]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ira.c
regs.h (move_table, [...]): Move these definitions and associated target_globals...
[thirdparty/gcc.git] / gcc / ira.c
CommitLineData
058e97ec 1/* Integrated Register Allocator (IRA) entry point.
2805e6c0 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
058e97ec
VM
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
31
32 Major IRA notions are:
33
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
40
1756cb66
VM
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
51
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
058e97ec
VM
59
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
1756cb66 62 pseudo-register number, allocno class, conflicting allocnos and
058e97ec
VM
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
65
1756cb66
VM
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
058e97ec
VM
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
1756cb66
VM
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
058e97ec
VM
77
78 - *Hard-register costs*. This is a vector of size equal to the
1756cb66
VM
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
058e97ec
VM
86
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
97
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
109
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
114
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
131
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
144
145 IRA major passes are:
146
147 o Building IRA internal representation which consists of the
148 following subpasses:
149
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
152
1756cb66
VM
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
058e97ec
VM
156
157 * IRA creates live ranges of each allocno, calulates register
1756cb66 158 pressure for each pressure class in each region, sets up
058e97ec
VM
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
161
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
164
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
168
169 * IRA creates all caps (file ira-build.c).
170
1756cb66
VM
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
058e97ec
VM
176
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
b8698a0f 180
1756cb66
VM
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
189
058e97ec
VM
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
1756cb66
VM
195 the allocation. IRA uses some heuristics to improve the
196 order.
197
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
209
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
058e97ec
VM
228
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
240
1756cb66
VM
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
247
058e97ec
VM
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
1756cb66
VM
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
058e97ec
VM
257
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
270
1756cb66
VM
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
058e97ec
VM
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
1756cb66
VM
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
058e97ec
VM
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
296
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
302
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
309
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
313
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
316
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
319
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
323
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
326
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
333
334 Literature is worth to read for better understanding the code:
335
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
338
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
341
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
345
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
348
1756cb66
VM
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
351
058e97ec
VM
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
353
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
356
357*/
358
359
360#include "config.h"
361#include "system.h"
362#include "coretypes.h"
363#include "tm.h"
364#include "regs.h"
365#include "rtl.h"
366#include "tm_p.h"
367#include "target.h"
368#include "flags.h"
369#include "obstack.h"
370#include "bitmap.h"
371#include "hard-reg-set.h"
372#include "basic-block.h"
7a8cba34 373#include "df.h"
058e97ec
VM
374#include "expr.h"
375#include "recog.h"
376#include "params.h"
377#include "timevar.h"
378#include "tree-pass.h"
379#include "output.h"
2af2dbdc 380#include "except.h"
058e97ec 381#include "reload.h"
718f9c0f 382#include "diagnostic-core.h"
6399c0ab 383#include "function.h"
058e97ec
VM
384#include "ggc.h"
385#include "ira-int.h"
b0c11403 386#include "dce.h"
acf41a74 387#include "dbgcnt.h"
058e97ec 388
afcc66c4
RS
389struct target_ira default_target_ira;
390struct target_ira_int default_target_ira_int;
391#if SWITCHABLE_TARGET
392struct target_ira *this_target_ira = &default_target_ira;
393struct target_ira_int *this_target_ira_int = &default_target_ira_int;
394#endif
395
058e97ec
VM
396/* A modified value of flag `-fira-verbose' used internally. */
397int internal_flag_ira_verbose;
398
399/* Dump file of the allocator if it is not NULL. */
400FILE *ira_dump_file;
401
058e97ec
VM
402/* The number of elements in the following array. */
403int ira_spilled_reg_stack_slots_num;
404
405/* The following array contains info about spilled pseudo-registers
406 stack slots used in current function so far. */
407struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
408
ae2b9cb6
BS
409/* Correspondingly overall cost of the allocation, overall cost before
410 reload, cost of the allocnos assigned to hard-registers, cost of
411 the allocnos assigned to memory, cost of loads, stores and register
412 move insns generated for pseudo-register live range splitting (see
413 ira-emit.c). */
414int ira_overall_cost, overall_cost_before;
058e97ec
VM
415int ira_reg_cost, ira_mem_cost;
416int ira_load_cost, ira_store_cost, ira_shuffle_cost;
417int ira_move_loops_num, ira_additional_jumps_num;
418
2af2dbdc
VM
419/* All registers that can be eliminated. */
420
421HARD_REG_SET eliminable_regset;
422
058e97ec
VM
423/* Temporary hard reg set used for a different calculation. */
424static HARD_REG_SET temp_hard_regset;
425
e80ccebc
RS
426#define last_mode_for_init_move_cost \
427 (this_target_ira_int->x_last_mode_for_init_move_cost)
058e97ec
VM
428\f
429
430/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
431static void
432setup_reg_mode_hard_regset (void)
433{
434 int i, m, hard_regno;
435
436 for (m = 0; m < NUM_MACHINE_MODES; m++)
437 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
438 {
439 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
440 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
441 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
442 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
443 hard_regno + i);
444 }
445}
446
447\f
afcc66c4
RS
448#define no_unit_alloc_regs \
449 (this_target_ira_int->x_no_unit_alloc_regs)
058e97ec
VM
450
451/* The function sets up the three arrays declared above. */
452static void
453setup_class_hard_regs (void)
454{
455 int cl, i, hard_regno, n;
456 HARD_REG_SET processed_hard_reg_set;
457
458 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
058e97ec
VM
459 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
460 {
461 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
462 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
463 CLEAR_HARD_REG_SET (processed_hard_reg_set);
7db7ed3c 464 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
0583835c 465 {
854edfcd
VM
466 ira_non_ordered_class_hard_regs[cl][i] = -1;
467 ira_class_hard_reg_index[cl][i] = -1;
0583835c 468 }
058e97ec
VM
469 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 {
471#ifdef REG_ALLOC_ORDER
472 hard_regno = reg_alloc_order[i];
473#else
474 hard_regno = i;
b8698a0f 475#endif
058e97ec
VM
476 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
477 continue;
478 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
479 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
480 ira_class_hard_reg_index[cl][hard_regno] = -1;
481 else
482 {
483 ira_class_hard_reg_index[cl][hard_regno] = n;
484 ira_class_hard_regs[cl][n++] = hard_regno;
485 }
486 }
487 ira_class_hard_regs_num[cl] = n;
0583835c
VM
488 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
489 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
490 ira_non_ordered_class_hard_regs[cl][n++] = i;
491 ira_assert (ira_class_hard_regs_num[cl] == n);
058e97ec
VM
492 }
493}
494
058e97ec
VM
495/* Set up global variables defining info about hard registers for the
496 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
497 that we can use the hard frame pointer for the allocation. */
498static void
499setup_alloc_regs (bool use_hard_frame_p)
500{
5a733826
BS
501#ifdef ADJUST_REG_ALLOC_ORDER
502 ADJUST_REG_ALLOC_ORDER;
503#endif
058e97ec
VM
504 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
505 if (! use_hard_frame_p)
506 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
507 setup_class_hard_regs ();
058e97ec
VM
508}
509
510\f
511
1756cb66
VM
512#define alloc_reg_class_subclasses \
513 (this_target_ira_int->x_alloc_reg_class_subclasses)
514
515/* Initialize the table of subclasses of each reg class. */
516static void
517setup_reg_subclasses (void)
518{
519 int i, j;
520 HARD_REG_SET temp_hard_regset2;
521
522 for (i = 0; i < N_REG_CLASSES; i++)
523 for (j = 0; j < N_REG_CLASSES; j++)
524 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
525
526 for (i = 0; i < N_REG_CLASSES; i++)
527 {
528 if (i == (int) NO_REGS)
529 continue;
530
531 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
532 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
533 if (hard_reg_set_empty_p (temp_hard_regset))
534 continue;
535 for (j = 0; j < N_REG_CLASSES; j++)
536 if (i != j)
537 {
538 enum reg_class *p;
539
540 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
541 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
542 if (! hard_reg_set_subset_p (temp_hard_regset,
543 temp_hard_regset2))
544 continue;
545 p = &alloc_reg_class_subclasses[j][0];
546 while (*p != LIM_REG_CLASSES) p++;
547 *p = (enum reg_class) i;
548 }
549 }
550}
551
552\f
553
554/* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
058e97ec
VM
555static void
556setup_class_subset_and_memory_move_costs (void)
557{
1756cb66 558 int cl, cl2, mode, cost;
058e97ec
VM
559 HARD_REG_SET temp_hard_regset2;
560
561 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
562 ira_memory_move_cost[mode][NO_REGS][0]
563 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
564 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
565 {
566 if (cl != (int) NO_REGS)
567 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
568 {
1756cb66
VM
569 ira_max_memory_move_cost[mode][cl][0]
570 = ira_memory_move_cost[mode][cl][0]
571 = memory_move_cost ((enum machine_mode) mode,
6f76a878 572 (reg_class_t) cl, false);
1756cb66
VM
573 ira_max_memory_move_cost[mode][cl][1]
574 = ira_memory_move_cost[mode][cl][1]
575 = memory_move_cost ((enum machine_mode) mode,
6f76a878 576 (reg_class_t) cl, true);
058e97ec
VM
577 /* Costs for NO_REGS are used in cost calculation on the
578 1st pass when the preferred register classes are not
579 known yet. In this case we take the best scenario. */
580 if (ira_memory_move_cost[mode][NO_REGS][0]
581 > ira_memory_move_cost[mode][cl][0])
1756cb66
VM
582 ira_max_memory_move_cost[mode][NO_REGS][0]
583 = ira_memory_move_cost[mode][NO_REGS][0]
058e97ec
VM
584 = ira_memory_move_cost[mode][cl][0];
585 if (ira_memory_move_cost[mode][NO_REGS][1]
586 > ira_memory_move_cost[mode][cl][1])
1756cb66
VM
587 ira_max_memory_move_cost[mode][NO_REGS][1]
588 = ira_memory_move_cost[mode][NO_REGS][1]
058e97ec
VM
589 = ira_memory_move_cost[mode][cl][1];
590 }
058e97ec 591 }
1756cb66
VM
592 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
593 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
594 {
595 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
596 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
597 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
598 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
599 ira_class_subset_p[cl][cl2]
600 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
601 if (! hard_reg_set_empty_p (temp_hard_regset2)
602 && hard_reg_set_subset_p (reg_class_contents[cl2],
603 reg_class_contents[cl]))
604 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
605 {
606 cost = ira_memory_move_cost[mode][cl2][0];
607 if (cost > ira_max_memory_move_cost[mode][cl][0])
608 ira_max_memory_move_cost[mode][cl][0] = cost;
609 cost = ira_memory_move_cost[mode][cl2][1];
610 if (cost > ira_max_memory_move_cost[mode][cl][1])
611 ira_max_memory_move_cost[mode][cl][1] = cost;
612 }
613 }
614 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
616 {
617 ira_memory_move_cost[mode][cl][0]
618 = ira_max_memory_move_cost[mode][cl][0];
619 ira_memory_move_cost[mode][cl][1]
620 = ira_max_memory_move_cost[mode][cl][1];
621 }
622 setup_reg_subclasses ();
058e97ec
VM
623}
624
625\f
626
627/* Define the following macro if allocation through malloc if
628 preferable. */
629#define IRA_NO_OBSTACK
630
631#ifndef IRA_NO_OBSTACK
632/* Obstack used for storing all dynamic data (except bitmaps) of the
633 IRA. */
634static struct obstack ira_obstack;
635#endif
636
637/* Obstack used for storing all bitmaps of the IRA. */
638static struct bitmap_obstack ira_bitmap_obstack;
639
640/* Allocate memory of size LEN for IRA data. */
641void *
642ira_allocate (size_t len)
643{
644 void *res;
645
646#ifndef IRA_NO_OBSTACK
647 res = obstack_alloc (&ira_obstack, len);
648#else
649 res = xmalloc (len);
650#endif
651 return res;
652}
653
058e97ec
VM
654/* Free memory ADDR allocated for IRA data. */
655void
656ira_free (void *addr ATTRIBUTE_UNUSED)
657{
658#ifndef IRA_NO_OBSTACK
659 /* do nothing */
660#else
661 free (addr);
662#endif
663}
664
665
666/* Allocate and returns bitmap for IRA. */
667bitmap
668ira_allocate_bitmap (void)
669{
670 return BITMAP_ALLOC (&ira_bitmap_obstack);
671}
672
673/* Free bitmap B allocated for IRA. */
674void
675ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
676{
677 /* do nothing */
678}
679
680\f
681
682/* Output information about allocation of all allocnos (except for
683 caps) into file F. */
684void
685ira_print_disposition (FILE *f)
686{
687 int i, n, max_regno;
688 ira_allocno_t a;
689 basic_block bb;
690
691 fprintf (f, "Disposition:");
692 max_regno = max_reg_num ();
693 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
694 for (a = ira_regno_allocno_map[i];
695 a != NULL;
696 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
697 {
698 if (n % 4 == 0)
699 fprintf (f, "\n");
700 n++;
701 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
702 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
703 fprintf (f, "b%-3d", bb->index);
704 else
2608d841 705 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
058e97ec
VM
706 if (ALLOCNO_HARD_REGNO (a) >= 0)
707 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
708 else
709 fprintf (f, " mem");
710 }
711 fprintf (f, "\n");
712}
713
714/* Outputs information about allocation of all allocnos into
715 stderr. */
716void
717ira_debug_disposition (void)
718{
719 ira_print_disposition (stderr);
720}
721
722\f
058e97ec 723
1756cb66
VM
724/* Set up ira_stack_reg_pressure_class which is the biggest pressure
725 register class containing stack registers or NO_REGS if there are
726 no stack registers. To find this class, we iterate through all
727 register pressure classes and choose the first register pressure
728 class containing all the stack registers and having the biggest
729 size. */
fe82cdfb 730static void
1756cb66
VM
731setup_stack_reg_pressure_class (void)
732{
733 ira_stack_reg_pressure_class = NO_REGS;
734#ifdef STACK_REGS
735 {
736 int i, best, size;
737 enum reg_class cl;
738 HARD_REG_SET temp_hard_regset2;
739
740 CLEAR_HARD_REG_SET (temp_hard_regset);
741 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
742 SET_HARD_REG_BIT (temp_hard_regset, i);
743 best = 0;
744 for (i = 0; i < ira_pressure_classes_num; i++)
745 {
746 cl = ira_pressure_classes[i];
747 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
748 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
749 size = hard_reg_set_size (temp_hard_regset2);
750 if (best < size)
751 {
752 best = size;
753 ira_stack_reg_pressure_class = cl;
754 }
755 }
756 }
757#endif
758}
759
760/* Find pressure classes which are register classes for which we
761 calculate register pressure in IRA, register pressure sensitive
762 insn scheduling, and register pressure sensitive loop invariant
763 motion.
764
765 To make register pressure calculation easy, we always use
766 non-intersected register pressure classes. A move of hard
767 registers from one register pressure class is not more expensive
768 than load and store of the hard registers. Most likely an allocno
769 class will be a subset of a register pressure class and in many
770 cases a register pressure class. That makes usage of register
771 pressure classes a good approximation to find a high register
772 pressure. */
773static void
774setup_pressure_classes (void)
058e97ec 775{
1756cb66
VM
776 int cost, i, n, curr;
777 int cl, cl2;
778 enum reg_class pressure_classes[N_REG_CLASSES];
779 int m;
058e97ec 780 HARD_REG_SET temp_hard_regset2;
1756cb66 781 bool insert_p;
058e97ec 782
1756cb66
VM
783 n = 0;
784 for (cl = 0; cl < N_REG_CLASSES; cl++)
058e97ec 785 {
f508f827 786 if (ira_class_hard_regs_num[cl] == 0)
058e97ec 787 continue;
f508f827 788 if (ira_class_hard_regs_num[cl] != 1
574e418a
VM
789 /* A register class without subclasses may contain a few
790 hard registers and movement between them is costly
791 (e.g. SPARC FPCC registers). We still should consider it
792 as a candidate for a pressure class. */
793 && alloc_reg_class_subclasses[cl][0] != LIM_REG_CLASSES)
1756cb66 794 {
113a5be6
VM
795 /* Check that the moves between any hard registers of the
796 current class are not more expensive for a legal mode
797 than load/store of the hard registers of the current
798 class. Such class is a potential candidate to be a
799 register pressure class. */
800 for (m = 0; m < NUM_MACHINE_MODES; m++)
801 {
802 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
803 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
804 AND_COMPL_HARD_REG_SET (temp_hard_regset,
805 ira_prohibited_class_mode_regs[cl][m]);
806 if (hard_reg_set_empty_p (temp_hard_regset))
807 continue;
808 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
809 cost = ira_register_move_cost[m][cl][cl];
810 if (cost <= ira_max_memory_move_cost[m][cl][1]
811 || cost <= ira_max_memory_move_cost[m][cl][0])
812 break;
813 }
814 if (m >= NUM_MACHINE_MODES)
1756cb66 815 continue;
1756cb66 816 }
1756cb66
VM
817 curr = 0;
818 insert_p = true;
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 /* Remove so far added pressure classes which are subset of the
822 current candidate class. Prefer GENERAL_REGS as a pressure
823 register class to another class containing the same
824 allocatable hard registers. We do this because machine
825 dependent cost hooks might give wrong costs for the latter
826 class but always give the right cost for the former class
827 (GENERAL_REGS). */
828 for (i = 0; i < n; i++)
829 {
830 cl2 = pressure_classes[i];
831 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
833 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
834 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
835 || cl2 == (int) GENERAL_REGS))
836 {
837 pressure_classes[curr++] = (enum reg_class) cl2;
838 insert_p = false;
058e97ec 839 continue;
1756cb66
VM
840 }
841 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
842 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
843 || cl == (int) GENERAL_REGS))
844 continue;
113a5be6
VM
845 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
846 insert_p = false;
1756cb66
VM
847 pressure_classes[curr++] = (enum reg_class) cl2;
848 }
849 /* If the current candidate is a subset of a so far added
850 pressure class, don't add it to the list of the pressure
851 classes. */
852 if (insert_p)
853 pressure_classes[curr++] = (enum reg_class) cl;
854 n = curr;
fe82cdfb 855 }
1756cb66 856#ifdef ENABLE_IRA_CHECKING
113a5be6
VM
857 {
858 HARD_REG_SET ignore_hard_regs;
859
860 /* Check pressure classes correctness: here we check that hard
861 registers from all register pressure classes contains all hard
862 registers available for the allocation. */
863 CLEAR_HARD_REG_SET (temp_hard_regset);
864 CLEAR_HARD_REG_SET (temp_hard_regset2);
865 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
866 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
867 {
868 /* For some targets (like MIPS with MD_REGS), there are some
869 classes with hard registers available for allocation but
870 not able to hold value of any mode. */
871 for (m = 0; m < NUM_MACHINE_MODES; m++)
872 if (contains_reg_of_mode[cl][m])
873 break;
874 if (m >= NUM_MACHINE_MODES)
875 {
876 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
877 continue;
878 }
879 for (i = 0; i < n; i++)
880 if ((int) pressure_classes[i] == cl)
881 break;
882 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
883 if (i < n)
884 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
885 }
886 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
887 /* Some targets (like SPARC with ICC reg) have alocatable regs
888 for which no reg class is defined. */
889 if (REGNO_REG_CLASS (i) == NO_REGS)
890 SET_HARD_REG_BIT (ignore_hard_regs, i);
891 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
892 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
893 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
894 }
1756cb66
VM
895#endif
896 ira_pressure_classes_num = 0;
897 for (i = 0; i < n; i++)
898 {
899 cl = (int) pressure_classes[i];
900 ira_reg_pressure_class_p[cl] = true;
901 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
902 }
903 setup_stack_reg_pressure_class ();
058e97ec
VM
904}
905
1756cb66
VM
906/* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
907 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
908
909 Target may have many subtargets and not all target hard regiters can
910 be used for allocation, e.g. x86 port in 32-bit mode can not use
911 hard registers introduced in x86-64 like r8-r15). Some classes
912 might have the same allocatable hard registers, e.g. INDEX_REGS
913 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
914 calculations efforts we introduce allocno classes which contain
915 unique non-empty sets of allocatable hard-registers.
