]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
genpreds.c (write_constraint_satisfied_p_1): Replace with...
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
23a5b65a 2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
058e97ec
VM
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
1756cb66
VM
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
058e97ec
VM
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
1756cb66 61 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
1756cb66
VM
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
058e97ec
VM
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
1756cb66
VM
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
058e97ec
VM
76
77 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
058e97ec
VM
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
1756cb66
VM
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
058e97ec
VM
155
156 * IRA creates live ranges of each allocno, calulates register
1756cb66 157 pressure for each pressure class in each region, sets up
058e97ec
VM
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
1756cb66
VM
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
b8698a0f 179
1756cb66
VM
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
058e97ec
VM
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
1756cb66 194 the allocation. IRA uses some heuristics to improve the
41808d15
VM
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
1756cb66
VM
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
058e97ec
VM
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
1756cb66
VM
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
058e97ec
VM
254 * After allono assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
1756cb66
VM
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
058e97ec
VM
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
1756cb66
VM
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
1756cb66
VM
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
058e97ec
VM
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
1756cb66
VM
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
058e97ec
VM
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363*/
364
365
366#include "config.h"
367#include "system.h"
368#include "coretypes.h"
369#include "tm.h"
370#include "regs.h"
4d648807 371#include "tree.h"
058e97ec
VM
372#include "rtl.h"
373#include "tm_p.h"
374#include "target.h"
375#include "flags.h"
376#include "obstack.h"
377#include "bitmap.h"
378#include "hard-reg-set.h"
379#include "basic-block.h"
7a8cba34 380#include "df.h"
058e97ec
VM
381#include "expr.h"
382#include "recog.h"
383#include "params.h"
058e97ec
VM
384#include "tree-pass.h"
385#include "output.h"
2af2dbdc 386#include "except.h"
058e97ec 387#include "reload.h"
718f9c0f 388#include "diagnostic-core.h"
6399c0ab 389#include "function.h"
058e97ec
VM
390#include "ggc.h"
391#include "ira-int.h"
55a2c322 392#include "lra.h"
b0c11403 393#include "dce.h"
acf41a74 394#include "dbgcnt.h"
058e97ec 395
afcc66c4
RS
396struct target_ira default_target_ira;
397struct target_ira_int default_target_ira_int;
398#if SWITCHABLE_TARGET
399struct target_ira *this_target_ira = &default_target_ira;
400struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401#endif
402
058e97ec
VM
403/* A modified value of flag `-fira-verbose' used internally. */
404int internal_flag_ira_verbose;
405
406/* Dump file of the allocator if it is not NULL. */
407FILE *ira_dump_file;
408
058e97ec
VM
409/* The number of elements in the following array. */
410int ira_spilled_reg_stack_slots_num;
411
412/* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
ae2b9cb6
BS
416/* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421int ira_overall_cost, overall_cost_before;
058e97ec
VM
422int ira_reg_cost, ira_mem_cost;
423int ira_load_cost, ira_store_cost, ira_shuffle_cost;
424int ira_move_loops_num, ira_additional_jumps_num;
425
2af2dbdc
VM
426/* All registers that can be eliminated. */
427
428HARD_REG_SET eliminable_regset;
429
70cc3288
VM
430/* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433static int max_regno_before_ira;
434
058e97ec
VM
435/* Temporary hard reg set used for a different calculation. */
436static HARD_REG_SET temp_hard_regset;
437
e80ccebc
RS
438#define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
440\f
441
442/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443static void
444setup_reg_mode_hard_regset (void)
445{
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 hard_regno + i);
456 }
457}
458
459\f
afcc66c4
RS
460#define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
462
463/* The function sets up the three arrays declared above. */
464static void
465setup_class_hard_regs (void)
466{
467 int cl, i, hard_regno, n;
468 HARD_REG_SET processed_hard_reg_set;
469
470 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
471 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 {
473 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 477 {
854edfcd
VM
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
0583835c 480 }
058e97ec
VM
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483#ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485#else
486 hard_regno = i;
b8698a0f 487#endif
058e97ec
VM
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
0583835c
VM
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
504 }
505}
506
058e97ec
VM
507/* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510static void
511setup_alloc_regs (bool use_hard_frame_p)
512{
5a733826
BS
513#ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515#endif
058e97ec
VM
516 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
058e97ec
VM
520}
521
522\f
523
1756cb66
VM
524#define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
526
527/* Initialize the table of subclasses of each reg class. */
528static void
529setup_reg_subclasses (void)
530{
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
533
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537
538 for (i = 0; i < N_REG_CLASSES; i++)
539 {
540 if (i == (int) NO_REGS)
541 continue;
542
543 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
549 {
550 enum reg_class *p;
551
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 if (! hard_reg_set_subset_p (temp_hard_regset,
555 temp_hard_regset2))
556 continue;
557 p = &alloc_reg_class_subclasses[j][0];
558 while (*p != LIM_REG_CLASSES) p++;
559 *p = (enum reg_class) i;
560 }
561 }
562}
563
564\f
565
566/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
567static void
568setup_class_subset_and_memory_move_costs (void)
569{
1756cb66 570 int cl, cl2, mode, cost;
058e97ec
VM
571 HARD_REG_SET temp_hard_regset2;
572
573 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574 ira_memory_move_cost[mode][NO_REGS][0]
575 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 {
578 if (cl != (int) NO_REGS)
579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 {
1756cb66
VM
581 ira_max_memory_move_cost[mode][cl][0]
582 = ira_memory_move_cost[mode][cl][0]
583 = memory_move_cost ((enum machine_mode) mode,
6f76a878 584 (reg_class_t) cl, false);
1756cb66
VM
585 ira_max_memory_move_cost[mode][cl][1]
586 = ira_memory_move_cost[mode][cl][1]
587 = memory_move_cost ((enum machine_mode) mode,
6f76a878 588 (reg_class_t) cl, true);
058e97ec
VM
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost[mode][NO_REGS][0]
593 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
594 ira_max_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
596 = ira_memory_move_cost[mode][cl][0];
597 if (ira_memory_move_cost[mode][NO_REGS][1]
598 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
599 ira_max_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
601 = ira_memory_move_cost[mode][cl][1];
602 }
058e97ec 603 }
1756cb66
VM
604 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 {
607 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 ira_class_subset_p[cl][cl2]
612 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 if (! hard_reg_set_empty_p (temp_hard_regset2)
614 && hard_reg_set_subset_p (reg_class_contents[cl2],
615 reg_class_contents[cl]))
616 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 {
618 cost = ira_memory_move_cost[mode][cl2][0];
619 if (cost > ira_max_memory_move_cost[mode][cl][0])
620 ira_max_memory_move_cost[mode][cl][0] = cost;
621 cost = ira_memory_move_cost[mode][cl2][1];
622 if (cost > ira_max_memory_move_cost[mode][cl][1])
623 ira_max_memory_move_cost[mode][cl][1] = cost;
624 }
625 }
626 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 {
629 ira_memory_move_cost[mode][cl][0]
630 = ira_max_memory_move_cost[mode][cl][0];
631 ira_memory_move_cost[mode][cl][1]
632 = ira_max_memory_move_cost[mode][cl][1];
633 }
634 setup_reg_subclasses ();
058e97ec
VM
635}
636
637\f
638
639/* Define the following macro if allocation through malloc if
640 preferable. */
641#define IRA_NO_OBSTACK
642
643#ifndef IRA_NO_OBSTACK
644/* Obstack used for storing all dynamic data (except bitmaps) of the
645 IRA. */
646static struct obstack ira_obstack;
647#endif
648
649/* Obstack used for storing all bitmaps of the IRA. */
650static struct bitmap_obstack ira_bitmap_obstack;
651
652/* Allocate memory of size LEN for IRA data. */
653void *
654ira_allocate (size_t len)
655{
656 void *res;
657
658#ifndef IRA_NO_OBSTACK
659 res = obstack_alloc (&ira_obstack, len);
660#else
661 res = xmalloc (len);
662#endif
663 return res;
664}
665
058e97ec
VM
666/* Free memory ADDR allocated for IRA data. */
667void
668ira_free (void *addr ATTRIBUTE_UNUSED)
669{
670#ifndef IRA_NO_OBSTACK
671 /* do nothing */
672#else
673 free (addr);
674#endif
675}
676
677
678/* Allocate and returns bitmap for IRA. */
679bitmap
680ira_allocate_bitmap (void)
681{
682 return BITMAP_ALLOC (&ira_bitmap_obstack);
683}
684
685/* Free bitmap B allocated for IRA. */
686void
687ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688{
689 /* do nothing */
690}
691
692\f
693
694/* Output information about allocation of all allocnos (except for
695 caps) into file F. */
696void
697ira_print_disposition (FILE *f)
698{
699 int i, n, max_regno;
700 ira_allocno_t a;
701 basic_block bb;
702
703 fprintf (f, "Disposition:");
704 max_regno = max_reg_num ();
705 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 for (a = ira_regno_allocno_map[i];
707 a != NULL;
708 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 {
710 if (n % 4 == 0)
711 fprintf (f, "\n");
712 n++;
713 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 fprintf (f, "b%-3d", bb->index);
716 else
2608d841 717 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
718 if (ALLOCNO_HARD_REGNO (a) >= 0)
719 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 else
721 fprintf (f, " mem");
722 }
723 fprintf (f, "\n");
724}
725
726/* Outputs information about allocation of all allocnos into
727 stderr. */
728void
729ira_debug_disposition (void)
730{
731 ira_print_disposition (stderr);
732}
733
734\f
058e97ec 735
1756cb66
VM
736/* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
741 size. */
fe82cdfb 742static void
1756cb66
VM
743setup_stack_reg_pressure_class (void)
744{
745 ira_stack_reg_pressure_class = NO_REGS;
746#ifdef STACK_REGS
747 {
748 int i, best, size;
749 enum reg_class cl;
750 HARD_REG_SET temp_hard_regset2;
751
752 CLEAR_HARD_REG_SET (temp_hard_regset);
753 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754 SET_HARD_REG_BIT (temp_hard_regset, i);
755 best = 0;
756 for (i = 0; i < ira_pressure_classes_num; i++)
757 {
758 cl = ira_pressure_classes[i];
759 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
763 {
764 best = size;
765 ira_stack_reg_pressure_class = cl;
766 }
767 }
768 }
769#endif
770}
771
772/* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
776
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785static void
786setup_pressure_classes (void)
058e97ec 787{
1756cb66
VM
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
058e97ec 792 HARD_REG_SET temp_hard_regset2;
1756cb66 793 bool insert_p;
058e97ec 794
1756cb66
VM
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
058e97ec 797 {
f508f827 798 if (ira_class_hard_regs_num[cl] == 0)
058e97ec 799 continue;
f508f827 800 if (ira_class_hard_regs_num[cl] != 1
574e418a
VM
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
af2b97c4 805 && alloc_reg_class_subclasses[cl][0] < cl)
1756cb66 806 {
113a5be6
VM
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 {
814 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset,
817 ira_prohibited_class_mode_regs[cl][m]);
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
825 }
826 if (m >= NUM_MACHINE_MODES)
1756cb66 827 continue;
1756cb66 828 }
1756cb66
VM
829 curr = 0;
830 insert_p = true;
831 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
839 (GENERAL_REGS). */
840 for (i = 0; i < n; i++)
841 {
842 cl2 = pressure_classes[i];
843 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
845 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
846 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
847 || cl2 == (int) GENERAL_REGS))
848 {
849 pressure_classes[curr++] = (enum reg_class) cl2;
850 insert_p = false;
058e97ec 851 continue;
1756cb66
VM
852 }
853 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
854 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
855 || cl == (int) GENERAL_REGS))
856 continue;
113a5be6
VM
857 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
858 insert_p = false;
1756cb66
VM
859 pressure_classes[curr++] = (enum reg_class) cl2;
860 }
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
863 classes. */
864 if (insert_p)
865 pressure_classes[curr++] = (enum reg_class) cl;
866 n = curr;
fe82cdfb 867 }
1756cb66 868#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
869 {
870 HARD_REG_SET ignore_hard_regs;
871
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 {
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
887 {
888 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
889 continue;
890 }
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
895 if (i < n)
896 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 }
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have alocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 }
1756cb66
VM
907#endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
910 {
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 }
915 setup_stack_reg_pressure_class ();
058e97ec
VM
916}
917
165f639c
VM
918/* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922static void
923setup_uniform_class_p (void)
924{
925 int i, cl, cl2, m;
926
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 {
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 {
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 {
944 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
948 }
949 if (m < NUM_MACHINE_MODES)
950 break;
951 }
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
954 }
955}
956
1756cb66
VM
957/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959
960 Target may have many subtargets and not all target hard regiters can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
967
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
058e97ec 982static void
1756cb66 983setup_allocno_and_important_classes (void)
058e97ec 984{
32e8bb8e 985 int i, j, n, cl;
db1a8d98 986 bool set_p;
058e97ec 987 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
989
1756cb66
VM
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
a58dfa49 994 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 995 {
1756cb66
VM
996 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
998 for (j = 0; j < n; j++)
7db7ed3c 999 {
1756cb66
VM
1000 cl = classes[j];
1001 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1003 no_unit_alloc_regs);
1004 if (hard_reg_set_equal_p (temp_hard_regset,
1005 temp_hard_regset2))
1006 break;
7db7ed3c 1007 }
1756cb66
VM
1008 if (j >= n)
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
7db7ed3c 1016 }
1756cb66 1017 classes[n] = LIM_REG_CLASSES;
058e97ec 1018
1756cb66
VM
1019 /* Set up classes which can be used for allocnos as classes
1020 conatining non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
058e97ec 1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
3e575fe2 1024 if (ira_class_hard_regs_num[cl] > 0)
1756cb66 1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec 1026 ira_important_classes_num = 0;
1756cb66
VM
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
058e97ec 1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
3e575fe2
RS
1030 if (ira_class_hard_regs_num[cl] > 0)
1031 {
1032 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1034 set_p = false;
1035 for (j = 0; j < ira_allocno_classes_num; j++)
1036 {
1037 COPY_HARD_REG_SET (temp_hard_regset2,
1038 reg_class_contents[ira_allocno_classes[j]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1040 if ((enum reg_class) cl == ira_allocno_classes[j])
1041 break;
1042 else if (hard_reg_set_subset_p (temp_hard_regset,
1043 temp_hard_regset2))
1044 set_p = true;
1045 }
1046 if (set_p && j >= ira_allocno_classes_num)
1047 ira_important_classes[ira_important_classes_num++]
1048 = (enum reg_class) cl;
1049 }
1756cb66
VM
1050 /* Now add allocno classes to the important classes. */
1051 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1052 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1053 = ira_allocno_classes[j];
1054 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 {
1056 ira_reg_allocno_class_p[cl] = false;
1057 ira_reg_pressure_class_p[cl] = false;
1058 }
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1061 setup_pressure_classes ();
165f639c 1062 setup_uniform_class_p ();
058e97ec 1063}
058e97ec 1064
1756cb66
VM
1065/* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1071 classes.
