]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/jump.c
RISC-V: Handle implied extension for -march parser.
[thirdparty/gcc.git] / gcc / jump.c
CommitLineData
15a63be1 1/* Optimize jump instructions, for GNU compiler.
8d9254fc 2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
15a63be1 3
1322177d 4This file is part of GCC.
15a63be1 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
15a63be1 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15a63be1
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15a63be1 19
0045d504 20/* This is the pathetic reminder of old fame of the jump-optimization pass
75c40d56 21 of the compiler. Now it contains basically a set of utility functions to
0045d504 22 operate with jumps.
15a63be1
RK
23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
26898771
BS
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
15a63be1 32
9a5a17f3 33 The subroutines redirect_jump and invert_jump are used
15a63be1
RK
34 from other passes as well. */
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6 38#include "coretypes.h"
c7131fb2 39#include "backend.h"
957060b5 40#include "target.h"
15a63be1 41#include "rtl.h"
957060b5
AM
42#include "tree.h"
43#include "cfghooks.h"
44#include "tree-pass.h"
4d0cdd0c 45#include "memmodel.h"
6baf1cc8 46#include "tm_p.h"
15a63be1 47#include "insn-config.h"
957060b5
AM
48#include "regs.h"
49#include "emit-rtl.h"
e9a25f70 50#include "recog.h"
60393bbc 51#include "cfgrtl.h"
bc702273 52#include "rtl-iter.h"
15a63be1 53
15a63be1
RK
54/* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56/* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
60
b47f38a5
DM
61static void init_label_info (rtx_insn *);
62static void mark_all_labels (rtx_insn *);
e73de8f3
TS
63static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64static void mark_jump_label_asm (rtx, rtx_insn *);
9b2ea071 65static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
c9b0a227 66static int invert_exp_1 (rtx, rtx_insn *);
0a1c58a2 67\f
42821aff
MM
68/* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69static void
b47f38a5 70rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
c4403371 71{
0d446150 72 timevar_push (TV_REBUILD_JUMP);
4977bab6 73 init_label_info (f);
1e5fd094 74 mark_all_labels (f);
15a63be1 75
f5540cd4
RH
76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
15a63be1 79
42821aff 80 if (count_forced)
6f7eba34
TS
81 {
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
87 }
0d446150 88 timevar_pop (TV_REBUILD_JUMP);
0045d504 89}
42821aff
MM
90
91/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95void
b47f38a5 96rebuild_jump_labels (rtx_insn *f)
42821aff
MM
97{
98 rebuild_jump_labels_1 (f, true);
99}
100
101/* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104void
b47f38a5 105rebuild_jump_labels_chain (rtx_insn *chain)
42821aff
MM
106{
107 rebuild_jump_labels_1 (chain, false);
108}
0045d504 109\f
01f62f01
JH
110/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
114
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
117 */
fb0d5c60 118static unsigned int
0c20a65f 119cleanup_barriers (void)
01f62f01 120{
b47f38a5 121 rtx_insn *insn;
a4a51a52 122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
01f62f01 123 {
4b4bf941 124 if (BARRIER_P (insn))
01f62f01 125 {
65f4b875 126 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
2cb0a60d
DD
127 if (!prev)
128 continue;
a4a51a52 129
4b4bf941 130 if (BARRIER_P (prev))
f014fc47 131 delete_insn (insn);
01f62f01 132 else if (prev != PREV_INSN (insn))
6d71672d
JJ
133 {
134 basic_block bb = BLOCK_FOR_INSN (prev);
135 rtx_insn *end = PREV_INSN (insn);
136 reorder_insns_nobb (insn, insn, prev);
137 if (bb)
138 {
139 /* If the backend called in machine reorg compute_bb_for_insn
140 and didn't free_bb_for_insn again, preserve basic block
141 boundaries. Move the end of basic block to PREV since
142 it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 on the following notes.
144 ??? Maybe the proper solution for the targets that have
145 cfg around after machine reorg is not to run cleanup_barriers
146 pass at all. */
147 BB_END (bb) = prev;
148 do
149 {
150 prev = NEXT_INSN (prev);
151 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 BLOCK_FOR_INSN (prev) = NULL;
153 }
154 while (prev != end);
155 }
156 }
01f62f01
JH
157 }
158 }
c2924966 159 return 0;
01f62f01 160}
15a63be1 161
27a4cd48
DM
162namespace {
163
164const pass_data pass_data_cleanup_barriers =
ef330312 165{
27a4cd48
DM
166 RTL_PASS, /* type */
167 "barriers", /* name */
168 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
169 TV_NONE, /* tv_id */
170 0, /* properties_required */
171 0, /* properties_provided */
172 0, /* properties_destroyed */
173 0, /* todo_flags_start */
174 0, /* todo_flags_finish */
ef330312
PB
175};
176
27a4cd48
DM
177class pass_cleanup_barriers : public rtl_opt_pass
178{
179public:
c3284718
RS
180 pass_cleanup_barriers (gcc::context *ctxt)
181 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
27a4cd48
DM
182 {}
183
184 /* opt_pass methods: */
be55bfe6 185 virtual unsigned int execute (function *) { return cleanup_barriers (); }
27a4cd48
DM
186
187}; // class pass_cleanup_barriers
188
189} // anon namespace
190
191rtl_opt_pass *
192make_pass_cleanup_barriers (gcc::context *ctxt)
193{
194 return new pass_cleanup_barriers (ctxt);
195}
196
269ef46c 197\f
cf7c4aa6
HPN
198/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
200 notes whose labels don't occur in the insn any more. */
201
4977bab6 202static void
b47f38a5 203init_label_info (rtx_insn *f)
269ef46c 204{
b47f38a5 205 rtx_insn *insn;
269ef46c 206
29f3fd5b 207 for (insn = f; insn; insn = NEXT_INSN (insn))
cf7c4aa6 208 {
29f3fd5b
SB
209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211
212 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 sticky and not reset here; that way we won't lose association
214 with a label when e.g. the source for a target register
215 disappears out of reach for targets that may use jump-target
216 registers. Jump transformations are supposed to transform
217 any REG_LABEL_TARGET notes. The target label reference in a
218 branch may disappear from the branch (and from the
219 instruction before it) for other reasons, like register
220 allocation. */
221
222 if (INSN_P (insn))
cf7c4aa6 223 {
29f3fd5b
SB
224 rtx note, next;
225
226 for (note = REG_NOTES (insn); note; note = next)
227 {
228 next = XEXP (note, 1);
229 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 remove_note (insn, note);
232 }
cf7c4aa6
HPN
233 }
234 }
269ef46c
DM
235}
236
5f93b30a
RH
237/* A subroutine of mark_all_labels. Trivially propagate a simple label
238 load into a jump_insn that uses it. */
239
240static void
b47f38a5 241maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
5f93b30a
RH
242{
243 rtx label_note, pc, pc_src;
244
245 pc = pc_set (jump_insn);
246 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248
249 /* If the previous non-jump insn sets something to a label,
250 something that this jump insn uses, make that label the primary
251 target of this insn if we don't yet have any. That previous
252 insn must be a single_set and not refer to more than one label.
253 The jump insn must not refer to other labels as jump targets
254 and must be a plain (set (pc) ...), maybe in a parallel, and
255 may refer to the item being set only directly or as one of the
256 arms in an IF_THEN_ELSE. */
257
258 if (label_note != NULL && pc_src != NULL)
259 {
260 rtx label_set = single_set (prev_nonjump_insn);
261 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262
263 if (label_set != NULL
264 /* The source must be the direct LABEL_REF, not a
265 PLUS, UNSPEC, IF_THEN_ELSE etc. */
266 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 && (rtx_equal_p (label_dest, pc_src)
268 || (GET_CODE (pc_src) == IF_THEN_ELSE
269 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 {
272 /* The CODE_LABEL referred to in the note must be the
273 CODE_LABEL in the LABEL_REF of the "set". We can
274 conveniently use it for the marker function, which
275 requires a LABEL_REF wrapping. */
04a121a7 276 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
5f93b30a
RH
277
278 mark_jump_label_1 (label_set, jump_insn, false, true);
279
280 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 }
282 }
283}
284
269ef46c 285/* Mark the label each jump jumps to.
