]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/jump.c
gcc/
[thirdparty/gcc.git] / gcc / jump.c
CommitLineData
5924de0b 1/* Optimize jump instructions, for GNU compiler.
c773fc10 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
7216a350 3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
72fae5d0 4 Free Software Foundation, Inc.
5924de0b 5
f12b58b3 6This file is part of GCC.
5924de0b 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
8c4c00c1 10Software Foundation; either version 3, or (at your option) any later
f12b58b3 11version.
5924de0b 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
5924de0b 17
18You should have received a copy of the GNU General Public License
8c4c00c1 19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
5924de0b 21
fc4eaab7 22/* This is the pathetic reminder of old fame of the jump-optimization pass
d961ae3a 23 of the compiler. Now it contains basically a set of utility functions to
fc4eaab7 24 operate with jumps.
5924de0b 25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
5f3447b0 34 The subroutines redirect_jump and invert_jump are used
5924de0b 35 from other passes as well. */
36
37#include "config.h"
405711de 38#include "system.h"
805e22b2 39#include "coretypes.h"
40#include "tm.h"
5924de0b 41#include "rtl.h"
7953c610 42#include "tm_p.h"
5924de0b 43#include "flags.h"
44#include "hard-reg-set.h"
45#include "regs.h"
5924de0b 46#include "insn-config.h"
fe3b47be 47#include "insn-attr.h"
0dbd1c74 48#include "recog.h"
0a893c29 49#include "function.h"
fa9157fe 50#include "expr.h"
5924de0b 51#include "real.h"
485aaaaf 52#include "except.h"
69579044 53#include "diagnostic.h"
ce1fd7fc 54#include "toplev.h"
75eb327c 55#include "reload.h"
13488c51 56#include "predict.h"
376c21d1 57#include "timevar.h"
77fce4cd 58#include "tree-pass.h"
280566a7 59#include "target.h"
5924de0b 60
5924de0b 61/* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63/* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
3ad4992f 68static void init_label_info (rtx);
69static void mark_all_labels (rtx);
19d2fe05 70static void mark_jump_label_1 (rtx, rtx, bool, bool);
3ad4992f 71static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
82880dfd 72static int invert_exp_1 (rtx, rtx);
3ad4992f 73static int returnjump_p_1 (rtx *, void *);
60ecc450 74\f
19d2fe05 75/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
8b946ced 79void
3ad4992f 80rebuild_jump_labels (rtx f)
8b946ced 81{
19cb6b50 82 rtx insn;
5924de0b 83
376c21d1 84 timevar_push (TV_REBUILD_JUMP);
805e22b2 85 init_label_info (f);
bf73fcf4 86 mark_all_labels (f);
5924de0b 87
cbd914e1 88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
5924de0b 91
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
6d7dc5b9 93 if (LABEL_P (XEXP (insn, 0)))
cbd914e1 94 LABEL_NUSES (XEXP (insn, 0))++;
376c21d1 95 timevar_pop (TV_REBUILD_JUMP);
fc4eaab7 96}
97\f
fb3c15bc 98/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
102
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
105 */
2a1990e9 106unsigned int
3ad4992f 107cleanup_barriers (void)
fb3c15bc 108{
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
111 {
112 next = NEXT_INSN (insn);
6d7dc5b9 113 if (BARRIER_P (insn))
fb3c15bc 114 {
115 prev = prev_nonnote_insn (insn);
6d7dc5b9 116 if (BARRIER_P (prev))
749a971f 117 delete_insn (insn);
fb3c15bc 118 else if (prev != PREV_INSN (insn))
119 reorder_insns (insn, insn, prev);
120 }
121 }
2a1990e9 122 return 0;
fb3c15bc 123}
5924de0b 124
20099e35 125struct rtl_opt_pass pass_cleanup_barriers =
77fce4cd 126{
20099e35 127 {
128 RTL_PASS,
228967a9 129 "barriers", /* name */
77fce4cd 130 NULL, /* gate */
131 cleanup_barriers, /* execute */
132 NULL, /* sub */
133 NULL, /* next */
134 0, /* static_pass_number */
135 0, /* tv_id */
136 0, /* properties_required */
137 0, /* properties_provided */
138 0, /* properties_destroyed */
139 0, /* todo_flags_start */
20099e35 140 TODO_dump_func /* todo_flags_finish */
141 }
77fce4cd 142};
143
e8d75e01 144\f
19d2fe05 145/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
146 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
147 notes whose labels don't occur in the insn any more. */
148
805e22b2 149static void
3ad4992f 150init_label_info (rtx f)
e8d75e01 151{
e8d75e01 152 rtx insn;
153
154 for (insn = f; insn; insn = NEXT_INSN (insn))
19d2fe05 155 {
156 if (LABEL_P (insn))
157 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
158
159 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
160 sticky and not reset here; that way we won't lose association
161 with a label when e.g. the source for a target register
162 disappears out of reach for targets that may use jump-target
163 registers. Jump transformations are supposed to transform
164 any REG_LABEL_TARGET notes. The target label reference in a
165 branch may disappear from the branch (and from the
166 instruction before it) for other reasons, like register
167 allocation. */
168
169 if (INSN_P (insn))
170 {
171 rtx note, next;
e8d75e01 172
19d2fe05 173 for (note = REG_NOTES (insn); note; note = next)
174 {
175 next = XEXP (note, 1);
176 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
177 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
178 remove_note (insn, note);
179 }
180 }
181 }
e8d75e01 182}
183
e8d75e01 184/* Mark the label each jump jumps to.
fc4eaab7 185 Combine consecutive labels, and count uses of labels. */
e8d75e01 186
187static void
3ad4992f 188mark_all_labels (rtx f)
e8d75e01 189{
190 rtx insn;
19d2fe05 191 rtx prev_nonjump_insn = NULL;
e8d75e01 192
193 for (insn = f; insn; insn = NEXT_INSN (insn))
9204e736 194 if (INSN_P (insn))
e8d75e01 195 {
bf73fcf4 196 mark_jump_label (PATTERN (insn), insn, 0);
19d2fe05 197
198 /* If the previous non-jump insn sets something to a label,
199 something that this jump insn uses, make that label the primary
200 target of this insn if we don't yet have any. That previous
201 insn must be a single_set and not refer to more than one label.
