM
1017 classes[n++] = (enum reg_class) i;
1018 else if (i == GENERAL_REGS)
1019 /* Prefer general regs. For i386 example, it means that
1020 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 (all of them consists of the same available hard
1022 registers). */
1023 classes[j] = (enum reg_class) i;
7db7ed3c 1024 }
1756cb66 1025 classes[n] = LIM_REG_CLASSES;
058e97ec 1026
1756cb66 1027 /* Set up classes which can be used for allocnos as classes
df3e3493 1028 containing non-empty unique sets of allocatable hard
1756cb66
VM
1029 registers. */
1030 ira_allocno_classes_num = 0;
058e97ec 1031 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1032 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1033 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1034 ira_important_classes_num = 0;
1756cb66
VM
1035 /* Add non-allocno classes containing to non-empty set of
1036 allocatable hard regs. */
058e97ec 1037 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1038 if (ira_class_hard_regs_num[cl] > 0)
1039 {
1040 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 set_p = false;
1043 for (j = 0; j < ira_allocno_classes_num; j++)
1044 {
1045 COPY_HARD_REG_SET (temp_hard_regset2,
1046 reg_class_contents[ira_allocno_classes[j]]);
1047 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 if ((enum reg_class) cl == ira_allocno_classes[j])
1049 break;
1050 else if (hard_reg_set_subset_p (temp_hard_regset,
1051 temp_hard_regset2))
1052 set_p = true;
1053 }
1054 if (set_p && j >= ira_allocno_classes_num)
1055 ira_important_classes[ira_important_classes_num++]
1056 = (enum reg_class) cl;
1057 }
1756cb66
VM
1058 /* Now add allocno classes to the important classes. */
1059 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1060 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1061 = ira_allocno_classes[j];
1062 for (cl = 0; cl < N_REG_CLASSES; cl++)
1063 {
1064 ira_reg_allocno_class_p[cl] = false;
1065 ira_reg_pressure_class_p[cl] = false;
1066 }
1067 for (j = 0; j < ira_allocno_classes_num; j++)
1068 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069 setup_pressure_classes ();
165f639c 1070 setup_uniform_class_p ();
058e97ec 1071}
058e97ec 1072
1756cb66
VM
1073/* Setup translation in CLASS_TRANSLATE of all classes into a class
1074 given by array CLASSES of length CLASSES_NUM. The function is used
1075 make translation any reg class to an allocno class or to an
1076 pressure class. This translation is necessary for some
1077 calculations when we can use only allocno or pressure classes and
1078 such translation represents an approximate representation of all
1079 classes.
1080
1081 The translation in case when allocatable hard register set of a
1082 given class is subset of allocatable hard register set of a class
1083 in CLASSES is pretty simple. We use smallest classes from CLASSES
1084 containing a given class. If allocatable hard register set of a
1085 given class is not a subset of any corresponding set of a class
1086 from CLASSES, we use the cheapest (with load/store point of view)
2b9c63a2 1087 class from CLASSES whose set intersects with given class set. */
058e97ec 1088static void
1756cb66
VM
1089setup_class_translate_array (enum reg_class *class_translate,
1090 int classes_num, enum reg_class *classes)
058e97ec 1091{
32e8bb8e 1092 int cl, mode;
1756cb66 1093 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1094 int i, cost, min_cost, best_cost;
1095
1096 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1097 class_translate[cl] = NO_REGS;
b8698a0f 1098
1756cb66 1099 for (i = 0; i < classes_num; i++)
058e97ec 1100 {
1756cb66
VM
1101 aclass = classes[i];
1102 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 cl_ptr++)
1105 if (class_translate[cl] == NO_REGS)
1106 class_translate[cl] = aclass;
1107 class_translate[aclass] = aclass;
058e97ec 1108 }
1756cb66
VM
1109 /* For classes which are not fully covered by one of given classes
1110 (in other words covered by more one given class), use the
1111 cheapest class. */
058e97ec
VM
1112 for (cl = 0; cl < N_REG_CLASSES; cl++)
1113 {
1756cb66 1114 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1115 continue;
1116 best_class = NO_REGS;
1117 best_cost = INT_MAX;
1756cb66 1118 for (i = 0; i < classes_num; i++)
058e97ec 1119 {
1756cb66 1120 aclass = classes[i];
058e97ec 1121 COPY_HARD_REG_SET (temp_hard_regset,
1756cb66 1122 reg_class_contents[aclass]);
058e97ec
VM
1123 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 1125 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1126 {
1127 min_cost = INT_MAX;
1128 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1129 {
761a8eb7
VM
1130 cost = (ira_memory_move_cost[mode][aclass][0]
1131 + ira_memory_move_cost[mode][aclass][1]);
058e97ec
VM
1132 if (min_cost > cost)
1133 min_cost = cost;
1134 }
1135 if (best_class == NO_REGS || best_cost > min_cost)
1136 {
1756cb66 1137 best_class = aclass;
058e97ec
VM
1138 best_cost = min_cost;
1139 }
1140 }
1141 }
1756cb66 1142 class_translate[cl] = best_class;
058e97ec
VM
1143 }
1144}
058e97ec 1145
1756cb66
VM
1146/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147 IRA_PRESSURE_CLASS_TRANSLATE. */
1148static void
1149setup_class_translate (void)
1150{
1151 setup_class_translate_array (ira_allocno_class_translate,
1152 ira_allocno_classes_num, ira_allocno_classes);
1153 setup_class_translate_array (ira_pressure_class_translate,
1154 ira_pressure_classes_num, ira_pressure_classes);
1155}
1156
1157/* Order numbers of allocno classes in original target allocno class
1158 array, -1 for non-allocno classes. */
1159static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1160
1161/* The function used to sort the important classes. */
1162static int
1163comp_reg_classes_func (const void *v1p, const void *v2p)
1164{
1165 enum reg_class cl1 = *(const enum reg_class *) v1p;
1166 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1167 enum reg_class tcl1, tcl2;
db1a8d98
VM
1168 int diff;
1169
1756cb66
VM
1170 tcl1 = ira_allocno_class_translate[cl1];
1171 tcl2 = ira_allocno_class_translate[cl2];
1172 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1174 return diff;
1175 return (int) cl1 - (int) cl2;
1176}
1177
1756cb66
VM
1178/* For correct work of function setup_reg_class_relation we need to
1179 reorder important classes according to the order of their allocno
1180 classes. It places important classes containing the same
1181 allocatable hard register set adjacent to each other and allocno
1182 class with the allocatable hard register set right after the other
1183 important classes with the same set.
1184
1185 In example from comments of function
1186 setup_allocno_and_important_classes, it places LEGACY_REGS and
1187 GENERAL_REGS close to each other and GENERAL_REGS is after
1188 LEGACY_REGS. */
db1a8d98
VM
1189static void
1190reorder_important_classes (void)
1191{
1192 int i;
1193
1194 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1195 allocno_class_order[i] = -1;
1196 for (i = 0; i < ira_allocno_classes_num; i++)
1197 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1198 qsort (ira_important_classes, ira_important_classes_num,
1199 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1202}
1203
1756cb66
VM
1204/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1207 please see corresponding comments in ira-int.h. */
058e97ec 1208static void
7db7ed3c 1209setup_reg_class_relations (void)
058e97ec
VM
1210{
1211 int i, cl1, cl2, cl3;
1212 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1213 bool important_class_p[N_REG_CLASSES];
058e97ec 1214
7db7ed3c
VM
1215 memset (important_class_p, 0, sizeof (important_class_p));
1216 for (i = 0; i < ira_important_classes_num; i++)
1217 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1218 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1219 {
7db7ed3c 1220 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1221 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1222 {
7db7ed3c 1223 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1224 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1225 ira_reg_class_subset[cl1][cl2] = NO_REGS;
058e97ec
VM
1226 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1230 if (hard_reg_set_empty_p (temp_hard_regset)
1231 && hard_reg_set_empty_p (temp_set2))
058e97ec 1232 {
1756cb66
VM
1233 /* The both classes have no allocatable hard registers
1234 -- take all class hard registers into account and use
1235 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1236 for (i = 0;; i++)
1237 {
1238 cl3 = reg_class_subclasses[cl1][i];
1239 if (cl3 == LIM_REG_CLASSES)
1240 break;
1241 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1242 (enum reg_class) cl3))
1243 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1244 }
1756cb66
VM
1245 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1247 continue;
1248 }
7db7ed3c
VM
1249 ira_reg_classes_intersect_p[cl1][cl2]
1250 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 if (important_class_p[cl1] && important_class_p[cl2]
1252 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1253 {
1756cb66
VM
1254 /* CL1 and CL2 are important classes and CL1 allocatable
1255 hard register set is inside of CL2 allocatable hard
1256 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1257 enum reg_class *p;
1258
1259 p = &ira_reg_class_super_classes[cl1][0];
1260 while (*p != LIM_REG_CLASSES)
1261 p++;
1262 *p++ = (enum reg_class) cl2;
1263 *p = LIM_REG_CLASSES;
1264 }
1756cb66
VM
1265 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
058e97ec
VM
1267 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
55a2c322 1273 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1274 {
058e97ec
VM
1275 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1278 {
1756cb66
VM
1279 /* CL3 allocatable hard register set is inside of
1280 intersection of allocatable hard register sets
1281 of CL1 and CL2. */
55a2c322
VM
1282 if (important_class_p[cl3])
1283 {
1284 COPY_HARD_REG_SET
1285 (temp_set2,
1286 reg_class_contents
1287 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 /* If the allocatable hard register sets are
1291 the same, prefer GENERAL_REGS or the
1292 smallest class for debugging
1293 purposes. */
1294 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 && (cl3 == GENERAL_REGS
1296 || ((ira_reg_class_intersect[cl1][cl2]
1297 != GENERAL_REGS)
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int)
1302 ira_reg_class_intersect[cl1][cl2]])))))
1303 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1304 }
058e97ec
VM
1305 COPY_HARD_REG_SET
1306 (temp_set2,
55a2c322 1307 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
058e97ec 1308 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
55a2c322
VM
1309 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 /* Ignore unavailable hard registers and prefer
1311 smallest class for debugging purposes. */
058e97ec 1312 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
55a2c322
VM
1313 && hard_reg_set_subset_p
1314 (reg_class_contents[cl3],
1315 reg_class_contents
1316 [(int) ira_reg_class_subset[cl1][cl2]])))
1317 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1318 }
55a2c322
VM
1319 if (important_class_p[cl3]
1320 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1321 {
df3e3493 1322 /* CL3 allocatable hard register set is inside of
1756cb66
VM
1323 union of allocatable hard register sets of CL1
1324 and CL2. */
058e97ec
VM
1325 COPY_HARD_REG_SET
1326 (temp_set2,
1756cb66 1327 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
058e97ec 1328 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1756cb66 1329 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1330 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1331
1332 && (! hard_reg_set_equal_p (temp_set2,
1333 temp_hard_regset)
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1344 }
1345 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1346 {
1347 /* CL3 allocatable hard register set contains union
1348 of allocatable hard register sets of CL1 and
1349 CL2. */
1350 COPY_HARD_REG_SET
1351 (temp_set2,
1352 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1356
058e97ec
VM
1357 && (! hard_reg_set_equal_p (temp_set2,
1358 temp_hard_regset)
1756cb66
VM
1359 || cl3 == GENERAL_REGS
1360 /* If the allocatable hard register sets are the
1361 same, prefer GENERAL_REGS or the smallest
1362 class for debugging purposes. */
1363 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 && hard_reg_set_subset_p
1365 (reg_class_contents[cl3],
1366 reg_class_contents
1367 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1369 }
1370 }
1371 }
1372 }
1373}
1374
df3e3493 1375/* Output all uniform and important classes into file F. */
165f639c 1376static void
89e94470 1377print_uniform_and_important_classes (FILE *f)
165f639c 1378{
165f639c
VM
1379 int i, cl;
1380
1381 fprintf (f, "Uniform classes:\n");
1382 for (cl = 0; cl < N_REG_CLASSES; cl++)
1383 if (ira_uniform_class_p[cl])
1384 fprintf (f, " %s", reg_class_names[cl]);
1385 fprintf (f, "\nImportant classes:\n");
1386 for (i = 0; i < ira_important_classes_num; i++)
1387 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388 fprintf (f, "\n");
1389}
1390
1391/* Output all possible allocno or pressure classes and their
1392 translation map into file F. */
058e97ec 1393static void
165f639c 1394print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1395{
1396 int classes_num = (pressure_p
1397 ? ira_pressure_classes_num : ira_allocno_classes_num);
1398 enum reg_class *classes = (pressure_p
1399 ? ira_pressure_classes : ira_allocno_classes);
1400 enum reg_class *class_translate = (pressure_p
1401 ? ira_pressure_class_translate
1402 : ira_allocno_class_translate);
058e97ec
VM
1403 int i;
1404
1756cb66
VM
1405 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406 for (i = 0; i < classes_num; i++)
1407 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1408 fprintf (f, "\nClass translation:\n");
1409 for (i = 0; i < N_REG_CLASSES; i++)
1410 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1411 reg_class_names[class_translate[i]]);
058e97ec
VM
1412}
1413
1756cb66
VM
1414/* Output all possible allocno and translation classes and the
1415 translation maps into stderr. */
058e97ec 1416void
1756cb66 1417ira_debug_allocno_classes (void)
058e97ec 1418{
89e94470 1419 print_uniform_and_important_classes (stderr);
165f639c
VM
1420 print_translated_classes (stderr, false);
1421 print_translated_classes (stderr, true);
058e97ec
VM
1422}
1423
1756cb66 1424/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1425 important classes. */
1426static void
1756cb66 1427find_reg_classes (void)
058e97ec 1428{
1756cb66 1429 setup_allocno_and_important_classes ();
7db7ed3c 1430 setup_class_translate ();
db1a8d98 1431 reorder_important_classes ();
7db7ed3c 1432 setup_reg_class_relations ();
058e97ec
VM
1433}
1434
1435\f
1436
c0683a82
VM
1437/* Set up the array above. */
1438static void
1756cb66 1439setup_hard_regno_aclass (void)
c0683a82 1440{
7efcf910 1441 int i;
c0683a82
VM
1442
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 {
1756cb66
VM
1445#if 1
1446 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1447 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 ? NO_REGS
1756cb66
VM
1449 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450#else
1451 int j;
1452 enum reg_class cl;
1453 ira_hard_regno_allocno_class[i] = NO_REGS;
1454 for (j = 0; j < ira_allocno_classes_num; j++)
1455 {
1456 cl = ira_allocno_classes[j];
1457 if (ira_class_hard_reg_index[cl][i] >= 0)
1458 {
1459 ira_hard_regno_allocno_class[i] = cl;
1460 break;
1461 }
1462 }
1463#endif
c0683a82
VM
1464 }
1465}
1466
1467\f
1468
1756cb66 1469/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1470static void
1471setup_reg_class_nregs (void)
1472{
1756cb66 1473 int i, cl, cl2, m;
058e97ec 1474
1756cb66
VM
1475 for (m = 0; m < MAX_MACHINE_MODE; m++)
1476 {
1477 for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 ira_reg_class_max_nregs[cl][m]
1479 = ira_reg_class_min_nregs[cl][m]
ef4bddc2 1480 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1756cb66
VM
1481 for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 for (i = 0;
1483 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 i++)
1485 if (ira_reg_class_min_nregs[cl2][m]
1486 < ira_reg_class_min_nregs[cl][m])
1487 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1488 }
058e97ec
VM
1489}
1490
1491\f
1492
c9d74da6
RS
1493/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1495static void
1496setup_prohibited_class_mode_regs (void)
1497{
c9d74da6 1498 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1499
1756cb66 1500 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1501 {
c9d74da6
RS
1502 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
058e97ec
VM
1504 for (j = 0; j < NUM_MACHINE_MODES; j++)
1505 {
c9d74da6
RS
1506 count = 0;
1507 last_hard_regno = -1;
1756cb66 1508 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1509 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1510 {
1511 hard_regno = ira_class_hard_regs[cl][k];
f939c3e6 1512 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1756cb66 1513 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1514 hard_regno);
c9d74da6 1515 else if (in_hard_reg_set_p (temp_hard_regset,
ef4bddc2 1516 (machine_mode) j, hard_regno))
c9d74da6
RS
1517 {
1518 last_hard_regno = hard_regno;
1519 count++;
1520 }
058e97ec 1521 }
c9d74da6 1522 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1523 }
1524 }
1525}
1526
1756cb66
VM
1527/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528 spanning from one register pressure class to another one. It is
1529 called after defining the pressure classes. */
1530static void
1531clarify_prohibited_class_mode_regs (void)
1532{
1533 int j, k, hard_regno, cl, pclass, nregs;
1534
1535 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1537 {
1538 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1540 {
1541 hard_regno = ira_class_hard_regs[cl][k];
1542 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 continue;
ad474626 1544 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
a2c19e93 1545 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1546 {
1547 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 hard_regno);
a2c19e93 1549 continue;
1756cb66 1550 }
a2c19e93
RS
1551 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 for (nregs-- ;nregs >= 0; nregs--)
1553 if (((enum reg_class) pclass
1554 != ira_pressure_class_translate[REGNO_REG_CLASS
1555 (hard_regno + nregs)]))
1556 {
1557 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 hard_regno);
1559 break;
1560 }
1561 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 hard_regno))
1563 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
ef4bddc2 1564 (machine_mode) j, hard_regno);
a2c19e93
RS
1565 }
1566 }
1756cb66 1567}
058e97ec 1568\f
7cc61ee4
RS
1569/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570 and IRA_MAY_MOVE_OUT_COST for MODE. */
1571void
ef4bddc2 1572ira_init_register_move_cost (machine_mode mode)
e80ccebc
RS
1573{
1574 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575 bool all_match = true;
ed9e2ed0 1576 unsigned int cl1, cl2;
e80ccebc 1577
7cc61ee4
RS
1578 ira_assert (ira_register_move_cost[mode] == NULL
1579 && ira_may_move_in_cost[mode] == NULL
1580 && ira_may_move_out_cost[mode] == NULL);
ed9e2ed0
RS
1581 ira_assert (have_regs_of_mode[mode]);
1582 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1583 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1584 {
1585 int cost;
1586 if (!contains_reg_of_mode[cl1][mode]
1587 || !contains_reg_of_mode[cl2][mode])
1588 {
1589 if ((ira_reg_class_max_nregs[cl1][mode]
1590 > ira_class_hard_regs_num[cl1])
1591 || (ira_reg_class_max_nregs[cl2][mode]
1592 > ira_class_hard_regs_num[cl2]))
1593 cost = 65535;
1594 else
1595 cost = (ira_memory_move_cost[mode][cl1][0]
1a788c05 1596 + ira_memory_move_cost[mode][cl2][1]) * 2;
fef37404
VM
1597 }
1598 else
1599 {
1600 cost = register_move_cost (mode, (enum reg_class) cl1,
1601 (enum reg_class) cl2);
1602 ira_assert (cost < 65535);
1603 }
1604 all_match &= (last_move_cost[cl1][cl2] == cost);
1605 last_move_cost[cl1][cl2] = cost;
1606 }
e80ccebc
RS
1607 if (all_match && last_mode_for_init_move_cost != -1)
1608 {
7cc61ee4
RS
1609 ira_register_move_cost[mode]
1610 = ira_register_move_cost[last_mode_for_init_move_cost];
1611 ira_may_move_in_cost[mode]
1612 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1613 ira_may_move_out_cost[mode]
1614 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1615 return;
1616 }
ed9e2ed0 1617 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1618 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1619 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1620 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0 1621 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1622 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1623 {
1624 int cost;
1625 enum reg_class *p1, *p2;
1626
1627 if (last_move_cost[cl1][cl2] == 65535)
1628 {
1629 ira_register_move_cost[mode][cl1][cl2] = 65535;
1630 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1631 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1632 }
1633 else
1634 {
1635 cost = last_move_cost[cl1][cl2];
1636
1637 for (p2 = &reg_class_subclasses[cl2][0];
1638 *p2 != LIM_REG_CLASSES; p2++)
1639 if (ira_class_hard_regs_num[*p2] > 0
1640 && (ira_reg_class_max_nregs[*p2][mode]
1641 <= ira_class_hard_regs_num[*p2]))
1642 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1643
1644 for (p1 = &reg_class_subclasses[cl1][0];
1645 *p1 != LIM_REG_CLASSES; p1++)
1646 if (ira_class_hard_regs_num[*p1] > 0
1647 && (ira_reg_class_max_nregs[*p1][mode]
1648 <= ira_class_hard_regs_num[*p1]))
1649 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1650
1651 ira_assert (cost <= 65535);