916
917 Pseudo class cost calculation in ira-costs.c is very expensive.
918 Therefore we are trying to decrease number of classes involved in
919 such calculation. Register classes used in the cost calculation
920 are called important classes. They are allocno classes and other
921 non-empty classes whose allocatable hard register sets are inside
922 of an allocno class hard register set. From the first sight, it
923 looks like that they are just allocno classes. It is not true. In
924 example of x86-port in 32-bit mode, allocno classes will contain
925 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
926 registers are the same for the both classes). The important
927 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
928 because a machine description insn constraint may refers for
929 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
930 of the insn constraints. */
058e97ec 931static void
1756cb66 932setup_allocno_and_important_classes (void)
058e97ec 933{
32e8bb8e 934 int i, j, n, cl;
db1a8d98 935 bool set_p;
058e97ec 936 HARD_REG_SET temp_hard_regset2;
7db7ed3c
VM
937 static enum reg_class classes[LIM_REG_CLASSES + 1];
938
1756cb66
VM
939 n = 0;
940 /* Collect classes which contain unique sets of allocatable hard
941 registers. Prefer GENERAL_REGS to other classes containing the
942 same set of hard registers. */
a58dfa49 943 for (i = 0; i < LIM_REG_CLASSES; i++)
99710245 944 {
1756cb66
VM
945 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
946 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
947 for (j = 0; j < n; j++)
7db7ed3c 948 {
1756cb66
VM
949 cl = classes[j];
950 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
951 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
952 no_unit_alloc_regs);
953 if (hard_reg_set_equal_p (temp_hard_regset,
954 temp_hard_regset2))
955 break;
7db7ed3c 956 }
1756cb66
VM
957 if (j >= n)
958 classes[n++] = (enum reg_class) i;
959 else if (i == GENERAL_REGS)
960 /* Prefer general regs. For i386 example, it means that
961 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
962 (all of them consists of the same available hard
963 registers). */
964 classes[j] = (enum reg_class) i;
7db7ed3c 965 }
1756cb66 966 classes[n] = LIM_REG_CLASSES;
058e97ec 967
1756cb66
VM
968 /* Set up classes which can be used for allocnos as classes
969 conatining non-empty unique sets of allocatable hard
970 registers. */
971 ira_allocno_classes_num = 0;
058e97ec
VM
972 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
973 {
058e97ec
VM
974 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
975 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1756cb66
VM
976 if (hard_reg_set_empty_p (temp_hard_regset))
977 continue;
978 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
058e97ec
VM
979 }
980 ira_important_classes_num = 0;
1756cb66
VM
981 /* Add non-allocno classes containing to non-empty set of
982 allocatable hard regs. */
058e97ec
VM
983 for (cl = 0; cl < N_REG_CLASSES; cl++)
984 {
985 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
986 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 987 if (! hard_reg_set_empty_p (temp_hard_regset))
7db7ed3c 988 {
db1a8d98 989 set_p = false;
1756cb66 990 for (j = 0; j < ira_allocno_classes_num; j++)
7db7ed3c 991 {
7db7ed3c 992 COPY_HARD_REG_SET (temp_hard_regset2,
1756cb66 993 reg_class_contents[ira_allocno_classes[j]]);
7db7ed3c 994 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1756cb66 995 if ((enum reg_class) cl == ira_allocno_classes[j])
db1a8d98 996 break;
7db7ed3c
VM
997 else if (hard_reg_set_subset_p (temp_hard_regset,
998 temp_hard_regset2))
999 set_p = true;
1000 }
1756cb66 1001 if (set_p && j >= ira_allocno_classes_num)
db1a8d98
VM
1002 ira_important_classes[ira_important_classes_num++]
1003 = (enum reg_class) cl;
7db7ed3c 1004 }
058e97ec 1005 }
1756cb66
VM
1006 /* Now add allocno classes to the important classes. */
1007 for (j = 0; j < ira_allocno_classes_num; j++)
db1a8d98 1008 ira_important_classes[ira_important_classes_num++]
1756cb66
VM
1009 = ira_allocno_classes[j];
1010 for (cl = 0; cl < N_REG_CLASSES; cl++)
1011 {
1012 ira_reg_allocno_class_p[cl] = false;
1013 ira_reg_pressure_class_p[cl] = false;
1014 }
1015 for (j = 0; j < ira_allocno_classes_num; j++)
1016 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1017 setup_pressure_classes ();
058e97ec 1018}
058e97ec 1019
1756cb66
VM
1020/* Setup translation in CLASS_TRANSLATE of all classes into a class
1021 given by array CLASSES of length CLASSES_NUM. The function is used
1022 make translation any reg class to an allocno class or to an
1023 pressure class. This translation is necessary for some
1024 calculations when we can use only allocno or pressure classes and
1025 such translation represents an approximate representation of all
1026 classes.
1027
1028 The translation in case when allocatable hard register set of a
1029 given class is subset of allocatable hard register set of a class
1030 in CLASSES is pretty simple. We use smallest classes from CLASSES
1031 containing a given class. If allocatable hard register set of a
1032 given class is not a subset of any corresponding set of a class
1033 from CLASSES, we use the cheapest (with load/store point of view)
1034 class from CLASSES whose set intersects with given class set */
058e97ec 1035static void
1756cb66
VM
1036setup_class_translate_array (enum reg_class *class_translate,
1037 int classes_num, enum reg_class *classes)
058e97ec 1038{
32e8bb8e 1039 int cl, mode;
1756cb66 1040 enum reg_class aclass, best_class, *cl_ptr;
058e97ec
VM
1041 int i, cost, min_cost, best_cost;
1042
1043 for (cl = 0; cl < N_REG_CLASSES; cl++)
1756cb66 1044 class_translate[cl] = NO_REGS;
b8698a0f 1045
1756cb66 1046 for (i = 0; i < classes_num; i++)
058e97ec 1047 {
1756cb66
VM
1048 aclass = classes[i];
1049 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1050 (cl = *cl_ptr) != LIM_REG_CLASSES;
1051 cl_ptr++)
1052 if (class_translate[cl] == NO_REGS)
1053 class_translate[cl] = aclass;
1054 class_translate[aclass] = aclass;
058e97ec 1055 }
1756cb66
VM
1056 /* For classes which are not fully covered by one of given classes
1057 (in other words covered by more one given class), use the
1058 cheapest class. */
058e97ec
VM
1059 for (cl = 0; cl < N_REG_CLASSES; cl++)
1060 {
1756cb66 1061 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
058e97ec
VM
1062 continue;
1063 best_class = NO_REGS;
1064 best_cost = INT_MAX;
1756cb66 1065 for (i = 0; i < classes_num; i++)
058e97ec 1066 {
1756cb66 1067 aclass = classes[i];
058e97ec 1068 COPY_HARD_REG_SET (temp_hard_regset,
1756cb66 1069 reg_class_contents[aclass]);
058e97ec
VM
1070 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1071 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
4f341ea0 1072 if (! hard_reg_set_empty_p (temp_hard_regset))
058e97ec
VM
1073 {
1074 min_cost = INT_MAX;
1075 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1076 {
1077 cost = (ira_memory_move_cost[mode][cl][0]
1078 + ira_memory_move_cost[mode][cl][1]);
1079 if (min_cost > cost)
1080 min_cost = cost;
1081 }
1082 if (best_class == NO_REGS || best_cost > min_cost)
1083 {
1756cb66 1084 best_class = aclass;
058e97ec
VM
1085 best_cost = min_cost;
1086 }
1087 }
1088 }
1756cb66 1089 class_translate[cl] = best_class;
058e97ec
VM
1090 }
1091}
058e97ec 1092
1756cb66
VM
1093/* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1094 IRA_PRESSURE_CLASS_TRANSLATE. */
1095static void
1096setup_class_translate (void)
1097{
1098 setup_class_translate_array (ira_allocno_class_translate,
1099 ira_allocno_classes_num, ira_allocno_classes);
1100 setup_class_translate_array (ira_pressure_class_translate,
1101 ira_pressure_classes_num, ira_pressure_classes);
1102}
1103
1104/* Order numbers of allocno classes in original target allocno class
1105 array, -1 for non-allocno classes. */
1106static int allocno_class_order[N_REG_CLASSES];
db1a8d98
VM
1107
1108/* The function used to sort the important classes. */
1109static int
1110comp_reg_classes_func (const void *v1p, const void *v2p)
1111{
1112 enum reg_class cl1 = *(const enum reg_class *) v1p;
1113 enum reg_class cl2 = *(const enum reg_class *) v2p;
1756cb66 1114 enum reg_class tcl1, tcl2;
db1a8d98
VM
1115 int diff;
1116
1756cb66
VM
1117 tcl1 = ira_allocno_class_translate[cl1];
1118 tcl2 = ira_allocno_class_translate[cl2];
1119 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1120 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
db1a8d98
VM
1121 return diff;
1122 return (int) cl1 - (int) cl2;
1123}
1124
1756cb66
VM
1125/* For correct work of function setup_reg_class_relation we need to
1126 reorder important classes according to the order of their allocno
1127 classes. It places important classes containing the same
1128 allocatable hard register set adjacent to each other and allocno
1129 class with the allocatable hard register set right after the other
1130 important classes with the same set.
1131
1132 In example from comments of function
1133 setup_allocno_and_important_classes, it places LEGACY_REGS and
1134 GENERAL_REGS close to each other and GENERAL_REGS is after
1135 LEGACY_REGS. */
db1a8d98
VM
1136static void
1137reorder_important_classes (void)
1138{
1139 int i;
1140
1141 for (i = 0; i < N_REG_CLASSES; i++)
1756cb66
VM
1142 allocno_class_order[i] = -1;
1143 for (i = 0; i < ira_allocno_classes_num; i++)
1144 allocno_class_order[ira_allocno_classes[i]] = i;
db1a8d98
VM
1145 qsort (ira_important_classes, ira_important_classes_num,
1146 sizeof (enum reg_class), comp_reg_classes_func);
1756cb66
VM
1147 for (i = 0; i < ira_important_classes_num; i++)
1148 ira_important_class_nums[ira_important_classes[i]] = i;
db1a8d98
VM
1149}
1150
1756cb66
VM
1151/* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1152 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1153 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1154 please see corresponding comments in ira-int.h. */
058e97ec 1155static void
7db7ed3c 1156setup_reg_class_relations (void)
058e97ec
VM
1157{
1158 int i, cl1, cl2, cl3;
1159 HARD_REG_SET intersection_set, union_set, temp_set2;
7db7ed3c 1160 bool important_class_p[N_REG_CLASSES];
058e97ec 1161
7db7ed3c
VM
1162 memset (important_class_p, 0, sizeof (important_class_p));
1163 for (i = 0; i < ira_important_classes_num; i++)
1164 important_class_p[ira_important_classes[i]] = true;
058e97ec
VM
1165 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1166 {
7db7ed3c 1167 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
058e97ec
VM
1168 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1169 {
7db7ed3c 1170 ira_reg_classes_intersect_p[cl1][cl2] = false;
058e97ec
VM
1171 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1172 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1173 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1174 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1175 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
4f341ea0
RS
1176 if (hard_reg_set_empty_p (temp_hard_regset)
1177 && hard_reg_set_empty_p (temp_set2))
058e97ec 1178 {
1756cb66
VM
1179 /* The both classes have no allocatable hard registers
1180 -- take all class hard registers into account and use
1181 reg_class_subunion and reg_class_superunion. */
058e97ec
VM
1182 for (i = 0;; i++)
1183 {
1184 cl3 = reg_class_subclasses[cl1][i];
1185 if (cl3 == LIM_REG_CLASSES)
1186 break;
1187 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
bbbbb16a
ILT
1188 (enum reg_class) cl3))
1189 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
058e97ec 1190 }
1756cb66
VM
1191 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1192 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
058e97ec
VM
1193 continue;
1194 }
7db7ed3c
VM
1195 ira_reg_classes_intersect_p[cl1][cl2]
1196 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1197 if (important_class_p[cl1] && important_class_p[cl2]
1198 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1199 {
1756cb66
VM
1200 /* CL1 and CL2 are important classes and CL1 allocatable
1201 hard register set is inside of CL2 allocatable hard
1202 registers -- make CL1 a superset of CL2. */
7db7ed3c
VM
1203 enum reg_class *p;
1204
1205 p = &ira_reg_class_super_classes[cl1][0];
1206 while (*p != LIM_REG_CLASSES)
1207 p++;
1208 *p++ = (enum reg_class) cl2;
1209 *p = LIM_REG_CLASSES;
1210 }
1756cb66
VM
1211 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1212 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
058e97ec
VM
1213 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1214 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1215 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1216 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1217 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1218 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1219 for (i = 0; i < ira_important_classes_num; i++)
1220 {
1221 cl3 = ira_important_classes[i];
1222 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1223 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1224 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1225 {
1756cb66
VM
1226 /* CL3 allocatable hard register set is inside of
1227 intersection of allocatable hard register sets
1228 of CL1 and CL2. */
058e97ec
VM
1229 COPY_HARD_REG_SET
1230 (temp_set2,
1231 reg_class_contents[(int)
1232 ira_reg_class_intersect[cl1][cl2]]);
1233 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1234 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1756cb66
VM
1235 /* If the allocatable hard register sets are the
1236 same, prefer GENERAL_REGS or the smallest
1237 class for debugging purposes. */
058e97ec 1238 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1756cb66
VM
1239 && (cl3 == GENERAL_REGS
1240 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1241 && hard_reg_set_subset_p
1242 (reg_class_contents[cl3],
1243 reg_class_contents
1244 [(int) ira_reg_class_intersect[cl1][cl2]])))))
058e97ec
VM
1245 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1246 }
1247 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1248 {
1756cb66
VM
1249 /* CL3 allocatbale hard register set is inside of
1250 union of allocatable hard register sets of CL1
1251 and CL2. */
058e97ec
VM
1252 COPY_HARD_REG_SET
1253 (temp_set2,
1756cb66 1254 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
058e97ec 1255 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1756cb66 1256 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
058e97ec 1257 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1756cb66
VM
1258
1259 && (! hard_reg_set_equal_p (temp_set2,
1260 temp_hard_regset)
1261 || cl3 == GENERAL_REGS
1262 /* If the allocatable hard register sets are the
1263 same, prefer GENERAL_REGS or the smallest
1264 class for debugging purposes. */
1265 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1266 && hard_reg_set_subset_p
1267 (reg_class_contents[cl3],
1268 reg_class_contents
1269 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1270 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1271 }
1272 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1273 {
1274 /* CL3 allocatable hard register set contains union
1275 of allocatable hard register sets of CL1 and
1276 CL2. */
1277 COPY_HARD_REG_SET
1278 (temp_set2,
1279 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1281 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1282 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
b8698a0f 1283
058e97ec
VM
1284 && (! hard_reg_set_equal_p (temp_set2,
1285 temp_hard_regset)
1756cb66
VM
1286 || cl3 == GENERAL_REGS
1287 /* If the allocatable hard register sets are the
1288 same, prefer GENERAL_REGS or the smallest
1289 class for debugging purposes. */
1290 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1291 && hard_reg_set_subset_p
1292 (reg_class_contents[cl3],
1293 reg_class_contents
1294 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1295 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
058e97ec
VM
1296 }
1297 }
1298 }
1299 }
1300}
1301
1756cb66
VM
1302/* Output all possible allocno classes and the translation map into
1303 file F. */
058e97ec 1304static void
1756cb66
VM
1305print_classes (FILE *f, bool pressure_p)
1306{
1307 int classes_num = (pressure_p
1308 ? ira_pressure_classes_num : ira_allocno_classes_num);
1309 enum reg_class *classes = (pressure_p
1310 ? ira_pressure_classes : ira_allocno_classes);
1311 enum reg_class *class_translate = (pressure_p
1312 ? ira_pressure_class_translate
1313 : ira_allocno_class_translate);
058e97ec
VM
1314 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1315 int i;
1316
1756cb66
VM
1317 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1318 for (i = 0; i < classes_num; i++)
1319 fprintf (f, " %s", reg_class_names[classes[i]]);
058e97ec
VM
1320 fprintf (f, "\nClass translation:\n");
1321 for (i = 0; i < N_REG_CLASSES; i++)
