]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/jump.c
Update copyright years.
[thirdparty/gcc.git] / gcc / jump.c
CommitLineData
5924de0b 1/* Optimize jump instructions, for GNU compiler.
f1717362 2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
5924de0b 3
f12b58b3 4This file is part of GCC.
5924de0b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
5924de0b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
5924de0b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
5924de0b 19
fc4eaab7 20/* This is the pathetic reminder of old fame of the jump-optimization pass
d961ae3a 21 of the compiler. Now it contains basically a set of utility functions to
fc4eaab7 22 operate with jumps.
5924de0b 23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
9cb2517e 30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
5924de0b 32
5f3447b0 33 The subroutines redirect_jump and invert_jump are used
5924de0b 34 from other passes as well. */
35
36#include "config.h"
405711de 37#include "system.h"
805e22b2 38#include "coretypes.h"
9ef16211 39#include "backend.h"
7c29e30e 40#include "target.h"
5924de0b 41#include "rtl.h"
7c29e30e 42#include "tree.h"
43#include "cfghooks.h"
44#include "tree-pass.h"
7953c610 45#include "tm_p.h"
5924de0b 46#include "insn-config.h"
7c29e30e 47#include "regs.h"
48#include "emit-rtl.h"
0dbd1c74 49#include "recog.h"
94ea8568 50#include "cfgrtl.h"
15da9a29 51#include "rtl-iter.h"
5924de0b 52
5924de0b 53/* Optimize jump y; x: ... y: jumpif... x?
54 Don't know if it is worth bothering with. */
55/* Optimize two cases of conditional jump to conditional jump?
56 This can never delete any instruction or make anything dead,
57 or even change what is live at any point.
58 So perhaps let combiner do it. */
59
960a7046 60static void init_label_info (rtx_insn *);
61static void mark_all_labels (rtx_insn *);
c6d14fbf 62static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
63static void mark_jump_label_asm (rtx, rtx_insn *);
3ad4992f 64static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
82880dfd 65static int invert_exp_1 (rtx, rtx);
60ecc450 66\f
409e049a 67/* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
68static void
960a7046 69rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
8b946ced 70{
231c0441 71 rtx_insn_list *insn;
5924de0b 72
376c21d1 73 timevar_push (TV_REBUILD_JUMP);
805e22b2 74 init_label_info (f);
bf73fcf4 75 mark_all_labels (f);
5924de0b 76
cbd914e1 77 /* Keep track of labels used from static data; we don't track them
78 closely enough to delete them here, so make sure their reference
79 count doesn't drop to zero. */
5924de0b 80
409e049a 81 if (count_forced)
ae799283 82 for (insn = forced_labels; insn; insn = insn->next ())
231c0441 83 if (LABEL_P (insn->insn ()))
84 LABEL_NUSES (insn->insn ())++;
376c21d1 85 timevar_pop (TV_REBUILD_JUMP);
fc4eaab7 86}
409e049a 87
88/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
89 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
90 instructions and jumping insns that have labels as operands
91 (e.g. cbranchsi4). */
92void
960a7046 93rebuild_jump_labels (rtx_insn *f)
409e049a 94{
95 rebuild_jump_labels_1 (f, true);
96}
97
98/* This function is like rebuild_jump_labels, but doesn't run over
99 forced_labels. It can be used on insn chains that aren't the
100 main function chain. */
101void
960a7046 102rebuild_jump_labels_chain (rtx_insn *chain)
409e049a 103{
104 rebuild_jump_labels_1 (chain, false);
105}
fc4eaab7 106\f
fb3c15bc 107/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
108 non-fallthru insn. This is not generally true, as multiple barriers
109 may have crept in, or the BARRIER may be separated from the last
110 real insn by one or more NOTEs.
111
112 This simple pass moves barriers and removes duplicates so that the
113 old code is happy.
114 */
5a2fb01f 115static unsigned int
3ad4992f 116cleanup_barriers (void)
fb3c15bc 117{
960a7046 118 rtx_insn *insn;
ca03cf1b 119 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
fb3c15bc 120 {
6d7dc5b9 121 if (BARRIER_P (insn))
fb3c15bc 122 {
960a7046 123 rtx_insn *prev = prev_nonnote_insn (insn);
326fb3fd 124 if (!prev)
125 continue;
ca03cf1b 126
127 if (CALL_P (prev))
128 {
129 /* Make sure we do not split a call and its corresponding
130 CALL_ARG_LOCATION note. */
960a7046 131 rtx_insn *next = NEXT_INSN (prev);
ca03cf1b 132
133 if (NOTE_P (next)
134 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
135 prev = next;
136 }
137
6d7dc5b9 138 if (BARRIER_P (prev))
749a971f 139 delete_insn (insn);
fb3c15bc 140 else if (prev != PREV_INSN (insn))
e2810e72 141 {
142 basic_block bb = BLOCK_FOR_INSN (prev);
143 rtx_insn *end = PREV_INSN (insn);
144 reorder_insns_nobb (insn, insn, prev);
145 if (bb)
146 {
147 /* If the backend called in machine reorg compute_bb_for_insn
148 and didn't free_bb_for_insn again, preserve basic block
149 boundaries. Move the end of basic block to PREV since
150 it is followed by a barrier now, and clear BLOCK_FOR_INSN
151 on the following notes.