1652 ira_register_move_cost[mode][cl1][cl2] = cost;
1653
1654 if (ira_class_subset_p[cl1][cl2])
1655 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1656 else
1657 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1658
1659 if (ira_class_subset_p[cl2][cl1])
1660 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1661 else
1662 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1663 }
1664 }
058e97ec 1665}
fef37404 1666
058e97ec
VM
1667\f
1668
058e97ec
VM
1669/* This is called once during compiler work. It sets up
1670 different arrays whose values don't depend on the compiled
1671 function. */
1672void
1673ira_init_once (void)
1674{
058e97ec 1675 ira_init_costs_once ();
55a2c322 1676 lra_init_once ();
23427d51
RL
1677
1678 ira_use_lra_p = targetm.lra_p ();
058e97ec
VM
1679}
1680
7cc61ee4
RS
1681/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1682 ira_may_move_out_cost for each mode. */
19c708dc
RS
1683void
1684target_ira_int::free_register_move_costs (void)
058e97ec 1685{
e80ccebc 1686 int mode, i;
058e97ec 1687
e80ccebc
RS
1688 /* Reset move_cost and friends, making sure we only free shared
1689 table entries once. */
1690 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
19c708dc 1691 if (x_ira_register_move_cost[mode])
e80ccebc 1692 {
7cc61ee4 1693 for (i = 0;
19c708dc
RS
1694 i < mode && (x_ira_register_move_cost[i]
1695 != x_ira_register_move_cost[mode]);
7cc61ee4 1696 i++)
e80ccebc
RS
1697 ;
1698 if (i == mode)
1699 {
19c708dc
RS
1700 free (x_ira_register_move_cost[mode]);
1701 free (x_ira_may_move_in_cost[mode]);
1702 free (x_ira_may_move_out_cost[mode]);
e80ccebc
RS
1703 }
1704 }
19c708dc
RS
1705 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1706 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1707 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
e80ccebc 1708 last_mode_for_init_move_cost = -1;
058e97ec
VM
1709}
1710
19c708dc
RS
1711target_ira_int::~target_ira_int ()
1712{
1713 free_ira_costs ();
1714 free_register_move_costs ();
1715}
1716
058e97ec
VM
1717/* This is called every time when register related information is
1718 changed. */
1719void
1720ira_init (void)
1721{
19c708dc 1722 this_target_ira_int->free_register_move_costs ();
058e97ec
VM
1723 setup_reg_mode_hard_regset ();
1724 setup_alloc_regs (flag_omit_frame_pointer != 0);
1725 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1726 setup_reg_class_nregs ();
1727 setup_prohibited_class_mode_regs ();
1756cb66
VM
1728 find_reg_classes ();
1729 clarify_prohibited_class_mode_regs ();
1730 setup_hard_regno_aclass ();
058e97ec
VM
1731 ira_init_costs ();
1732}
1733
058e97ec 1734\f
15e7b94f
RS
1735#define ira_prohibited_mode_move_regs_initialized_p \
1736 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1737
1738/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1739static void
1740setup_prohibited_mode_move_regs (void)
1741{
1742 int i, j;
647d790d
DM
1743 rtx test_reg1, test_reg2, move_pat;
1744 rtx_insn *move_insn;
058e97ec
VM
1745
1746 if (ira_prohibited_mode_move_regs_initialized_p)
1747 return;
1748 ira_prohibited_mode_move_regs_initialized_p = true;
c3dc5e66
RS
1749 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1750 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
f7df4a84 1751 move_pat = gen_rtx_SET (test_reg1, test_reg2);
ed8921dc 1752 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1753 for (i = 0; i < NUM_MACHINE_MODES; i++)
1754 {
1755 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1756 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1757 {
f939c3e6 1758 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
058e97ec 1759 continue;
8deccbb7
RS
1760 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1761 set_mode_and_regno (test_reg2, (machine_mode) i, j);
058e97ec
VM
1762 INSN_CODE (move_insn) = -1;
1763 recog_memoized (move_insn);
1764 if (INSN_CODE (move_insn) < 0)
1765 continue;
1766 extract_insn (move_insn);
daca1a96
RS
1767 /* We don't know whether the move will be in code that is optimized
1768 for size or speed, so consider all enabled alternatives. */
1769 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
058e97ec
VM
1770 continue;
1771 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1772 }
1773 }
1774}
1775
1776\f
1777
3b6d1699
VM
1778/* Setup possible alternatives in ALTS for INSN. */
1779void
647d790d 1780ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
3b6d1699
VM
1781{
1782 /* MAP nalt * nop -> start of constraints for given operand and
2b9c63a2 1783 alternative. */
3b6d1699
VM
1784 static vec<const char *> insn_constraints;
1785 int nop, nalt;
1786 bool curr_swapped;
1787 const char *p;
3b6d1699
VM
1788 int commutative = -1;
1789
1790 extract_insn (insn);
9840b2fa 1791 alternative_mask preferred = get_preferred_alternatives (insn);
3b6d1699
VM
1792 CLEAR_HARD_REG_SET (alts);
1793 insn_constraints.release ();
1794 insn_constraints.safe_grow_cleared (recog_data.n_operands
1795 * recog_data.n_alternatives + 1);
1796 /* Check that the hard reg set is enough for holding all
1797 alternatives. It is hard to imagine the situation when the
1798 assertion is wrong. */
1799 ira_assert (recog_data.n_alternatives
1800 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1801 FIRST_PSEUDO_REGISTER));
1802 for (curr_swapped = false;; curr_swapped = true)
1803 {
1804 /* Calculate some data common for all alternatives to speed up the
1805 function. */
1806 for (nop = 0; nop < recog_data.n_operands; nop++)
1807 {
1808 for (nalt = 0, p = recog_data.constraints[nop];
1809 nalt < recog_data.n_alternatives;
1810 nalt++)
1811 {
1812 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1813 while (*p && *p != ',')
3f12f020
AK
1814 {
1815 /* We only support one commutative marker, the first
1816 one. We already set commutative above. */
1817 if (*p == '%' && commutative < 0)
1818 commutative = nop;
1819 p++;
1820 }
3b6d1699
VM
1821 if (*p)
1822 p++;
1823 }
1824 }
1825 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1826 {
9840b2fa 1827 if (!TEST_BIT (preferred, nalt)
4cc8d9d2 1828 || TEST_HARD_REG_BIT (alts, nalt))
3b6d1699
VM
1829 continue;
1830
1831 for (nop = 0; nop < recog_data.n_operands; nop++)
1832 {
1833 int c, len;
1834
fab27f52 1835 rtx op = recog_data.operand[nop];
3b6d1699
VM
1836 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1837 if (*p == 0 || *p == ',')
1838 continue;
1839
1840 do
1841 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1842 {
1843 case '#':
1844 case ',':
1845 c = '\0';
191816a3 1846 /* FALLTHRU */
3b6d1699
VM
1847 case '\0':
1848 len = 0;
1849 break;
1850
3b6d1699 1851 case '%':
3f12f020 1852 /* The commutative modifier is handled above. */
3b6d1699
VM
1853 break;
1854
3b6d1699
VM
1855 case '0': case '1': case '2': case '3': case '4':
1856 case '5': case '6': case '7': case '8': case '9':
1857 goto op_success;
1858 break;
1859
3b6d1699 1860 case 'g':
3b6d1699
VM
1861 goto op_success;
1862 break;
1863
1864 default:
1865 {
777e635f
RS
1866 enum constraint_num cn = lookup_constraint (p);
1867 switch (get_constraint_type (cn))
1868 {
1869 case CT_REGISTER:
1870 if (reg_class_for_constraint (cn) != NO_REGS)
1871 goto op_success;
1872 break;
1873
d9c35eee
RS
1874 case CT_CONST_INT:
1875 if (CONST_INT_P (op)
1876 && (insn_const_int_ok_for_constraint
1877 (INTVAL (op), cn)))
1878 goto op_success;
1879 break;
1880
777e635f
RS
1881 case CT_ADDRESS:
1882 case CT_MEMORY:
9eb1ca69 1883 case CT_SPECIAL_MEMORY:
777e635f
RS
1884 goto op_success;
1885
1886 case CT_FIXED_FORM:
1887 if (constraint_satisfied_p (op, cn))
1888 goto op_success;
1889 break;
1890 }
3b6d1699
VM
1891 break;
1892 }
1893 }
1894 while (p += len, c);
1895 break;
1896 op_success:
1897 ;
1898 }
1899 if (nop >= recog_data.n_operands)
1900 SET_HARD_REG_BIT (alts, nalt);
1901 }
1902 if (commutative < 0)
1903 break;
43f4a281 1904 /* Swap forth and back to avoid changing recog_data. */
fab27f52
MM
1905 std::swap (recog_data.operand[commutative],
1906 recog_data.operand[commutative + 1]);
43f4a281
RB
1907 if (curr_swapped)
1908 break;
3b6d1699
VM
1909 }
1910}
1911
1912/* Return the number of the output non-early clobber operand which
1913 should be the same in any case as operand with number OP_NUM (or
1914 negative value if there is no such operand). The function takes
1915 only really possible alternatives into consideration. */
1916int
1917ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1918{
1919 int curr_alt, c, original, dup;
1920 bool ignore_p, use_commut_op_p;
1921 const char *str;
3b6d1699
VM
1922
1923 if (op_num < 0 || recog_data.n_alternatives == 0)
1924 return -1;
98f2f031
RS
1925 /* We should find duplications only for input operands. */
1926 if (recog_data.operand_type[op_num] != OP_IN)
1927 return -1;
3b6d1699 1928 str = recog_data.constraints[op_num];
98f2f031 1929 use_commut_op_p = false;
3b6d1699
VM
1930 for (;;)
1931 {
777e635f 1932 rtx op = recog_data.operand[op_num];
3b6d1699 1933
98f2f031
RS
1934 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1935 original = -1;;)
3b6d1699
VM
1936 {
1937 c = *str;
1938 if (c == '\0')
1939 break;
98f2f031 1940 if (c == '#')
3b6d1699
VM
1941 ignore_p = true;
1942 else if (c == ',')
1943 {
1944 curr_alt++;
98f2f031 1945 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
3b6d1699
VM
1946 }
1947 else if (! ignore_p)
1948 switch (c)
1949 {
3b6d1699
VM
1950 case 'g':
1951 goto fail;
8677664e 1952 default:
3b6d1699 1953 {
777e635f
RS
1954 enum constraint_num cn = lookup_constraint (str);
1955 enum reg_class cl = reg_class_for_constraint (cn);
1956 if (cl != NO_REGS
1957 && !targetm.class_likely_spilled_p (cl))
1958 goto fail;
1959 if (constraint_satisfied_p (op, cn))
3b6d1699 1960 goto fail;
3b6d1699
VM
1961 break;
1962 }
1963
1964 case '0': case '1': case '2': case '3': case '4':
1965 case '5': case '6': case '7': case '8': case '9':
1966 if (original != -1 && original != c)
1967 goto fail;
1968 original = c;
1969 break;
1970 }
1971 str += CONSTRAINT_LEN (c, str);
1972 }
1973 if (original == -1)
1974 goto fail;
1975 dup = -1;
1976 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1977 *str != 0;
1978 str++)
1979 if (ignore_p)
1980 {
1981 if (*str == ',')
1982 ignore_p = false;
1983 }
1984 else if (*str == '#')
1985 ignore_p = true;
1986 else if (! ignore_p)
1987 {
1988 if (*str == '=')
1989 dup = original - '0';
1990 /* It is better ignore an alternative with early clobber. */
1991 else if (*str == '&')
1992 goto fail;
1993 }
1994 if (dup >= 0)
1995 return dup;
1996 fail:
1997 if (use_commut_op_p)
1998 break;
1999 use_commut_op_p = true;
73f793e3 2000 if (recog_data.constraints[op_num][0] == '%')
3b6d1699 2001 str = recog_data.constraints[op_num + 1];
73f793e3 2002 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
3b6d1699
VM
2003 str = recog_data.constraints[op_num - 1];
2004 else
2005 break;
2006 }
2007 return -1;
2008}
2009
2010\f
2011
2012/* Search forward to see if the source register of a copy insn dies
2013 before either it or the destination register is modified, but don't
2014 scan past the end of the basic block. If so, we can replace the
2015 source with the destination and let the source die in the copy
2016 insn.
2017
2018 This will reduce the number of registers live in that range and may
2019 enable the destination and the source coalescing, thus often saving
2020 one register in addition to a register-register copy. */
2021
2022static void
2023decrease_live_ranges_number (void)
2024{
2025 basic_block bb;
070a1983 2026 rtx_insn *insn;
7da26277
TS
2027 rtx set, src, dest, dest_death, note;
2028 rtx_insn *p, *q;
3b6d1699
VM
2029 int sregno, dregno;
2030
2031 if (! flag_expensive_optimizations)
2032 return;
2033
2034 if (ira_dump_file)
2035 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2036
11cd3bed 2037 FOR_EACH_BB_FN (bb, cfun)
3b6d1699
VM
2038 FOR_BB_INSNS (bb, insn)
2039 {
2040 set = single_set (insn);
2041 if (! set)
2042 continue;
2043 src = SET_SRC (set);
2044 dest = SET_DEST (set);
2045 if (! REG_P (src) || ! REG_P (dest)
2046 || find_reg_note (insn, REG_DEAD, src))
2047 continue;
2048 sregno = REGNO (src);
2049 dregno = REGNO (dest);
2050
2051 /* We don't want to mess with hard regs if register classes
2052 are small. */
2053 if (sregno == dregno
2054 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2055 && (sregno < FIRST_PSEUDO_REGISTER
2056 || dregno < FIRST_PSEUDO_REGISTER))
2057 /* We don't see all updates to SP if they are in an
2058 auto-inc memory reference, so we must disallow this
2059 optimization on them. */
2060 || sregno == STACK_POINTER_REGNUM
2061 || dregno == STACK_POINTER_REGNUM)
2062 continue;
2063
2064 dest_death = NULL_RTX;
2065
2066 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2067 {
2068 if (! INSN_P (p))
2069 continue;
2070 if (BLOCK_FOR_INSN (p) != bb)
2071 break;
2072
2073 if (reg_set_p (src, p) || reg_set_p (dest, p)
2074 /* If SRC is an asm-declared register, it must not be
2075 replaced in any asm. Unfortunately, the REG_EXPR
2076 tree for the asm variable may be absent in the SRC
2077 rtx, so we can't check the actual register
2078 declaration easily (the asm operand will have it,
2079 though). To avoid complicating the test for a rare
2080 case, we just don't perform register replacement
2081 for a hard reg mentioned in an asm. */
2082 || (sregno < FIRST_PSEUDO_REGISTER
2083 && asm_noperands (PATTERN (p)) >= 0
2084 && reg_overlap_mentioned_p (src, PATTERN (p)))
2085 /* Don't change hard registers used by a call. */
2086 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2087 && find_reg_fusage (p, USE, src))
2088 /* Don't change a USE of a register. */
2089 || (GET_CODE (PATTERN (p)) == USE
2090 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2091 break;
2092
2093 /* See if all of SRC dies in P. This test is slightly
2094 more conservative than it needs to be. */
2095 if ((note = find_regno_note (p, REG_DEAD, sregno))
2096 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2097 {
2098 int failed = 0;
2099
2100 /* We can do the optimization. Scan forward from INSN
2101 again, replacing regs as we go. Set FAILED if a
2102 replacement can't be done. In that case, we can't
2103 move the death note for SRC. This should be
2104 rare. */
2105
2106 /* Set to stop at next insn. */
2107 for (q = next_real_insn (insn);
2108 q != next_real_insn (p);
2109 q = next_real_insn (q))
2110 {
2111 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2112 {
2113 /* If SRC is a hard register, we might miss
2114 some overlapping registers with
2115 validate_replace_rtx, so we would have to
2116 undo it. We can't if DEST is present in
2117 the insn, so fail in that combination of
2118 cases. */
2119 if (sregno < FIRST_PSEUDO_REGISTER
2120 && reg_mentioned_p (dest, PATTERN (q)))
2121 failed = 1;
2122
2123 /* Attempt to replace all uses. */
2124 else if (!validate_replace_rtx (src, dest, q))
2125 failed = 1;
2126
2127 /* If this succeeded, but some part of the
2128 register is still present, undo the
2129 replacement. */
2130 else if (sregno < FIRST_PSEUDO_REGISTER
2131 && reg_overlap_mentioned_p (src, PATTERN (q)))
2132 {
2133 validate_replace_rtx (dest, src, q);
2134 failed = 1;
2135 }
2136 }
2137
2138 /* If DEST dies here, remove the death note and
2139 save it for later. Make sure ALL of DEST dies
2140 here; again, this is overly conservative. */
2141 if (! dest_death
2142 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2143 {
2144 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2145 remove_note (q, dest_death);
2146 else
2147 {
2148 failed = 1;
2149 dest_death = 0;
2150 }
2151 }
2152 }
2153
2154 if (! failed)
2155 {
2156 /* Move death note of SRC from P to INSN. */
2157 remove_note (p, note);
2158 XEXP (note, 1) = REG_NOTES (insn);
2159 REG_NOTES (insn) = note;
2160 }
2161
2162 /* DEST is also dead if INSN has a REG_UNUSED note for
2163 DEST. */
2164 if (! dest_death
2165 && (dest_death
2166 = find_regno_note (insn, REG_UNUSED, dregno)))
2167 {
2168 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2169 remove_note (insn, dest_death);
2170 }
2171
2172 /* Put death note of DEST on P if we saw it die. */
2173 if (dest_death)
2174 {
2175 XEXP (dest_death, 1) = REG_NOTES (p);
2176 REG_NOTES (p) = dest_death;
2177 }
2178 break;
2179 }
2180
2181 /* If SRC is a hard register which is set or killed in
2182 some other way, we can't do this optimization. */
2183 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2184 break;
2185 }
2186 }
2187}
2188
2189\f
2190
0896cc66
JL
2191/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2192static bool
2193ira_bad_reload_regno_1 (int regno, rtx x)
2194{
ac0ab4f7 2195 int x_regno, n, i;
0896cc66
JL
2196 ira_allocno_t a;
2197 enum reg_class pref;
2198
2199 /* We only deal with pseudo regs. */
2200 if (! x || GET_CODE (x) != REG)
2201 return false;
2202
2203 x_regno = REGNO (x);
2204 if (x_regno < FIRST_PSEUDO_REGISTER)
2205 return false;
2206
2207 /* If the pseudo prefers REGNO explicitly, then do not consider
2208 REGNO a bad spill choice. */
2209 pref = reg_preferred_class (x_regno);
2210 if (reg_class_size[pref] == 1)
2211 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2212
2213 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2214 poor choice for a reload regno. */
2215 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
2216 n = ALLOCNO_NUM_OBJECTS (a);
2217 for (i = 0; i < n; i++)
2218 {
2219 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2220 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2221 return true;
2222 }
0896cc66
JL
2223 return false;
2224}
2225
2226/* Return nonzero if REGNO is a particularly bad choice for reloading
2227 IN or OUT. */
2228bool
2229ira_bad_reload_regno (int regno, rtx in, rtx out)
2230{
2231 return (ira_bad_reload_regno_1 (regno, in)
2232 || ira_bad_reload_regno_1 (regno, out));
2233}
2234
b748fbd6 2235/* Add register clobbers from asm statements. */
058e97ec 2236static void
b748fbd6 2237compute_regs_asm_clobbered (void)
058e97ec
VM
2238{
2239 basic_block bb;
2240
11cd3bed 2241 FOR_EACH_BB_FN (bb, cfun)
058e97ec 2242 {
070a1983 2243 rtx_insn *insn;
058e97ec
VM
2244 FOR_BB_INSNS_REVERSE (bb, insn)
2245 {
bfac633a 2246 df_ref def;
058e97ec 2247
93671519 2248 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
bfac633a 2249 FOR_EACH_INSN_DEF (def, insn)
058e97ec 2250 {
058e97ec 2251 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
2252 if (HARD_REGISTER_NUM_P (dregno))
2253 add_to_hard_reg_set (&crtl->asm_clobbers,
2254 GET_MODE (DF_REF_REAL_REG (def)),
2255 dregno);
058e97ec
VM
2256 }
2257 }
2258 }
2259}
2260
2261
8d49e7ef
VM
2262/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2263 REGS_EVER_LIVE. */
ce18efcb 2264void
8d49e7ef 2265ira_setup_eliminable_regset (void)
058e97ec 2266{
89ceba31 2267 int i;
058e97ec 2268 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
53680238 2269
0064f49e
WD
2270 /* Setup is_leaf as frame_pointer_required may use it. This function
2271 is called by sched_init before ira if scheduling is enabled. */
2272 crtl->is_leaf = leaf_function_p ();
2273
058e97ec
VM
2274 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2275 sp for alloca. So we can't eliminate the frame pointer in that
2276 case. At some point, we should improve this by emitting the
2277 sp-adjusting insns for this case. */
55a2c322 2278 frame_pointer_needed
058e97ec
VM
2279 = (! flag_omit_frame_pointer
2280 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
7700cd85
EB
2281 /* We need the frame pointer to catch stack overflow exceptions if
2282 the stack pointer is moving (as for the alloca case just above). */
2283 || (STACK_CHECK_MOVING_SP
2284 && flag_stack_check
2285 && flag_exceptions
2286 && cfun->can_throw_non_call_exceptions)
058e97ec 2287 || crtl->accesses_prior_frames
8d49e7ef 2288 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
b52b1749 2289 || targetm.frame_pointer_required ());
058e97ec 2290
8d49e7ef
VM
2291 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2292 RTL is very small. So if we use frame pointer for RA and RTL
2293 actually prevents this, we will spill pseudos assigned to the
2294 frame pointer in LRA. */
058e97ec 2295
55a2c322
VM
2296 if (frame_pointer_needed)
2297 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2298
058e97ec
VM
2299 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2300 CLEAR_HARD_REG_SET (eliminable_regset);
2301
b748fbd6
PB
2302 compute_regs_asm_clobbered ();
2303
058e97ec
VM
2304 /* Build the regset of all eliminable registers and show we can't
2305 use those that we already know won't be eliminated. */
058e97ec
VM
2306 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2307 {
2308 bool cannot_elim
7b5cbb57 2309 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 2310 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 2311
b748fbd6 2312 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
2313 {
2314 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2315
2316 if (cannot_elim)
2317 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2318 }
2319 else if (cannot_elim)
2320 error ("%s cannot be used in asm here",
2321 reg_names[eliminables[i].from]);
2322 else
2323 df_set_regs_ever_live (eliminables[i].from, true);
2324 }
c3e08036 2325 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
058e97ec 2326 {
c3e08036
TS
2327 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2328 {
2329 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2330 if (frame_pointer_needed)
2331 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2332 }
2333 else if (frame_pointer_needed)
2334 error ("%s cannot be used in asm here",
2335 reg_names[HARD_FRAME_POINTER_REGNUM]);
2336 else
2337 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
058e97ec 2338 }
058e97ec
VM
2339}
2340
2341\f
2342
2af2dbdc
VM
2343/* Vector of substitutions of register numbers,
2344 used to map pseudo regs into hardware regs.