1322 fprintf (f, " %s -> %s\n", reg_class_names[i],
1756cb66 1323 reg_class_names[class_translate[i]]);
058e97ec
VM
1324}
1325
1756cb66
VM
1326/* Output all possible allocno and translation classes and the
1327 translation maps into stderr. */
058e97ec 1328void
1756cb66 1329ira_debug_allocno_classes (void)
058e97ec 1330{
1756cb66
VM
1331 print_classes (stderr, false);
1332 print_classes (stderr, true);
058e97ec
VM
1333}
1334
1756cb66 1335/* Set up different arrays concerning class subsets, allocno and
058e97ec
VM
1336 important classes. */
1337static void
1756cb66 1338find_reg_classes (void)
058e97ec 1339{
1756cb66 1340 setup_allocno_and_important_classes ();
7db7ed3c 1341 setup_class_translate ();
db1a8d98 1342 reorder_important_classes ();
7db7ed3c 1343 setup_reg_class_relations ();
058e97ec
VM
1344}
1345
1346\f
1347
c0683a82
VM
1348/* Set up the array above. */
1349static void
1756cb66 1350setup_hard_regno_aclass (void)
c0683a82 1351{
7efcf910 1352 int i;
c0683a82
VM
1353
1354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1355 {
1756cb66
VM
1356#if 1
1357 ira_hard_regno_allocno_class[i]
7efcf910
CLT
1358 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1359 ? NO_REGS
1756cb66
VM
1360 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1361#else
1362 int j;
1363 enum reg_class cl;
1364 ira_hard_regno_allocno_class[i] = NO_REGS;
1365 for (j = 0; j < ira_allocno_classes_num; j++)
1366 {
1367 cl = ira_allocno_classes[j];
1368 if (ira_class_hard_reg_index[cl][i] >= 0)
1369 {
1370 ira_hard_regno_allocno_class[i] = cl;
1371 break;
1372 }
1373 }
1374#endif
c0683a82
VM
1375 }
1376}
1377
1378\f
1379
1756cb66 1380/* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
058e97ec
VM
1381static void
1382setup_reg_class_nregs (void)
1383{
1756cb66 1384 int i, cl, cl2, m;
058e97ec 1385
1756cb66
VM
1386 for (m = 0; m < MAX_MACHINE_MODE; m++)
1387 {
1388 for (cl = 0; cl < N_REG_CLASSES; cl++)
1389 ira_reg_class_max_nregs[cl][m]
1390 = ira_reg_class_min_nregs[cl][m]
a8c44c52 1391 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1756cb66
VM
1392 for (cl = 0; cl < N_REG_CLASSES; cl++)
1393 for (i = 0;
1394 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1395 i++)
1396 if (ira_reg_class_min_nregs[cl2][m]
1397 < ira_reg_class_min_nregs[cl][m])
1398 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1399 }
058e97ec
VM
1400}
1401
1402\f
1403
1756cb66 1404/* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
058e97ec
VM
1405static void
1406setup_prohibited_class_mode_regs (void)
1407{
1756cb66 1408 int j, k, hard_regno, cl;
058e97ec 1409
1756cb66 1410 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
058e97ec 1411 {
058e97ec
VM
1412 for (j = 0; j < NUM_MACHINE_MODES; j++)
1413 {
1756cb66 1414 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
058e97ec
VM
1415 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1416 {
1417 hard_regno = ira_class_hard_regs[cl][k];
bbbbb16a 1418 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1756cb66 1419 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
058e97ec
VM
1420 hard_regno);
1421 }
1422 }
1423 }
1424}
1425
1756cb66
VM
1426/* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1427 spanning from one register pressure class to another one. It is
1428 called after defining the pressure classes. */
1429static void
1430clarify_prohibited_class_mode_regs (void)
1431{
1432 int j, k, hard_regno, cl, pclass, nregs;
1433
1434 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1435 for (j = 0; j < NUM_MACHINE_MODES; j++)
1436 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1437 {
1438 hard_regno = ira_class_hard_regs[cl][k];
1439 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1440 continue;
1441 nregs = hard_regno_nregs[hard_regno][j];
b27981e0
HS
1442 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1443 {
1444 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1445 hard_regno);
1446 continue;
1447 }
1756cb66
VM
1448 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1449 for (nregs-- ;nregs >= 0; nregs--)
1450 if (((enum reg_class) pclass
1451 != ira_pressure_class_translate[REGNO_REG_CLASS
1452 (hard_regno + nregs)]))
1453 {
1454 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1455 hard_regno);
1456 break;
1457 }
1458 }
1459}
058e97ec 1460\f
e80ccebc
RS
1461/* Initialize may_move_cost and friends for mode M. */
1462
1463static void
1464init_move_cost (enum machine_mode m)
1465{
1466 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1467 bool all_match = true;
1468 unsigned int i, j;
1469
1470 gcc_assert (have_regs_of_mode[m]);
1471 for (i = 0; i < N_REG_CLASSES; i++)
1472 if (contains_reg_of_mode[i][m])
1473 for (j = 0; j < N_REG_CLASSES; j++)
1474 {
1475 int cost;
1476 if (!contains_reg_of_mode[j][m])
1477 cost = 65535;
1478 else
1479 {
1480 cost = register_move_cost (m, (enum reg_class) i,
1481 (enum reg_class) j);
1482 gcc_assert (cost < 65535);
1483 }
1484 all_match &= (last_move_cost[i][j] == cost);
1485 last_move_cost[i][j] = cost;
1486 }
1487 if (all_match && last_mode_for_init_move_cost != -1)
1488 {
1489 move_cost[m] = move_cost[last_mode_for_init_move_cost];
1490 may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
1491 may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
1492 return;
1493 }
1494 last_mode_for_init_move_cost = m;
1495 move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
1496 * N_REG_CLASSES);
1497 may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
1498 * N_REG_CLASSES);
1499 may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
1500 * N_REG_CLASSES);
1501 for (i = 0; i < N_REG_CLASSES; i++)
1502 if (contains_reg_of_mode[i][m])
1503 for (j = 0; j < N_REG_CLASSES; j++)
1504 {
1505 int cost;
1506 enum reg_class *p1, *p2;
1507
1508 if (last_move_cost[i][j] == 65535)
1509 {
1510 move_cost[m][i][j] = 65535;
1511 may_move_in_cost[m][i][j] = 65535;
1512 may_move_out_cost[m][i][j] = 65535;
1513 }
1514 else
1515 {
1516 cost = last_move_cost[i][j];
1517
1518 for (p2 = &reg_class_subclasses[j][0];
1519 *p2 != LIM_REG_CLASSES; p2++)
1520 if (*p2 != i && contains_reg_of_mode[*p2][m])
1521 cost = MAX (cost, move_cost[m][i][*p2]);
1522
1523 for (p1 = &reg_class_subclasses[i][0];
1524 *p1 != LIM_REG_CLASSES; p1++)
1525 if (*p1 != j && contains_reg_of_mode[*p1][m])
1526 cost = MAX (cost, move_cost[m][*p1][j]);
1527
1528 gcc_assert (cost <= 65535);
1529 move_cost[m][i][j] = cost;
1530
1531 if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
1532 may_move_in_cost[m][i][j] = 0;
1533 else
1534 may_move_in_cost[m][i][j] = cost;
1535
1536 if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
1537 may_move_out_cost[m][i][j] = 0;
1538 else
1539 may_move_out_cost[m][i][j] = cost;
1540 }
1541 }
1542 else
1543 for (j = 0; j < N_REG_CLASSES; j++)
1544 {
1545 move_cost[m][i][j] = 65535;
1546 may_move_in_cost[m][i][j] = 65535;
1547 may_move_out_cost[m][i][j] = 65535;
1548 }
1549}
058e97ec
VM
1550
1551/* Allocate and initialize IRA_REGISTER_MOVE_COST,
1756cb66
VM
1552 IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
1553 IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
1554 IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
058e97ec
VM
1555void
1556ira_init_register_move_cost (enum machine_mode mode)
1557{
1756cb66 1558 int cl1, cl2, cl3;
058e97ec
VM
1559
1560 ira_assert (ira_register_move_cost[mode] == NULL
1756cb66 1561 && ira_max_register_move_cost[mode] == NULL
058e97ec 1562 && ira_may_move_in_cost[mode] == NULL
1756cb66
VM
1563 && ira_may_move_out_cost[mode] == NULL
1564 && ira_max_may_move_in_cost[mode] == NULL
1565 && ira_max_may_move_out_cost[mode] == NULL);
058e97ec
VM
1566 if (move_cost[mode] == NULL)
1567 init_move_cost (mode);
1568 ira_register_move_cost[mode] = move_cost[mode];
1569 /* Don't use ira_allocate because the tables exist out of scope of a
1570 IRA call. */
1756cb66
VM
1571 ira_max_register_move_cost[mode]
1572 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1573 memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
1574 sizeof (move_table) * N_REG_CLASSES);
1575 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1576 {
3bb19a90
VM
1577 /* Some subclasses are to small to have enough registers to hold
1578 a value of MODE. Just ignore them. */
f508f827 1579 if (ira_reg_class_max_nregs[cl1][mode] > ira_class_hard_regs_num[cl1])
3bb19a90 1580 continue;
1756cb66
VM
1581 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1582 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1583 if (hard_reg_set_empty_p (temp_hard_regset))
1584 continue;
1585 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1586 if (hard_reg_set_subset_p (reg_class_contents[cl1],
1587 reg_class_contents[cl2]))
1588 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1589 {
1590 if (ira_max_register_move_cost[mode][cl2][cl3]
1591 < ira_register_move_cost[mode][cl1][cl3])
1592 ira_max_register_move_cost[mode][cl2][cl3]
1593 = ira_register_move_cost[mode][cl1][cl3];
1594 if (ira_max_register_move_cost[mode][cl3][cl2]
1595 < ira_register_move_cost[mode][cl3][cl1])
1596 ira_max_register_move_cost[mode][cl3][cl2]
1597 = ira_register_move_cost[mode][cl3][cl1];
1598 }
1599 }
058e97ec
VM
1600 ira_may_move_in_cost[mode]
1601 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1602 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1603 sizeof (move_table) * N_REG_CLASSES);
1604 ira_may_move_out_cost[mode]
1605 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1606 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1607 sizeof (move_table) * N_REG_CLASSES);
1756cb66
VM
1608 ira_max_may_move_in_cost[mode]
1609 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1610 memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
1611 sizeof (move_table) * N_REG_CLASSES);
1612 ira_max_may_move_out_cost[mode]
1613 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1614 memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
1615 sizeof (move_table) * N_REG_CLASSES);
058e97ec
VM
1616 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1617 {
1618 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1619 {
1756cb66
VM
1620 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
1621 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1622 if (hard_reg_set_empty_p (temp_hard_regset))
1623 continue;
058e97ec
VM
1624 if (ira_class_subset_p[cl1][cl2])
1625 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1626 if (ira_class_subset_p[cl2][cl1])
1627 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1756cb66
VM
1628 if (ira_class_subset_p[cl1][cl2])
1629 ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
1630 if (ira_class_subset_p[cl2][cl1])
1631 ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
1632 ira_register_move_cost[mode][cl1][cl2]
1633 = ira_max_register_move_cost[mode][cl1][cl2];
1634 ira_may_move_in_cost[mode][cl1][cl2]
1635 = ira_max_may_move_in_cost[mode][cl1][cl2];
1636 ira_may_move_out_cost[mode][cl1][cl2]
1637 = ira_max_may_move_out_cost[mode][cl1][cl2];
058e97ec
VM
1638 }
1639 }
1640}
1641
1642\f
1643
058e97ec
VM
1644/* This is called once during compiler work. It sets up
1645 different arrays whose values don't depend on the compiled
1646 function. */
1647void
1648ira_init_once (void)
1649{
32e8bb8e 1650 int mode;
058e97ec 1651
058e97ec
VM
1652 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1653 {
1654 ira_register_move_cost[mode] = NULL;
1756cb66 1655 ira_max_register_move_cost[mode] = NULL;
058e97ec
VM
1656 ira_may_move_in_cost[mode] = NULL;
1657 ira_may_move_out_cost[mode] = NULL;
1756cb66
VM
1658 ira_max_may_move_in_cost[mode] = NULL;
1659 ira_max_may_move_out_cost[mode] = NULL;
058e97ec
VM
1660 }
1661 ira_init_costs_once ();
1662}
1663
1756cb66
VM
1664/* Free ira_max_register_move_cost, ira_may_move_in_cost,
1665 ira_may_move_out_cost, ira_max_may_move_in_cost, and
1666 ira_max_may_move_out_cost for each mode. */
058e97ec
VM
1667static void
1668free_register_move_costs (void)
1669{
e80ccebc 1670 int mode, i;
058e97ec 1671
e80ccebc
RS
1672 /* Reset move_cost and friends, making sure we only free shared
1673 table entries once. */
1674 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1675 if (move_cost[mode])
1676 {
1677 for (i = 0; i < mode && move_cost[i] != move_cost[mode]; i++)
1678 ;
1679 if (i == mode)
1680 {
1681 free (move_cost[mode]);
1682 free (may_move_in_cost[mode]);
1683 free (may_move_out_cost[mode]);
1684 }
1685 }
1686 memset (move_cost, 0, sizeof move_cost);
1687 memset (may_move_in_cost, 0, sizeof may_move_in_cost);
1688 memset (may_move_out_cost, 0, sizeof may_move_out_cost);
1689 last_mode_for_init_move_cost = -1;
058e97ec
VM
1690 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1691 {
04695783
JM
1692 free (ira_max_register_move_cost[mode]);
1693 free (ira_may_move_in_cost[mode]);
1694 free (ira_may_move_out_cost[mode]);
1695 free (ira_max_may_move_in_cost[mode]);
1696 free (ira_max_may_move_out_cost[mode]);
058e97ec 1697 ira_register_move_cost[mode] = NULL;
1756cb66 1698 ira_max_register_move_cost[mode] = NULL;
058e97ec
VM
1699 ira_may_move_in_cost[mode] = NULL;
1700 ira_may_move_out_cost[mode] = NULL;
1756cb66
VM
1701 ira_max_may_move_in_cost[mode] = NULL;
1702 ira_max_may_move_out_cost[mode] = NULL;
058e97ec
VM
1703 }
1704}
1705
1706/* This is called every time when register related information is
1707 changed. */
1708void
1709ira_init (void)
1710{
1711 free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
058e97ec
VM
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1756cb66
VM
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
058e97ec
VM
1720 ira_init_costs ();
1721}
1722
1723/* Function called once at the end of compiler work. */
1724void
1725ira_finish_once (void)
1726{
1727 ira_finish_costs_once ();
1728 free_register_move_costs ();
1729}
1730
1731\f
15e7b94f
RS
1732#define ira_prohibited_mode_move_regs_initialized_p \
1733 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
058e97ec
VM
1734
1735/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1736static void
1737setup_prohibited_mode_move_regs (void)
1738{
1739 int i, j;
1740 rtx test_reg1, test_reg2, move_pat, move_insn;
1741
1742 if (ira_prohibited_mode_move_regs_initialized_p)
1743 return;
1744 ira_prohibited_mode_move_regs_initialized_p = true;
1745 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1746 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1747 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
418e920f 1748 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
058e97ec
VM
1749 for (i = 0; i < NUM_MACHINE_MODES; i++)
1750 {
1751 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1752 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1753 {
bbbbb16a 1754 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
058e97ec 1755 continue;
5444da31 1756 SET_REGNO_RAW (test_reg1, j);
32e8bb8e 1757 PUT_MODE (test_reg1, (enum machine_mode) i);
5444da31 1758 SET_REGNO_RAW (test_reg2, j);
32e8bb8e 1759 PUT_MODE (test_reg2, (enum machine_mode) i);
058e97ec
VM
1760 INSN_CODE (move_insn) = -1;
1761 recog_memoized (move_insn);
1762 if (INSN_CODE (move_insn) < 0)
1763 continue;
1764 extract_insn (move_insn);
1765 if (! constrain_operands (1))
1766 continue;
1767 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1768 }
1769 }
1770}
1771
1772\f
1773
0896cc66
JL
1774/* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1775static bool
1776ira_bad_reload_regno_1 (int regno, rtx x)
1777{
ac0ab4f7 1778 int x_regno, n, i;
0896cc66
JL
1779 ira_allocno_t a;
1780 enum reg_class pref;
1781
1782 /* We only deal with pseudo regs. */
1783 if (! x || GET_CODE (x) != REG)
1784 return false;
1785
1786 x_regno = REGNO (x);
1787 if (x_regno < FIRST_PSEUDO_REGISTER)
1788 return false;
1789
1790 /* If the pseudo prefers REGNO explicitly, then do not consider
1791 REGNO a bad spill choice. */
1792 pref = reg_preferred_class (x_regno);
1793 if (reg_class_size[pref] == 1)
1794 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1795
1796 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1797 poor choice for a reload regno. */
1798 a = ira_regno_allocno_map[x_regno];
ac0ab4f7
BS
1799 n = ALLOCNO_NUM_OBJECTS (a);
1800 for (i = 0; i < n; i++)
1801 {
1802 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1803 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1804 return true;
1805 }
0896cc66
JL
1806 return false;
1807}
1808
1809/* Return nonzero if REGNO is a particularly bad choice for reloading
1810 IN or OUT. */
1811bool
1812ira_bad_reload_regno (int regno, rtx in, rtx out)
1813{
1814 return (ira_bad_reload_regno_1 (regno, in)
1815 || ira_bad_reload_regno_1 (regno, out));
1816}
1817
058e97ec
VM
1818/* Return TRUE if *LOC contains an asm. */
1819static int
1820insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1821{
1822 if ( !*loc)
1823 return FALSE;
1824 if (GET_CODE (*loc) == ASM_OPERANDS)
1825 return TRUE;
1826 return FALSE;
1827}
1828
1829