202 The jump insn must not refer to other labels as jump targets
203 and must be a plain (set (pc) ...), maybe in a parallel, and
204 may refer to the item being set only directly or as one of the
205 arms in an IF_THEN_ELSE. */
206 if (! INSN_DELETED_P (insn)
207 && JUMP_P (insn)
208 && JUMP_LABEL (insn) == NULL)
e8d75e01 209 {
19d2fe05 210 rtx label_note = NULL;
211 rtx pc = pc_set (insn);
212 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213
214 if (prev_nonjump_insn != NULL)
215 label_note
216 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
217
218 if (label_note != NULL && pc_src != NULL)
d3ff0f75 219 {
19d2fe05 220 rtx label_set = single_set (prev_nonjump_insn);
221 rtx label_dest
222 = label_set != NULL ? SET_DEST (label_set) : NULL;
223
224 if (label_set != NULL
225 /* The source must be the direct LABEL_REF, not a
226 PLUS, UNSPEC, IF_THEN_ELSE etc. */
227 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
228 && (rtx_equal_p (label_dest, pc_src)
229 || (GET_CODE (pc_src) == IF_THEN_ELSE
230 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
231 || rtx_equal_p (label_dest,
232 XEXP (pc_src, 2))))))
233
d3ff0f75 234 {
19d2fe05 235 /* The CODE_LABEL referred to in the note must be the
236 CODE_LABEL in the LABEL_REF of the "set". We can
237 conveniently use it for the marker function, which
238 requires a LABEL_REF wrapping. */
239 gcc_assert (XEXP (label_note, 0)
240 == XEXP (SET_SRC (label_set), 0));
241
242 mark_jump_label_1 (label_set, insn, false, true);
243 gcc_assert (JUMP_LABEL (insn)
244 == XEXP (SET_SRC (label_set), 0));
d3ff0f75 245 }
246 }
e8d75e01 247 }
19d2fe05 248 else if (! INSN_DELETED_P (insn))
249 prev_nonjump_insn = insn;
e8d75e01 250 }
19d2fe05 251 else if (LABEL_P (insn))
252 prev_nonjump_insn = NULL;
253
eea7b156 254 /* If we are in cfglayout mode, there may be non-insns between the
255 basic blocks. If those non-insns represent tablejump data, they
256 contain label references that we must record. */
257 if (current_ir_type () == IR_RTL_CFGLAYOUT)
258 {
259 basic_block bb;
260 rtx insn;
261 FOR_EACH_BB (bb)
262 {
263 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
264 if (INSN_P (insn))
265 {
266 gcc_assert (JUMP_TABLE_DATA_P (insn));
267 mark_jump_label (PATTERN (insn), insn, 0);
268 }
269
270 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
271 if (INSN_P (insn))
272 {
273 gcc_assert (JUMP_TABLE_DATA_P (insn));
274 mark_jump_label (PATTERN (insn), insn, 0);
275 }
276 }
277 }
e8d75e01 278}
5924de0b 279\f
fa8b3d85 280/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
8e98892d 281 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
282 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
283 know whether it's source is floating point or integer comparison. Machine
284 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
285 to help this function avoid overhead in these cases. */
286enum rtx_code
5493cb9a 287reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
288 const_rtx arg1, const_rtx insn)
5924de0b 289{
8e98892d 290 enum machine_mode mode;
5924de0b 291
292 /* If this is not actually a comparison, we can't reverse it. */
6720e96c 293 if (GET_RTX_CLASS (code) != RTX_COMPARE
294 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
8e98892d 295 return UNKNOWN;
296
297 mode = GET_MODE (arg0);
298 if (mode == VOIDmode)
299 mode = GET_MODE (arg1);
300
3927afe0 301 /* First see if machine description supplies us way to reverse the
302 comparison. Give it priority over everything else to allow
303 machine description to do tricks. */
0ec244e1 304 if (GET_MODE_CLASS (mode) == MODE_CC
8e98892d 305 && REVERSIBLE_CC_MODE (mode))
306 {
307#ifdef REVERSE_CONDITION
85fc0ad1 308 return REVERSE_CONDITION (code, mode);
8e98892d 309#endif
85fc0ad1 310 return reverse_condition (code);
311 }
5924de0b 312
fa8b3d85 313 /* Try a few special cases based on the comparison code. */
8e98892d 314 switch (code)
315 {
85fc0ad1 316 case GEU:
317 case GTU:
318 case LEU:
319 case LTU:
320 case NE:
321 case EQ:
322 /* It is always safe to reverse EQ and NE, even for the floating
917bbcab 323 point. Similarly the unsigned comparisons are never used for
85fc0ad1 324 floating point so we can reverse them in the default way. */
325 return reverse_condition (code);
326 case ORDERED:
327 case UNORDERED:
328 case LTGT:
329 case UNEQ:
330 /* In case we already see unordered comparison, we can be sure to
331 be dealing with floating point so we don't need any more tests. */
332 return reverse_condition_maybe_unordered (code);
333 case UNLT:
334 case UNLE:
335 case UNGT:
336 case UNGE:
337 /* We don't have safe way to reverse these yet. */
338 return UNKNOWN;
339 default:
340 break;
8e98892d 341 }
342
a4589b78 343 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
5924de0b 344 {
5493cb9a 345 const_rtx prev;
8e98892d 346 /* Try to search for the comparison to determine the real mode.
347 This code is expensive, but with sane machine description it
348 will be never used, since REVERSIBLE_CC_MODE will return true
349 in all cases. */
111f2389 350 if (! insn)
8e98892d 351 return UNKNOWN;
7113a566 352
ce4469fa 353 /* These CONST_CAST's are okay because prev_nonnote_insn just
5ca94202 354 returns its argument and we assign it to a const_rtx
ce4469fa 355 variable. */
e47a6f81 356 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
6d7dc5b9 357 prev != 0 && !LABEL_P (prev);
e47a6f81 358 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
8e98892d 359 {
81a410b1 360 const_rtx set = set_of (arg0, prev);
8e98892d 361 if (set && GET_CODE (set) == SET
362 && rtx_equal_p (SET_DEST (set), arg0))
363 {
364 rtx src = SET_SRC (set);
5924de0b 365
8e98892d 366 if (GET_CODE (src) == COMPARE)
367 {
368 rtx comparison = src;
369 arg0 = XEXP (src, 0);
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (XEXP (comparison, 1));
373 break;
374 }
dd5b4b36 375 /* We can get past reg-reg moves. This may be useful for model
8e98892d 376 of i387 comparisons that first move flag registers around. */
377 if (REG_P (src))
378 {
379 arg0 = src;
380 continue;
381 }
382 }
383 /* If register is clobbered in some ununderstandable way,
384 give up. */
385 if (set)
386 return UNKNOWN;
387 }
5924de0b 388 }
389
920d0fb5 390 /* Test for an integer condition, or a floating-point comparison
391 in which NaNs can be ignored. */
8e98892d 392 if (GET_CODE (arg0) == CONST_INT
393 || (GET_MODE (arg0) != VOIDmode
394 && GET_MODE_CLASS (mode) != MODE_CC
920d0fb5 395 && !HONOR_NANS (mode)))
8e98892d 396 return reverse_condition (code);
397
398 return UNKNOWN;
399}
400
df07c3ae 401/* A wrapper around the previous function to take COMPARISON as rtx
8e98892d 402 expression. This simplifies many callers. */
403enum rtx_code
5493cb9a 404reversed_comparison_code (const_rtx comparison, const_rtx insn)
8e98892d 405{
6720e96c 406 if (!COMPARISON_P (comparison))
8e98892d 407 return UNKNOWN;
408 return reversed_comparison_code_parts (GET_CODE (comparison),
409 XEXP (comparison, 0),
410 XEXP (comparison, 1), insn);
411}
0fc1e6fa 412
413/* Return comparison with reversed code of EXP.
414 Return NULL_RTX in case we fail to do the reversal. */
415rtx
5493cb9a 416reversed_comparison (const_rtx exp, enum machine_mode mode)
0fc1e6fa 417{
418 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
419 if (reversed_code == UNKNOWN)
420 return NULL_RTX;
421 else
422 return simplify_gen_relational (reversed_code, mode, VOIDmode,
423 XEXP (exp, 0), XEXP (exp, 1));
424}
425
8e98892d 426\f
a4110d9a 427/* Given an rtx-code for a comparison, return the code for the negated
428 comparison. If no such code exists, return UNKNOWN.