1072
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set */
058e97ec 1080static void
1756cb66
VM
1081setup_class_translate_array (enum reg_class *class_translate,
1082 int classes_num, enum reg_class *classes)
058e97ec 1083{
32e8bb8e 1084 int cl, mode;
1756cb66 1085 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1086 int i, cost, min_cost, best_cost;
1087
1088 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1089 class_translate[cl] = NO_REGS;
b8698a0f 1090
1756cb66 1091 for (i = 0; i < classes_num; i++)
058e97ec 1092 {
1756cb66
VM
1093 aclass = classes[i];
1094 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1095 (cl = *cl_ptr) != LIM_REG_CLASSES;
1096 cl_ptr++)
1097 if (class_translate[cl] == NO_REGS)
1098 class_translate[cl] = aclass;
1099 class_translate[aclass] = aclass;
058e97ec 1100 }
1756cb66
VM
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1103 cheapest class. */
058e97ec
VM
1104 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 {
1756cb66 1106 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1107 continue;
1108 best_class = NO_REGS;
1109 best_cost = INT_MAX;
1756cb66 1110 for (i = 0; i < classes_num; i++)
058e97ec 1111 {
1756cb66 1112 aclass = classes[i];
058e97ec 1113 COPY_HARD_REG_SET (temp_hard_regset,
1756cb66 1114 reg_class_contents[aclass]);
058e97ec
VM
1115 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 1117 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1118 {
1119 min_cost = INT_MAX;
1120 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 {
761a8eb7
VM
1122 cost = (ira_memory_move_cost[mode][aclass][0]
1123 + ira_memory_move_cost[mode][aclass][1]);
058e97ec
VM
1124 if (min_cost > cost)
1125 min_cost = cost;
1126 }
1127 if (best_class == NO_REGS || best_cost > min_cost)
1128 {
1756cb66 1129 best_class = aclass;
058e97ec
VM
1130 best_cost = min_cost;
1131 }
1132 }
1133 }
1756cb66 1134 class_translate[cl] = best_class;
058e97ec
VM
1135 }
1136}
058e97ec 1137
1756cb66
VM
1138/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1140static void
1141setup_class_translate (void)
1142{
1143 setup_class_translate_array (ira_allocno_class_translate,
1144 ira_allocno_classes_num, ira_allocno_classes);
1145 setup_class_translate_array (ira_pressure_class_translate,
1146 ira_pressure_classes_num, ira_pressure_classes);
1147}
1148
1149/* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1152
1153/* The function used to sort the important classes. */
1154static int
1155comp_reg_classes_func (const void *v1p, const void *v2p)
1156{
1157 enum reg_class cl1 = *(const enum reg_class *) v1p;
1158 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1159 enum reg_class tcl1, tcl2;
db1a8d98
VM
1160 int diff;
1161
1756cb66
VM
1162 tcl1 = ira_allocno_class_translate[cl1];
1163 tcl2 = ira_allocno_class_translate[cl2];
1164 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1165 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1166 return diff;
1167 return (int) cl1 - (int) cl2;
1168}
1169
1756cb66
VM
1170/* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1176
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1180 LEGACY_REGS. */
db1a8d98
VM
1181static void
1182reorder_important_classes (void)
1183{
1184 int i;
1185
1186 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1187 allocno_class_order[i] = -1;
1188 for (i = 0; i < ira_allocno_classes_num; i++)
1189 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1190 qsort (ira_important_classes, ira_important_classes_num,
1191 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1192 for (i = 0; i < ira_important_classes_num; i++)
1193 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1194}
1195
1756cb66
VM
1196/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
058e97ec 1200static void
7db7ed3c 1201setup_reg_class_relations (void)
058e97ec
VM
1202{
1203 int i, cl1, cl2, cl3;
1204 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1205 bool important_class_p[N_REG_CLASSES];
058e97ec 1206
7db7ed3c
VM
1207 memset (important_class_p, 0, sizeof (important_class_p));
1208 for (i = 0; i < ira_important_classes_num; i++)
1209 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1210 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 {
7db7ed3c 1212 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1213 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 {
7db7ed3c 1215 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec 1216 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
55a2c322 1217 ira_reg_class_subset[cl1][cl2] = NO_REGS;
058e97ec
VM
1218 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1220 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1221 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1222 if (hard_reg_set_empty_p (temp_hard_regset)
1223 && hard_reg_set_empty_p (temp_set2))
058e97ec 1224 {
1756cb66
VM
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1228 for (i = 0;; i++)
1229 {
1230 cl3 = reg_class_subclasses[cl1][i];
1231 if (cl3 == LIM_REG_CLASSES)
1232 break;
1233 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1234 (enum reg_class) cl3))
1235 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1236 }
1756cb66
VM
1237 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1238 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1239 continue;
1240 }
7db7ed3c
VM
1241 ira_reg_classes_intersect_p[cl1][cl2]
1242 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1243 if (important_class_p[cl1] && important_class_p[cl2]
1244 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 {
1756cb66
VM
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1249 enum reg_class *p;
1250
1251 p = &ira_reg_class_super_classes[cl1][0];
1252 while (*p != LIM_REG_CLASSES)
1253 p++;
1254 *p++ = (enum reg_class) cl2;
1255 *p = LIM_REG_CLASSES;
1256 }
1756cb66
VM
1257 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1258 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
058e97ec
VM
1259 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1260 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1261 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1262 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1263 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1264 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
55a2c322 1265 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
058e97ec 1266 {
058e97ec
VM
1267 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1269 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 {
1756cb66
VM
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1273 of CL1 and CL2. */
55a2c322
VM
1274 if (important_class_p[cl3])
1275 {
1276 COPY_HARD_REG_SET
1277 (temp_set2,
1278 reg_class_contents
1279 [(int) ira_reg_class_intersect[cl1][cl2]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1281 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1285 purposes. */
1286 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1287 && (cl3 == GENERAL_REGS
1288 || ((ira_reg_class_intersect[cl1][cl2]
1289 != GENERAL_REGS)
1290 && hard_reg_set_subset_p
1291 (reg_class_contents[cl3],
1292 reg_class_contents
1293 [(int)
1294 ira_reg_class_intersect[cl1][cl2]])))))
1295 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 }
058e97ec
VM
1297 COPY_HARD_REG_SET
1298 (temp_set2,
55a2c322 1299 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
058e97ec 1300 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
55a2c322
VM
1301 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
058e97ec 1304 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
55a2c322
VM
1305 && hard_reg_set_subset_p
1306 (reg_class_contents[cl3],
1307 reg_class_contents
1308 [(int) ira_reg_class_subset[cl1][cl2]])))
1309 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1310 }
55a2c322
VM
1311 if (important_class_p[cl3]
1312 && hard_reg_set_subset_p (temp_hard_regset, union_set))
058e97ec 1313 {
1756cb66
VM
1314 /* CL3 allocatbale hard register set is inside of
1315 union of allocatable hard register sets of CL1
1316 and CL2. */
058e97ec
VM
1317 COPY_HARD_REG_SET
1318 (temp_set2,
1756cb66 1319 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
058e97ec 1320 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1756cb66 1321 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1322 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1323
1324 && (! hard_reg_set_equal_p (temp_set2,
1325 temp_hard_regset)
1326 || cl3 == GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents[cl3],
1333 reg_class_contents
1334 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1335 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 }
1337 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 {
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1341 CL2. */
1342 COPY_HARD_REG_SET
1343 (temp_set2,
1344 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1346 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1348
058e97ec
VM
1349 && (! hard_reg_set_equal_p (temp_set2,
1350 temp_hard_regset)
1756cb66
VM
1351 || cl3 == GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents[cl3],
1358 reg_class_contents
1359 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1360 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1361 }
1362 }
1363 }
1364 }
1365}
1366
165f639c
VM
1367/* Output all unifrom and important classes into file F. */
1368static void
1369print_unform_and_important_classes (FILE *f)
1370{
1371 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1372 int i, cl;
1373
1374 fprintf (f, "Uniform classes:\n");
1375 for (cl = 0; cl < N_REG_CLASSES; cl++)
1376 if (ira_uniform_class_p[cl])
1377 fprintf (f, " %s", reg_class_names[cl]);
1378 fprintf (f, "\nImportant classes:\n");
1379 for (i = 0; i < ira_important_classes_num; i++)
1380 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1381 fprintf (f, "\n");
1382}
1383
1384/* Output all possible allocno or pressure classes and their
1385 translation map into file F. */
058e97ec 1386static void
165f639c 1387print_translated_classes (FILE *f, bool pressure_p)
1756cb66
VM
1388{
1389 int classes_num = (pressure_p
1390 ? ira_pressure_classes_num : ira_allocno_classes_num);
1391 enum reg_class *classes = (pressure_p
1392 ? ira_pressure_classes : ira_allocno_classes);
1393 enum reg_class *class_translate = (pressure_p
1394 ? ira_pressure_class_translate
1395 : ira_allocno_class_translate);
058e97ec
VM
1396 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1397 int i;
1398
1756cb66
VM
1399 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1400 for (i = 0; i < classes_num; i++)
1401 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1402 fprintf (f, "\nClass translation:\n");
1403 for (i = 0; i < N_REG_CLASSES; i++)
1404 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1405 reg_class_names[class_translate[i]]);
058e97ec
VM
1406}
1407
1756cb66
VM
1408/* Output all possible allocno and translation classes and the
1409 translation maps into stderr. */
058e97ec 1410void
1756cb66 1411ira_debug_allocno_classes (void)
058e97ec 1412{
165f639c
VM
1413 print_unform_and_important_classes (stderr);
1414 print_translated_classes (stderr, false);
1415 print_translated_classes (stderr, true);
058e97ec
VM
1416}
1417
1756cb66 1418/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1419 important classes. */
1420static void
1756cb66 1421find_reg_classes (void)
058e97ec 1422{
1756cb66 1423 setup_allocno_and_important_classes ();
7db7ed3c 1424 setup_class_translate ();
db1a8d98 1425 reorder_important_classes ();
7db7ed3c 1426 setup_reg_class_relations ();
058e97ec
VM
1427}
1428
1429\f
1430
c0683a82
VM
1431/* Set up the array above. */
1432static void
1756cb66 1433setup_hard_regno_aclass (void)
c0683a82 1434{
7efcf910 1435 int i;
c0683a82
VM
1436
1437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1438 {
1756cb66
VM
1439#if 1
1440 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1441 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1442 ? NO_REGS
1756cb66
VM
1443 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1444#else
1445 int j;
1446 enum reg_class cl;
1447 ira_hard_regno_allocno_class[i] = NO_REGS;
1448 for (j = 0; j < ira_allocno_classes_num; j++)
1449 {
1450 cl = ira_allocno_classes[j];
1451 if (ira_class_hard_reg_index[cl][i] >= 0)
1452 {
1453 ira_hard_regno_allocno_class[i] = cl;
1454 break;
1455 }
1456 }
1457#endif
c0683a82
VM
1458 }
1459}
1460
1461\f
1462
1756cb66 1463/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1464static void
1465setup_reg_class_nregs (void)
1466{
1756cb66 1467 int i, cl, cl2, m;
058e97ec 1468
1756cb66
VM
1469 for (m = 0; m < MAX_MACHINE_MODE; m++)
1470 {
1471 for (cl = 0; cl < N_REG_CLASSES; cl++)
1472 ira_reg_class_max_nregs[cl][m]
1473 = ira_reg_class_min_nregs[cl][m]
a8c44c52 1474 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1756cb66
VM
1475 for (cl = 0; cl < N_REG_CLASSES; cl++)
1476 for (i = 0;
1477 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1478 i++)
1479 if (ira_reg_class_min_nregs[cl2][m]
1480 < ira_reg_class_min_nregs[cl][m])
1481 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1482 }
058e97ec
VM
1483}
1484
1485\f
1486
c9d74da6
RS
1487/* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1488 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
058e97ec
VM
1489static void
1490setup_prohibited_class_mode_regs (void)
1491{
c9d74da6 1492 int j, k, hard_regno, cl, last_hard_regno, count;
058e97ec 1493
1756cb66 1494 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1495 {
c9d74da6
RS
1496 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1497 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
058e97ec
VM
1498 for (j = 0; j < NUM_MACHINE_MODES; j++)
1499 {
c9d74da6
RS
1500 count = 0;
1501 last_hard_regno = -1;
1756cb66 1502 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1503 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1504 {
1505 hard_regno = ira_class_hard_regs[cl][k];
bbbbb16a 1506 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1756cb66 1507 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec 1508 hard_regno);
c9d74da6
RS
1509 else if (in_hard_reg_set_p (temp_hard_regset,
1510 (enum machine_mode) j, hard_regno))
1511 {
1512 last_hard_regno = hard_regno;
1513 count++;
1514 }
058e97ec 1515 }
c9d74da6 1516 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
058e97ec
VM
1517 }
1518 }
1519}
1520
1756cb66
VM
1521/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1522 spanning from one register pressure class to another one. It is
1523 called after defining the pressure classes. */
1524static void
1525clarify_prohibited_class_mode_regs (void)
1526{
1527 int j, k, hard_regno, cl, pclass, nregs;
1528
1529 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1530 for (j = 0; j < NUM_MACHINE_MODES; j++)
a2c19e93
RS
1531 {
1532 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1533 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1534 {
1535 hard_regno = ira_class_hard_regs[cl][k];
1536 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1537 continue;
1538 nregs = hard_regno_nregs[hard_regno][j];
1539 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1756cb66
VM
1540 {
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1542 hard_regno);
a2c19e93 1543 continue;
1756cb66 1544 }
a2c19e93
RS
1545 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1546 for (nregs-- ;nregs >= 0; nregs--)
1547 if (((enum reg_class) pclass
1548 != ira_pressure_class_translate[REGNO_REG_CLASS
1549 (hard_regno + nregs)]))
1550 {
1551 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1552 hard_regno);
1553 break;
1554 }
1555 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1556 hard_regno))
1557 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1558 (enum machine_mode) j, hard_regno);
1559 }
1560 }
1756cb66 1561}
058e97ec 1562\f
7cc61ee4
RS
1563/* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1564 and IRA_MAY_MOVE_OUT_COST for MODE. */
1565void
1566ira_init_register_move_cost (enum machine_mode mode)
e80ccebc
RS
1567{
1568 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1569 bool all_match = true;
ed9e2ed0 1570 unsigned int cl1, cl2;
e80ccebc 1571
7cc61ee4
RS
1572 ira_assert (ira_register_move_cost[mode] == NULL
1573 && ira_may_move_in_cost[mode] == NULL
1574 && ira_may_move_out_cost[mode] == NULL);
ed9e2ed0
RS
1575 ira_assert (have_regs_of_mode[mode]);
1576 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1577 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1578 {
1579 int cost;
1580 if (!contains_reg_of_mode[cl1][mode]
1581 || !contains_reg_of_mode[cl2][mode])
1582 {
1583 if ((ira_reg_class_max_nregs[cl1][mode]
1584 > ira_class_hard_regs_num[cl1])
1585 || (ira_reg_class_max_nregs[cl2][mode]
1586 > ira_class_hard_regs_num[cl2]))
1587 cost = 65535;
1588 else
1589 cost = (ira_memory_move_cost[mode][cl1][0]
1a788c05 1590 + ira_memory_move_cost[mode][cl2][1]) * 2;
fef37404
VM
1591 }
1592 else
1593 {
1594 cost = register_move_cost (mode, (enum reg_class) cl1,
1595 (enum reg_class) cl2);
1596 ira_assert (cost < 65535);
1597 }
1598 all_match &= (last_move_cost[cl1][cl2] == cost);
1599 last_move_cost[cl1][cl2] = cost;
1600 }
e80ccebc
RS
1601 if (all_match && last_mode_for_init_move_cost != -1)
1602 {
7cc61ee4
RS
1603 ira_register_move_cost[mode]
1604 = ira_register_move_cost[last_mode_for_init_move_cost];
1605 ira_may_move_in_cost[mode]
1606 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1607 ira_may_move_out_cost[mode]
1608 = ira_may_move_out_cost[last_mode_for_init_move_cost];
e80ccebc
RS
1609 return;
1610 }
ed9e2ed0 1611 last_mode_for_init_move_cost = mode;
7cc61ee4
RS
1612 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1613 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1614 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
ed9e2ed0 1615 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
fef37404
VM
1616 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1617 {
1618 int cost;
1619 enum reg_class *p1, *p2;
1620
1621 if (last_move_cost[cl1][cl2] == 65535)
1622 {
1623 ira_register_move_cost[mode][cl1][cl2] = 65535;
1624 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1625 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1626 }
1627 else
1628 {
1629 cost = last_move_cost[cl1][cl2];
1630
1631 for (p2 = &reg_class_subclasses[cl2][0];
1632 *p2 != LIM_REG_CLASSES; p2++)
1633 if (ira_class_hard_regs_num[*p2] > 0
1634 && (ira_reg_class_max_nregs[*p2][mode]
1635 <= ira_class_hard_regs_num[*p2]))
1636 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1637
1638 for (p1 = &reg_class_subclasses[cl1][0];
1639 *p1 != LIM_REG_CLASSES; p1++)
1640 if (ira_class_hard_regs_num[*p1] > 0
1641 && (ira_reg_class_max_nregs[*p1][mode]
1642 <= ira_class_hard_regs_num[*p1]))
1643 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1644
1645 ira_assert (cost <= 65535);
1646 ira_register_move_cost[mode][cl1][cl2] = cost;
1647
1648 if (ira_class_subset_p[cl1][cl2])
1649 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1650 else
1651 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1652
1653 if (ira_class_subset_p[cl2][cl1])
1654 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1655 else
1656 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1657 }
1658 }
058e97ec 1659}
fef37404 1660
058e97ec
VM
1661\f
1662
058e97ec
VM
1663/* This is called once during compiler work. It sets up
1664 different arrays whose values don't depend on the compiled
1665 function. */
1666void
1667ira_init_once (void)
1668{
058e97ec 1669 ira_init_costs_once ();
55a2c322 1670 lra_init_once ();
058e97ec
VM
1671}
1672
7cc61ee4
RS
1673/* Free ira_max_register_move_cost, ira_may_move_in_cost and
1674 ira_may_move_out_cost for each mode. */
058e97ec
VM
1675static void
1676free_register_move_costs (void)
1677{
e80ccebc 1678 int mode, i;
058e97ec 1679
e80ccebc
RS
1680 /* Reset move_cost and friends, making sure we only free shared
1681 table entries once. */
1682 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
7cc61ee4 1683 if (ira_register_move_cost[mode])
e80ccebc 1684 {
7cc61ee4
RS
1685 for (i = 0;
1686 i < mode && (ira_register_move_cost[i]
1687 != ira_register_move_cost[mode]);
1688 i++)
e80ccebc
RS
1689 ;
1690 if (i == mode)
1691 {
7cc61ee4
RS
1692 free (ira_register_move_cost[mode]);
1693 free (ira_may_move_in_cost[mode]);
1694 free (ira_may_move_out_cost[mode]);
e80ccebc
RS
1695 }
1696 }
7cc61ee4
RS
1697 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1698 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1699 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
e80ccebc 1700 last_mode_for_init_move_cost = -1;
058e97ec
VM
1701}
1702
1703/* This is called every time when register related information is
1704 changed. */
1705void
1706ira_init (void)
1707{
1708 free_register_move_costs ();
1709 setup_reg_mode_hard_regset ();
1710 setup_alloc_regs (flag_omit_frame_pointer != 0);
1711 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1712 setup_reg_class_nregs ();
1713 setup_prohibited_class_mode_regs ();
1756cb66
VM
1714 find_reg_classes ();
1715 clarify_prohibited_class_mode_regs ();
1716 setup_hard_regno_aclass ();
058e97ec
VM
1717 ira_init_costs ();
1718}
1719
1720/* Function called once at the end of compiler work. */
1721void
1722ira_finish_once (void)
1723{
1724 ira_finish_costs_once ();
1725 free_register_move_costs ();
55a2c322 1726 lra_finish_once ();
058e97ec
VM
1727}
1728
1729\f
15e7b94f
RS
1730#define ira_prohibited_mode_move_regs_initialized_p \
1731 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1732
1733/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1734static void
1735setup_prohibited_mode_move_regs (void)
1736{
1737 int i, j;
1738 rtx test_reg1, test_reg2, move_pat, move_insn;
1739
1740 if (ira_prohibited_mode_move_regs_initialized_p)
1741 return;
1742 ira_prohibited_mode_move_regs_initialized_p = true;
1743 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1744 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1745 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
ed8921dc 1746 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1747 for (i = 0; i < NUM_MACHINE_MODES; i++)
1748 {
1749 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1750 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1751 {
bbbbb16a 1752 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
058e97ec 1753 continue;
5444da31 1754 SET_REGNO_RAW (test_reg1, j);
32e8bb8e 1755 PUT_MODE (test_reg1, (enum machine_mode) i);
5444da31 1756 SET_REGNO_RAW (test_reg2, j);
32e8bb8e 1757 PUT_MODE (test_reg2, (enum machine_mode) i);
058e97ec
VM
1758 INSN_CODE (move_insn) = -1;
1759 recog_memoized (move_insn);
1760 if (INSN_CODE (move_insn) < 0)
1761 continue;
1762 extract_insn (move_insn);
1763 if (! constrain_operands (1))
1764 continue;
1765 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1766 }
1767 }
1768}
1769
1770\f
1771
3b6d1699
VM
1772/* Setup possible alternatives in ALTS for INSN. */
1773void
1774ira_setup_alts (rtx insn, HARD_REG_SET &alts)
1775{
1776 /* MAP nalt * nop -> start of constraints for given operand and
1777 alternative */
1778 static vec<const char *> insn_constraints;
1779 int nop, nalt;
1780 bool curr_swapped;
1781 const char *p;
1782 rtx op;
1783 int commutative = -1;
1784
1785 extract_insn (insn);
1786 CLEAR_HARD_REG_SET (alts);
1787 insn_constraints.release ();
1788 insn_constraints.safe_grow_cleared (recog_data.n_operands
1789 * recog_data.n_alternatives + 1);
1790 /* Check that the hard reg set is enough for holding all
1791 alternatives. It is hard to imagine the situation when the
1792 assertion is wrong. */
1793 ira_assert (recog_data.n_alternatives
1794 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1795 FIRST_PSEUDO_REGISTER));
1796 for (curr_swapped = false;; curr_swapped = true)
1797 {
1798 /* Calculate some data common for all alternatives to speed up the
1799 function. */
1800 for (nop = 0; nop < recog_data.n_operands; nop++)
1801 {
1802 for (nalt = 0, p = recog_data.constraints[nop];
1803 nalt < recog_data.n_alternatives;
1804 nalt++)
1805 {
1806 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1807 while (*p && *p != ',')
1808 p++;
1809 if (*p)
1810 p++;
1811 }
1812 }
1813 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1814 {
4cc8d9d2
RS
1815 if (!TEST_BIT (recog_data.enabled_alternatives, nalt)
1816 || TEST_HARD_REG_BIT (alts, nalt))
3b6d1699
VM
1817 continue;
1818
1819 for (nop = 0; nop < recog_data.n_operands; nop++)
1820 {
1821 int c, len;
1822
1823 op = recog_data.operand[nop];
1824 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1825 if (*p == 0 || *p == ',')
1826 continue;
1827
1828 do
1829 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1830 {
1831 case '#':
1832 case ',':
1833 c = '\0';
1834 case '\0':
1835 len = 0;
1836 break;
1837
1838 case '?': case '!': case '*': case '=': case '+':
1839 break;
1840
1841 case '%':
1842 /* We only support one commutative marker, the
1843 first one. We already set commutative
1844 above. */
1845 if (commutative < 0)
1846 commutative = nop;
1847 break;
1848
1849 case '&':
1850 break;
1851
1852 case '0': case '1': case '2': case '3': case '4':
1853 case '5': case '6': case '7': case '8': case '9':
1854 goto op_success;
1855 break;
1856
1857 case 'p':
1858 case 'g':
1859 case 'X':
1860 case TARGET_MEM_CONSTRAINT:
1861 goto op_success;
1862 break;
1863
1864 case '<':
1865 if (MEM_P (op)
1866 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1867 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1868 goto op_success;
1869 break;
1870
1871 case '>':
1872 if (MEM_P (op)
1873 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1874 || GET_CODE (XEXP (op, 0)) == POST_INC))
1875 goto op_success;
1876 break;
1877
1878 case 'E':
1879 case 'F':
1880 if (CONST_DOUBLE_AS_FLOAT_P (op)
1881 || (GET_CODE (op) == CONST_VECTOR
1882 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1883 goto op_success;
1884 break;
1885
1886 case 'G':
1887 case 'H':
1888 if (CONST_DOUBLE_AS_FLOAT_P (op)
1889 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1890 goto op_success;
1891 break;
1892
1893 case 's':
1894 if (CONST_SCALAR_INT_P (op))
1895 break;
1896 case 'i':
1897 if (CONSTANT_P (op))
1898 goto op_success;
1899 break;
1900
1901 case 'n':
1902 if (CONST_SCALAR_INT_P (op))
1903 goto op_success;
1904 break;
1905
1906 case 'I':
1907 case 'J':
1908 case 'K':
1909 case 'L':
1910 case 'M':
1911 case 'N':
1912 case 'O':
1913 case 'P':
1914 if (CONST_INT_P (op)
1915 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1916 goto op_success;
1917 break;
1918
1919 case 'V':
1920 if (MEM_P (op) && ! offsettable_memref_p (op))
1921 goto op_success;
1922 break;
1923
1924 case 'o':
1925 goto op_success;
1926 break;
1927
1928 default:
1929 {
1930 enum reg_class cl;
1931
1932 cl = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
1933 if (cl != NO_REGS)
1934 goto op_success;
1935#ifdef EXTRA_CONSTRAINT_STR
1936 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1937 goto op_success;
1938 else if (EXTRA_MEMORY_CONSTRAINT (c, p))
1939 goto op_success;
1940 else if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1941 goto op_success;
1942#endif
1943 break;
1944 }
1945 }
1946 while (p += len, c);
1947 break;
1948 op_success:
1949 ;
1950 }
1951 if (nop >= recog_data.n_operands)
1952 SET_HARD_REG_BIT (alts, nalt);
1953 }
1954 if (commutative < 0)
1955 break;
1956 if (curr_swapped)
1957 break;
1958 op = recog_data.operand[commutative];
1959 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1960 recog_data.operand[commutative + 1] = op;
1961
1962 }
1963}
1964
1965/* Return the number of the output non-early clobber operand which
1966 should be the same in any case as operand with number OP_NUM (or
1967 negative value if there is no such operand). The function takes
1968 only really possible alternatives into consideration. */
1969int
1970ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1971{
1972 int curr_alt, c, original, dup;
1973 bool ignore_p, use_commut_op_p;
1974 const char *str;
1975#ifdef EXTRA_CONSTRAINT_STR
1976 rtx op;
1977#endif
1978
1979 if (op_num < 0 || recog_data.n_alternatives == 0)
1980 return -1;
98f2f031
RS
1981 /* We should find duplications only for input operands. */
1982 if (recog_data.operand_type[op_num] != OP_IN)
1983 return -1;
3b6d1699 1984 str = recog_data.constraints[op_num];
98f2f031 1985 use_commut_op_p = false;
3b6d1699
VM
1986 for (;;)
1987 {
1988#ifdef EXTRA_CONSTRAINT_STR
1989 op = recog_data.operand[op_num];
1990#endif
1991
98f2f031
RS
1992 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1993 original = -1;;)
3b6d1699
VM
1994 {
1995 c = *str;
1996 if (c == '\0')
1997 break;
98f2f031 1998 if (c == '#')
3b6d1699
VM
1999 ignore_p = true;
2000 else if (c == ',')
2001 {
2002 curr_alt++;
98f2f031 2003 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
3b6d1699
VM
2004 }
2005 else if (! ignore_p)
2006 switch (c)
2007 {
3b6d1699
VM
2008 case 'X':
2009 case 'p':
2010 case 'g':
2011 goto fail;
2012 case 'r':
2013 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2014 case 'h': case 'j': case 'k': case 'l':
2015 case 'q': case 't': case 'u':
2016 case 'v': case 'w': case 'x': case 'y': case 'z':
2017 case 'A': case 'B': case 'C': case 'D':
2018 case 'Q': case 'R': case 'S': case 'T': case 'U':
2019 case 'W': case 'Y': case 'Z':
2020 {
2021 enum reg_class cl;
2022
2023 cl = (c == 'r'
2024 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, str));
2025 if (cl != NO_REGS)
2026 {
2027 if (! targetm.class_likely_spilled_p (cl))
2028 goto fail;
2029 }
2030#ifdef EXTRA_CONSTRAINT_STR
2031 else if (EXTRA_CONSTRAINT_STR (op, c, str))
2032 goto fail;
2033#endif
2034 break;
2035 }
2036
2037 case '0': case '1': case '2': case '3': case '4':
2038 case '5': case '6': case '7': case '8': case '9':
2039 if (original != -1 && original != c)
2040 goto fail;
2041 original = c;
2042 break;
2043 }
2044 str += CONSTRAINT_LEN (c, str);
2045 }
2046 if (original == -1)
2047 goto fail;
2048 dup = -1;
2049 for (ignore_p = false, str = recog_data.constraints[original - '0'];
2050 *str != 0;
2051 str++)
2052 if (ignore_p)
2053 {
2054 if (*str == ',')
2055 ignore_p = false;
2056 }
2057 else if (*str == '#')
2058 ignore_p = true;
2059 else if (! ignore_p)
2060 {
2061 if (*str == '=')
2062 dup = original - '0';
2063 /* It is better ignore an alternative with early clobber. */
2064 else if (*str == '&')
2065 goto fail;
2066 }
2067 if (dup >= 0)
2068 return dup;
2069 fail:
2070 if (use_commut_op_p)
2071 break;
2072 use_commut_op_p = true;
73f793e3 2073 if (recog_data.constraints[op_num][0] == '%')
3b6d1699 2074 str = recog_data.constraints[op_num + 1];
73f793e3 2075 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
3b6d1699
VM
2076 str = recog_data.constraints[op_num - 1];
2077 else
2078 break;
2079 }
2080 return -1;
2081}
2082
2083\f
2084
2085/* Search forward to see if the source register of a copy insn dies
2086 before either it or the destination register is modified, but don't
2087 scan past the end of the basic block. If so, we can replace the
2088 source with the destination and let the source die in the copy
2089 insn.