1830/* Return TRUE if INSN contains an ASM. */
1831static bool
1832insn_contains_asm (rtx insn)
1833{
1834 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1835}
1836
b748fbd6 1837/* Add register clobbers from asm statements. */
058e97ec 1838static void
b748fbd6 1839compute_regs_asm_clobbered (void)
058e97ec
VM
1840{
1841 basic_block bb;
1842
058e97ec
VM
1843 FOR_EACH_BB (bb)
1844 {
1845 rtx insn;
1846 FOR_BB_INSNS_REVERSE (bb, insn)
1847 {
57512f53 1848 df_ref *def_rec;
058e97ec
VM
1849
1850 if (insn_contains_asm (insn))
1851 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1852 {
57512f53 1853 df_ref def = *def_rec;
058e97ec 1854 unsigned int dregno = DF_REF_REGNO (def);
d108e679
AS
1855 if (HARD_REGISTER_NUM_P (dregno))
1856 add_to_hard_reg_set (&crtl->asm_clobbers,
1857 GET_MODE (DF_REF_REAL_REG (def)),
1858 dregno);
058e97ec
VM
1859 }
1860 }
1861 }
1862}
1863
1864
1865/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
ce18efcb
VM
1866void
1867ira_setup_eliminable_regset (void)
058e97ec 1868{
058e97ec 1869#ifdef ELIMINABLE_REGS
89ceba31 1870 int i;
058e97ec
VM
1871 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1872#endif
1873 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1874 sp for alloca. So we can't eliminate the frame pointer in that
1875 case. At some point, we should improve this by emitting the
1876 sp-adjusting insns for this case. */
1877 int need_fp
1878 = (! flag_omit_frame_pointer
1879 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
d809253a
EB
1880 /* We need the frame pointer to catch stack overflow exceptions
1881 if the stack pointer is moving. */
1882 || (flag_stack_check && STACK_CHECK_MOVING_SP)
058e97ec
VM
1883 || crtl->accesses_prior_frames
1884 || crtl->stack_realign_needed
b52b1749 1885 || targetm.frame_pointer_required ());
058e97ec
VM
1886
1887 frame_pointer_needed = need_fp;
1888
1889 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1890 CLEAR_HARD_REG_SET (eliminable_regset);
1891
b748fbd6
PB
1892 compute_regs_asm_clobbered ();
1893
058e97ec
VM
1894 /* Build the regset of all eliminable registers and show we can't
1895 use those that we already know won't be eliminated. */
1896#ifdef ELIMINABLE_REGS
1897 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1898 {
1899 bool cannot_elim
7b5cbb57 1900 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
058e97ec
VM
1901 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1902
b748fbd6 1903 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
058e97ec
VM
1904 {
1905 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1906
1907 if (cannot_elim)
1908 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1909 }
1910 else if (cannot_elim)
1911 error ("%s cannot be used in asm here",
1912 reg_names[eliminables[i].from]);
1913 else
1914 df_set_regs_ever_live (eliminables[i].from, true);
1915 }
e3339d0f 1916#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
b748fbd6 1917 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
1918 {
1919 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1920 if (need_fp)
1921 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1922 }
1923 else if (need_fp)
1924 error ("%s cannot be used in asm here",
1925 reg_names[HARD_FRAME_POINTER_REGNUM]);
1926 else
1927 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1928#endif
1929
1930#else
b748fbd6 1931 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
058e97ec
VM
1932 {
1933 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1934 if (need_fp)
1935 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1936 }
1937 else if (need_fp)
1938 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1939 else
1940 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1941#endif
1942}
1943
1944\f
1945
1946/* The length of the following two arrays. */
1947int ira_reg_equiv_len;
1948
1949/* The element value is TRUE if the corresponding regno value is
1950 invariant. */
1951bool *ira_reg_equiv_invariant_p;
1952
1953/* The element value is equiv constant of given pseudo-register or
1954 NULL_RTX. */
1955rtx *ira_reg_equiv_const;
1956
1957/* Set up the two arrays declared above. */
1958static void
1959find_reg_equiv_invariant_const (void)
1960{
f2034d06 1961 unsigned int i;
058e97ec
VM
1962 bool invariant_p;
1963 rtx list, insn, note, constant, x;
1964
f2034d06 1965 for (i = FIRST_PSEUDO_REGISTER; i < VEC_length (reg_equivs_t, reg_equivs); i++)
058e97ec
VM
1966 {
1967 constant = NULL_RTX;
1968 invariant_p = false;
f2034d06 1969 for (list = reg_equiv_init (i); list != NULL_RTX; list = XEXP (list, 1))
058e97ec
VM
1970 {
1971 insn = XEXP (list, 0);
1972 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
b8698a0f 1973
058e97ec
VM
1974 if (note == NULL_RTX)
1975 continue;
1976
1977 x = XEXP (note, 0);
b8698a0f 1978
60de8907
BS
1979 if (! CONSTANT_P (x)
1980 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
058e97ec
VM
1981 {
1982 /* It can happen that a REG_EQUIV note contains a MEM
1983 that is not a legitimate memory operand. As later
1984 stages of the reload assume that all addresses found
1985 in the reg_equiv_* arrays were originally legitimate,
1986 we ignore such REG_EQUIV notes. */
1987 if (memory_operand (x, VOIDmode))
1988 invariant_p = MEM_READONLY_P (x);
1989 else if (function_invariant_p (x))
1990 {
1991 if (GET_CODE (x) == PLUS
1992 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1993 invariant_p = true;
1994 else
1995 constant = x;
1996 }
1997 }
1998 }
1999 ira_reg_equiv_invariant_p[i] = invariant_p;
2000 ira_reg_equiv_const[i] = constant;
2001 }
2002}
2003
2004\f
2005
2af2dbdc
VM
2006/* Vector of substitutions of register numbers,
2007 used to map pseudo regs into hardware regs.
2008 This is set up as a result of register allocation.
2009 Element N is the hard reg assigned to pseudo reg N,
2010 or is -1 if no hard reg was assigned.
2011 If N is a hard reg number, element N is N. */
2012short *reg_renumber;
2013
058e97ec
VM
2014/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2015 the allocation found by IRA. */
2016static void
2017setup_reg_renumber (void)
2018{
2019 int regno, hard_regno;
2020 ira_allocno_t a;
2021 ira_allocno_iterator ai;
2022
2023 caller_save_needed = 0;
2024 FOR_EACH_ALLOCNO (a, ai)
2025 {
2026 /* There are no caps at this point. */
2027 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2028 if (! ALLOCNO_ASSIGNED_P (a))
2029 /* It can happen if A is not referenced but partially anticipated
2030 somewhere in a region. */
2031 ALLOCNO_ASSIGNED_P (a) = true;
2032 ira_free_allocno_updated_costs (a);
2033 hard_regno = ALLOCNO_HARD_REGNO (a);
1756cb66 2034 regno = ALLOCNO_REGNO (a);
058e97ec 2035 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1756cb66 2036 if (hard_regno >= 0)
058e97ec 2037 {
1756cb66
VM
2038 int i, nwords;
2039 enum reg_class pclass;
2040 ira_object_t obj;
2041
2042 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2043 nwords = ALLOCNO_NUM_OBJECTS (a);
2044 for (i = 0; i < nwords; i++)
2045 {
2046 obj = ALLOCNO_OBJECT (a, i);
2047 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2048 reg_class_contents[pclass]);
2049 }
2050 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
9181a6e5
VM
2051 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2052 call_used_reg_set))
1756cb66
VM
2053 {
2054 ira_assert (!optimize || flag_caller_saves
e384e6b5
BS
2055 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2056 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
1756cb66
VM
2057 || regno >= ira_reg_equiv_len
2058 || ira_reg_equiv_const[regno]
2059 || ira_reg_equiv_invariant_p[regno]);
2060 caller_save_needed = 1;
2061 }
058e97ec
VM
2062 }
2063 }
2064}
2065
2066/* Set up allocno assignment flags for further allocation
2067 improvements. */
2068static void
2069setup_allocno_assignment_flags (void)
2070{
2071 int hard_regno;
2072 ira_allocno_t a;
2073 ira_allocno_iterator ai;
2074
2075 FOR_EACH_ALLOCNO (a, ai)
2076 {
2077 if (! ALLOCNO_ASSIGNED_P (a))
2078 /* It can happen if A is not referenced but partially anticipated
2079 somewhere in a region. */
2080 ira_free_allocno_updated_costs (a);
2081 hard_regno = ALLOCNO_HARD_REGNO (a);
2082 /* Don't assign hard registers to allocnos which are destination
2083 of removed store at the end of loop. It has no sense to keep
2084 the same value in different hard registers. It is also
2085 impossible to assign hard registers correctly to such
2086 allocnos because the cost info and info about intersected
2087 calls are incorrect for them. */
2088 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1756cb66 2089 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
058e97ec 2090 || (ALLOCNO_MEMORY_COST (a)
1756cb66 2091 - ALLOCNO_CLASS_COST (a)) < 0);
9181a6e5
VM
2092 ira_assert
2093 (hard_regno < 0
2094 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2095 reg_class_contents[ALLOCNO_CLASS (a)]));
058e97ec
VM
2096 }
2097}
2098
2099/* Evaluate overall allocation cost and the costs for using hard
2100 registers and memory for allocnos. */
2101static void
2102calculate_allocation_cost (void)
2103{
2104 int hard_regno, cost;
2105 ira_allocno_t a;
2106 ira_allocno_iterator ai;
2107
2108 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2109 FOR_EACH_ALLOCNO (a, ai)
2110 {
2111 hard_regno = ALLOCNO_HARD_REGNO (a);
2112 ira_assert (hard_regno < 0
9181a6e5
VM
2113 || (ira_hard_reg_in_set_p
2114 (hard_regno, ALLOCNO_MODE (a),
2115 reg_class_contents[ALLOCNO_CLASS (a)])));
058e97ec
VM
2116 if (hard_regno < 0)
2117 {
2118 cost = ALLOCNO_MEMORY_COST (a);
2119 ira_mem_cost += cost;
2120 }
2121 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2122 {
2123 cost = (ALLOCNO_HARD_REG_COSTS (a)
2124 [ira_class_hard_reg_index
1756cb66 2125 [ALLOCNO_CLASS (a)][hard_regno]]);
058e97ec
VM
2126 ira_reg_cost += cost;
2127 }
2128 else
2129 {
1756cb66 2130 cost = ALLOCNO_CLASS_COST (a);
058e97ec
VM
2131 ira_reg_cost += cost;
2132 }
2133 ira_overall_cost += cost;
2134 }
2135
2136 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2137 {
2138 fprintf (ira_dump_file,
2139 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2140 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2141 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2142 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2143 ira_move_loops_num, ira_additional_jumps_num);
2144 }
2145
2146}
2147
2148#ifdef ENABLE_IRA_CHECKING
2149/* Check the correctness of the allocation. We do need this because
2150 of complicated code to transform more one region internal
2151 representation into one region representation. */
2152static void
2153check_allocation (void)
2154{
fa86d337 2155 ira_allocno_t a;
ac0ab4f7 2156 int hard_regno, nregs, conflict_nregs;
058e97ec
VM
2157 ira_allocno_iterator ai;
2158
2159 FOR_EACH_ALLOCNO (a, ai)
2160 {
ac0ab4f7
BS
2161 int n = ALLOCNO_NUM_OBJECTS (a);
2162 int i;
fa86d337 2163
058e97ec
VM
2164 if (ALLOCNO_CAP_MEMBER (a) != NULL
2165 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2166 continue;
2167 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
8cfd82bf
BS
2168 if (nregs == 1)
2169 /* We allocated a single hard register. */
2170 n = 1;
2171 else if (n > 1)
2172 /* We allocated multiple hard registers, and we will test
2173 conflicts in a granularity of single hard regs. */
2174 nregs = 1;
2175
ac0ab4f7
BS
2176 for (i = 0; i < n; i++)
2177 {
2178 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2179 ira_object_t conflict_obj;
2180 ira_object_conflict_iterator oci;
2181 int this_regno = hard_regno;
2182 if (n > 1)
fa86d337 2183 {
2805e6c0 2184 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2185 this_regno += n - i - 1;
2186 else
2187 this_regno += i;
2188 }
2189 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2190 {
2191 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2192 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2193 if (conflict_hard_regno < 0)
2194 continue;
8cfd82bf
BS
2195
2196 conflict_nregs
2197 = (hard_regno_nregs
2198 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2199
2200 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2201 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
ac0ab4f7 2202 {
2805e6c0 2203 if (REG_WORDS_BIG_ENDIAN)
ac0ab4f7
BS
2204 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2205 - OBJECT_SUBWORD (conflict_obj) - 1);
2206 else
2207 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2208 conflict_nregs = 1;
2209 }
ac0ab4f7
BS
2210
2211 if ((conflict_hard_regno <= this_regno
2212 && this_regno < conflict_hard_regno + conflict_nregs)
2213 || (this_regno <= conflict_hard_regno
2214 && conflict_hard_regno < this_regno + nregs))
fa86d337
BS
2215 {
2216 fprintf (stderr, "bad allocation for %d and %d\n",
2217 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2218 gcc_unreachable ();
2219 }
2220 }
2221 }
058e97ec
VM
2222 }
2223}
2224#endif
2225
2226/* Fix values of array REG_EQUIV_INIT after live range splitting done
2227 by IRA. */
2228static void
2229fix_reg_equiv_init (void)
2230{
f2034d06
JL
2231 unsigned int max_regno = max_reg_num ();
2232 int i, new_regno, max;
058e97ec 2233 rtx x, prev, next, insn, set;
b8698a0f 2234
f2034d06 2235 if (VEC_length (reg_equivs_t, reg_equivs) < max_regno)
058e97ec 2236 {
f2034d06
JL
2237 max = VEC_length (reg_equivs_t, reg_equivs);
2238 grow_reg_equivs ();
2239 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2240 for (prev = NULL_RTX, x = reg_equiv_init (i);
2241 x != NULL_RTX;
2242 x = next)
058e97ec
VM
2243 {
2244 next = XEXP (x, 1);
2245 insn = XEXP (x, 0);
2246 set = single_set (insn);
2247 ira_assert (set != NULL_RTX
2248 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2249 if (REG_P (SET_DEST (set))
2250 && ((int) REGNO (SET_DEST (set)) == i
2251 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2252 new_regno = REGNO (SET_DEST (set));
2253 else if (REG_P (SET_SRC (set))
2254 && ((int) REGNO (SET_SRC (set)) == i
2255 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2256 new_regno = REGNO (SET_SRC (set));
2257 else
2258 gcc_unreachable ();
2259 if (new_regno == i)
2260 prev = x;
2261 else
2262 {
2263 if (prev == NULL_RTX)
f2034d06 2264 reg_equiv_init (i) = next;
058e97ec
VM
2265 else
2266 XEXP (prev, 1) = next;
f2034d06
JL
2267 XEXP (x, 1) = reg_equiv_init (new_regno);
2268 reg_equiv_init (new_regno) = x;
058e97ec
VM
2269 }
2270 }
2271 }
2272}
2273
2274#ifdef ENABLE_IRA_CHECKING
2275/* Print redundant memory-memory copies. */
2276static void
2277print_redundant_copies (void)
2278{
2279 int hard_regno;
2280 ira_allocno_t a;
2281 ira_copy_t cp, next_cp;
2282 ira_allocno_iterator ai;
b8698a0f 2283
058e97ec
VM
2284 FOR_EACH_ALLOCNO (a, ai)
2285 {
2286 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2287 /* It is a cap. */
2288 continue;
2289 hard_regno = ALLOCNO_HARD_REGNO (a);
2290 if (hard_regno >= 0)
2291 continue;
2292 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2293 if (cp->first == a)
2294 next_cp = cp->next_first_allocno_copy;
2295 else
2296 {
2297 next_cp = cp->next_second_allocno_copy;
2298 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2299 && cp->insn != NULL_RTX
2300 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2301 fprintf (ira_dump_file,
2302 " Redundant move from %d(freq %d):%d\n",
2303 INSN_UID (cp->insn), cp->freq, hard_regno);
2304 }
2305 }
2306}
2307#endif
2308
2309/* Setup preferred and alternative classes for new pseudo-registers
2310 created by IRA starting with START. */
2311static void
2312setup_preferred_alternate_classes_for_new_pseudos (int start)
2313{
2314 int i, old_regno;
2315 int max_regno = max_reg_num ();
2316
2317 for (i = start; i < max_regno; i++)
2318 {
2319 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
b8698a0f 2320 ira_assert (i != old_regno);
058e97ec 2321 setup_reg_classes (i, reg_preferred_class (old_regno),
ce18efcb 2322 reg_alternate_class (old_regno),
1756cb66 2323 reg_allocno_class (old_regno));
058e97ec
VM
2324 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2325 fprintf (ira_dump_file,
2326 " New r%d: setting preferred %s, alternative %s\n",
2327 i, reg_class_names[reg_preferred_class (old_regno)],
2328 reg_class_names[reg_alternate_class (old_regno)]);
2329 }
2330}
2331
2332\f
fb99ee9b
BS
2333/* The number of entries allocated in teg_info. */
2334static int allocated_reg_info_size;
058e97ec
VM
2335
2336/* Regional allocation can create new pseudo-registers. This function
2337 expands some arrays for pseudo-registers. */
2338static void
fb99ee9b 2339expand_reg_info (void)
058e97ec
VM
2340{
2341 int i;
2342 int size = max_reg_num ();
2343
2344 resize_reg_info ();
fb99ee9b 2345 for (i = allocated_reg_info_size; i < size; i++)
ce18efcb 2346 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
fb99ee9b
BS
2347 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2348 allocated_reg_info_size = size;
058e97ec
VM
2349}
2350
3553f0bb
VM
2351/* Return TRUE if there is too high register pressure in the function.