429
430 WATCH OUT! reverse_condition is not safe to use on a jump that might
431 be acting on the results of an IEEE floating point comparison, because
7113a566 432 of the special treatment of non-signaling nans in comparisons.
8e98892d 433 Use reversed_comparison_code instead. */
5924de0b 434
435enum rtx_code
3ad4992f 436reverse_condition (enum rtx_code code)
5924de0b 437{
438 switch (code)
439 {
440 case EQ:
441 return NE;
5924de0b 442 case NE:
443 return EQ;
5924de0b 444 case GT:
445 return LE;
5924de0b 446 case GE:
447 return LT;
5924de0b 448 case LT:
449 return GE;
5924de0b 450 case LE:
451 return GT;
5924de0b 452 case GTU:
453 return LEU;
5924de0b 454 case GEU:
455 return LTU;
5924de0b 456 case LTU:
457 return GEU;
5924de0b 458 case LEU:
459 return GTU;
a4110d9a 460 case UNORDERED:
461 return ORDERED;
462 case ORDERED:
463 return UNORDERED;
464
465 case UNLT:
466 case UNLE:
467 case UNGT:
468 case UNGE:
469 case UNEQ:
79777bad 470 case LTGT:
a4110d9a 471 return UNKNOWN;
5924de0b 472
473 default:
a53ff4c1 474 gcc_unreachable ();
5924de0b 475 }
476}
477
79777bad 478/* Similar, but we're allowed to generate unordered comparisons, which
479 makes it safe for IEEE floating-point. Of course, we have to recognize
480 that the target will support them too... */
481
482enum rtx_code
3ad4992f 483reverse_condition_maybe_unordered (enum rtx_code code)
79777bad 484{
79777bad 485 switch (code)
486 {
487 case EQ:
488 return NE;
489 case NE:
490 return EQ;
491 case GT:
492 return UNLE;
493 case GE:
494 return UNLT;
495 case LT:
496 return UNGE;
497 case LE:
498 return UNGT;
499 case LTGT:
500 return UNEQ;
79777bad 501 case UNORDERED:
502 return ORDERED;
503 case ORDERED:
504 return UNORDERED;
505 case UNLT:
506 return GE;
507 case UNLE:
508 return GT;
509 case UNGT:
510 return LE;
511 case UNGE:
512 return LT;
513 case UNEQ:
514 return LTGT;
515
516 default:
a53ff4c1 517 gcc_unreachable ();
79777bad 518 }
519}
520
5924de0b 521/* Similar, but return the code when two operands of a comparison are swapped.
522 This IS safe for IEEE floating-point. */
523
524enum rtx_code
3ad4992f 525swap_condition (enum rtx_code code)
5924de0b 526{
527 switch (code)
528 {
529 case EQ:
530 case NE:
a4110d9a 531 case UNORDERED:
532 case ORDERED:
533 case UNEQ:
79777bad 534 case LTGT:
5924de0b 535 return code;
536
537 case GT:
538 return LT;
5924de0b 539 case GE:
540 return LE;
5924de0b 541 case LT:
542 return GT;
5924de0b 543 case LE:
544 return GE;
5924de0b 545 case GTU:
546 return LTU;
5924de0b 547 case GEU:
548 return LEU;
5924de0b 549 case LTU:
550 return GTU;
5924de0b 551 case LEU:
552 return GEU;
a4110d9a 553 case UNLT:
554 return UNGT;
555 case UNLE:
556 return UNGE;
557 case UNGT:
558 return UNLT;
559 case UNGE:
560 return UNLE;
561
5924de0b 562 default:
a53ff4c1 563 gcc_unreachable ();
5924de0b 564 }
565}
566
567/* Given a comparison CODE, return the corresponding unsigned comparison.
568 If CODE is an equality comparison or already an unsigned comparison,
569 CODE is returned. */
570
571enum rtx_code
3ad4992f 572unsigned_condition (enum rtx_code code)
5924de0b 573{
574 switch (code)
575 {
576 case EQ:
577 case NE:
578 case GTU:
579 case GEU:
580 case LTU:
581 case LEU:
582 return code;
583
584 case GT:
585 return GTU;
5924de0b 586 case GE:
587 return GEU;
5924de0b 588 case LT:
589 return LTU;
5924de0b 590 case LE:
591 return LEU;
592
593 default:
a53ff4c1 594 gcc_unreachable ();
5924de0b 595 }
596}
597
598/* Similarly, return the signed version of a comparison. */
599
600enum rtx_code
3ad4992f 601signed_condition (enum rtx_code code)
5924de0b 602{
603 switch (code)
604 {
605 case EQ:
606 case NE:
607 case GT:
608 case GE:
609 case LT:
610 case LE:
611 return code;
612
613 case GTU:
614 return GT;
5924de0b 615 case GEU:
616 return GE;
5924de0b 617 case LTU:
618 return LT;
5924de0b 619 case LEU:
620 return LE;
621
622 default:
a53ff4c1 623 gcc_unreachable ();
5924de0b 624 }
625}
626\f
6ef828f9 627/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
5924de0b 628 truth of CODE1 implies the truth of CODE2. */
629
630int
3ad4992f 631comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
5924de0b 632{
ca7744c6 633 /* UNKNOWN comparison codes can happen as a result of trying to revert
634 comparison codes.
635 They can't match anything, so we have to reject them here. */
636 if (code1 == UNKNOWN || code2 == UNKNOWN)
637 return 0;
638
5924de0b 639 if (code1 == code2)
640 return 1;
641
642 switch (code1)
643 {
5aa3f5e2 644 case UNEQ:
645 if (code2 == UNLE || code2 == UNGE)
646 return 1;
647 break;
648
5924de0b 649 case EQ:
79777bad 650 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
651 || code2 == ORDERED)
5924de0b 652 return 1;
653 break;
654
5aa3f5e2 655 case UNLT:
656 if (code2 == UNLE || code2 == NE)
657 return 1;
658 break;
659
5924de0b 660 case LT:
5aa3f5e2 661 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
662 return 1;
663 break;
664
665 case UNGT:
666 if (code2 == UNGE || code2 == NE)
5924de0b 667 return 1;
668 break;
669
670 case GT:
5aa3f5e2 671 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
79777bad 672 return 1;
673 break;
674
675 case GE:
676 case LE:
677 if (code2 == ORDERED)
678 return 1;
679 break;
680
681 case LTGT:
682 if (code2 == NE || code2 == ORDERED)
5924de0b 683 return 1;
684 break;
685
686 case LTU:
11088b43 687 if (code2 == LEU || code2 == NE)
5924de0b 688 return 1;
689 break;
690
691 case GTU:
11088b43 692 if (code2 == GEU || code2 == NE)
5924de0b 693 return 1;
694 break;
79777bad 695
696 case UNORDERED:
5aa3f5e2 697 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
698 || code2 == UNGE || code2 == UNGT)
79777bad 699 return 1;
700 break;
7113a566 701
0dbd1c74 702 default:
703 break;
5924de0b 704 }
705
706 return 0;
707}
708\f
709/* Return 1 if INSN is an unconditional jump and nothing else. */
710
711int
52d07779 712simplejump_p (const_rtx insn)
5924de0b 713{
6d7dc5b9 714 return (JUMP_P (insn)
8d472058 715 && GET_CODE (PATTERN (insn)) == SET
716 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
717 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
5924de0b 718}
719
720/* Return nonzero if INSN is a (possibly) conditional jump
7113a566 721 and nothing more.
