]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/jump.c
alias.c: Use REG_P...
[thirdparty/gcc.git] / gcc / jump.c
CommitLineData
15a63be1 1/* Optimize jump instructions, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
8592acaf 3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
25f99665 4 Free Software Foundation, Inc.
15a63be1 5
1322177d 6This file is part of GCC.
15a63be1 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
15a63be1 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
15a63be1
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
15a63be1 21
0045d504 22/* This is the pathetic reminder of old fame of the jump-optimization pass
75c40d56 23 of the compiler. Now it contains basically a set of utility functions to
0045d504 24 operate with jumps.
15a63be1
RK
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
9a5a17f3 34 The subroutines redirect_jump and invert_jump are used
15a63be1
RK
35 from other passes as well. */
36
37#include "config.h"
670ee920 38#include "system.h"
4977bab6
ZW
39#include "coretypes.h"
40#include "tm.h"
15a63be1 41#include "rtl.h"
6baf1cc8 42#include "tm_p.h"
15a63be1
RK
43#include "flags.h"
44#include "hard-reg-set.h"
45#include "regs.h"
15a63be1 46#include "insn-config.h"
0c63f729 47#include "insn-attr.h"
e9a25f70 48#include "recog.h"
49ad7cfa 49#include "function.h"
3c86a619 50#include "expr.h"
15a63be1 51#include "real.h"
6adb4e3a 52#include "except.h"
5f1989e6 53#include "diagnostic.h"
2e107e9e 54#include "toplev.h"
8461e984 55#include "reload.h"
4db384c9 56#include "predict.h"
0d446150 57#include "timevar.h"
ef330312 58#include "tree-pass.h"
8ddf681a 59#include "target.h"
15a63be1 60
15a63be1
RK
61/* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63/* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
0c20a65f
AJ
68static void init_label_info (rtx);
69static void mark_all_labels (rtx);
cf7c4aa6 70static void mark_jump_label_1 (rtx, rtx, bool, bool);
0c20a65f 71static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
0a634832 72static int invert_exp_1 (rtx, rtx);
0c20a65f 73static int returnjump_p_1 (rtx *, void *);
0a1c58a2 74\f
cf7c4aa6
HPN
75/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
c4403371 79void
0c20a65f 80rebuild_jump_labels (rtx f)
c4403371 81{
b3694847 82 rtx insn;
15a63be1 83
0d446150 84 timevar_push (TV_REBUILD_JUMP);
4977bab6 85 init_label_info (f);
1e5fd094 86 mark_all_labels (f);
15a63be1 87
f5540cd4
RH
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
15a63be1
RK
91
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
4b4bf941 93 if (LABEL_P (XEXP (insn, 0)))
f5540cd4 94 LABEL_NUSES (XEXP (insn, 0))++;
0d446150 95 timevar_pop (TV_REBUILD_JUMP);
0045d504
JH
96}
97\f
01f62f01
JH
98/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
102
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
105 */
c2924966 106unsigned int
0c20a65f 107cleanup_barriers (void)
01f62f01
JH
108{
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
111 {
112 next = NEXT_INSN (insn);
4b4bf941 113 if (BARRIER_P (insn))
01f62f01
JH
114 {
115 prev = prev_nonnote_insn (insn);
2cb0a60d
DD
116 if (!prev)
117 continue;
4b4bf941 118 if (BARRIER_P (prev))
f014fc47 119 delete_insn (insn);
01f62f01
JH
120 else if (prev != PREV_INSN (insn))
121 reorder_insns (insn, insn, prev);
122 }
123 }
c2924966 124 return 0;
01f62f01 125}
15a63be1 126
8ddbbcae 127struct rtl_opt_pass pass_cleanup_barriers =
ef330312 128{
8ddbbcae
JH
129 {
130 RTL_PASS,
defb77dc 131 "barriers", /* name */
ef330312
PB
132 NULL, /* gate */
133 cleanup_barriers, /* execute */
134 NULL, /* sub */
135 NULL, /* next */
136 0, /* static_pass_number */
7072a650 137 TV_NONE, /* tv_id */
ef330312
PB
138 0, /* properties_required */
139 0, /* properties_provided */
140 0, /* properties_destroyed */
141 0, /* todo_flags_start */
8ddbbcae
JH
142 TODO_dump_func /* todo_flags_finish */
143 }
ef330312
PB
144};
145
269ef46c 146\f
cf7c4aa6
HPN
147/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
148 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
149 notes whose labels don't occur in the insn any more. */
150
4977bab6 151static void
0c20a65f 152init_label_info (rtx f)
269ef46c 153{
269ef46c
DM
154 rtx insn;
155
156 for (insn = f; insn; insn = NEXT_INSN (insn))
cf7c4aa6
HPN
157 {
158 if (LABEL_P (insn))
159 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
160
161 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
162 sticky and not reset here; that way we won't lose association
163 with a label when e.g. the source for a target register
164 disappears out of reach for targets that may use jump-target
165 registers. Jump transformations are supposed to transform
166 any REG_LABEL_TARGET notes. The target label reference in a
167 branch may disappear from the branch (and from the
168 instruction before it) for other reasons, like register
169 allocation. */
170
171 if (INSN_P (insn))
172 {
173 rtx note, next;
269ef46c 174
cf7c4aa6
HPN
175 for (note = REG_NOTES (insn); note; note = next)
176 {
177 next = XEXP (note, 1);
178 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
179 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
180 remove_note (insn, note);
181 }
182 }
183 }
269ef46c
DM
184}
185
269ef46c 186/* Mark the label each jump jumps to.
0045d504 187 Combine consecutive labels, and count uses of labels. */
269ef46c
DM
188
189static void
0c20a65f 190mark_all_labels (rtx f)
269ef46c
DM
191{
192 rtx insn;
cf7c4aa6 193 rtx prev_nonjump_insn = NULL;
269ef46c
DM
194
195 for (insn = f; insn; insn = NEXT_INSN (insn))
2c3c49de 196 if (INSN_P (insn))
269ef46c 197 {
1e5fd094 198 mark_jump_label (PATTERN (insn), insn, 0);
cf7c4aa6
HPN
199
200 /* If the previous non-jump insn sets something to a label,
201 something that this jump insn uses, make that label the primary
202 target of this insn if we don't yet have any. That previous
203 insn must be a single_set and not refer to more than one label.