152 ??? Maybe the proper solution for the targets that have
153 cfg around after machine reorg is not to run cleanup_barriers
154 pass at all. */
155 BB_END (bb) = prev;
156 do
157 {
158 prev = NEXT_INSN (prev);
159 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
160 BLOCK_FOR_INSN (prev) = NULL;
161 }
162 while (prev != end);
163 }
164 }
fb3c15bc 165 }
166 }
2a1990e9 167 return 0;
fb3c15bc 168}
5924de0b 169
cbe8bda8 170namespace {
171
172const pass_data pass_data_cleanup_barriers =
77fce4cd 173{
cbe8bda8 174 RTL_PASS, /* type */
175 "barriers", /* name */
176 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 177 TV_NONE, /* tv_id */
178 0, /* properties_required */
179 0, /* properties_provided */
180 0, /* properties_destroyed */
181 0, /* todo_flags_start */
182 0, /* todo_flags_finish */
77fce4cd 183};
184
cbe8bda8 185class pass_cleanup_barriers : public rtl_opt_pass
186{
187public:
9af5ce0c 188 pass_cleanup_barriers (gcc::context *ctxt)
189 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
cbe8bda8 190 {}
191
192 /* opt_pass methods: */
65b0537f 193 virtual unsigned int execute (function *) { return cleanup_barriers (); }
cbe8bda8 194
195}; // class pass_cleanup_barriers
196
197} // anon namespace
198
199rtl_opt_pass *
200make_pass_cleanup_barriers (gcc::context *ctxt)
201{
202 return new pass_cleanup_barriers (ctxt);
203}
204
e8d75e01 205\f
19d2fe05 206/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
207 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
208 notes whose labels don't occur in the insn any more. */
209
805e22b2 210static void
960a7046 211init_label_info (rtx_insn *f)
e8d75e01 212{
960a7046 213 rtx_insn *insn;
e8d75e01 214
c38b28e7 215 for (insn = f; insn; insn = NEXT_INSN (insn))
19d2fe05 216 {
c38b28e7 217 if (LABEL_P (insn))
218 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
219
220 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
221 sticky and not reset here; that way we won't lose association
222 with a label when e.g. the source for a target register
223 disappears out of reach for targets that may use jump-target
224 registers. Jump transformations are supposed to transform
225 any REG_LABEL_TARGET notes. The target label reference in a
226 branch may disappear from the branch (and from the
227 instruction before it) for other reasons, like register
228 allocation. */
229
230 if (INSN_P (insn))
19d2fe05 231 {
c38b28e7 232 rtx note, next;
233
234 for (note = REG_NOTES (insn); note; note = next)
235 {
236 next = XEXP (note, 1);
237 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
238 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
239 remove_note (insn, note);
240 }
19d2fe05 241 }
242 }
e8d75e01 243}
244
58c74e1e 245/* A subroutine of mark_all_labels. Trivially propagate a simple label
246 load into a jump_insn that uses it. */
247
248static void
960a7046 249maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
58c74e1e 250{
251 rtx label_note, pc, pc_src;
252
253 pc = pc_set (jump_insn);
254 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
255 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
256
257 /* If the previous non-jump insn sets something to a label,
258 something that this jump insn uses, make that label the primary
259 target of this insn if we don't yet have any. That previous
260 insn must be a single_set and not refer to more than one label.
261 The jump insn must not refer to other labels as jump targets
262 and must be a plain (set (pc) ...), maybe in a parallel, and
263 may refer to the item being set only directly or as one of the
264 arms in an IF_THEN_ELSE. */
265
266 if (label_note != NULL && pc_src != NULL)
267 {
268 rtx label_set = single_set (prev_nonjump_insn);
269 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
270
271 if (label_set != NULL
272 /* The source must be the direct LABEL_REF, not a
273 PLUS, UNSPEC, IF_THEN_ELSE etc. */
274 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
275 && (rtx_equal_p (label_dest, pc_src)
276 || (GET_CODE (pc_src) == IF_THEN_ELSE
277 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
278 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
279 {
280 /* The CODE_LABEL referred to in the note must be the
281 CODE_LABEL in the LABEL_REF of the "set". We can
282 conveniently use it for the marker function, which
283 requires a LABEL_REF wrapping. */
b49f2e4b 284 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
58c74e1e 285
286 mark_jump_label_1 (label_set, jump_insn, false, true);
287
288 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
289 }
290 }
291}
292
e8d75e01 293/* Mark the label each jump jumps to.