0045d504 286 Combine consecutive labels, and count uses of labels. */
269ef46c
DM
287
288static void
b47f38a5 289mark_all_labels (rtx_insn *f)
269ef46c 290{
b47f38a5 291 rtx_insn *insn;
269ef46c 292
05549c96
SB
293 if (current_ir_type () == IR_RTL_CFGLAYOUT)
294 {
295 basic_block bb;
11cd3bed 296 FOR_EACH_BB_FN (bb, cfun)
05549c96 297 {
5f93b30a
RH
298 /* In cfglayout mode, we don't bother with trivial next-insn
299 propagation of LABEL_REFs into JUMP_LABEL. This will be
300 handled by other optimizers using better algorithms. */
301 FOR_BB_INSNS (bb, insn)
302 {
4654c0cf 303 gcc_assert (! insn->deleted ());
5f93b30a
RH
304 if (NONDEBUG_INSN_P (insn))
305 mark_jump_label (PATTERN (insn), insn, 0);
306 }
307
308 /* In cfglayout mode, there may be non-insns between the
309 basic blocks. If those non-insns represent tablejump data,
310 they contain label references that we must record. */
bcc708fc 311 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
39718607
SB
312 if (JUMP_TABLE_DATA_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
bcc708fc 314 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
39718607
SB
315 if (JUMP_TABLE_DATA_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
05549c96
SB
317 }
318 }
5f93b30a
RH
319 else
320 {
b47f38a5 321 rtx_insn *prev_nonjump_insn = NULL;
5f93b30a
RH
322 for (insn = f; insn; insn = NEXT_INSN (insn))
323 {
4654c0cf 324 if (insn->deleted ())
5f93b30a
RH
325 ;
326 else if (LABEL_P (insn))
327 prev_nonjump_insn = NULL;
39718607
SB
328 else if (JUMP_TABLE_DATA_P (insn))
329 mark_jump_label (PATTERN (insn), insn, 0);
5f93b30a
RH
330 else if (NONDEBUG_INSN_P (insn))
331 {
332 mark_jump_label (PATTERN (insn), insn, 0);
333 if (JUMP_P (insn))
334 {
335 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 }
338 else
339 prev_nonjump_insn = insn;
340 }
341 }
342 }
269ef46c 343}
15a63be1 344\f
5a4aeb03 345/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
ab94bc48
JH
346 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
347 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348 know whether it's source is floating point or integer comparison. Machine
349 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350 to help this function avoid overhead in these cases. */
351enum rtx_code
9678086d 352reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
c9b0a227 353 const_rtx arg1, const rtx_insn *insn)
15a63be1 354{
ef4bddc2 355 machine_mode mode;
15a63be1
RK
356
357 /* If this is not actually a comparison, we can't reverse it. */
ec8e098d
PB
358 if (GET_RTX_CLASS (code) != RTX_COMPARE
359 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
ab94bc48
JH
360 return UNKNOWN;
361
362 mode = GET_MODE (arg0);
363 if (mode == VOIDmode)
364 mode = GET_MODE (arg1);
365
d1a6adeb
KH
366 /* First see if machine description supplies us way to reverse the
367 comparison. Give it priority over everything else to allow
368 machine description to do tricks. */
3799607a 369 if (GET_MODE_CLASS (mode) == MODE_CC
ab94bc48 370 && REVERSIBLE_CC_MODE (mode))
f7dfb654 371 return REVERSE_CONDITION (code, mode);
15a63be1 372
5a4aeb03 373 /* Try a few special cases based on the comparison code. */
ab94bc48
JH
374 switch (code)
375 {
5d0cab94
KH
376 case GEU:
377 case GTU:
378 case LEU:
379 case LTU:
380 case NE:
381 case EQ:
382 /* It is always safe to reverse EQ and NE, even for the floating
4d6922ee 383 point. Similarly the unsigned comparisons are never used for
5d0cab94
KH
384 floating point so we can reverse them in the default way. */
385 return reverse_condition (code);
386 case ORDERED:
387 case UNORDERED:
388 case LTGT:
389 case UNEQ:
390 /* In case we already see unordered comparison, we can be sure to
391 be dealing with floating point so we don't need any more tests. */
392 return reverse_condition_maybe_unordered (code);
393 case UNLT:
394 case UNLE:
395 case UNGT:
396 case UNGE:
397 /* We don't have safe way to reverse these yet. */
398 return UNKNOWN;
399 default:
400 break;
ab94bc48
JH
401 }
402
8beccec8 403 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
15a63be1 404 {
ab94bc48
JH
405 /* Try to search for the comparison to determine the real mode.
406 This code is expensive, but with sane machine description it
407 will be never used, since REVERSIBLE_CC_MODE will return true
408 in all cases. */
0dab8f8a 409 if (! insn)
ab94bc48 410 return UNKNOWN;
48b881a3 411
75547801 412 /* These CONST_CAST's are okay because prev_nonnote_insn just
4e9b57fa 413 returns its argument and we assign it to a const_rtx
75547801 414 variable. */
c9b0a227 415 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
4b4bf941 416 prev != 0 && !LABEL_P (prev);
e67d1102 417 prev = prev_nonnote_insn (prev))
ab94bc48 418 {
7bc980e1 419 const_rtx set = set_of (arg0, prev);
ab94bc48
JH
420 if (set && GET_CODE (set) == SET
421 && rtx_equal_p (SET_DEST (set), arg0))
422 {
423 rtx src = SET_SRC (set);
15a63be1 424
ab94bc48
JH
425 if (GET_CODE (src) == COMPARE)
426 {
427 rtx comparison = src;
428 arg0 = XEXP (src, 0);
429 mode = GET_MODE (arg0);
430 if (mode == VOIDmode)
431 mode = GET_MODE (XEXP (comparison, 1));
432 break;
433 }
f63d1bf7 434 /* We can get past reg-reg moves. This may be useful for model
ab94bc48
JH
435 of i387 comparisons that first move flag registers around. */
436 if (REG_P (src))
437 {
438 arg0 = src;
439 continue;
440 }
441 }
442 /* If register is clobbered in some ununderstandable way,
443 give up. */
444 if (set)
445 return UNKNOWN;
446 }
15a63be1
RK
447 }
448
71925bc0
RS
449 /* Test for an integer condition, or a floating-point comparison
450 in which NaNs can be ignored. */
481683e1 451 if (CONST_INT_P (arg0)
ab94bc48
JH
452 || (GET_MODE (arg0) != VOIDmode
453 && GET_MODE_CLASS (mode) != MODE_CC
71925bc0 454 && !HONOR_NANS (mode)))
ab94bc48
JH
455 return reverse_condition (code);
456
457 return UNKNOWN;
458}
459
b20b352b 460/* A wrapper around the previous function to take COMPARISON as rtx
ab94bc48
JH
461 expression. This simplifies many callers. */
462enum rtx_code
c9b0a227 463reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
ab94bc48 464{
ec8e098d 465 if (!COMPARISON_P (comparison))
ab94bc48
JH
466 return UNKNOWN;
467 return reversed_comparison_code_parts (GET_CODE (comparison),
468 XEXP (comparison, 0),
469 XEXP (comparison, 1), insn);
470}
14f02e73
PB
471
472/* Return comparison with reversed code of EXP.
473 Return NULL_RTX in case we fail to do the reversal. */
474rtx
ef4bddc2 475reversed_comparison (const_rtx exp, machine_mode mode)
14f02e73 476{
c9b0a227 477 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
14f02e73
PB
478 if (reversed_code == UNKNOWN)
479 return NULL_RTX;
480 else
481 return simplify_gen_relational (reversed_code, mode, VOIDmode,
482 XEXP (exp, 0), XEXP (exp, 1));
483}
484
ab94bc48 485\f
1eb8759b
RH
486/* Given an rtx-code for a comparison, return the code for the negated
487 comparison. If no such code exists, return UNKNOWN.