204 The jump insn must not refer to other labels as jump targets
205 and must be a plain (set (pc) ...), maybe in a parallel, and
206 may refer to the item being set only directly or as one of the
207 arms in an IF_THEN_ELSE. */
208 if (! INSN_DELETED_P (insn)
209 && JUMP_P (insn)
210 && JUMP_LABEL (insn) == NULL)
269ef46c 211 {
cf7c4aa6
HPN
212 rtx label_note = NULL;
213 rtx pc = pc_set (insn);
214 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
215
216 if (prev_nonjump_insn != NULL)
217 label_note
218 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
219
220 if (label_note != NULL && pc_src != NULL)
f759eb8b 221 {
cf7c4aa6
HPN
222 rtx label_set = single_set (prev_nonjump_insn);
223 rtx label_dest
224 = label_set != NULL ? SET_DEST (label_set) : NULL;
225
226 if (label_set != NULL
227 /* The source must be the direct LABEL_REF, not a
228 PLUS, UNSPEC, IF_THEN_ELSE etc. */
229 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
230 && (rtx_equal_p (label_dest, pc_src)
231 || (GET_CODE (pc_src) == IF_THEN_ELSE
232 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
233 || rtx_equal_p (label_dest,
234 XEXP (pc_src, 2))))))
235
f759eb8b 236 {
cf7c4aa6
HPN
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note, 0)
242 == XEXP (SET_SRC (label_set), 0));
243
244 mark_jump_label_1 (label_set, insn, false, true);
245 gcc_assert (JUMP_LABEL (insn)
246 == XEXP (SET_SRC (label_set), 0));
f759eb8b
AO
247 }
248 }
269ef46c 249 }
cf7c4aa6
HPN
250 else if (! INSN_DELETED_P (insn))
251 prev_nonjump_insn = insn;
269ef46c 252 }
cf7c4aa6
HPN
253 else if (LABEL_P (insn))
254 prev_nonjump_insn = NULL;
255
05549c96
SB
256 /* If we are in cfglayout mode, there may be non-insns between the
257 basic blocks. If those non-insns represent tablejump data, they
258 contain label references that we must record. */
259 if (current_ir_type () == IR_RTL_CFGLAYOUT)
260 {
261 basic_block bb;
262 rtx insn;
263 FOR_EACH_BB (bb)
264 {
265 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
266 if (INSN_P (insn))
267 {
268 gcc_assert (JUMP_TABLE_DATA_P (insn));
269 mark_jump_label (PATTERN (insn), insn, 0);
270 }
271
272 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
273 if (INSN_P (insn))
274 {
275 gcc_assert (JUMP_TABLE_DATA_P (insn));
276 mark_jump_label (PATTERN (insn), insn, 0);
277 }
278 }
279 }
269ef46c 280}
15a63be1 281\f
5a4aeb03 282/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
ab94bc48
JH
283 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
284 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
285 know whether it's source is floating point or integer comparison. Machine
286 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
287 to help this function avoid overhead in these cases. */
288enum rtx_code
9678086d
KG
289reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
290 const_rtx arg1, const_rtx insn)
15a63be1 291{
ab94bc48 292 enum machine_mode mode;
15a63be1
RK
293
294 /* If this is not actually a comparison, we can't reverse it. */
ec8e098d
PB
295 if (GET_RTX_CLASS (code) != RTX_COMPARE
296 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
ab94bc48
JH
297 return UNKNOWN;
298
299 mode = GET_MODE (arg0);
300 if (mode == VOIDmode)
301 mode = GET_MODE (arg1);
302
d1a6adeb
KH
303 /* First see if machine description supplies us way to reverse the
304 comparison. Give it priority over everything else to allow
305 machine description to do tricks. */
3799607a 306 if (GET_MODE_CLASS (mode) == MODE_CC
ab94bc48
JH
307 && REVERSIBLE_CC_MODE (mode))
308 {
309#ifdef REVERSE_CONDITION
5d0cab94 310 return REVERSE_CONDITION (code, mode);
ab94bc48 311#endif
5d0cab94
KH
312 return reverse_condition (code);
313 }
15a63be1 314
5a4aeb03 315 /* Try a few special cases based on the comparison code. */
ab94bc48
JH
316 switch (code)
317 {
5d0cab94
KH
318 case GEU:
319 case GTU:
320 case LEU:
321 case LTU:
322 case NE:
323 case EQ:
324 /* It is always safe to reverse EQ and NE, even for the floating
4d6922ee 325 point. Similarly the unsigned comparisons are never used for
5d0cab94
KH
326 floating point so we can reverse them in the default way. */
327 return reverse_condition (code);
328 case ORDERED:
329 case UNORDERED:
330 case LTGT:
331 case UNEQ:
332 /* In case we already see unordered comparison, we can be sure to
333 be dealing with floating point so we don't need any more tests. */
334 return reverse_condition_maybe_unordered (code);
335 case UNLT:
336 case UNLE:
337 case UNGT:
338 case UNGE:
339 /* We don't have safe way to reverse these yet. */
340 return UNKNOWN;
341 default:
342 break;
ab94bc48
JH
343 }
344
8beccec8 345 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
15a63be1 346 {
9678086d 347 const_rtx prev;
ab94bc48
JH
348 /* Try to search for the comparison to determine the real mode.
349 This code is expensive, but with sane machine description it
350 will be never used, since REVERSIBLE_CC_MODE will return true
351 in all cases. */
0dab8f8a 352 if (! insn)
ab94bc48 353 return UNKNOWN;
48b881a3 354
75547801 355 /* These CONST_CAST's are okay because prev_nonnote_insn just
4e9b57fa 356 returns its argument and we assign it to a const_rtx
75547801 357 variable. */
b1d5455a 358 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
4b4bf941 359 prev != 0 && !LABEL_P (prev);
b1d5455a 360 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
ab94bc48 361 {
7bc980e1 362 const_rtx set = set_of (arg0, prev);
ab94bc48
JH
363 if (set && GET_CODE (set) == SET
364 && rtx_equal_p (SET_DEST (set), arg0))
365 {
366 rtx src = SET_SRC (set);
15a63be1 367
ab94bc48
JH
368 if (GET_CODE (src) == COMPARE)
369 {
370 rtx comparison = src;
371 arg0 = XEXP (src, 0);
372 mode = GET_MODE (arg0);
373 if (mode == VOIDmode)
374 mode = GET_MODE (XEXP (comparison, 1));
375 break;
376 }
f63d1bf7 377 /* We can get past reg-reg moves. This may be useful for model
ab94bc48
JH
378 of i387 comparisons that first move flag registers around. */
379 if (REG_P (src))
380 {
381 arg0 = src;
382 continue;
383 }
384 }
385 /* If register is clobbered in some ununderstandable way,
386 give up. */
387 if (set)
388 return UNKNOWN;
389 }
15a63be1
RK
390 }
391
71925bc0
RS
392 /* Test for an integer condition, or a floating-point comparison
393 in which NaNs can be ignored. */
481683e1 394 if (CONST_INT_P (arg0)
ab94bc48
JH
395 || (GET_MODE (arg0) != VOIDmode
396 && GET_MODE_CLASS (mode) != MODE_CC
71925bc0 397 && !HONOR_NANS (mode)))
ab94bc48
JH
398 return reverse_condition (code);
399
400 return UNKNOWN;
401}
402
b20b352b 403/* A wrapper around the previous function to take COMPARISON as rtx
ab94bc48
JH
404 expression. This simplifies many callers. */
405enum rtx_code
9678086d 406reversed_comparison_code (const_rtx comparison, const_rtx insn)
ab94bc48 407{
ec8e098d 408 if (!COMPARISON_P (comparison))
ab94bc48
JH
409 return UNKNOWN;
410 return reversed_comparison_code_parts (GET_CODE (comparison),
411 XEXP (comparison, 0),
412 XEXP (comparison, 1), insn);
413}
14f02e73
PB
414
415/* Return comparison with reversed code of EXP.
416 Return NULL_RTX in case we fail to do the reversal. */
417rtx
9678086d 418reversed_comparison (const_rtx exp, enum machine_mode mode)
14f02e73
PB
419{
420 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
421 if (reversed_code == UNKNOWN)
422 return NULL_RTX;
423 else
424 return simplify_gen_relational (reversed_code, mode, VOIDmode,
425 XEXP (exp, 0), XEXP (exp, 1));
426}
427
ab94bc48 428\f
1eb8759b
RH
429/* Given an rtx-code for a comparison, return the code for the negated
430 comparison. If no such code exists, return UNKNOWN.