fc4eaab7 294 Combine consecutive labels, and count uses of labels. */
e8d75e01 295
296static void
960a7046 297mark_all_labels (rtx_insn *f)
e8d75e01 298{
960a7046 299 rtx_insn *insn;
e8d75e01 300
eea7b156 301 if (current_ir_type () == IR_RTL_CFGLAYOUT)
302 {
303 basic_block bb;
fc00614f 304 FOR_EACH_BB_FN (bb, cfun)
eea7b156 305 {
58c74e1e 306 /* In cfglayout mode, we don't bother with trivial next-insn
307 propagation of LABEL_REFs into JUMP_LABEL. This will be
308 handled by other optimizers using better algorithms. */
309 FOR_BB_INSNS (bb, insn)
310 {
dd1286fb 311 gcc_assert (! insn->deleted ());
58c74e1e 312 if (NONDEBUG_INSN_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
314 }
315
316 /* In cfglayout mode, there may be non-insns between the
317 basic blocks. If those non-insns represent tablejump data,
318 they contain label references that we must record. */
43e94e51 319 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
91f71fa3 320 if (JUMP_TABLE_DATA_P (insn))
321 mark_jump_label (PATTERN (insn), insn, 0);
43e94e51 322 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
91f71fa3 323 if (JUMP_TABLE_DATA_P (insn))
324 mark_jump_label (PATTERN (insn), insn, 0);
eea7b156 325 }
326 }
58c74e1e 327 else
328 {
960a7046 329 rtx_insn *prev_nonjump_insn = NULL;
58c74e1e 330 for (insn = f; insn; insn = NEXT_INSN (insn))
331 {
dd1286fb 332 if (insn->deleted ())
58c74e1e 333 ;
334 else if (LABEL_P (insn))
335 prev_nonjump_insn = NULL;
91f71fa3 336 else if (JUMP_TABLE_DATA_P (insn))
337 mark_jump_label (PATTERN (insn), insn, 0);
58c74e1e 338 else if (NONDEBUG_INSN_P (insn))
339 {
340 mark_jump_label (PATTERN (insn), insn, 0);
341 if (JUMP_P (insn))
342 {
343 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
344 maybe_propagate_label_ref (insn, prev_nonjump_insn);
345 }
346 else
347 prev_nonjump_insn = insn;
348 }
349 }
350 }
e8d75e01 351}
5924de0b 352\f
fa8b3d85 353/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
8e98892d 354 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
355 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
356 know whether it's source is floating point or integer comparison. Machine
357 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
358 to help this function avoid overhead in these cases. */
359enum rtx_code
5493cb9a 360reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
361 const_rtx arg1, const_rtx insn)
5924de0b 362{
3754d046 363 machine_mode mode;
5924de0b 364
365 /* If this is not actually a comparison, we can't reverse it. */
6720e96c 366 if (GET_RTX_CLASS (code) != RTX_COMPARE
367 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
8e98892d 368 return UNKNOWN;
369
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (arg1);
373
3927afe0 374 /* First see if machine description supplies us way to reverse the
375 comparison. Give it priority over everything else to allow
376 machine description to do tricks. */
0ec244e1 377 if (GET_MODE_CLASS (mode) == MODE_CC
8e98892d 378 && REVERSIBLE_CC_MODE (mode))
e6daccdf 379 return REVERSE_CONDITION (code, mode);
5924de0b 380
fa8b3d85 381 /* Try a few special cases based on the comparison code. */
8e98892d 382 switch (code)
383 {
85fc0ad1 384 case GEU:
385 case GTU:
386 case LEU:
387 case LTU:
388 case NE:
389 case EQ:
390 /* It is always safe to reverse EQ and NE, even for the floating
917bbcab 391 point. Similarly the unsigned comparisons are never used for
85fc0ad1 392 floating point so we can reverse them in the default way. */
393 return reverse_condition (code);
394 case ORDERED:
395 case UNORDERED:
396 case LTGT:
397 case UNEQ:
398 /* In case we already see unordered comparison, we can be sure to
399 be dealing with floating point so we don't need any more tests. */
400 return reverse_condition_maybe_unordered (code);
401 case UNLT:
402 case UNLE:
403 case UNGT:
404 case UNGE:
405 /* We don't have safe way to reverse these yet. */
406 return UNKNOWN;
407 default:
408 break;
8e98892d 409 }
410
a4589b78 411 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
5924de0b 412 {
8e98892d 413 /* Try to search for the comparison to determine the real mode.
414 This code is expensive, but with sane machine description it
415 will be never used, since REVERSIBLE_CC_MODE will return true
416 in all cases. */
111f2389 417 if (! insn)
8e98892d 418 return UNKNOWN;
7113a566 419
ce4469fa 420 /* These CONST_CAST's are okay because prev_nonnote_insn just
5ca94202 421 returns its argument and we assign it to a const_rtx
ce4469fa 422 variable. */
9ed997be 423 for (rtx_insn *prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
6d7dc5b9 424 prev != 0 && !LABEL_P (prev);
9ed997be 425 prev = prev_nonnote_insn (prev))
8e98892d 426 {
81a410b1 427 const_rtx set = set_of (arg0, prev);
8e98892d 428 if (set && GET_CODE (set) == SET
429 && rtx_equal_p (SET_DEST (set), arg0))
430 {
431 rtx src = SET_SRC (set);
5924de0b 432
8e98892d 433 if (GET_CODE (src) == COMPARE)
434 {
435 rtx comparison = src;
436 arg0 = XEXP (src, 0);
437 mode = GET_MODE (arg0);
438 if (mode == VOIDmode)
439 mode = GET_MODE (XEXP (comparison, 1));
440 break;
441 }
dd5b4b36 442 /* We can get past reg-reg moves. This may be useful for model
8e98892d 443 of i387 comparisons that first move flag registers around. */
444 if (REG_P (src))
445 {
446 arg0 = src;
447 continue;
448 }
449 }
450 /* If register is clobbered in some ununderstandable way,
451 give up. */
452 if (set)
453 return UNKNOWN;
454 }
5924de0b 455 }
456
920d0fb5 457 /* Test for an integer condition, or a floating-point comparison
458 in which NaNs can be ignored. */
971ba038 459 if (CONST_INT_P (arg0)
8e98892d 460 || (GET_MODE (arg0) != VOIDmode
461 && GET_MODE_CLASS (mode) != MODE_CC
920d0fb5 462 && !HONOR_NANS (mode)))
8e98892d 463 return reverse_condition (code);
464
465 return UNKNOWN;
466}
467
df07c3ae 468/* A wrapper around the previous function to take COMPARISON as rtx
8e98892d 469 expression. This simplifies many callers. */
470enum rtx_code
5493cb9a 471reversed_comparison_code (const_rtx comparison, const_rtx insn)
8e98892d 472{
6720e96c 473 if (!COMPARISON_P (comparison))
8e98892d 474 return UNKNOWN;
475 return reversed_comparison_code_parts (GET_CODE (comparison),
476 XEXP (comparison, 0),
477 XEXP (comparison, 1), insn);
478}
0fc1e6fa 479
480/* Return comparison with reversed code of EXP.