2345 This is set up as a result of register allocation.
2346 Element N is the hard reg assigned to pseudo reg N,
2347 or is -1 if no hard reg was assigned.
2348 If N is a hard reg number, element N is N. */
2349short *reg_renumber;
2350
058e97ec
VM
2351/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2352 the allocation found by IRA. */
2353static void
2354setup_reg_renumber (void)
2355{
2356 int regno, hard_regno;
2357 ira_allocno_t a;
2358 ira_allocno_iterator ai;
2359
2360 caller_save_needed = 0;
2361 FOR_EACH_ALLOCNO (a, ai)
2362 {
55a2c322
VM
2363 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2364 continue;
058e97ec
VM
2365 /* There are no caps at this point. */
2366 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2367 if (! ALLOCNO_ASSIGNED_P (a))
2368 /* It can happen if A is not referenced but partially anticipated
2369 somewhere in a region. */
2370 ALLOCNO_ASSIGNED_P (a) = true;
2371 ira_free_allocno_updated_costs (a);
2372 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2373 regno = ALLOCNO_REGNO (a);
058e97ec 2374 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2375 if (hard_regno >= 0)
058e97ec 2376 {
1756cb66
VM
2377 int i, nwords;
2378 enum reg_class pclass;
2379 ira_object_t obj;
2380
2381 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2382 nwords = ALLOCNO_NUM_OBJECTS (a);
2383 for (i = 0; i < nwords; i++)
2384 {
2385 obj = ALLOCNO_OBJECT (a, i);
2386 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2387 reg_class_contents[pclass]);
2388 }
2389 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
2390 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2391 call_used_reg_set))
1756cb66
VM
2392 {
2393 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2394 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2395 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 2396 || regno >= ira_reg_equiv_len
55a2c322 2397 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
2398 caller_save_needed = 1;
2399 }
058e97ec
VM
2400 }
2401 }
2402}
2403
2404/* Set up allocno assignment flags for further allocation
2405 improvements. */
2406static void
2407setup_allocno_assignment_flags (void)
2408{
2409 int hard_regno;
2410 ira_allocno_t a;
2411 ira_allocno_iterator ai;
2412
2413 FOR_EACH_ALLOCNO (a, ai)
2414 {
2415 if (! ALLOCNO_ASSIGNED_P (a))
2416 /* It can happen if A is not referenced but partially anticipated
2417 somewhere in a region. */
2418 ira_free_allocno_updated_costs (a);
2419 hard_regno = ALLOCNO_HARD_REGNO (a);
2420 /* Don't assign hard registers to allocnos which are destination
2421 of removed store at the end of loop. It has no sense to keep
2422 the same value in different hard registers. It is also
2423 impossible to assign hard registers correctly to such
2424 allocnos because the cost info and info about intersected
2425 calls are incorrect for them. */
2426 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2427 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2428 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2429 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2430 ira_assert
2431 (hard_regno < 0
2432 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2433 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2434 }
2435}
2436
2437/* Evaluate overall allocation cost and the costs for using hard
2438 registers and memory for allocnos. */
2439static void
2440calculate_allocation_cost (void)
2441{
2442 int hard_regno, cost;
2443 ira_allocno_t a;
2444 ira_allocno_iterator ai;
2445
2446 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2447 FOR_EACH_ALLOCNO (a, ai)
2448 {
2449 hard_regno = ALLOCNO_HARD_REGNO (a);
2450 ira_assert (hard_regno < 0
9181a6e5
VM
2451 || (ira_hard_reg_in_set_p
2452 (hard_regno, ALLOCNO_MODE (a),
2453 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2454 if (hard_regno < 0)
2455 {
2456 cost = ALLOCNO_MEMORY_COST (a);
2457 ira_mem_cost += cost;
2458 }
2459 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2460 {
2461 cost = (ALLOCNO_HARD_REG_COSTS (a)
2462 [ira_class_hard_reg_index
1756cb66 2463 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2464 ira_reg_cost += cost;
2465 }
2466 else
2467 {
1756cb66 2468 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2469 ira_reg_cost += cost;
2470 }
2471 ira_overall_cost += cost;
2472 }
2473
2474 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2475 {
2476 fprintf (ira_dump_file,
16998094
JM
2477 "+++Costs: overall %" PRId64
2478 ", reg %" PRId64
2479 ", mem %" PRId64
2480 ", ld %" PRId64
2481 ", st %" PRId64
2482 ", move %" PRId64,
058e97ec
VM
2483 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2484 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2bf7560b 2485 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
058e97ec
VM
2486 ira_move_loops_num, ira_additional_jumps_num);
2487 }
2488
2489}
2490
2491#ifdef ENABLE_IRA_CHECKING
2492/* Check the correctness of the allocation. We do need this because
2493 of complicated code to transform more one region internal
2494 representation into one region representation. */
2495static void
2496check_allocation (void)
2497{
fa86d337 2498 ira_allocno_t a;
ac0ab4f7 2499 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2500 ira_allocno_iterator ai;
2501
2502 FOR_EACH_ALLOCNO (a, ai)
2503 {
ac0ab4f7
BS
2504 int n = ALLOCNO_NUM_OBJECTS (a);
2505 int i;
fa86d337 2506
058e97ec
VM
2507 if (ALLOCNO_CAP_MEMBER (a) != NULL
2508 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2509 continue;
ad474626 2510 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
8cfd82bf
BS
2511 if (nregs == 1)
2512 /* We allocated a single hard register. */
2513 n = 1;
2514 else if (n > 1)
2515 /* We allocated multiple hard registers, and we will test
2516 conflicts in a granularity of single hard regs. */
2517 nregs = 1;
2518
ac0ab4f7
BS
2519 for (i = 0; i < n; i++)
2520 {
2521 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2522 ira_object_t conflict_obj;
2523 ira_object_conflict_iterator oci;
2524 int this_regno = hard_regno;
2525 if (n > 1)
fa86d337 2526 {
2805e6c0 2527 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2528 this_regno += n - i - 1;
2529 else
2530 this_regno += i;
2531 }
2532 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2533 {
2534 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2535 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2536 if (conflict_hard_regno < 0)
2537 continue;
8cfd82bf 2538
ad474626
RS
2539 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2540 ALLOCNO_MODE (conflict_a));
8cfd82bf
BS
2541
2542 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2543 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2544 {
2805e6c0 2545 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2546 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2547 - OBJECT_SUBWORD (conflict_obj) - 1);
2548 else
2549 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2550 conflict_nregs = 1;
2551 }
ac0ab4f7
BS
2552
2553 if ((conflict_hard_regno <= this_regno
2554 && this_regno < conflict_hard_regno + conflict_nregs)
2555 || (this_regno <= conflict_hard_regno
2556 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2557 {
2558 fprintf (stderr, "bad allocation for %d and %d\n",
2559 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2560 gcc_unreachable ();
2561 }
2562 }
2563 }
058e97ec
VM
2564 }
2565}
2566#endif
2567
55a2c322
VM
2568/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2569 be already calculated. */
2570static void
2571setup_reg_equiv_init (void)
2572{
2573 int i;
2574 int max_regno = max_reg_num ();
2575
2576 for (i = 0; i < max_regno; i++)
2577 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2578}
2579
2580/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2581 are insns which were generated for such movement. It is assumed
2582 that FROM_REGNO and TO_REGNO always have the same value at the
2583 point of any move containing such registers. This function is used
2584 to update equiv info for register shuffles on the region borders
2585 and for caller save/restore insns. */
2586void
b32d5189 2587ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
55a2c322 2588{
b32d5189
DM
2589 rtx_insn *insn;
2590 rtx x, note;
55a2c322
VM
2591
2592 if (! ira_reg_equiv[from_regno].defined_p
2593 && (! ira_reg_equiv[to_regno].defined_p
2594 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2595 && ! MEM_READONLY_P (x))))
5a107a0f 2596 return;
55a2c322
VM
2597 insn = insns;
2598 if (NEXT_INSN (insn) != NULL_RTX)
2599 {
2600 if (! ira_reg_equiv[to_regno].defined_p)
2601 {
2602 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2603 return;
2604 }
2605 ira_reg_equiv[to_regno].defined_p = false;
2606 ira_reg_equiv[to_regno].memory
2607 = ira_reg_equiv[to_regno].constant
2608 = ira_reg_equiv[to_regno].invariant
0cc97fc5 2609 = ira_reg_equiv[to_regno].init_insns = NULL;
55a2c322
VM
2610 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2611 fprintf (ira_dump_file,
2612 " Invalidating equiv info for reg %d\n", to_regno);
2613 return;
2614 }
2615 /* It is possible that FROM_REGNO still has no equivalence because
2616 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2617 insn was not processed yet. */
2618 if (ira_reg_equiv[from_regno].defined_p)
2619 {
2620 ira_reg_equiv[to_regno].defined_p = true;
2621 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2622 {
2623 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2624 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2625 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2626 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2627 ira_reg_equiv[to_regno].memory = x;
2628 if (! MEM_READONLY_P (x))
2629 /* We don't add the insn to insn init list because memory
2630 equivalence is just to say what memory is better to use
2631 when the pseudo is spilled. */
2632 return;
2633 }
2634 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2635 {
2636 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2637 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2638 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2639 ira_reg_equiv[to_regno].constant = x;
2640 }
2641 else
2642 {
2643 x = ira_reg_equiv[from_regno].invariant;
2644 ira_assert (x != NULL_RTX);
2645 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2646 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2647 ira_reg_equiv[to_regno].invariant = x;
2648 }
2649 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2650 {
2c797321 2651 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
55a2c322
VM
2652 gcc_assert (note != NULL_RTX);
2653 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2654 {
2655 fprintf (ira_dump_file,
2656 " Adding equiv note to insn %u for reg %d ",
2657 INSN_UID (insn), to_regno);
cfbeaedf 2658 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2659 fprintf (ira_dump_file, "\n");
2660 }
2661 }
2662 }
2663 ira_reg_equiv[to_regno].init_insns
2664 = gen_rtx_INSN_LIST (VOIDmode, insn,
2665 ira_reg_equiv[to_regno].init_insns);
2666 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2667 fprintf (ira_dump_file,
2668 " Adding equiv init move insn %u to reg %d\n",
2669 INSN_UID (insn), to_regno);
2670}
2671
058e97ec
VM
2672/* Fix values of array REG_EQUIV_INIT after live range splitting done
2673 by IRA. */
2674static void
2675fix_reg_equiv_init (void)
2676{
70cc3288 2677 int max_regno = max_reg_num ();
f2034d06 2678 int i, new_regno, max;
618bccf9
TS
2679 rtx set;
2680 rtx_insn_list *x, *next, *prev;
2681 rtx_insn *insn;
b8698a0f 2682
70cc3288 2683 if (max_regno_before_ira < max_regno)
058e97ec 2684 {
9771b263 2685 max = vec_safe_length (reg_equivs);
f2034d06
JL
2686 grow_reg_equivs ();
2687 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
618bccf9 2688 for (prev = NULL, x = reg_equiv_init (i);
f2034d06
JL
2689 x != NULL_RTX;
2690 x = next)
058e97ec 2691 {
618bccf9
TS
2692 next = x->next ();
2693 insn = x->insn ();
2694 set = single_set (insn);
058e97ec
VM
2695 ira_assert (set != NULL_RTX
2696 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2697 if (REG_P (SET_DEST (set))
2698 && ((int) REGNO (SET_DEST (set)) == i
2699 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2700 new_regno = REGNO (SET_DEST (set));
2701 else if (REG_P (SET_SRC (set))
2702 && ((int) REGNO (SET_SRC (set)) == i
2703 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2704 new_regno = REGNO (SET_SRC (set));
2705 else
2706 gcc_unreachable ();
2707 if (new_regno == i)
2708 prev = x;
2709 else
2710 {
55a2c322 2711 /* Remove the wrong list element. */
058e97ec 2712 if (prev == NULL_RTX)
f2034d06 2713 reg_equiv_init (i) = next;
058e97ec
VM
2714 else
2715 XEXP (prev, 1) = next;
f2034d06
JL
2716 XEXP (x, 1) = reg_equiv_init (new_regno);
2717 reg_equiv_init (new_regno) = x;
058e97ec
VM
2718 }
2719 }
2720 }
2721}
2722
2723#ifdef ENABLE_IRA_CHECKING
2724/* Print redundant memory-memory copies. */
2725static void
2726print_redundant_copies (void)
2727{
2728 int hard_regno;
2729 ira_allocno_t a;
2730 ira_copy_t cp, next_cp;
2731 ira_allocno_iterator ai;
b8698a0f 2732
058e97ec
VM
2733 FOR_EACH_ALLOCNO (a, ai)
2734 {
2735 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2b9c63a2 2736 /* It is a cap. */
058e97ec
VM
2737 continue;
2738 hard_regno = ALLOCNO_HARD_REGNO (a);
2739 if (hard_regno >= 0)
2740 continue;
2741 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2742 if (cp->first == a)
2743 next_cp = cp->next_first_allocno_copy;
2744 else
2745 {
2746 next_cp = cp->next_second_allocno_copy;
2747 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2748 && cp->insn != NULL_RTX
2749 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2750 fprintf (ira_dump_file,
2751 " Redundant move from %d(freq %d):%d\n",
2752 INSN_UID (cp->insn), cp->freq, hard_regno);
2753 }
2754 }
2755}
2756#endif
2757
2758/* Setup preferred and alternative classes for new pseudo-registers
2759 created by IRA starting with START. */
2760static void
2761setup_preferred_alternate_classes_for_new_pseudos (int start)
2762{
2763 int i, old_regno;
2764 int max_regno = max_reg_num ();
2765
2766 for (i = start; i < max_regno; i++)
2767 {
2768 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2769 ira_assert (i != old_regno);
058e97ec 2770 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2771 reg_alternate_class (old_regno),
1756cb66 2772 reg_allocno_class (old_regno));
058e97ec
VM
2773 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2774 fprintf (ira_dump_file,
2775 " New r%d: setting preferred %s, alternative %s\n",
2776 i, reg_class_names[reg_preferred_class (old_regno)],
2777 reg_class_names[reg_alternate_class (old_regno)]);
2778 }
2779}
2780
2781\f
df3e3493 2782/* The number of entries allocated in reg_info. */
fb99ee9b 2783static int allocated_reg_info_size;
058e97ec
VM
2784
2785/* Regional allocation can create new pseudo-registers. This function
2786 expands some arrays for pseudo-registers. */
2787static void
fb99ee9b 2788expand_reg_info (void)
058e97ec
VM
2789{
2790 int i;
2791 int size = max_reg_num ();
2792
2793 resize_reg_info ();
fb99ee9b 2794 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2795 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2796 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2797 allocated_reg_info_size = size;
058e97ec
VM
2798}
2799
3553f0bb
VM
2800/* Return TRUE if there is too high register pressure in the function.