431
432 WATCH OUT! reverse_condition is not safe to use on a jump that might
433 be acting on the results of an IEEE floating point comparison, because
48b881a3 434 of the special treatment of non-signaling nans in comparisons.
ab94bc48 435 Use reversed_comparison_code instead. */
15a63be1
RK
436
437enum rtx_code
0c20a65f 438reverse_condition (enum rtx_code code)
15a63be1
RK
439{
440 switch (code)
441 {
442 case EQ:
443 return NE;
15a63be1
RK
444 case NE:
445 return EQ;
15a63be1
RK
446 case GT:
447 return LE;
15a63be1
RK
448 case GE:
449 return LT;
15a63be1
RK
450 case LT:
451 return GE;
15a63be1
RK
452 case LE:
453 return GT;
15a63be1
RK
454 case GTU:
455 return LEU;
15a63be1
RK
456 case GEU:
457 return LTU;
15a63be1
RK
458 case LTU:
459 return GEU;
15a63be1
RK
460 case LEU:
461 return GTU;
1eb8759b
RH
462 case UNORDERED:
463 return ORDERED;
464 case ORDERED:
465 return UNORDERED;
466
467 case UNLT:
468 case UNLE:
469 case UNGT:
470 case UNGE:
471 case UNEQ:
7913f3d0 472 case LTGT:
1eb8759b 473 return UNKNOWN;
15a63be1
RK
474
475 default:
41806d92 476 gcc_unreachable ();
15a63be1
RK
477 }
478}
479
7913f3d0
RH
480/* Similar, but we're allowed to generate unordered comparisons, which
481 makes it safe for IEEE floating-point. Of course, we have to recognize
482 that the target will support them too... */
483
484enum rtx_code
0c20a65f 485reverse_condition_maybe_unordered (enum rtx_code code)
7913f3d0 486{
7913f3d0
RH
487 switch (code)
488 {
489 case EQ:
490 return NE;
491 case NE:
492 return EQ;
493 case GT:
494 return UNLE;
495 case GE:
496 return UNLT;
497 case LT:
498 return UNGE;
499 case LE:
500 return UNGT;
501 case LTGT:
502 return UNEQ;
7913f3d0
RH
503 case UNORDERED:
504 return ORDERED;
505 case ORDERED:
506 return UNORDERED;
507 case UNLT:
508 return GE;
509 case UNLE:
510 return GT;
511 case UNGT:
512 return LE;
513 case UNGE:
514 return LT;
515 case UNEQ:
516 return LTGT;
517
518 default:
41806d92 519 gcc_unreachable ();
7913f3d0
RH
520 }
521}
522
15a63be1
RK
523/* Similar, but return the code when two operands of a comparison are swapped.
524 This IS safe for IEEE floating-point. */
525
526enum rtx_code
0c20a65f 527swap_condition (enum rtx_code code)
15a63be1
RK
528{
529 switch (code)
530 {
531 case EQ:
532 case NE:
1eb8759b
RH
533 case UNORDERED:
534 case ORDERED:
535 case UNEQ:
7913f3d0 536 case LTGT:
15a63be1
RK
537 return code;
538
539 case GT:
540 return LT;
15a63be1
RK
541 case GE:
542 return LE;
15a63be1
RK
543 case LT:
544 return GT;
15a63be1
RK
545 case LE:
546 return GE;
15a63be1
RK
547 case GTU:
548 return LTU;
15a63be1
RK
549 case GEU:
550 return LEU;
15a63be1
RK
551 case LTU:
552 return GTU;
15a63be1
RK
553 case LEU:
554 return GEU;
1eb8759b
RH
555 case UNLT:
556 return UNGT;
557 case UNLE:
558 return UNGE;
559 case UNGT:
560 return UNLT;
561 case UNGE:
562 return UNLE;
563
15a63be1 564 default:
41806d92 565 gcc_unreachable ();
15a63be1
RK
566 }
567}
568
569/* Given a comparison CODE, return the corresponding unsigned comparison.
570 If CODE is an equality comparison or already an unsigned comparison,
571 CODE is returned. */
572
573enum rtx_code
0c20a65f 574unsigned_condition (enum rtx_code code)
15a63be1
RK
575{
576 switch (code)
577 {
578 case EQ:
579 case NE:
580 case GTU:
581 case GEU:
582 case LTU:
583 case LEU:
584 return code;
585
586 case GT:
587 return GTU;
15a63be1
RK
588 case GE:
589 return GEU;
15a63be1
RK
590 case LT:
591 return LTU;
15a63be1
RK
592 case LE:
593 return LEU;
594
595 default:
41806d92 596 gcc_unreachable ();
15a63be1
RK
597 }
598}
599
600/* Similarly, return the signed version of a comparison. */
601
602enum rtx_code
0c20a65f 603signed_condition (enum rtx_code code)
15a63be1
RK
604{
605 switch (code)
606 {
607 case EQ:
608 case NE:
609 case GT:
610 case GE:
611 case LT:
612 case LE:
613 return code;
614
615 case GTU:
616 return GT;
15a63be1
RK
617 case GEU:
618 return GE;
15a63be1
RK
619 case LTU:
620 return LT;
15a63be1
RK
621 case LEU:
622 return LE;
623
624 default:
41806d92 625 gcc_unreachable ();
15a63be1
RK
626 }
627}
628\f
cc2902df 629/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
15a63be1
RK
630 truth of CODE1 implies the truth of CODE2. */
631
632int
0c20a65f 633comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
15a63be1 634{
1e738f74
FS
635 /* UNKNOWN comparison codes can happen as a result of trying to revert
636 comparison codes.
637 They can't match anything, so we have to reject them here. */
638 if (code1 == UNKNOWN || code2 == UNKNOWN)
639 return 0;
640
15a63be1
RK
641 if (code1 == code2)
642 return 1;
643
644 switch (code1)
645 {
b34878a3
JH
646 case UNEQ:
647 if (code2 == UNLE || code2 == UNGE)
648 return 1;
649 break;
650
15a63be1 651 case EQ:
7913f3d0
RH
652 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
653 || code2 == ORDERED)
15a63be1
RK
654 return 1;
655 break;
656
b34878a3
JH
657 case UNLT:
658 if (code2 == UNLE || code2 == NE)
659 return 1;
660 break;
661
15a63be1 662 case LT:
b34878a3
JH
663 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
664 return 1;
665 break;
666
667 case UNGT:
668 if (code2 == UNGE || code2 == NE)
15a63be1
RK
669 return 1;
670 break;
671
672 case GT:
b34878a3 673 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
7913f3d0
RH
674 return 1;
675 break;
676
677 case GE:
678 case LE:
679 if (code2 == ORDERED)
680 return 1;
681 break;
682
683 case LTGT:
684 if (code2 == NE || code2 == ORDERED)
15a63be1
RK
685 return 1;
686 break;
687
688 case LTU:
b0c38416 689 if (code2 == LEU || code2 == NE)
15a63be1
RK
690 return 1;
691 break;
692
693 case GTU:
b0c38416 694 if (code2 == GEU || code2 == NE)
15a63be1
RK
695 return 1;
696 break;
7913f3d0
RH
697
698 case UNORDERED:
b34878a3
JH
699 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
700 || code2 == UNGE || code2 == UNGT)
7913f3d0
RH
701 return 1;
702 break;
48b881a3 703
e9a25f70
JL
704 default:
705 break;
15a63be1
RK
706 }
707
708 return 0;
709}
710\f
711/* Return 1 if INSN is an unconditional jump and nothing else. */
712
713int
4f588890 714simplejump_p (const_rtx insn)
15a63be1 715{
4b4bf941 716 return (JUMP_P (insn)
3c74f8f9
RH
717 && GET_CODE (PATTERN (insn)) == SET
718 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
719 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
15a63be1
RK
720}
721
722/* Return nonzero if INSN is a (possibly) conditional jump
48b881a3
KH
723 and nothing more.