488
489 WATCH OUT! reverse_condition is not safe to use on a jump that might
490 be acting on the results of an IEEE floating point comparison, because
48b881a3 491 of the special treatment of non-signaling nans in comparisons.
ab94bc48 492 Use reversed_comparison_code instead. */
15a63be1
RK
493
494enum rtx_code
0c20a65f 495reverse_condition (enum rtx_code code)
15a63be1
RK
496{
497 switch (code)
498 {
499 case EQ:
500 return NE;
15a63be1
RK
501 case NE:
502 return EQ;
15a63be1
RK
503 case GT:
504 return LE;
15a63be1
RK
505 case GE:
506 return LT;
15a63be1
RK
507 case LT:
508 return GE;
15a63be1
RK
509 case LE:
510 return GT;
15a63be1
RK
511 case GTU:
512 return LEU;
15a63be1
RK
513 case GEU:
514 return LTU;
15a63be1
RK
515 case LTU:
516 return GEU;
15a63be1
RK
517 case LEU:
518 return GTU;
1eb8759b
RH
519 case UNORDERED:
520 return ORDERED;
521 case ORDERED:
522 return UNORDERED;
523
524 case UNLT:
525 case UNLE:
526 case UNGT:
527 case UNGE:
528 case UNEQ:
7913f3d0 529 case LTGT:
1eb8759b 530 return UNKNOWN;
15a63be1
RK
531
532 default:
41806d92 533 gcc_unreachable ();
15a63be1
RK
534 }
535}
536
7913f3d0
RH
537/* Similar, but we're allowed to generate unordered comparisons, which
538 makes it safe for IEEE floating-point. Of course, we have to recognize
539 that the target will support them too... */
540
541enum rtx_code
0c20a65f 542reverse_condition_maybe_unordered (enum rtx_code code)
7913f3d0 543{
7913f3d0
RH
544 switch (code)
545 {
546 case EQ:
547 return NE;
548 case NE:
549 return EQ;
550 case GT:
551 return UNLE;
552 case GE:
553 return UNLT;
554 case LT:
555 return UNGE;
556 case LE:
557 return UNGT;
558 case LTGT:
559 return UNEQ;
7913f3d0
RH
560 case UNORDERED:
561 return ORDERED;
562 case ORDERED:
563 return UNORDERED;
564 case UNLT:
565 return GE;
566 case UNLE:
567 return GT;
568 case UNGT:
569 return LE;
570 case UNGE:
571 return LT;
572 case UNEQ:
573 return LTGT;
574
575 default:
41806d92 576 gcc_unreachable ();
7913f3d0
RH
577 }
578}
579
15a63be1
RK
580/* Similar, but return the code when two operands of a comparison are swapped.
581 This IS safe for IEEE floating-point. */
582
583enum rtx_code
0c20a65f 584swap_condition (enum rtx_code code)
15a63be1
RK
585{
586 switch (code)
587 {
588 case EQ:
589 case NE:
1eb8759b
RH
590 case UNORDERED:
591 case ORDERED:
592 case UNEQ:
7913f3d0 593 case LTGT:
15a63be1
RK
594 return code;
595
596 case GT:
597 return LT;
15a63be1
RK
598 case GE:
599 return LE;
15a63be1
RK
600 case LT:
601 return GT;
15a63be1
RK
602 case LE:
603 return GE;
15a63be1
RK
604 case GTU:
605 return LTU;
15a63be1
RK
606 case GEU:
607 return LEU;
15a63be1
RK
608 case LTU:
609 return GTU;
15a63be1
RK
610 case LEU:
611 return GEU;
1eb8759b
RH
612 case UNLT:
613 return UNGT;
614 case UNLE:
615 return UNGE;
616 case UNGT:
617 return UNLT;
618 case UNGE:
619 return UNLE;
620
15a63be1 621 default:
41806d92 622 gcc_unreachable ();
15a63be1
RK
623 }
624}
625
626/* Given a comparison CODE, return the corresponding unsigned comparison.
627 If CODE is an equality comparison or already an unsigned comparison,
628 CODE is returned. */
629
630enum rtx_code
0c20a65f 631unsigned_condition (enum rtx_code code)
15a63be1
RK
632{
633 switch (code)
634 {
635 case EQ:
636 case NE:
637 case GTU:
638 case GEU:
639 case LTU:
640 case LEU:
641 return code;
642
643 case GT:
644 return GTU;
15a63be1
RK
645 case GE:
646 return GEU;
15a63be1
RK
647 case LT:
648 return LTU;
15a63be1
RK
649 case LE:
650 return LEU;
651
652 default:
41806d92 653 gcc_unreachable ();
15a63be1
RK
654 }
655}
656
657/* Similarly, return the signed version of a comparison. */
658
659enum rtx_code
0c20a65f 660signed_condition (enum rtx_code code)
15a63be1
RK
661{
662 switch (code)
663 {
664 case EQ:
665 case NE:
666 case GT:
667 case GE:
668 case LT:
669 case LE:
670 return code;
671
672 case GTU:
673 return GT;
15a63be1
RK
674 case GEU:
675 return GE;
15a63be1
RK
676 case LTU:
677 return LT;
15a63be1
RK
678 case LEU:
679 return LE;
680
681 default:
41806d92 682 gcc_unreachable ();
15a63be1
RK
683 }
684}
685\f
cc2902df 686/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
15a63be1
RK
687 truth of CODE1 implies the truth of CODE2. */
688
689int
0c20a65f 690comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
15a63be1 691{
1e738f74
FS
692 /* UNKNOWN comparison codes can happen as a result of trying to revert
693 comparison codes.
694 They can't match anything, so we have to reject them here. */
695 if (code1 == UNKNOWN || code2 == UNKNOWN)
696 return 0;
697
15a63be1
RK
698 if (code1 == code2)
699 return 1;
700
701 switch (code1)
702 {
b34878a3
JH
703 case UNEQ:
704 if (code2 == UNLE || code2 == UNGE)
705 return 1;
706 break;
707
15a63be1 708 case EQ:
7913f3d0
RH
709 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 || code2 == ORDERED)
15a63be1
RK
711 return 1;
712 break;
713
b34878a3
JH
714 case UNLT:
715 if (code2 == UNLE || code2 == NE)
716 return 1;
717 break;
718
15a63be1 719 case LT:
b34878a3
JH
720 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 return 1;
722 break;
723
724 case UNGT:
725 if (code2 == UNGE || code2 == NE)
15a63be1
RK
726 return 1;
727 break;
728
729 case GT:
b34878a3 730 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
7913f3d0
RH
731 return 1;
732 break;
733
734 case GE:
735 case LE:
736 if (code2 == ORDERED)
737 return 1;
738 break;
739
740 case LTGT:
741 if (code2 == NE || code2 == ORDERED)
15a63be1
RK
742 return 1;
743 break;
744
745 case LTU:
b0c38416 746 if (code2 == LEU || code2 == NE)
15a63be1
RK
747 return 1;
748 break;
749
750 case GTU:
b0c38416 751 if (code2 == GEU || code2 == NE)
15a63be1
RK
752 return 1;
753 break;
7913f3d0
RH
754
755 case UNORDERED:
b34878a3
JH
756 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 || code2 == UNGE || code2 == UNGT)
7913f3d0
RH
758 return 1;
759 break;
48b881a3 760
e9a25f70
JL
761 default:
762 break;
15a63be1
RK
763 }
764
765 return 0;
766}
767\f
768/* Return 1 if INSN is an unconditional jump and nothing else. */
769
770int
68a1a6c0 771simplejump_p (const rtx_insn *insn)
15a63be1 772{
4b4bf941 773 return (JUMP_P (insn)
3c74f8f9
RH
774 && GET_CODE (PATTERN (insn)) == SET
775 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
15a63be1
RK
777}
778
779/* Return nonzero if INSN is a (possibly) conditional jump
48b881a3
KH
780 and nothing more.
781
1f52178b 782 Use of this function is deprecated, since we need to support combined
d781a164 783 branch and compare insns. Use any_condjump_p instead whenever possible. */
15a63be1
RK
784
785int
68a1a6c0 786condjump_p (const rtx_insn *insn)
15a63be1 787{
4f588890 788 const_rtx x = PATTERN (insn);
c5c76735
JL
789
790 if (GET_CODE (x) != SET
791 || GET_CODE (SET_DEST (x)) != PC)
3480bb98 792 return 0;
c5c76735
JL
793
794 x = SET_SRC (x);
795 if (GET_CODE (x) == LABEL_REF)
3480bb98 796 return 1;
48b881a3
KH
797 else
798 return (GET_CODE (x) == IF_THEN_ELSE
799 && ((GET_CODE (XEXP (x, 2)) == PC
800 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
26898771 801 || ANY_RETURN_P (XEXP (x, 1))))
48b881a3
KH
802 || (GET_CODE (XEXP (x, 1)) == PC
803 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
26898771 804 || ANY_RETURN_P (XEXP (x, 2))))));
3480bb98
JL
805}
806
c5c76735 807/* Return nonzero if INSN is a (possibly) conditional jump inside a
e4c85816 808 PARALLEL.