2090
2091 This will reduce the number of registers live in that range and may
2092 enable the destination and the source coalescing, thus often saving
2093 one register in addition to a register-register copy. */
2094
2095static void
2096decrease_live_ranges_number (void)
2097{
2098 basic_block bb;
2099 rtx insn, set, src, dest, dest_death, p, q, note;
2100 int sregno, dregno;
2101
2102 if (! flag_expensive_optimizations)
2103 return;
2104
2105 if (ira_dump_file)
2106 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2107
11cd3bed 2108 FOR_EACH_BB_FN (bb, cfun)
3b6d1699
VM
2109 FOR_BB_INSNS (bb, insn)
2110 {
2111 set = single_set (insn);
2112 if (! set)
2113 continue;
2114 src = SET_SRC (set);
2115 dest = SET_DEST (set);
2116 if (! REG_P (src) || ! REG_P (dest)
2117 || find_reg_note (insn, REG_DEAD, src))
2118 continue;
2119 sregno = REGNO (src);
2120 dregno = REGNO (dest);
2121
2122 /* We don't want to mess with hard regs if register classes
2123 are small. */
2124 if (sregno == dregno
2125 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2126 && (sregno < FIRST_PSEUDO_REGISTER
2127 || dregno < FIRST_PSEUDO_REGISTER))
2128 /* We don't see all updates to SP if they are in an
2129 auto-inc memory reference, so we must disallow this
2130 optimization on them. */
2131 || sregno == STACK_POINTER_REGNUM
2132 || dregno == STACK_POINTER_REGNUM)
2133 continue;
2134
2135 dest_death = NULL_RTX;
2136
2137 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2138 {
2139 if (! INSN_P (p))
2140 continue;
2141 if (BLOCK_FOR_INSN (p) != bb)
2142 break;
2143
2144 if (reg_set_p (src, p) || reg_set_p (dest, p)
2145 /* If SRC is an asm-declared register, it must not be
2146 replaced in any asm. Unfortunately, the REG_EXPR
2147 tree for the asm variable may be absent in the SRC
2148 rtx, so we can't check the actual register
2149 declaration easily (the asm operand will have it,
2150 though). To avoid complicating the test for a rare
2151 case, we just don't perform register replacement
2152 for a hard reg mentioned in an asm. */
2153 || (sregno < FIRST_PSEUDO_REGISTER
2154 && asm_noperands (PATTERN (p)) >= 0
2155 && reg_overlap_mentioned_p (src, PATTERN (p)))
2156 /* Don't change hard registers used by a call. */
2157 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2158 && find_reg_fusage (p, USE, src))
2159 /* Don't change a USE of a register. */
2160 || (GET_CODE (PATTERN (p)) == USE
2161 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2162 break;
2163
2164 /* See if all of SRC dies in P. This test is slightly
2165 more conservative than it needs to be. */
2166 if ((note = find_regno_note (p, REG_DEAD, sregno))
2167 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2168 {
2169 int failed = 0;
2170
2171 /* We can do the optimization. Scan forward from INSN
2172 again, replacing regs as we go. Set FAILED if a
2173 replacement can't be done. In that case, we can't
2174 move the death note for SRC. This should be
2175 rare. */
2176
2177 /* Set to stop at next insn. */
2178 for (q = next_real_insn (insn);
2179 q != next_real_insn (p);
2180 q = next_real_insn (q))
2181 {
2182 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2183 {
2184 /* If SRC is a hard register, we might miss
2185 some overlapping registers with
2186 validate_replace_rtx, so we would have to
2187 undo it. We can't if DEST is present in
2188 the insn, so fail in that combination of
2189 cases. */
2190 if (sregno < FIRST_PSEUDO_REGISTER
2191 && reg_mentioned_p (dest, PATTERN (q)))
2192 failed = 1;
2193
2194 /* Attempt to replace all uses. */
2195 else if (!validate_replace_rtx (src, dest, q))
2196 failed = 1;
2197
2198 /* If this succeeded, but some part of the
2199 register is still present, undo the
2200 replacement. */
2201 else if (sregno < FIRST_PSEUDO_REGISTER
2202 && reg_overlap_mentioned_p (src, PATTERN (q)))
2203 {
2204 validate_replace_rtx (dest, src, q);
2205 failed = 1;
2206 }
2207 }
2208
2209 /* If DEST dies here, remove the death note and
2210 save it for later. Make sure ALL of DEST dies
2211 here; again, this is overly conservative. */
2212 if (! dest_death
2213 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2214 {
2215 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2216 remove_note (q, dest_death);
2217 else
2218 {
2219 failed = 1;
2220 dest_death = 0;
2221 }
2222 }
2223 }
2224
2225 if (! failed)
2226 {
2227 /* Move death note of SRC from P to INSN. */
2228 remove_note (p, note);
2229 XEXP (note, 1) = REG_NOTES (insn);
2230 REG_NOTES (insn) = note;
2231 }
2232
2233 /* DEST is also dead if INSN has a REG_UNUSED note for
2234 DEST. */
2235 if (! dest_death
2236 && (dest_death
2237 = find_regno_note (insn, REG_UNUSED, dregno)))
2238 {
2239 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2240 remove_note (insn, dest_death);
2241 }
2242
2243 /* Put death note of DEST on P if we saw it die. */
2244 if (dest_death)
2245 {
2246 XEXP (dest_death, 1) = REG_NOTES (p);
2247 REG_NOTES (p) = dest_death;
2248 }
2249 break;
2250 }
2251
2252 /* If SRC is a hard register which is set or killed in
2253 some other way, we can't do this optimization. */
2254 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2255 break;
2256 }
2257 }
2258}
2259
2260\f
2261
0896cc66
JL
2262/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2263static bool
2264ira_bad_reload_regno_1 (int regno, rtx x)
2265{
ac0ab4f7 2266 int x_regno, n, i;
0896cc66
JL
2267 ira_allocno_t a;
2268 enum reg_class pref;
2269
2270 /* We only deal with pseudo regs. */
2271 if (! x || GET_CODE (x) != REG)
2272 return false;
2273
2274 x_regno = REGNO (x);
2275 if (x_regno < FIRST_PSEUDO_REGISTER)
2276 return false;
2277
2278 /* If the pseudo prefers REGNO explicitly, then do not consider
2279 REGNO a bad spill choice. */
2280 pref = reg_preferred_class (x_regno);
2281 if (reg_class_size[pref] == 1)
2282 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2283
2284 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2285 poor choice for a reload regno. */
2286 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
2287 n = ALLOCNO_NUM_OBJECTS (a);
2288 for (i = 0; i < n; i++)
2289 {
2290 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2291 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2292 return true;
2293 }
0896cc66
JL
2294 return false;
2295}
2296
2297/* Return nonzero if REGNO is a particularly bad choice for reloading
2298 IN or OUT. */
2299bool
2300ira_bad_reload_regno (int regno, rtx in, rtx out)
2301{
2302 return (ira_bad_reload_regno_1 (regno, in)
2303 || ira_bad_reload_regno_1 (regno, out));
2304}
2305
058e97ec
VM
2306/* Return TRUE if *LOC contains an asm. */
2307static int
2308insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2309{
2310 if ( !*loc)
2311 return FALSE;
2312 if (GET_CODE (*loc) == ASM_OPERANDS)
2313 return TRUE;
2314 return FALSE;
2315}
2316
2317
2318/* Return TRUE if INSN contains an ASM. */
2319static bool
2320insn_contains_asm (rtx insn)
2321{
2322 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
2323}
2324
b748fbd6 2325/* Add register clobbers from asm statements. */
058e97ec 2326static void
b748fbd6 2327compute_regs_asm_clobbered (void)
058e97ec
VM
2328{
2329 basic_block bb;
2330
11cd3bed 2331 FOR_EACH_BB_FN (bb, cfun)
058e97ec
VM
2332 {
2333 rtx insn;
2334 FOR_BB_INSNS_REVERSE (bb, insn)
2335 {
57512f53 2336 df_ref *def_rec;
058e97ec
VM
2337
2338 if (insn_contains_asm (insn))
2339 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
2340 {
57512f53 2341 df_ref def = *def_rec;
058e97ec 2342 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
2343 if (HARD_REGISTER_NUM_P (dregno))
2344 add_to_hard_reg_set (&crtl->asm_clobbers,
2345 GET_MODE (DF_REF_REAL_REG (def)),
2346 dregno);
058e97ec
VM
2347 }
2348 }
2349 }
2350}
2351
2352
8d49e7ef
VM
2353/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2354 REGS_EVER_LIVE. */
ce18efcb 2355void
8d49e7ef 2356ira_setup_eliminable_regset (void)
058e97ec 2357{
058e97ec 2358#ifdef ELIMINABLE_REGS
89ceba31 2359 int i;
058e97ec
VM
2360 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2361#endif
2362 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2363 sp for alloca. So we can't eliminate the frame pointer in that
2364 case. At some point, we should improve this by emitting the
2365 sp-adjusting insns for this case. */
55a2c322 2366 frame_pointer_needed
058e97ec
VM
2367 = (! flag_omit_frame_pointer
2368 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
d809253a
EB
2369 /* We need the frame pointer to catch stack overflow exceptions
2370 if the stack pointer is moving. */
2371 || (flag_stack_check && STACK_CHECK_MOVING_SP)
058e97ec 2372 || crtl->accesses_prior_frames
8d49e7ef 2373 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
939b37da
BI
2374 /* We need a frame pointer for all Cilk Plus functions that use
2375 Cilk keywords. */
b72271b9 2376 || (flag_cilkplus && cfun->is_cilk_function)
b52b1749 2377 || targetm.frame_pointer_required ());
058e97ec 2378
8d49e7ef
VM
2379 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2380 RTL is very small. So if we use frame pointer for RA and RTL
2381 actually prevents this, we will spill pseudos assigned to the
2382 frame pointer in LRA. */
058e97ec 2383
55a2c322
VM
2384 if (frame_pointer_needed)
2385 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2386
058e97ec
VM
2387 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2388 CLEAR_HARD_REG_SET (eliminable_regset);
2389
b748fbd6
PB
2390 compute_regs_asm_clobbered ();
2391
058e97ec
VM
2392 /* Build the regset of all eliminable registers and show we can't
2393 use those that we already know won't be eliminated. */
2394#ifdef ELIMINABLE_REGS
2395 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2396 {
2397 bool cannot_elim
7b5cbb57 2398 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
55a2c322 2399 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
058e97ec 2400
b748fbd6 2401 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
2402 {
2403 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2404
2405 if (cannot_elim)
2406 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2407 }
2408 else if (cannot_elim)
2409 error ("%s cannot be used in asm here",
2410 reg_names[eliminables[i].from]);
2411 else
2412 df_set_regs_ever_live (eliminables[i].from, true);
2413 }
e3339d0f 2414#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
b748fbd6 2415 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
2416 {
2417 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
55a2c322 2418 if (frame_pointer_needed)
058e97ec
VM
2419 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2420 }
55a2c322 2421 else if (frame_pointer_needed)
058e97ec
VM
2422 error ("%s cannot be used in asm here",
2423 reg_names[HARD_FRAME_POINTER_REGNUM]);
2424 else
2425 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2426#endif
2427
2428#else
b748fbd6 2429 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
2430 {
2431 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
55a2c322 2432 if (frame_pointer_needed)
058e97ec
VM
2433 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2434 }
55a2c322 2435 else if (frame_pointer_needed)
058e97ec
VM
2436 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2437 else
2438 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2439#endif
2440}
2441
2442\f
2443
2af2dbdc
VM
2444/* Vector of substitutions of register numbers,
2445 used to map pseudo regs into hardware regs.
2446 This is set up as a result of register allocation.
2447 Element N is the hard reg assigned to pseudo reg N,
2448 or is -1 if no hard reg was assigned.