2352 It is used to decide when stack slot sharing is worth to do. */
2353static bool
2354too_high_register_pressure_p (void)
2355{
2356 int i;
1756cb66 2357 enum reg_class pclass;
b8698a0f 2358
1756cb66 2359 for (i = 0; i < ira_pressure_classes_num; i++)
3553f0bb 2360 {
1756cb66
VM
2361 pclass = ira_pressure_classes[i];
2362 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
3553f0bb
VM
2363 return true;
2364 }
2365 return false;
2366}
2367
058e97ec
VM
2368\f
2369
2af2dbdc
VM
2370/* Indicate that hard register number FROM was eliminated and replaced with
2371 an offset from hard register number TO. The status of hard registers live
2372 at the start of a basic block is updated by replacing a use of FROM with
2373 a use of TO. */
2374
2375void
2376mark_elimination (int from, int to)
2377{
2378 basic_block bb;
2379
2380 FOR_EACH_BB (bb)
2381 {
2382 /* We don't use LIVE info in IRA. */
7a8cba34 2383 bitmap r = DF_LR_IN (bb);
2af2dbdc
VM
2384
2385 if (REGNO_REG_SET_P (r, from))
2386 {
2387 CLEAR_REGNO_REG_SET (r, from);
2388 SET_REGNO_REG_SET (r, to);
2389 }
2390 }
2391}
2392
2393\f
2394
2395struct equivalence
2396{
2af2dbdc
VM
2397 /* Set when a REG_EQUIV note is found or created. Use to
2398 keep track of what memory accesses might be created later,
2399 e.g. by reload. */
2400 rtx replacement;
2401 rtx *src_p;
8f5929e1
JJ
2402 /* The list of each instruction which initializes this register. */
2403 rtx init_insns;
2af2dbdc
VM
2404 /* Loop depth is used to recognize equivalences which appear
2405 to be present within the same loop (or in an inner loop). */
2406 int loop_depth;
2af2dbdc
VM
2407 /* Nonzero if this had a preexisting REG_EQUIV note. */
2408 int is_arg_equivalence;
8f5929e1
JJ
2409 /* Set when an attempt should be made to replace a register
2410 with the associated src_p entry. */
2411 char replace;
2af2dbdc
VM
2412};
2413
2414/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2415 structure for that register. */
2416static struct equivalence *reg_equiv;
2417
2418/* Used for communication between the following two functions: contains
2419 a MEM that we wish to ensure remains unchanged. */
2420static rtx equiv_mem;
2421
2422/* Set nonzero if EQUIV_MEM is modified. */
2423static int equiv_mem_modified;
2424
2425/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2426 Called via note_stores. */
2427static void
2428validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2429 void *data ATTRIBUTE_UNUSED)
2430{
2431 if ((REG_P (dest)
2432 && reg_overlap_mentioned_p (dest, equiv_mem))
2433 || (MEM_P (dest)
53d9622b 2434 && true_dependence (dest, VOIDmode, equiv_mem)))
2af2dbdc
VM
2435 equiv_mem_modified = 1;
2436}
2437
2438/* Verify that no store between START and the death of REG invalidates
2439 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2440 by storing into an overlapping memory location, or with a non-const
2441 CALL_INSN.
2442
2443 Return 1 if MEMREF remains valid. */
2444static int
2445validate_equiv_mem (rtx start, rtx reg, rtx memref)
2446{
2447 rtx insn;
2448 rtx note;
2449
2450 equiv_mem = memref;
2451 equiv_mem_modified = 0;
2452
2453 /* If the memory reference has side effects or is volatile, it isn't a
2454 valid equivalence. */
2455 if (side_effects_p (memref))
2456 return 0;
2457
2458 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2459 {
2460 if (! INSN_P (insn))
2461 continue;
2462
2463 if (find_reg_note (insn, REG_DEAD, reg))
2464 return 1;
2465
a22265a4
JL
2466 /* This used to ignore readonly memory and const/pure calls. The problem
2467 is the equivalent form may reference a pseudo which gets assigned a
2468 call clobbered hard reg. When we later replace REG with its
2469 equivalent form, the value in the call-clobbered reg has been
2470 changed and all hell breaks loose. */
2471 if (CALL_P (insn))
2af2dbdc
VM
2472 return 0;
2473
2474 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2475
2476 /* If a register mentioned in MEMREF is modified via an
2477 auto-increment, we lose the equivalence. Do the same if one
2478 dies; although we could extend the life, it doesn't seem worth
2479 the trouble. */
2480
2481 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2482 if ((REG_NOTE_KIND (note) == REG_INC
2483 || REG_NOTE_KIND (note) == REG_DEAD)
2484 && REG_P (XEXP (note, 0))
2485 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2486 return 0;
2487 }
2488
2489 return 0;
2490}
2491
2492/* Returns zero if X is known to be invariant. */
2493static int
2494equiv_init_varies_p (rtx x)
2495{
2496 RTX_CODE code = GET_CODE (x);
2497 int i;
2498 const char *fmt;
2499
2500 switch (code)
2501 {
2502 case MEM:
2503 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2504
2505 case CONST:
2506 case CONST_INT:
2507 case CONST_DOUBLE:
2508 case CONST_FIXED:
2509 case CONST_VECTOR:
2510 case SYMBOL_REF:
2511 case LABEL_REF:
2512 return 0;
2513
2514 case REG:
2515 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2516
2517 case ASM_OPERANDS:
2518 if (MEM_VOLATILE_P (x))
2519 return 1;
2520
2521 /* Fall through. */
2522
2523 default:
2524 break;
2525 }
2526
2527 fmt = GET_RTX_FORMAT (code);
2528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2529 if (fmt[i] == 'e')
2530 {
2531 if (equiv_init_varies_p (XEXP (x, i)))
2532 return 1;
2533 }
2534 else if (fmt[i] == 'E')
2535 {
2536 int j;
2537 for (j = 0; j < XVECLEN (x, i); j++)
2538 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2539 return 1;
2540 }
2541
2542 return 0;
2543}
2544
2545/* Returns nonzero if X (used to initialize register REGNO) is movable.
2546 X is only movable if the registers it uses have equivalent initializations
2547 which appear to be within the same loop (or in an inner loop) and movable
2548 or if they are not candidates for local_alloc and don't vary. */
2549static int
2550equiv_init_movable_p (rtx x, int regno)
2551{
2552 int i, j;
2553 const char *fmt;
2554 enum rtx_code code = GET_CODE (x);
2555
2556 switch (code)
2557 {
2558 case SET:
2559 return equiv_init_movable_p (SET_SRC (x), regno);
2560
2561 case CC0:
2562 case CLOBBER:
2563 return 0;
2564
2565 case PRE_INC:
2566 case PRE_DEC:
2567 case POST_INC:
2568 case POST_DEC:
2569 case PRE_MODIFY:
2570 case POST_MODIFY:
2571 return 0;
2572
2573 case REG:
1756cb66
VM
2574 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2575 && reg_equiv[REGNO (x)].replace)
2576 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2577 && ! rtx_varies_p (x, 0)));
2af2dbdc
VM
2578
2579 case UNSPEC_VOLATILE:
2580 return 0;
2581
2582 case ASM_OPERANDS:
2583 if (MEM_VOLATILE_P (x))
2584 return 0;
2585
2586 /* Fall through. */
2587
2588 default:
2589 break;
2590 }
2591
2592 fmt = GET_RTX_FORMAT (code);
2593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2594 switch (fmt[i])
2595 {
2596 case 'e':
2597 if (! equiv_init_movable_p (XEXP (x, i), regno))
2598 return 0;
2599 break;
2600 case 'E':
2601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2602 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2603 return 0;
2604 break;
2605 }
2606
2607 return 1;
2608}
2609
1756cb66
VM
2610/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2611 true. */
2af2dbdc
VM
2612static int
2613contains_replace_regs (rtx x)
2614{
2615 int i, j;
2616 const char *fmt;
2617 enum rtx_code code = GET_CODE (x);
2618
2619 switch (code)
2620 {
2621 case CONST_INT:
2622 case CONST:
2623 case LABEL_REF:
2624 case SYMBOL_REF:
2625 case CONST_DOUBLE:
2626 case CONST_FIXED:
2627 case CONST_VECTOR:
2628 case PC:
2629 case CC0:
2630 case HIGH:
2631 return 0;
2632
2633 case REG:
2634 return reg_equiv[REGNO (x)].replace;
2635
2636 default:
2637 break;
2638 }
2639
2640 fmt = GET_RTX_FORMAT (code);
2641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2642 switch (fmt[i])
2643 {
2644 case 'e':
2645 if (contains_replace_regs (XEXP (x, i)))
2646 return 1;
2647 break;
2648 case 'E':
2649 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2650 if (contains_replace_regs (XVECEXP (x, i, j)))
2651 return 1;
2652 break;
2653 }
2654
2655 return 0;
2656}
2657
2658/* TRUE if X references a memory location that would be affected by a store
2659 to MEMREF. */
2660static int
2661memref_referenced_p (rtx memref, rtx x)
2662{
2663 int i, j;
2664 const char *fmt;
2665 enum rtx_code code = GET_CODE (x);
2666
2667 switch (code)
2668 {
2669 case CONST_INT:
2670 case CONST:
2671 case LABEL_REF:
2672 case SYMBOL_REF:
2673 case CONST_DOUBLE:
2674 case CONST_FIXED:
2675 case CONST_VECTOR:
2676 case PC:
2677 case CC0:
2678 case HIGH:
2679 case LO_SUM:
2680 return 0;
2681
2682 case REG:
2683 return (reg_equiv[REGNO (x)].replacement
2684 && memref_referenced_p (memref,
2685 reg_equiv[REGNO (x)].replacement));
2686
2687 case MEM:
53d9622b 2688 if (true_dependence (memref, VOIDmode, x))
2af2dbdc
VM
2689 return 1;
2690 break;
2691
2692 case SET:
2693 /* If we are setting a MEM, it doesn't count (its address does), but any
2694 other SET_DEST that has a MEM in it is referencing the MEM. */
2695 if (MEM_P (SET_DEST (x)))
2696 {
2697 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2698 return 1;
2699 }
2700 else if (memref_referenced_p (memref, SET_DEST (x)))
2701 return 1;
2702
2703 return memref_referenced_p (memref, SET_SRC (x));
2704
2705 default:
2706 break;
2707 }
2708
2709 fmt = GET_RTX_FORMAT (code);
2710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2711 switch (fmt[i])
2712 {
2713 case 'e':
2714 if (memref_referenced_p (memref, XEXP (x, i)))
2715 return 1;
2716 break;
2717 case 'E':
2718 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2719 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2720 return 1;
2721 break;
2722 }
2723
2724 return 0;
2725}
2726
2727/* TRUE if some insn in the range (START, END] references a memory location
2728 that would be affected by a store to MEMREF. */
2729static int
2730memref_used_between_p (rtx memref, rtx start, rtx end)
2731{
2732 rtx insn;
2733
2734 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2735 insn = NEXT_INSN (insn))
2736 {
b5b8b0ac 2737 if (!NONDEBUG_INSN_P (insn))
2af2dbdc 2738 continue;
b8698a0f 2739
2af2dbdc
VM
2740 if (memref_referenced_p (memref, PATTERN (insn)))
2741 return 1;
2742
2743 /* Nonconst functions may access memory. */
2744 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2745 return 1;
2746 }
2747
2748 return 0;
2749}
2750
2751/* Mark REG as having no known equivalence.
2752 Some instructions might have been processed before and furnished
2753 with REG_EQUIV notes for this register; these notes will have to be
2754 removed.
2755 STORE is the piece of RTL that does the non-constant / conflicting
2756 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2757 but needs to be there because this function is called from note_stores. */
2758static void
1756cb66
VM
2759no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2760 void *data ATTRIBUTE_UNUSED)
2af2dbdc
VM
2761{
2762 int regno;
2763 rtx list;
2764
2765 if (!REG_P (reg))
2766 return;
2767 regno = REGNO (reg);
2768 list = reg_equiv[regno].init_insns;
2769 if (list == const0_rtx)
2770 return;
2771 reg_equiv[regno].init_insns = const0_rtx;
2772 reg_equiv[regno].replacement = NULL_RTX;
2773 /* This doesn't matter for equivalences made for argument registers, we
2774 should keep their initialization insns. */
2775 if (reg_equiv[regno].is_arg_equivalence)
2776 return;
f2034d06 2777 reg_equiv_init (regno) = NULL_RTX;
2af2dbdc
VM
2778 for (; list; list = XEXP (list, 1))
2779 {
2780 rtx insn = XEXP (list, 0);
2781 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2782 }
2783}
2784
3a6191b1
JJ
2785/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2786 equivalent replacement. */
2787
2788static rtx
2789adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2790{
2791 if (REG_P (loc))
2792 {
2793 bitmap cleared_regs = (bitmap) data;
2794 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2795 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2796 NULL_RTX, adjust_cleared_regs, data);
2797 }
2798 return NULL_RTX;
2799}
2800
2af2dbdc
VM
2801/* Nonzero if we recorded an equivalence for a LABEL_REF. */
2802static int recorded_label_ref;
2803
2804/* Find registers that are equivalent to a single value throughout the
1756cb66
VM
2805 compilation (either because they can be referenced in memory or are
2806 set once from a single constant). Lower their priority for a
2807 register.
2af2dbdc 2808
1756cb66
VM
2809 If such a register is only referenced once, try substituting its
2810 value into the using insn. If it succeeds, we can eliminate the
2811 register completely.
2af2dbdc
VM
2812
2813 Initialize the REG_EQUIV_INIT array of initializing insns.
2814
2815 Return non-zero if jump label rebuilding should be done. */
2816static int
2817update_equiv_regs (void)
2818{
2819 rtx insn;
2820 basic_block bb;
2821 int loop_depth;
2822 bitmap cleared_regs;
b8698a0f 2823
2af2dbdc
VM
2824 /* We need to keep track of whether or not we recorded a LABEL_REF so
2825 that we know if the jump optimizer needs to be rerun. */
2826 recorded_label_ref = 0;
2827
2828 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
f2034d06 2829 grow_reg_equivs ();
2af2dbdc
VM
2830
2831 init_alias_analysis ();
2832
2833 /* Scan the insns and find which registers have equivalences. Do this
2834 in a separate scan of the insns because (due to -fcse-follow-jumps)
2835 a register can be set below its use. */
2836 FOR_EACH_BB (bb)
2837 {
2838 loop_depth = bb->loop_depth;
2839
2840 for (insn = BB_HEAD (bb);
2841 insn != NEXT_INSN (BB_END (bb));
2842 insn = NEXT_INSN (insn))
2843 {
2844 rtx note;
2845 rtx set;
2846 rtx dest, src;
2847 int regno;
2848
2849 if (! INSN_P (insn))
2850 continue;
2851
2852 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2853 if (REG_NOTE_KIND (note) == REG_INC)
2854 no_equiv (XEXP (note, 0), note, NULL);
2855
2856 set = single_set (insn);
2857
2858 /* If this insn contains more (or less) than a single SET,
2859 only mark all destinations as having no known equivalence. */
2860 if (set == 0)
2861 {
2862 note_stores (PATTERN (insn), no_equiv, NULL);
2863 continue;
2864 }
2865 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2866 {
2867 int i;
2868
2869 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2870 {
2871 rtx part = XVECEXP (PATTERN (insn), 0, i);
2872 if (part != set)
2873 note_stores (part, no_equiv, NULL);
2874 }
2875 }
2876
2877 dest = SET_DEST (set);
2878 src = SET_SRC (set);
2879
2880 /* See if this is setting up the equivalence between an argument
2881 register and its stack slot. */
2882 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2883 if (note)
2884 {
2885 gcc_assert (REG_P (dest));
2886 regno = REGNO (dest);
2887
2888 /* Note that we don't want to clear reg_equiv_init even if there
2889 are multiple sets of this register. */
2890 reg_equiv[regno].is_arg_equivalence = 1;
2891
2892 /* Record for reload that this is an equivalencing insn. */
2893 if (rtx_equal_p (src, XEXP (note, 0)))
f2034d06
JL
2894 reg_equiv_init (regno)
2895 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2af2dbdc
VM
2896
2897 /* Continue normally in case this is a candidate for
2898 replacements. */
2899 }
2900
2901 if (!optimize)
2902 continue;
2903
2904 /* We only handle the case of a pseudo register being set
2905 once, or always to the same value. */
1fe28116
VM
2906 /* ??? The mn10200 port breaks if we add equivalences for
2907 values that need an ADDRESS_REGS register and set them equivalent
2908 to a MEM of a pseudo. The actual problem is in the over-conservative
2909 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2910 calculate_needs, but we traditionally work around this problem
2911 here by rejecting equivalences when the destination is in a register
2912 that's likely spilled. This is fragile, of course, since the
2913 preferred class of a pseudo depends on all instructions that set
2914 or use it. */
2915
2af2dbdc
VM
2916 if (!REG_P (dest)
2917 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1fe28116 2918 || reg_equiv[regno].init_insns == const0_rtx
07b8f0a8 2919 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
1fe28116 2920 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2af2dbdc
VM
2921 {
2922 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2923 also set somewhere else to a constant. */
2924 note_stores (set, no_equiv, NULL);
2925 continue;
2926 }
2927
2928 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2929
2930 /* cse sometimes generates function invariants, but doesn't put a
2931 REG_EQUAL note on the insn. Since this note would be redundant,
2932 there's no point creating it earlier than here. */
2933 if (! note && ! rtx_varies_p (src, 0))
2934 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2935
2936 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2937 since it represents a function call */
2938 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2939 note = NULL_RTX;
2940
2941 if (DF_REG_DEF_COUNT (regno) != 1
2942 && (! note
2943 || rtx_varies_p (XEXP (note, 0), 0)
2944 || (reg_equiv[regno].replacement
2945 && ! rtx_equal_p (XEXP (note, 0),
2946 reg_equiv[regno].replacement))))
2947 {
2948 no_equiv (dest, set, NULL);
2949 continue;
2950 }
2951 /* Record this insn as initializing this register. */
2952 reg_equiv[regno].init_insns
2953 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2954
2955 /* If this register is known to be equal to a constant, record that
2956 it is always equivalent to the constant. */
2957 if (DF_REG_DEF_COUNT (regno) == 1
2958 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2959 {
2960 rtx note_value = XEXP (note, 0);
2961 remove_note (insn, note);
2962 set_unique_reg_note (insn, REG_EQUIV, note_value);
2963 }
2964
2965 /* If this insn introduces a "constant" register, decrease the priority
2966 of that register. Record this insn if the register is only used once
2967 more and the equivalence value is the same as our source.