722
4885b286 723 Use of this function is deprecated, since we need to support combined
d670e794 724 branch and compare insns. Use any_condjump_p instead whenever possible. */
5924de0b 725
726int
52d07779 727condjump_p (const_rtx insn)
5924de0b 728{
52d07779 729 const_rtx x = PATTERN (insn);
7014838c 730
731 if (GET_CODE (x) != SET
732 || GET_CODE (SET_DEST (x)) != PC)
4fbe8fa7 733 return 0;
7014838c 734
735 x = SET_SRC (x);
736 if (GET_CODE (x) == LABEL_REF)
4fbe8fa7 737 return 1;
7113a566 738 else
739 return (GET_CODE (x) == IF_THEN_ELSE
740 && ((GET_CODE (XEXP (x, 2)) == PC
741 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
742 || GET_CODE (XEXP (x, 1)) == RETURN))
743 || (GET_CODE (XEXP (x, 1)) == PC
744 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
745 || GET_CODE (XEXP (x, 2)) == RETURN))));
4fbe8fa7 746}
747
7014838c 748/* Return nonzero if INSN is a (possibly) conditional jump inside a
3a941ad5 749 PARALLEL.
7113a566 750
d670e794 751 Use this function is deprecated, since we need to support combined
752 branch and compare insns. Use any_condjump_p instead whenever possible. */
4fbe8fa7 753
754int
52d07779 755condjump_in_parallel_p (const_rtx insn)
4fbe8fa7 756{
52d07779 757 const_rtx x = PATTERN (insn);
4fbe8fa7 758
759 if (GET_CODE (x) != PARALLEL)
760 return 0;
761 else
762 x = XVECEXP (x, 0, 0);
763
5924de0b 764 if (GET_CODE (x) != SET)
765 return 0;
766 if (GET_CODE (SET_DEST (x)) != PC)
767 return 0;
768 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
769 return 1;
770 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
771 return 0;
772 if (XEXP (SET_SRC (x), 2) == pc_rtx
773 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
774 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
775 return 1;
776 if (XEXP (SET_SRC (x), 1) == pc_rtx
777 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
778 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
779 return 1;
780 return 0;
781}
782
d670e794 783/* Return set of PC, otherwise NULL. */
784
3a941ad5 785rtx
52d07779 786pc_set (const_rtx insn)
3a941ad5 787{
788 rtx pat;
6d7dc5b9 789 if (!JUMP_P (insn))
d670e794 790 return NULL_RTX;
3a941ad5 791 pat = PATTERN (insn);
d670e794 792
793 /* The set is allowed to appear either as the insn pattern or
794 the first set in a PARALLEL. */
795 if (GET_CODE (pat) == PARALLEL)
796 pat = XVECEXP (pat, 0, 0);
3a941ad5 797 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
798 return pat;
d670e794 799
800 return NULL_RTX;
3a941ad5 801}
802
d670e794 803/* Return true when insn is an unconditional direct jump,
804 possibly bundled inside a PARALLEL. */
805
3a941ad5 806int
52d07779 807any_uncondjump_p (const_rtx insn)
3a941ad5 808{
52d07779 809 const_rtx x = pc_set (insn);
3a941ad5 810 if (!x)
811 return 0;
812 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
813 return 0;
4ee9c684 814 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
815 return 0;
3a941ad5 816 return 1;
817}
818
d670e794 819/* Return true when insn is a conditional jump. This function works for
3a941ad5 820 instructions containing PC sets in PARALLELs. The instruction may have
821 various other effects so before removing the jump you must verify
9641f63c 822 onlyjump_p.
3a941ad5 823
d670e794 824 Note that unlike condjump_p it returns false for unconditional jumps. */
825
3a941ad5 826int
52d07779 827any_condjump_p (const_rtx insn)
3a941ad5 828{
52d07779 829 const_rtx x = pc_set (insn);
d670e794 830 enum rtx_code a, b;
831
3a941ad5 832 if (!x)
833 return 0;
d670e794 834 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
835 return 0;
3a941ad5 836
d670e794 837 a = GET_CODE (XEXP (SET_SRC (x), 1));
838 b = GET_CODE (XEXP (SET_SRC (x), 2));
3a941ad5 839
d670e794 840 return ((b == PC && (a == LABEL_REF || a == RETURN))
7113a566 841 || (a == PC && (b == LABEL_REF || b == RETURN)));
3a941ad5 842}
843
8f7b24f3 844/* Return the label of a conditional jump. */
845
846rtx
5493cb9a 847condjump_label (const_rtx insn)
8f7b24f3 848{
d670e794 849 rtx x = pc_set (insn);
8f7b24f3 850
d670e794 851 if (!x)
8f7b24f3 852 return NULL_RTX;
853 x = SET_SRC (x);
854 if (GET_CODE (x) == LABEL_REF)
855 return x;
856 if (GET_CODE (x) != IF_THEN_ELSE)
857 return NULL_RTX;
858 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
859 return XEXP (x, 1);
860 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
861 return XEXP (x, 2);
862 return NULL_RTX;
863}
864
71caadc0 865/* Return true if INSN is a (possibly conditional) return insn. */
866
867static int
3ad4992f 868returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
71caadc0 869{
870 rtx x = *loc;
c3987c92 871
872 return x && (GET_CODE (x) == RETURN
873 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
71caadc0 874}
875
876int
3ad4992f 877returnjump_p (rtx insn)
71caadc0 878{
6d7dc5b9 879 if (!JUMP_P (insn))
cbd914e1 880 return 0;
71caadc0 881 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
882}
883
459e9193 884/* Return true if INSN is a jump that only transfers control and
885 nothing more. */
886
887int
52d07779 888onlyjump_p (const_rtx insn)
459e9193 889{
890 rtx set;
891
6d7dc5b9 892 if (!JUMP_P (insn))
459e9193 893 return 0;
894
895 set = single_set (insn);
896 if (set == NULL)
897 return 0;
898 if (GET_CODE (SET_DEST (set)) != PC)
899 return 0;
900 if (side_effects_p (SET_SRC (set)))
901 return 0;
902
903 return 1;
904}
905
9bf8c346 906#ifdef HAVE_cc0
907
6ef828f9 908/* Return nonzero if X is an RTX that only sets the condition codes
2dcd83ba 909 and has no side effects. */
910
911int
52d07779 912only_sets_cc0_p (const_rtx x)
2dcd83ba 913{
2dcd83ba 914 if (! x)
915 return 0;
916
917 if (INSN_P (x))
918 x = PATTERN (x);
919
920 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
921}
922
5924de0b 923/* Return 1 if X is an RTX that does nothing but set the condition codes
924 and CLOBBER or USE registers.