2449 If N is a hard reg number, element N is N. */
2450short *reg_renumber;
2451
058e97ec
VM
2452/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2453 the allocation found by IRA. */
2454static void
2455setup_reg_renumber (void)
2456{
2457 int regno, hard_regno;
2458 ira_allocno_t a;
2459 ira_allocno_iterator ai;
2460
2461 caller_save_needed = 0;
2462 FOR_EACH_ALLOCNO (a, ai)
2463 {
55a2c322
VM
2464 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2465 continue;
058e97ec
VM
2466 /* There are no caps at this point. */
2467 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2468 if (! ALLOCNO_ASSIGNED_P (a))
2469 /* It can happen if A is not referenced but partially anticipated
2470 somewhere in a region. */
2471 ALLOCNO_ASSIGNED_P (a) = true;
2472 ira_free_allocno_updated_costs (a);
2473 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2474 regno = ALLOCNO_REGNO (a);
058e97ec 2475 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2476 if (hard_regno >= 0)
058e97ec 2477 {
1756cb66
VM
2478 int i, nwords;
2479 enum reg_class pclass;
2480 ira_object_t obj;
2481
2482 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2483 nwords = ALLOCNO_NUM_OBJECTS (a);
2484 for (i = 0; i < nwords; i++)
2485 {
2486 obj = ALLOCNO_OBJECT (a, i);
2487 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2488 reg_class_contents[pclass]);
2489 }
2490 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
2491 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2492 call_used_reg_set))
1756cb66
VM
2493 {
2494 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2495 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2496 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
15652f68 2497 || regno >= ira_reg_equiv_len
55a2c322 2498 || ira_equiv_no_lvalue_p (regno));
1756cb66
VM
2499 caller_save_needed = 1;
2500 }
058e97ec
VM
2501 }
2502 }
2503}
2504
2505/* Set up allocno assignment flags for further allocation
2506 improvements. */
2507static void
2508setup_allocno_assignment_flags (void)
2509{
2510 int hard_regno;
2511 ira_allocno_t a;
2512 ira_allocno_iterator ai;
2513
2514 FOR_EACH_ALLOCNO (a, ai)
2515 {
2516 if (! ALLOCNO_ASSIGNED_P (a))
2517 /* It can happen if A is not referenced but partially anticipated
2518 somewhere in a region. */
2519 ira_free_allocno_updated_costs (a);
2520 hard_regno = ALLOCNO_HARD_REGNO (a);
2521 /* Don't assign hard registers to allocnos which are destination
2522 of removed store at the end of loop. It has no sense to keep
2523 the same value in different hard registers. It is also
2524 impossible to assign hard registers correctly to such
2525 allocnos because the cost info and info about intersected
2526 calls are incorrect for them. */
2527 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2528 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2529 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2530 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2531 ira_assert
2532 (hard_regno < 0
2533 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2534 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2535 }
2536}
2537
2538/* Evaluate overall allocation cost and the costs for using hard
2539 registers and memory for allocnos. */
2540static void
2541calculate_allocation_cost (void)
2542{
2543 int hard_regno, cost;
2544 ira_allocno_t a;
2545 ira_allocno_iterator ai;
2546
2547 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2548 FOR_EACH_ALLOCNO (a, ai)
2549 {
2550 hard_regno = ALLOCNO_HARD_REGNO (a);
2551 ira_assert (hard_regno < 0
9181a6e5
VM
2552 || (ira_hard_reg_in_set_p
2553 (hard_regno, ALLOCNO_MODE (a),
2554 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2555 if (hard_regno < 0)
2556 {
2557 cost = ALLOCNO_MEMORY_COST (a);
2558 ira_mem_cost += cost;
2559 }
2560 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2561 {
2562 cost = (ALLOCNO_HARD_REG_COSTS (a)
2563 [ira_class_hard_reg_index
1756cb66 2564 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2565 ira_reg_cost += cost;
2566 }
2567 else
2568 {
1756cb66 2569 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2570 ira_reg_cost += cost;
2571 }
2572 ira_overall_cost += cost;
2573 }
2574
2575 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2576 {
2577 fprintf (ira_dump_file,
2578 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2579 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2580 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2581 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2582 ira_move_loops_num, ira_additional_jumps_num);
2583 }
2584
2585}
2586
2587#ifdef ENABLE_IRA_CHECKING
2588/* Check the correctness of the allocation. We do need this because
2589 of complicated code to transform more one region internal
2590 representation into one region representation. */
2591static void
2592check_allocation (void)
2593{
fa86d337 2594 ira_allocno_t a;
ac0ab4f7 2595 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2596 ira_allocno_iterator ai;
2597
2598 FOR_EACH_ALLOCNO (a, ai)
2599 {
ac0ab4f7
BS
2600 int n = ALLOCNO_NUM_OBJECTS (a);
2601 int i;
fa86d337 2602
058e97ec
VM
2603 if (ALLOCNO_CAP_MEMBER (a) != NULL
2604 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2605 continue;
2606 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
8cfd82bf
BS
2607 if (nregs == 1)
2608 /* We allocated a single hard register. */
2609 n = 1;
2610 else if (n > 1)
2611 /* We allocated multiple hard registers, and we will test
2612 conflicts in a granularity of single hard regs. */
2613 nregs = 1;
2614
ac0ab4f7
BS
2615 for (i = 0; i < n; i++)
2616 {
2617 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2618 ira_object_t conflict_obj;
2619 ira_object_conflict_iterator oci;
2620 int this_regno = hard_regno;
2621 if (n > 1)
fa86d337 2622 {
2805e6c0 2623 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2624 this_regno += n - i - 1;
2625 else
2626 this_regno += i;
2627 }
2628 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2629 {
2630 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2631 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2632 if (conflict_hard_regno < 0)
2633 continue;
8cfd82bf
BS
2634
2635 conflict_nregs
2636 = (hard_regno_nregs
2637 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2638
2639 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2640 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2641 {
2805e6c0 2642 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2643 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2644 - OBJECT_SUBWORD (conflict_obj) - 1);
2645 else
2646 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2647 conflict_nregs = 1;
2648 }
ac0ab4f7
BS
2649
2650 if ((conflict_hard_regno <= this_regno
2651 && this_regno < conflict_hard_regno + conflict_nregs)
2652 || (this_regno <= conflict_hard_regno
2653 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2654 {
2655 fprintf (stderr, "bad allocation for %d and %d\n",
2656 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2657 gcc_unreachable ();
2658 }
2659 }
2660 }
058e97ec
VM
2661 }
2662}
2663#endif
2664
55a2c322
VM
2665/* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2666 be already calculated. */
2667static void
2668setup_reg_equiv_init (void)
2669{
2670 int i;
2671 int max_regno = max_reg_num ();
2672
2673 for (i = 0; i < max_regno; i++)
2674 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2675}
2676
2677/* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2678 are insns which were generated for such movement. It is assumed
2679 that FROM_REGNO and TO_REGNO always have the same value at the
2680 point of any move containing such registers. This function is used
2681 to update equiv info for register shuffles on the region borders
2682 and for caller save/restore insns. */
2683void
2684ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2685{
2686 rtx insn, x, note;
2687
2688 if (! ira_reg_equiv[from_regno].defined_p
2689 && (! ira_reg_equiv[to_regno].defined_p
2690 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2691 && ! MEM_READONLY_P (x))))
5a107a0f 2692 return;
55a2c322
VM
2693 insn = insns;
2694 if (NEXT_INSN (insn) != NULL_RTX)
2695 {
2696 if (! ira_reg_equiv[to_regno].defined_p)
2697 {
2698 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2699 return;
2700 }
2701 ira_reg_equiv[to_regno].defined_p = false;
2702 ira_reg_equiv[to_regno].memory
2703 = ira_reg_equiv[to_regno].constant
2704 = ira_reg_equiv[to_regno].invariant
2705 = ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2706 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2707 fprintf (ira_dump_file,
2708 " Invalidating equiv info for reg %d\n", to_regno);
2709 return;
2710 }
2711 /* It is possible that FROM_REGNO still has no equivalence because
2712 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2713 insn was not processed yet. */
2714 if (ira_reg_equiv[from_regno].defined_p)
2715 {
2716 ira_reg_equiv[to_regno].defined_p = true;
2717 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2718 {
2719 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2720 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2721 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2722 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2723 ira_reg_equiv[to_regno].memory = x;
2724 if (! MEM_READONLY_P (x))
2725 /* We don't add the insn to insn init list because memory
2726 equivalence is just to say what memory is better to use
2727 when the pseudo is spilled. */
2728 return;
2729 }
2730 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2731 {
2732 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2733 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2734 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2735 ira_reg_equiv[to_regno].constant = x;
2736 }
2737 else
2738 {
2739 x = ira_reg_equiv[from_regno].invariant;
2740 ira_assert (x != NULL_RTX);
2741 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2742 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2743 ira_reg_equiv[to_regno].invariant = x;
2744 }
2745 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2746 {
2747 note = set_unique_reg_note (insn, REG_EQUIV, x);
2748 gcc_assert (note != NULL_RTX);
2749 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2750 {
2751 fprintf (ira_dump_file,
2752 " Adding equiv note to insn %u for reg %d ",
2753 INSN_UID (insn), to_regno);
cfbeaedf 2754 dump_value_slim (ira_dump_file, x, 1);
55a2c322
VM
2755 fprintf (ira_dump_file, "\n");
2756 }
2757 }
2758 }
2759 ira_reg_equiv[to_regno].init_insns
2760 = gen_rtx_INSN_LIST (VOIDmode, insn,
2761 ira_reg_equiv[to_regno].init_insns);
2762 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2763 fprintf (ira_dump_file,
2764 " Adding equiv init move insn %u to reg %d\n",
2765 INSN_UID (insn), to_regno);
2766}
2767
058e97ec
VM
2768/* Fix values of array REG_EQUIV_INIT after live range splitting done
2769 by IRA. */
2770static void
2771fix_reg_equiv_init (void)
2772{
70cc3288 2773 int max_regno = max_reg_num ();
f2034d06 2774 int i, new_regno, max;
058e97ec 2775 rtx x, prev, next, insn, set;
b8698a0f 2776
70cc3288 2777 if (max_regno_before_ira < max_regno)
058e97ec 2778 {
9771b263 2779 max = vec_safe_length (reg_equivs);
f2034d06
JL
2780 grow_reg_equivs ();
2781 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2782 for (prev = NULL_RTX, x = reg_equiv_init (i);
2783 x != NULL_RTX;
2784 x = next)
058e97ec
VM
2785 {
2786 next = XEXP (x, 1);
2787 insn = XEXP (x, 0);
2788 set = single_set (insn);
2789 ira_assert (set != NULL_RTX
2790 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2791 if (REG_P (SET_DEST (set))
2792 && ((int) REGNO (SET_DEST (set)) == i
2793 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2794 new_regno = REGNO (SET_DEST (set));
2795 else if (REG_P (SET_SRC (set))
2796 && ((int) REGNO (SET_SRC (set)) == i
2797 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2798 new_regno = REGNO (SET_SRC (set));
2799 else
2800 gcc_unreachable ();
2801 if (new_regno == i)
2802 prev = x;
2803 else
2804 {
55a2c322 2805 /* Remove the wrong list element. */
058e97ec 2806 if (prev == NULL_RTX)
f2034d06 2807 reg_equiv_init (i) = next;
058e97ec
VM
2808 else
2809 XEXP (prev, 1) = next;
f2034d06
JL
2810 XEXP (x, 1) = reg_equiv_init (new_regno);
2811 reg_equiv_init (new_regno) = x;
058e97ec
VM
2812 }
2813 }
2814 }
2815}
2816
2817#ifdef ENABLE_IRA_CHECKING
2818/* Print redundant memory-memory copies. */
2819static void
2820print_redundant_copies (void)
2821{
2822 int hard_regno;
2823 ira_allocno_t a;
2824 ira_copy_t cp, next_cp;
2825 ira_allocno_iterator ai;
b8698a0f 2826
058e97ec
VM
2827 FOR_EACH_ALLOCNO (a, ai)
2828 {
2829 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2830 /* It is a cap. */
2831 continue;
2832 hard_regno = ALLOCNO_HARD_REGNO (a);
2833 if (hard_regno >= 0)
2834 continue;
2835 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2836 if (cp->first == a)
2837 next_cp = cp->next_first_allocno_copy;
2838 else
2839 {
2840 next_cp = cp->next_second_allocno_copy;
2841 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2842 && cp->insn != NULL_RTX
2843 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2844 fprintf (ira_dump_file,
2845 " Redundant move from %d(freq %d):%d\n",
2846 INSN_UID (cp->insn), cp->freq, hard_regno);
2847 }
2848 }
2849}
2850#endif
2851
2852/* Setup preferred and alternative classes for new pseudo-registers
2853 created by IRA starting with START. */
2854static void
2855setup_preferred_alternate_classes_for_new_pseudos (int start)
2856{
2857 int i, old_regno;
2858 int max_regno = max_reg_num ();
2859
2860 for (i = start; i < max_regno; i++)
2861 {
2862 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2863 ira_assert (i != old_regno);
058e97ec 2864 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2865 reg_alternate_class (old_regno),
1756cb66 2866 reg_allocno_class (old_regno));
058e97ec
VM
2867 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2868 fprintf (ira_dump_file,
2869 " New r%d: setting preferred %s, alternative %s\n",
2870 i, reg_class_names[reg_preferred_class (old_regno)],
2871 reg_class_names[reg_alternate_class (old_regno)]);
2872 }
2873}
2874
2875\f
fb99ee9b
BS
2876/* The number of entries allocated in teg_info. */
2877static int allocated_reg_info_size;
058e97ec
VM
2878
2879/* Regional allocation can create new pseudo-registers. This function
2880 expands some arrays for pseudo-registers. */
2881static void
fb99ee9b 2882expand_reg_info (void)
058e97ec
VM
2883{
2884 int i;
2885 int size = max_reg_num ();
2886
2887 resize_reg_info ();
fb99ee9b 2888 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2889 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2890 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2891 allocated_reg_info_size = size;
058e97ec
VM
2892}
2893
3553f0bb
VM
2894/* Return TRUE if there is too high register pressure in the function.
2895 It is used to decide when stack slot sharing is worth to do. */
2896static bool
2897too_high_register_pressure_p (void)
2898{
2899 int i;
1756cb66 2900 enum reg_class pclass;
b8698a0f 2901
1756cb66 2902 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2903 {
1756cb66
VM
2904 pclass = ira_pressure_classes[i];
2905 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2906 return true;
2907 }
2908 return false;
2909}
2910
058e97ec
VM
2911\f
2912
2af2dbdc
VM
2913/* Indicate that hard register number FROM was eliminated and replaced with
2914 an offset from hard register number TO. The status of hard registers live
2915 at the start of a basic block is updated by replacing a use of FROM with
2916 a use of TO. */
2917
2918void
2919mark_elimination (int from, int to)
2920{
2921 basic_block bb;
bf744527 2922 bitmap r;
2af2dbdc 2923
11cd3bed 2924 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 2925 {
bf744527
SB
2926 r = DF_LR_IN (bb);
2927 if (bitmap_bit_p (r, from))
2928 {
2929 bitmap_clear_bit (r, from);
2930 bitmap_set_bit (r, to);
2931 }
2932 if (! df_live)
2933 continue;
2934 r = DF_LIVE_IN (bb);
2935 if (bitmap_bit_p (r, from))
2af2dbdc 2936 {
bf744527
SB
2937 bitmap_clear_bit (r, from);
2938 bitmap_set_bit (r, to);
2af2dbdc
VM
2939 }
2940 }
2941}
2942
2943\f
2944
55a2c322
VM
2945/* The length of the following array. */
2946int ira_reg_equiv_len;
2947
2948/* Info about equiv. info for each register. */
4c2b2d79 2949struct ira_reg_equiv_s *ira_reg_equiv;
55a2c322
VM
2950
2951/* Expand ira_reg_equiv if necessary. */
2952void
2953ira_expand_reg_equiv (void)
2954{
2955 int old = ira_reg_equiv_len;
2956
2957 if (ira_reg_equiv_len > max_reg_num ())
2958 return;
2959 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2960 ira_reg_equiv
4c2b2d79 2961 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
55a2c322 2962 ira_reg_equiv_len
4c2b2d79 2963 * sizeof (struct ira_reg_equiv_s));
55a2c322
VM
2964 gcc_assert (old < ira_reg_equiv_len);
2965 memset (ira_reg_equiv + old, 0,
4c2b2d79 2966 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
55a2c322
VM
2967}
2968
2969static void
2970init_reg_equiv (void)
2971{
2972 ira_reg_equiv_len = 0;
2973 ira_reg_equiv = NULL;
2974 ira_expand_reg_equiv ();
2975}
2976
2977static void
2978finish_reg_equiv (void)
2979{
2980 free (ira_reg_equiv);
2981}
2982
2983\f
2984
2af2dbdc
VM
2985struct equivalence
2986{
2af2dbdc
VM
2987 /* Set when a REG_EQUIV note is found or created. Use to
2988 keep track of what memory accesses might be created later,
2989 e.g. by reload. */
2990 rtx replacement;
2991 rtx *src_p;
8f5929e1
JJ
2992 /* The list of each instruction which initializes this register. */
2993 rtx init_insns;
2af2dbdc
VM
2994 /* Loop depth is used to recognize equivalences which appear
2995 to be present within the same loop (or in an inner loop). */
2996 int loop_depth;
2af2dbdc
VM
2997 /* Nonzero if this had a preexisting REG_EQUIV note. */
2998 int is_arg_equivalence;
8f5929e1
JJ
2999 /* Set when an attempt should be made to replace a register
3000 with the associated src_p entry. */
3001 char replace;
2af2dbdc
VM
3002};
3003
3004/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3005 structure for that register. */
3006static struct equivalence *reg_equiv;
3007
3008/* Used for communication between the following two functions: contains
3009 a MEM that we wish to ensure remains unchanged. */
3010static rtx equiv_mem;
3011
3012/* Set nonzero if EQUIV_MEM is modified. */
3013static int equiv_mem_modified;
3014
3015/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3016 Called via note_stores. */
3017static void
3018validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3019 void *data ATTRIBUTE_UNUSED)
3020{
3021 if ((REG_P (dest)
3022 && reg_overlap_mentioned_p (dest, equiv_mem))
3023 || (MEM_P (dest)
a55757ea 3024 && anti_dependence (equiv_mem, dest)))
2af2dbdc
VM
3025 equiv_mem_modified = 1;
3026}
3027
3028/* Verify that no store between START and the death of REG invalidates
3029 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3030 by storing into an overlapping memory location, or with a non-const
3031 CALL_INSN.
3032
3033 Return 1 if MEMREF remains valid. */
3034static int
3035validate_equiv_mem (rtx start, rtx reg, rtx memref)
3036{
3037 rtx insn;
3038 rtx note;
3039
3040 equiv_mem = memref;
3041 equiv_mem_modified = 0;
3042
3043 /* If the memory reference has side effects or is volatile, it isn't a
3044 valid equivalence. */
3045 if (side_effects_p (memref))
3046 return 0;
3047
3048 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
3049 {
3050 if (! INSN_P (insn))
3051 continue;
3052
3053 if (find_reg_note (insn, REG_DEAD, reg))
3054 return 1;
3055
a22265a4
JL
3056 /* This used to ignore readonly memory and const/pure calls. The problem
3057 is the equivalent form may reference a pseudo which gets assigned a
3058 call clobbered hard reg. When we later replace REG with its
3059 equivalent form, the value in the call-clobbered reg has been
3060 changed and all hell breaks loose. */
3061 if (CALL_P (insn))
2af2dbdc
VM
3062 return 0;
3063
3064 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3065
3066 /* If a register mentioned in MEMREF is modified via an
3067 auto-increment, we lose the equivalence. Do the same if one
3068 dies; although we could extend the life, it doesn't seem worth
3069 the trouble. */
3070
3071 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3072 if ((REG_NOTE_KIND (note) == REG_INC
3073 || REG_NOTE_KIND (note) == REG_DEAD)
3074 && REG_P (XEXP (note, 0))
3075 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3076 return 0;
3077 }
3078
3079 return 0;
3080}
3081
3082/* Returns zero if X is known to be invariant. */
3083static int
3084equiv_init_varies_p (rtx x)
3085{
3086 RTX_CODE code = GET_CODE (x);
3087 int i;
3088 const char *fmt;
3089
3090 switch (code)
3091 {
3092 case MEM:
3093 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3094
3095 case CONST:
d8116890 3096 CASE_CONST_ANY:
2af2dbdc
VM
3097 case SYMBOL_REF:
3098 case LABEL_REF:
3099 return 0;
3100
3101 case REG:
3102 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3103
3104 case ASM_OPERANDS:
3105 if (MEM_VOLATILE_P (x))
3106 return 1;
3107
3108 /* Fall through. */
3109
3110 default:
3111 break;
3112 }
3113
3114 fmt = GET_RTX_FORMAT (code);
3115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3116 if (fmt[i] == 'e')
3117 {
3118 if (equiv_init_varies_p (XEXP (x, i)))
3119 return 1;
3120 }
3121 else if (fmt[i] == 'E')
3122 {
3123 int j;
3124 for (j = 0; j < XVECLEN (x, i); j++)
3125 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3126 return 1;
3127 }
3128
3129 return 0;
3130}
3131
3132/* Returns nonzero if X (used to initialize register REGNO) is movable.