2968
2969 The latter condition is checked for two reasons: First, it is an
2970 indication that it may be more efficient to actually emit the insn
2971 as written (if no registers are available, reload will substitute
2972 the equivalence). Secondly, it avoids problems with any registers
2973 dying in this insn whose death notes would be missed.
2974
2975 If we don't have a REG_EQUIV note, see if this insn is loading
2976 a register used only in one basic block from a MEM. If so, and the
2977 MEM remains unchanged for the life of the register, add a REG_EQUIV
2978 note. */
2979
2980 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2981
2982 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2983 && MEM_P (SET_SRC (set))
2984 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2985 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2986
2987 if (note)
2988 {
2989 int regno = REGNO (dest);
2990 rtx x = XEXP (note, 0);
2991
2992 /* If we haven't done so, record for reload that this is an
2993 equivalencing insn. */
2994 if (!reg_equiv[regno].is_arg_equivalence)
f2034d06
JL
2995 reg_equiv_init (regno)
2996 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
2af2dbdc
VM
2997
2998 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2999 We might end up substituting the LABEL_REF for uses of the
3000 pseudo here or later. That kind of transformation may turn an
3001 indirect jump into a direct jump, in which case we must rerun the
3002 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3003 if (GET_CODE (x) == LABEL_REF
3004 || (GET_CODE (x) == CONST
3005 && GET_CODE (XEXP (x, 0)) == PLUS
3006 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3007 recorded_label_ref = 1;
3008
3009 reg_equiv[regno].replacement = x;
3010 reg_equiv[regno].src_p = &SET_SRC (set);
3011 reg_equiv[regno].loop_depth = loop_depth;
3012
3013 /* Don't mess with things live during setjmp. */
3014 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3015 {
3016 /* Note that the statement below does not affect the priority
3017 in local-alloc! */
3018 REG_LIVE_LENGTH (regno) *= 2;
3019
3020 /* If the register is referenced exactly twice, meaning it is
3021 set once and used once, indicate that the reference may be
3022 replaced by the equivalence we computed above. Do this
3023 even if the register is only used in one block so that
3024 dependencies can be handled where the last register is
3025 used in a different block (i.e. HIGH / LO_SUM sequences)
3026 and to reduce the number of registers alive across
3027 calls. */
3028
3029 if (REG_N_REFS (regno) == 2
3030 && (rtx_equal_p (x, src)
3031 || ! equiv_init_varies_p (src))
3032 && NONJUMP_INSN_P (insn)
3033 && equiv_init_movable_p (PATTERN (insn), regno))
3034 reg_equiv[regno].replace = 1;
3035 }
3036 }
3037 }
3038 }
3039
3040 if (!optimize)
3041 goto out;
3042
3043 /* A second pass, to gather additional equivalences with memory. This needs
3044 to be done after we know which registers we are going to replace. */
3045
3046 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3047 {
3048 rtx set, src, dest;
3049 unsigned regno;
3050
3051 if (! INSN_P (insn))
3052 continue;
3053
3054 set = single_set (insn);
3055 if (! set)
3056 continue;
3057
3058 dest = SET_DEST (set);
3059 src = SET_SRC (set);
3060
3061 /* If this sets a MEM to the contents of a REG that is only used
3062 in a single basic block, see if the register is always equivalent
3063 to that memory location and if moving the store from INSN to the
3064 insn that set REG is safe. If so, put a REG_EQUIV note on the
3065 initializing insn.
3066
3067 Don't add a REG_EQUIV note if the insn already has one. The existing
3068 REG_EQUIV is likely more useful than the one we are adding.
3069
3070 If one of the regs in the address has reg_equiv[REGNO].replace set,
3071 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3072 optimization may move the set of this register immediately before
3073 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3074 the mention in the REG_EQUIV note would be to an uninitialized
3075 pseudo. */
3076
3077 if (MEM_P (dest) && REG_P (src)
3078 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3079 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3080 && DF_REG_DEF_COUNT (regno) == 1
3081 && reg_equiv[regno].init_insns != 0
3082 && reg_equiv[regno].init_insns != const0_rtx
3083 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3084 REG_EQUIV, NULL_RTX)
3085 && ! contains_replace_regs (XEXP (dest, 0)))
3086 {
3087 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3088 if (validate_equiv_mem (init_insn, src, dest)
3089 && ! memref_used_between_p (dest, init_insn, insn)
3090 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3091 multiple sets. */
3092 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3093 {
3094 /* This insn makes the equivalence, not the one initializing
3095 the register. */
f2034d06 3096 reg_equiv_init (regno)
2af2dbdc
VM
3097 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3098 df_notes_rescan (init_insn);
3099 }
3100 }
3101 }
3102
3103 cleared_regs = BITMAP_ALLOC (NULL);
3104 /* Now scan all regs killed in an insn to see if any of them are
3105 registers only used that once. If so, see if we can replace the
3106 reference with the equivalent form. If we can, delete the
3107 initializing reference and this register will go away. If we
3108 can't replace the reference, and the initializing reference is
3109 within the same loop (or in an inner loop), then move the register
3110 initialization just before the use, so that they are in the same
3111 basic block. */
3112 FOR_EACH_BB_REVERSE (bb)
3113 {
3114 loop_depth = bb->loop_depth;
3115 for (insn = BB_END (bb);
3116 insn != PREV_INSN (BB_HEAD (bb));
3117 insn = PREV_INSN (insn))
3118 {
3119 rtx link;
3120
3121 if (! INSN_P (insn))
3122 continue;
3123
3124 /* Don't substitute into a non-local goto, this confuses CFG. */
3125 if (JUMP_P (insn)
3126 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3127 continue;
3128
3129 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3130 {
3131 if (REG_NOTE_KIND (link) == REG_DEAD
3132 /* Make sure this insn still refers to the register. */
3133 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3134 {
3135 int regno = REGNO (XEXP (link, 0));
3136 rtx equiv_insn;
3137
3138 if (! reg_equiv[regno].replace
0cad4827
VM
3139 || reg_equiv[regno].loop_depth < loop_depth
3140 /* There is no sense to move insns if we did
3141 register pressure-sensitive scheduling was
3142 done because it will not improve allocation
3143 but worsen insn schedule with a big
3144 probability. */
3145 || (flag_sched_pressure && flag_schedule_insns))
2af2dbdc
VM
3146 continue;
3147
3148 /* reg_equiv[REGNO].replace gets set only when
3149 REG_N_REFS[REGNO] is 2, i.e. the register is set
3150 once and used once. (If it were only set, but not used,
3151 flow would have deleted the setting insns.) Hence
3152 there can only be one insn in reg_equiv[REGNO].init_insns. */
3153 gcc_assert (reg_equiv[regno].init_insns
3154 && !XEXP (reg_equiv[regno].init_insns, 1));
3155 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3156
3157 /* We may not move instructions that can throw, since
3158 that changes basic block boundaries and we are not
3159 prepared to adjust the CFG to match. */
3160 if (can_throw_internal (equiv_insn))
3161 continue;
3162
3163 if (asm_noperands (PATTERN (equiv_insn)) < 0
3164 && validate_replace_rtx (regno_reg_rtx[regno],
3165 *(reg_equiv[regno].src_p), insn))
3166 {
3167 rtx equiv_link;
3168 rtx last_link;
3169 rtx note;
3170
3171 /* Find the last note. */
3172 for (last_link = link; XEXP (last_link, 1);
3173 last_link = XEXP (last_link, 1))
3174 ;
3175
3176 /* Append the REG_DEAD notes from equiv_insn. */
3177 equiv_link = REG_NOTES (equiv_insn);
3178 while (equiv_link)
3179 {
3180 note = equiv_link;
3181 equiv_link = XEXP (equiv_link, 1);
3182 if (REG_NOTE_KIND (note) == REG_DEAD)
3183 {
3184 remove_note (equiv_insn, note);
3185 XEXP (last_link, 1) = note;
3186 XEXP (note, 1) = NULL_RTX;
3187 last_link = note;
3188 }
3189 }
3190
3191 remove_death (regno, insn);
3192 SET_REG_N_REFS (regno, 0);
3193 REG_FREQ (regno) = 0;
3194 delete_insn (equiv_insn);
3195
3196 reg_equiv[regno].init_insns
3197 = XEXP (reg_equiv[regno].init_insns, 1);
3198
f2034d06 3199 reg_equiv_init (regno) = NULL_RTX;
2af2dbdc
VM
3200 bitmap_set_bit (cleared_regs, regno);
3201 }
3202 /* Move the initialization of the register to just before
3203 INSN. Update the flow information. */
b5b8b0ac 3204 else if (prev_nondebug_insn (insn) != equiv_insn)
2af2dbdc
VM
3205 {
3206 rtx new_insn;
3207
3208 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3209 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3210 REG_NOTES (equiv_insn) = 0;
3211 /* Rescan it to process the notes. */
3212 df_insn_rescan (new_insn);
3213
3214 /* Make sure this insn is recognized before
3215 reload begins, otherwise
3216 eliminate_regs_in_insn will die. */
3217 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3218
3219 delete_insn (equiv_insn);
3220
3221 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3222
3223 REG_BASIC_BLOCK (regno) = bb->index;
3224 REG_N_CALLS_CROSSED (regno) = 0;
3225 REG_FREQ_CALLS_CROSSED (regno) = 0;
3226 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3227 REG_LIVE_LENGTH (regno) = 2;
3228
3229 if (insn == BB_HEAD (bb))
3230 BB_HEAD (bb) = PREV_INSN (insn);
3231
f2034d06 3232 reg_equiv_init (regno)
2af2dbdc
VM
3233 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3234 bitmap_set_bit (cleared_regs, regno);
3235 }
3236 }
3237 }
3238 }
3239 }
3240
3241 if (!bitmap_empty_p (cleared_regs))
3a6191b1
JJ
3242 {
3243 FOR_EACH_BB (bb)
3244 {
3245 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3246 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3247 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3248 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3249 }
3250
3251 /* Last pass - adjust debug insns referencing cleared regs. */
3252 if (MAY_HAVE_DEBUG_INSNS)
3253 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3254 if (DEBUG_INSN_P (insn))
3255 {
3256 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3257 INSN_VAR_LOCATION_LOC (insn)
3258 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3259 adjust_cleared_regs,
3260 (void *) cleared_regs);
3261 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3262 df_insn_rescan (insn);
3263 }
3264 }
2af2dbdc
VM
3265
3266 BITMAP_FREE (cleared_regs);
3267
3268 out:
3269 /* Clean up. */
3270
3271 end_alias_analysis ();
3272 free (reg_equiv);
3273 return recorded_label_ref;
3274}
3275
3276\f
3277
3278/* Print chain C to FILE. */
3279static void
3280print_insn_chain (FILE *file, struct insn_chain *c)
3281{
3282 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3283 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3284 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3285}
3286
3287
3288/* Print all reload_insn_chains to FILE. */
3289static void
3290print_insn_chains (FILE *file)
3291{
3292 struct insn_chain *c;
3293 for (c = reload_insn_chain; c ; c = c->next)
3294 print_insn_chain (file, c);
3295}
3296
3297/* Return true if pseudo REGNO should be added to set live_throughout
3298 or dead_or_set of the insn chains for reload consideration. */
3299static bool
3300pseudo_for_reload_consideration_p (int regno)
3301{
3302 /* Consider spilled pseudos too for IRA because they still have a
3303 chance to get hard-registers in the reload when IRA is used. */
b100151b 3304 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
2af2dbdc
VM
3305}
3306
3307/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3308 REG to the number of nregs, and INIT_VALUE to get the
3309 initialization. ALLOCNUM need not be the regno of REG. */
3310static void
3311init_live_subregs (bool init_value, sbitmap *live_subregs,
3312 int *live_subregs_used, int allocnum, rtx reg)
3313{
3314 unsigned int regno = REGNO (SUBREG_REG (reg));
3315 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3316
3317 gcc_assert (size > 0);
3318
3319 /* Been there, done that. */
3320 if (live_subregs_used[allocnum])
3321 return;
3322
3323 /* Create a new one with zeros. */
3324 if (live_subregs[allocnum] == NULL)
3325 live_subregs[allocnum] = sbitmap_alloc (size);
3326
3327 /* If the entire reg was live before blasting into subregs, we need
3328 to init all of the subregs to ones else init to 0. */
3329 if (init_value)
3330 sbitmap_ones (live_subregs[allocnum]);
b8698a0f 3331 else
2af2dbdc
VM
3332 sbitmap_zero (live_subregs[allocnum]);
3333
3334 /* Set the number of bits that we really want. */
3335 live_subregs_used[allocnum] = size;
3336}
3337
3338/* Walk the insns of the current function and build reload_insn_chain,
3339 and record register life information. */
3340static void
3341build_insn_chain (void)
3342{
3343 unsigned int i;
3344 struct insn_chain **p = &reload_insn_chain;
3345 basic_block bb;
3346 struct insn_chain *c = NULL;
3347 struct insn_chain *next = NULL;
3348 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3349 bitmap elim_regset = BITMAP_ALLOC (NULL);
3350 /* live_subregs is a vector used to keep accurate information about
3351 which hardregs are live in multiword pseudos. live_subregs and
3352 live_subregs_used are indexed by pseudo number. The live_subreg
3353 entry for a particular pseudo is only used if the corresponding
3354 element is non zero in live_subregs_used. The value in
3355 live_subregs_used is number of bytes that the pseudo can
3356 occupy. */
3357 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3358 int *live_subregs_used = XNEWVEC (int, max_regno);
3359
3360 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3361 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3362 bitmap_set_bit (elim_regset, i);
3363 FOR_EACH_BB_REVERSE (bb)
3364 {
3365 bitmap_iterator bi;
3366 rtx insn;
b8698a0f 3367
2af2dbdc
VM
3368 CLEAR_REG_SET (live_relevant_regs);
3369 memset (live_subregs_used, 0, max_regno * sizeof (int));
b8698a0f 3370
54a0ac2d 3371 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2af2dbdc
VM
3372 {
3373 if (i >= FIRST_PSEUDO_REGISTER)
3374 break;
3375 bitmap_set_bit (live_relevant_regs, i);
3376 }
3377
54a0ac2d 3378 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2af2dbdc
VM
3379 FIRST_PSEUDO_REGISTER, i, bi)
3380 {
3381 if (pseudo_for_reload_consideration_p (i))
3382 bitmap_set_bit (live_relevant_regs, i);
3383 }
3384
3385 FOR_BB_INSNS_REVERSE (bb, insn)
3386 {
3387 if (!NOTE_P (insn) && !BARRIER_P (insn))
3388 {
3389 unsigned int uid = INSN_UID (insn);
3390 df_ref *def_rec;
3391 df_ref *use_rec;
3392
3393 c = new_insn_chain ();
3394 c->next = next;
3395 next = c;
3396 *p = c;
3397 p = &c->prev;
b8698a0f 3398
2af2dbdc
VM
3399 c->insn = insn;
3400 c->block = bb->index;
3401
3402 if (INSN_P (insn))
3403 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3404 {
3405 df_ref def = *def_rec;
3406 unsigned int regno = DF_REF_REGNO (def);
b8698a0f 3407
2af2dbdc
VM
3408 /* Ignore may clobbers because these are generated
3409 from calls. However, every other kind of def is
3410 added to dead_or_set. */
3411 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3412 {
3413 if (regno < FIRST_PSEUDO_REGISTER)
3414 {
3415 if (!fixed_regs[regno])
3416 bitmap_set_bit (&c->dead_or_set, regno);
3417 }
3418 else if (pseudo_for_reload_consideration_p (regno))
3419 bitmap_set_bit (&c->dead_or_set, regno);
3420 }
3421
3422 if ((regno < FIRST_PSEUDO_REGISTER
3423 || reg_renumber[regno] >= 0
3424 || ira_conflicts_p)
3425 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3426 {
3427 rtx reg = DF_REF_REG (def);
3428
3429 /* We can model subregs, but not if they are
3430 wrapped in ZERO_EXTRACTS. */
3431 if (GET_CODE (reg) == SUBREG
3432 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3433 {
3434 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 3435 unsigned int last = start
2af2dbdc
VM
3436 + GET_MODE_SIZE (GET_MODE (reg));
3437
3438 init_live_subregs
b8698a0f 3439 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc
VM
3440 live_subregs, live_subregs_used, regno, reg);
3441
3442 if (!DF_REF_FLAGS_IS_SET
3443 (def, DF_REF_STRICT_LOW_PART))
3444 {
3445 /* Expand the range to cover entire words.