2801 It is used to decide when stack slot sharing is worth to do. */
2802static bool
2803too_high_register_pressure_p (void)
2804{
2805 int i;
1756cb66 2806 enum reg_class pclass;
b8698a0f 2807
1756cb66 2808 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2809 {
1756cb66
VM
2810 pclass = ira_pressure_classes[i];
2811 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2812 return true;
2813 }
2814 return false;
2815}
2816
058e97ec
VM
2817\f
2818
2af2dbdc
VM
2819/* Indicate that hard register number FROM was eliminated and replaced with
2820 an offset from hard register number TO. The status of hard registers live
2821 at the start of a basic block is updated by replacing a use of FROM with
2822 a use of TO. */
2823
2824void
2825mark_elimination (int from, int to)
2826{
2827 basic_block bb;
bf744527 2828 bitmap r;
2af2dbdc 2829
11cd3bed 2830 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 2831 {
bf744527
SB
2832 r = DF_LR_IN (bb);
2833 if (bitmap_bit_p (r, from))
2834 {
2835 bitmap_clear_bit (r, from);
2836 bitmap_set_bit (r, to);
2837 }
2838 if (! df_live)
2839 continue;
2840 r = DF_LIVE_IN (bb);
2841 if (bitmap_bit_p (r, from))
2af2dbdc 2842 {
bf744527
SB
2843 bitmap_clear_bit (r, from);
2844 bitmap_set_bit (r, to);
2af2dbdc
VM
2845 }
2846 }
2847}
2848
2849\f
2850
55a2c322
VM
2851/* The length of the following array. */
2852int ira_reg_equiv_len;
2853
2854/* Info about equiv. info for each register. */
4c2b2d79 2855struct ira_reg_equiv_s *ira_reg_equiv;
55a2c322
VM
2856
2857/* Expand ira_reg_equiv if necessary. */
2858void
2859ira_expand_reg_equiv (void)
2860{
2861 int old = ira_reg_equiv_len;
2862
2863 if (ira_reg_equiv_len > max_reg_num ())
2864 return;
2865 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2866 ira_reg_equiv
4c2b2d79 2867 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
55a2c322 2868 ira_reg_equiv_len
4c2b2d79 2869 * sizeof (struct ira_reg_equiv_s));
55a2c322
VM
2870 gcc_assert (old < ira_reg_equiv_len);
2871 memset (ira_reg_equiv + old, 0,
4c2b2d79 2872 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
55a2c322
VM
2873}
2874
2875static void
2876init_reg_equiv (void)
2877{
2878 ira_reg_equiv_len = 0;
2879 ira_reg_equiv = NULL;
2880 ira_expand_reg_equiv ();
2881}
2882
2883static void
2884finish_reg_equiv (void)
2885{
2886 free (ira_reg_equiv);
2887}
2888
2889\f
2890
2af2dbdc
VM
2891struct equivalence
2892{
2af2dbdc
VM
2893 /* Set when a REG_EQUIV note is found or created. Use to
2894 keep track of what memory accesses might be created later,
2895 e.g. by reload. */
2896 rtx replacement;
2897 rtx *src_p;
fb0ab697
JL
2898
2899 /* The list of each instruction which initializes this register.
2900
2901 NULL indicates we know nothing about this register's equivalence
2902 properties.
2903
2904 An INSN_LIST with a NULL insn indicates this pseudo is already
2905 known to not have a valid equivalence. */
2906 rtx_insn_list *init_insns;
2907
2af2dbdc
VM
2908 /* Loop depth is used to recognize equivalences which appear
2909 to be present within the same loop (or in an inner loop). */
5ffa4e6a 2910 short loop_depth;
2af2dbdc 2911 /* Nonzero if this had a preexisting REG_EQUIV note. */
5ffa4e6a 2912 unsigned char is_arg_equivalence : 1;
8f5929e1
JJ
2913 /* Set when an attempt should be made to replace a register
2914 with the associated src_p entry. */
5ffa4e6a
FY
2915 unsigned char replace : 1;
2916 /* Set if this register has no known equivalence. */
2917 unsigned char no_equiv : 1;
8c1d8b59
AM
2918 /* Set if this register is mentioned in a paradoxical subreg. */
2919 unsigned char pdx_subregs : 1;
2af2dbdc
VM
2920};
2921
2922/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2923 structure for that register. */
2924static struct equivalence *reg_equiv;
2925
c7a99fc6
AM
2926/* Used for communication between the following two functions. */
2927struct equiv_mem_data
2928{
2929 /* A MEM that we wish to ensure remains unchanged. */
2930 rtx equiv_mem;
2af2dbdc 2931
c7a99fc6
AM
2932 /* Set true if EQUIV_MEM is modified. */
2933 bool equiv_mem_modified;
2934};
2af2dbdc
VM
2935
2936/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2937 Called via note_stores. */
2938static void
2939validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
c7a99fc6 2940 void *data)
2af2dbdc 2941{
c7a99fc6
AM
2942 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2943
2af2dbdc 2944 if ((REG_P (dest)
c7a99fc6 2945 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2af2dbdc 2946 || (MEM_P (dest)
c7a99fc6
AM
2947 && anti_dependence (info->equiv_mem, dest)))
2948 info->equiv_mem_modified = true;
2af2dbdc
VM
2949}
2950
63ce14e0
AM
2951enum valid_equiv { valid_none, valid_combine, valid_reload };
2952
2af2dbdc
VM
2953/* Verify that no store between START and the death of REG invalidates
2954 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2955 by storing into an overlapping memory location, or with a non-const
2956 CALL_INSN.
2957
63ce14e0
AM
2958 Return VALID_RELOAD if MEMREF remains valid for both reload and
2959 combine_and_move insns, VALID_COMBINE if only valid for
2960 combine_and_move_insns, and VALID_NONE otherwise. */
2961static enum valid_equiv
b32d5189 2962validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2af2dbdc 2963{
b32d5189 2964 rtx_insn *insn;
2af2dbdc 2965 rtx note;
c7a99fc6 2966 struct equiv_mem_data info = { memref, false };
63ce14e0 2967 enum valid_equiv ret = valid_reload;
2af2dbdc
VM
2968
2969 /* If the memory reference has side effects or is volatile, it isn't a
2970 valid equivalence. */
2971 if (side_effects_p (memref))
63ce14e0 2972 return valid_none;
2af2dbdc 2973
c7a99fc6 2974 for (insn = start; insn; insn = NEXT_INSN (insn))
2af2dbdc 2975 {
63ce14e0 2976 if (!INSN_P (insn))
2af2dbdc
VM
2977 continue;
2978
2979 if (find_reg_note (insn, REG_DEAD, reg))
63ce14e0 2980 return ret;
2af2dbdc 2981
a22265a4 2982 if (CALL_P (insn))
63ce14e0
AM
2983 {
2984 /* We can combine a reg def from one insn into a reg use in
2985 another over a call if the memory is readonly or the call
2986 const/pure. However, we can't set reg_equiv notes up for
2987 reload over any call. The problem is the equivalent form
2988 may reference a pseudo which gets assigned a call
2989 clobbered hard reg. When we later replace REG with its
2990 equivalent form, the value in the call-clobbered reg has
2991 been changed and all hell breaks loose. */
2992 ret = valid_combine;
2993 if (!MEM_READONLY_P (memref)
2994 && !RTL_CONST_OR_PURE_CALL_P (insn))
2995 return valid_none;
2996 }
2af2dbdc 2997
c7a99fc6
AM
2998 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
2999 if (info.equiv_mem_modified)
63ce14e0 3000 return valid_none;
2af2dbdc
VM
3001
3002 /* If a register mentioned in MEMREF is modified via an
3003 auto-increment, we lose the equivalence. Do the same if one
3004 dies; although we could extend the life, it doesn't seem worth
3005 the trouble. */
3006
3007 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3008 if ((REG_NOTE_KIND (note) == REG_INC
3009 || REG_NOTE_KIND (note) == REG_DEAD)
3010 && REG_P (XEXP (note, 0))
3011 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
63ce14e0 3012 return valid_none;
2af2dbdc
VM
3013 }
3014
63ce14e0 3015 return valid_none;
2af2dbdc
VM
3016}
3017
3018/* Returns zero if X is known to be invariant. */
3019static int
3020equiv_init_varies_p (rtx x)
3021{
3022 RTX_CODE code = GET_CODE (x);
3023 int i;
3024 const char *fmt;
3025
3026 switch (code)
3027 {
3028 case MEM:
3029 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3030
3031 case CONST:
d8116890 3032 CASE_CONST_ANY:
2af2dbdc
VM
3033 case SYMBOL_REF:
3034 case LABEL_REF:
3035 return 0;
3036
3037 case REG:
3038 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3039
3040 case ASM_OPERANDS:
3041 if (MEM_VOLATILE_P (x))
3042 return 1;
3043
3044 /* Fall through. */
3045
3046 default:
3047 break;
3048 }
3049
3050 fmt = GET_RTX_FORMAT (code);
3051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3052 if (fmt[i] == 'e')
3053 {
3054 if (equiv_init_varies_p (XEXP (x, i)))
3055 return 1;
3056 }
3057 else if (fmt[i] == 'E')
3058 {
3059 int j;
3060 for (j = 0; j < XVECLEN (x, i); j++)
3061 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3062 return 1;
3063 }
3064
3065 return 0;
3066}
3067
3068/* Returns nonzero if X (used to initialize register REGNO) is movable.
3069 X is only movable if the registers it uses have equivalent initializations
3070 which appear to be within the same loop (or in an inner loop) and movable
3071 or if they are not candidates for local_alloc and don't vary. */
3072static int
3073equiv_init_movable_p (rtx x, int regno)
3074{
3075 int i, j;
3076 const char *fmt;
3077 enum rtx_code code = GET_CODE (x);
3078
3079 switch (code)
3080 {
3081 case SET:
3082 return equiv_init_movable_p (SET_SRC (x), regno);
3083
3084 case CC0:
3085 case CLOBBER:
3086 return 0;
3087
3088 case PRE_INC:
3089 case PRE_DEC:
3090 case POST_INC:
3091 case POST_DEC:
3092 case PRE_MODIFY:
3093 case POST_MODIFY:
3094 return 0;
3095
3096 case REG:
1756cb66
VM
3097 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3098 && reg_equiv[REGNO (x)].replace)
3099 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3100 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
3101
3102 case UNSPEC_VOLATILE:
3103 return 0;
3104
3105 case ASM_OPERANDS:
3106 if (MEM_VOLATILE_P (x))
3107 return 0;
3108
3109 /* Fall through. */
3110
3111 default:
3112 break;
3113 }
3114
3115 fmt = GET_RTX_FORMAT (code);
3116 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3117 switch (fmt[i])
3118 {
3119 case 'e':
3120 if (! equiv_init_movable_p (XEXP (x, i), regno))
3121 return 0;
3122 break;
3123 case 'E':
3124 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3125 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3126 return 0;
3127 break;
3128 }
3129
3130 return 1;
3131}
3132
2af2dbdc
VM
3133/* TRUE if X references a memory location that would be affected by a store
3134 to MEMREF. */
3135static int
3136memref_referenced_p (rtx memref, rtx x)
3137{
3138 int i, j;
3139 const char *fmt;
3140 enum rtx_code code = GET_CODE (x);
3141
3142 switch (code)
3143 {
2af2dbdc
VM
3144 case CONST:
3145 case LABEL_REF:
3146 case SYMBOL_REF:
d8116890 3147 CASE_CONST_ANY:
2af2dbdc
VM
3148 case PC:
3149 case CC0:
3150 case HIGH:
3151 case LO_SUM:
3152 return 0;
3153
3154 case REG:
3155 return (reg_equiv[REGNO (x)].replacement
3156 && memref_referenced_p (memref,
3157 reg_equiv[REGNO (x)].replacement));
3158
3159 case MEM:
53d9622b 3160 if (true_dependence (memref, VOIDmode, x))
2af2dbdc
VM
3161 return 1;
3162 break;
3163
3164 case SET:
3165 /* If we are setting a MEM, it doesn't count (its address does), but any
3166 other SET_DEST that has a MEM in it is referencing the MEM. */
3167 if (MEM_P (SET_DEST (x)))
3168 {
3169 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3170 return 1;
3171 }
3172 else if (memref_referenced_p (memref, SET_DEST (x)))
3173 return 1;
3174
3175 return memref_referenced_p (memref, SET_SRC (x));
3176
3177 default:
3178 break;
3179 }
3180
3181 fmt = GET_RTX_FORMAT (code);
3182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3183 switch (fmt[i])
3184 {
3185 case 'e':
3186 if (memref_referenced_p (memref, XEXP (x, i)))
3187 return 1;
3188 break;
3189 case 'E':
3190 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3191 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3192 return 1;
3193 break;
3194 }
3195
3196 return 0;
3197}
3198
3199/* TRUE if some insn in the range (START, END] references a memory location
14d7d4be
JL
3200 that would be affected by a store to MEMREF.
3201
3202 Callers should not call this routine if START is after END in the
3203 RTL chain. */
3204
2af2dbdc 3205static int
b32d5189 3206memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
2af2dbdc 3207{
b32d5189 3208 rtx_insn *insn;
2af2dbdc 3209
14d7d4be
JL
3210 for (insn = NEXT_INSN (start);
3211 insn && insn != NEXT_INSN (end);
2af2dbdc
VM
3212 insn = NEXT_INSN (insn))
3213 {
b5b8b0ac 3214 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 3215 continue;
b8698a0f 3216
2af2dbdc
VM
3217 if (memref_referenced_p (memref, PATTERN (insn)))
3218 return 1;
3219
3220 /* Nonconst functions may access memory. */
3221 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3222 return 1;
3223 }
3224
14d7d4be 3225 gcc_assert (insn == NEXT_INSN (end));
2af2dbdc
VM
3226 return 0;
3227}
3228
3229/* Mark REG as having no known equivalence.
3230 Some instructions might have been processed before and furnished
3231 with REG_EQUIV notes for this register; these notes will have to be
3232 removed.
3233 STORE is the piece of RTL that does the non-constant / conflicting
3234 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3235 but needs to be there because this function is called from note_stores. */
3236static void
1756cb66
VM
3237no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3238 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
3239{
3240 int regno;
fb0ab697 3241 rtx_insn_list *list;
2af2dbdc
VM
3242
3243 if (!REG_P (reg))
3244 return;
3245 regno = REGNO (reg);
5ffa4e6a 3246 reg_equiv[regno].no_equiv = 1;
2af2dbdc 3247 list = reg_equiv[regno].init_insns;
fb0ab697 3248 if (list && list->insn () == NULL)
2af2dbdc 3249 return;
fb0ab697 3250 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
2af2dbdc
VM
3251 reg_equiv[regno].replacement = NULL_RTX;
3252 /* This doesn't matter for equivalences made for argument registers, we
3253 should keep their initialization insns. */
3254 if (reg_equiv[regno].is_arg_equivalence)
3255 return;
55a2c322 3256 ira_reg_equiv[regno].defined_p = false;
0cc97fc5 3257 ira_reg_equiv[regno].init_insns = NULL;
fb0ab697 3258 for (; list; list = list->next ())
2af2dbdc 3259 {
fb0ab697 3260 rtx_insn *insn = list->insn ();
2af2dbdc
VM
3261 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3262 }
3263}
3264
e3f9e0ac
WM
3265/* Check whether the SUBREG is a paradoxical subreg and set the result
3266 in PDX_SUBREGS. */
3267
40954ce5 3268static void
8c1d8b59 3269set_paradoxical_subreg (rtx_insn *insn)
e3f9e0ac 3270{
40954ce5
RS
3271 subrtx_iterator::array_type array;
3272 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3273 {
3274 const_rtx subreg = *iter;
3275 if (GET_CODE (subreg) == SUBREG)
3276 {
3277 const_rtx reg = SUBREG_REG (subreg);
3278 if (REG_P (reg) && paradoxical_subreg_p (subreg))
8c1d8b59 3279 reg_equiv[REGNO (reg)].pdx_subregs = true;
40954ce5
RS
3280 }
3281 }
e3f9e0ac
WM
3282}
3283
3a6191b1
JJ
3284/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3285 equivalent replacement. */
3286
3287static rtx
3288adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3289{
3290 if (REG_P (loc))
3291 {
3292 bitmap cleared_regs = (bitmap) data;
3293 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
b8f045e2 3294 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3a6191b1
JJ
3295 NULL_RTX, adjust_cleared_regs, data);
3296 }
3297 return NULL_RTX;
3298}
3299
a72b242e
AM
3300/* Given register REGNO is set only once, return true if the defining
3301 insn dominates all uses. */
3302
3303static bool
3304def_dominates_uses (int regno)
3305{
3306 df_ref def = DF_REG_DEF_CHAIN (regno);
3307
3308 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3309 /* If this is an artificial def (eh handler regs, hard frame pointer
3310 for non-local goto, regs defined on function entry) then def_info
3311 is NULL and the reg is always live before any use. We might
3312 reasonably return true in that case, but since the only call
3313 of this function is currently here in ira.c when we are looking
3314 at a defining insn we can't have an artificial def as that would
3315 bump DF_REG_DEF_COUNT. */
3316 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3317
3318 rtx_insn *def_insn = DF_REF_INSN (def);
3319 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3320
3321 for (df_ref use = DF_REG_USE_CHAIN (regno);
3322 use;
3323 use = DF_REF_NEXT_REG (use))
3324 {
3325 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3326 /* Only check real uses, not artificial ones. */
3327 if (use_info)
3328 {
3329 rtx_insn *use_insn = DF_REF_INSN (use);
3330 if (!DEBUG_INSN_P (use_insn))
3331 {
3332 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3333 if (use_bb != def_bb
3334 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3335 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3336 return false;
3337 }
3338 }
3339 }
3340 return true;
3341}
3342
2af2dbdc 3343/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
3344 compilation (either because they can be referenced in memory or are
3345 set once from a single constant). Lower their priority for a
3346 register.
2af2dbdc 3347
1756cb66
VM
3348 If such a register is only referenced once, try substituting its
3349 value into the using insn. If it succeeds, we can eliminate the
3350 register completely.