481 Return NULL_RTX in case we fail to do the reversal. */
482rtx
3754d046 483reversed_comparison (const_rtx exp, machine_mode mode)
0fc1e6fa 484{
485 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
486 if (reversed_code == UNKNOWN)
487 return NULL_RTX;
488 else
489 return simplify_gen_relational (reversed_code, mode, VOIDmode,
490 XEXP (exp, 0), XEXP (exp, 1));
491}
492
8e98892d 493\f
a4110d9a 494/* Given an rtx-code for a comparison, return the code for the negated
495 comparison. If no such code exists, return UNKNOWN.
496
497 WATCH OUT! reverse_condition is not safe to use on a jump that might
498 be acting on the results of an IEEE floating point comparison, because
7113a566 499 of the special treatment of non-signaling nans in comparisons.
8e98892d 500 Use reversed_comparison_code instead. */
5924de0b 501
502enum rtx_code
3ad4992f 503reverse_condition (enum rtx_code code)
5924de0b 504{
505 switch (code)
506 {
507 case EQ:
508 return NE;
5924de0b 509 case NE:
510 return EQ;
5924de0b 511 case GT:
512 return LE;
5924de0b 513 case GE:
514 return LT;
5924de0b 515 case LT:
516 return GE;
5924de0b 517 case LE:
518 return GT;
5924de0b 519 case GTU:
520 return LEU;
5924de0b 521 case GEU:
522 return LTU;
5924de0b 523 case LTU:
524 return GEU;
5924de0b 525 case LEU:
526 return GTU;
a4110d9a 527 case UNORDERED:
528 return ORDERED;
529 case ORDERED:
530 return UNORDERED;
531
532 case UNLT:
533 case UNLE:
534 case UNGT:
535 case UNGE:
536 case UNEQ:
79777bad 537 case LTGT:
a4110d9a 538 return UNKNOWN;
5924de0b 539
540 default:
a53ff4c1 541 gcc_unreachable ();
5924de0b 542 }
543}
544
79777bad 545/* Similar, but we're allowed to generate unordered comparisons, which
546 makes it safe for IEEE floating-point. Of course, we have to recognize
547 that the target will support them too... */
548
549enum rtx_code
3ad4992f 550reverse_condition_maybe_unordered (enum rtx_code code)
79777bad 551{
79777bad 552 switch (code)
553 {
554 case EQ:
555 return NE;
556 case NE:
557 return EQ;
558 case GT:
559 return UNLE;
560 case GE:
561 return UNLT;
562 case LT:
563 return UNGE;
564 case LE:
565 return UNGT;
566 case LTGT:
567 return UNEQ;
79777bad 568 case UNORDERED:
569 return ORDERED;
570 case ORDERED:
571 return UNORDERED;
572 case UNLT:
573 return GE;
574 case UNLE:
575 return GT;
576 case UNGT:
577 return LE;
578 case UNGE:
579 return LT;
580 case UNEQ:
581 return LTGT;
582
583 default:
a53ff4c1 584 gcc_unreachable ();
79777bad 585 }
586}
587
5924de0b 588/* Similar, but return the code when two operands of a comparison are swapped.
589 This IS safe for IEEE floating-point. */
590
591enum rtx_code
3ad4992f 592swap_condition (enum rtx_code code)
5924de0b 593{
594 switch (code)
595 {
596 case EQ:
597 case NE:
a4110d9a 598 case UNORDERED:
599 case ORDERED:
600 case UNEQ:
79777bad 601 case LTGT:
5924de0b 602 return code;
603
604 case GT:
605 return LT;
5924de0b 606 case GE:
607 return LE;
5924de0b 608 case LT:
609 return GT;
5924de0b 610 case LE:
611 return GE;
5924de0b 612 case GTU:
613 return LTU;
5924de0b 614 case GEU:
615 return LEU;
5924de0b 616 case LTU:
617 return GTU;
5924de0b 618 case LEU:
619 return GEU;
a4110d9a 620 case UNLT:
621 return UNGT;
622 case UNLE:
623 return UNGE;
624 case UNGT:
625 return UNLT;
626 case UNGE:
627 return UNLE;
628
5924de0b 629 default:
a53ff4c1 630 gcc_unreachable ();
5924de0b 631 }
632}
633
634/* Given a comparison CODE, return the corresponding unsigned comparison.