3446 Bytes added here are "don't care". */
3447 start
3448 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3449 last = ((last + UNITS_PER_WORD - 1)
3450 / UNITS_PER_WORD * UNITS_PER_WORD);
3451 }
3452
3453 /* Ignore the paradoxical bits. */
3454 if ((int)last > live_subregs_used[regno])
3455 last = live_subregs_used[regno];
3456
3457 while (start < last)
3458 {
3459 RESET_BIT (live_subregs[regno], start);
3460 start++;
3461 }
b8698a0f 3462
2af2dbdc
VM
3463 if (sbitmap_empty_p (live_subregs[regno]))
3464 {
3465 live_subregs_used[regno] = 0;
3466 bitmap_clear_bit (live_relevant_regs, regno);
3467 }
3468 else
3469 /* Set live_relevant_regs here because
3470 that bit has to be true to get us to
3471 look at the live_subregs fields. */
3472 bitmap_set_bit (live_relevant_regs, regno);
3473 }
3474 else
3475 {
3476 /* DF_REF_PARTIAL is generated for
3477 subregs, STRICT_LOW_PART, and
3478 ZERO_EXTRACT. We handle the subreg
3479 case above so here we have to keep from
3480 modeling the def as a killing def. */
3481 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3482 {
3483 bitmap_clear_bit (live_relevant_regs, regno);
3484 live_subregs_used[regno] = 0;
3485 }
3486 }
3487 }
3488 }
b8698a0f 3489
2af2dbdc
VM
3490 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3491 bitmap_copy (&c->live_throughout, live_relevant_regs);
3492
3493 if (INSN_P (insn))
3494 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3495 {
3496 df_ref use = *use_rec;
3497 unsigned int regno = DF_REF_REGNO (use);
3498 rtx reg = DF_REF_REG (use);
b8698a0f 3499
2af2dbdc
VM
3500 /* DF_REF_READ_WRITE on a use means that this use
3501 is fabricated from a def that is a partial set
3502 to a multiword reg. Here, we only model the
3503 subreg case that is not wrapped in ZERO_EXTRACT
3504 precisely so we do not need to look at the
3505 fabricated use. */
b8698a0f
L
3506 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3507 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2af2dbdc
VM
3508 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3509 continue;
b8698a0f 3510
2af2dbdc
VM
3511 /* Add the last use of each var to dead_or_set. */
3512 if (!bitmap_bit_p (live_relevant_regs, regno))
3513 {
3514 if (regno < FIRST_PSEUDO_REGISTER)
3515 {
3516 if (!fixed_regs[regno])
3517 bitmap_set_bit (&c->dead_or_set, regno);
3518 }
3519 else if (pseudo_for_reload_consideration_p (regno))
3520 bitmap_set_bit (&c->dead_or_set, regno);
3521 }
b8698a0f 3522
2af2dbdc
VM
3523 if (regno < FIRST_PSEUDO_REGISTER
3524 || pseudo_for_reload_consideration_p (regno))
3525 {
3526 if (GET_CODE (reg) == SUBREG
3527 && !DF_REF_FLAGS_IS_SET (use,
3528 DF_REF_SIGN_EXTRACT
b8698a0f 3529 | DF_REF_ZERO_EXTRACT))
2af2dbdc
VM
3530 {
3531 unsigned int start = SUBREG_BYTE (reg);
b8698a0f 3532 unsigned int last = start
2af2dbdc 3533 + GET_MODE_SIZE (GET_MODE (reg));
b8698a0f 3534
2af2dbdc 3535 init_live_subregs
b8698a0f 3536 (bitmap_bit_p (live_relevant_regs, regno),
2af2dbdc 3537 live_subregs, live_subregs_used, regno, reg);
b8698a0f 3538
2af2dbdc
VM
3539 /* Ignore the paradoxical bits. */
3540 if ((int)last > live_subregs_used[regno])
3541 last = live_subregs_used[regno];
3542
3543 while (start < last)
3544 {
3545 SET_BIT (live_subregs[regno], start);
3546 start++;
3547 }
3548 }
3549 else
3550 /* Resetting the live_subregs_used is
3551 effectively saying do not use the subregs
3552 because we are reading the whole
3553 pseudo. */
3554 live_subregs_used[regno] = 0;
3555 bitmap_set_bit (live_relevant_regs, regno);
3556 }
3557 }
3558 }
3559 }
3560
3561 /* FIXME!! The following code is a disaster. Reload needs to see the
3562 labels and jump tables that are just hanging out in between
3563 the basic blocks. See pr33676. */
3564 insn = BB_HEAD (bb);
b8698a0f 3565
2af2dbdc 3566 /* Skip over the barriers and cruft. */
b8698a0f 3567 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2af2dbdc
VM
3568 || BLOCK_FOR_INSN (insn) == bb))
3569 insn = PREV_INSN (insn);
b8698a0f 3570
2af2dbdc
VM
3571 /* While we add anything except barriers and notes, the focus is
3572 to get the labels and jump tables into the
3573 reload_insn_chain. */
3574 while (insn)
3575 {
3576 if (!NOTE_P (insn) && !BARRIER_P (insn))
3577 {
3578 if (BLOCK_FOR_INSN (insn))
3579 break;
b8698a0f 3580
2af2dbdc
VM
3581 c = new_insn_chain ();
3582 c->next = next;
3583 next = c;
3584 *p = c;
3585 p = &c->prev;
b8698a0f 3586
2af2dbdc
VM
3587 /* The block makes no sense here, but it is what the old
3588 code did. */
3589 c->block = bb->index;
3590 c->insn = insn;
3591 bitmap_copy (&c->live_throughout, live_relevant_regs);
b8698a0f 3592 }
2af2dbdc
VM
3593 insn = PREV_INSN (insn);
3594 }
3595 }
3596
3597 for (i = 0; i < (unsigned int) max_regno; i++)
04695783 3598 free (live_subregs[i]);
2af2dbdc
VM
3599
3600 reload_insn_chain = c;
3601 *p = NULL;
3602
3603 free (live_subregs);
3604 free (live_subregs_used);
3605 BITMAP_FREE (live_relevant_regs);
3606 BITMAP_FREE (elim_regset);
3607
3608 if (dump_file)
3609 print_insn_chains (dump_file);
3610}
acf41a74
BS
3611 \f
3612/* Examine the rtx found in *LOC, which is read or written to as determined
3613 by TYPE. Return false if we find a reason why an insn containing this
3614 rtx should not be moved (such as accesses to non-constant memory), true
3615 otherwise. */
3616static bool
3617rtx_moveable_p (rtx *loc, enum op_type type)
3618{
3619 const char *fmt;
3620 rtx x = *loc;
3621 enum rtx_code code = GET_CODE (x);
3622 int i, j;
3623
3624 code = GET_CODE (x);
3625 switch (code)
3626 {
3627 case CONST:
3628 case CONST_INT:
3629 case CONST_DOUBLE:
3630 case CONST_FIXED:
3631 case CONST_VECTOR:
3632 case SYMBOL_REF:
3633 case LABEL_REF:
3634 return true;
3635
3636 case PC:
3637 return type == OP_IN;
3638
3639 case CC0:
3640 return false;
3641
3642 case REG:
3643 if (x == frame_pointer_rtx)
3644 return true;
3645 if (HARD_REGISTER_P (x))
3646 return false;
3647
3648 return true;
3649
3650 case MEM:
3651 if (type == OP_IN && MEM_READONLY_P (x))
3652 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
3653 return false;
3654
3655 case SET:
3656 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
3657 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
3658
3659 case STRICT_LOW_PART:
3660 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
3661
3662 case ZERO_EXTRACT:
3663 case SIGN_EXTRACT:
3664 return (rtx_moveable_p (&XEXP (x, 0), type)
3665 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
3666 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
3667
3668 case CLOBBER:
3669 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
3670
3671 default:
3672 break;
3673 }
3674
3675 fmt = GET_RTX_FORMAT (code);
3676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3677 {
3678 if (fmt[i] == 'e')
3679 {
3680 if (!rtx_moveable_p (&XEXP (x, i), type))
3681 return false;
3682 }
3683 else if (fmt[i] == 'E')
3684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3685 {
3686 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
3687 return false;
3688 }
3689 }
3690 return true;
3691}
3692
3693/* A wrapper around dominated_by_p, which uses the information in UID_LUID
3694 to give dominance relationships between two insns I1 and I2. */
3695static bool
3696insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
3697{
3698 basic_block bb1 = BLOCK_FOR_INSN (i1);
3699 basic_block bb2 = BLOCK_FOR_INSN (i2);
3700
3701 if (bb1 == bb2)
3702 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
3703 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
3704}
3705
3706/* Record the range of register numbers added by find_moveable_pseudos. */
3707int first_moveable_pseudo, last_moveable_pseudo;
3708
3709/* These two vectors hold data for every register added by
3710 find_movable_pseudos, with index 0 holding data for the
3711 first_moveable_pseudo. */
3712/* The original home register. */
3713static VEC (rtx, heap) *pseudo_replaced_reg;
acf41a74
BS
3714
3715/* Look for instances where we have an instruction that is known to increase
3716 register pressure, and whose result is not used immediately. If it is
3717 possible to move the instruction downwards to just before its first use,
3718 split its lifetime into two ranges. We create a new pseudo to compute the
3719 value, and emit a move instruction just before the first use. If, after
3720 register allocation, the new pseudo remains unallocated, the function
3721 move_unallocated_pseudos then deletes the move instruction and places
3722 the computation just before the first use.
3723
3724 Such a move is safe and profitable if all the input registers remain live
3725 and unchanged between the original computation and its first use. In such
3726 a situation, the computation is known to increase register pressure, and
3727 moving it is known to at least not worsen it.
3728
3729 We restrict moves to only those cases where a register remains unallocated,
3730 in order to avoid interfering too much with the instruction schedule. As
3731 an exception, we may move insns which only modify their input register
3732 (typically induction variables), as this increases the freedom for our
3733 intended transformation, and does not limit the second instruction
3734 scheduler pass. */
3735
3736static void
3737find_moveable_pseudos (void)
3738{
3739 unsigned i;
3740 int max_regs = max_reg_num ();
3741 int max_uid = get_max_uid ();
3742 basic_block bb;
3743 int *uid_luid = XNEWVEC (int, max_uid);
3744 rtx *closest_uses = XNEWVEC (rtx, max_regs);
3745 /* A set of registers which are live but not modified throughout a block. */
3746 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
3747 /* A set of registers which only exist in a given basic block. */
3748 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
3749 /* A set of registers which are set once, in an instruction that can be
3750 moved freely downwards, but are otherwise transparent to a block. */
3751 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
3752 bitmap_head live, used, set, interesting, unusable_as_input;
3753 bitmap_iterator bi;
3754 bitmap_initialize (&interesting, 0);
3755
3756 first_moveable_pseudo = max_regs;
acf41a74 3757 VEC_free (rtx, heap, pseudo_replaced_reg);
acf41a74
BS
3758 VEC_safe_grow (rtx, heap, pseudo_replaced_reg, max_regs);
3759
3760 df_analyze ();
3761 calculate_dominance_info (CDI_DOMINATORS);
3762
3763 i = 0;
3764 bitmap_initialize (&live, 0);
3765 bitmap_initialize (&used, 0);
3766 bitmap_initialize (&set, 0);
3767 bitmap_initialize (&unusable_as_input, 0);
3768 FOR_EACH_BB (bb)
3769 {
3770 rtx insn;
3771 bitmap transp = bb_transp_live + bb->index;
3772 bitmap moveable = bb_moveable_reg_sets + bb->index;
3773 bitmap local = bb_local + bb->index;
3774
3775 bitmap_initialize (local, 0);
3776 bitmap_initialize (transp, 0);
3777 bitmap_initialize (moveable, 0);
3778 bitmap_copy (&live, df_get_live_out (bb));
3779 bitmap_and_into (&live, df_get_live_in (bb));
3780 bitmap_copy (transp, &live);
3781 bitmap_clear (moveable);
3782 bitmap_clear (&live);
3783 bitmap_clear (&used);
3784 bitmap_clear (&set);
3785 FOR_BB_INSNS (bb, insn)
3786 if (NONDEBUG_INSN_P (insn))
3787 {
3788 df_ref *u_rec, *d_rec;
3789
3790 uid_luid[INSN_UID (insn)] = i++;
3791
3792 u_rec = DF_INSN_USES (insn);
3793 d_rec = DF_INSN_DEFS (insn);
3794 if (d_rec[0] != NULL && d_rec[1] == NULL
3795 && u_rec[0] != NULL && u_rec[1] == NULL
3796 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
3797 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
3798 && rtx_moveable_p (&PATTERN (insn), OP_IN))
3799 {
3800 unsigned regno = DF_REF_REGNO (*u_rec);
3801 bitmap_set_bit (moveable, regno);
3802 bitmap_set_bit (&set, regno);
3803 bitmap_set_bit (&used, regno);
3804 bitmap_clear_bit (transp, regno);
3805 continue;
3806 }
3807 while (*u_rec)
3808 {
3809 unsigned regno = DF_REF_REGNO (*u_rec);
3810 bitmap_set_bit (&used, regno);
3811 if (bitmap_clear_bit (moveable, regno))
3812 bitmap_clear_bit (transp, regno);
3813 u_rec++;
3814 }
3815
3816 while (*d_rec)
3817 {
3818 unsigned regno = DF_REF_REGNO (*d_rec);
3819 bitmap_set_bit (&set, regno);
3820 bitmap_clear_bit (transp, regno);
3821 bitmap_clear_bit (moveable, regno);
3822 d_rec++;
3823 }
3824 }
3825 }
3826
3827 bitmap_clear (&live);
3828 bitmap_clear (&used);
3829 bitmap_clear (&set);
3830
3831 FOR_EACH_BB (bb)
3832 {
3833 bitmap local = bb_local + bb->index;
3834 rtx insn;
3835
3836 FOR_BB_INSNS (bb, insn)
3837 if (NONDEBUG_INSN_P (insn))
3838 {
3839 rtx def_insn, closest_use, note;
3840 df_ref *def_rec, def, use;
3841 unsigned regno;
3842 bool all_dominated, all_local;
3843 enum machine_mode mode;
3844
3845 def_rec = DF_INSN_DEFS (insn);
3846 /* There must be exactly one def in this insn. */
3847 def = *def_rec;
3848 if (!def || def_rec[1] || !single_set (insn))
3849 continue;
3850 /* This must be the only definition of the reg. We also limit
3851 which modes we deal with so that we can assume we can generate
3852 move instructions. */
3853 regno = DF_REF_REGNO (def);
3854 mode = GET_MODE (DF_REF_REG (def));
3855 if (DF_REG_DEF_COUNT (regno) != 1
3856 || !DF_REF_INSN_INFO (def)
3857 || HARD_REGISTER_NUM_P (regno)
aa44c80c 3858 || DF_REG_EQ_USE_COUNT (regno) > 0
acf41a74
BS
3859 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
3860 continue;
3861 def_insn = DF_REF_INSN (def);
3862
3863 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
3864 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
3865 break;
3866
3867 if (note)
3868 {
3869 if (dump_file)
3870 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
3871 regno);
3872 bitmap_set_bit (&unusable_as_input, regno);
3873 continue;
3874 }
3875
3876 use = DF_REG_USE_CHAIN (regno);
3877 all_dominated = true;
3878 all_local = true;
3879 closest_use = NULL_RTX;
3880 for (; use; use = DF_REF_NEXT_REG (use))
3881 {
3882 rtx insn;
3883 if (!DF_REF_INSN_INFO (use))
3884 {
3885 all_dominated = false;
3886 all_local = false;
3887 break;
3888 }
3889 insn = DF_REF_INSN (use);
3890 if (DEBUG_INSN_P (insn))
3891 continue;
3892 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
3893 all_local = false;
3894 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
3895 all_dominated = false;
3896 if (closest_use != insn && closest_use != const0_rtx)
3897 {
3898 if (closest_use == NULL_RTX)
3899 closest_use = insn;
3900 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
3901 closest_use = insn;
3902 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
3903 closest_use = const0_rtx;
3904 }
3905 }
3906 if (!all_dominated)
3907 {
3908 if (dump_file)
3909 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
3910 regno);
3911 continue;
3912 }
3913 if (all_local)
3914 bitmap_set_bit (local, regno);
3915 if (closest_use == const0_rtx || closest_use == NULL
3916 || next_nonnote_nondebug_insn (def_insn) == closest_use)
3917 {
3918 if (dump_file)
3919 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
3920 closest_use == const0_rtx || closest_use == NULL
3921 ? " (no unique first use)" : "");
3922 continue;
3923 }
3924#ifdef HAVE_cc0
3925 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
3926 {
3927 if (dump_file)
3928 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
3929 regno);
3930 continue;
3931 }
3932#endif
3933 bitmap_set_bit (&interesting, regno);
3934 closest_uses[regno] = closest_use;
3935
3936 if (dump_file && (all_local || all_dominated))
3937 {
3938 fprintf (dump_file, "Reg %u:", regno);
3939 if (all_local)
3940 fprintf (dump_file, " local to bb %d", bb->index);
3941 if (all_dominated)
3942 fprintf (dump_file, " def dominates all uses");
3943 if (closest_use != const0_rtx)
3944 fprintf (dump_file, " has unique first use");
3945 fputs ("\n", dump_file);
3946 }
3947 }
3948 }
3949
3950 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
3951 {
3952 df_ref def = DF_REG_DEF_CHAIN (i);
3953 rtx def_insn = DF_REF_INSN (def);
3954 basic_block def_block = BLOCK_FOR_INSN (def_insn);
3955 bitmap def_bb_local = bb_local + def_block->index;
3956 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
3957 bitmap def_bb_transp = bb_transp_live + def_block->index;
3958 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
3959 rtx use_insn = closest_uses[i];
3960 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
3961 bool all_ok = true;
3962 bool all_transp = true;
3963