48b881a3 809
d781a164
RH
810 Use this function is deprecated, since we need to support combined
811 branch and compare insns. Use any_condjump_p instead whenever possible. */
3480bb98
JL
812
813int
68a1a6c0 814condjump_in_parallel_p (const rtx_insn *insn)
3480bb98 815{
4f588890 816 const_rtx x = PATTERN (insn);
3480bb98
JL
817
818 if (GET_CODE (x) != PARALLEL)
819 return 0;
820 else
821 x = XVECEXP (x, 0, 0);
822
15a63be1
RK
823 if (GET_CODE (x) != SET)
824 return 0;
825 if (GET_CODE (SET_DEST (x)) != PC)
826 return 0;
827 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828 return 1;
829 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830 return 0;
831 if (XEXP (SET_SRC (x), 2) == pc_rtx
832 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
26898771 833 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
15a63be1
RK
834 return 1;
835 if (XEXP (SET_SRC (x), 1) == pc_rtx
836 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
26898771 837 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
15a63be1
RK
838 return 1;
839 return 0;
840}
841
d781a164
RH
842/* Return set of PC, otherwise NULL. */
843
e4c85816 844rtx
68a1a6c0 845pc_set (const rtx_insn *insn)
e4c85816
JH
846{
847 rtx pat;
4b4bf941 848 if (!JUMP_P (insn))
d781a164 849 return NULL_RTX;
e4c85816 850 pat = PATTERN (insn);
d781a164
RH
851
852 /* The set is allowed to appear either as the insn pattern or
853 the first set in a PARALLEL. */
854 if (GET_CODE (pat) == PARALLEL)
855 pat = XVECEXP (pat, 0, 0);
e4c85816
JH
856 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
857 return pat;
d781a164
RH
858
859 return NULL_RTX;
e4c85816
JH
860}
861
d781a164
RH
862/* Return true when insn is an unconditional direct jump,
863 possibly bundled inside a PARALLEL. */
864
e4c85816 865int
68a1a6c0 866any_uncondjump_p (const rtx_insn *insn)
e4c85816 867{
4f588890 868 const_rtx x = pc_set (insn);
e4c85816
JH
869 if (!x)
870 return 0;
871 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
872 return 0;
6de9cd9a
DN
873 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
874 return 0;
e4c85816
JH
875 return 1;
876}
877
d781a164 878/* Return true when insn is a conditional jump. This function works for
e4c85816
JH
879 instructions containing PC sets in PARALLELs. The instruction may have
880 various other effects so before removing the jump you must verify
5527bf14 881 onlyjump_p.
e4c85816 882
d781a164
RH
883 Note that unlike condjump_p it returns false for unconditional jumps. */
884
e4c85816 885int
68a1a6c0 886any_condjump_p (const rtx_insn *insn)
e4c85816 887{
4f588890 888 const_rtx x = pc_set (insn);
d781a164
RH
889 enum rtx_code a, b;
890
e4c85816
JH
891 if (!x)
892 return 0;
d781a164
RH
893 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
894 return 0;
e4c85816 895
d781a164
RH
896 a = GET_CODE (XEXP (SET_SRC (x), 1));
897 b = GET_CODE (XEXP (SET_SRC (x), 2));
e4c85816 898
26898771
BS
899 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
900 || (a == PC
901 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
e4c85816
JH
902}
903
d804ed43
RH
904/* Return the label of a conditional jump. */
905
906rtx
68a1a6c0 907condjump_label (const rtx_insn *insn)
d804ed43 908{
d781a164 909 rtx x = pc_set (insn);
d804ed43 910
d781a164 911 if (!x)
d804ed43
RH
912 return NULL_RTX;
913 x = SET_SRC (x);
914 if (GET_CODE (x) == LABEL_REF)
915 return x;
916 if (GET_CODE (x) != IF_THEN_ELSE)
917 return NULL_RTX;
918 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
919 return XEXP (x, 1);
920 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
921 return XEXP (x, 2);
922 return NULL_RTX;
923}
924
72e48218
AN
925/* Return TRUE if INSN is a return jump. */
926
e881bb1b 927int
68a1a6c0 928returnjump_p (const rtx_insn *insn)
e881bb1b 929{
bc702273
RS
930 if (JUMP_P (insn))
931 {
932 subrtx_iterator::array_type array;
933 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
934 {
935 const_rtx x = *iter;
936 switch (GET_CODE (x))
937 {
938 case RETURN:
939 case SIMPLE_RETURN:
940 case EH_RETURN:
941 return true;
942
943 case SET:
944 if (SET_IS_RETURN_P (x))
945 return true;
946 break;
947
948 default:
949 break;
950 }
951 }
952 }
953 return false;
e881bb1b
RH
954}
955
cd9c1ca8
RH
956/* Return true if INSN is a (possibly conditional) return insn. */
957
cd9c1ca8 958int
8e3177d9 959eh_returnjump_p (rtx_insn *insn)
cd9c1ca8 960{
e7c44276
RS
961 if (JUMP_P (insn))
962 {
963 subrtx_iterator::array_type array;
964 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
965 if (GET_CODE (*iter) == EH_RETURN)
966 return true;
967 }
968 return false;
cd9c1ca8
RH
969}
970
d0e80719
RH
971/* Return true if INSN is a jump that only transfers control and
972 nothing more. */
973
974int
68a1a6c0 975onlyjump_p (const rtx_insn *insn)
d0e80719
RH
976{
977 rtx set;
978
4b4bf941 979 if (!JUMP_P (insn))
d0e80719
RH
980 return 0;
981
982 set = single_set (insn);
983 if (set == NULL)
984 return 0;
985 if (GET_CODE (SET_DEST (set)) != PC)
986 return 0;
987 if (side_effects_p (SET_SRC (set)))
988 return 0;
989
990 return 1;
991}
992
dc0ff1c8
BS
993/* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
994 NULL or a return. */
995bool
68a1a6c0 996jump_to_label_p (const rtx_insn *insn)
dc0ff1c8
BS
997{
998 return (JUMP_P (insn)
999 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1000}
1001
cc2902df 1002/* Return nonzero if X is an RTX that only sets the condition codes
44ce0063
JW
1003 and has no side effects. */
1004
1005int
4f588890 1006only_sets_cc0_p (const_rtx x)
44ce0063 1007{
44ce0063
JW
1008 if (! x)
1009 return 0;
1010
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1013
1014 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015}
1016
15a63be1
RK
1017/* Return 1 if X is an RTX that does nothing but set the condition codes
1018 and CLOBBER or USE registers.
1019 Return -1 if X does explicitly set the condition codes,
1020 but also does other things. */
1021
1022int
4f588890 1023sets_cc0_p (const_rtx x)
15a63be1 1024{
44ce0063
JW
1025 if (! x)
1026 return 0;
1027
1028 if (INSN_P (x))
1029 x = PATTERN (x);
1030
15a63be1
RK
1031 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032 return 1;
1033 if (GET_CODE (x) == PARALLEL)
1034 {
1035 int i;
1036 int sets_cc0 = 0;
1037 int other_things = 0;
1038 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 {
1040 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 sets_cc0 = 1;
1043 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 other_things = 1;
1045 }
1046 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047 }
1048 return 0;
15a63be1 1049}
15a63be1 1050\f
cf7c4aa6
HPN
1051/* Find all CODE_LABELs referred to in X, and increment their use
1052 counts. If INSN is a JUMP_INSN and there is at least one
1053 CODE_LABEL referenced in INSN as a jump target, then store the last
1054 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1055 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1056 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1057 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1058 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
276e0224 1059 For returnjumps, the JUMP_LABEL will also be set as appropriate.