635 If CODE is an equality comparison or already an unsigned comparison,
636 CODE is returned. */
637
638enum rtx_code
3ad4992f 639unsigned_condition (enum rtx_code code)
5924de0b 640{
641 switch (code)
642 {
643 case EQ:
644 case NE:
645 case GTU:
646 case GEU:
647 case LTU:
648 case LEU:
649 return code;
650
651 case GT:
652 return GTU;
5924de0b 653 case GE:
654 return GEU;
5924de0b 655 case LT:
656 return LTU;
5924de0b 657 case LE:
658 return LEU;
659
660 default:
a53ff4c1 661 gcc_unreachable ();
5924de0b 662 }
663}
664
665/* Similarly, return the signed version of a comparison. */
666
667enum rtx_code
3ad4992f 668signed_condition (enum rtx_code code)
5924de0b 669{
670 switch (code)
671 {
672 case EQ:
673 case NE:
674 case GT:
675 case GE:
676 case LT:
677 case LE:
678 return code;
679
680 case GTU:
681 return GT;
5924de0b 682 case GEU:
683 return GE;
5924de0b 684 case LTU:
685 return LT;
5924de0b 686 case LEU:
687 return LE;
688
689 default:
a53ff4c1 690 gcc_unreachable ();
5924de0b 691 }
692}
693\f
6ef828f9 694/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
5924de0b 695 truth of CODE1 implies the truth of CODE2. */
696
697int
3ad4992f 698comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
5924de0b 699{
ca7744c6 700 /* UNKNOWN comparison codes can happen as a result of trying to revert
701 comparison codes.
702 They can't match anything, so we have to reject them here. */
703 if (code1 == UNKNOWN || code2 == UNKNOWN)
704 return 0;
705
5924de0b 706 if (code1 == code2)
707 return 1;
708
709 switch (code1)
710 {
5aa3f5e2 711 case UNEQ:
712 if (code2 == UNLE || code2 == UNGE)
713 return 1;
714 break;
715
5924de0b 716 case EQ:
79777bad 717 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
718 || code2 == ORDERED)
5924de0b 719 return 1;
720 break;
721
5aa3f5e2 722 case UNLT:
723 if (code2 == UNLE || code2 == NE)
724 return 1;
725 break;
726
5924de0b 727 case LT:
5aa3f5e2 728 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
729 return 1;
730 break;
731
732 case UNGT:
733 if (code2 == UNGE || code2 == NE)
5924de0b 734 return 1;
735 break;
736
737 case GT:
5aa3f5e2 738 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
79777bad 739 return 1;
740 break;
741
742 case GE:
743 case LE:
744 if (code2 == ORDERED)
745 return 1;
746 break;
747
748 case LTGT:
749 if (code2 == NE || code2 == ORDERED)
5924de0b 750 return 1;
751 break;
752
753 case LTU:
11088b43 754 if (code2 == LEU || code2 == NE)
5924de0b 755 return 1;
756 break;
757
758 case GTU:
11088b43 759 if (code2 == GEU || code2 == NE)
5924de0b 760 return 1;
761 break;
79777bad 762
763 case UNORDERED:
5aa3f5e2 764 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
765 || code2 == UNGE || code2 == UNGT)
79777bad 766 return 1;
767 break;
7113a566 768
0dbd1c74 769 default:
770 break;
5924de0b 771 }
772
773 return 0;
774}
775\f
776/* Return 1 if INSN is an unconditional jump and nothing else. */
777
778int
93ee8dfb 779simplejump_p (const rtx_insn *insn)
5924de0b 780{
6d7dc5b9 781 return (JUMP_P (insn)
8d472058 782 && GET_CODE (PATTERN (insn)) == SET
783 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
784 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
5924de0b 785}
786
787/* Return nonzero if INSN is a (possibly) conditional jump
7113a566 788 and nothing more.
789
4885b286 790 Use of this function is deprecated, since we need to support combined
d670e794 791 branch and compare insns. Use any_condjump_p instead whenever possible. */
5924de0b 792
793int
93ee8dfb 794condjump_p (const rtx_insn *insn)
5924de0b 795{
52d07779 796 const_rtx x = PATTERN (insn);
7014838c 797
798 if (GET_CODE (x) != SET
799 || GET_CODE (SET_DEST (x)) != PC)
4fbe8fa7 800 return 0;
7014838c 801
802 x = SET_SRC (x);
803 if (GET_CODE (x) == LABEL_REF)
4fbe8fa7 804 return 1;
7113a566 805 else
806 return (GET_CODE (x) == IF_THEN_ELSE
807 && ((GET_CODE (XEXP (x, 2)) == PC
808 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
9cb2517e 809 || ANY_RETURN_P (XEXP (x, 1))))
7113a566 810 || (GET_CODE (XEXP (x, 1)) == PC
811 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
9cb2517e 812 || ANY_RETURN_P (XEXP (x, 2))))));
4fbe8fa7 813}
814
7014838c 815/* Return nonzero if INSN is a (possibly) conditional jump inside a
3a941ad5 816 PARALLEL.