724
1f52178b 725 Use of this function is deprecated, since we need to support combined
d781a164 726 branch and compare insns. Use any_condjump_p instead whenever possible. */
15a63be1
RK
727
728int
4f588890 729condjump_p (const_rtx insn)
15a63be1 730{
4f588890 731 const_rtx x = PATTERN (insn);
c5c76735
JL
732
733 if (GET_CODE (x) != SET
734 || GET_CODE (SET_DEST (x)) != PC)
3480bb98 735 return 0;
c5c76735
JL
736
737 x = SET_SRC (x);
738 if (GET_CODE (x) == LABEL_REF)
3480bb98 739 return 1;
48b881a3
KH
740 else
741 return (GET_CODE (x) == IF_THEN_ELSE
742 && ((GET_CODE (XEXP (x, 2)) == PC
743 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
744 || GET_CODE (XEXP (x, 1)) == RETURN))
745 || (GET_CODE (XEXP (x, 1)) == PC
746 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
747 || GET_CODE (XEXP (x, 2)) == RETURN))));
3480bb98
JL
748}
749
c5c76735 750/* Return nonzero if INSN is a (possibly) conditional jump inside a
e4c85816 751 PARALLEL.
48b881a3 752
d781a164
RH
753 Use this function is deprecated, since we need to support combined
754 branch and compare insns. Use any_condjump_p instead whenever possible. */
3480bb98
JL
755
756int
4f588890 757condjump_in_parallel_p (const_rtx insn)
3480bb98 758{
4f588890 759 const_rtx x = PATTERN (insn);
3480bb98
JL
760
761 if (GET_CODE (x) != PARALLEL)
762 return 0;
763 else
764 x = XVECEXP (x, 0, 0);
765
15a63be1
RK
766 if (GET_CODE (x) != SET)
767 return 0;
768 if (GET_CODE (SET_DEST (x)) != PC)
769 return 0;
770 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
771 return 1;
772 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
773 return 0;
774 if (XEXP (SET_SRC (x), 2) == pc_rtx
775 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
776 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
777 return 1;
778 if (XEXP (SET_SRC (x), 1) == pc_rtx
779 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
780 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
781 return 1;
782 return 0;
783}
784
d781a164
RH
785/* Return set of PC, otherwise NULL. */
786
e4c85816 787rtx
4f588890 788pc_set (const_rtx insn)
e4c85816
JH
789{
790 rtx pat;
4b4bf941 791 if (!JUMP_P (insn))
d781a164 792 return NULL_RTX;
e4c85816 793 pat = PATTERN (insn);
d781a164
RH
794
795 /* The set is allowed to appear either as the insn pattern or
796 the first set in a PARALLEL. */
797 if (GET_CODE (pat) == PARALLEL)
798 pat = XVECEXP (pat, 0, 0);
e4c85816
JH
799 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
800 return pat;
d781a164
RH
801
802 return NULL_RTX;
e4c85816
JH
803}
804
d781a164
RH
805/* Return true when insn is an unconditional direct jump,
806 possibly bundled inside a PARALLEL. */
807
e4c85816 808int
4f588890 809any_uncondjump_p (const_rtx insn)
e4c85816 810{
4f588890 811 const_rtx x = pc_set (insn);
e4c85816
JH
812 if (!x)
813 return 0;
814 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
815 return 0;
6de9cd9a
DN
816 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
817 return 0;
e4c85816
JH
818 return 1;
819}
820
d781a164 821/* Return true when insn is a conditional jump. This function works for
e4c85816
JH
822 instructions containing PC sets in PARALLELs. The instruction may have
823 various other effects so before removing the jump you must verify
5527bf14 824 onlyjump_p.
e4c85816 825
d781a164
RH
826 Note that unlike condjump_p it returns false for unconditional jumps. */
827
e4c85816 828int
4f588890 829any_condjump_p (const_rtx insn)
e4c85816 830{
4f588890 831 const_rtx x = pc_set (insn);
d781a164
RH
832 enum rtx_code a, b;
833
e4c85816
JH
834 if (!x)
835 return 0;
d781a164
RH
836 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
837 return 0;
e4c85816 838
d781a164
RH
839 a = GET_CODE (XEXP (SET_SRC (x), 1));
840 b = GET_CODE (XEXP (SET_SRC (x), 2));
e4c85816 841
d781a164 842 return ((b == PC && (a == LABEL_REF || a == RETURN))
48b881a3 843 || (a == PC && (b == LABEL_REF || b == RETURN)));
e4c85816
JH
844}
845
d804ed43
RH
846/* Return the label of a conditional jump. */
847
848rtx
9678086d 849condjump_label (const_rtx insn)
d804ed43 850{
d781a164 851 rtx x = pc_set (insn);
d804ed43 852
d781a164 853 if (!x)
d804ed43
RH
854 return NULL_RTX;
855 x = SET_SRC (x);
856 if (GET_CODE (x) == LABEL_REF)
857 return x;
858 if (GET_CODE (x) != IF_THEN_ELSE)
859 return NULL_RTX;
860 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
861 return XEXP (x, 1);
862 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
863 return XEXP (x, 2);
864 return NULL_RTX;
865}
866
e881bb1b
RH
867/* Return true if INSN is a (possibly conditional) return insn. */
868
869static int
0c20a65f 870returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
e881bb1b
RH
871{
872 rtx x = *loc;
3258e996 873
cd9c1ca8
RH
874 if (x == NULL)
875 return false;
876
877 switch (GET_CODE (x))
878 {
879 case RETURN:
880 case EH_RETURN:
881 return true;
882
883 case SET:
884 return SET_IS_RETURN_P (x);
885
886 default:
887 return false;
888 }
e881bb1b
RH
889}
890
72e48218
AN
891/* Return TRUE if INSN is a return jump. */
892
e881bb1b 893int
0c20a65f 894returnjump_p (rtx insn)
e881bb1b 895{
72e48218
AN
896 /* Handle delayed branches. */
897 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
898 insn = XVECEXP (PATTERN (insn), 0, 0);
899
4b4bf941 900 if (!JUMP_P (insn))
f5540cd4 901 return 0;
72e48218 902
e881bb1b
RH
903 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
904}
905
cd9c1ca8
RH
906/* Return true if INSN is a (possibly conditional) return insn. */
907
908static int
909eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
910{
911 return *loc && GET_CODE (*loc) == EH_RETURN;
912}
913
914int
915eh_returnjump_p (rtx insn)
916{
917 if (!JUMP_P (insn))
918 return 0;
919 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
920}
921
d0e80719
RH
922/* Return true if INSN is a jump that only transfers control and
923 nothing more. */
924
925int
4f588890 926onlyjump_p (const_rtx insn)
d0e80719
RH
927{
928 rtx set;
929
4b4bf941 930 if (!JUMP_P (insn))
d0e80719
RH
931 return 0;
932
933 set = single_set (insn);
934 if (set == NULL)
935 return 0;
936 if (GET_CODE (SET_DEST (set)) != PC)
937 return 0;
938 if (side_effects_p (SET_SRC (set)))
939 return 0;
940
941 return 1;
942}
943
51d87cd9
BS
944#ifdef HAVE_cc0
945
cc2902df 946/* Return nonzero if X is an RTX that only sets the condition codes
44ce0063
JW
947 and has no side effects. */
948
949int
4f588890 950only_sets_cc0_p (const_rtx x)
44ce0063 951{
44ce0063
JW
952 if (! x)
953 return 0;
954
955 if (INSN_P (x))
956 x = PATTERN (x);
957
958 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
959}
960
15a63be1
RK
961/* Return 1 if X is an RTX that does nothing but set the condition codes
962 and CLOBBER or USE registers.