3133 X is only movable if the registers it uses have equivalent initializations
3134 which appear to be within the same loop (or in an inner loop) and movable
3135 or if they are not candidates for local_alloc and don't vary. */
3136static int
3137equiv_init_movable_p (rtx x, int regno)
3138{
3139 int i, j;
3140 const char *fmt;
3141 enum rtx_code code = GET_CODE (x);
3142
3143 switch (code)
3144 {
3145 case SET:
3146 return equiv_init_movable_p (SET_SRC (x), regno);
3147
3148 case CC0:
3149 case CLOBBER:
3150 return 0;
3151
3152 case PRE_INC:
3153 case PRE_DEC:
3154 case POST_INC:
3155 case POST_DEC:
3156 case PRE_MODIFY:
3157 case POST_MODIFY:
3158 return 0;
3159
3160 case REG:
1756cb66
VM
3161 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3162 && reg_equiv[REGNO (x)].replace)
3163 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3164 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
3165
3166 case UNSPEC_VOLATILE:
3167 return 0;
3168
3169 case ASM_OPERANDS:
3170 if (MEM_VOLATILE_P (x))
3171 return 0;
3172
3173 /* Fall through. */
3174
3175 default:
3176 break;
3177 }
3178
3179 fmt = GET_RTX_FORMAT (code);
3180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3181 switch (fmt[i])
3182 {
3183 case 'e':
3184 if (! equiv_init_movable_p (XEXP (x, i), regno))
3185 return 0;
3186 break;
3187 case 'E':
3188 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3189 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3190 return 0;
3191 break;
3192 }
3193
3194 return 1;
3195}
3196
1756cb66
VM
3197/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3198 true. */
2af2dbdc
VM
3199static int
3200contains_replace_regs (rtx x)
3201{
3202 int i, j;
3203 const char *fmt;
3204 enum rtx_code code = GET_CODE (x);
3205
3206 switch (code)
3207 {
2af2dbdc
VM
3208 case CONST:
3209 case LABEL_REF:
3210 case SYMBOL_REF:
d8116890 3211 CASE_CONST_ANY:
2af2dbdc
VM
3212 case PC:
3213 case CC0:
3214 case HIGH:
3215 return 0;
3216
3217 case REG:
3218 return reg_equiv[REGNO (x)].replace;
3219
3220 default:
3221 break;
3222 }
3223
3224 fmt = GET_RTX_FORMAT (code);
3225 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3226 switch (fmt[i])
3227 {
3228 case 'e':
3229 if (contains_replace_regs (XEXP (x, i)))
3230 return 1;
3231 break;
3232 case 'E':
3233 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3234 if (contains_replace_regs (XVECEXP (x, i, j)))
3235 return 1;
3236 break;
3237 }
3238
3239 return 0;
3240}
3241
3242/* TRUE if X references a memory location that would be affected by a store
3243 to MEMREF. */
3244static int
3245memref_referenced_p (rtx memref, rtx x)
3246{
3247 int i, j;
3248 const char *fmt;
3249 enum rtx_code code = GET_CODE (x);
3250
3251 switch (code)
3252 {
2af2dbdc
VM
3253 case CONST:
3254 case LABEL_REF:
3255 case SYMBOL_REF:
d8116890 3256 CASE_CONST_ANY:
2af2dbdc
VM
3257 case PC:
3258 case CC0:
3259 case HIGH:
3260 case LO_SUM:
3261 return 0;
3262
3263 case REG:
3264 return (reg_equiv[REGNO (x)].replacement
3265 && memref_referenced_p (memref,
3266 reg_equiv[REGNO (x)].replacement));
3267
3268 case MEM:
53d9622b 3269 if (true_dependence (memref, VOIDmode, x))
2af2dbdc
VM
3270 return 1;
3271 break;
3272
3273 case SET:
3274 /* If we are setting a MEM, it doesn't count (its address does), but any
3275 other SET_DEST that has a MEM in it is referencing the MEM. */
3276 if (MEM_P (SET_DEST (x)))
3277 {
3278 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3279 return 1;
3280 }
3281 else if (memref_referenced_p (memref, SET_DEST (x)))
3282 return 1;
3283
3284 return memref_referenced_p (memref, SET_SRC (x));
3285
3286 default:
3287 break;
3288 }
3289
3290 fmt = GET_RTX_FORMAT (code);
3291 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3292 switch (fmt[i])
3293 {
3294 case 'e':
3295 if (memref_referenced_p (memref, XEXP (x, i)))
3296 return 1;
3297 break;
3298 case 'E':
3299 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3300 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3301 return 1;
3302 break;
3303 }
3304
3305 return 0;
3306}
3307
3308/* TRUE if some insn in the range (START, END] references a memory location
3309 that would be affected by a store to MEMREF. */
3310static int
3311memref_used_between_p (rtx memref, rtx start, rtx end)
3312{
3313 rtx insn;
3314
3315 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3316 insn = NEXT_INSN (insn))
3317 {
b5b8b0ac 3318 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 3319 continue;
b8698a0f 3320
2af2dbdc
VM
3321 if (memref_referenced_p (memref, PATTERN (insn)))
3322 return 1;
3323
3324 /* Nonconst functions may access memory. */
3325 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3326 return 1;
3327 }
3328
3329 return 0;
3330}
3331
3332/* Mark REG as having no known equivalence.
3333 Some instructions might have been processed before and furnished
3334 with REG_EQUIV notes for this register; these notes will have to be
3335 removed.
3336 STORE is the piece of RTL that does the non-constant / conflicting
3337 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3338 but needs to be there because this function is called from note_stores. */
3339static void
1756cb66
VM
3340no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3341 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
3342{
3343 int regno;
3344 rtx list;
3345
3346 if (!REG_P (reg))
3347 return;
3348 regno = REGNO (reg);
3349 list = reg_equiv[regno].init_insns;
3350 if (list == const0_rtx)
3351 return;
3352 reg_equiv[regno].init_insns = const0_rtx;
3353 reg_equiv[regno].replacement = NULL_RTX;
3354 /* This doesn't matter for equivalences made for argument registers, we
3355 should keep their initialization insns. */
3356 if (reg_equiv[regno].is_arg_equivalence)
3357 return;
55a2c322
VM
3358 ira_reg_equiv[regno].defined_p = false;
3359 ira_reg_equiv[regno].init_insns = NULL_RTX;
2af2dbdc
VM
3360 for (; list; list = XEXP (list, 1))
3361 {
3362 rtx insn = XEXP (list, 0);
3363 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3364 }
3365}
3366
e3f9e0ac
WM
3367/* Check whether the SUBREG is a paradoxical subreg and set the result
3368 in PDX_SUBREGS. */
3369
3370static int
3371set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
3372{
3373 rtx reg;
3374
3375 if ((*subreg) == NULL_RTX)
3376 return 1;
3377 if (GET_CODE (*subreg) != SUBREG)
3378 return 0;
3379 reg = SUBREG_REG (*subreg);
3380 if (!REG_P (reg))
3381 return 0;
3382
3383 if (paradoxical_subreg_p (*subreg))
3384 ((bool *)pdx_subregs)[REGNO (reg)] = true;
3385
3386 return 0;
3387}
3388
3a6191b1
JJ
3389/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3390 equivalent replacement. */
3391
3392static rtx
3393adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3394{
3395 if (REG_P (loc))
3396 {
3397 bitmap cleared_regs = (bitmap) data;
3398 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
b8f045e2 3399 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3a6191b1
JJ
3400 NULL_RTX, adjust_cleared_regs, data);
3401 }
3402 return NULL_RTX;
3403}
3404
2af2dbdc
VM
3405/* Nonzero if we recorded an equivalence for a LABEL_REF. */
3406static int recorded_label_ref;
3407
3408/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
3409 compilation (either because they can be referenced in memory or are
3410 set once from a single constant). Lower their priority for a
3411 register.
2af2dbdc 3412
1756cb66
VM
3413 If such a register is only referenced once, try substituting its
3414 value into the using insn. If it succeeds, we can eliminate the
3415 register completely.
2af2dbdc 3416
55a2c322 3417 Initialize init_insns in ira_reg_equiv array.
2af2dbdc
VM
3418
3419 Return non-zero if jump label rebuilding should be done. */
3420static int
3421update_equiv_regs (void)
3422{
3423 rtx insn;
3424 basic_block bb;
3425 int loop_depth;
3426 bitmap cleared_regs;
e3f9e0ac 3427 bool *pdx_subregs;
b8698a0f 3428
2af2dbdc
VM
3429 /* We need to keep track of whether or not we recorded a LABEL_REF so
3430 that we know if the jump optimizer needs to be rerun. */
3431 recorded_label_ref = 0;
3432
e3f9e0ac
WM
3433 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3434 subreg. */
3435 pdx_subregs = XCNEWVEC (bool, max_regno);
3436
2af2dbdc 3437 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
f2034d06 3438 grow_reg_equivs ();
2af2dbdc
VM
3439
3440 init_alias_analysis ();
3441
e3f9e0ac
WM
3442 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3443 paradoxical subreg. Don't set such reg sequivalent to a mem,
3444 because lra will not substitute such equiv memory in order to
3445 prevent access beyond allocated memory for paradoxical memory subreg. */
11cd3bed 3446 FOR_EACH_BB_FN (bb, cfun)
e3f9e0ac 3447 FOR_BB_INSNS (bb, insn)
c34c46dd
RS
3448 if (NONDEBUG_INSN_P (insn))
3449 for_each_rtx (&insn, set_paradoxical_subreg, (void *) pdx_subregs);
e3f9e0ac 3450
2af2dbdc
VM
3451 /* Scan the insns and find which registers have equivalences. Do this
3452 in a separate scan of the insns because (due to -fcse-follow-jumps)
3453 a register can be set below its use. */
11cd3bed 3454 FOR_EACH_BB_FN (bb, cfun)
2af2dbdc 3455 {
391886c8 3456 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3457
3458 for (insn = BB_HEAD (bb);
3459 insn != NEXT_INSN (BB_END (bb));
3460 insn = NEXT_INSN (insn))
3461 {
3462 rtx note;
3463 rtx set;
3464 rtx dest, src;
3465 int regno;
3466
3467 if (! INSN_P (insn))
3468 continue;
3469
3470 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3471 if (REG_NOTE_KIND (note) == REG_INC)
3472 no_equiv (XEXP (note, 0), note, NULL);
3473
3474 set = single_set (insn);
3475
3476 /* If this insn contains more (or less) than a single SET,
3477 only mark all destinations as having no known equivalence. */
3478 if (set == 0)
3479 {
3480 note_stores (PATTERN (insn), no_equiv, NULL);
3481 continue;
3482 }
3483 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3484 {
3485 int i;
3486
3487 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3488 {
3489 rtx part = XVECEXP (PATTERN (insn), 0, i);
3490 if (part != set)
3491 note_stores (part, no_equiv, NULL);
3492 }
3493 }
3494
3495 dest = SET_DEST (set);
3496 src = SET_SRC (set);
3497
3498 /* See if this is setting up the equivalence between an argument
3499 register and its stack slot. */
3500 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3501 if (note)
3502 {
3503 gcc_assert (REG_P (dest));
3504 regno = REGNO (dest);
3505
55a2c322
VM
3506 /* Note that we don't want to clear init_insns in
3507 ira_reg_equiv even if there are multiple sets of this
3508 register. */
2af2dbdc
VM
3509 reg_equiv[regno].is_arg_equivalence = 1;
3510
5a107a0f
VM
3511 /* The insn result can have equivalence memory although
3512 the equivalence is not set up by the insn. We add
3513 this insn to init insns as it is a flag for now that
3514 regno has an equivalence. We will remove the insn
3515 from init insn list later. */
3516 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
55a2c322
VM
3517 ira_reg_equiv[regno].init_insns
3518 = gen_rtx_INSN_LIST (VOIDmode, insn,
3519 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3520
3521 /* Continue normally in case this is a candidate for
3522 replacements. */
3523 }
3524
3525 if (!optimize)
3526 continue;
3527
3528 /* We only handle the case of a pseudo register being set
3529 once, or always to the same value. */
1fe28116
VM
3530 /* ??? The mn10200 port breaks if we add equivalences for
3531 values that need an ADDRESS_REGS register and set them equivalent
3532 to a MEM of a pseudo. The actual problem is in the over-conservative
3533 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3534 calculate_needs, but we traditionally work around this problem
3535 here by rejecting equivalences when the destination is in a register
3536 that's likely spilled. This is fragile, of course, since the
3537 preferred class of a pseudo depends on all instructions that set
3538 or use it. */
3539
2af2dbdc
VM
3540 if (!REG_P (dest)
3541 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1fe28116 3542 || reg_equiv[regno].init_insns == const0_rtx
07b8f0a8 3543 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 3544 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
3545 {
3546 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3547 also set somewhere else to a constant. */
3548 note_stores (set, no_equiv, NULL);
3549 continue;
3550 }
3551
e3f9e0ac
WM
3552 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3553 if (MEM_P (src) && pdx_subregs[regno])
3554 {
3555 note_stores (set, no_equiv, NULL);
3556 continue;
3557 }
3558
2af2dbdc
VM
3559 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3560
3561 /* cse sometimes generates function invariants, but doesn't put a
3562 REG_EQUAL note on the insn. Since this note would be redundant,
3563 there's no point creating it earlier than here. */
3564 if (! note && ! rtx_varies_p (src, 0))
3565 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3566
3567 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3568 since it represents a function call */
3569 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3570 note = NULL_RTX;
3571
3572 if (DF_REG_DEF_COUNT (regno) != 1
3573 && (! note
3574 || rtx_varies_p (XEXP (note, 0), 0)
3575 || (reg_equiv[regno].replacement
3576 && ! rtx_equal_p (XEXP (note, 0),
3577 reg_equiv[regno].replacement))))
3578 {
3579 no_equiv (dest, set, NULL);
3580 continue;
3581 }
3582 /* Record this insn as initializing this register. */
3583 reg_equiv[regno].init_insns
3584 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3585
3586 /* If this register is known to be equal to a constant, record that
3587 it is always equivalent to the constant. */
3588 if (DF_REG_DEF_COUNT (regno) == 1
3589 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3590 {
3591 rtx note_value = XEXP (note, 0);
3592 remove_note (insn, note);
3593 set_unique_reg_note (insn, REG_EQUIV, note_value);
3594 }
3595
3596 /* If this insn introduces a "constant" register, decrease the priority
3597 of that register. Record this insn if the register is only used once
3598 more and the equivalence value is the same as our source.
3599
3600 The latter condition is checked for two reasons: First, it is an
3601 indication that it may be more efficient to actually emit the insn
3602 as written (if no registers are available, reload will substitute
3603 the equivalence). Secondly, it avoids problems with any registers
3604 dying in this insn whose death notes would be missed.
3605
3606 If we don't have a REG_EQUIV note, see if this insn is loading
3607 a register used only in one basic block from a MEM. If so, and the
3608 MEM remains unchanged for the life of the register, add a REG_EQUIV
3609 note. */
3610
3611 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3612
3613 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3614 && MEM_P (SET_SRC (set))
3615 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3616 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3617
3618 if (note)
3619 {
3620 int regno = REGNO (dest);
3621 rtx x = XEXP (note, 0);
3622
3623 /* If we haven't done so, record for reload that this is an
3624 equivalencing insn. */
3625 if (!reg_equiv[regno].is_arg_equivalence)
55a2c322
VM
3626 ira_reg_equiv[regno].init_insns
3627 = gen_rtx_INSN_LIST (VOIDmode, insn,
3628 ira_reg_equiv[regno].init_insns);
2af2dbdc
VM
3629
3630 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3631 We might end up substituting the LABEL_REF for uses of the
3632 pseudo here or later. That kind of transformation may turn an
3633 indirect jump into a direct jump, in which case we must rerun the
3634 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3635 if (GET_CODE (x) == LABEL_REF
3636 || (GET_CODE (x) == CONST
3637 && GET_CODE (XEXP (x, 0)) == PLUS
3638 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3639 recorded_label_ref = 1;
3640
3641 reg_equiv[regno].replacement = x;
3642 reg_equiv[regno].src_p = &SET_SRC (set);
3643 reg_equiv[regno].loop_depth = loop_depth;
3644
3645 /* Don't mess with things live during setjmp. */
3646 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3647 {
3648 /* Note that the statement below does not affect the priority
3649 in local-alloc! */
3650 REG_LIVE_LENGTH (regno) *= 2;
3651
3652 /* If the register is referenced exactly twice, meaning it is
3653 set once and used once, indicate that the reference may be
3654 replaced by the equivalence we computed above. Do this
3655 even if the register is only used in one block so that
3656 dependencies can be handled where the last register is
3657 used in a different block (i.e. HIGH / LO_SUM sequences)
3658 and to reduce the number of registers alive across
3659 calls. */
3660
3661 if (REG_N_REFS (regno) == 2
3662 && (rtx_equal_p (x, src)
3663 || ! equiv_init_varies_p (src))
3664 && NONJUMP_INSN_P (insn)
3665 && equiv_init_movable_p (PATTERN (insn), regno))
3666 reg_equiv[regno].replace = 1;
3667 }
3668 }
3669 }
3670 }
3671
3672 if (!optimize)
3673 goto out;
3674
3675 /* A second pass, to gather additional equivalences with memory. This needs
3676 to be done after we know which registers we are going to replace. */
3677
3678 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3679 {
3680 rtx set, src, dest;
3681 unsigned regno;
3682
3683 if (! INSN_P (insn))
3684 continue;
3685
3686 set = single_set (insn);
3687 if (! set)
3688 continue;
3689
3690 dest = SET_DEST (set);
3691 src = SET_SRC (set);
3692
3693 /* If this sets a MEM to the contents of a REG that is only used
3694 in a single basic block, see if the register is always equivalent
3695 to that memory location and if moving the store from INSN to the
3696 insn that set REG is safe. If so, put a REG_EQUIV note on the
3697 initializing insn.