15a63be1
RK
1060
1061 Note that two labels separated by a loop-beginning note
1062 must be kept distinct if we have not yet done loop-optimization,
1063 because the gap between them is where loop-optimize
1064 will want to move invariant code to. CROSS_JUMP tells us
1e5fd094 1065 that loop-optimization is done with. */
15a63be1 1066
90a74703 1067void
e73de8f3 1068mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
cf7c4aa6 1069{
1c384bf1
RH
1070 rtx asmop = extract_asm_operands (x);
1071 if (asmop)
1072 mark_jump_label_asm (asmop, insn);
1073 else
1074 mark_jump_label_1 (x, insn, in_mem != 0,
1075 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
cf7c4aa6
HPN
1076}
1077
84fbffb2 1078/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
cf7c4aa6
HPN
1079 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1080 jump-target; when the JUMP_LABEL field of INSN should be set or a
1081 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1082 note. */
1083
1084static void
e73de8f3 1085mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
15a63be1 1086{
b3694847
SS
1087 RTX_CODE code = GET_CODE (x);
1088 int i;
1089 const char *fmt;
15a63be1
RK
1090
1091 switch (code)
1092 {
1093 case PC:
1094 case CC0:
1095 case REG:
15a63be1
RK
1096 case CLOBBER:
1097 case CALL:
1098 return;
1099
276e0224 1100 case RETURN:
387748de 1101 case SIMPLE_RETURN:
276e0224
AM
1102 if (is_target)
1103 {
1104 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1105 JUMP_LABEL (insn) = x;
1106 }
1107 return;
1108
d7ea4cf6 1109 case MEM:
cf7c4aa6 1110 in_mem = true;
a76063a6
CP
1111 break;
1112
5dab4eb7 1113 case SEQUENCE:
33d9cde4
DM
1114 {
1115 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1116 for (i = 0; i < seq->len (); i++)
1117 mark_jump_label (PATTERN (seq->insn (i)),
1118 seq->insn (i), 0);
1119 }
5dab4eb7
BS
1120 return;
1121
a76063a6
CP
1122 case SYMBOL_REF:
1123 if (!in_mem)
48b881a3 1124 return;
a76063a6 1125
d7ea4cf6 1126 /* If this is a constant-pool reference, see if it is a label. */
a76063a6 1127 if (CONSTANT_POOL_ADDRESS_P (x))
cf7c4aa6 1128 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d7ea4cf6
RK
1129 break;
1130
cf7c4aa6
HPN
1131 /* Handle operands in the condition of an if-then-else as for a
1132 non-jump insn. */
1133 case IF_THEN_ELSE:
1134 if (!is_target)
1135 break;
1136 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1137 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1138 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1139 return;
1140
15a63be1
RK
1141 case LABEL_REF:
1142 {
04a121a7 1143 rtx_insn *label = label_ref_label (x);
5c5e36c5 1144
be1bb652
RH
1145 /* Ignore remaining references to unreachable labels that
1146 have been deleted. */
4b4bf941 1147 if (NOTE_P (label)
a38e7aa5 1148 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
be1bb652
RH
1149 break;
1150
41806d92 1151 gcc_assert (LABEL_P (label));
5c5e36c5 1152
705f26cf
RS
1153 /* Ignore references to labels of containing functions. */
1154 if (LABEL_REF_NONLOCAL_P (x))
1155 break;
5c5e36c5 1156
04a121a7 1157 set_label_ref_label (x, label);
4654c0cf 1158 if (! insn || ! insn->deleted ())
ac9b3c97 1159 ++LABEL_NUSES (label);
5c5e36c5 1160
15a63be1
RK
1161 if (insn)
1162 {
cf7c4aa6 1163 if (is_target
cb2f563b
HPN
1164 /* Do not change a previous setting of JUMP_LABEL. If the
1165 JUMP_LABEL slot is occupied by a different label,
1166 create a note for this label. */
cf7c4aa6 1167 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
15a63be1 1168 JUMP_LABEL (insn) = label;
834452d2 1169 else
85b94003 1170 {
cf7c4aa6
HPN
1171 enum reg_note kind
1172 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1173
1174 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1175 for LABEL unless there already is one. All uses of
1176 a label, except for the primary target of a jump,
1177 must have such a note. */
1178 if (! find_reg_note (insn, kind, label))
65c5f2a6 1179 add_reg_note (insn, kind, label);
15a63be1
RK
1180 }
1181 }
1182 return;
1183 }
1184
39718607
SB
1185 /* Do walk the labels in a vector, but not the first operand of an
1186 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
15a63be1
RK
1187 case ADDR_VEC:
1188 case ADDR_DIFF_VEC:
4654c0cf 1189 if (! insn->deleted ())
ac9b3c97
R
1190 {
1191 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
15a63be1 1192
ac9b3c97 1193 for (i = 0; i < XVECLEN (x, eltnum); i++)
e73de8f3 1194 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
cf7c4aa6 1195 is_target);
ac9b3c97 1196 }
e9a25f70 1197 return;
48b881a3 1198
e9a25f70
JL
1199 default:
1200 break;
15a63be1
RK
1201 }
1202
1203 fmt = GET_RTX_FORMAT (code);
cf7c4aa6
HPN
1204
1205 /* The primary target of a tablejump is the label of the ADDR_VEC,
1206 which is canonically mentioned *last* in the insn. To get it
1207 marked as JUMP_LABEL, we iterate over items in reverse order. */
15a63be1
RK
1208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1209 {
1210 if (fmt[i] == 'e')
cf7c4aa6 1211 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
15a63be1
RK
1212 else if (fmt[i] == 'E')
1213 {
b3694847 1214 int j;
cf7c4aa6
HPN
1215
1216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1217 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1218 is_target);
15a63be1
RK
1219 }
1220 }
1221}
1222
1c384bf1
RH
1223/* Worker function for mark_jump_label. Handle asm insns specially.
1224 In particular, output operands need not be considered so we can
1225 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1226 need to be considered targets. */
1227
1228static void
e73de8f3 1229mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1c384bf1
RH
1230{
1231 int i;
1232
1233 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1234 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1235
1236 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1237 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1238}
15a63be1 1239\f
53c17031 1240/* Delete insn INSN from the chain of insns and update label ref counts
b6553814 1241 and delete insns now unreachable.
53c17031 1242
b6553814 1243 Returns the first insn after INSN that was not deleted.
15a63be1 1244
53c17031
JH
1245 Usage of this instruction is deprecated. Use delete_insn instead and
1246 subsequent cfg_cleanup pass to delete unreachable code if needed. */
15a63be1 1247
bba2490b 1248rtx_insn *
dc01c3d1 1249delete_related_insns (rtx uncast_insn)
15a63be1 1250{
dc01c3d1 1251 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4b4bf941 1252 int was_code_label = (LABEL_P (insn));
692dc9c6 1253 rtx note;
bba2490b 1254 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
15a63be1 1255
4654c0cf 1256 while (next && next->deleted ())
15a63be1
RK
1257 next = NEXT_INSN (next);
1258
1259 /* This insn is already deleted => return first following nondeleted. */
4654c0cf 1260 if (insn->deleted ())
15a63be1
RK
1261 return next;
1262
53c17031 1263 delete_insn (insn);
15a63be1 1264
15a63be1
RK
1265 /* If instruction is followed by a barrier,
1266 delete the barrier too. */
1267
4b4bf941 1268 if (next != 0 && BARRIER_P (next))
53c17031 1269 delete_insn (next);
15a63be1
RK
1270
1271 /* If deleting a jump, decrement the count of the label,
1272 and delete the label if it is now unused. */
1273
dc0ff1c8 1274 if (jump_to_label_p (insn))
1fe65930 1275 {
8942ee0f
DM
1276 rtx lab = JUMP_LABEL (insn);
1277 rtx_jump_table_data *lab_next;
1fe65930 1278
53c17031 1279 if (LABEL_NUSES (lab) == 0)
cf7c4aa6
HPN
1280 /* This can delete NEXT or PREV,
1281 either directly if NEXT is JUMP_LABEL (INSN),
1282 or indirectly through more levels of jumps. */
1283 delete_related_insns (lab);
e1233a7d 1284 else if (tablejump_p (insn, NULL, &lab_next))
1fe65930
RH
1285 {
1286 /* If we're deleting the tablejump, delete the dispatch table.