925 Return -1 if X does explicitly set the condition codes,
926 but also does other things. */
927
928int
52d07779 929sets_cc0_p (const_rtx x)
5924de0b 930{
2dcd83ba 931 if (! x)
932 return 0;
933
934 if (INSN_P (x))
935 x = PATTERN (x);
936
5924de0b 937 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
938 return 1;
939 if (GET_CODE (x) == PARALLEL)
940 {
941 int i;
942 int sets_cc0 = 0;
943 int other_things = 0;
944 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
945 {
946 if (GET_CODE (XVECEXP (x, 0, i)) == SET
947 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
948 sets_cc0 = 1;
949 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
950 other_things = 1;
951 }
952 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
953 }
954 return 0;
5924de0b 955}
9bf8c346 956#endif
5924de0b 957\f
19d2fe05 958/* Find all CODE_LABELs referred to in X, and increment their use
959 counts. If INSN is a JUMP_INSN and there is at least one
960 CODE_LABEL referenced in INSN as a jump target, then store the last
961 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
962 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
963 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
964 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
965 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
5924de0b 966
967 Note that two labels separated by a loop-beginning note
968 must be kept distinct if we have not yet done loop-optimization,
969 because the gap between them is where loop-optimize
970 will want to move invariant code to. CROSS_JUMP tells us
bf73fcf4 971 that loop-optimization is done with. */
5924de0b 972
5377f687 973void
3ad4992f 974mark_jump_label (rtx x, rtx insn, int in_mem)
19d2fe05 975{
976 mark_jump_label_1 (x, insn, in_mem != 0,
977 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
978}
979
c7684b8e 980/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
19d2fe05 981 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
982 jump-target; when the JUMP_LABEL field of INSN should be set or a
983 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
984 note. */
985
986static void
987mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
5924de0b 988{
19cb6b50 989 RTX_CODE code = GET_CODE (x);
990 int i;
991 const char *fmt;
5924de0b 992
993 switch (code)
994 {
995 case PC:
996 case CC0:
997 case REG:
5924de0b 998 case CONST_INT:
5924de0b 999 case CONST_DOUBLE:
1000 case CLOBBER:
1001 case CALL:
1002 return;
1003
d8e0d332 1004 case MEM:
19d2fe05 1005 in_mem = true;
190099a6 1006 break;
1007
76021441 1008 case SEQUENCE:
1009 for (i = 0; i < XVECLEN (x, 0); i++)
1010 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1011 XVECEXP (x, 0, i), 0);
1012 return;
1013
190099a6 1014 case SYMBOL_REF:
1015 if (!in_mem)
7113a566 1016 return;
190099a6 1017
d8e0d332 1018 /* If this is a constant-pool reference, see if it is a label. */
190099a6 1019 if (CONSTANT_POOL_ADDRESS_P (x))
19d2fe05 1020 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d8e0d332 1021 break;
1022
19d2fe05 1023 /* Handle operands in the condition of an if-then-else as for a
1024 non-jump insn. */
1025 case IF_THEN_ELSE:
1026 if (!is_target)
1027 break;
1028 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1029 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1030 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1031 return;
1032
5924de0b 1033 case LABEL_REF:
1034 {
b4d3bcce 1035 rtx label = XEXP (x, 0);
b4d3bcce 1036
74b0991d 1037 /* Ignore remaining references to unreachable labels that
1038 have been deleted. */
6d7dc5b9 1039 if (NOTE_P (label)
ad4583d9 1040 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
74b0991d 1041 break;
1042
a53ff4c1 1043 gcc_assert (LABEL_P (label));
b4d3bcce 1044
f08cae9d 1045 /* Ignore references to labels of containing functions. */
1046 if (LABEL_REF_NONLOCAL_P (x))
1047 break;
b4d3bcce 1048
5924de0b 1049 XEXP (x, 0) = label;
943e16d8 1050 if (! insn || ! INSN_DELETED_P (insn))
1051 ++LABEL_NUSES (label);
b4d3bcce 1052
5924de0b 1053 if (insn)
1054 {
19d2fe05 1055 if (is_target
a8d1dae0 1056 /* Do not change a previous setting of JUMP_LABEL. If the
1057 JUMP_LABEL slot is occupied by a different label,
1058 create a note for this label. */
19d2fe05 1059 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
5924de0b 1060 JUMP_LABEL (insn) = label;
ab2237b5 1061 else
e89849bd 1062 {
19d2fe05 1063 enum reg_note kind
1064 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1065
1066 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1067 for LABEL unless there already is one. All uses of
1068 a label, except for the primary target of a jump,
1069 must have such a note. */
1070 if (! find_reg_note (insn, kind, label))
a1ddb869 1071 add_reg_note (insn, kind, label);
5924de0b 1072 }
1073 }
1074 return;
1075 }
1076
1077 /* Do walk the labels in a vector, but not the first operand of an
1078 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1079 case ADDR_VEC:
1080 case ADDR_DIFF_VEC:
943e16d8 1081 if (! INSN_DELETED_P (insn))
1082 {
1083 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
5924de0b 1084
943e16d8 1085 for (i = 0; i < XVECLEN (x, eltnum); i++)
19d2fe05 1086 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1087 is_target);
943e16d8 1088 }
0dbd1c74 1089 return;
7113a566 1090
0dbd1c74 1091 default:
1092 break;
5924de0b 1093 }
1094
1095 fmt = GET_RTX_FORMAT (code);
19d2fe05 1096
1097 /* The primary target of a tablejump is the label of the ADDR_VEC,
1098 which is canonically mentioned *last* in the insn. To get it
1099 marked as JUMP_LABEL, we iterate over items in reverse order. */
5924de0b 1100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1101 {
1102 if (fmt[i] == 'e')
19d2fe05 1103 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
5924de0b 1104 else if (fmt[i] == 'E')
1105 {
19cb6b50 1106 int j;
19d2fe05 1107
1108 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1109 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1110 is_target);
5924de0b 1111 }
1112 }
1113}
1114
5924de0b 1115\f
e4bf866d 1116/* Delete insn INSN from the chain of insns and update label ref counts
17a74abe 1117 and delete insns now unreachable.
e4bf866d 1118
17a74abe 1119 Returns the first insn after INSN that was not deleted.
5924de0b 1120
e4bf866d 1121 Usage of this instruction is deprecated. Use delete_insn instead and
1122 subsequent cfg_cleanup pass to delete unreachable code if needed. */
5924de0b 1123
1124rtx
3ad4992f 1125delete_related_insns (rtx insn)
5924de0b 1126{
6d7dc5b9 1127 int was_code_label = (LABEL_P (insn));
d3df77e9 1128 rtx note;
e4bf866d 1129 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
5924de0b 1130
1131 while (next && INSN_DELETED_P (next))
1132 next = NEXT_INSN (next);
1133
1134 /* This insn is already deleted => return first following nondeleted. */
1135 if (INSN_DELETED_P (insn))
1136 return next;
1137
e4bf866d 1138 delete_insn (insn);
5924de0b 1139
5924de0b 1140 /* If instruction is followed by a barrier,
1141 delete the barrier too. */
1142
6d7dc5b9 1143 if (next != 0 && BARRIER_P (next))
e4bf866d 1144 delete_insn (next);
5924de0b 1145
1146 /* If deleting a jump, decrement the count of the label,
1147 and delete the label if it is now unused. */
1148
6d7dc5b9 1149 if (JUMP_P (insn) && JUMP_LABEL (insn))
1793cd6b 1150 {
1151 rtx lab = JUMP_LABEL (insn), lab_next;
1152
e4bf866d 1153 if (LABEL_NUSES (lab) == 0)
19d2fe05 1154 /* This can delete NEXT or PREV,
1155 either directly if NEXT is JUMP_LABEL (INSN),
1156 or indirectly through more levels of jumps. */
1157 delete_related_insns (lab);
b19beda9 1158 else if (tablejump_p (insn, NULL, &lab_next))
1793cd6b 1159 {
1160 /* If we're deleting the tablejump, delete the dispatch table.