3698
3699 Don't add a REG_EQUIV note if the insn already has one. The existing
3700 REG_EQUIV is likely more useful than the one we are adding.
3701
3702 If one of the regs in the address has reg_equiv[REGNO].replace set,
3703 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3704 optimization may move the set of this register immediately before
3705 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3706 the mention in the REG_EQUIV note would be to an uninitialized
3707 pseudo. */
3708
3709 if (MEM_P (dest) && REG_P (src)
3710 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3711 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3712 && DF_REG_DEF_COUNT (regno) == 1
3713 && reg_equiv[regno].init_insns != 0
3714 && reg_equiv[regno].init_insns != const0_rtx
3715 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3716 REG_EQUIV, NULL_RTX)
e3f9e0ac
WM
3717 && ! contains_replace_regs (XEXP (dest, 0))
3718 && ! pdx_subregs[regno])
2af2dbdc
VM
3719 {
3720 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3721 if (validate_equiv_mem (init_insn, src, dest)
3722 && ! memref_used_between_p (dest, init_insn, insn)
3723 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3724 multiple sets. */
3725 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3726 {
3727 /* This insn makes the equivalence, not the one initializing
3728 the register. */
55a2c322 3729 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3730 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3731 df_notes_rescan (init_insn);
3732 }
3733 }
3734 }
3735
3736 cleared_regs = BITMAP_ALLOC (NULL);
3737 /* Now scan all regs killed in an insn to see if any of them are
3738 registers only used that once. If so, see if we can replace the
3739 reference with the equivalent form. If we can, delete the
3740 initializing reference and this register will go away. If we
3741 can't replace the reference, and the initializing reference is
3742 within the same loop (or in an inner loop), then move the register
3743 initialization just before the use, so that they are in the same
3744 basic block. */
4f42035e 3745 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc 3746 {
391886c8 3747 loop_depth = bb_loop_depth (bb);
2af2dbdc
VM
3748 for (insn = BB_END (bb);
3749 insn != PREV_INSN (BB_HEAD (bb));
3750 insn = PREV_INSN (insn))
3751 {
3752 rtx link;
3753
3754 if (! INSN_P (insn))
3755 continue;
3756
3757 /* Don't substitute into a non-local goto, this confuses CFG. */
3758 if (JUMP_P (insn)
3759 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3760 continue;
3761
3762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3763 {
3764 if (REG_NOTE_KIND (link) == REG_DEAD
3765 /* Make sure this insn still refers to the register. */
3766 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3767 {
3768 int regno = REGNO (XEXP (link, 0));
3769 rtx equiv_insn;
3770
3771 if (! reg_equiv[regno].replace
0cad4827 3772 || reg_equiv[regno].loop_depth < loop_depth
f20f2613
VM
3773 /* There is no sense to move insns if live range
3774 shrinkage or register pressure-sensitive
3775 scheduling were done because it will not
3776 improve allocation but worsen insn schedule
3777 with a big probability. */
3778 || flag_live_range_shrinkage
0cad4827 3779 || (flag_sched_pressure && flag_schedule_insns))
2af2dbdc
VM
3780 continue;
3781
3782 /* reg_equiv[REGNO].replace gets set only when
3783 REG_N_REFS[REGNO] is 2, i.e. the register is set
55a2c322
VM
3784 once and used once. (If it were only set, but
3785 not used, flow would have deleted the setting
3786 insns.) Hence there can only be one insn in
3787 reg_equiv[REGNO].init_insns. */
2af2dbdc
VM
3788 gcc_assert (reg_equiv[regno].init_insns
3789 && !XEXP (reg_equiv[regno].init_insns, 1));
3790 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3791
3792 /* We may not move instructions that can throw, since
3793 that changes basic block boundaries and we are not
3794 prepared to adjust the CFG to match. */
3795 if (can_throw_internal (equiv_insn))
3796 continue;
3797
3798 if (asm_noperands (PATTERN (equiv_insn)) < 0
3799 && validate_replace_rtx (regno_reg_rtx[regno],
3800 *(reg_equiv[regno].src_p), insn))
3801 {
3802 rtx equiv_link;
3803 rtx last_link;
3804 rtx note;
3805
3806 /* Find the last note. */
3807 for (last_link = link; XEXP (last_link, 1);
3808 last_link = XEXP (last_link, 1))
3809 ;
3810
3811 /* Append the REG_DEAD notes from equiv_insn. */
3812 equiv_link = REG_NOTES (equiv_insn);
3813 while (equiv_link)
3814 {
3815 note = equiv_link;
3816 equiv_link = XEXP (equiv_link, 1);
3817 if (REG_NOTE_KIND (note) == REG_DEAD)
3818 {
3819 remove_note (equiv_insn, note);
3820 XEXP (last_link, 1) = note;
3821 XEXP (note, 1) = NULL_RTX;
3822 last_link = note;
3823 }
3824 }
3825
3826 remove_death (regno, insn);
3827 SET_REG_N_REFS (regno, 0);
3828 REG_FREQ (regno) = 0;
3829 delete_insn (equiv_insn);
3830
3831 reg_equiv[regno].init_insns
3832 = XEXP (reg_equiv[regno].init_insns, 1);
3833
55a2c322 3834 ira_reg_equiv[regno].init_insns = NULL_RTX;
2af2dbdc
VM
3835 bitmap_set_bit (cleared_regs, regno);
3836 }
3837 /* Move the initialization of the register to just before
3838 INSN. Update the flow information. */
b5b8b0ac 3839 else if (prev_nondebug_insn (insn) != equiv_insn)
2af2dbdc
VM
3840 {
3841 rtx new_insn;
3842
3843 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3844 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3845 REG_NOTES (equiv_insn) = 0;
3846 /* Rescan it to process the notes. */
3847 df_insn_rescan (new_insn);
3848
3849 /* Make sure this insn is recognized before
3850 reload begins, otherwise
3851 eliminate_regs_in_insn will die. */
3852 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3853
3854 delete_insn (equiv_insn);
3855
3856 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3857
3858 REG_BASIC_BLOCK (regno) = bb->index;
3859 REG_N_CALLS_CROSSED (regno) = 0;
3860 REG_FREQ_CALLS_CROSSED (regno) = 0;
3861 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3862 REG_LIVE_LENGTH (regno) = 2;
3863
3864 if (insn == BB_HEAD (bb))
3865 BB_HEAD (bb) = PREV_INSN (insn);
3866
55a2c322 3867 ira_reg_equiv[regno].init_insns
2af2dbdc
VM
3868 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3869 bitmap_set_bit (cleared_regs, regno);
3870 }
3871 }
3872 }
3873 }
3874 }
3875
3876 if (!bitmap_empty_p (cleared_regs))
3a6191b1 3877 {
11cd3bed 3878 FOR_EACH_BB_FN (bb, cfun)
3a6191b1 3879 {
3a6191b1
JJ
3880 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3881 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
bf744527
SB
3882 if (! df_live)
3883 continue;
3884 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3885 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3a6191b1
JJ
3886 }
3887
3888 /* Last pass - adjust debug insns referencing cleared regs. */
3889 if (MAY_HAVE_DEBUG_INSNS)
3890 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3891 if (DEBUG_INSN_P (insn))
3892 {
3893 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3894 INSN_VAR_LOCATION_LOC (insn)
3895 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3896 adjust_cleared_regs,
3897 (void *) cleared_regs);
3898 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3899 df_insn_rescan (insn);
3900 }
3901 }
2af2dbdc
VM
3902
3903 BITMAP_FREE (cleared_regs);
3904
3905 out:
3906 /* Clean up. */
3907
3908 end_alias_analysis ();
3909 free (reg_equiv);
e3f9e0ac 3910 free (pdx_subregs);
2af2dbdc
VM
3911 return recorded_label_ref;
3912}
3913
3914\f
3915
55a2c322
VM
3916/* Set up fields memory, constant, and invariant from init_insns in
3917 the structures of array ira_reg_equiv. */
3918static void
3919setup_reg_equiv (void)
3920{
3921 int i;
5a107a0f 3922 rtx elem, prev_elem, next_elem, insn, set, x;
55a2c322
VM
3923
3924 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
5a107a0f
VM
3925 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3926 elem;
3927 prev_elem = elem, elem = next_elem)
55a2c322 3928 {
5a107a0f 3929 next_elem = XEXP (elem, 1);
55a2c322
VM
3930 insn = XEXP (elem, 0);
3931 set = single_set (insn);
3932
3933 /* Init insns can set up equivalence when the reg is a destination or
3934 a source (in this case the destination is memory). */
3935 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3936 {
3937 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
5a107a0f
VM
3938 {
3939 x = XEXP (x, 0);
3940 if (REG_P (SET_DEST (set))
3941 && REGNO (SET_DEST (set)) == (unsigned int) i
3942 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3943 {
3944 /* This insn reporting the equivalence but
3945 actually not setting it. Remove it from the
3946 list. */
3947 if (prev_elem == NULL)
3948 ira_reg_equiv[i].init_insns = next_elem;
3949 else
3950 XEXP (prev_elem, 1) = next_elem;
3951 elem = prev_elem;
3952 }
3953 }
55a2c322
VM
3954 else if (REG_P (SET_DEST (set))
3955 && REGNO (SET_DEST (set)) == (unsigned int) i)
3956 x = SET_SRC (set);
3957 else
3958 {
3959 gcc_assert (REG_P (SET_SRC (set))
3960 && REGNO (SET_SRC (set)) == (unsigned int) i);
3961 x = SET_DEST (set);
3962 }
3963 if (! function_invariant_p (x)
3964 || ! flag_pic
3965 /* A function invariant is often CONSTANT_P but may
3966 include a register. We promise to only pass
3967 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3968 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3969 {
3970 /* It can happen that a REG_EQUIV note contains a MEM
3971 that is not a legitimate memory operand. As later
3972 stages of reload assume that all addresses found in
3973 the lra_regno_equiv_* arrays were originally
3974 legitimate, we ignore such REG_EQUIV notes. */
3975 if (memory_operand (x, VOIDmode))
3976 {
3977 ira_reg_equiv[i].defined_p = true;
3978 ira_reg_equiv[i].memory = x;
3979 continue;
3980 }
3981 else if (function_invariant_p (x))
3982 {
3983 enum machine_mode mode;
3984
3985 mode = GET_MODE (SET_DEST (set));
3986 if (GET_CODE (x) == PLUS
3987 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3988 /* This is PLUS of frame pointer and a constant,
3989 or fp, or argp. */
3990 ira_reg_equiv[i].invariant = x;
3991 else if (targetm.legitimate_constant_p (mode, x))
3992 ira_reg_equiv[i].constant = x;
3993 else
3994 {
3995 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3996 if (ira_reg_equiv[i].memory == NULL_RTX)
3997 {
3998 ira_reg_equiv[i].defined_p = false;
3999 ira_reg_equiv[i].init_insns = NULL_RTX;
4000 break;
4001 }
4002 }
4003 ira_reg_equiv[i].defined_p = true;
4004 continue;
4005 }
4006 }
4007 }
4008 ira_reg_equiv[i].defined_p = false;
4009 ira_reg_equiv[i].init_insns = NULL_RTX;
4010 break;
4011 }
4012}
4013
4014\f
4015
2af2dbdc
VM
4016/* Print chain C to FILE. */
4017static void
4018print_insn_chain (FILE *file, struct insn_chain *c)
4019{
c3284718 4020 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
2af2dbdc
VM
4021 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4022 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4023}
4024
4025
4026/* Print all reload_insn_chains to FILE. */
4027static void
4028print_insn_chains (FILE *file)
4029{
4030 struct insn_chain *c;
4031 for (c = reload_insn_chain; c ; c = c->next)
4032 print_insn_chain (file, c);
4033}
4034
4035/* Return true if pseudo REGNO should be added to set live_throughout
4036 or dead_or_set of the insn chains for reload consideration. */
4037static bool
4038pseudo_for_reload_consideration_p (int regno)
4039{
4040 /* Consider spilled pseudos too for IRA because they still have a
4041 chance to get hard-registers in the reload when IRA is used. */
b100151b 4042 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
4043}
4044
4045/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4046 REG to the number of nregs, and INIT_VALUE to get the
4047 initialization. ALLOCNUM need not be the regno of REG. */
4048static void
4049init_live_subregs (bool init_value, sbitmap *live_subregs,
cee784f5 4050 bitmap live_subregs_used, int allocnum, rtx reg)
2af2dbdc
VM
4051{
4052 unsigned int regno = REGNO (SUBREG_REG (reg));
4053 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4054
4055 gcc_assert (size > 0);
4056
4057 /* Been there, done that. */
cee784f5 4058 if (bitmap_bit_p (live_subregs_used, allocnum))
2af2dbdc
VM
4059 return;
4060
cee784f5 4061 /* Create a new one. */
2af2dbdc
VM
4062 if (live_subregs[allocnum] == NULL)
4063 live_subregs[allocnum] = sbitmap_alloc (size);
4064
4065 /* If the entire reg was live before blasting into subregs, we need
4066 to init all of the subregs to ones else init to 0. */
4067 if (init_value)
f61e445a 4068 bitmap_ones (live_subregs[allocnum]);
b8698a0f 4069 else
f61e445a 4070 bitmap_clear (live_subregs[allocnum]);
2af2dbdc 4071
cee784f5 4072 bitmap_set_bit (live_subregs_used, allocnum);
2af2dbdc
VM
4073}
4074
4075/* Walk the insns of the current function and build reload_insn_chain,
4076 and record register life information. */
4077static void
4078build_insn_chain (void)
4079{
4080 unsigned int i;
4081 struct insn_chain **p = &reload_insn_chain;
4082 basic_block bb;
4083 struct insn_chain *c = NULL;
4084 struct insn_chain *next = NULL;
4085 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4086 bitmap elim_regset = BITMAP_ALLOC (NULL);
4087 /* live_subregs is a vector used to keep accurate information about
4088 which hardregs are live in multiword pseudos. live_subregs and
4089 live_subregs_used are indexed by pseudo number. The live_subreg
4090 entry for a particular pseudo is only used if the corresponding
cee784f5
SB
4091 element is non zero in live_subregs_used. The sbitmap size of
4092 live_subreg[allocno] is number of bytes that the pseudo can
2af2dbdc
VM
4093 occupy. */
4094 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
cee784f5 4095 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
2af2dbdc
VM
4096
4097 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4098 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4099 bitmap_set_bit (elim_regset, i);
4f42035e 4100 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2af2dbdc
VM
4101 {
4102 bitmap_iterator bi;
4103 rtx insn;
b8698a0f 4104
2af2dbdc 4105 CLEAR_REG_SET (live_relevant_regs);
cee784f5 4106 bitmap_clear (live_subregs_used);
b8698a0f 4107
bf744527 4108 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2af2dbdc
VM
4109 {
4110 if (i >= FIRST_PSEUDO_REGISTER)
4111 break;
4112 bitmap_set_bit (live_relevant_regs, i);
4113 }
4114
bf744527 4115 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2af2dbdc
VM
4116 FIRST_PSEUDO_REGISTER, i, bi)
4117 {
4118 if (pseudo_for_reload_consideration_p (i))
4119 bitmap_set_bit (live_relevant_regs, i);
4120 }
4121
4122 FOR_BB_INSNS_REVERSE (bb, insn)
4123 {
4124 if (!NOTE_P (insn) && !BARRIER_P (insn))
4125 {
4126 unsigned int uid = INSN_UID (insn);
4127 df_ref *def_rec;
4128 df_ref *use_rec;
4129
4130 c = new_insn_chain ();
4131 c->next = next;
4132 next = c;
4133 *p = c;
4134 p = &c->prev;
b8698a0f 4135
2af2dbdc
VM
4136 c->insn = insn;
4137 c->block = bb->index;
4138
4b71920a 4139 if (NONDEBUG_INSN_P (insn))
2af2dbdc
VM
4140 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4141 {
4142 df_ref def = *def_rec;
4143 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 4144
2af2dbdc
VM
4145 /* Ignore may clobbers because these are generated
4146 from calls. However, every other kind of def is
4147 added to dead_or_set. */
4148 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4149 {
4150 if (regno < FIRST_PSEUDO_REGISTER)
4151 {
4152 if (!fixed_regs[regno])
4153 bitmap_set_bit (&c->dead_or_set, regno);
4154 }
4155 else if (pseudo_for_reload_consideration_p (regno))
4156 bitmap_set_bit (&c->dead_or_set, regno);
4157 }
4158
4159 if ((regno < FIRST_PSEUDO_REGISTER
4160 || reg_renumber[regno] >= 0
4161 || ira_conflicts_p)
4162 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4163 {
4164 rtx reg = DF_REF_REG (def);
4165
4166 /* We can model subregs, but not if they are
4167 wrapped in ZERO_EXTRACTS. */
4168 if (GET_CODE (reg) == SUBREG
4169 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4170 {
4171 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 4172 unsigned int last = start
2af2dbdc
VM
4173 + GET_MODE_SIZE (GET_MODE (reg));
4174
4175 init_live_subregs
b8698a0f 4176 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc
VM
4177 live_subregs, live_subregs_used, regno, reg);
4178
4179 if (!DF_REF_FLAGS_IS_SET
4180 (def, DF_REF_STRICT_LOW_PART))
4181 {
4182 /* Expand the range to cover entire words.
4183 Bytes added here are "don't care". */
4184 start
4185 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4186 last = ((last + UNITS_PER_WORD - 1)
4187 / UNITS_PER_WORD * UNITS_PER_WORD);
4188 }
4189
4190 /* Ignore the paradoxical bits. */
cee784f5
SB
4191 if (last > SBITMAP_SIZE (live_subregs[regno]))
4192 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4193
4194 while (start < last)
4195 {
d7c028c0 4196 bitmap_clear_bit (live_subregs[regno], start);
2af2dbdc
VM
4197 start++;
4198 }
b8698a0f 4199
f61e445a 4200 if (bitmap_empty_p (live_subregs[regno]))
2af2dbdc 4201 {
cee784f5 4202 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4203 bitmap_clear_bit (live_relevant_regs, regno);
4204 }
4205 else
4206 /* Set live_relevant_regs here because
4207 that bit has to be true to get us to
4208 look at the live_subregs fields. */
4209 bitmap_set_bit (live_relevant_regs, regno);
4210 }
4211 else
4212 {
4213 /* DF_REF_PARTIAL is generated for
4214 subregs, STRICT_LOW_PART, and
4215 ZERO_EXTRACT. We handle the subreg
4216 case above so here we have to keep from
4217 modeling the def as a killing def. */
4218 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4219 {
cee784f5 4220 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc 4221 bitmap_clear_bit (live_relevant_regs, regno);
2af2dbdc
VM
4222 }
4223 }
4224 }
4225 }
b8698a0f 4226
2af2dbdc
VM
4227 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4228 bitmap_copy (&c->live_throughout, live_relevant_regs);
4229
4b71920a 4230 if (NONDEBUG_INSN_P (insn))
2af2dbdc
VM
4231 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
4232 {
4233 df_ref use = *use_rec;
4234 unsigned int regno = DF_REF_REGNO (use);
4235 rtx reg = DF_REF_REG (use);
b8698a0f 4236
2af2dbdc
VM
4237 /* DF_REF_READ_WRITE on a use means that this use
4238 is fabricated from a def that is a partial set
4239 to a multiword reg. Here, we only model the
4240 subreg case that is not wrapped in ZERO_EXTRACT
4241 precisely so we do not need to look at the
4242 fabricated use. */
b8698a0f
L
4243 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4244 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
4245 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4246 continue;
b8698a0f 4247
2af2dbdc
VM
4248 /* Add the last use of each var to dead_or_set. */
4249 if (!bitmap_bit_p (live_relevant_regs, regno))
4250 {
4251 if (regno < FIRST_PSEUDO_REGISTER)
4252 {
4253 if (!fixed_regs[regno])
4254 bitmap_set_bit (&c->dead_or_set, regno);
4255 }
4256 else if (pseudo_for_reload_consideration_p (regno))
4257 bitmap_set_bit (&c->dead_or_set, regno);
4258 }
b8698a0f 4259
2af2dbdc
VM
4260 if (regno < FIRST_PSEUDO_REGISTER
4261 || pseudo_for_reload_consideration_p (regno))
4262 {
4263 if (GET_CODE (reg) == SUBREG
4264 && !DF_REF_FLAGS_IS_SET (use,
4265 DF_REF_SIGN_EXTRACT
b8698a0f 4266 | DF_REF_ZERO_EXTRACT))
2af2dbdc
VM
4267 {
4268 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 4269 unsigned int last = start
2af2dbdc 4270 + GET_MODE_SIZE (GET_MODE (reg));
b8698a0f 4271
2af2dbdc 4272 init_live_subregs
b8698a0f 4273 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc 4274 live_subregs, live_subregs_used, regno, reg);
b8698a0f 4275
2af2dbdc 4276 /* Ignore the paradoxical bits. */
cee784f5
SB
4277 if (last > SBITMAP_SIZE (live_subregs[regno]))
4278 last = SBITMAP_SIZE (live_subregs[regno]);
2af2dbdc
VM
4279
4280 while (start < last)
4281 {
d7c028c0 4282 bitmap_set_bit (live_subregs[regno], start);
2af2dbdc
VM
4283 start++;
4284 }
4285 }
4286 else
4287 /* Resetting the live_subregs_used is
4288 effectively saying do not use the subregs
4289 because we are reading the whole
4290 pseudo. */
cee784f5 4291 bitmap_clear_bit (live_subregs_used, regno);
2af2dbdc
VM
4292 bitmap_set_bit (live_relevant_regs, regno);
4293 }
4294 }
4295 }
4296 }
4297
4298 /* FIXME!! The following code is a disaster. Reload needs to see the
4299 labels and jump tables that are just hanging out in between
4300 the basic blocks. See pr33676. */
4301 insn = BB_HEAD (bb);
b8698a0f 4302
2af2dbdc 4303 /* Skip over the barriers and cruft. */
b8698a0f 4304 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
4305 || BLOCK_FOR_INSN (insn) == bb))
4306 insn = PREV_INSN (insn);
b8698a0f 4307
2af2dbdc
VM
4308 /* While we add anything except barriers and notes, the focus is
4309 to get the labels and jump tables into the
4310 reload_insn_chain. */
4311 while (insn)
4312 {
4313 if (!NOTE_P (insn) && !BARRIER_P (insn))
4314 {
4315 if (BLOCK_FOR_INSN (insn))
4316 break;
b8698a0f 4317
2af2dbdc
VM
4318 c = new_insn_chain ();
4319 c->next = next;
4320 next = c;
4321 *p = c;
4322 p = &c->prev;
b8698a0f 4323
2af2dbdc
VM
4324 /* The block makes no sense here, but it is what the old
4325 code did. */
4326 c->block = bb->index;
4327 c->insn = insn;
4328 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 4329 }
2af2dbdc
VM
4330 insn = PREV_INSN (insn);
4331 }
4332 }
4333
2af2dbdc
VM
4334 reload_insn_chain = c;
4335 *p = NULL;
4336
cee784f5
SB
4337 for (i = 0; i < (unsigned int) max_regno; i++)
4338 if (live_subregs[i] != NULL)
4339 sbitmap_free (live_subregs[i]);
2af2dbdc 4340 free (live_subregs);
cee784f5 4341 BITMAP_FREE (live_subregs_used);
2af2dbdc
VM
4342 BITMAP_FREE (live_relevant_regs);
4343 BITMAP_FREE (elim_regset);
4344
4345 if (dump_file)
4346 print_insn_chains (dump_file);
4347}
acf41a74
BS
4348 \f
4349/* Examine the rtx found in *LOC, which is read or written to as determined
4350 by TYPE. Return false if we find a reason why an insn containing this
4351 rtx should not be moved (such as accesses to non-constant memory), true
4352 otherwise. */
4353static bool
4354rtx_moveable_p (rtx *loc, enum op_type type)
4355{
4356 const char *fmt;
4357 rtx x = *loc;
4358 enum rtx_code code = GET_CODE (x);
4359 int i, j;
4360
4361 code = GET_CODE (x);
4362 switch (code)
4363 {
4364 case CONST:
d8116890 4365 CASE_CONST_ANY:
acf41a74
BS
4366 case SYMBOL_REF:
4367 case LABEL_REF:
4368 return true;
4369
4370 case PC:
4371 return type == OP_IN;
4372
4373 case CC0:
4374 return false;
4375
4376 case REG:
4377 if (x == frame_pointer_rtx)
4378 return true;
4379 if (HARD_REGISTER_P (x))
4380 return false;
4381
4382 return true;
4383
4384 case MEM:
4385 if (type == OP_IN && MEM_READONLY_P (x))
4386 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4387 return false;
4388
4389 case SET:
4390 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4391 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4392
4393 case STRICT_LOW_PART:
4394 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4395
4396 case ZERO_EXTRACT:
4397 case SIGN_EXTRACT:
4398 return (rtx_moveable_p (&XEXP (x, 0), type)
4399 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4400 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4401
4402 case CLOBBER:
4403 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4404
4405 default:
4406 break;
4407 }
4408
4409 fmt = GET_RTX_FORMAT (code);
4410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4411 {
4412 if (fmt[i] == 'e')
4413 {
4414 if (!rtx_moveable_p (&XEXP (x, i), type))
4415 return false;
4416 }
4417 else if (fmt[i] == 'E')
4418 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4419 {
4420 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4421 return false;
4422 }
4423 }
4424 return true;
4425}
4426
4427/* A wrapper around dominated_by_p, which uses the information in UID_LUID
4428 to give dominance relationships between two insns I1 and I2. */
4429static bool
4430insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4431{
4432 basic_block bb1 = BLOCK_FOR_INSN (i1);
4433 basic_block bb2 = BLOCK_FOR_INSN (i2);
4434
4435 if (bb1 == bb2)
4436 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4437 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4438}
4439
4440/* Record the range of register numbers added by find_moveable_pseudos. */
4441int first_moveable_pseudo, last_moveable_pseudo;
4442
4443/* These two vectors hold data for every register added by
4444 find_movable_pseudos, with index 0 holding data for the
4445 first_moveable_pseudo. */
4446/* The original home register. */
9771b263 4447static vec<rtx> pseudo_replaced_reg;
acf41a74
BS
4448
4449/* Look for instances where we have an instruction that is known to increase
4450 register pressure, and whose result is not used immediately. If it is
4451 possible to move the instruction downwards to just before its first use,
4452 split its lifetime into two ranges. We create a new pseudo to compute the
4453 value, and emit a move instruction just before the first use. If, after
4454 register allocation, the new pseudo remains unallocated, the function
4455 move_unallocated_pseudos then deletes the move instruction and places
4456 the computation just before the first use.