eaec9b3d 1287 We may not be able to kill the label immediately preceding
1fe65930
RH
1288 just yet, as it might be referenced in code leading up to
1289 the tablejump. */
53c17031 1290 delete_related_insns (lab_next);
1fe65930
RH
1291 }
1292 }
15a63be1 1293
3c7d7a4a
DE
1294 /* Likewise if we're deleting a dispatch table. */
1295
75677a67 1296 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
3c7d7a4a 1297 {
75677a67
DM
1298 rtvec labels = table->get_labels ();
1299 int i;
1300 int len = GET_NUM_ELEM (labels);
3c7d7a4a
DE
1301
1302 for (i = 0; i < len; i++)
75677a67
DM
1303 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1304 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
4654c0cf 1305 while (next && next->deleted ())
3c7d7a4a
DE
1306 next = NEXT_INSN (next);
1307 return next;
1308 }
1309
cf7c4aa6
HPN
1310 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1311 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1312 if (INSN_P (insn))
692dc9c6 1313 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
cf7c4aa6
HPN
1314 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1315 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
f423a6a7 1316 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
4b4bf941 1317 && LABEL_P (XEXP (note, 0)))
53c17031
JH
1318 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1319 delete_related_insns (XEXP (note, 0));
692dc9c6 1320
4654c0cf 1321 while (prev && (prev->deleted () || NOTE_P (prev)))
15a63be1
RK
1322 prev = PREV_INSN (prev);
1323
1324 /* If INSN was a label and a dispatch table follows it,
1325 delete the dispatch table. The tablejump must have gone already.
1326 It isn't useful to fall through into a table. */
1327
196cedd0 1328 if (was_code_label
15a63be1 1329 && NEXT_INSN (insn) != 0
481683e1 1330 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
53c17031 1331 next = delete_related_insns (NEXT_INSN (insn));
15a63be1
RK
1332
1333 /* If INSN was a label, delete insns following it if now unreachable. */
1334
4b4bf941 1335 if (was_code_label && prev && BARRIER_P (prev))
15a63be1 1336 {
ec8e098d
PB
1337 enum rtx_code code;
1338 while (next)
15a63be1 1339 {
ec8e098d 1340 code = GET_CODE (next);
071a42f9 1341 if (code == NOTE)
15a63be1 1342 next = NEXT_INSN (next);
2e1dbf22 1343 /* Keep going past other deleted labels to delete what follows. */
4654c0cf 1344 else if (code == CODE_LABEL && next->deleted ())
2e1dbf22 1345 next = NEXT_INSN (next);
04da5680
RS
1346 /* Keep the (use (insn))s created by dbr_schedule, which needs
1347 them in order to track liveness relative to a previous
1348 barrier. */
1349 else if (INSN_P (next)
1350 && GET_CODE (PATTERN (next)) == USE
1351 && INSN_P (XEXP (PATTERN (next), 0)))
1352 next = NEXT_INSN (next);
ec8e098d 1353 else if (code == BARRIER || INSN_P (next))
15a63be1
RK
1354 /* Note: if this deletes a jump, it can cause more
1355 deletion of unreachable code, after a different label.
1356 As long as the value from this recursive call is correct,
1357 this invocation functions correctly. */
53c17031 1358 next = delete_related_insns (next);
ec8e098d
PB
1359 else
1360 break;
15a63be1
RK
1361 }
1362 }
1363
cf7c4aa6
HPN
1364 /* I feel a little doubtful about this loop,
1365 but I see no clean and sure alternative way
1366 to find the first insn after INSN that is not now deleted.
1367 I hope this works. */
4654c0cf 1368 while (next && next->deleted ())
cf7c4aa6 1369 next = NEXT_INSN (next);
15a63be1
RK
1370 return next;
1371}
15a63be1
RK
1372\f
1373/* Delete a range of insns from FROM to TO, inclusive.
1374 This is for the sake of peephole optimization, so assume
1375 that whatever these insns do will still be done by a new
1376 peephole insn that will replace them. */
1377
1378void
579f75ae 1379delete_for_peephole (rtx_insn *from, rtx_insn *to)
15a63be1 1380{
579f75ae 1381 rtx_insn *insn = from;
15a63be1
RK
1382
1383 while (1)
1384 {
579f75ae
DM
1385 rtx_insn *next = NEXT_INSN (insn);
1386 rtx_insn *prev = PREV_INSN (insn);
15a63be1 1387
4b4bf941 1388 if (!NOTE_P (insn))
15a63be1 1389 {
4654c0cf 1390 insn->set_deleted();
15a63be1
RK
1391
1392 /* Patch this insn out of the chain. */
1393 /* We don't do this all at once, because we
1394 must preserve all NOTEs. */
1395 if (prev)
0f82e5c9 1396 SET_NEXT_INSN (prev) = next;
15a63be1
RK
1397
1398 if (next)
0f82e5c9 1399 SET_PREV_INSN (next) = prev;
15a63be1
RK
1400 }
1401
1402 if (insn == to)
1403 break;
1404 insn = next;
1405 }
1406
1407 /* Note that if TO is an unconditional jump
1408 we *do not* delete the BARRIER that follows,
1409 since the peephole that replaces this sequence
1410 is also an unconditional jump in that case. */
1411}
1412\f
dc0ff1c8
BS
1413/* A helper function for redirect_exp_1; examines its input X and returns
1414 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1415static rtx
1416redirect_target (rtx x)
1417{
1418 if (x == NULL_RTX)
1419 return ret_rtx;
1420 if (!ANY_RETURN_P (x))
1421 return gen_rtx_LABEL_REF (Pmode, x);
1422 return x;
1423}
1424
2ea64f10
RH
1425/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1426 NLABEL as a return. Accrue modifications into the change group. */
15a63be1 1427
2ea64f10 1428static void
9b2ea071 1429redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
15a63be1 1430{
b3694847
SS
1431 rtx x = *loc;
1432 RTX_CODE code = GET_CODE (x);
1433 int i;
1434 const char *fmt;
15a63be1 1435
04a121a7 1436 if ((code == LABEL_REF && label_ref_label (x) == olabel)
dc0ff1c8 1437 || x == olabel)
15a63be1 1438 {
dc0ff1c8
BS
1439 x = redirect_target (nlabel);
1440 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
f7df4a84 1441 x = gen_rtx_SET (pc_rtx, x);
2ea64f10
RH
1442 validate_change (insn, loc, x, 1);
1443 return;
1444 }
15a63be1 1445
dc0ff1c8
BS
1446 if (code == SET && SET_DEST (x) == pc_rtx
1447 && ANY_RETURN_P (nlabel)
2ea64f10 1448 && GET_CODE (SET_SRC (x)) == LABEL_REF
04a121a7 1449 && label_ref_label (SET_SRC (x)) == olabel)
2ea64f10 1450 {
dc0ff1c8 1451 validate_change (insn, loc, nlabel, 1);
2ea64f10 1452 return;
15a63be1
RK
1453 }
1454
ba03a350
UB
1455 if (code == IF_THEN_ELSE)
1456 {
1457 /* Skip the condition of an IF_THEN_ELSE. We only want to
1458 change jump destinations, not eventual label comparisons. */
1459 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1460 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1461 return;
1462 }
1463
15a63be1
RK
1464 fmt = GET_RTX_FORMAT (code);
1465 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1466 {
1467 if (fmt[i] == 'e')
2ea64f10 1468 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
d4757e6a 1469 else if (fmt[i] == 'E')
15a63be1 1470 {
b3694847 1471 int j;
15a63be1 1472 for (j = 0; j < XVECLEN (x, i); j++)
2ea64f10 1473 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
15a63be1
RK
1474 }
1475 }
2ea64f10 1476}
15a63be1 1477
2ea64f10
RH
1478/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1479 the modifications into the change group. Return false if we did
1480 not see how to do that. */
1481
1482int
5c8d98af 1483redirect_jump_1 (rtx_insn *jump, rtx nlabel)
2ea64f10
RH
1484{
1485 int ochanges = num_validated_changes ();
1c384bf1 1486 rtx *loc, asmop;
742dff15 1487
dc0ff1c8 1488 gcc_assert (nlabel != NULL_RTX);
1c384bf1
RH
1489 asmop = extract_asm_operands (PATTERN (jump));
1490 if (asmop)
1491 {
1492 if (nlabel == NULL)
1493 return 0;
1494 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1495 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1496 }
1497 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
742dff15
JH
1498 loc = &XVECEXP (PATTERN (jump), 0, 0);
1499 else
1500 loc = &PATTERN (jump);
1501
1502 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
2ea64f10
RH
1503 return num_validated_changes () > ochanges;
1504}
1505
1506/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1507 jump target label is unused as a result, it and the code following
1508 it may be deleted.