963 Return -1 if X does explicitly set the condition codes,
964 but also does other things. */
965
966int
4f588890 967sets_cc0_p (const_rtx x)
15a63be1 968{
44ce0063
JW
969 if (! x)
970 return 0;
971
972 if (INSN_P (x))
973 x = PATTERN (x);
974
15a63be1
RK
975 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
976 return 1;
977 if (GET_CODE (x) == PARALLEL)
978 {
979 int i;
980 int sets_cc0 = 0;
981 int other_things = 0;
982 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
983 {
984 if (GET_CODE (XVECEXP (x, 0, i)) == SET
985 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
986 sets_cc0 = 1;
987 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
988 other_things = 1;
989 }
990 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
991 }
992 return 0;
15a63be1 993}
51d87cd9 994#endif
15a63be1 995\f
cf7c4aa6
HPN
996/* Find all CODE_LABELs referred to in X, and increment their use
997 counts. If INSN is a JUMP_INSN and there is at least one
998 CODE_LABEL referenced in INSN as a jump target, then store the last
999 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1000 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1001 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1002 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1003 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
15a63be1
RK
1004
1005 Note that two labels separated by a loop-beginning note
1006 must be kept distinct if we have not yet done loop-optimization,
1007 because the gap between them is where loop-optimize
1008 will want to move invariant code to. CROSS_JUMP tells us
1e5fd094 1009 that loop-optimization is done with. */
15a63be1 1010
90a74703 1011void
0c20a65f 1012mark_jump_label (rtx x, rtx insn, int in_mem)
cf7c4aa6
HPN
1013{
1014 mark_jump_label_1 (x, insn, in_mem != 0,
1015 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1016}
1017
84fbffb2 1018/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
cf7c4aa6
HPN
1019 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1020 jump-target; when the JUMP_LABEL field of INSN should be set or a
1021 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1022 note. */
1023
1024static void
1025mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
15a63be1 1026{
b3694847
SS
1027 RTX_CODE code = GET_CODE (x);
1028 int i;
1029 const char *fmt;
15a63be1
RK
1030
1031 switch (code)
1032 {
1033 case PC:
1034 case CC0:
1035 case REG:
15a63be1 1036 case CONST_INT:
15a63be1
RK
1037 case CONST_DOUBLE:
1038 case CLOBBER:
1039 case CALL:
1040 return;
1041
d7ea4cf6 1042 case MEM:
cf7c4aa6 1043 in_mem = true;
a76063a6
CP
1044 break;
1045
5dab4eb7
BS
1046 case SEQUENCE:
1047 for (i = 0; i < XVECLEN (x, 0); i++)
1048 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1049 XVECEXP (x, 0, i), 0);
1050 return;
1051
a76063a6
CP
1052 case SYMBOL_REF:
1053 if (!in_mem)
48b881a3 1054 return;
a76063a6 1055
d7ea4cf6 1056 /* If this is a constant-pool reference, see if it is a label. */
a76063a6 1057 if (CONSTANT_POOL_ADDRESS_P (x))
cf7c4aa6 1058 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d7ea4cf6
RK
1059 break;
1060
cf7c4aa6
HPN
1061 /* Handle operands in the condition of an if-then-else as for a
1062 non-jump insn. */
1063 case IF_THEN_ELSE:
1064 if (!is_target)
1065 break;
1066 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1067 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1068 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1069 return;
1070
15a63be1
RK
1071 case LABEL_REF:
1072 {
5c5e36c5 1073 rtx label = XEXP (x, 0);
5c5e36c5 1074
be1bb652
RH
1075 /* Ignore remaining references to unreachable labels that
1076 have been deleted. */
4b4bf941 1077 if (NOTE_P (label)
a38e7aa5 1078 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
be1bb652
RH
1079 break;
1080
41806d92 1081 gcc_assert (LABEL_P (label));
5c5e36c5 1082
705f26cf
RS
1083 /* Ignore references to labels of containing functions. */
1084 if (LABEL_REF_NONLOCAL_P (x))
1085 break;
5c5e36c5 1086
15a63be1 1087 XEXP (x, 0) = label;
ac9b3c97
R
1088 if (! insn || ! INSN_DELETED_P (insn))
1089 ++LABEL_NUSES (label);
5c5e36c5 1090
15a63be1
RK
1091 if (insn)
1092 {
cf7c4aa6 1093 if (is_target
cb2f563b
HPN
1094 /* Do not change a previous setting of JUMP_LABEL. If the
1095 JUMP_LABEL slot is occupied by a different label,
1096 create a note for this label. */
cf7c4aa6 1097 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
15a63be1 1098 JUMP_LABEL (insn) = label;
834452d2 1099 else
85b94003 1100 {
cf7c4aa6
HPN
1101 enum reg_note kind
1102 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1103
1104 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1105 for LABEL unless there already is one. All uses of
1106 a label, except for the primary target of a jump,
1107 must have such a note. */
1108 if (! find_reg_note (insn, kind, label))
65c5f2a6 1109 add_reg_note (insn, kind, label);
15a63be1
RK
1110 }
1111 }
1112 return;
1113 }
1114
1115 /* Do walk the labels in a vector, but not the first operand of an
1116 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1117 case ADDR_VEC:
1118 case ADDR_DIFF_VEC:
ac9b3c97
R
1119 if (! INSN_DELETED_P (insn))
1120 {
1121 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
15a63be1 1122
ac9b3c97 1123 for (i = 0; i < XVECLEN (x, eltnum); i++)
cf7c4aa6
HPN
1124 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1125 is_target);
ac9b3c97 1126 }
e9a25f70 1127 return;
48b881a3 1128
e9a25f70
JL
1129 default:
1130 break;
15a63be1
RK
1131 }
1132
1133 fmt = GET_RTX_FORMAT (code);
cf7c4aa6
HPN
1134
1135 /* The primary target of a tablejump is the label of the ADDR_VEC,
1136 which is canonically mentioned *last* in the insn. To get it
1137 marked as JUMP_LABEL, we iterate over items in reverse order. */
15a63be1
RK
1138 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1139 {
1140 if (fmt[i] == 'e')
cf7c4aa6 1141 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
15a63be1
RK
1142 else if (fmt[i] == 'E')
1143 {
b3694847 1144 int j;
cf7c4aa6
HPN
1145
1146 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1147 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1148 is_target);
15a63be1
RK
1149 }
1150 }
1151}
1152
15a63be1 1153\f
53c17031 1154/* Delete insn INSN from the chain of insns and update label ref counts
b6553814 1155 and delete insns now unreachable.
53c17031 1156
b6553814 1157 Returns the first insn after INSN that was not deleted.