2af2dbdc 3351
ba52669f
AM
3352 Initialize init_insns in ira_reg_equiv array. */
3353static void
2af2dbdc
VM
3354update_equiv_regs (void)
3355{
b2908ba6 3356 rtx_insn *insn;
2af2dbdc 3357 basic_block bb;
2af2dbdc 3358
8c1d8b59
AM
3359 /* Scan insns and set pdx_subregs if the reg is used in a
3360 paradoxical subreg. Don't set such reg equivalent to a mem,
e3f9e0ac
WM
3361 because lra will not substitute such equiv memory in order to
3362 prevent access beyond allocated memory for paradoxical memory subreg. */
11cd3bed 3363 FOR_EACH_BB_FN (bb, cfun)
e3f9e0ac 3364 FOR_BB_INSNS (bb, insn)
c34c46dd 3365 if (NONDEBUG_INSN_P (insn))
8c1d8b59 3366 set_paradoxical_subreg (insn);
e3f9e0ac 3367
2af2dbdc
VM
3368 /* Scan the insns and find which registers have equivalences. Do this
3369 in a separate scan of the insns because (due to -fcse-follow-jumps)
3370 a register can be set below its use. */
91dabbb2 3371 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
11cd3bed 3372 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 3373 {
91dabbb2 3374 int loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3375
3376 for (insn = BB_HEAD (bb);
3377 insn != NEXT_INSN (BB_END (bb));
3378 insn = NEXT_INSN (insn))
3379 {
3380 rtx note;
3381 rtx set;
3382 rtx dest, src;
3383 int regno;
3384
3385 if (! INSN_P (insn))
3386 continue;
3387
3388 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3389 if (REG_NOTE_KIND (note) == REG_INC)
3390 no_equiv (XEXP (note, 0), note, NULL);
3391
3392 set = single_set (insn);
3393
3394 /* If this insn contains more (or less) than a single SET,
3395 only mark all destinations as having no known equivalence. */
07b38331
BS
3396 if (set == NULL_RTX
3397 || side_effects_p (SET_SRC (set)))
2af2dbdc
VM
3398 {
3399 note_stores (PATTERN (insn), no_equiv, NULL);
3400 continue;
3401 }
3402 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3403 {
3404 int i;
3405
3406 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3407 {
3408 rtx part = XVECEXP (PATTERN (insn), 0, i);
3409 if (part != set)
3410 note_stores (part, no_equiv, NULL);
3411 }
3412 }
3413
3414 dest = SET_DEST (set);
3415 src = SET_SRC (set);
3416
3417 /* See if this is setting up the equivalence between an argument
3418 register and its stack slot. */
3419 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3420 if (note)
3421 {
3422 gcc_assert (REG_P (dest));
3423 regno = REGNO (dest);
3424
55a2c322
VM
3425 /* Note that we don't want to clear init_insns in
3426 ira_reg_equiv even if there are multiple sets of this
3427 register. */
2af2dbdc
VM
3428 reg_equiv[regno].is_arg_equivalence = 1;
3429
5a107a0f
VM
3430 /* The insn result can have equivalence memory although
3431 the equivalence is not set up by the insn. We add
3432 this insn to init insns as it is a flag for now that
3433 regno has an equivalence. We will remove the insn
3434 from init insn list later. */
3435 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3436 ira_reg_equiv[regno].init_insns
3437 = gen_rtx_INSN_LIST (VOIDmode, insn,
3438 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3439
3440 /* Continue normally in case this is a candidate for
3441 replacements. */
3442 }
3443
3444 if (!optimize)
3445 continue;
3446
3447 /* We only handle the case of a pseudo register being set
3448 once, or always to the same value. */
1fe28116
VM
3449 /* ??? The mn10200 port breaks if we add equivalences for
3450 values that need an ADDRESS_REGS register and set them equivalent
3451 to a MEM of a pseudo. The actual problem is in the over-conservative
3452 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3453 calculate_needs, but we traditionally work around this problem
3454 here by rejecting equivalences when the destination is in a register
3455 that's likely spilled. This is fragile, of course, since the
3456 preferred class of a pseudo depends on all instructions that set
3457 or use it. */
3458
2af2dbdc
VM
3459 if (!REG_P (dest)
3460 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
fb0ab697
JL
3461 || (reg_equiv[regno].init_insns
3462 && reg_equiv[regno].init_insns->insn () == NULL)
07b8f0a8 3463 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3464 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3465 {
3466 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3467 also set somewhere else to a constant. */
3468 note_stores (set, no_equiv, NULL);
3469 continue;
3470 }
3471
8c1d8b59
AM
3472 /* Don't set reg mentioned in a paradoxical subreg
3473 equivalent to a mem. */
3474 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
e3f9e0ac
WM
3475 {
3476 note_stores (set, no_equiv, NULL);
3477 continue;
3478 }
3479
2af2dbdc
VM
3480 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3481
3482 /* cse sometimes generates function invariants, but doesn't put a
3483 REG_EQUAL note on the insn. Since this note would be redundant,
3484 there's no point creating it earlier than here. */
3485 if (! note && ! rtx_varies_p (src, 0))
3486 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3487
3488 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2b9c63a2 3489 since it represents a function call. */
2af2dbdc
VM
3490 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3491 note = NULL_RTX;
3492
5ffa4e6a
FY
3493 if (DF_REG_DEF_COUNT (regno) != 1)
3494 {
3495 bool equal_p = true;
3496 rtx_insn_list *list;
3497
3498 /* If we have already processed this pseudo and determined it
3499 can not have an equivalence, then honor that decision. */
3500 if (reg_equiv[regno].no_equiv)
3501 continue;
3502
3503 if (! note
2af2dbdc
VM
3504 || rtx_varies_p (XEXP (note, 0), 0)
3505 || (reg_equiv[regno].replacement
3506 && ! rtx_equal_p (XEXP (note, 0),
5ffa4e6a
FY
3507 reg_equiv[regno].replacement)))
3508 {
3509 no_equiv (dest, set, NULL);
3510 continue;
3511 }
3512
3513 list = reg_equiv[regno].init_insns;
3514 for (; list; list = list->next ())
3515 {
3516 rtx note_tmp;
3517 rtx_insn *insn_tmp;
3518
3519 insn_tmp = list->insn ();
3520 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3521 gcc_assert (note_tmp);
3522 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3523 {
3524 equal_p = false;
3525 break;
3526 }
3527 }
3528
3529 if (! equal_p)
3530 {
3531 no_equiv (dest, set, NULL);
3532 continue;
3533 }
2af2dbdc 3534 }
5ffa4e6a 3535
2af2dbdc
VM
3536 /* Record this insn as initializing this register. */
3537 reg_equiv[regno].init_insns
3538 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3539
3540 /* If this register is known to be equal to a constant, record that
a72b242e
AM
3541 it is always equivalent to the constant.
3542 Note that it is possible to have a register use before
3543 the def in loops (see gcc.c-torture/execute/pr79286.c)
3544 where the reg is undefined on first use. If the def insn
3545 won't trap we can use it as an equivalence, effectively
3546 choosing the "undefined" value for the reg to be the
3547 same as the value set by the def. */
2af2dbdc 3548 if (DF_REG_DEF_COUNT (regno) == 1
a72b242e
AM
3549 && note
3550 && !rtx_varies_p (XEXP (note, 0), 0)
08f42414
BE
3551 && (!may_trap_or_fault_p (XEXP (note, 0))
3552 || def_dominates_uses (regno)))
2af2dbdc
VM
3553 {
3554 rtx note_value = XEXP (note, 0);
3555 remove_note (insn, note);
3556 set_unique_reg_note (insn, REG_EQUIV, note_value);
3557 }
3558
3559 /* If this insn introduces a "constant" register, decrease the priority
3560 of that register. Record this insn if the register is only used once
3561 more and the equivalence value is the same as our source.
3562
3563 The latter condition is checked for two reasons: First, it is an
3564 indication that it may be more efficient to actually emit the insn
3565 as written (if no registers are available, reload will substitute
3566 the equivalence). Secondly, it avoids problems with any registers
3567 dying in this insn whose death notes would be missed.
3568
3569 If we don't have a REG_EQUIV note, see if this insn is loading
3570 a register used only in one basic block from a MEM. If so, and the
3571 MEM remains unchanged for the life of the register, add a REG_EQUIV
3572 note. */
2af2dbdc
VM
3573 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3574
63ce14e0 3575 rtx replacement = NULL_RTX;
2af2dbdc 3576 if (note)
63ce14e0
AM
3577 replacement = XEXP (note, 0);
3578 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3579 && MEM_P (SET_SRC (set)))
2af2dbdc 3580 {
63ce14e0
AM
3581 enum valid_equiv validity;
3582 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3583 if (validity != valid_none)
3584 {
3585 replacement = copy_rtx (SET_SRC (set));
3586 if (validity == valid_reload)
3587 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3588 }
3589 }
2af2dbdc 3590
63ce14e0
AM
3591 /* If we haven't done so, record for reload that this is an
3592 equivalencing insn. */
3593 if (note && !reg_equiv[regno].is_arg_equivalence)
3594 ira_reg_equiv[regno].init_insns
3595 = gen_rtx_INSN_LIST (VOIDmode, insn,
3596 ira_reg_equiv[regno].init_insns);
2af2dbdc 3597
63ce14e0
AM
3598 if (replacement)
3599 {
3600 reg_equiv[regno].replacement = replacement;
2af2dbdc 3601 reg_equiv[regno].src_p = &SET_SRC (set);
5ffa4e6a 3602 reg_equiv[regno].loop_depth = (short) loop_depth;
2af2dbdc
VM
3603
3604 /* Don't mess with things live during setjmp. */
91dabbb2 3605 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
2af2dbdc 3606 {
2af2dbdc
VM
3607 /* If the register is referenced exactly twice, meaning it is
3608 set once and used once, indicate that the reference may be
3609 replaced by the equivalence we computed above. Do this
3610 even if the register is only used in one block so that
3611 dependencies can be handled where the last register is
3612 used in a different block (i.e. HIGH / LO_SUM sequences)
3613 and to reduce the number of registers alive across
3614 calls. */
3615
3616 if (REG_N_REFS (regno) == 2
63ce14e0 3617 && (rtx_equal_p (replacement, src)
2af2dbdc
VM
3618 || ! equiv_init_varies_p (src))
3619 && NONJUMP_INSN_P (insn)
3620 && equiv_init_movable_p (PATTERN (insn), regno))
3621 reg_equiv[regno].replace = 1;
3622 }
3623 }
3624 }
3625 }
42ae0d7f 3626}
2af2dbdc 3627
42ae0d7f
AM
3628/* For insns that set a MEM to the contents of a REG that is only used
3629 in a single basic block, see if the register is always equivalent
3630 to that memory location and if moving the store from INSN to the
3631 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3632 initializing insn. */
3633static void
3634add_store_equivs (void)
3635{
8f9b31f7 3636 auto_bitmap seen_insns;
2af2dbdc 3637
42ae0d7f 3638 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
2af2dbdc
VM
3639 {
3640 rtx set, src, dest;
3641 unsigned regno;
42ae0d7f 3642 rtx_insn *init_insn;
2af2dbdc 3643
8f9b31f7 3644 bitmap_set_bit (seen_insns, INSN_UID (insn));
14d7d4be 3645
2af2dbdc
VM
3646 if (! INSN_P (insn))
3647 continue;
3648
3649 set = single_set (insn);
3650 if (! set)
3651 continue;
3652
3653 dest = SET_DEST (set);
3654 src = SET_SRC (set);
3655
42ae0d7f 3656 /* Don't add a REG_EQUIV note if the insn already has one. The existing
10e04446 3657 REG_EQUIV is likely more useful than the one we are adding. */
2af2dbdc
VM
3658 if (MEM_P (dest) && REG_P (src)
3659 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3660 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3661 && DF_REG_DEF_COUNT (regno) == 1
8c1d8b59 3662 && ! reg_equiv[regno].pdx_subregs
fb0ab697 3663 && reg_equiv[regno].init_insns != NULL
42ae0d7f 3664 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
8f9b31f7 3665 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
42ae0d7f 3666 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
63ce14e0 3667 && validate_equiv_mem (init_insn, src, dest) == valid_reload
42ae0d7f
AM
3668 && ! memref_used_between_p (dest, init_insn, insn)
3669 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3670 multiple sets. */
3671 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2af2dbdc 3672 {
42ae0d7f
AM
3673 /* This insn makes the equivalence, not the one initializing
3674 the register. */
3675 ira_reg_equiv[regno].init_insns
3676 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3677 df_notes_rescan (init_insn);
3678 if (dump_file)
3679 fprintf (dump_file,
3680 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3681 INSN_UID (init_insn),
3682 INSN_UID (insn));
2af2dbdc
VM
3683 }
3684 }
42ae0d7f
AM
3685}
3686
3687/* Scan all regs killed in an insn to see if any of them are registers
3688 only used that once. If so, see if we can replace the reference
3689 with the equivalent form. If we can, delete the initializing
3690 reference and this register will go away. If we can't replace the
3691 reference, and the initializing reference is within the same loop
3692 (or in an inner loop), then move the register initialization just
3693 before the use, so that they are in the same basic block. */
3694static void
3695combine_and_move_insns (void)
3696{
0e3de1d4 3697 auto_bitmap cleared_regs;
b00544fa 3698 int max = max_reg_num ();
2af2dbdc 3699
b00544fa 3700 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
2af2dbdc 3701 {
b00544fa
AM
3702 if (!reg_equiv[regno].replace)
3703 continue;
2af2dbdc 3704
b00544fa
AM
3705 rtx_insn *use_insn = 0;
3706 for (df_ref use = DF_REG_USE_CHAIN (regno);
3707 use;
3708 use = DF_REF_NEXT_REG (use))
3709 if (DF_REF_INSN_INFO (use))
3710 {
3711 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3712 continue;
3713 gcc_assert (!use_insn);
3714 use_insn = DF_REF_INSN (use);
3715 }
3716 gcc_assert (use_insn);
2af2dbdc 3717
b00544fa
AM
3718 /* Don't substitute into jumps. indirect_jump_optimize does
3719 this for anything we are prepared to handle. */
3720 if (JUMP_P (use_insn))
3721 continue;
3722
17a938e8
SB
3723 /* Also don't substitute into a conditional trap insn -- it can become
3724 an unconditional trap, and that is a flow control insn. */
3725 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3726 continue;
3727
b00544fa
AM
3728 df_ref def = DF_REG_DEF_CHAIN (regno);
3729 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3730 rtx_insn *def_insn = DF_REF_INSN (def);
3731
3732 /* We may not move instructions that can throw, since that
3733 changes basic block boundaries and we are not prepared to
3734 adjust the CFG to match. */
3735 if (can_throw_internal (def_insn))
3736 continue;
3737
3738 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3739 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3740 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3741 continue;
2af2dbdc 3742
b00544fa
AM
3743 if (asm_noperands (PATTERN (def_insn)) < 0
3744 && validate_replace_rtx (regno_reg_rtx[regno],
3745 *reg_equiv[regno].src_p, use_insn))
3746 {
3747 rtx link;
3748 /* Append the REG_DEAD notes from def_insn. */
3749 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
2af2dbdc 3750 {
b00544fa 3751 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
2af2dbdc 3752 {
b00544fa
AM
3753 *p = XEXP (link, 1);
3754 XEXP (link, 1) = REG_NOTES (use_insn);
3755 REG_NOTES (use_insn) = link;
3756 }
3757 else
3758 p = &XEXP (link, 1);
3759 }
2af2dbdc 3760
b00544fa
AM
3761 remove_death (regno, use_insn);
3762 SET_REG_N_REFS (regno, 0);
3763 REG_FREQ (regno) = 0;
fba12165
BS
3764 df_ref use;
3765 FOR_EACH_INSN_USE (use, def_insn)
3766 {
3767 unsigned int use_regno = DF_REF_REGNO (use);
3768 if (!HARD_REGISTER_NUM_P (use_regno))
3769 reg_equiv[use_regno].replace = 0;
3770 }
3771
b00544fa 3772 delete_insn (def_insn);
2af2dbdc 3773
b00544fa
AM
3774 reg_equiv[regno].init_insns = NULL;
3775 ira_reg_equiv[regno].init_insns = NULL;
3776 bitmap_set_bit (cleared_regs, regno);
3777 }
2af2dbdc 3778
b00544fa
AM
3779 /* Move the initialization of the register to just before
3780 USE_INSN. Update the flow information. */
3781 else if (prev_nondebug_insn (use_insn) != def_insn)
3782 {
3783 rtx_insn *new_insn;
2af2dbdc 3784
b00544fa
AM
3785 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3786 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3787 REG_NOTES (def_insn) = 0;
3788 /* Rescan it to process the notes. */
3789 df_insn_rescan (new_insn);
2af2dbdc 3790
b00544fa
AM
3791 /* Make sure this insn is recognized before reload begins,
3792 otherwise eliminate_regs_in_insn will die. */
3793 INSN_CODE (new_insn) = INSN_CODE (def_insn);
2af2dbdc 3794
b00544fa 3795 delete_insn (def_insn);
2af2dbdc 3796
b00544fa 3797 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2af2dbdc 3798
b00544fa
AM
3799 REG_BASIC_BLOCK (regno) = use_bb->index;
3800 REG_N_CALLS_CROSSED (regno) = 0;
2af2dbdc 3801
b00544fa
AM
3802 if (use_insn == BB_HEAD (use_bb))
3803 BB_HEAD (use_bb) = new_insn;
2af2dbdc 3804
fcc861d9
AM
3805 /* We know regno dies in use_insn, but inside a loop
3806 REG_DEAD notes might be missing when def_insn was in
3807 another basic block. However, when we move def_insn into
3808 this bb we'll definitely get a REG_DEAD note and reload
3809 will see the death. It's possible that update_equiv_regs
3810 set up an equivalence referencing regno for a reg set by
3811 use_insn, when regno was seen as non-local. Now that
3812 regno is local to this block, and dies, such an
3813 equivalence is invalid. */
8972f7e9 3814 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
fcc861d9
AM
3815 {
3816 rtx set = single_set (use_insn);
3817 if (set && REG_P (SET_DEST (set)))
3818 no_equiv (SET_DEST (set), set, NULL);
3819 }
3820
b00544fa
AM
3821 ira_reg_equiv[regno].init_insns
3822 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3823 bitmap_set_bit (cleared_regs, regno);
2af2dbdc
VM
3824 }
3825 }
3826
3827 if (!bitmap_empty_p (cleared_regs))
3a6191b1 3828 {
b00544fa
AM
3829 basic_block bb;
3830
11cd3bed 3831 FOR_EACH_BB_FN (bb, cfun)
3a6191b1 3832 {
3a6191b1
JJ
3833 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3834 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
b00544fa 3835 if (!df_live)
bf744527
SB
3836 continue;
3837 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3838 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3839 }
3840
3841 /* Last pass - adjust debug insns referencing cleared regs. */
36f52e8f 3842 if (MAY_HAVE_DEBUG_BIND_INSNS)
b00544fa 3843 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
36f52e8f 3844 if (DEBUG_BIND_INSN_P (insn))
3a6191b1
JJ
3845 {
3846 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3847 INSN_VAR_LOCATION_LOC (insn)
3848 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3849 adjust_cleared_regs,
3850 (void *) cleared_regs);
3851 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3852 df_insn_rescan (insn);
3853 }
3854 }
2af2dbdc
VM
3855}
3856
6585b2e2
AM
3857/* A pass over indirect jumps, converting simple cases to direct jumps.
3858 Combine does this optimization too, but only within a basic block. */
ba52669f
AM
3859static void
3860indirect_jump_optimize (void)
3861{
3862 basic_block bb;
3863 bool rebuild_p = false;
3864
3865 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3866 {
3867 rtx_insn *insn = BB_END (bb);
97eb24c4
JJ
3868 if (!JUMP_P (insn)
3869 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
ba52669f
AM
3870 continue;
3871
3872 rtx x = pc_set (insn);
3873 if (!x || !REG_P (SET_SRC (x)))
3874 continue;
3875
3876 int regno = REGNO (SET_SRC (x));
3877 if (DF_REG_DEF_COUNT (regno) == 1)
3878 {
6585b2e2
AM
3879 df_ref def = DF_REG_DEF_CHAIN (regno);
3880 if (!DF_REF_IS_ARTIFICIAL (def))
ba52669f 3881 {
6585b2e2 3882 rtx_insn *def_insn = DF_REF_INSN (def);
97eb24c4
JJ
3883 rtx lab = NULL_RTX;
3884 rtx set = single_set (def_insn);
3885 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3886 lab = SET_SRC (set);
3887 else
6585b2e2 3888 {
97eb24c4
JJ
3889 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3890 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3891 lab = XEXP (eqnote, 0);
6585b2e2 3892 }
97eb24c4
JJ
3893 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3894 rebuild_p = true;
ba52669f
AM
3895 }
3896 }
3897 }
2af2dbdc 3898
ba52669f
AM
3899 if (rebuild_p)
3900 {
3901 timevar_push (TV_JUMP);
3902 rebuild_jump_labels (get_insns ());
3903 if (purge_all_dead_edges ())
3904 delete_unreachable_blocks ();
3905 timevar_pop (TV_JUMP);
3906 }
3907}
3908\f
55a2c322
VM
3909/* Set up fields memory, constant, and invariant from init_insns in
3910 the structures of array ira_reg_equiv. */
3911static void
3912setup_reg_equiv (void)
3913{
3914 int i;
0cc97fc5
DM
3915 rtx_insn_list *elem, *prev_elem, *next_elem;
3916 rtx_insn *insn;
3917 rtx set, x;
55a2c322
VM
3918
3919 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3920 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3921 elem;
3922 prev_elem = elem, elem = next_elem)
55a2c322 3923 {
0cc97fc5
DM
3924 next_elem = elem->next ();
3925 insn = elem->insn ();
55a2c322
VM
3926 set = single_set (insn);
3927
3928 /* Init insns can set up equivalence when the reg is a destination or
3929 a source (in this case the destination is memory). */
3930 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3931 {
3932 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3933 {
3934 x = XEXP (x, 0);
3935 if (REG_P (SET_DEST (set))
3936 && REGNO (SET_DEST (set)) == (unsigned int) i
3937 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3938 {
3939 /* This insn reporting the equivalence but
3940 actually not setting it. Remove it from the
3941 list. */
3942 if (prev_elem == NULL)
3943 ira_reg_equiv[i].init_insns = next_elem;
3944 else
3945 XEXP (prev_elem, 1) = next_elem;
3946 elem = prev_elem;
3947 }
3948 }
55a2c322
VM
3949 else if (REG_P (SET_DEST (set))
3950 && REGNO (SET_DEST (set)) == (unsigned int) i)
3951 x = SET_SRC (set);
3952 else
3953 {
3954 gcc_assert (REG_P (SET_SRC (set))
3955 && REGNO (SET_SRC (set)) == (unsigned int) i);
3956 x = SET_DEST (set);
3957 }
3958 if (! function_invariant_p (x)
3959 || ! flag_pic
3960 /* A function invariant is often CONSTANT_P but may
3961 include a register. We promise to only pass
3962 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3963 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3964 {
3965 /* It can happen that a REG_EQUIV note contains a MEM
3966 that is not a legitimate memory operand. As later
3967 stages of reload assume that all addresses found in
3968 the lra_regno_equiv_* arrays were originally
3969 legitimate, we ignore such REG_EQUIV notes. */
3970 if (memory_operand (x, VOIDmode))
3971 {
3972 ira_reg_equiv[i].defined_p = true;
3973 ira_reg_equiv[i].memory = x;
3974 continue;
3975 }
3976 else if (function_invariant_p (x))
3977 {
ef4bddc2 3978 machine_mode mode;
55a2c322
VM
3979
3980 mode = GET_MODE (SET_DEST (set));
3981 if (GET_CODE (x) == PLUS
3982 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3983 /* This is PLUS of frame pointer and a constant,
3984 or fp, or argp. */
3985 ira_reg_equiv[i].invariant = x;
3986 else if (targetm.legitimate_constant_p (mode, x))
3987 ira_reg_equiv[i].constant = x;
3988 else
3989 {
3990 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3991 if (ira_reg_equiv[i].memory == NULL_RTX)
3992 {
3993 ira_reg_equiv[i].defined_p = false;
0cc97fc5 3994 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
3995 break;
3996 }
3997 }
3998 ira_reg_equiv[i].defined_p = true;
3999 continue;
4000 }
4001 }
4002 }
4003 ira_reg_equiv[i].defined_p = false;
0cc97fc5 4004 ira_reg_equiv[i].init_insns = NULL;
55a2c322
VM
4005 break;
4006 }
4007}
4008
4009\f
4010
2af2dbdc
VM
4011/* Print chain C to FILE. */
4012static void
4013print_insn_chain (FILE *file, struct insn_chain *c)
4014{
c3284718 4015 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
2af2dbdc
VM
4016 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4017 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4018}
4019
4020
4021/* Print all reload_insn_chains to FILE. */
4022static void
4023print_insn_chains (FILE *file)
4024{
4025 struct insn_chain *c;
4026 for (c = reload_insn_chain; c ; c = c->next)
4027 print_insn_chain (file, c);
4028}
4029
4030/* Return true if pseudo REGNO should be added to set live_throughout
4031 or dead_or_set of the insn chains for reload consideration. */
4032static bool
4033pseudo_for_reload_consideration_p (int regno)
4034{
4035 /* Consider spilled pseudos too for IRA because they still have a
4036 chance to get hard-registers in the reload when IRA is used. */
b100151b 4037 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
4038}
4039
9dcf1f86
RS
4040/* Return true if we can track the individual bytes of subreg X.