15a63be1 1509
dc0ff1c8
BS
1510 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1511 in that case we are to turn the jump into a (possibly conditional)
1512 return insn.
15a63be1 1513
2ea64f10 1514 The return value will be 1 if the change was made, 0 if it wasn't
dc0ff1c8 1515 (this can only occur when trying to produce return insns). */
15a63be1
RK
1516
1517int
1476d1bd 1518redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
15a63be1 1519{
1476d1bd 1520 rtx olabel = jump->jump_label ();
15a63be1 1521
b1ab2759
CLT
1522 if (!nlabel)
1523 {
1524 /* If there is no label, we are asked to redirect to the EXIT block.
1525 When before the epilogue is emitted, return/simple_return cannot be
1526 created so we return 0 immediately. After the epilogue is emitted,
1527 we always expect a label, either a non-null label, or a
1528 return/simple_return RTX. */
1529
1530 if (!epilogue_completed)
1531 return 0;
1532 gcc_unreachable ();
1533 }
dc0ff1c8 1534
15a63be1
RK
1535 if (nlabel == olabel)
1536 return 1;
1537
0a634832 1538 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
15a63be1
RK
1539 return 0;
1540
0a634832
R
1541 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1542 return 1;
1543}
1544
1545/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
b8698a0f 1546 NLABEL in JUMP.
0a634832
R
1547 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1548 count has dropped to zero. */
1549void
1476d1bd 1550redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
0a634832
R
1551 int invert)
1552{
1553 rtx note;
1554
cf7c4aa6
HPN
1555 gcc_assert (JUMP_LABEL (jump) == olabel);
1556
9f5ed61a 1557 /* Negative DELETE_UNUSED used to be used to signalize behavior on
071a42f9
JH
1558 moving FUNCTION_END note. Just sanity check that no user still worry
1559 about this. */
1560 gcc_assert (delete_unused >= 0);
15a63be1 1561 JUMP_LABEL (jump) = nlabel;
dc0ff1c8 1562 if (!ANY_RETURN_P (nlabel))
15a63be1
RK
1563 ++LABEL_NUSES (nlabel);
1564
bc6688b4
RS
1565 /* Update labels in any REG_EQUAL note. */
1566 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1567 {
dc0ff1c8
BS
1568 if (ANY_RETURN_P (nlabel)
1569 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
0a634832
R
1570 remove_note (jump, note);
1571 else
bc6688b4 1572 {
0a634832
R
1573 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1574 confirm_change_group ();
bc6688b4 1575 }
bc6688b4
RS
1576 }
1577
db930875
RS
1578 /* Handle the case where we had a conditional crossing jump to a return
1579 label and are now changing it into a direct conditional return.
1580 The jump is no longer crossing in that case. */
1581 if (ANY_RETURN_P (nlabel))
339ba33b 1582 CROSSING_JUMP_P (jump) = 0;
db930875 1583
dc0ff1c8
BS
1584 if (!ANY_RETURN_P (olabel)
1585 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
31fbaad4
R
1586 /* Undefined labels will remain outside the insn stream. */
1587 && INSN_UID (olabel))
53c17031 1588 delete_related_insns (olabel);
0a634832
R
1589 if (invert)
1590 invert_br_probabilities (jump);
15a63be1
RK
1591}
1592
0a634832
R
1593/* Invert the jump condition X contained in jump insn INSN. Accrue the
1594 modifications into the change group. Return nonzero for success. */
1595static int
c9b0a227 1596invert_exp_1 (rtx x, rtx_insn *insn)
2ea64f10 1597{
0a634832 1598 RTX_CODE code = GET_CODE (x);
2ea64f10
RH
1599
1600 if (code == IF_THEN_ELSE)
1601 {
b3694847
SS
1602 rtx comp = XEXP (x, 0);
1603 rtx tem;
261efdef 1604 enum rtx_code reversed_code;
2ea64f10
RH
1605
1606 /* We can do this in two ways: The preferable way, which can only
1607 be done if this is not an integer comparison, is to reverse
1608 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1609 of the IF_THEN_ELSE. If we can't do either, fail. */
1610
261efdef
JH
1611 reversed_code = reversed_comparison_code (comp, insn);
1612
1613 if (reversed_code != UNKNOWN)
2ea64f10
RH
1614 {
1615 validate_change (insn, &XEXP (x, 0),
261efdef 1616 gen_rtx_fmt_ee (reversed_code,
2ea64f10
RH
1617 GET_MODE (comp), XEXP (comp, 0),
1618 XEXP (comp, 1)),
1619 1);
0a634832 1620 return 1;
2ea64f10 1621 }
48b881a3 1622
2ea64f10
RH
1623 tem = XEXP (x, 1);
1624 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1625 validate_change (insn, &XEXP (x, 2), tem, 1);
0a634832 1626 return 1;
2ea64f10 1627 }
742dff15 1628 else
2ea64f10 1629 return 0;
2ea64f10
RH
1630}
1631
1632/* Invert the condition of the jump JUMP, and make it jump to label
1633 NLABEL instead of where it jumps now. Accrue changes into the
1634 change group. Return false if we didn't see how to perform the
1635 inversion and redirection. */
1636
1637int
1476d1bd 1638invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
2ea64f10 1639{
0a634832 1640 rtx x = pc_set (jump);
2ea64f10 1641 int ochanges;
41806d92 1642 int ok;
2ea64f10
RH
1643
1644 ochanges = num_validated_changes ();
1c384bf1
RH
1645 if (x == NULL)
1646 return 0;
41806d92
NS
1647 ok = invert_exp_1 (SET_SRC (x), jump);
1648 gcc_assert (ok);
b8698a0f 1649
2ea64f10
RH
1650 if (num_validated_changes () == ochanges)
1651 return 0;
1652
77fb4cc1
R
1653 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1654 in Pmode, so checking this is not merely an optimization. */
1655 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
2ea64f10
RH
1656}
1657
1658/* Invert the condition of the jump JUMP, and make it jump to label
1659 NLABEL instead of where it jumps now. Return true if successful. */
1660
1661int
1476d1bd 1662invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
2ea64f10 1663{
0a634832 1664 rtx olabel = JUMP_LABEL (jump);
2ea64f10 1665
0a634832 1666 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
2ea64f10 1667 {
0a634832 1668 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
2ea64f10
RH
1669 return 1;
1670 }
0a634832 1671 cancel_changes (0);
2ea64f10
RH
1672 return 0;
1673}
1674
15a63be1
RK
1675\f
1676/* Like rtx_equal_p except that it considers two REGs as equal
4fe73cc1
RK
1677 if they renumber to the same value and considers two commutative
1678 operations to be the same if the order of the operands has been
8ddf681a 1679 reversed. */
15a63be1
RK
1680
1681int
3101faab 1682rtx_renumbered_equal_p (const_rtx x, const_rtx y)
15a63be1 1683{
b3694847 1684 int i;
4f588890 1685 const enum rtx_code code = GET_CODE (x);
b3694847 1686 const char *fmt;
48b881a3 1687
15a63be1
RK
1688 if (x == y)
1689 return 1;
4fe73cc1 1690
f8cfc6aa
JQ
1691 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1692 && (REG_P (y) || (GET_CODE (y) == SUBREG
1693 && REG_P (SUBREG_REG (y)))))
15a63be1 1694 {
4fe73cc1 1695 int reg_x = -1, reg_y = -1;
91914e56 1696 poly_int64 byte_x = 0, byte_y = 0;
c619e982 1697 struct subreg_info info;
15a63be1
RK
1698
1699 if (GET_MODE (x) != GET_MODE (y))
1700 return 0;
1701
1702 /* If we haven't done any renumbering, don't