7113a566 817
d670e794 818 Use this function is deprecated, since we need to support combined
819 branch and compare insns. Use any_condjump_p instead whenever possible. */
4fbe8fa7 820
821int
93ee8dfb 822condjump_in_parallel_p (const rtx_insn *insn)
4fbe8fa7 823{
52d07779 824 const_rtx x = PATTERN (insn);
4fbe8fa7 825
826 if (GET_CODE (x) != PARALLEL)
827 return 0;
828 else
829 x = XVECEXP (x, 0, 0);
830
5924de0b 831 if (GET_CODE (x) != SET)
832 return 0;
833 if (GET_CODE (SET_DEST (x)) != PC)
834 return 0;
835 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
836 return 1;
837 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
838 return 0;
839 if (XEXP (SET_SRC (x), 2) == pc_rtx
840 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
9cb2517e 841 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
5924de0b 842 return 1;
843 if (XEXP (SET_SRC (x), 1) == pc_rtx
844 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
9cb2517e 845 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
5924de0b 846 return 1;
847 return 0;
848}
849
d670e794 850/* Return set of PC, otherwise NULL. */
851
3a941ad5 852rtx
93ee8dfb 853pc_set (const rtx_insn *insn)
3a941ad5 854{
855 rtx pat;
6d7dc5b9 856 if (!JUMP_P (insn))
d670e794 857 return NULL_RTX;
3a941ad5 858 pat = PATTERN (insn);
d670e794 859
860 /* The set is allowed to appear either as the insn pattern or
861 the first set in a PARALLEL. */
862 if (GET_CODE (pat) == PARALLEL)
863 pat = XVECEXP (pat, 0, 0);
3a941ad5 864 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
865 return pat;
d670e794 866
867 return NULL_RTX;
3a941ad5 868}
869
d670e794 870/* Return true when insn is an unconditional direct jump,
871 possibly bundled inside a PARALLEL. */
872
3a941ad5 873int
93ee8dfb 874any_uncondjump_p (const rtx_insn *insn)
3a941ad5 875{
52d07779 876 const_rtx x = pc_set (insn);
3a941ad5 877 if (!x)
878 return 0;
879 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
880 return 0;
4ee9c684 881 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
882 return 0;
3a941ad5 883 return 1;
884}
885
d670e794 886/* Return true when insn is a conditional jump. This function works for
3a941ad5 887 instructions containing PC sets in PARALLELs. The instruction may have
888 various other effects so before removing the jump you must verify
9641f63c 889 onlyjump_p.
3a941ad5 890
d670e794 891 Note that unlike condjump_p it returns false for unconditional jumps. */
892
3a941ad5 893int
93ee8dfb 894any_condjump_p (const rtx_insn *insn)
3a941ad5 895{
52d07779 896 const_rtx x = pc_set (insn);
d670e794 897 enum rtx_code a, b;
898
3a941ad5 899 if (!x)
900 return 0;
d670e794 901 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
902 return 0;
3a941ad5 903
d670e794 904 a = GET_CODE (XEXP (SET_SRC (x), 1));
905 b = GET_CODE (XEXP (SET_SRC (x), 2));
3a941ad5 906
9cb2517e 907 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
908 || (a == PC
909 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
3a941ad5 910}
911
8f7b24f3 912/* Return the label of a conditional jump. */
913
914rtx
93ee8dfb 915condjump_label (const rtx_insn *insn)
8f7b24f3 916{
d670e794 917 rtx x = pc_set (insn);
8f7b24f3 918
d670e794 919 if (!x)
8f7b24f3 920 return NULL_RTX;
921 x = SET_SRC (x);
922 if (GET_CODE (x) == LABEL_REF)
923 return x;
924 if (GET_CODE (x) != IF_THEN_ELSE)
925 return NULL_RTX;
926 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
927 return XEXP (x, 1);
928 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
929 return XEXP (x, 2);
930 return NULL_RTX;
931}
932
01e196ce 933/* Return TRUE if INSN is a return jump. */
934
71caadc0 935int
93ee8dfb 936returnjump_p (const rtx_insn *insn)
71caadc0 937{
15da9a29 938 if (JUMP_P (insn))
939 {
940 subrtx_iterator::array_type array;
941 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
942 {
943 const_rtx x = *iter;
944 switch (GET_CODE (x))
945 {
946 case RETURN:
947 case SIMPLE_RETURN:
948 case EH_RETURN:
949 return true;
950
951 case SET:
952 if (SET_IS_RETURN_P (x))
953 return true;
954 break;
955
956 default:
957 break;
958 }
959 }
960 }
961 return false;
71caadc0 962}
963
25e880b1 964/* Return true if INSN is a (possibly conditional) return insn. */
965
25e880b1 966int
1f9a257f 967eh_returnjump_p (rtx_insn *insn)
25e880b1 968{
cc6f772a 969 if (JUMP_P (insn))
970 {
971 subrtx_iterator::array_type array;
972 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
973 if (GET_CODE (*iter) == EH_RETURN)
974 return true;
975 }
976 return false;
25e880b1 977}
978
459e9193 979/* Return true if INSN is a jump that only transfers control and
980 nothing more. */
981
982int
93ee8dfb 983onlyjump_p (const rtx_insn *insn)
459e9193 984{
985 rtx set;
986
6d7dc5b9 987 if (!JUMP_P (insn))
459e9193 988 return 0;
989
990 set = single_set (insn);
991 if (set == NULL)
992 return 0;
993 if (GET_CODE (SET_DEST (set)) != PC)
994 return 0;
995 if (side_effects_p (SET_SRC (set)))
996 return 0;
997
998 return 1;
999}
1000
4115ac36 1001/* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1002 NULL or a return. */
1003bool
93ee8dfb 1004jump_to_label_p (const rtx_insn *insn)
4115ac36 1005{
1006 return (JUMP_P (insn)
1007 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1008}
1009
6ef828f9 1010/* Return nonzero if X is an RTX that only sets the condition codes
2dcd83ba 1011 and has no side effects. */
1012
1013int
52d07779 1014only_sets_cc0_p (const_rtx x)
2dcd83ba 1015{
2dcd83ba 1016 if (! x)
1017 return 0;
1018
1019 if (INSN_P (x))
1020 x = PATTERN (x);
1021
1022 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1023}
1024
5924de0b 1025/* Return 1 if X is an RTX that does nothing but set the condition codes
1026 and CLOBBER or USE registers.