4a82352a 1161 We may not be able to kill the label immediately preceding
1793cd6b 1162 just yet, as it might be referenced in code leading up to
1163 the tablejump. */
e4bf866d 1164 delete_related_insns (lab_next);
1793cd6b 1165 }
1166 }
5924de0b 1167
9c9e0c01 1168 /* Likewise if we're deleting a dispatch table. */
1169
6d7dc5b9 1170 if (JUMP_P (insn)
9c9e0c01 1171 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1172 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1173 {
1174 rtx pat = PATTERN (insn);
1175 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1176 int len = XVECLEN (pat, diff_vec_p);
1177
1178 for (i = 0; i < len; i++)
e4bf866d 1179 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1180 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
9c9e0c01 1181 while (next && INSN_DELETED_P (next))
1182 next = NEXT_INSN (next);
1183 return next;
1184 }
1185
19d2fe05 1186 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1187 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1188 if (INSN_P (insn))
d3df77e9 1189 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
19d2fe05 1190 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1191 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
0c97f529 1192 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
6d7dc5b9 1193 && LABEL_P (XEXP (note, 0)))
e4bf866d 1194 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1195 delete_related_insns (XEXP (note, 0));
d3df77e9 1196
6d7dc5b9 1197 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
5924de0b 1198 prev = PREV_INSN (prev);
1199
1200 /* If INSN was a label and a dispatch table follows it,
1201 delete the dispatch table. The tablejump must have gone already.
1202 It isn't useful to fall through into a table. */
1203
9cdc08c6 1204 if (was_code_label
5924de0b 1205 && NEXT_INSN (insn) != 0
6d7dc5b9 1206 && JUMP_P (NEXT_INSN (insn))
5924de0b 1207 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1208 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
e4bf866d 1209 next = delete_related_insns (NEXT_INSN (insn));
5924de0b 1210
1211 /* If INSN was a label, delete insns following it if now unreachable. */
1212
6d7dc5b9 1213 if (was_code_label && prev && BARRIER_P (prev))
5924de0b 1214 {
6720e96c 1215 enum rtx_code code;
1216 while (next)
5924de0b 1217 {
6720e96c 1218 code = GET_CODE (next);
737251e7 1219 if (code == NOTE)
5924de0b 1220 next = NEXT_INSN (next);
59bee35e 1221 /* Keep going past other deleted labels to delete what follows. */
1222 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1223 next = NEXT_INSN (next);
6720e96c 1224 else if (code == BARRIER || INSN_P (next))
5924de0b 1225 /* Note: if this deletes a jump, it can cause more
1226 deletion of unreachable code, after a different label.
1227 As long as the value from this recursive call is correct,
1228 this invocation functions correctly. */
e4bf866d 1229 next = delete_related_insns (next);
6720e96c 1230 else
1231 break;
5924de0b 1232 }
1233 }
1234
19d2fe05 1235 /* I feel a little doubtful about this loop,
1236 but I see no clean and sure alternative way
1237 to find the first insn after INSN that is not now deleted.
1238 I hope this works. */
1239 while (next && INSN_DELETED_P (next))
1240 next = NEXT_INSN (next);
5924de0b 1241 return next;
1242}
5924de0b 1243\f
1244/* Delete a range of insns from FROM to TO, inclusive.
1245 This is for the sake of peephole optimization, so assume
1246 that whatever these insns do will still be done by a new
1247 peephole insn that will replace them. */
1248
1249void
3ad4992f 1250delete_for_peephole (rtx from, rtx to)
5924de0b 1251{
19cb6b50 1252 rtx insn = from;
5924de0b 1253
1254 while (1)
1255 {
19cb6b50 1256 rtx next = NEXT_INSN (insn);
1257 rtx prev = PREV_INSN (insn);
5924de0b 1258
6d7dc5b9 1259 if (!NOTE_P (insn))
5924de0b 1260 {
1261 INSN_DELETED_P (insn) = 1;
1262
1263 /* Patch this insn out of the chain. */
1264 /* We don't do this all at once, because we
1265 must preserve all NOTEs. */
1266 if (prev)
1267 NEXT_INSN (prev) = next;
1268
1269 if (next)
1270 PREV_INSN (next) = prev;
1271 }
1272
1273 if (insn == to)
1274 break;
1275 insn = next;
1276 }
1277
1278 /* Note that if TO is an unconditional jump
1279 we *do not* delete the BARRIER that follows,
1280 since the peephole that replaces this sequence
1281 is also an unconditional jump in that case. */
1282}
1283\f
a8b5d014 1284/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1285 NLABEL as a return. Accrue modifications into the change group. */
5924de0b 1286
a8b5d014 1287static void
3ad4992f 1288redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
5924de0b 1289{
19cb6b50 1290 rtx x = *loc;
1291 RTX_CODE code = GET_CODE (x);
1292 int i;
1293 const char *fmt;
5924de0b 1294
a8b5d014 1295 if (code == LABEL_REF)
5924de0b 1296 {
a8b5d014 1297 if (XEXP (x, 0) == olabel)
1298 {
1299 rtx n;
1300 if (nlabel)
514b43f8 1301 n = gen_rtx_LABEL_REF (Pmode, nlabel);
a8b5d014 1302 else
7113a566 1303 n = gen_rtx_RETURN (VOIDmode);
5924de0b 1304
a8b5d014 1305 validate_change (insn, loc, n, 1);
1306 return;
1307 }
1308 }
1309 else if (code == RETURN && olabel == 0)
1310 {
ae6fb586 1311 if (nlabel)
514b43f8 1312 x = gen_rtx_LABEL_REF (Pmode, nlabel);
ae6fb586 1313 else
1314 x = gen_rtx_RETURN (VOIDmode);
a8b5d014 1315 if (loc == &PATTERN (insn))
1316 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1317 validate_change (insn, loc, x, 1);
1318 return;
1319 }
5924de0b 1320
a8b5d014 1321 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1322 && GET_CODE (SET_SRC (x)) == LABEL_REF
1323 && XEXP (SET_SRC (x), 0) == olabel)
1324 {
1325 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1326 return;
5924de0b 1327 }
1328
3b10edae 1329 if (code == IF_THEN_ELSE)
1330 {
1331 /* Skip the condition of an IF_THEN_ELSE. We only want to
1332 change jump destinations, not eventual label comparisons. */
1333 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1334 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1335 return;
1336 }
1337
5924de0b 1338 fmt = GET_RTX_FORMAT (code);
1339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1340 {
1341 if (fmt[i] == 'e')
a8b5d014 1342 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1bd8ca86 1343 else if (fmt[i] == 'E')
5924de0b 1344 {
19cb6b50 1345 int j;
5924de0b 1346 for (j = 0; j < XVECLEN (x, i); j++)
a8b5d014 1347 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
5924de0b 1348 }
1349 }
a8b5d014 1350}
5924de0b 1351
a8b5d014 1352/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1353 the modifications into the change group. Return false if we did
1354 not see how to do that. */
1355
1356int
3ad4992f 1357redirect_jump_1 (rtx jump, rtx nlabel)
a8b5d014 1358{
1359 int ochanges = num_validated_changes ();
ba08b7e7 1360 rtx *loc;
1361
1362 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1363 loc = &XVECEXP (PATTERN (jump), 0, 0);
1364 else
1365 loc = &PATTERN (jump);
1366
1367 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
a8b5d014 1368 return num_validated_changes () > ochanges;
1369}
1370
1371/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1372 jump target label is unused as a result, it and the code following
1373 it may be deleted.