4041 When returning true, set *OUTER_SIZE to the number of bytes in
4042 X itself, *INNER_SIZE to the number of bytes in the inner register
4043 and *START to the offset of the first byte. */
4044static bool
4045get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4046 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4047{
4048 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4049 *outer_size = GET_MODE_SIZE (GET_MODE (x));
4050 *inner_size = GET_MODE_SIZE (GET_MODE (reg));
91914e56 4051 return SUBREG_BYTE (x).is_constant (start);
9dcf1f86
RS
4052}
4053
4054/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4055 a register with SIZE bytes, making the register live if INIT_VALUE. */
2af2dbdc
VM
4056static void
4057init_live_subregs (bool init_value, sbitmap *live_subregs,
9dcf1f86 4058 bitmap live_subregs_used, int allocnum, int size)
2af2dbdc 4059{
2af2dbdc
VM
4060 gcc_assert (size > 0);
4061
4062 /* Been there, done that. */
cee784f5 4063 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
4064 return;
4065
cee784f5 4066 /* Create a new one. */
2af2dbdc
VM
4067 if (live_subregs[allocnum] == NULL)
4068 live_subregs[allocnum] = sbitmap_alloc (size);
4069
4070 /* If the entire reg was live before blasting into subregs, we need
4071 to init all of the subregs to ones else init to 0. */
4072 if (init_value)
f61e445a 4073 bitmap_ones (live_subregs[allocnum]);
b8698a0f 4074 else
f61e445a 4075 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 4076
cee784f5 4077 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
4078}
4079
4080/* Walk the insns of the current function and build reload_insn_chain,
4081 and record register life information. */
4082static void
4083build_insn_chain (void)
4084{
4085 unsigned int i;
4086 struct insn_chain **p = &reload_insn_chain;
4087 basic_block bb;
4088 struct insn_chain *c = NULL;
4089 struct insn_chain *next = NULL;
0e3de1d4
TS
4090 auto_bitmap live_relevant_regs;
4091 auto_bitmap elim_regset;
2af2dbdc
VM
4092 /* live_subregs is a vector used to keep accurate information about
4093 which hardregs are live in multiword pseudos. live_subregs and
4094 live_subregs_used are indexed by pseudo number. The live_subreg
4095 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
4096 element is non zero in live_subregs_used. The sbitmap size of
4097 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
4098 occupy. */
4099 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
0e3de1d4 4100 auto_bitmap live_subregs_used;
2af2dbdc
VM
4101
4102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4103 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4104 bitmap_set_bit (elim_regset, i);
4f42035e 4105 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc
VM
4106 {
4107 bitmap_iterator bi;
070a1983 4108 rtx_insn *insn;
b8698a0f 4109
2af2dbdc 4110 CLEAR_REG_SET (live_relevant_regs);
cee784f5 4111 bitmap_clear (live_subregs_used);
b8698a0f 4112
bf744527 4113 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
4114 {
4115 if (i >= FIRST_PSEUDO_REGISTER)
4116 break;
4117 bitmap_set_bit (live_relevant_regs, i);
4118 }
4119
bf744527 4120 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
4121 FIRST_PSEUDO_REGISTER, i, bi)
4122 {
4123 if (pseudo_for_reload_consideration_p (i))
4124 bitmap_set_bit (live_relevant_regs, i);
4125 }
4126
4127 FOR_BB_INSNS_REVERSE (bb, insn)
4128 {
4129 if (!NOTE_P (insn) && !BARRIER_P (insn))
4130 {
bfac633a
RS
4131 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4132 df_ref def, use;
2af2dbdc
VM
4133
4134 c = new_insn_chain ();
4135 c->next = next;
4136 next = c;
4137 *p = c;
4138 p = &c->prev;
b8698a0f 4139
2af2dbdc
VM
4140 c->insn = insn;
4141 c->block = bb->index;
4142
4b71920a 4143 if (NONDEBUG_INSN_P (insn))
bfac633a 4144 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2af2dbdc 4145 {
2af2dbdc 4146 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 4147
2af2dbdc
VM
4148 /* Ignore may clobbers because these are generated
4149 from calls. However, every other kind of def is
4150 added to dead_or_set. */
4151 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4152 {
4153 if (regno < FIRST_PSEUDO_REGISTER)
4154 {
4155 if (!fixed_regs[regno])
4156 bitmap_set_bit (&c->dead_or_set, regno);
4157 }
4158 else if (pseudo_for_reload_consideration_p (regno))
4159 bitmap_set_bit (&c->dead_or_set, regno);
4160 }
4161
4162 if ((regno < FIRST_PSEUDO_REGISTER
4163 || reg_renumber[regno] >= 0
4164 || ira_conflicts_p)
4165 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4166 {
4167 rtx reg = DF_REF_REG (def);
9dcf1f86
RS
4168 HOST_WIDE_INT outer_size, inner_size, start;
4169
4170 /* We can usually track the liveness of individual
4171 bytes within a subreg. The only exceptions are
4172 subregs wrapped in ZERO_EXTRACTs and subregs whose
4173 size is not known; in those cases we need to be
4174 conservative and treat the definition as a partial
4175 definition of the full register rather than a full
4176 definition of a specific part of the register. */
2af2dbdc 4177 if (GET_CODE (reg) == SUBREG
9dcf1f86
RS
4178 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4179 && get_subreg_tracking_sizes (reg, &outer_size,
4180 &inner_size, &start))
2af2dbdc 4181 {
9dcf1f86 4182 HOST_WIDE_INT last = start + outer_size;
2af2dbdc
VM
4183
4184 init_live_subregs
b8698a0f 4185 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4186 live_subregs, live_subregs_used, regno,
4187 inner_size);
2af2dbdc
VM
4188
4189 if (!DF_REF_FLAGS_IS_SET
4190 (def, DF_REF_STRICT_LOW_PART))
4191 {
4192 /* Expand the range to cover entire words.
4193 Bytes added here are "don't care". */
4194 start
4195 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4196 last = ((last + UNITS_PER_WORD - 1)
4197 / UNITS_PER_WORD * UNITS_PER_WORD);
4198 }
4199
4200 /* Ignore the paradoxical bits. */
cee784f5
SB
4201 if (last > SBITMAP_SIZE (live_subregs[regno]))
4202 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4203
4204 while (start < last)
4205 {
d7c028c0 4206 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
4207 start++;
4208 }
b8698a0f 4209
f61e445a 4210 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 4211 {
cee784f5 4212 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4213 bitmap_clear_bit (live_relevant_regs, regno);
4214 }
4215 else
4216 /* Set live_relevant_regs here because
4217 that bit has to be true to get us to
4218 look at the live_subregs fields. */
4219 bitmap_set_bit (live_relevant_regs, regno);
4220 }
4221 else
4222 {
4223 /* DF_REF_PARTIAL is generated for
4224 subregs, STRICT_LOW_PART, and
4225 ZERO_EXTRACT. We handle the subreg
4226 case above so here we have to keep from
4227 modeling the def as a killing def. */
4228 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4229 {
cee784f5 4230 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 4231 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
4232 }
4233 }
4234 }
4235 }
b8698a0f 4236
2af2dbdc
VM
4237 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4238 bitmap_copy (&c->live_throughout, live_relevant_regs);
4239
4b71920a 4240 if (NONDEBUG_INSN_P (insn))
bfac633a 4241 FOR_EACH_INSN_INFO_USE (use, insn_info)
2af2dbdc 4242 {
2af2dbdc
VM
4243 unsigned int regno = DF_REF_REGNO (use);
4244 rtx reg = DF_REF_REG (use);
b8698a0f 4245
2af2dbdc
VM
4246 /* DF_REF_READ_WRITE on a use means that this use
4247 is fabricated from a def that is a partial set
4248 to a multiword reg. Here, we only model the
4249 subreg case that is not wrapped in ZERO_EXTRACT
4250 precisely so we do not need to look at the
2b9c63a2 4251 fabricated use. */
b8698a0f
L
4252 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4253 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
4254 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4255 continue;
b8698a0f 4256
2af2dbdc
VM
4257 /* Add the last use of each var to dead_or_set. */
4258 if (!bitmap_bit_p (live_relevant_regs, regno))
4259 {
4260 if (regno < FIRST_PSEUDO_REGISTER)
4261 {
4262 if (!fixed_regs[regno])
4263 bitmap_set_bit (&c->dead_or_set, regno);
4264 }
4265 else if (pseudo_for_reload_consideration_p (regno))
4266 bitmap_set_bit (&c->dead_or_set, regno);
4267 }
b8698a0f 4268
2af2dbdc
VM
4269 if (regno < FIRST_PSEUDO_REGISTER
4270 || pseudo_for_reload_consideration_p (regno))
4271 {
9dcf1f86 4272 HOST_WIDE_INT outer_size, inner_size, start;
2af2dbdc
VM
4273 if (GET_CODE (reg) == SUBREG
4274 && !DF_REF_FLAGS_IS_SET (use,
4275 DF_REF_SIGN_EXTRACT
9dcf1f86
RS
4276 | DF_REF_ZERO_EXTRACT)
4277 && get_subreg_tracking_sizes (reg, &outer_size,
4278 &inner_size, &start))
2af2dbdc 4279 {
9dcf1f86 4280 HOST_WIDE_INT last = start + outer_size;
b8698a0f 4281
2af2dbdc 4282 init_live_subregs
b8698a0f 4283 (bitmap_bit_p (live_relevant_regs, regno),
9dcf1f86
RS
4284 live_subregs, live_subregs_used, regno,
4285 inner_size);
b8698a0f 4286
2af2dbdc 4287 /* Ignore the paradoxical bits. */
cee784f5
SB
4288 if (last > SBITMAP_SIZE (live_subregs[regno]))
4289 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4290
4291 while (start < last)
4292 {
d7c028c0 4293 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
4294 start++;
4295 }
4296 }
4297 else
4298 /* Resetting the live_subregs_used is
4299 effectively saying do not use the subregs
4300 because we are reading the whole
4301 pseudo. */
cee784f5 4302 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4303 bitmap_set_bit (live_relevant_regs, regno);
4304 }
4305 }
4306 }
4307 }
4308
4309 /* FIXME!! The following code is a disaster. Reload needs to see the
4310 labels and jump tables that are just hanging out in between
4311 the basic blocks. See pr33676. */
4312 insn = BB_HEAD (bb);
b8698a0f 4313
2af2dbdc 4314 /* Skip over the barriers and cruft. */
b8698a0f 4315 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
4316 || BLOCK_FOR_INSN (insn) == bb))
4317 insn = PREV_INSN (insn);
b8698a0f 4318
2af2dbdc
VM
4319 /* While we add anything except barriers and notes, the focus is
4320 to get the labels and jump tables into the
4321 reload_insn_chain. */
4322 while (insn)
4323 {
4324 if (!NOTE_P (insn) && !BARRIER_P (insn))
4325 {
4326 if (BLOCK_FOR_INSN (insn))
4327 break;
b8698a0f 4328
2af2dbdc
VM
4329 c = new_insn_chain ();
4330 c->next = next;
4331 next = c;
4332 *p = c;
4333 p = &c->prev;
b8698a0f 4334
2af2dbdc
VM
4335 /* The block makes no sense here, but it is what the old
4336 code did. */
4337 c->block = bb->index;
4338 c->insn = insn;
4339 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 4340 }
2af2dbdc
VM
4341 insn = PREV_INSN (insn);
4342 }
4343 }
4344
2af2dbdc
VM
4345 reload_insn_chain = c;
4346 *p = NULL;
4347
cee784f5
SB
4348 for (i = 0; i < (unsigned int) max_regno; i++)
4349 if (live_subregs[i] != NULL)
4350 sbitmap_free (live_subregs[i]);
2af2dbdc 4351 free (live_subregs);
2af2dbdc
VM
4352
4353 if (dump_file)
4354 print_insn_chains (dump_file);
4355}
acf41a74
BS
4356 \f
4357/* Examine the rtx found in *LOC, which is read or written to as determined
4358 by TYPE. Return false if we find a reason why an insn containing this
4359 rtx should not be moved (such as accesses to non-constant memory), true
4360 otherwise. */
4361static bool
4362rtx_moveable_p (rtx *loc, enum op_type type)
4363{
4364 const char *fmt;
4365 rtx x = *loc;
4366 enum rtx_code code = GET_CODE (x);
4367 int i, j;
4368
4369 code = GET_CODE (x);
4370 switch (code)
4371 {
4372 case CONST:
d8116890 4373 CASE_CONST_ANY:
acf41a74
BS
4374 case SYMBOL_REF:
4375 case LABEL_REF:
4376 return true;
4377
4378 case PC:
4379 return type == OP_IN;
4380
4381 case CC0:
4382 return false;
4383
4384 case REG:
4385 if (x == frame_pointer_rtx)
4386 return true;
4387 if (HARD_REGISTER_P (x))
4388 return false;
4389
4390 return true;
4391
4392 case MEM:
4393 if (type == OP_IN && MEM_READONLY_P (x))
4394 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4395 return false;
4396
4397 case SET:
4398 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4399 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4400
4401 case STRICT_LOW_PART:
4402 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4403
4404 case ZERO_EXTRACT:
4405 case SIGN_EXTRACT:
4406 return (rtx_moveable_p (&XEXP (x, 0), type)
4407 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4408 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4409
4410 case CLOBBER:
4411 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4412
d8c16744 4413 case UNSPEC_VOLATILE:
026c3cfd 4414 /* It is a bad idea to consider insns with such rtl
d8c16744
VM
4415 as moveable ones. The insn scheduler also considers them as barrier
4416 for a reason. */
4417 return false;
4418
9d0d0a5a
SB
4419 case ASM_OPERANDS:
4420 /* The same is true for volatile asm: it has unknown side effects, it
4421 cannot be moved at will. */
4422 if (MEM_VOLATILE_P (x))
4423 return false;
4424
acf41a74
BS
4425 default:
4426 break;
4427 }
4428
4429 fmt = GET_RTX_FORMAT (code);
4430 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4431 {
4432 if (fmt[i] == 'e')
4433 {
4434 if (!rtx_moveable_p (&XEXP (x, i), type))
4435 return false;
4436 }
4437 else if (fmt[i] == 'E')
4438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4439 {
4440 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4441 return false;
4442 }
4443 }
4444 return true;
4445}
4446
4447/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4448 to give dominance relationships between two insns I1 and I2. */
4449static bool
4450insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4451{
4452 basic_block bb1 = BLOCK_FOR_INSN (i1);
4453 basic_block bb2 = BLOCK_FOR_INSN (i2);
4454
4455 if (bb1 == bb2)
4456 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4457 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4458}
4459
4460/* Record the range of register numbers added by find_moveable_pseudos. */
4461int first_moveable_pseudo, last_moveable_pseudo;
4462
4463/* These two vectors hold data for every register added by
4464 find_movable_pseudos, with index 0 holding data for the
4465 first_moveable_pseudo. */
4466/* The original home register. */
9771b263 4467static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
4468
4469/* Look for instances where we have an instruction that is known to increase
4470 register pressure, and whose result is not used immediately. If it is
4471 possible to move the instruction downwards to just before its first use,
4472 split its lifetime into two ranges. We create a new pseudo to compute the
4473 value, and emit a move instruction just before the first use. If, after
4474 register allocation, the new pseudo remains unallocated, the function
4475 move_unallocated_pseudos then deletes the move instruction and places
4476 the computation just before the first use.
4477
4478 Such a move is safe and profitable if all the input registers remain live
4479 and unchanged between the original computation and its first use. In such
4480 a situation, the computation is known to increase register pressure, and
4481 moving it is known to at least not worsen it.