1027 Return -1 if X does explicitly set the condition codes,
1028 but also does other things. */
1029
1030int
52d07779 1031sets_cc0_p (const_rtx x)
5924de0b 1032{
2dcd83ba 1033 if (! x)
1034 return 0;
1035
1036 if (INSN_P (x))
1037 x = PATTERN (x);
1038
5924de0b 1039 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1040 return 1;
1041 if (GET_CODE (x) == PARALLEL)
1042 {
1043 int i;
1044 int sets_cc0 = 0;
1045 int other_things = 0;
1046 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1047 {
1048 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1049 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1050 sets_cc0 = 1;
1051 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1052 other_things = 1;
1053 }
1054 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1055 }
1056 return 0;
5924de0b 1057}
5924de0b 1058\f
19d2fe05 1059/* Find all CODE_LABELs referred to in X, and increment their use
1060 counts. If INSN is a JUMP_INSN and there is at least one
1061 CODE_LABEL referenced in INSN as a jump target, then store the last
1062 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1063 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1064 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1065 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1066 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
e0691b9a 1067 For returnjumps, the JUMP_LABEL will also be set as appropriate.
5924de0b 1068
1069 Note that two labels separated by a loop-beginning note
1070 must be kept distinct if we have not yet done loop-optimization,
1071 because the gap between them is where loop-optimize
1072 will want to move invariant code to. CROSS_JUMP tells us
bf73fcf4 1073 that loop-optimization is done with. */
5924de0b 1074
5377f687 1075void
c6d14fbf 1076mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
19d2fe05 1077{
78f55ca8 1078 rtx asmop = extract_asm_operands (x);
1079 if (asmop)
1080 mark_jump_label_asm (asmop, insn);
1081 else
1082 mark_jump_label_1 (x, insn, in_mem != 0,
1083 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
19d2fe05 1084}
1085
c7684b8e 1086/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
19d2fe05 1087 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1088 jump-target; when the JUMP_LABEL field of INSN should be set or a
1089 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1090 note. */
1091
1092static void
c6d14fbf 1093mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
5924de0b 1094{
19cb6b50 1095 RTX_CODE code = GET_CODE (x);
1096 int i;
1097 const char *fmt;
5924de0b 1098
1099 switch (code)
1100 {
1101 case PC:
1102 case CC0:
1103 case REG:
5924de0b 1104 case CLOBBER:
1105 case CALL:
1106 return;
1107
e0691b9a 1108 case RETURN:
31a53363 1109 case SIMPLE_RETURN:
e0691b9a 1110 if (is_target)
1111 {
1112 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1113 JUMP_LABEL (insn) = x;
1114 }
1115 return;
1116
d8e0d332 1117 case MEM:
19d2fe05 1118 in_mem = true;
190099a6 1119 break;
1120
76021441 1121 case SEQUENCE:
a3f9638d 1122 {
1123 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1124 for (i = 0; i < seq->len (); i++)
1125 mark_jump_label (PATTERN (seq->insn (i)),
1126 seq->insn (i), 0);
1127 }
76021441 1128 return;
1129
190099a6 1130 case SYMBOL_REF:
1131 if (!in_mem)
7113a566 1132 return;
190099a6 1133
d8e0d332 1134 /* If this is a constant-pool reference, see if it is a label. */
190099a6 1135 if (CONSTANT_POOL_ADDRESS_P (x))
19d2fe05 1136 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d8e0d332 1137 break;
1138
19d2fe05 1139 /* Handle operands in the condition of an if-then-else as for a
1140 non-jump insn. */
1141 case IF_THEN_ELSE:
1142 if (!is_target)
1143 break;
1144 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1145 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1146 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1147 return;
1148
5924de0b 1149 case LABEL_REF:
1150 {
b49f2e4b 1151 rtx label = LABEL_REF_LABEL (x);
b4d3bcce 1152
74b0991d 1153 /* Ignore remaining references to unreachable labels that
1154 have been deleted. */
6d7dc5b9 1155 if (NOTE_P (label)
ad4583d9 1156 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
74b0991d 1157 break;
1158
a53ff4c1 1159 gcc_assert (LABEL_P (label));
b4d3bcce 1160
f08cae9d 1161 /* Ignore references to labels of containing functions. */
1162 if (LABEL_REF_NONLOCAL_P (x))
1163 break;
b4d3bcce 1164
b49f2e4b 1165 LABEL_REF_LABEL (x) = label;
dd1286fb 1166 if (! insn || ! insn->deleted ())
943e16d8 1167 ++LABEL_NUSES (label);
b4d3bcce 1168
5924de0b 1169 if (insn)
1170 {
19d2fe05 1171 if (is_target
a8d1dae0 1172 /* Do not change a previous setting of JUMP_LABEL. If the