5924de0b 1374
1375 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1376 RETURN insn.
1377
a8b5d014 1378 The return value will be 1 if the change was made, 0 if it wasn't
1379 (this can only occur for NLABEL == 0). */
5924de0b 1380
1381int
3ad4992f 1382redirect_jump (rtx jump, rtx nlabel, int delete_unused)
5924de0b 1383{
19cb6b50 1384 rtx olabel = JUMP_LABEL (jump);
5924de0b 1385
1386 if (nlabel == olabel)
1387 return 1;
1388
82880dfd 1389 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
5924de0b 1390 return 0;
1391
82880dfd 1392 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1393 return 1;
1394}
1395
1396/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
737251e7 1397 NLABEL in JUMP.
82880dfd 1398 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1399 count has dropped to zero. */
1400void
1401redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1402 int invert)
1403{
1404 rtx note;
1405
19d2fe05 1406 gcc_assert (JUMP_LABEL (jump) == olabel);
1407
f2b32076 1408 /* Negative DELETE_UNUSED used to be used to signalize behavior on
737251e7 1409 moving FUNCTION_END note. Just sanity check that no user still worry
1410 about this. */
1411 gcc_assert (delete_unused >= 0);
5924de0b 1412 JUMP_LABEL (jump) = nlabel;
1413 if (nlabel)
1414 ++LABEL_NUSES (nlabel);
1415
1e0703ac 1416 /* Update labels in any REG_EQUAL note. */
1417 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1418 {
82880dfd 1419 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1420 remove_note (jump, note);
1421 else
1e0703ac 1422 {
82880dfd 1423 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1424 confirm_change_group ();
1e0703ac 1425 }
1e0703ac 1426 }
1427
82880dfd 1428 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
7f8c3466 1429 /* Undefined labels will remain outside the insn stream. */
1430 && INSN_UID (olabel))
e4bf866d 1431 delete_related_insns (olabel);
82880dfd 1432 if (invert)
1433 invert_br_probabilities (jump);
5924de0b 1434}
1435
82880dfd 1436/* Invert the jump condition X contained in jump insn INSN. Accrue the
1437 modifications into the change group. Return nonzero for success. */
1438static int
1439invert_exp_1 (rtx x, rtx insn)
a8b5d014 1440{
82880dfd 1441 RTX_CODE code = GET_CODE (x);
a8b5d014 1442
1443 if (code == IF_THEN_ELSE)
1444 {
19cb6b50 1445 rtx comp = XEXP (x, 0);
1446 rtx tem;
7da6ea0c 1447 enum rtx_code reversed_code;
a8b5d014 1448
1449 /* We can do this in two ways: The preferable way, which can only
1450 be done if this is not an integer comparison, is to reverse
1451 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1452 of the IF_THEN_ELSE. If we can't do either, fail. */
1453
7da6ea0c 1454 reversed_code = reversed_comparison_code (comp, insn);
1455
1456 if (reversed_code != UNKNOWN)
a8b5d014 1457 {
1458 validate_change (insn, &XEXP (x, 0),
7da6ea0c 1459 gen_rtx_fmt_ee (reversed_code,
a8b5d014 1460 GET_MODE (comp), XEXP (comp, 0),
1461 XEXP (comp, 1)),
1462 1);
82880dfd 1463 return 1;
a8b5d014 1464 }
7113a566 1465
a8b5d014 1466 tem = XEXP (x, 1);
1467 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1468 validate_change (insn, &XEXP (x, 2), tem, 1);
82880dfd 1469 return 1;
a8b5d014 1470 }
ba08b7e7 1471 else
a8b5d014 1472 return 0;
a8b5d014 1473}
1474
1475/* Invert the condition of the jump JUMP, and make it jump to label
1476 NLABEL instead of where it jumps now. Accrue changes into the
1477 change group. Return false if we didn't see how to perform the
1478 inversion and redirection. */
1479
1480int
3ad4992f 1481invert_jump_1 (rtx jump, rtx nlabel)
a8b5d014 1482{
82880dfd 1483 rtx x = pc_set (jump);
a8b5d014 1484 int ochanges;
a53ff4c1 1485 int ok;
a8b5d014 1486
1487 ochanges = num_validated_changes ();
a53ff4c1 1488 gcc_assert (x);
1489 ok = invert_exp_1 (SET_SRC (x), jump);
1490 gcc_assert (ok);
1491
a8b5d014 1492 if (num_validated_changes () == ochanges)
1493 return 0;
1494
50f46d50 1495 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1496 in Pmode, so checking this is not merely an optimization. */
1497 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
a8b5d014 1498}
1499
1500/* Invert the condition of the jump JUMP, and make it jump to label
1501 NLABEL instead of where it jumps now. Return true if successful. */
1502
1503int
3ad4992f 1504invert_jump (rtx jump, rtx nlabel, int delete_unused)
a8b5d014 1505{
82880dfd 1506 rtx olabel = JUMP_LABEL (jump);
a8b5d014 1507
82880dfd 1508 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
a8b5d014 1509 {
82880dfd 1510 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
a8b5d014 1511 return 1;
1512 }
82880dfd 1513 cancel_changes (0);
a8b5d014 1514 return 0;
1515}
1516
5924de0b 1517\f
1518/* Like rtx_equal_p except that it considers two REGs as equal
6c60c295 1519 if they renumber to the same value and considers two commutative
1520 operations to be the same if the order of the operands has been
280566a7 1521 reversed. */
5924de0b 1522
1523int
a9f1838b 1524rtx_renumbered_equal_p (const_rtx x, const_rtx y)
5924de0b 1525{
19cb6b50 1526 int i;
52d07779 1527 const enum rtx_code code = GET_CODE (x);
19cb6b50 1528 const char *fmt;
7113a566 1529
5924de0b 1530 if (x == y)
1531 return 1;
6c60c295 1532
8ad4c111 1533 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1534 && (REG_P (y) || (GET_CODE (y) == SUBREG
1535 && REG_P (SUBREG_REG (y)))))
5924de0b 1536 {
6c60c295 1537 int reg_x = -1, reg_y = -1;
701e46d0 1538 int byte_x = 0, byte_y = 0;
5924de0b 1539
1540 if (GET_MODE (x) != GET_MODE (y))
1541 return 0;
1542
1543 /* If we haven't done any renumbering, don't
1544 make any assumptions. */
1545 if (reg_renumber == 0)
1546 return rtx_equal_p (x, y);
1547
1548 if (code == SUBREG)
1549 {
6c60c295 1550 reg_x = REGNO (SUBREG_REG (x));
701e46d0 1551 byte_x = SUBREG_BYTE (x);