4482
4483 We restrict moves to only those cases where a register remains unallocated,
4484 in order to avoid interfering too much with the instruction schedule. As
4485 an exception, we may move insns which only modify their input register
4486 (typically induction variables), as this increases the freedom for our
4487 intended transformation, and does not limit the second instruction
4488 scheduler pass. */
4489
4490static void
4491find_moveable_pseudos (void)
4492{
4493 unsigned i;
4494 int max_regs = max_reg_num ();
4495 int max_uid = get_max_uid ();
4496 basic_block bb;
4497 int *uid_luid = XNEWVEC (int, max_uid);
070a1983 4498 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
acf41a74 4499 /* A set of registers which are live but not modified throughout a block. */
8b1c6fd7
DM
4500 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4501 last_basic_block_for_fn (cfun));
acf41a74 4502 /* A set of registers which only exist in a given basic block. */
8b1c6fd7
DM
4503 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4504 last_basic_block_for_fn (cfun));
acf41a74
BS
4505 /* A set of registers which are set once, in an instruction that can be
4506 moved freely downwards, but are otherwise transparent to a block. */
8b1c6fd7
DM
4507 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4508 last_basic_block_for_fn (cfun));
8f9b31f7 4509 auto_bitmap live, used, set, interesting, unusable_as_input;
acf41a74 4510 bitmap_iterator bi;
acf41a74
BS
4511
4512 first_moveable_pseudo = max_regs;
9771b263
DN
4513 pseudo_replaced_reg.release ();
4514 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74 4515
2d73cc45
MJ
4516 df_analyze ();
4517 calculate_dominance_info (CDI_DOMINATORS);
4518
acf41a74 4519 i = 0;
11cd3bed 4520 FOR_EACH_BB_FN (bb, cfun)
acf41a74 4521 {
070a1983 4522 rtx_insn *insn;
acf41a74
BS
4523 bitmap transp = bb_transp_live + bb->index;
4524 bitmap moveable = bb_moveable_reg_sets + bb->index;
4525 bitmap local = bb_local + bb->index;
4526
4527 bitmap_initialize (local, 0);
4528 bitmap_initialize (transp, 0);
4529 bitmap_initialize (moveable, 0);
8f9b31f7
TS
4530 bitmap_copy (live, df_get_live_out (bb));
4531 bitmap_and_into (live, df_get_live_in (bb));
4532 bitmap_copy (transp, live);
acf41a74 4533 bitmap_clear (moveable);
8f9b31f7
TS
4534 bitmap_clear (live);
4535 bitmap_clear (used);
4536 bitmap_clear (set);
acf41a74
BS
4537 FOR_BB_INSNS (bb, insn)
4538 if (NONDEBUG_INSN_P (insn))
4539 {
bfac633a 4540 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
bfac633a 4541 df_ref def, use;
acf41a74
BS
4542
4543 uid_luid[INSN_UID (insn)] = i++;
4544
74e59b6c
RS
4545 def = df_single_def (insn_info);
4546 use = df_single_use (insn_info);
4547 if (use
4548 && def
4549 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
8f9b31f7 4550 && !bitmap_bit_p (set, DF_REF_REGNO (use))
acf41a74
BS
4551 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4552 {
74e59b6c 4553 unsigned regno = DF_REF_REGNO (use);
acf41a74 4554 bitmap_set_bit (moveable, regno);
8f9b31f7
TS
4555 bitmap_set_bit (set, regno);
4556 bitmap_set_bit (used, regno);
acf41a74
BS
4557 bitmap_clear_bit (transp, regno);
4558 continue;
4559 }
bfac633a 4560 FOR_EACH_INSN_INFO_USE (use, insn_info)
acf41a74 4561 {
bfac633a 4562 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4563 bitmap_set_bit (used, regno);
acf41a74
BS
4564 if (bitmap_clear_bit (moveable, regno))
4565 bitmap_clear_bit (transp, regno);
acf41a74
BS
4566 }
4567
bfac633a 4568 FOR_EACH_INSN_INFO_DEF (def, insn_info)
acf41a74 4569 {
bfac633a 4570 unsigned regno = DF_REF_REGNO (def);
8f9b31f7 4571 bitmap_set_bit (set, regno);
acf41a74
BS
4572 bitmap_clear_bit (transp, regno);
4573 bitmap_clear_bit (moveable, regno);
acf41a74
BS
4574 }
4575 }
4576 }
4577
11cd3bed 4578 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4579 {
4580 bitmap local = bb_local + bb->index;
070a1983 4581 rtx_insn *insn;
acf41a74
BS
4582
4583 FOR_BB_INSNS (bb, insn)
4584 if (NONDEBUG_INSN_P (insn))
4585 {
74e59b6c 4586 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
070a1983
DM
4587 rtx_insn *def_insn;
4588 rtx closest_use, note;
74e59b6c 4589 df_ref def, use;
acf41a74
BS
4590 unsigned regno;
4591 bool all_dominated, all_local;
ef4bddc2 4592 machine_mode mode;
acf41a74 4593
74e59b6c 4594 def = df_single_def (insn_info);
acf41a74 4595 /* There must be exactly one def in this insn. */
74e59b6c 4596 if (!def || !single_set (insn))
acf41a74
BS
4597 continue;
4598 /* This must be the only definition of the reg. We also limit
4599 which modes we deal with so that we can assume we can generate
4600 move instructions. */
4601 regno = DF_REF_REGNO (def);
4602 mode = GET_MODE (DF_REF_REG (def));
4603 if (DF_REG_DEF_COUNT (regno) != 1
4604 || !DF_REF_INSN_INFO (def)
4605 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4606 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4607 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4608 continue;
4609 def_insn = DF_REF_INSN (def);
4610
4611 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4612 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4613 break;
4614
4615 if (note)
4616 {
4617 if (dump_file)
4618 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4619 regno);
8f9b31f7 4620 bitmap_set_bit (unusable_as_input, regno);
acf41a74
BS
4621 continue;
4622 }
4623
4624 use = DF_REG_USE_CHAIN (regno);
4625 all_dominated = true;
4626 all_local = true;
4627 closest_use = NULL_RTX;
4628 for (; use; use = DF_REF_NEXT_REG (use))
4629 {
070a1983 4630 rtx_insn *insn;
acf41a74
BS
4631 if (!DF_REF_INSN_INFO (use))
4632 {
4633 all_dominated = false;
4634 all_local = false;
4635 break;
4636 }
4637 insn = DF_REF_INSN (use);
4638 if (DEBUG_INSN_P (insn))
4639 continue;
4640 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4641 all_local = false;
4642 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4643 all_dominated = false;
4644 if (closest_use != insn && closest_use != const0_rtx)
4645 {
4646 if (closest_use == NULL_RTX)
4647 closest_use = insn;
4648 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4649 closest_use = insn;
4650 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4651 closest_use = const0_rtx;
4652 }
4653 }
4654 if (!all_dominated)
4655 {
4656 if (dump_file)
4657 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4658 regno);
4659 continue;
4660 }
4661 if (all_local)
4662 bitmap_set_bit (local, regno);
4663 if (closest_use == const0_rtx || closest_use == NULL
4664 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4665 {
4666 if (dump_file)
4667 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4668 closest_use == const0_rtx || closest_use == NULL
4669 ? " (no unique first use)" : "");
4670 continue;
4671 }
058eb3b0 4672 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
acf41a74
BS
4673 {
4674 if (dump_file)
4675 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4676 regno);
4677 continue;
4678 }
058eb3b0 4679
8f9b31f7 4680 bitmap_set_bit (interesting, regno);
070a1983
DM
4681 /* If we get here, we know closest_use is a non-NULL insn
4682 (as opposed to const_0_rtx). */
4683 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
acf41a74
BS
4684
4685 if (dump_file && (all_local || all_dominated))
4686 {
4687 fprintf (dump_file, "Reg %u:", regno);
4688 if (all_local)
4689 fprintf (dump_file, " local to bb %d", bb->index);
4690 if (all_dominated)
4691 fprintf (dump_file, " def dominates all uses");
4692 if (closest_use != const0_rtx)
4693 fprintf (dump_file, " has unique first use");
4694 fputs ("\n", dump_file);
4695 }
4696 }
4697 }
4698
8f9b31f7 4699 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
acf41a74
BS
4700 {
4701 df_ref def = DF_REG_DEF_CHAIN (i);
070a1983 4702 rtx_insn *def_insn = DF_REF_INSN (def);
acf41a74
BS
4703 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4704 bitmap def_bb_local = bb_local + def_block->index;
4705 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4706 bitmap def_bb_transp = bb_transp_live + def_block->index;
4707 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
070a1983 4708 rtx_insn *use_insn = closest_uses[i];
bfac633a 4709 df_ref use;
acf41a74
BS
4710 bool all_ok = true;
4711 bool all_transp = true;
4712
4713 if (!REG_P (DF_REF_REG (def)))
4714 continue;
4715
4716 if (!local_to_bb_p)
4717 {
4718 if (dump_file)
4719 fprintf (dump_file, "Reg %u not local to one basic block\n",
4720 i);
4721 continue;
4722 }
4723 if (reg_equiv_init (i) != NULL_RTX)
4724 {
4725 if (dump_file)
4726 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4727 i);
4728 continue;
4729 }
4730 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4731 {
4732 if (dump_file)
4733 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4734 INSN_UID (def_insn), i);
4735 continue;
4736 }
4737 if (dump_file)
4738 fprintf (dump_file, "Examining insn %d, def for %d\n",
4739 INSN_UID (def_insn), i);
bfac633a 4740 FOR_EACH_INSN_USE (use, def_insn)
acf41a74 4741 {
acf41a74 4742 unsigned regno = DF_REF_REGNO (use);
8f9b31f7 4743 if (bitmap_bit_p (unusable_as_input, regno))
acf41a74
BS
4744 {
4745 all_ok = false;
4746 if (dump_file)
4747 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4748 break;
4749 }
4750 if (!bitmap_bit_p (def_bb_transp, regno))
4751 {
4752 if (bitmap_bit_p (def_bb_moveable, regno)
4753 && !control_flow_insn_p (use_insn)
618f4073 4754 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
acf41a74
BS
4755 {
4756 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4757 {
070a1983 4758 rtx_insn *x = NEXT_INSN (def_insn);
acf41a74
BS
4759 while (!modified_in_p (DF_REF_REG (use), x))
4760 {
4761 gcc_assert (x != use_insn);
4762 x = NEXT_INSN (x);
4763 }
4764 if (dump_file)
4765 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4766 regno, INSN_UID (x));
4767 emit_insn_after (PATTERN (x), use_insn);
4768 set_insn_deleted (x);
4769 }
4770 else
4771 {
4772 if (dump_file)
4773 fprintf (dump_file, " input reg %u modified between def and use\n",
4774 regno);
4775 all_transp = false;
4776 }
4777 }
4778 else
4779 all_transp = false;
4780 }
acf41a74
BS
4781 }
4782 if (!all_ok)
4783 continue;
4784 if (!dbg_cnt (ira_move))
4785 break;
4786 if (dump_file)
4787 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4788
4789 if (all_transp)
4790 {
4791 rtx def_reg = DF_REF_REG (def);
4792 rtx newreg = ira_create_new_reg (def_reg);
9e3de74c 4793 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
acf41a74
BS
4794 {
4795 unsigned nregno = REGNO (newreg);
a36b2706 4796 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4797 nregno -= max_regs;
9771b263 4798 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4799 }
4800 }
4801 }
4802
11cd3bed 4803 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4804 {
4805 bitmap_clear (bb_local + bb->index);
4806 bitmap_clear (bb_transp_live + bb->index);
4807 bitmap_clear (bb_moveable_reg_sets + bb->index);
4808 }
acf41a74
BS
4809 free (uid_luid);
4810 free (closest_uses);
4811 free (bb_local);
4812 free (bb_transp_live);
4813 free (bb_moveable_reg_sets);
4814
4815 last_moveable_pseudo = max_reg_num ();
2d73cc45
MJ
4816
4817 fix_reg_equiv_init ();
4818 expand_reg_info ();
4819 regstat_free_n_sets_and_refs ();
4820 regstat_free_ri ();
4821 regstat_init_n_sets_and_refs ();
4822 regstat_compute_ri ();
4823 free_dominance_info (CDI_DOMINATORS);
732dad8f 4824}
acf41a74 4825
3e749749
MJ
4826/* If SET pattern SET is an assignment from a hard register to a pseudo which
4827 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4828 the destination. Otherwise return NULL. */
732dad8f
MJ
4829
4830static rtx
3e749749 4831interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
732dad8f 4832{
732dad8f
MJ
4833 rtx src = SET_SRC (set);
4834 rtx dest = SET_DEST (set);
4835 if (!REG_P (src) || !HARD_REGISTER_P (src)
4836 || !REG_P (dest) || HARD_REGISTER_P (dest)
4837 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4838 return NULL;
4839 return dest;
4840}
4841
df3e3493 4842/* If insn is interesting for parameter range-splitting shrink-wrapping
3e749749
MJ
4843 preparation, i.e. it is a single set from a hard register to a pseudo, which
4844 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4845 parallel statement with only one such statement, return the destination.
4846 Otherwise return NULL. */
4847
4848static rtx
070a1983 4849interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
3e749749
MJ
4850{
4851 if (!INSN_P (insn))
4852 return NULL;
4853 rtx pat = PATTERN (insn);
4854 if (GET_CODE (pat) == SET)
4855 return interesting_dest_for_shprep_1 (pat, call_dom);
4856
4857 if (GET_CODE (pat) != PARALLEL)
4858 return NULL;
4859 rtx ret = NULL;
4860 for (int i = 0; i < XVECLEN (pat, 0); i++)
4861 {
4862 rtx sub = XVECEXP (pat, 0, i);
4863 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4864 continue;
4865 if (GET_CODE (sub) != SET
4866 || side_effects_p (sub))
4867 return NULL;
4868 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4869 if (dest && ret)
4870 return NULL;
4871 if (dest)
4872 ret = dest;
4873 }
4874 return ret;
4875}
4876
732dad8f
MJ
4877/* Split live ranges of pseudos that are loaded from hard registers in the
4878 first BB in a BB that dominates all non-sibling call if such a BB can be
4879 found and is not in a loop. Return true if the function has made any
4880 changes. */
4881
4882static bool
4883split_live_ranges_for_shrink_wrap (void)
4884{
4885 basic_block bb, call_dom = NULL;
fefa31b5 4886 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
070a1983 4887 rtx_insn *insn, *last_interesting_insn = NULL;
8f9b31f7 4888 auto_bitmap need_new, reachable;
732dad8f
MJ
4889 vec<basic_block> queue;
4890
a5e022d5 4891 if (!SHRINK_WRAPPING_ENABLED)
732dad8f
MJ
4892 return false;
4893
0cae8d31 4894 queue.create (n_basic_blocks_for_fn (cfun));
732dad8f 4895
11cd3bed 4896 FOR_EACH_BB_FN (bb, cfun)
732dad8f
MJ
4897 FOR_BB_INSNS (bb, insn)
4898 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4899 {
4900 if (bb == first)
4901 {
732dad8f
MJ
4902 queue.release ();
4903 return false;
4904 }
4905
8f9b31f7
TS
4906 bitmap_set_bit (need_new, bb->index);
4907 bitmap_set_bit (reachable, bb->index);
732dad8f
MJ
4908 queue.quick_push (bb);
4909 break;
4910 }
4911
4912 if (queue.is_empty ())
4913 {
732dad8f
MJ
4914 queue.release ();
4915 return false;
4916 }
4917
4918 while (!queue.is_empty ())
4919 {
4920 edge e;
4921 edge_iterator ei;
4922
4923 bb = queue.pop ();
4924 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 4925 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
8f9b31f7 4926 && bitmap_set_bit (reachable, e->dest->index))
732dad8f
MJ
4927 queue.quick_push (e->dest);
4928 }
4929 queue.release ();
4930
4931 FOR_BB_INSNS (first, insn)
4932 {
4933 rtx dest = interesting_dest_for_shprep (insn, NULL);
4934 if (!dest)
4935 continue;
4936
4937 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
8f9b31f7 4938 return false;
732dad8f
MJ
4939
4940 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4941 use;
4942 use = DF_REF_NEXT_REG (use))
4943 {
732dad8f 4944 int ubbi = DF_REF_BB (use)->index;
8f9b31f7
TS
4945 if (bitmap_bit_p (reachable, ubbi))
4946 bitmap_set_bit (need_new, ubbi);
732dad8f
MJ
4947 }
4948 last_interesting_insn = insn;
4949 }
4950
732dad8f 4951 if (!last_interesting_insn)
8f9b31f7 4952 return false;
732dad8f 4953
8f9b31f7 4954 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
732dad8f
MJ
4955 if (call_dom == first)
4956 return false;
4957
4958 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4959 while (bb_loop_depth (call_dom) > 0)
4960 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4961 loop_optimizer_finalize ();
4962
4963 if (call_dom == first)
4964 return false;
4965
4966 calculate_dominance_info (CDI_POST_DOMINATORS);
4967 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4968 {
4969 free_dominance_info (CDI_POST_DOMINATORS);
4970 return false;
4971 }
4972 free_dominance_info (CDI_POST_DOMINATORS);
4973
4974 if (dump_file)
4975 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4976 call_dom->index);
4977
4978 bool ret = false;
4979 FOR_BB_INSNS (first, insn)
4980 {
4981 rtx dest = interesting_dest_for_shprep (insn, call_dom);
bcb21886 4982 if (!dest || dest == pic_offset_table_rtx)
732dad8f
MJ
4983 continue;
4984
fd1ca3fe 4985 bool need_newreg = false;
732dad8f 4986 df_ref use, next;
9e3de74c 4987 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
732dad8f 4988 {
070a1983 4989 rtx_insn *uin = DF_REF_INSN (use);
732dad8f
MJ
4990 next = DF_REF_NEXT_REG (use);
4991
fd1ca3fe
SB
4992 if (DEBUG_INSN_P (uin))
4993 continue;
4994
732dad8f
MJ
4995 basic_block ubb = BLOCK_FOR_INSN (uin);
4996 if (ubb == call_dom
4997 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4998 {
fd1ca3fe
SB
4999 need_newreg = true;
5000 break;
732dad8f
MJ
5001 }
5002 }
5003
fd1ca3fe 5004 if (need_newreg)
732dad8f 5005 {
fd1ca3fe
SB
5006 rtx newreg = ira_create_new_reg (dest);
5007
5008 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5009 {
5010 rtx_insn *uin = DF_REF_INSN (use);
5011 next = DF_REF_NEXT_REG (use);
5012
5013 basic_block ubb = BLOCK_FOR_INSN (uin);
5014 if (ubb == call_dom
5015 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5016 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5017 }
5018
1476d1bd 5019 rtx_insn *new_move = gen_move_insn (newreg, dest);
732dad8f
MJ
5020 emit_insn_after (new_move, bb_note (call_dom));
5021 if (dump_file)
5022 {
5023 fprintf (dump_file, "Split live-range of register ");
5024 print_rtl_single (dump_file, dest);
5025 }
5026 ret = true;
5027 }
5028
5029 if (insn == last_interesting_insn)
5030 break;
5031 }
5032 apply_change_group ();
5033 return ret;
acf41a74 5034}
8ff49c29 5035
acf41a74
BS
5036/* Perform the second half of the transformation started in
5037 find_moveable_pseudos. We look for instances where the newly introduced
5038 pseudo remains unallocated, and remove it by moving the definition to
5039 just before its use, replacing the move instruction generated by
5040 find_moveable_pseudos. */
5041static void
5042move_unallocated_pseudos (void)
5043{
5044 int i;
5045 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5046 if (reg_renumber[i] < 0)
5047 {
acf41a74 5048 int idx = i - first_moveable_pseudo;
9771b263 5049 rtx other_reg = pseudo_replaced_reg[idx];
070a1983 5050 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
a36b2706
RS
5051 /* The use must follow all definitions of OTHER_REG, so we can
5052 insert the new definition immediately after any of them. */
5053 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
070a1983
DM
5054 rtx_insn *move_insn = DF_REF_INSN (other_def);
5055 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 5056 rtx set;
acf41a74
BS
5057 int success;
5058
5059 if (dump_file)
5060 fprintf (dump_file, "moving def of %d (insn %d now) ",
5061 REGNO (other_reg), INSN_UID (def_insn));
5062
a36b2706
RS
5063 delete_insn (move_insn);
5064 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5065 delete_insn (DF_REF_INSN (other_def));
5066 delete_insn (def_insn);
5067
acf41a74
BS
5068 set = single_set (newinsn);
5069 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5070 gcc_assert (success);
5071 if (dump_file)
5072 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5073 INSN_UID (newinsn), i);
acf41a74
BS
5074 SET_REG_N_REFS (i, 0);
5075 }
5076}
f2034d06 5077\f
6399c0ab
SB
5078/* If the backend knows where to allocate pseudos for hard
5079 register initial values, register these allocations now. */
a932fb89 5080static void
6399c0ab
SB
5081allocate_initial_values (void)
5082{
5083 if (targetm.allocate_initial_value)
5084 {
5085 rtx hreg, preg, x;
5086 int i, regno;
5087
5088 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5089 {
5090 if (! initial_value_entry (i, &hreg, &preg))
5091 break;
5092
5093 x = targetm.allocate_initial_value (hreg);
5094 regno = REGNO (preg);
5095 if (x && REG_N_SETS (regno) <= 1)
5096 {
5097 if (MEM_P (x))
5098 reg_equiv_memory_loc (regno) = x;
5099 else
5100 {
5101 basic_block bb;
5102 int new_regno;
5103
5104 gcc_assert (REG_P (x));
5105 new_regno = REGNO (x);
5106 reg_renumber[regno] = new_regno;
5107 /* Poke the regno right into regno_reg_rtx so that even
5108 fixed regs are accepted. */
5109 SET_REGNO (preg, new_regno);
5110 /* Update global register liveness information. */
11cd3bed 5111 FOR_EACH_BB_FN (bb, cfun)
6399c0ab 5112 {
c3284718 5113 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
6399c0ab 5114 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
c3284718 5115 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
6399c0ab
SB
5116 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5117 }
5118 }
5119 }
5120 }
2af2dbdc 5121
6399c0ab
SB
5122 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5123 &hreg, &preg));
5124 }
5125}
5126\f
55a2c322
VM
5127
5128/* True when we use LRA instead of reload pass for the current
5129 function. */
5130bool ira_use_lra_p;
5131
311aab06
VM
5132/* True if we have allocno conflicts. It is false for non-optimized
5133 mode or when the conflict table is too big. */
5134bool ira_conflicts_p;
5135
ae2b9cb6
BS
5136/* Saved between IRA and reload. */
5137static int saved_flag_ira_share_spill_slots;
5138
058e97ec
VM
5139/* This is the main entry of IRA. */
5140static void
5141ira (FILE *f)
5142{
058e97ec 5143 bool loops_p;
70cc3288 5144 int ira_max_point_before_emit;
55a2c322
VM
5145 bool saved_flag_caller_saves = flag_caller_saves;
5146 enum ira_region saved_flag_ira_region = flag_ira_region;
5147
62869a1c
RB
5148 clear_bb_flags ();
5149
0064f49e
WD
5150 /* Determine if the current function is a leaf before running IRA
5151 since this can impact optimizations done by the prologue and
5152 epilogue thus changing register elimination offsets.