15a63be1 1158
53c17031
JH
1159 Usage of this instruction is deprecated. Use delete_insn instead and
1160 subsequent cfg_cleanup pass to delete unreachable code if needed. */
15a63be1
RK
1161
1162rtx
0c20a65f 1163delete_related_insns (rtx insn)
15a63be1 1164{
4b4bf941 1165 int was_code_label = (LABEL_P (insn));
692dc9c6 1166 rtx note;
53c17031 1167 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
15a63be1
RK
1168
1169 while (next && INSN_DELETED_P (next))
1170 next = NEXT_INSN (next);
1171
1172 /* This insn is already deleted => return first following nondeleted. */
1173 if (INSN_DELETED_P (insn))
1174 return next;
1175
53c17031 1176 delete_insn (insn);
15a63be1 1177
15a63be1
RK
1178 /* If instruction is followed by a barrier,
1179 delete the barrier too. */
1180
4b4bf941 1181 if (next != 0 && BARRIER_P (next))
53c17031 1182 delete_insn (next);
15a63be1
RK
1183
1184 /* If deleting a jump, decrement the count of the label,
1185 and delete the label if it is now unused. */
1186
4b4bf941 1187 if (JUMP_P (insn) && JUMP_LABEL (insn))
1fe65930
RH
1188 {
1189 rtx lab = JUMP_LABEL (insn), lab_next;
1190
53c17031 1191 if (LABEL_NUSES (lab) == 0)
cf7c4aa6
HPN
1192 /* This can delete NEXT or PREV,
1193 either directly if NEXT is JUMP_LABEL (INSN),
1194 or indirectly through more levels of jumps. */
1195 delete_related_insns (lab);
e1233a7d 1196 else if (tablejump_p (insn, NULL, &lab_next))
1fe65930
RH
1197 {
1198 /* If we're deleting the tablejump, delete the dispatch table.
eaec9b3d 1199 We may not be able to kill the label immediately preceding
1fe65930
RH
1200 just yet, as it might be referenced in code leading up to
1201 the tablejump. */
53c17031 1202 delete_related_insns (lab_next);
1fe65930
RH
1203 }
1204 }
15a63be1 1205
3c7d7a4a
DE
1206 /* Likewise if we're deleting a dispatch table. */
1207
481683e1 1208 if (JUMP_TABLE_DATA_P (insn))
3c7d7a4a
DE
1209 {
1210 rtx pat = PATTERN (insn);
1211 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1212 int len = XVECLEN (pat, diff_vec_p);
1213
1214 for (i = 0; i < len; i++)
53c17031
JH
1215 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1216 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
3c7d7a4a
DE
1217 while (next && INSN_DELETED_P (next))
1218 next = NEXT_INSN (next);
1219 return next;
1220 }
1221
cf7c4aa6
HPN
1222 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1223 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1224 if (INSN_P (insn))
692dc9c6 1225 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
cf7c4aa6
HPN
1226 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1227 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
f423a6a7 1228 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
4b4bf941 1229 && LABEL_P (XEXP (note, 0)))
53c17031
JH
1230 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1231 delete_related_insns (XEXP (note, 0));
692dc9c6 1232
4b4bf941 1233 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
15a63be1
RK
1234 prev = PREV_INSN (prev);
1235
1236 /* If INSN was a label and a dispatch table follows it,
1237 delete the dispatch table. The tablejump must have gone already.
1238 It isn't useful to fall through into a table. */
1239
196cedd0 1240 if (was_code_label
15a63be1 1241 && NEXT_INSN (insn) != 0
481683e1 1242 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
53c17031 1243 next = delete_related_insns (NEXT_INSN (insn));
15a63be1
RK
1244
1245 /* If INSN was a label, delete insns following it if now unreachable. */
1246
4b4bf941 1247 if (was_code_label && prev && BARRIER_P (prev))
15a63be1 1248 {
ec8e098d
PB
1249 enum rtx_code code;
1250 while (next)
15a63be1 1251 {
ec8e098d 1252 code = GET_CODE (next);
071a42f9 1253 if (code == NOTE)
15a63be1 1254 next = NEXT_INSN (next);
2e1dbf22
RS
1255 /* Keep going past other deleted labels to delete what follows. */
1256 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1257 next = NEXT_INSN (next);
ec8e098d 1258 else if (code == BARRIER || INSN_P (next))
15a63be1
RK
1259 /* Note: if this deletes a jump, it can cause more
1260 deletion of unreachable code, after a different label.
1261 As long as the value from this recursive call is correct,
1262 this invocation functions correctly. */
53c17031 1263 next = delete_related_insns (next);
ec8e098d
PB
1264 else
1265 break;
15a63be1
RK
1266 }
1267 }
1268
cf7c4aa6
HPN
1269 /* I feel a little doubtful about this loop,
1270 but I see no clean and sure alternative way
1271 to find the first insn after INSN that is not now deleted.
1272 I hope this works. */
1273 while (next && INSN_DELETED_P (next))
1274 next = NEXT_INSN (next);
15a63be1
RK
1275 return next;
1276}
15a63be1
RK
1277\f
1278/* Delete a range of insns from FROM to TO, inclusive.
1279 This is for the sake of peephole optimization, so assume
1280 that whatever these insns do will still be done by a new
1281 peephole insn that will replace them. */
1282
1283void
0c20a65f 1284delete_for_peephole (rtx from, rtx to)
15a63be1 1285{
b3694847 1286 rtx insn = from;
15a63be1
RK
1287
1288 while (1)
1289 {
b3694847
SS
1290 rtx next = NEXT_INSN (insn);
1291 rtx prev = PREV_INSN (insn);
15a63be1 1292
4b4bf941 1293 if (!NOTE_P (insn))
15a63be1
RK
1294 {
1295 INSN_DELETED_P (insn) = 1;
1296
1297 /* Patch this insn out of the chain. */
1298 /* We don't do this all at once, because we
1299 must preserve all NOTEs. */
1300 if (prev)
1301 NEXT_INSN (prev) = next;
1302
1303 if (next)
1304 PREV_INSN (next) = prev;
1305 }
1306
1307 if (insn == to)
1308 break;
1309 insn = next;
1310 }
1311
1312 /* Note that if TO is an unconditional jump
1313 we *do not* delete the BARRIER that follows,
1314 since the peephole that replaces this sequence
1315 is also an unconditional jump in that case. */
1316}
1317\f
2ea64f10
RH
1318/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1319 NLABEL as a return. Accrue modifications into the change group. */
15a63be1 1320
2ea64f10 1321static void
0c20a65f 1322redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
15a63be1 1323{
b3694847
SS
1324 rtx x = *loc;
1325 RTX_CODE code = GET_CODE (x);
1326 int i;
1327 const char *fmt;
15a63be1 1328
2ea64f10 1329 if (code == LABEL_REF)
15a63be1 1330 {
2ea64f10
RH
1331 if (XEXP (x, 0) == olabel)
1332 {
1333 rtx n;
1334 if (nlabel)
4c33cb26 1335 n = gen_rtx_LABEL_REF (Pmode, nlabel);
2ea64f10 1336 else
48b881a3 1337 n = gen_rtx_RETURN (VOIDmode);
15a63be1 1338
2ea64f10
RH
1339 validate_change (insn, loc, n, 1);
1340 return;
1341 }
1342 }
1343 else if (code == RETURN && olabel == 0)
1344 {
9550206b 1345 if (nlabel)
4c33cb26 1346 x = gen_rtx_LABEL_REF (Pmode, nlabel);
9550206b
RS
1347 else
1348 x = gen_rtx_RETURN (VOIDmode);
2ea64f10
RH
1349 if (loc == &PATTERN (insn))
1350 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1351 validate_change (insn, loc, x, 1);
1352 return;
1353 }
15a63be1 1354
2ea64f10
RH
1355 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1356 && GET_CODE (SET_SRC (x)) == LABEL_REF
1357 && XEXP (SET_SRC (x), 0) == olabel)
1358 {
1359 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1360 return;
15a63be1
RK
1361 }
1362
ba03a350
UB
1363 if (code == IF_THEN_ELSE)
1364 {
1365 /* Skip the condition of an IF_THEN_ELSE. We only want to
1366 change jump destinations, not eventual label comparisons. */
1367 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1368 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1369 return;
1370 }
1371
15a63be1
RK
1372 fmt = GET_RTX_FORMAT (code);
1373 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1374 {
1375 if (fmt[i] == 'e')
2ea64f10 1376 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
d4757e6a 1377 else if (fmt[i] == 'E')
15a63be1 1378 {
b3694847 1379 int j;
15a63be1 1380 for (j = 0; j < XVECLEN (x, i); j++)
2ea64f10 1381 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
15a63be1
RK
1382 }
1383 }
2ea64f10 1384}
15a63be1 1385
2ea64f10
RH
1386/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1387 the modifications into the change group. Return false if we did
1388 not see how to do that. */
1389
1390int
0c20a65f 1391redirect_jump_1 (rtx jump, rtx nlabel)
2ea64f10
RH
1392{
1393 int ochanges = num_validated_changes ();
742dff15
JH
1394 rtx *loc;
1395
1396 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1397 loc = &XVECEXP (PATTERN (jump), 0, 0);
1398 else
1399 loc = &PATTERN (jump);
1400
1401 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
2ea64f10
RH
1402 return num_validated_changes () > ochanges;
1403}
1404
1405/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1406 jump target label is unused as a result, it and the code following
1407 it may be deleted.