6c60c295 1552
1553 if (reg_renumber[reg_x] >= 0)
1554 {
62e42324 1555 if (!subreg_offset_representable_p (reg_renumber[reg_x],
1556 GET_MODE (SUBREG_REG (x)),
1557 byte_x,
1558 GET_MODE (x)))
1559 return 0;
701e46d0 1560 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1561 GET_MODE (SUBREG_REG (x)),
1562 byte_x,
1563 GET_MODE (x));
1564 byte_x = 0;
6c60c295 1565 }
5924de0b 1566 }
1567 else
1568 {
6c60c295 1569 reg_x = REGNO (x);
1570 if (reg_renumber[reg_x] >= 0)
1571 reg_x = reg_renumber[reg_x];
5924de0b 1572 }
6c60c295 1573
5924de0b 1574 if (GET_CODE (y) == SUBREG)
1575 {
6c60c295 1576 reg_y = REGNO (SUBREG_REG (y));
701e46d0 1577 byte_y = SUBREG_BYTE (y);
6c60c295 1578
1579 if (reg_renumber[reg_y] >= 0)
1580 {
62e42324 1581 if (!subreg_offset_representable_p (reg_renumber[reg_y],
1582 GET_MODE (SUBREG_REG (y)),
1583 byte_y,
1584 GET_MODE (y)))
1585 return 0;
701e46d0 1586 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1587 GET_MODE (SUBREG_REG (y)),
1588 byte_y,
1589 GET_MODE (y));
1590 byte_y = 0;
6c60c295 1591 }
5924de0b 1592 }
1593 else
1594 {
6c60c295 1595 reg_y = REGNO (y);
1596 if (reg_renumber[reg_y] >= 0)
1597 reg_y = reg_renumber[reg_y];
5924de0b 1598 }
6c60c295 1599
701e46d0 1600 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
5924de0b 1601 }
6c60c295 1602
7113a566 1603 /* Now we have disposed of all the cases
5924de0b 1604 in which different rtx codes can match. */
1605 if (code != GET_CODE (y))
1606 return 0;
6c60c295 1607
5924de0b 1608 switch (code)
1609 {
1610 case PC:
1611 case CC0:
1612 case ADDR_VEC:
1613 case ADDR_DIFF_VEC:
5924de0b 1614 case CONST_INT:
d618034b 1615 case CONST_DOUBLE:
70b1bccd 1616 return 0;
5924de0b 1617
1618 case LABEL_REF:
f08cae9d 1619 /* We can't assume nonlocal labels have their following insns yet. */
1620 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1621 return XEXP (x, 0) == XEXP (y, 0);
6c60c295 1622
5924de0b 1623 /* Two label-refs are equivalent if they point at labels
1624 in the same position in the instruction stream. */
1625 return (next_real_insn (XEXP (x, 0))
1626 == next_real_insn (XEXP (y, 0)));
1627
1628 case SYMBOL_REF:
1629 return XSTR (x, 0) == XSTR (y, 0);
0dbd1c74 1630
fc41ccae 1631 case CODE_LABEL:
1632 /* If we didn't match EQ equality above, they aren't the same. */
1633 return 0;
1634
0dbd1c74 1635 default:
1636 break;
5924de0b 1637 }
1638
1639 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1640
1641 if (GET_MODE (x) != GET_MODE (y))
1642 return 0;
1643
6c60c295 1644 /* For commutative operations, the RTX match if the operand match in any
280566a7 1645 order. Also handle the simple binary and unary cases without a loop. */
1646 if (targetm.commutative_p (x, UNKNOWN))
6c60c295 1647 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1648 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1649 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1650 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
6720e96c 1651 else if (NON_COMMUTATIVE_P (x))
6c60c295 1652 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1653 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
6720e96c 1654 else if (UNARY_P (x))
6c60c295 1655 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1656
5924de0b 1657 /* Compare the elements. If any pair of corresponding elements
1658 fail to match, return 0 for the whole things. */
1659
1660 fmt = GET_RTX_FORMAT (code);
1661 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1662 {
19cb6b50 1663 int j;
5924de0b 1664 switch (fmt[i])
1665 {
1bb04728 1666 case 'w':
1667 if (XWINT (x, i) != XWINT (y, i))
1668 return 0;
1669 break;
1670
5924de0b 1671 case 'i':
1672 if (XINT (x, i) != XINT (y, i))
1673 return 0;
1674 break;
1675
a0d79d69 1676 case 't':
1677 if (XTREE (x, i) != XTREE (y, i))
1678 return 0;
1679 break;
1680
5924de0b 1681 case 's':
1682 if (strcmp (XSTR (x, i), XSTR (y, i)))
1683 return 0;
1684 break;
1685
1686 case 'e':
1687 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1688 return 0;
1689 break;
1690
1691 case 'u':
1692 if (XEXP (x, i) != XEXP (y, i))
1693 return 0;
b4b174c3 1694 /* Fall through. */
5924de0b 1695 case '0':
1696 break;
1697
1698 case 'E':
1699 if (XVECLEN (x, i) != XVECLEN (y, i))
1700 return 0;
1701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1702 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1703 return 0;
1704 break;
1705
1706 default:
a53ff4c1 1707 gcc_unreachable ();
5924de0b 1708 }
1709 }
1710 return 1;
1711}
1712\f
1713/* If X is a hard register or equivalent to one or a subregister of one,
1714 return the hard register number. If X is a pseudo register that was not
1715 assigned a hard register, return the pseudo register number. Otherwise,
1716 return -1. Any rtx is valid for X. */
1717
1718int
52d07779 1719true_regnum (const_rtx x)
5924de0b 1720{
8ad4c111 1721 if (REG_P (x))
5924de0b 1722 {
1723 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1724 return reg_renumber[REGNO (x)];
1725 return REGNO (x);
1726 }
1727 if (GET_CODE (x) == SUBREG)
1728 {
1729 int base = true_regnum (SUBREG_REG (x));
90489f58 1730 if (base >= 0
1731 && base < FIRST_PSEUDO_REGISTER
1732 && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
1733 GET_MODE (SUBREG_REG (x)),
1734 SUBREG_BYTE (x), GET_MODE (x)))
701e46d0 1735 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
1736 GET_MODE (SUBREG_REG (x)),
1737 SUBREG_BYTE (x), GET_MODE (x));
5924de0b 1738 }
1739 return -1;
1740}
b627bae7 1741
1742/* Return regno of the register REG and handle subregs too. */
1743unsigned int
52d07779 1744reg_or_subregno (const_rtx reg)
b627bae7 1745{
b627bae7 1746 if (GET_CODE (reg) == SUBREG)
a53ff4c1 1747 reg = SUBREG_REG (reg);
1748 gcc_assert (REG_P (reg));
1749 return REGNO (reg);
b627bae7 1750}