5153 Other target callbacks may use crtl->is_leaf too, including
5154 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5155 crtl->is_leaf = leaf_function_p ();
5156
bcb21886
KY
5157 /* Perform target specific PIC register initialization. */
5158 targetm.init_pic_reg ();
5159
55a2c322
VM
5160 ira_conflicts_p = optimize > 0;
5161
55a2c322
VM
5162 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5163 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5164 use simplified and faster algorithms in LRA. */
5165 lra_simple_p
8b1c6fd7
DM
5166 = (ira_use_lra_p
5167 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
55a2c322
VM
5168 if (lra_simple_p)
5169 {
5170 /* It permits to skip live range splitting in LRA. */
5171 flag_caller_saves = false;
5172 /* There is no sense to do regional allocation when we use
5173 simplified LRA. */
5174 flag_ira_region = IRA_REGION_ONE;
5175 ira_conflicts_p = false;
5176 }
5177
5178#ifndef IRA_NO_OBSTACK
5179 gcc_obstack_init (&ira_obstack);
5180#endif
5181 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 5182
001010df
KC
5183 /* LRA uses its own infrastructure to handle caller save registers. */
5184 if (flag_caller_saves && !ira_use_lra_p)
dc12b70e
JZ
5185 init_caller_save ();
5186
058e97ec
VM
5187 if (flag_ira_verbose < 10)
5188 {
5189 internal_flag_ira_verbose = flag_ira_verbose;
5190 ira_dump_file = f;
5191 }
5192 else
5193 {
5194 internal_flag_ira_verbose = flag_ira_verbose - 10;
5195 ira_dump_file = stderr;
5196 }
5197
5198 setup_prohibited_mode_move_regs ();
3b6d1699 5199 decrease_live_ranges_number ();
058e97ec 5200 df_note_add_problem ();
5d517141
SB
5201
5202 /* DF_LIVE can't be used in the register allocator, too many other
5203 parts of the compiler depend on using the "classic" liveness
5204 interpretation of the DF_LR problem. See PR38711.
5205 Remove the problem, so that we don't spend time updating it in
5206 any of the df_analyze() calls during IRA/LRA. */
5207 if (optimize > 1)
5208 df_remove_problem (df_live);
5209 gcc_checking_assert (df_live == NULL);
5210
b2b29377
MM
5211 if (flag_checking)
5212 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5213
058e97ec 5214 df_analyze ();
3b6d1699 5215
2d73cc45
MJ
5216 init_reg_equiv ();
5217 if (ira_conflicts_p)
5218 {
5219 calculate_dominance_info (CDI_DOMINATORS);
5220
5221 if (split_live_ranges_for_shrink_wrap ())
5222 df_analyze ();
5223
5224 free_dominance_info (CDI_DOMINATORS);
5225 }
5226
058e97ec 5227 df_clear_flags (DF_NO_INSN_RESCAN);
2d73cc45 5228
ba52669f
AM
5229 indirect_jump_optimize ();
5230 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5231 df_analyze ();
5232
058e97ec
VM
5233 regstat_init_n_sets_and_refs ();
5234 regstat_compute_ri ();
5235
5236 /* If we are not optimizing, then this is the only place before
5237 register allocation where dataflow is done. And that is needed
5238 to generate these warnings. */
5239 if (warn_clobbered)
5240 generate_setjmp_warnings ();
5241
1833192f 5242 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 5243 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 5244
42ae0d7f 5245 init_alias_analysis ();
c38c11a1 5246 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
10e04446 5247 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
ba52669f 5248 update_equiv_regs ();
10e04446
AM
5249
5250 /* Don't move insns if live range shrinkage or register
5251 pressure-sensitive scheduling were done because it will not
5252 improve allocation but likely worsen insn scheduling. */
5253 if (optimize
5254 && !flag_live_range_shrinkage
5255 && !(flag_sched_pressure && flag_schedule_insns))
5256 combine_and_move_insns ();
5257
5258 /* Gather additional equivalences with memory. */
42ae0d7f 5259 if (optimize)
10e04446
AM
5260 add_store_equivs ();
5261
c38c11a1 5262 loop_optimizer_finalize ();
f3c82ff9 5263 free_dominance_info (CDI_DOMINATORS);
42ae0d7f
AM
5264 end_alias_analysis ();
5265 free (reg_equiv);
5266
55a2c322 5267 setup_reg_equiv ();
10e04446 5268 grow_reg_equivs ();
55a2c322 5269 setup_reg_equiv_init ();
058e97ec 5270
fb99ee9b 5271 allocated_reg_info_size = max_reg_num ();
e8d7e3e7
VM
5272
5273 /* It is not worth to do such improvement when we use a simple
5274 allocation because of -O0 usage or because the function is too
5275 big. */
5276 if (ira_conflicts_p)
2d73cc45 5277 find_moveable_pseudos ();
acf41a74 5278
fb99ee9b 5279 max_regno_before_ira = max_reg_num ();
8d49e7ef 5280 ira_setup_eliminable_regset ();
b8698a0f 5281
058e97ec
VM
5282 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5283 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5284 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 5285
058e97ec 5286 ira_assert (current_loops == NULL);
2608d841 5287 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 5288 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 5289
058e97ec
VM
5290 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5291 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 5292 loops_p = ira_build ();
b8698a0f 5293
311aab06 5294 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
5295
5296 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 5297 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 5298 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
5299 stack slots in this case -- prohibit it. We also do this if
5300 there is setjmp call because a variable not modified between
5301 setjmp and longjmp the compiler is required to preserve its
5302 value and sharing slots does not guarantee it. */
3553f0bb
VM
5303 flag_ira_share_spill_slots = FALSE;
5304
cb1ca6ac 5305 ira_color ();
b8698a0f 5306
058e97ec 5307 ira_max_point_before_emit = ira_max_point;
b8698a0f 5308
1756cb66
VM
5309 ira_initiate_emit_data ();
5310
058e97ec 5311 ira_emit (loops_p);
b8698a0f 5312
55a2c322 5313 max_regno = max_reg_num ();
311aab06 5314 if (ira_conflicts_p)
058e97ec 5315 {
058e97ec 5316 if (! loops_p)
55a2c322
VM
5317 {
5318 if (! ira_use_lra_p)
5319 ira_initiate_assign ();
5320 }
058e97ec
VM
5321 else
5322 {
fb99ee9b 5323 expand_reg_info ();
b8698a0f 5324
55a2c322
VM
5325 if (ira_use_lra_p)
5326 {
5327 ira_allocno_t a;
5328 ira_allocno_iterator ai;
5329
5330 FOR_EACH_ALLOCNO (a, ai)
9d6e10c7
RL
5331 {
5332 int old_regno = ALLOCNO_REGNO (a);
5333 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5334
5335 ALLOCNO_REGNO (a) = new_regno;
5336
5337 if (old_regno != new_regno)
5338 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5339 reg_alternate_class (old_regno),
5340 reg_allocno_class (old_regno));
5341 }
55a2c322
VM
5342 }
5343 else
5344 {
5345 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5346 fprintf (ira_dump_file, "Flattening IR\n");
5347 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5348 }
058e97ec
VM
5349 /* New insns were generated: add notes and recalculate live
5350 info. */
5351 df_analyze ();
b8698a0f 5352
544e7e78
SB
5353 /* ??? Rebuild the loop tree, but why? Does the loop tree
5354 change if new insns were generated? Can that be handled
5355 by updating the loop tree incrementally? */
661bc682 5356 loop_optimizer_finalize ();
57548aa2 5357 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
5358 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5359 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 5360
55a2c322
VM
5361 if (! ira_use_lra_p)
5362 {
5363 setup_allocno_assignment_flags ();
5364 ira_initiate_assign ();
5365 ira_reassign_conflict_allocnos (max_regno);
5366 }
058e97ec
VM
5367 }
5368 }
5369
1756cb66
VM
5370 ira_finish_emit_data ();
5371
058e97ec 5372 setup_reg_renumber ();
b8698a0f 5373
058e97ec 5374 calculate_allocation_cost ();
b8698a0f 5375
058e97ec 5376#ifdef ENABLE_IRA_CHECKING
e5119fab
VM
5377 if (ira_conflicts_p && ! ira_use_lra_p)
5378 /* Opposite to reload pass, LRA does not use any conflict info
5379 from IRA. We don't rebuild conflict info for LRA (through
5380 ira_flattening call) and can not use the check here. We could
5381 rebuild this info for LRA in the check mode but there is a risk
5382 that code generated with the check and without it will be a bit
5383 different. Calling ira_flattening in any mode would be a
5384 wasting CPU time. So do not check the allocation for LRA. */
058e97ec
VM
5385 check_allocation ();
5386#endif
b8698a0f 5387
ba52669f 5388 if (max_regno != max_regno_before_ira)
058e97ec
VM
5389 {
5390 regstat_free_n_sets_and_refs ();
5391 regstat_free_ri ();
5392 regstat_init_n_sets_and_refs ();
5393 regstat_compute_ri ();
5394 }
5395
058e97ec 5396 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
5397 if (! ira_conflicts_p)
5398 grow_reg_equivs ();
5399 else
058e97ec
VM
5400 {
5401 fix_reg_equiv_init ();
b8698a0f 5402
058e97ec
VM
5403#ifdef ENABLE_IRA_CHECKING
5404 print_redundant_copies ();
5405#endif
9994ad20
KC
5406 if (! ira_use_lra_p)
5407 {
5408 ira_spilled_reg_stack_slots_num = 0;
5409 ira_spilled_reg_stack_slots
5410 = ((struct ira_spilled_reg_stack_slot *)
5411 ira_allocate (max_regno
5412 * sizeof (struct ira_spilled_reg_stack_slot)));
5413 memset (ira_spilled_reg_stack_slots, 0,
5414 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5415 }
058e97ec 5416 }
6399c0ab 5417 allocate_initial_values ();
e8d7e3e7
VM
5418
5419 /* See comment for find_moveable_pseudos call. */
5420 if (ira_conflicts_p)
5421 move_unallocated_pseudos ();
55a2c322
VM
5422
5423 /* Restore original values. */
5424 if (lra_simple_p)
5425 {
5426 flag_caller_saves = saved_flag_caller_saves;
5427 flag_ira_region = saved_flag_ira_region;
5428 }
d3afd9aa
RB
5429}
5430
5431static void
5432do_reload (void)
5433{
5434 basic_block bb;
5435 bool need_dce;
bcb21886 5436 unsigned pic_offset_table_regno = INVALID_REGNUM;
ae2b9cb6 5437
67463efb 5438 if (flag_ira_verbose < 10)
ae2b9cb6 5439 ira_dump_file = dump_file;
058e97ec 5440
bcb21886
KY
5441 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5442 after reload to avoid possible wrong usages of hard reg assigned
5443 to it. */
5444 if (pic_offset_table_rtx
5445 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5446 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5447
55a2c322
VM
5448 timevar_push (TV_RELOAD);
5449 if (ira_use_lra_p)
5450 {
5451 if (current_loops != NULL)
5452 {
661bc682 5453 loop_optimizer_finalize ();
55a2c322
VM
5454 free_dominance_info (CDI_DOMINATORS);
5455 }
04a90bec 5456 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5457 bb->loop_father = NULL;
5458 current_loops = NULL;
55a2c322
VM
5459
5460 ira_destroy ();
058e97ec 5461
55a2c322
VM
5462 lra (ira_dump_file);
5463 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5464 LRA. */
9771b263 5465 vec_free (reg_equivs);
55a2c322
VM
5466 reg_equivs = NULL;
5467 need_dce = false;
5468 }
5469 else
5470 {
5471 df_set_flags (DF_NO_INSN_RESCAN);
5472 build_insn_chain ();
55a2c322 5473
355a43a1 5474 need_dce = reload (get_insns (), ira_conflicts_p);
55a2c322
VM
5475 }
5476
5477 timevar_pop (TV_RELOAD);
058e97ec 5478
d3afd9aa
RB
5479 timevar_push (TV_IRA);
5480
55a2c322 5481 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
5482 {
5483 ira_free (ira_spilled_reg_stack_slots);
058e97ec 5484 ira_finish_assign ();
b8698a0f 5485 }
55a2c322 5486
058e97ec
VM
5487 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5488 && overall_cost_before != ira_overall_cost)
16998094 5489 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
2bf7560b 5490 ira_overall_cost);
b8698a0f 5491
3553f0bb
VM
5492 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5493
55a2c322 5494 if (! ira_use_lra_p)
2608d841 5495 {
55a2c322
VM
5496 ira_destroy ();
5497 if (current_loops != NULL)
5498 {
661bc682 5499 loop_optimizer_finalize ();
55a2c322
VM
5500 free_dominance_info (CDI_DOMINATORS);
5501 }
04a90bec 5502 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5503 bb->loop_father = NULL;
5504 current_loops = NULL;
5505
5506 regstat_free_ri ();
5507 regstat_free_n_sets_and_refs ();
2608d841 5508 }
b8698a0f 5509
058e97ec 5510 if (optimize)
55a2c322 5511 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 5512
55a2c322 5513 finish_reg_equiv ();
058e97ec
VM
5514
5515 bitmap_obstack_release (&ira_bitmap_obstack);
5516#ifndef IRA_NO_OBSTACK
5517 obstack_free (&ira_obstack, NULL);
5518#endif
5519
5520 /* The code after the reload has changed so much that at this point
b0c11403 5521 we might as well just rescan everything. Note that
058e97ec
VM
5522 df_rescan_all_insns is not going to help here because it does not
5523 touch the artificial uses and defs. */
5524 df_finish_pass (true);
058e97ec
VM
5525 df_scan_alloc (NULL);
5526 df_scan_blocks ();
5527
5d517141
SB
5528 if (optimize > 1)
5529 {
5530 df_live_add_problem ();
5531 df_live_set_all_dirty ();
5532 }
5533
058e97ec
VM
5534 if (optimize)
5535 df_analyze ();
5536
b0c11403
JL
5537 if (need_dce && optimize)
5538 run_fast_dce ();
d3afd9aa 5539
af6e8467
RH
5540 /* Diagnose uses of the hard frame pointer when it is used as a global
5541 register. Often we can get away with letting the user appropriate
5542 the frame pointer, but we should let them know when code generation
5543 makes that impossible. */
5544 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5545 {
5546 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5547 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5548 "frame pointer required, but reserved");
5549 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5550 }
5551
355a43a1
EB
5552 /* If we are doing generic stack checking, give a warning if this
5553 function's frame size is larger than we expect. */
5554 if (flag_stack_check == GENERIC_STACK_CHECK)
5555 {
f075bd95 5556 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
355a43a1
EB
5557
5558 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5559 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5560 size += UNITS_PER_WORD;
5561
f075bd95 5562 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
355a43a1
EB
5563 warning (0, "frame size too large for reliable stack checking");
5564 }
5565
bcb21886
KY
5566 if (pic_offset_table_regno != INVALID_REGNUM)
5567 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5568
d3afd9aa 5569 timevar_pop (TV_IRA);
058e97ec 5570}
058e97ec 5571\f
058e97ec 5572/* Run the integrated register allocator. */
058e97ec 5573
27a4cd48
DM
5574namespace {
5575
5576const pass_data pass_data_ira =
058e97ec 5577{
27a4cd48
DM
5578 RTL_PASS, /* type */
5579 "ira", /* name */
5580 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5581 TV_IRA, /* tv_id */
5582 0, /* properties_required */
5583 0, /* properties_provided */
5584 0, /* properties_destroyed */
5585 0, /* todo_flags_start */
5586 TODO_do_not_ggc_collect, /* todo_flags_finish */
d3afd9aa
RB
5587};
5588
27a4cd48
DM
5589class pass_ira : public rtl_opt_pass
5590{
5591public:
c3284718
RS
5592 pass_ira (gcc::context *ctxt)
5593 : rtl_opt_pass (pass_data_ira, ctxt)
27a4cd48
DM
5594 {}
5595
5596 /* opt_pass methods: */
a50fa76a
BS
5597 virtual bool gate (function *)
5598 {
5599 return !targetm.no_register_allocation;
5600 }
be55bfe6
TS
5601 virtual unsigned int execute (function *)
5602 {
5603 ira (dump_file);
5604 return 0;
5605 }
27a4cd48
DM
5606
5607}; // class pass_ira
5608
5609} // anon namespace
5610
5611rtl_opt_pass *
5612make_pass_ira (gcc::context *ctxt)
5613{
5614 return new pass_ira (ctxt);
5615}
5616
27a4cd48
DM
5617namespace {
5618
5619const pass_data pass_data_reload =
d3afd9aa 5620{
27a4cd48
DM
5621 RTL_PASS, /* type */
5622 "reload", /* name */
5623 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5624 TV_RELOAD, /* tv_id */
5625 0, /* properties_required */
5626 0, /* properties_provided */
5627 0, /* properties_destroyed */
5628 0, /* todo_flags_start */
5629 0, /* todo_flags_finish */
058e97ec 5630};
27a4cd48
DM
5631
5632class pass_reload : public rtl_opt_pass
5633{
5634public:
c3284718
RS
5635 pass_reload (gcc::context *ctxt)
5636 : rtl_opt_pass (pass_data_reload, ctxt)
27a4cd48
DM
5637 {}
5638
5639 /* opt_pass methods: */
a50fa76a
BS
5640 virtual bool gate (function *)
5641 {
5642 return !targetm.no_register_allocation;
5643 }
be55bfe6
TS
5644 virtual unsigned int execute (function *)
5645 {
5646 do_reload ();
5647 return 0;
5648 }
27a4cd48
DM
5649
5650}; // class pass_reload
5651
5652} // anon namespace
5653
5654rtl_opt_pass *
5655make_pass_reload (gcc::context *ctxt)
5656{
5657 return new pass_reload (ctxt);
5658}