1703 make any assumptions. */
1704 if (reg_renumber == 0)
1705 return rtx_equal_p (x, y);
1706
1707 if (code == SUBREG)
1708 {
4fe73cc1 1709 reg_x = REGNO (SUBREG_REG (x));
ddef6bc7 1710 byte_x = SUBREG_BYTE (x);
4fe73cc1
RK
1711
1712 if (reg_renumber[reg_x] >= 0)
1713 {
c619e982
L
1714 subreg_get_info (reg_renumber[reg_x],
1715 GET_MODE (SUBREG_REG (x)), byte_x,
1716 GET_MODE (x), &info);
1717 if (!info.representable_p)
e088f04b 1718 return 0;
c619e982 1719 reg_x = info.offset;
ddef6bc7 1720 byte_x = 0;
4fe73cc1 1721 }
15a63be1
RK
1722 }
1723 else
1724 {
4fe73cc1
RK
1725 reg_x = REGNO (x);
1726 if (reg_renumber[reg_x] >= 0)
1727 reg_x = reg_renumber[reg_x];
15a63be1 1728 }
4fe73cc1 1729
15a63be1
RK
1730 if (GET_CODE (y) == SUBREG)
1731 {
4fe73cc1 1732 reg_y = REGNO (SUBREG_REG (y));
ddef6bc7 1733 byte_y = SUBREG_BYTE (y);
4fe73cc1
RK
1734
1735 if (reg_renumber[reg_y] >= 0)
1736 {
c619e982
L
1737 subreg_get_info (reg_renumber[reg_y],
1738 GET_MODE (SUBREG_REG (y)), byte_y,
1739 GET_MODE (y), &info);
1740 if (!info.representable_p)
e088f04b 1741 return 0;
c619e982 1742 reg_y = info.offset;
ddef6bc7 1743 byte_y = 0;
4fe73cc1 1744 }
15a63be1
RK
1745 }
1746 else
1747 {
4fe73cc1
RK
1748 reg_y = REGNO (y);
1749 if (reg_renumber[reg_y] >= 0)
1750 reg_y = reg_renumber[reg_y];
15a63be1 1751 }
4fe73cc1 1752
91914e56 1753 return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
15a63be1 1754 }
4fe73cc1 1755
48b881a3 1756 /* Now we have disposed of all the cases
15a63be1
RK
1757 in which different rtx codes can match. */
1758 if (code != GET_CODE (y))
1759 return 0;
4fe73cc1 1760
15a63be1
RK
1761 switch (code)
1762 {
1763 case PC:
1764 case CC0:
1765 case ADDR_VEC:
1766 case ADDR_DIFF_VEC:
d8116890 1767 CASE_CONST_UNIQUE:
47c7b4d2 1768 return 0;
15a63be1
RK
1769
1770 case LABEL_REF:
705f26cf
RS
1771 /* We can't assume nonlocal labels have their following insns yet. */
1772 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
04a121a7 1773 return label_ref_label (x) == label_ref_label (y);
4fe73cc1 1774
15a63be1
RK
1775 /* Two label-refs are equivalent if they point at labels
1776 in the same position in the instruction stream. */
8ec0963c
JJ
1777 else
1778 {
04a121a7
TS
1779 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1780 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
8ec0963c
JJ
1781 while (xi && LABEL_P (xi))
1782 xi = next_nonnote_nondebug_insn (xi);
1783 while (yi && LABEL_P (yi))
1784 yi = next_nonnote_nondebug_insn (yi);
1785 return xi == yi;
1786 }
15a63be1
RK
1787
1788 case SYMBOL_REF:
1789 return XSTR (x, 0) == XSTR (y, 0);
e9a25f70 1790
bba596a3
RH
1791 case CODE_LABEL:
1792 /* If we didn't match EQ equality above, they aren't the same. */
1793 return 0;
1794
e9a25f70
JL
1795 default:
1796 break;
15a63be1
RK
1797 }
1798
1799 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1800
1801 if (GET_MODE (x) != GET_MODE (y))
1802 return 0;
1803
5932a4d4 1804 /* MEMs referring to different address space are not equivalent. */
09e881c9
BE
1805 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1806 return 0;
1807
4fe73cc1 1808 /* For commutative operations, the RTX match if the operand match in any
8ddf681a
R
1809 order. Also handle the simple binary and unary cases without a loop. */
1810 if (targetm.commutative_p (x, UNKNOWN))
4fe73cc1
RK
1811 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1812 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1813 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1814 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
ec8e098d 1815 else if (NON_COMMUTATIVE_P (x))
4fe73cc1
RK
1816 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1817 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
ec8e098d 1818 else if (UNARY_P (x))
4fe73cc1
RK
1819 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1820
15a63be1
RK
1821 /* Compare the elements. If any pair of corresponding elements
1822 fail to match, return 0 for the whole things. */
1823
1824 fmt = GET_RTX_FORMAT (code);
1825 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1826 {
b3694847 1827 int j;
15a63be1
RK
1828 switch (fmt[i])
1829 {
5f4f0e22
CH
1830 case 'w':
1831 if (XWINT (x, i) != XWINT (y, i))
1832 return 0;
1833 break;
1834
15a63be1
RK
1835 case 'i':
1836 if (XINT (x, i) != XINT (y, i))
fee45723
JJ
1837 {
1838 if (((code == ASM_OPERANDS && i == 6)
5368224f 1839 || (code == ASM_INPUT && i == 1)))
fee45723
JJ
1840 break;
1841 return 0;
1842 }
15a63be1
RK
1843 break;
1844
91914e56
RS
1845 case 'p':
1846 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1847 return 0;
1848 break;
1849
46fac664
JH
1850 case 't':
1851 if (XTREE (x, i) != XTREE (y, i))
1852 return 0;
1853 break;
1854
15a63be1
RK
1855 case 's':
1856 if (strcmp (XSTR (x, i), XSTR (y, i)))
1857 return 0;
1858 break;
1859
1860 case 'e':
1861 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1862 return 0;
1863 break;
1864
1865 case 'u':
1866 if (XEXP (x, i) != XEXP (y, i))
1867 return 0;
938d968e 1868 /* Fall through. */
15a63be1
RK
1869 case '0':
1870 break;
1871
1872 case 'E':
1873 if (XVECLEN (x, i) != XVECLEN (y, i))
1874 return 0;
1875 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1876 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1877 return 0;
1878 break;
1879
1880 default:
41806d92 1881 gcc_unreachable ();
15a63be1
RK
1882 }
1883 }
1884 return 1;
1885}
1886\f
1887/* If X is a hard register or equivalent to one or a subregister of one,
1888 return the hard register number. If X is a pseudo register that was not
1889 assigned a hard register, return the pseudo register number. Otherwise,
1890 return -1. Any rtx is valid for X. */
1891
1892int
4f588890 1893true_regnum (const_rtx x)
15a63be1 1894{
f8cfc6aa 1895 if (REG_P (x))
15a63be1 1896 {
55a2c322
VM
1897 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1898 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
15a63be1
RK
1899 return reg_renumber[REGNO (x)];
1900 return REGNO (x);
1901 }
1902 if (GET_CODE (x) == SUBREG)
1903 {
1904 int base = true_regnum (SUBREG_REG (x));
14502dad 1905 if (base >= 0
c619e982
L
1906 && base < FIRST_PSEUDO_REGISTER)
1907 {
1908 struct subreg_info info;
1909
55a2c322
VM
1910 subreg_get_info (lra_in_progress
1911 ? (unsigned) base : REGNO (SUBREG_REG (x)),
c619e982
L
1912 GET_MODE (SUBREG_REG (x)),
1913 SUBREG_BYTE (x), GET_MODE (x), &info);
1914
1915 if (info.representable_p)
1916 return base + info.offset;
1917 }
15a63be1
RK
1918 }
1919 return -1;
1920}
344b78b8
JH
1921
1922/* Return regno of the register REG and handle subregs too. */
1923unsigned int
4f588890 1924reg_or_subregno (const_rtx reg)
344b78b8 1925{
344b78b8 1926 if (GET_CODE (reg) == SUBREG)
41806d92
NS
1927 reg = SUBREG_REG (reg);
1928 gcc_assert (REG_P (reg));
1929 return REGNO (reg);
344b78b8 1930}