15a63be1
RK
1408
1409 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1410 RETURN insn.
1411
2ea64f10
RH
1412 The return value will be 1 if the change was made, 0 if it wasn't
1413 (this can only occur for NLABEL == 0). */
15a63be1
RK
1414
1415int
0c20a65f 1416redirect_jump (rtx jump, rtx nlabel, int delete_unused)
15a63be1 1417{
b3694847 1418 rtx olabel = JUMP_LABEL (jump);
15a63be1
RK
1419
1420 if (nlabel == olabel)
1421 return 1;
1422
0a634832 1423 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
15a63be1
RK
1424 return 0;
1425
0a634832
R
1426 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1427 return 1;
1428}
1429
1430/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
071a42f9 1431 NLABEL in JUMP.
0a634832
R
1432 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1433 count has dropped to zero. */
1434void
1435redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1436 int invert)
1437{
1438 rtx note;
1439
cf7c4aa6
HPN
1440 gcc_assert (JUMP_LABEL (jump) == olabel);
1441
9f5ed61a 1442 /* Negative DELETE_UNUSED used to be used to signalize behavior on
071a42f9
JH
1443 moving FUNCTION_END note. Just sanity check that no user still worry
1444 about this. */
1445 gcc_assert (delete_unused >= 0);
15a63be1
RK
1446 JUMP_LABEL (jump) = nlabel;
1447 if (nlabel)
1448 ++LABEL_NUSES (nlabel);
1449
bc6688b4
RS
1450 /* Update labels in any REG_EQUAL note. */
1451 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1452 {
0a634832
R
1453 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1454 remove_note (jump, note);
1455 else
bc6688b4 1456 {
0a634832
R
1457 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1458 confirm_change_group ();
bc6688b4 1459 }
bc6688b4
RS
1460 }
1461
0a634832 1462 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
31fbaad4
R
1463 /* Undefined labels will remain outside the insn stream. */
1464 && INSN_UID (olabel))
53c17031 1465 delete_related_insns (olabel);
0a634832
R
1466 if (invert)
1467 invert_br_probabilities (jump);
15a63be1
RK
1468}
1469
0a634832
R
1470/* Invert the jump condition X contained in jump insn INSN. Accrue the
1471 modifications into the change group. Return nonzero for success. */
1472static int
1473invert_exp_1 (rtx x, rtx insn)
2ea64f10 1474{
0a634832 1475 RTX_CODE code = GET_CODE (x);
2ea64f10
RH
1476
1477 if (code == IF_THEN_ELSE)
1478 {
b3694847
SS
1479 rtx comp = XEXP (x, 0);
1480 rtx tem;
261efdef 1481 enum rtx_code reversed_code;
2ea64f10
RH
1482
1483 /* We can do this in two ways: The preferable way, which can only
1484 be done if this is not an integer comparison, is to reverse
1485 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1486 of the IF_THEN_ELSE. If we can't do either, fail. */
1487
261efdef
JH
1488 reversed_code = reversed_comparison_code (comp, insn);
1489
1490 if (reversed_code != UNKNOWN)
2ea64f10
RH
1491 {
1492 validate_change (insn, &XEXP (x, 0),
261efdef 1493 gen_rtx_fmt_ee (reversed_code,
2ea64f10
RH
1494 GET_MODE (comp), XEXP (comp, 0),
1495 XEXP (comp, 1)),
1496 1);
0a634832 1497 return 1;
2ea64f10 1498 }
48b881a3 1499
2ea64f10
RH
1500 tem = XEXP (x, 1);
1501 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1502 validate_change (insn, &XEXP (x, 2), tem, 1);
0a634832 1503 return 1;
2ea64f10 1504 }
742dff15 1505 else
2ea64f10 1506 return 0;
2ea64f10
RH
1507}
1508
1509/* Invert the condition of the jump JUMP, and make it jump to label
1510 NLABEL instead of where it jumps now. Accrue changes into the
1511 change group. Return false if we didn't see how to perform the
1512 inversion and redirection. */
1513
1514int
0c20a65f 1515invert_jump_1 (rtx jump, rtx nlabel)
2ea64f10 1516{
0a634832 1517 rtx x = pc_set (jump);
2ea64f10 1518 int ochanges;
41806d92 1519 int ok;
2ea64f10
RH
1520
1521 ochanges = num_validated_changes ();
41806d92
NS
1522 gcc_assert (x);
1523 ok = invert_exp_1 (SET_SRC (x), jump);
1524 gcc_assert (ok);
1525
2ea64f10
RH
1526 if (num_validated_changes () == ochanges)
1527 return 0;
1528
77fb4cc1
R
1529 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1530 in Pmode, so checking this is not merely an optimization. */
1531 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
2ea64f10
RH
1532}
1533
1534/* Invert the condition of the jump JUMP, and make it jump to label
1535 NLABEL instead of where it jumps now. Return true if successful. */
1536
1537int
0c20a65f 1538invert_jump (rtx jump, rtx nlabel, int delete_unused)
2ea64f10 1539{
0a634832 1540 rtx olabel = JUMP_LABEL (jump);
2ea64f10 1541
0a634832 1542 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
2ea64f10 1543 {
0a634832 1544 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
2ea64f10
RH
1545 return 1;
1546 }
0a634832 1547 cancel_changes (0);
2ea64f10
RH
1548 return 0;
1549}
1550
15a63be1
RK
1551\f
1552/* Like rtx_equal_p except that it considers two REGs as equal
4fe73cc1
RK
1553 if they renumber to the same value and considers two commutative
1554 operations to be the same if the order of the operands has been
8ddf681a 1555 reversed. */
15a63be1
RK
1556
1557int
3101faab 1558rtx_renumbered_equal_p (const_rtx x, const_rtx y)
15a63be1 1559{
b3694847 1560 int i;
4f588890 1561 const enum rtx_code code = GET_CODE (x);
b3694847 1562 const char *fmt;
48b881a3 1563
15a63be1
RK
1564 if (x == y)
1565 return 1;
4fe73cc1 1566
f8cfc6aa
JQ
1567 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1568 && (REG_P (y) || (GET_CODE (y) == SUBREG
1569 && REG_P (SUBREG_REG (y)))))
15a63be1 1570 {
4fe73cc1 1571 int reg_x = -1, reg_y = -1;
ddef6bc7 1572 int byte_x = 0, byte_y = 0;
c619e982 1573 struct subreg_info info;
15a63be1
RK
1574
1575 if (GET_MODE (x) != GET_MODE (y))
1576 return 0;
1577
1578 /* If we haven't done any renumbering, don't
1579 make any assumptions. */
1580 if (reg_renumber == 0)
1581 return rtx_equal_p (x, y);
1582