4457
4458 Such a move is safe and profitable if all the input registers remain live
4459 and unchanged between the original computation and its first use. In such
4460 a situation, the computation is known to increase register pressure, and
4461 moving it is known to at least not worsen it.
4462
4463 We restrict moves to only those cases where a register remains unallocated,
4464 in order to avoid interfering too much with the instruction schedule. As
4465 an exception, we may move insns which only modify their input register
4466 (typically induction variables), as this increases the freedom for our
4467 intended transformation, and does not limit the second instruction
4468 scheduler pass. */
4469
4470static void
4471find_moveable_pseudos (void)
4472{
4473 unsigned i;
4474 int max_regs = max_reg_num ();
4475 int max_uid = get_max_uid ();
4476 basic_block bb;
4477 int *uid_luid = XNEWVEC (int, max_uid);
4478 rtx *closest_uses = XNEWVEC (rtx, max_regs);
4479 /* A set of registers which are live but not modified throughout a block. */
8b1c6fd7
DM
4480 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4481 last_basic_block_for_fn (cfun));
acf41a74 4482 /* A set of registers which only exist in a given basic block. */
8b1c6fd7
DM
4483 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4484 last_basic_block_for_fn (cfun));
acf41a74
BS
4485 /* A set of registers which are set once, in an instruction that can be
4486 moved freely downwards, but are otherwise transparent to a block. */
8b1c6fd7
DM
4487 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4488 last_basic_block_for_fn (cfun));
acf41a74
BS
4489 bitmap_head live, used, set, interesting, unusable_as_input;
4490 bitmap_iterator bi;
4491 bitmap_initialize (&interesting, 0);
4492
4493 first_moveable_pseudo = max_regs;
9771b263
DN
4494 pseudo_replaced_reg.release ();
4495 pseudo_replaced_reg.safe_grow_cleared (max_regs);
acf41a74 4496
2d73cc45
MJ
4497 df_analyze ();
4498 calculate_dominance_info (CDI_DOMINATORS);
4499
acf41a74
BS
4500 i = 0;
4501 bitmap_initialize (&live, 0);
4502 bitmap_initialize (&used, 0);
4503 bitmap_initialize (&set, 0);
4504 bitmap_initialize (&unusable_as_input, 0);
11cd3bed 4505 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4506 {
4507 rtx insn;
4508 bitmap transp = bb_transp_live + bb->index;
4509 bitmap moveable = bb_moveable_reg_sets + bb->index;
4510 bitmap local = bb_local + bb->index;
4511
4512 bitmap_initialize (local, 0);
4513 bitmap_initialize (transp, 0);
4514 bitmap_initialize (moveable, 0);
4515 bitmap_copy (&live, df_get_live_out (bb));
4516 bitmap_and_into (&live, df_get_live_in (bb));
4517 bitmap_copy (transp, &live);
4518 bitmap_clear (moveable);
4519 bitmap_clear (&live);
4520 bitmap_clear (&used);
4521 bitmap_clear (&set);
4522 FOR_BB_INSNS (bb, insn)
4523 if (NONDEBUG_INSN_P (insn))
4524 {
4525 df_ref *u_rec, *d_rec;
4526
4527 uid_luid[INSN_UID (insn)] = i++;
4528
4529 u_rec = DF_INSN_USES (insn);
4530 d_rec = DF_INSN_DEFS (insn);
4531 if (d_rec[0] != NULL && d_rec[1] == NULL
4532 && u_rec[0] != NULL && u_rec[1] == NULL
4533 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4534 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4535 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4536 {
4537 unsigned regno = DF_REF_REGNO (*u_rec);
4538 bitmap_set_bit (moveable, regno);
4539 bitmap_set_bit (&set, regno);
4540 bitmap_set_bit (&used, regno);
4541 bitmap_clear_bit (transp, regno);
4542 continue;
4543 }
4544 while (*u_rec)
4545 {
4546 unsigned regno = DF_REF_REGNO (*u_rec);
4547 bitmap_set_bit (&used, regno);
4548 if (bitmap_clear_bit (moveable, regno))
4549 bitmap_clear_bit (transp, regno);
4550 u_rec++;
4551 }
4552
4553 while (*d_rec)
4554 {
4555 unsigned regno = DF_REF_REGNO (*d_rec);
4556 bitmap_set_bit (&set, regno);
4557 bitmap_clear_bit (transp, regno);
4558 bitmap_clear_bit (moveable, regno);
4559 d_rec++;
4560 }
4561 }
4562 }
4563
4564 bitmap_clear (&live);
4565 bitmap_clear (&used);
4566 bitmap_clear (&set);
4567
11cd3bed 4568 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4569 {
4570 bitmap local = bb_local + bb->index;
4571 rtx insn;
4572
4573 FOR_BB_INSNS (bb, insn)
4574 if (NONDEBUG_INSN_P (insn))
4575 {
4576 rtx def_insn, closest_use, note;
4577 df_ref *def_rec, def, use;
4578 unsigned regno;
4579 bool all_dominated, all_local;
4580 enum machine_mode mode;
4581
4582 def_rec = DF_INSN_DEFS (insn);
4583 /* There must be exactly one def in this insn. */
4584 def = *def_rec;
4585 if (!def || def_rec[1] || !single_set (insn))
4586 continue;
4587 /* This must be the only definition of the reg. We also limit
4588 which modes we deal with so that we can assume we can generate
4589 move instructions. */
4590 regno = DF_REF_REGNO (def);
4591 mode = GET_MODE (DF_REF_REG (def));
4592 if (DF_REG_DEF_COUNT (regno) != 1
4593 || !DF_REF_INSN_INFO (def)
4594 || HARD_REGISTER_NUM_P (regno)
aa44c80c 4595 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
4596 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4597 continue;
4598 def_insn = DF_REF_INSN (def);
4599
4600 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4601 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4602 break;
4603
4604 if (note)
4605 {
4606 if (dump_file)
4607 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4608 regno);
4609 bitmap_set_bit (&unusable_as_input, regno);
4610 continue;
4611 }
4612
4613 use = DF_REG_USE_CHAIN (regno);
4614 all_dominated = true;
4615 all_local = true;
4616 closest_use = NULL_RTX;
4617 for (; use; use = DF_REF_NEXT_REG (use))
4618 {
4619 rtx insn;
4620 if (!DF_REF_INSN_INFO (use))
4621 {
4622 all_dominated = false;
4623 all_local = false;
4624 break;
4625 }
4626 insn = DF_REF_INSN (use);
4627 if (DEBUG_INSN_P (insn))
4628 continue;
4629 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4630 all_local = false;
4631 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4632 all_dominated = false;
4633 if (closest_use != insn && closest_use != const0_rtx)
4634 {
4635 if (closest_use == NULL_RTX)
4636 closest_use = insn;
4637 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4638 closest_use = insn;
4639 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4640 closest_use = const0_rtx;
4641 }
4642 }
4643 if (!all_dominated)
4644 {
4645 if (dump_file)
4646 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4647 regno);
4648 continue;
4649 }
4650 if (all_local)
4651 bitmap_set_bit (local, regno);
4652 if (closest_use == const0_rtx || closest_use == NULL
4653 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4654 {
4655 if (dump_file)
4656 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4657 closest_use == const0_rtx || closest_use == NULL
4658 ? " (no unique first use)" : "");
4659 continue;
4660 }
4661#ifdef HAVE_cc0
4662 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4663 {
4664 if (dump_file)
4665 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4666 regno);
4667 continue;
4668 }
4669#endif
4670 bitmap_set_bit (&interesting, regno);
4671 closest_uses[regno] = closest_use;
4672
4673 if (dump_file && (all_local || all_dominated))
4674 {
4675 fprintf (dump_file, "Reg %u:", regno);
4676 if (all_local)
4677 fprintf (dump_file, " local to bb %d", bb->index);
4678 if (all_dominated)
4679 fprintf (dump_file, " def dominates all uses");
4680 if (closest_use != const0_rtx)
4681 fprintf (dump_file, " has unique first use");
4682 fputs ("\n", dump_file);
4683 }
4684 }
4685 }
4686
4687 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4688 {
4689 df_ref def = DF_REG_DEF_CHAIN (i);
4690 rtx def_insn = DF_REF_INSN (def);
4691 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4692 bitmap def_bb_local = bb_local + def_block->index;
4693 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4694 bitmap def_bb_transp = bb_transp_live + def_block->index;
4695 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4696 rtx use_insn = closest_uses[i];
4697 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4698 bool all_ok = true;
4699 bool all_transp = true;
4700
4701 if (!REG_P (DF_REF_REG (def)))
4702 continue;
4703
4704 if (!local_to_bb_p)
4705 {
4706 if (dump_file)
4707 fprintf (dump_file, "Reg %u not local to one basic block\n",
4708 i);
4709 continue;
4710 }
4711 if (reg_equiv_init (i) != NULL_RTX)
4712 {
4713 if (dump_file)
4714 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4715 i);
4716 continue;
4717 }
4718 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4719 {
4720 if (dump_file)
4721 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4722 INSN_UID (def_insn), i);
4723 continue;
4724 }
4725 if (dump_file)
4726 fprintf (dump_file, "Examining insn %d, def for %d\n",
4727 INSN_UID (def_insn), i);
4728 while (*def_insn_use_rec != NULL)
4729 {
4730 df_ref use = *def_insn_use_rec;
4731 unsigned regno = DF_REF_REGNO (use);
4732 if (bitmap_bit_p (&unusable_as_input, regno))
4733 {
4734 all_ok = false;
4735 if (dump_file)
4736 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4737 break;
4738 }
4739 if (!bitmap_bit_p (def_bb_transp, regno))
4740 {
4741 if (bitmap_bit_p (def_bb_moveable, regno)
4742 && !control_flow_insn_p (use_insn)
4743#ifdef HAVE_cc0
4744 && !sets_cc0_p (use_insn)
4745#endif
4746 )
4747 {
4748 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4749 {
4750 rtx x = NEXT_INSN (def_insn);
4751 while (!modified_in_p (DF_REF_REG (use), x))
4752 {
4753 gcc_assert (x != use_insn);
4754 x = NEXT_INSN (x);
4755 }
4756 if (dump_file)
4757 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4758 regno, INSN_UID (x));
4759 emit_insn_after (PATTERN (x), use_insn);
4760 set_insn_deleted (x);
4761 }
4762 else
4763 {
4764 if (dump_file)
4765 fprintf (dump_file, " input reg %u modified between def and use\n",
4766 regno);
4767 all_transp = false;
4768 }
4769 }
4770 else
4771 all_transp = false;
4772 }
4773
4774 def_insn_use_rec++;
4775 }
4776 if (!all_ok)
4777 continue;
4778 if (!dbg_cnt (ira_move))
4779 break;
4780 if (dump_file)
4781 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4782
4783 if (all_transp)
4784 {
4785 rtx def_reg = DF_REF_REG (def);
4786 rtx newreg = ira_create_new_reg (def_reg);
9e3de74c 4787 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
acf41a74
BS
4788 {
4789 unsigned nregno = REGNO (newreg);
a36b2706 4790 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4791 nregno -= max_regs;
9771b263 4792 pseudo_replaced_reg[nregno] = def_reg;
acf41a74
BS
4793 }
4794 }
4795 }
4796
11cd3bed 4797 FOR_EACH_BB_FN (bb, cfun)
acf41a74
BS
4798 {
4799 bitmap_clear (bb_local + bb->index);
4800 bitmap_clear (bb_transp_live + bb->index);
4801 bitmap_clear (bb_moveable_reg_sets + bb->index);
4802 }
4803 bitmap_clear (&interesting);
4804 bitmap_clear (&unusable_as_input);
4805 free (uid_luid);
4806 free (closest_uses);
4807 free (bb_local);
4808 free (bb_transp_live);
4809 free (bb_moveable_reg_sets);
4810
4811 last_moveable_pseudo = max_reg_num ();
2d73cc45
MJ
4812
4813 fix_reg_equiv_init ();
4814 expand_reg_info ();
4815 regstat_free_n_sets_and_refs ();
4816 regstat_free_ri ();
4817 regstat_init_n_sets_and_refs ();
4818 regstat_compute_ri ();
4819 free_dominance_info (CDI_DOMINATORS);
732dad8f 4820}
acf41a74 4821
3e749749
MJ
4822/* If SET pattern SET is an assignment from a hard register to a pseudo which
4823 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4824 the destination. Otherwise return NULL. */
732dad8f
MJ
4825
4826static rtx
3e749749 4827interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
732dad8f 4828{
732dad8f
MJ
4829 rtx src = SET_SRC (set);
4830 rtx dest = SET_DEST (set);
4831 if (!REG_P (src) || !HARD_REGISTER_P (src)
4832 || !REG_P (dest) || HARD_REGISTER_P (dest)
4833 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4834 return NULL;
4835 return dest;
4836}
4837
3e749749
MJ
4838/* If insn is interesting for parameter range-splitting shring-wrapping
4839 preparation, i.e. it is a single set from a hard register to a pseudo, which
4840 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4841 parallel statement with only one such statement, return the destination.