3964 if (!REG_P (DF_REF_REG (def)))
3965 continue;
3966
3967 if (!local_to_bb_p)
3968 {
3969 if (dump_file)
3970 fprintf (dump_file, "Reg %u not local to one basic block\n",
3971 i);
3972 continue;
3973 }
3974 if (reg_equiv_init (i) != NULL_RTX)
3975 {
3976 if (dump_file)
3977 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
3978 i);
3979 continue;
3980 }
3981 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
3982 {
3983 if (dump_file)
3984 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
3985 INSN_UID (def_insn), i);
3986 continue;
3987 }
3988 if (dump_file)
3989 fprintf (dump_file, "Examining insn %d, def for %d\n",
3990 INSN_UID (def_insn), i);
3991 while (*def_insn_use_rec != NULL)
3992 {
3993 df_ref use = *def_insn_use_rec;
3994 unsigned regno = DF_REF_REGNO (use);
3995 if (bitmap_bit_p (&unusable_as_input, regno))
3996 {
3997 all_ok = false;
3998 if (dump_file)
3999 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4000 break;
4001 }
4002 if (!bitmap_bit_p (def_bb_transp, regno))
4003 {
4004 if (bitmap_bit_p (def_bb_moveable, regno)
4005 && !control_flow_insn_p (use_insn)
4006#ifdef HAVE_cc0
4007 && !sets_cc0_p (use_insn)
4008#endif
4009 )
4010 {
4011 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4012 {
4013 rtx x = NEXT_INSN (def_insn);
4014 while (!modified_in_p (DF_REF_REG (use), x))
4015 {
4016 gcc_assert (x != use_insn);
4017 x = NEXT_INSN (x);
4018 }
4019 if (dump_file)
4020 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4021 regno, INSN_UID (x));
4022 emit_insn_after (PATTERN (x), use_insn);
4023 set_insn_deleted (x);
4024 }
4025 else
4026 {
4027 if (dump_file)
4028 fprintf (dump_file, " input reg %u modified between def and use\n",
4029 regno);
4030 all_transp = false;
4031 }
4032 }
4033 else
4034 all_transp = false;
4035 }
4036
4037 def_insn_use_rec++;
4038 }
4039 if (!all_ok)
4040 continue;
4041 if (!dbg_cnt (ira_move))
4042 break;
4043 if (dump_file)
4044 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4045
4046 if (all_transp)
4047 {
4048 rtx def_reg = DF_REF_REG (def);
4049 rtx newreg = ira_create_new_reg (def_reg);
4050 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
4051 {
4052 unsigned nregno = REGNO (newreg);
a36b2706 4053 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
acf41a74 4054 nregno -= max_regs;
acf41a74
BS
4055 VEC_replace (rtx, pseudo_replaced_reg, nregno, def_reg);
4056 }
4057 }
4058 }
4059
4060 FOR_EACH_BB (bb)
4061 {
4062 bitmap_clear (bb_local + bb->index);
4063 bitmap_clear (bb_transp_live + bb->index);
4064 bitmap_clear (bb_moveable_reg_sets + bb->index);
4065 }
4066 bitmap_clear (&interesting);
4067 bitmap_clear (&unusable_as_input);
4068 free (uid_luid);
4069 free (closest_uses);
4070 free (bb_local);
4071 free (bb_transp_live);
4072 free (bb_moveable_reg_sets);
4073
4074 last_moveable_pseudo = max_reg_num ();
4075
81c082ec 4076 fix_reg_equiv_init ();
fb99ee9b 4077 expand_reg_info ();
acf41a74
BS
4078 regstat_free_n_sets_and_refs ();
4079 regstat_free_ri ();
4080 regstat_init_n_sets_and_refs ();
4081 regstat_compute_ri ();
4082 free_dominance_info (CDI_DOMINATORS);
4083}
8ff49c29 4084
acf41a74
BS
4085/* Perform the second half of the transformation started in
4086 find_moveable_pseudos. We look for instances where the newly introduced
4087 pseudo remains unallocated, and remove it by moving the definition to
4088 just before its use, replacing the move instruction generated by
4089 find_moveable_pseudos. */
4090static void
4091move_unallocated_pseudos (void)
4092{
4093 int i;
4094 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4095 if (reg_renumber[i] < 0)
4096 {
acf41a74
BS
4097 int idx = i - first_moveable_pseudo;
4098 rtx other_reg = VEC_index (rtx, pseudo_replaced_reg, idx);
a36b2706
RS
4099 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4100 /* The use must follow all definitions of OTHER_REG, so we can
4101 insert the new definition immediately after any of them. */
4102 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4103 rtx move_insn = DF_REF_INSN (other_def);
acf41a74 4104 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
a36b2706 4105 rtx set;
acf41a74
BS
4106 int success;
4107
4108 if (dump_file)
4109 fprintf (dump_file, "moving def of %d (insn %d now) ",
4110 REGNO (other_reg), INSN_UID (def_insn));
4111
a36b2706
RS
4112 delete_insn (move_insn);
4113 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4114 delete_insn (DF_REF_INSN (other_def));
4115 delete_insn (def_insn);
4116
acf41a74
BS
4117 set = single_set (newinsn);
4118 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4119 gcc_assert (success);
4120 if (dump_file)
4121 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4122 INSN_UID (newinsn), i);
acf41a74
BS
4123 SET_REG_N_REFS (i, 0);
4124 }
4125}
f2034d06 4126\f
6399c0ab
SB
4127/* If the backend knows where to allocate pseudos for hard
4128 register initial values, register these allocations now. */
a932fb89 4129static void
6399c0ab
SB
4130allocate_initial_values (void)
4131{
4132 if (targetm.allocate_initial_value)
4133 {
4134 rtx hreg, preg, x;
4135 int i, regno;
4136
4137 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4138 {
4139 if (! initial_value_entry (i, &hreg, &preg))
4140 break;
4141
4142 x = targetm.allocate_initial_value (hreg);
4143 regno = REGNO (preg);
4144 if (x && REG_N_SETS (regno) <= 1)
4145 {
4146 if (MEM_P (x))
4147 reg_equiv_memory_loc (regno) = x;
4148 else
4149 {
4150 basic_block bb;
4151 int new_regno;
4152
4153 gcc_assert (REG_P (x));
4154 new_regno = REGNO (x);
4155 reg_renumber[regno] = new_regno;
4156 /* Poke the regno right into regno_reg_rtx so that even
4157 fixed regs are accepted. */
4158 SET_REGNO (preg, new_regno);
4159 /* Update global register liveness information. */
4160 FOR_EACH_BB (bb)
4161 {
4162 if (REGNO_REG_SET_P(df_get_live_in (bb), regno))
4163 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
4164 if (REGNO_REG_SET_P(df_get_live_out (bb), regno))
4165 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
4166 }
4167 }
4168 }
4169 }
2af2dbdc 4170
6399c0ab
SB
4171 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
4172 &hreg, &preg));
4173 }
4174}
4175\f
058e97ec
VM
4176/* All natural loops. */
4177struct loops ira_loops;
4178
311aab06
VM
4179/* True if we have allocno conflicts. It is false for non-optimized
4180 mode or when the conflict table is too big. */
4181bool ira_conflicts_p;
4182
ae2b9cb6
BS
4183/* Saved between IRA and reload. */
4184static int saved_flag_ira_share_spill_slots;
4185
058e97ec
VM
4186/* This is the main entry of IRA. */
4187static void
4188ira (FILE *f)
4189{
058e97ec
VM
4190 bool loops_p;
4191 int max_regno_before_ira, ira_max_point_before_emit;
4192 int rebuild_p;
058e97ec 4193
dc12b70e
JZ
4194 if (flag_caller_saves)
4195 init_caller_save ();
4196
058e97ec
VM
4197 if (flag_ira_verbose < 10)
4198 {
4199 internal_flag_ira_verbose = flag_ira_verbose;
4200 ira_dump_file = f;
4201 }
4202 else
4203 {
4204 internal_flag_ira_verbose = flag_ira_verbose - 10;
4205 ira_dump_file = stderr;
4206 }
4207
311aab06 4208 ira_conflicts_p = optimize > 0;
058e97ec
VM
4209 setup_prohibited_mode_move_regs ();
4210
4211 df_note_add_problem ();
4212
4213 if (optimize == 1)
4214 {
4215 df_live_add_problem ();
4216 df_live_set_all_dirty ();
4217 }
4218#ifdef ENABLE_CHECKING
4219 df->changeable_flags |= DF_VERIFY_SCHEDULED;
4220#endif
4221 df_analyze ();
4222 df_clear_flags (DF_NO_INSN_RESCAN);
4223 regstat_init_n_sets_and_refs ();
4224 regstat_compute_ri ();
4225
4226 /* If we are not optimizing, then this is the only place before
4227 register allocation where dataflow is done. And that is needed
4228 to generate these warnings. */
4229 if (warn_clobbered)
4230 generate_setjmp_warnings ();
4231
ace984c8
RS
4232 /* Determine if the current function is a leaf before running IRA
4233 since this can impact optimizations done by the prologue and
4234 epilogue thus changing register elimination offsets. */
4235 current_function_is_leaf = leaf_function_p ();
4236
1833192f
VM
4237 if (resize_reg_info () && flag_ira_loop_pressure)
4238 ira_set_pseudo_classes (ira_dump_file);
4239
058e97ec
VM
4240 rebuild_p = update_equiv_regs ();
4241
4242#ifndef IRA_NO_OBSTACK
4243 gcc_obstack_init (&ira_obstack);
4244#endif
4245 bitmap_obstack_initialize (&ira_bitmap_obstack);
4246 if (optimize)
b8698a0f 4247 {
058e97ec
VM
4248 max_regno = max_reg_num ();
4249 ira_reg_equiv_len = max_regno;
4250 ira_reg_equiv_invariant_p
4251 = (bool *) ira_allocate (max_regno * sizeof (bool));
4252 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
4253 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
4254 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
4255 find_reg_equiv_invariant_const ();
4256 if (rebuild_p)
4257 {
4258 timevar_push (TV_JUMP);
4259 rebuild_jump_labels (get_insns ());
59db109a
SB
4260 if (purge_all_dead_edges ())
4261 delete_unreachable_blocks ();
058e97ec
VM
4262 timevar_pop (TV_JUMP);
4263 }
4264 }
4265
fb99ee9b 4266 allocated_reg_info_size = max_reg_num ();
e8d7e3e7
VM
4267
4268 /* It is not worth to do such improvement when we use a simple
4269 allocation because of -O0 usage or because the function is too
4270 big. */
4271 if (ira_conflicts_p)
4272 find_moveable_pseudos ();
acf41a74 4273
fb99ee9b 4274 max_regno_before_ira = max_reg_num ();
ce18efcb 4275 ira_setup_eliminable_regset ();
b8698a0f 4276
058e97ec
VM
4277 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
4278 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
4279 ira_move_loops_num = ira_additional_jumps_num = 0;
b8698a0f 4280
058e97ec 4281 ira_assert (current_loops == NULL);
2608d841
VM
4282 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
4283 {
4284 flow_loops_find (&ira_loops);
4285 record_loop_exits ();
4286 current_loops = &ira_loops;
4287 }
b8698a0f 4288
058e97ec
VM
4289 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4290 fprintf (ira_dump_file, "Building IRA IR\n");
2608d841 4291 loops_p = ira_build ();
b8698a0f 4292
311aab06 4293 ira_assert (ira_conflicts_p || !loops_p);
3553f0bb
VM
4294
4295 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
de8e52f0 4296 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3553f0bb 4297 /* It is just wasting compiler's time to pack spilled pseudos into
de8e52f0
VM
4298 stack slots in this case -- prohibit it. We also do this if
4299 there is setjmp call because a variable not modified between
4300 setjmp and longjmp the compiler is required to preserve its
4301 value and sharing slots does not guarantee it. */
3553f0bb
VM
4302 flag_ira_share_spill_slots = FALSE;
4303
cb1ca6ac 4304 ira_color ();
b8698a0f 4305
058e97ec 4306 ira_max_point_before_emit = ira_max_point;
b8698a0f 4307
1756cb66
VM
4308 ira_initiate_emit_data ();
4309
058e97ec 4310 ira_emit (loops_p);
b8698a0f 4311
311aab06 4312 if (ira_conflicts_p)
058e97ec
VM
4313 {
4314 max_regno = max_reg_num ();
b8698a0f 4315
058e97ec
VM
4316 if (! loops_p)
4317 ira_initiate_assign ();
4318 else
4319 {
fb99ee9b 4320 expand_reg_info ();
b8698a0f 4321
058e97ec
VM
4322 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
4323 fprintf (ira_dump_file, "Flattening IR\n");
4324 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
4325 /* New insns were generated: add notes and recalculate live
4326 info. */
4327 df_analyze ();
b8698a0f 4328
058e97ec 4329 flow_loops_find (&ira_loops);
6744a6ab 4330 record_loop_exits ();
058e97ec
VM
4331 current_loops = &ira_loops;
4332
4333 setup_allocno_assignment_flags ();
4334 ira_initiate_assign ();
4335 ira_reassign_conflict_allocnos (max_regno);
4336 }
4337 }
4338
1756cb66
VM
4339 ira_finish_emit_data ();
4340
058e97ec 4341 setup_reg_renumber ();
b8698a0f 4342
058e97ec 4343 calculate_allocation_cost ();
b8698a0f 4344
058e97ec 4345#ifdef ENABLE_IRA_CHECKING
311aab06 4346 if (ira_conflicts_p)
058e97ec
VM
4347 check_allocation ();
4348#endif
b8698a0f 4349
530a4800
JJ
4350 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
4351 df_analyze ();
b8698a0f 4352
058e97ec
VM
4353 if (max_regno != max_regno_before_ira)
4354 {
4355 regstat_free_n_sets_and_refs ();
4356 regstat_free_ri ();
4357 regstat_init_n_sets_and_refs ();
4358 regstat_compute_ri ();
4359 }
4360
058e97ec 4361 overall_cost_before = ira_overall_cost;
e5b0e1ca
VM
4362 if (! ira_conflicts_p)
4363 grow_reg_equivs ();
4364 else
058e97ec
VM
4365 {
4366 fix_reg_equiv_init ();
b8698a0f 4367
058e97ec
VM
4368#ifdef ENABLE_IRA_CHECKING
4369 print_redundant_copies ();
4370#endif
4371
4372 ira_spilled_reg_stack_slots_num = 0;
4373 ira_spilled_reg_stack_slots
4374 = ((struct ira_spilled_reg_stack_slot *)
4375 ira_allocate (max_regno
4376 * sizeof (struct ira_spilled_reg_stack_slot)));
4377 memset (ira_spilled_reg_stack_slots, 0,
4378 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
4379 }
6399c0ab 4380 allocate_initial_values ();
e8d7e3e7
VM
4381
4382 /* See comment for find_moveable_pseudos call. */
4383 if (ira_conflicts_p)
4384 move_unallocated_pseudos ();
ae2b9cb6 4385}
b8698a0f 4386
ae2b9cb6
BS
4387static void
4388do_reload (void)
4389{
4390 basic_block bb;
4391 bool need_dce;
4392
67463efb 4393 if (flag_ira_verbose < 10)
ae2b9cb6 4394 ira_dump_file = dump_file;
058e97ec 4395
058e97ec
VM
4396 df_set_flags (DF_NO_INSN_RESCAN);
4397 build_insn_chain ();
4398
b0c11403 4399 need_dce = reload (get_insns (), ira_conflicts_p);
058e97ec 4400
058e97ec
VM
4401 timevar_push (TV_IRA);
4402
311aab06 4403 if (ira_conflicts_p)
058e97ec
VM
4404 {
4405 ira_free (ira_spilled_reg_stack_slots);
b8698a0f 4406
058e97ec 4407 ira_finish_assign ();
b8698a0f 4408 }
058e97ec
VM
4409 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
4410 && overall_cost_before != ira_overall_cost)
4411 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
4412 ira_destroy ();
b8698a0f 4413
3553f0bb
VM
4414 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
4415
2608d841
VM
4416 if (current_loops != NULL)
4417 {
4418 flow_loops_free (&ira_loops);
4419 free_dominance_info (CDI_DOMINATORS);
4420 }
058e97ec
VM
4421 FOR_ALL_BB (bb)
4422 bb->loop_father = NULL;
4423 current_loops = NULL;
4424
058e97ec
VM
4425 regstat_free_ri ();
4426 regstat_free_n_sets_and_refs ();
b8698a0f 4427
058e97ec
VM
4428 if (optimize)
4429 {
4430 cleanup_cfg (CLEANUP_EXPENSIVE);
b8698a0f 4431
058e97ec
VM
4432 ira_free (ira_reg_equiv_invariant_p);
4433 ira_free (ira_reg_equiv_const);
4434 }
4435
4436 bitmap_obstack_release (&ira_bitmap_obstack);
4437#ifndef IRA_NO_OBSTACK
4438 obstack_free (&ira_obstack, NULL);
4439#endif
4440
4441 /* The code after the reload has changed so much that at this point
b0c11403 4442 we might as well just rescan everything. Note that
058e97ec
VM
4443 df_rescan_all_insns is not going to help here because it does not
4444 touch the artificial uses and defs. */
4445 df_finish_pass (true);
4446 if (optimize > 1)
4447 df_live_add_problem ();
4448 df_scan_alloc (NULL);
4449 df_scan_blocks ();
4450
4451 if (optimize)
4452 df_analyze ();
4453
b0c11403
JL
4454 if (need_dce && optimize)
4455 run_fast_dce ();
4456
058e97ec
VM
4457 timevar_pop (TV_IRA);
4458}
058e97ec 4459\f
058e97ec
VM
4460/* Run the integrated register allocator. */
4461static unsigned int
4462rest_of_handle_ira (void)
4463{
4464 ira (dump_file);
4465 return 0;
4466}
4467
4468struct rtl_opt_pass pass_ira =
4469{
4470 {
4471 RTL_PASS,
4472 "ira", /* name */
ae2b9cb6 4473 NULL, /* gate */
058e97ec
VM
4474 rest_of_handle_ira, /* execute */
4475 NULL, /* sub */
4476 NULL, /* next */
4477 0, /* static_pass_number */
ae2b9cb6
BS
4478 TV_IRA, /* tv_id */
4479 0, /* properties_required */
4480 0, /* properties_provided */
4481 0, /* properties_destroyed */
4482 0, /* todo_flags_start */
c634f4ba 4483 0, /* todo_flags_finish */
ae2b9cb6
BS
4484 }
4485};
4486
4487static unsigned int
4488rest_of_handle_reload (void)
4489{
4490 do_reload ();
4491 return 0;
4492}
4493
4494struct rtl_opt_pass pass_reload =
4495{
4496 {
4497 RTL_PASS,
4498 "reload", /* name */
4499 NULL, /* gate */
4500 rest_of_handle_reload, /* execute */
4501 NULL, /* sub */
4502 NULL, /* next */
4503 0, /* static_pass_number */
4504 TV_RELOAD, /* tv_id */
058e97ec
VM
4505 0, /* properties_required */
4506 0, /* properties_provided */
4507 0, /* properties_destroyed */
4508 0, /* todo_flags_start */
c634f4ba 4509 TODO_ggc_collect /* todo_flags_finish */
058e97ec
VM
4510 }
4511};