1583 if (code == SUBREG)
1584 {
4fe73cc1 1585 reg_x = REGNO (SUBREG_REG (x));
ddef6bc7 1586 byte_x = SUBREG_BYTE (x);
4fe73cc1
RK
1587
1588 if (reg_renumber[reg_x] >= 0)
1589 {
c619e982
L
1590 subreg_get_info (reg_renumber[reg_x],
1591 GET_MODE (SUBREG_REG (x)), byte_x,
1592 GET_MODE (x), &info);
1593 if (!info.representable_p)
e088f04b 1594 return 0;
c619e982 1595 reg_x = info.offset;
ddef6bc7 1596 byte_x = 0;
4fe73cc1 1597 }
15a63be1
RK
1598 }
1599 else
1600 {
4fe73cc1
RK
1601 reg_x = REGNO (x);
1602 if (reg_renumber[reg_x] >= 0)
1603 reg_x = reg_renumber[reg_x];
15a63be1 1604 }
4fe73cc1 1605
15a63be1
RK
1606 if (GET_CODE (y) == SUBREG)
1607 {
4fe73cc1 1608 reg_y = REGNO (SUBREG_REG (y));
ddef6bc7 1609 byte_y = SUBREG_BYTE (y);
4fe73cc1
RK
1610
1611 if (reg_renumber[reg_y] >= 0)
1612 {
c619e982
L
1613 subreg_get_info (reg_renumber[reg_y],
1614 GET_MODE (SUBREG_REG (y)), byte_y,
1615 GET_MODE (y), &info);
1616 if (!info.representable_p)
e088f04b 1617 return 0;
c619e982 1618 reg_y = info.offset;
ddef6bc7 1619 byte_y = 0;
4fe73cc1 1620 }
15a63be1
RK
1621 }
1622 else
1623 {
4fe73cc1
RK
1624 reg_y = REGNO (y);
1625 if (reg_renumber[reg_y] >= 0)
1626 reg_y = reg_renumber[reg_y];
15a63be1 1627 }
4fe73cc1 1628
ddef6bc7 1629 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
15a63be1 1630 }
4fe73cc1 1631
48b881a3 1632 /* Now we have disposed of all the cases
15a63be1
RK
1633 in which different rtx codes can match. */
1634 if (code != GET_CODE (y))
1635 return 0;
4fe73cc1 1636
15a63be1
RK
1637 switch (code)
1638 {
1639 case PC:
1640 case CC0:
1641 case ADDR_VEC:
1642 case ADDR_DIFF_VEC:
15a63be1 1643 case CONST_INT:
37cf6116 1644 case CONST_DOUBLE:
47c7b4d2 1645 return 0;
15a63be1
RK
1646
1647 case LABEL_REF:
705f26cf
RS
1648 /* We can't assume nonlocal labels have their following insns yet. */
1649 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1650 return XEXP (x, 0) == XEXP (y, 0);
4fe73cc1 1651
15a63be1
RK
1652 /* Two label-refs are equivalent if they point at labels
1653 in the same position in the instruction stream. */
1654 return (next_real_insn (XEXP (x, 0))
1655 == next_real_insn (XEXP (y, 0)));
1656
1657 case SYMBOL_REF:
1658 return XSTR (x, 0) == XSTR (y, 0);
e9a25f70 1659
bba596a3
RH
1660 case CODE_LABEL:
1661 /* If we didn't match EQ equality above, they aren't the same. */
1662 return 0;
1663
e9a25f70
JL
1664 default:
1665 break;
15a63be1
RK
1666 }
1667
1668 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1669
1670 if (GET_MODE (x) != GET_MODE (y))
1671 return 0;
1672
4fe73cc1 1673 /* For commutative operations, the RTX match if the operand match in any
8ddf681a
R
1674 order. Also handle the simple binary and unary cases without a loop. */
1675 if (targetm.commutative_p (x, UNKNOWN))
4fe73cc1
RK
1676 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1677 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1678 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1679 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
ec8e098d 1680 else if (NON_COMMUTATIVE_P (x))
4fe73cc1
RK
1681 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1682 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
ec8e098d 1683 else if (UNARY_P (x))
4fe73cc1
RK
1684 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1685
15a63be1
RK
1686 /* Compare the elements. If any pair of corresponding elements
1687 fail to match, return 0 for the whole things. */
1688
1689 fmt = GET_RTX_FORMAT (code);
1690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1691 {
b3694847 1692 int j;
15a63be1
RK
1693 switch (fmt[i])
1694 {
5f4f0e22
CH
1695 case 'w':
1696 if (XWINT (x, i) != XWINT (y, i))
1697 return 0;
1698 break;
1699
15a63be1
RK
1700 case 'i':
1701 if (XINT (x, i) != XINT (y, i))
1702 return 0;
1703 break;
1704
46fac664
JH
1705 case 't':
1706 if (XTREE (x, i) != XTREE (y, i))
1707 return 0;
1708 break;
1709
15a63be1
RK
1710 case 's':
1711 if (strcmp (XSTR (x, i), XSTR (y, i)))
1712 return 0;
1713 break;
1714
1715 case 'e':
1716 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1717 return 0;
1718 break;
1719
1720 case 'u':
1721 if (XEXP (x, i) != XEXP (y, i))
1722 return 0;
938d968e 1723 /* Fall through. */
15a63be1
RK
1724 case '0':
1725 break;
1726
1727 case 'E':
1728 if (XVECLEN (x, i) != XVECLEN (y, i))
1729 return 0;
1730 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1731 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1732 return 0;
1733 break;
1734
1735 default:
41806d92 1736 gcc_unreachable ();
15a63be1
RK
1737 }
1738 }
1739 return 1;
1740}
1741\f
1742/* If X is a hard register or equivalent to one or a subregister of one,
1743 return the hard register number. If X is a pseudo register that was not
1744 assigned a hard register, return the pseudo register number. Otherwise,
1745 return -1. Any rtx is valid for X. */
1746
1747int
4f588890 1748true_regnum (const_rtx x)
15a63be1 1749{
f8cfc6aa 1750 if (REG_P (x))
15a63be1
RK
1751 {
1752 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1753 return reg_renumber[REGNO (x)];
1754 return REGNO (x);
1755 }
1756 if (GET_CODE (x) == SUBREG)
1757 {
1758 int base = true_regnum (SUBREG_REG (x));
14502dad 1759 if (base >= 0
c619e982
L
1760 && base < FIRST_PSEUDO_REGISTER)
1761 {
1762 struct subreg_info info;
1763
1764 subreg_get_info (REGNO (SUBREG_REG (x)),
1765 GET_MODE (SUBREG_REG (x)),
1766 SUBREG_BYTE (x), GET_MODE (x), &info);
1767
1768 if (info.representable_p)
1769 return base + info.offset;
1770 }
15a63be1
RK
1771 }
1772 return -1;
1773}
344b78b8
JH
1774
1775/* Return regno of the register REG and handle subregs too. */
1776unsigned int
4f588890 1777reg_or_subregno (const_rtx reg)
344b78b8 1778{
344b78b8 1779 if (GET_CODE (reg) == SUBREG)
41806d92
NS
1780 reg = SUBREG_REG (reg);
1781 gcc_assert (REG_P (reg));
1782 return REGNO (reg);
344b78b8 1783}