4842 Otherwise return NULL. */
4843
4844static rtx
4845interesting_dest_for_shprep (rtx insn, basic_block call_dom)
4846{
4847 if (!INSN_P (insn))
4848 return NULL;
4849 rtx pat = PATTERN (insn);
4850 if (GET_CODE (pat) == SET)
4851 return interesting_dest_for_shprep_1 (pat, call_dom);
4852
4853 if (GET_CODE (pat) != PARALLEL)
4854 return NULL;
4855 rtx ret = NULL;
4856 for (int i = 0; i < XVECLEN (pat, 0); i++)
4857 {
4858 rtx sub = XVECEXP (pat, 0, i);
4859 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4860 continue;
4861 if (GET_CODE (sub) != SET
4862 || side_effects_p (sub))
4863 return NULL;
4864 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4865 if (dest && ret)
4866 return NULL;
4867 if (dest)
4868 ret = dest;
4869 }
4870 return ret;
4871}
4872
732dad8f
MJ
4873/* Split live ranges of pseudos that are loaded from hard registers in the
4874 first BB in a BB that dominates all non-sibling call if such a BB can be
4875 found and is not in a loop. Return true if the function has made any
4876 changes. */
4877
4878static bool
4879split_live_ranges_for_shrink_wrap (void)
4880{
4881 basic_block bb, call_dom = NULL;
fefa31b5 4882 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
732dad8f
MJ
4883 rtx insn, last_interesting_insn = NULL;
4884 bitmap_head need_new, reachable;
4885 vec<basic_block> queue;
4886
4887 if (!flag_shrink_wrap)
4888 return false;
4889
4890 bitmap_initialize (&need_new, 0);
4891 bitmap_initialize (&reachable, 0);
0cae8d31 4892 queue.create (n_basic_blocks_for_fn (cfun));
732dad8f 4893
11cd3bed 4894 FOR_EACH_BB_FN (bb, cfun)
732dad8f
MJ
4895 FOR_BB_INSNS (bb, insn)
4896 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4897 {
4898 if (bb == first)
4899 {
4900 bitmap_clear (&need_new);
4901 bitmap_clear (&reachable);
4902 queue.release ();
4903 return false;
4904 }
4905
4906 bitmap_set_bit (&need_new, bb->index);
4907 bitmap_set_bit (&reachable, bb->index);
4908 queue.quick_push (bb);
4909 break;
4910 }
4911
4912 if (queue.is_empty ())
4913 {
4914 bitmap_clear (&need_new);
4915 bitmap_clear (&reachable);
4916 queue.release ();
4917 return false;
4918 }
4919
4920 while (!queue.is_empty ())
4921 {
4922 edge e;
4923 edge_iterator ei;
4924
4925 bb = queue.pop ();
4926 FOR_EACH_EDGE (e, ei, bb->succs)
fefa31b5 4927 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
732dad8f
MJ
4928 && bitmap_set_bit (&reachable, e->dest->index))
4929 queue.quick_push (e->dest);
4930 }
4931 queue.release ();
4932
4933 FOR_BB_INSNS (first, insn)
4934 {
4935 rtx dest = interesting_dest_for_shprep (insn, NULL);
4936 if (!dest)
4937 continue;
4938
4939 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4940 {
4941 bitmap_clear (&need_new);
4942 bitmap_clear (&reachable);
4943 return false;
4944 }
4945
4946 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4947 use;
4948 use = DF_REF_NEXT_REG (use))
4949 {
732dad8f
MJ
4950 int ubbi = DF_REF_BB (use)->index;
4951 if (bitmap_bit_p (&reachable, ubbi))
4952 bitmap_set_bit (&need_new, ubbi);
4953 }
4954 last_interesting_insn = insn;
4955 }
4956
4957 bitmap_clear (&reachable);
4958 if (!last_interesting_insn)
4959 {
4960 bitmap_clear (&need_new);
4961 return false;
4962 }
4963
4964 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4965 bitmap_clear (&need_new);
4966 if (call_dom == first)
4967 return false;
4968
4969 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4970 while (bb_loop_depth (call_dom) > 0)
4971 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4972 loop_optimizer_finalize ();
4973
4974 if (call_dom == first)
4975 return false;
4976
4977 calculate_dominance_info (CDI_POST_DOMINATORS);
4978 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4979 {
4980 free_dominance_info (CDI_POST_DOMINATORS);
4981 return false;
4982 }
4983 free_dominance_info (CDI_POST_DOMINATORS);
4984
4985 if (dump_file)
4986 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4987 call_dom->index);
4988
4989 bool ret = false;
4990 FOR_BB_INSNS (first, insn)
4991 {
4992 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4993 if (!dest)
4994 continue;
4995
4996 rtx newreg = NULL_RTX;
4997 df_ref use, next;
9e3de74c 4998 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
732dad8f
MJ
4999 {
5000 rtx uin = DF_REF_INSN (use);
5001 next = DF_REF_NEXT_REG (use);
5002
5003 basic_block ubb = BLOCK_FOR_INSN (uin);
5004 if (ubb == call_dom
5005 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5006 {
5007 if (!newreg)
5008 newreg = ira_create_new_reg (dest);
9e3de74c 5009 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
732dad8f
MJ
5010 }
5011 }
5012
5013 if (newreg)
5014 {
5015 rtx new_move = gen_move_insn (newreg, dest);
5016 emit_insn_after (new_move, bb_note (call_dom));
5017 if (dump_file)
5018 {
5019 fprintf (dump_file, "Split live-range of register ");
5020 print_rtl_single (dump_file, dest);
5021 }
5022 ret = true;
5023 }
5024
5025 if (insn == last_interesting_insn)
5026 break;
5027 }
5028 apply_change_group ();
5029 return ret;
acf41a74 5030}
8ff49c29 5031
acf41a74
BS
5032/* Perform the second half of the transformation started in
5033 find_moveable_pseudos. We look for instances where the newly introduced
5034 pseudo remains unallocated, and remove it by moving the definition to
5035 just before its use, replacing the move instruction generated by
5036 find_moveable_pseudos. */
5037static void
5038move_unallocated_pseudos (void)
5039{
5040 int i;
5041 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5042 if (reg_renumber[i] < 0)
5043 {
acf41a74 5044 int idx = i - first_moveable_pseudo;
9771b263 5045 rtx other_reg = pseudo_replaced_reg[idx];
a36b2706
RS
5046 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5047 /* The use must follow all definitions of OTHER_REG, so we can
5048 insert the new definition immediately after any of them. */
5049 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5050 rtx move_insn = DF_REF_INSN (other_def);
acf41a74 5051 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 5052 rtx set;
acf41a74
BS
5053 int success;
5054
5055 if (dump_file)
5056 fprintf (dump_file, "moving def of %d (insn %d now) ",
5057 REGNO (other_reg), INSN_UID (def_insn));
5058
a36b2706
RS
5059 delete_insn (move_insn);
5060 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5061 delete_insn (DF_REF_INSN (other_def));
5062 delete_insn (def_insn);
5063
acf41a74
BS
5064 set = single_set (newinsn);
5065 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5066 gcc_assert (success);
5067 if (dump_file)
5068 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5069 INSN_UID (newinsn), i);
acf41a74
BS
5070 SET_REG_N_REFS (i, 0);
5071 }
5072}
f2034d06 5073\f
6399c0ab
SB
5074/* If the backend knows where to allocate pseudos for hard
5075 register initial values, register these allocations now. */
a932fb89 5076static void
6399c0ab
SB
5077allocate_initial_values (void)
5078{
5079 if (targetm.allocate_initial_value)
5080 {
5081 rtx hreg, preg, x;
5082 int i, regno;
5083
5084 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5085 {
5086 if (! initial_value_entry (i, &hreg, &preg))
5087 break;
5088
5089 x = targetm.allocate_initial_value (hreg);
5090 regno = REGNO (preg);
5091 if (x && REG_N_SETS (regno) <= 1)
5092 {
5093 if (MEM_P (x))
5094 reg_equiv_memory_loc (regno) = x;
5095 else
5096 {
5097 basic_block bb;
5098 int new_regno;
5099
5100 gcc_assert (REG_P (x));
5101 new_regno = REGNO (x);
5102 reg_renumber[regno] = new_regno;
5103 /* Poke the regno right into regno_reg_rtx so that even
5104 fixed regs are accepted. */
5105 SET_REGNO (preg, new_regno);
5106 /* Update global register liveness information. */
11cd3bed 5107 FOR_EACH_BB_FN (bb, cfun)
6399c0ab 5108 {
c3284718 5109 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
6399c0ab 5110 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
c3284718 5111 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
6399c0ab
SB
5112 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5113 }
5114 }
5115 }
5116 }
2af2dbdc 5117
6399c0ab
SB
5118 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5119 &hreg, &preg));
5120 }
5121}
5122\f
55a2c322
VM
5123
5124/* True when we use LRA instead of reload pass for the current
5125 function. */
5126bool ira_use_lra_p;
5127
311aab06
VM
5128/* True if we have allocno conflicts. It is false for non-optimized
5129 mode or when the conflict table is too big. */
5130bool ira_conflicts_p;
5131
ae2b9cb6
BS
5132/* Saved between IRA and reload. */
5133static int saved_flag_ira_share_spill_slots;
5134
058e97ec
VM
5135/* This is the main entry of IRA. */
5136static void
5137ira (FILE *f)
5138{
058e97ec 5139 bool loops_p;
70cc3288 5140 int ira_max_point_before_emit;
058e97ec 5141 int rebuild_p;
55a2c322
VM
5142 bool saved_flag_caller_saves = flag_caller_saves;
5143 enum ira_region saved_flag_ira_region = flag_ira_region;
5144
5145 ira_conflicts_p = optimize > 0;
5146
5147 ira_use_lra_p = targetm.lra_p ();
5148 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5149 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5150 use simplified and faster algorithms in LRA. */
5151 lra_simple_p
8b1c6fd7
DM
5152 = (ira_use_lra_p
5153 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
55a2c322
VM
5154 if (lra_simple_p)
5155 {
5156 /* It permits to skip live range splitting in LRA. */
5157 flag_caller_saves = false;
5158 /* There is no sense to do regional allocation when we use
5159 simplified LRA. */
5160 flag_ira_region = IRA_REGION_ONE;
5161 ira_conflicts_p = false;
5162 }
5163
5164#ifndef IRA_NO_OBSTACK
5165 gcc_obstack_init (&ira_obstack);
5166#endif
5167 bitmap_obstack_initialize (&ira_bitmap_obstack);
058e97ec 5168
001010df
KC
5169 /* LRA uses its own infrastructure to handle caller save registers. */
5170 if (flag_caller_saves && !ira_use_lra_p)
dc12b70e
JZ
5171 init_caller_save ();
5172
058e97ec
VM
5173 if (flag_ira_verbose < 10)
5174 {
5175 internal_flag_ira_verbose = flag_ira_verbose;
5176 ira_dump_file = f;
5177 }
5178 else
5179 {
5180 internal_flag_ira_verbose = flag_ira_verbose - 10;
5181 ira_dump_file = stderr;
5182 }
5183
5184 setup_prohibited_mode_move_regs ();
3b6d1699 5185 decrease_live_ranges_number ();
058e97ec 5186 df_note_add_problem ();
5d517141
SB
5187
5188 /* DF_LIVE can't be used in the register allocator, too many other
5189 parts of the compiler depend on using the "classic" liveness
5190 interpretation of the DF_LR problem. See PR38711.
5191 Remove the problem, so that we don't spend time updating it in
5192 any of the df_analyze() calls during IRA/LRA. */
5193 if (optimize > 1)
5194 df_remove_problem (df_live);
5195 gcc_checking_assert (df_live == NULL);
5196
058e97ec
VM
5197#ifdef ENABLE_CHECKING
5198 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5199#endif
5200 df_analyze ();
3b6d1699 5201
2d73cc45
MJ
5202 init_reg_equiv ();
5203 if (ira_conflicts_p)
5204 {
5205 calculate_dominance_info (CDI_DOMINATORS);
5206
5207 if (split_live_ranges_for_shrink_wrap ())
5208 df_analyze ();
5209
5210 free_dominance_info (CDI_DOMINATORS);
5211 }
5212
058e97ec 5213 df_clear_flags (DF_NO_INSN_RESCAN);
2d73cc45 5214
058e97ec
VM
5215 regstat_init_n_sets_and_refs ();
5216 regstat_compute_ri ();
5217
5218 /* If we are not optimizing, then this is the only place before
5219 register allocation where dataflow is done. And that is needed
5220 to generate these warnings. */
5221 if (warn_clobbered)
5222 generate_setjmp_warnings ();
5223
ace984c8
RS
5224 /* Determine if the current function is a leaf before running IRA
5225 since this can impact optimizations done by the prologue and
5226 epilogue thus changing register elimination offsets. */
416ff32e 5227 crtl->is_leaf = leaf_function_p ();
ace984c8 5228
1833192f 5229 if (resize_reg_info () && flag_ira_loop_pressure)
b11f0116 5230 ira_set_pseudo_classes (true, ira_dump_file);
1833192f 5231
058e97ec 5232 rebuild_p = update_equiv_regs ();
55a2c322
VM
5233 setup_reg_equiv ();
5234 setup_reg_equiv_init ();
058e97ec 5235
55a2c322 5236 if (optimize && rebuild_p)
b8698a0f 5237 {
55a2c322 5238 timevar_push (TV_JUMP);
29f3fd5b 5239 rebuild_jump_labels (get_insns ());
55a2c322
VM
5240 if (purge_all_dead_edges ())
5241 delete_unreachable_blocks ();
5242 timevar_pop (TV_JUMP);
058e97ec
VM
5243 }
5244
fb99ee9b 5245 allocated_reg_info_size = max_reg_num ();
e8d7e3e7 5246
dbabddf3
JJ
5247 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5248 df_analyze ();
5249
e8d7e3e7
VM
5250 /* It is not worth to do such improvement when we use a simple
5251 allocation because of -O0 usage or because the function is too
5252 big. */
5253 if (ira_conflicts_p)
2d73cc45 5254 find_moveable_pseudos ();
acf41a74 5255
fb99ee9b 5256 max_regno_before_ira = max_reg_num ();
8d49e7ef 5257 ira_setup_eliminable_regset ();
b8698a0f 5258
058e97ec
VM
5259 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5260 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5261 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 5262
058e97ec 5263 ira_assert (current_loops == NULL);
2608d841 5264 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
661bc682 5265 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
b8698a0f 5266
058e97ec
VM
5267 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5268 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 5269 loops_p = ira_build ();
b8698a0f 5270
311aab06 5271 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
5272
5273 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 5274 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 5275 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
5276 stack slots in this case -- prohibit it. We also do this if
5277 there is setjmp call because a variable not modified between
5278 setjmp and longjmp the compiler is required to preserve its
5279 value and sharing slots does not guarantee it. */
3553f0bb
VM
5280 flag_ira_share_spill_slots = FALSE;
5281
cb1ca6ac 5282 ira_color ();
b8698a0f 5283
058e97ec 5284 ira_max_point_before_emit = ira_max_point;
b8698a0f 5285
1756cb66
VM
5286 ira_initiate_emit_data ();
5287
058e97ec 5288 ira_emit (loops_p);
b8698a0f 5289
55a2c322 5290 max_regno = max_reg_num ();
311aab06 5291 if (ira_conflicts_p)
058e97ec 5292 {
058e97ec 5293 if (! loops_p)
55a2c322
VM
5294 {
5295 if (! ira_use_lra_p)
5296 ira_initiate_assign ();
5297 }
058e97ec
VM
5298 else
5299 {
fb99ee9b 5300 expand_reg_info ();
b8698a0f 5301
55a2c322
VM
5302 if (ira_use_lra_p)
5303 {
5304 ira_allocno_t a;
5305 ira_allocno_iterator ai;
5306
5307 FOR_EACH_ALLOCNO (a, ai)
5308 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5309 }
5310 else
5311 {
5312 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5313 fprintf (ira_dump_file, "Flattening IR\n");
5314 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5315 }
058e97ec
VM
5316 /* New insns were generated: add notes and recalculate live
5317 info. */
5318 df_analyze ();
b8698a0f 5319
544e7e78
SB
5320 /* ??? Rebuild the loop tree, but why? Does the loop tree
5321 change if new insns were generated? Can that be handled
5322 by updating the loop tree incrementally? */
661bc682 5323 loop_optimizer_finalize ();
57548aa2 5324 free_dominance_info (CDI_DOMINATORS);
661bc682
RB
5325 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5326 | LOOPS_HAVE_RECORDED_EXITS);
058e97ec 5327
55a2c322
VM
5328 if (! ira_use_lra_p)
5329 {
5330 setup_allocno_assignment_flags ();
5331 ira_initiate_assign ();
5332 ira_reassign_conflict_allocnos (max_regno);
5333 }
058e97ec
VM
5334 }
5335 }
5336
1756cb66
VM
5337 ira_finish_emit_data ();
5338
058e97ec 5339 setup_reg_renumber ();
b8698a0f 5340
058e97ec 5341 calculate_allocation_cost ();
b8698a0f 5342
058e97ec 5343#ifdef ENABLE_IRA_CHECKING
311aab06 5344 if (ira_conflicts_p)
058e97ec
VM
5345 check_allocation ();
5346#endif
b8698a0f 5347
058e97ec
VM
5348 if (max_regno != max_regno_before_ira)
5349 {
5350 regstat_free_n_sets_and_refs ();
5351 regstat_free_ri ();
5352 regstat_init_n_sets_and_refs ();
5353 regstat_compute_ri ();
5354 }
5355
058e97ec 5356 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
5357 if (! ira_conflicts_p)
5358 grow_reg_equivs ();
5359 else
058e97ec
VM
5360 {
5361 fix_reg_equiv_init ();
b8698a0f 5362
058e97ec
VM
5363#ifdef ENABLE_IRA_CHECKING
5364 print_redundant_copies ();
5365#endif
5366
5367 ira_spilled_reg_stack_slots_num = 0;
5368 ira_spilled_reg_stack_slots
5369 = ((struct ira_spilled_reg_stack_slot *)
5370 ira_allocate (max_regno
5371 * sizeof (struct ira_spilled_reg_stack_slot)));
5372 memset (ira_spilled_reg_stack_slots, 0,
5373 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5374 }
6399c0ab 5375 allocate_initial_values ();
e8d7e3e7
VM
5376
5377 /* See comment for find_moveable_pseudos call. */
5378 if (ira_conflicts_p)
5379 move_unallocated_pseudos ();
55a2c322
VM
5380
5381 /* Restore original values. */
5382 if (lra_simple_p)
5383 {
5384 flag_caller_saves = saved_flag_caller_saves;
5385 flag_ira_region = saved_flag_ira_region;
5386 }
d3afd9aa
RB
5387}
5388
5389static void
5390do_reload (void)
5391{
5392 basic_block bb;
5393 bool need_dce;
ae2b9cb6 5394
67463efb 5395 if (flag_ira_verbose < 10)
ae2b9cb6 5396 ira_dump_file = dump_file;
058e97ec 5397
55a2c322
VM
5398 timevar_push (TV_RELOAD);
5399 if (ira_use_lra_p)
5400 {
5401 if (current_loops != NULL)
5402 {
661bc682 5403 loop_optimizer_finalize ();
55a2c322
VM
5404 free_dominance_info (CDI_DOMINATORS);
5405 }
04a90bec 5406 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5407 bb->loop_father = NULL;
5408 current_loops = NULL;
5409
5410 if (ira_conflicts_p)
5411 ira_free (ira_spilled_reg_stack_slots);
5412
5413 ira_destroy ();
058e97ec 5414
55a2c322
VM
5415 lra (ira_dump_file);
5416 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5417 LRA. */
9771b263 5418 vec_free (reg_equivs);
55a2c322
VM
5419 reg_equivs = NULL;
5420 need_dce = false;
5421 }
5422 else
5423 {
5424 df_set_flags (DF_NO_INSN_RESCAN);
5425 build_insn_chain ();
5426
5427 need_dce = reload (get_insns (), ira_conflicts_p);
5428
5429 }
5430
5431 timevar_pop (TV_RELOAD);
058e97ec 5432
d3afd9aa
RB
5433 timevar_push (TV_IRA);
5434
55a2c322 5435 if (ira_conflicts_p && ! ira_use_lra_p)
058e97ec
VM
5436 {
5437 ira_free (ira_spilled_reg_stack_slots);
058e97ec 5438 ira_finish_assign ();
b8698a0f 5439 }
55a2c322 5440
058e97ec
VM
5441 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5442 && overall_cost_before != ira_overall_cost)
5443 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
b8698a0f 5444
3553f0bb
VM
5445 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5446
55a2c322 5447 if (! ira_use_lra_p)
2608d841 5448 {
55a2c322
VM
5449 ira_destroy ();
5450 if (current_loops != NULL)
5451 {
661bc682 5452 loop_optimizer_finalize ();
55a2c322
VM
5453 free_dominance_info (CDI_DOMINATORS);
5454 }
04a90bec 5455 FOR_ALL_BB_FN (bb, cfun)
55a2c322
VM
5456 bb->loop_father = NULL;
5457 current_loops = NULL;
5458
5459 regstat_free_ri ();
5460 regstat_free_n_sets_and_refs ();
2608d841 5461 }
b8698a0f 5462
058e97ec 5463 if (optimize)
55a2c322 5464 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 5465
55a2c322 5466 finish_reg_equiv ();
058e97ec
VM
5467
5468 bitmap_obstack_release (&ira_bitmap_obstack);
5469#ifndef IRA_NO_OBSTACK
5470 obstack_free (&ira_obstack, NULL);
5471#endif
5472
5473 /* The code after the reload has changed so much that at this point
b0c11403 5474 we might as well just rescan everything. Note that
058e97ec
VM
5475 df_rescan_all_insns is not going to help here because it does not
5476 touch the artificial uses and defs. */
5477 df_finish_pass (true);
058e97ec
VM
5478 df_scan_alloc (NULL);
5479 df_scan_blocks ();
5480
5d517141
SB
5481 if (optimize > 1)
5482 {
5483 df_live_add_problem ();
5484 df_live_set_all_dirty ();
5485 }
5486
058e97ec
VM
5487 if (optimize)
5488 df_analyze ();
5489
b0c11403
JL
5490 if (need_dce && optimize)
5491 run_fast_dce ();
d3afd9aa 5492
af6e8467
RH
5493 /* Diagnose uses of the hard frame pointer when it is used as a global
5494 register. Often we can get away with letting the user appropriate
5495 the frame pointer, but we should let them know when code generation
5496 makes that impossible. */
5497 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5498 {
5499 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5500 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5501 "frame pointer required, but reserved");
5502 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5503 }
5504
d3afd9aa 5505 timevar_pop (TV_IRA);
058e97ec 5506}
058e97ec 5507\f
058e97ec 5508/* Run the integrated register allocator. */
058e97ec 5509
27a4cd48
DM
5510namespace {
5511
5512const pass_data pass_data_ira =
058e97ec 5513{
27a4cd48
DM
5514 RTL_PASS, /* type */
5515 "ira", /* name */
5516 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5517 true, /* has_execute */
5518 TV_IRA, /* tv_id */
5519 0, /* properties_required */
5520 0, /* properties_provided */
5521 0, /* properties_destroyed */
5522 0, /* todo_flags_start */
5523 TODO_do_not_ggc_collect, /* todo_flags_finish */
d3afd9aa
RB
5524};
5525
27a4cd48
DM
5526class pass_ira : public rtl_opt_pass
5527{
5528public:
c3284718
RS
5529 pass_ira (gcc::context *ctxt)
5530 : rtl_opt_pass (pass_data_ira, ctxt)
27a4cd48
DM
5531 {}
5532
5533 /* opt_pass methods: */
be55bfe6
TS
5534 virtual unsigned int execute (function *)
5535 {
5536 ira (dump_file);
5537 return 0;
5538 }
27a4cd48
DM
5539
5540}; // class pass_ira
5541
5542} // anon namespace
5543
5544rtl_opt_pass *
5545make_pass_ira (gcc::context *ctxt)
5546{
5547 return new pass_ira (ctxt);
5548}
5549
27a4cd48
DM
5550namespace {
5551
5552const pass_data pass_data_reload =
d3afd9aa 5553{
27a4cd48
DM
5554 RTL_PASS, /* type */
5555 "reload", /* name */
5556 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
5557 true, /* has_execute */
5558 TV_RELOAD, /* tv_id */
5559 0, /* properties_required */
5560 0, /* properties_provided */
5561 0, /* properties_destroyed */
5562 0, /* todo_flags_start */
5563 0, /* todo_flags_finish */
058e97ec 5564};
27a4cd48
DM
5565
5566class pass_reload : public rtl_opt_pass
5567{
5568public:
c3284718
RS
5569 pass_reload (gcc::context *ctxt)
5570 : rtl_opt_pass (pass_data_reload, ctxt)
27a4cd48
DM
5571 {}
5572
5573 /* opt_pass methods: */
be55bfe6
TS
5574 virtual unsigned int execute (function *)
5575 {
5576 do_reload ();
5577 return 0;
5578 }
27a4cd48
DM
5579
5580}; // class pass_reload
5581
5582} // anon namespace
5583
5584rtl_opt_pass *
5585make_pass_reload (gcc::context *ctxt)
5586{
5587 return new pass_reload (ctxt);
5588}