1173 JUMP_LABEL slot is occupied by a different label,
1174 create a note for this label. */
19d2fe05 1175 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
5924de0b 1176 JUMP_LABEL (insn) = label;
ab2237b5 1177 else
e89849bd 1178 {
19d2fe05 1179 enum reg_note kind
1180 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1181
1182 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1183 for LABEL unless there already is one. All uses of
1184 a label, except for the primary target of a jump,
1185 must have such a note. */
1186 if (! find_reg_note (insn, kind, label))
a1ddb869 1187 add_reg_note (insn, kind, label);
5924de0b 1188 }
1189 }
1190 return;
1191 }
1192
91f71fa3 1193 /* Do walk the labels in a vector, but not the first operand of an
1194 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
5924de0b 1195 case ADDR_VEC:
1196 case ADDR_DIFF_VEC:
dd1286fb 1197 if (! insn->deleted ())
943e16d8 1198 {
1199 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
5924de0b 1200
943e16d8 1201 for (i = 0; i < XVECLEN (x, eltnum); i++)
c6d14fbf 1202 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
19d2fe05 1203 is_target);
943e16d8 1204 }
0dbd1c74 1205 return;
7113a566 1206
0dbd1c74 1207 default:
1208 break;
5924de0b 1209 }
1210
1211 fmt = GET_RTX_FORMAT (code);
19d2fe05 1212
1213 /* The primary target of a tablejump is the label of the ADDR_VEC,
1214 which is canonically mentioned *last* in the insn. To get it
1215 marked as JUMP_LABEL, we iterate over items in reverse order. */
5924de0b 1216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1217 {
1218 if (fmt[i] == 'e')
19d2fe05 1219 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
5924de0b 1220 else if (fmt[i] == 'E')
1221 {
19cb6b50 1222 int j;
19d2fe05 1223
1224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1225 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1226 is_target);
5924de0b 1227 }
1228 }
1229}
1230
78f55ca8 1231/* Worker function for mark_jump_label. Handle asm insns specially.
1232 In particular, output operands need not be considered so we can
1233 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1234 need to be considered targets. */
1235
1236static void
c6d14fbf 1237mark_jump_label_asm (rtx asmop, rtx_insn *insn)
78f55ca8 1238{
1239 int i;
1240
1241 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1242 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1243
1244 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1245 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1246}
5924de0b 1247\f
e4bf866d 1248/* Delete insn INSN from the chain of insns and update label ref counts
17a74abe 1249 and delete insns now unreachable.
e4bf866d 1250
17a74abe 1251 Returns the first insn after INSN that was not deleted.
5924de0b 1252
e4bf866d 1253 Usage of this instruction is deprecated. Use delete_insn instead and
1254 subsequent cfg_cleanup pass to delete unreachable code if needed. */
5924de0b 1255
f68c5086 1256rtx_insn *
4cd001d5 1257delete_related_insns (rtx uncast_insn)
5924de0b 1258{
4cd001d5 1259 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
6d7dc5b9 1260 int was_code_label = (LABEL_P (insn));
d3df77e9 1261 rtx note;
f68c5086 1262 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
5924de0b 1263
dd1286fb 1264 while (next && next->deleted ())
5924de0b 1265 next = NEXT_INSN (next);
1266
1267 /* This insn is already deleted => return first following nondeleted. */
dd1286fb 1268 if (insn->deleted ())
5924de0b 1269 return next;
1270
e4bf866d 1271 delete_insn (insn);
5924de0b 1272
5924de0b 1273 /* If instruction is followed by a barrier,
1274 delete the barrier too. */
1275
6d7dc5b9 1276 if (next != 0 && BARRIER_P (next))
e4bf866d 1277 delete_insn (next);
5924de0b 1278
ad35ffdc 1279 /* If this is a call, then we have to remove the var tracking note
1280 for the call arguments. */
1281
1282 if (CALL_P (insn)
1283 || (NONJUMP_INSN_P (insn)
1284 && GET_CODE (PATTERN (insn)) == SEQUENCE
1285 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1286 {
4cd001d5 1287 rtx_insn *p;
ad35ffdc 1288
dd1286fb 1289 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
ad35ffdc 1290 p && NOTE_P (p);
1291 p = NEXT_INSN (p))
1292 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1293 {
1294 remove_insn (p);
1295 break;
1296 }
1297 }
1298
5924de0b 1299 /* If deleting a jump, decrement the count of the label,
1300 and delete the label if it is now unused. */
1301
4115ac36 1302 if (jump_to_label_p (insn))
1793cd6b 1303 {
c86d86ff 1304 rtx lab = JUMP_LABEL (insn);
1305 rtx_jump_table_data *lab_next;
1793cd6b 1306
e4bf866d 1307 if (LABEL_NUSES (lab) == 0)
19d2fe05 1308 /* This can delete NEXT or PREV,
1309 either directly if NEXT is JUMP_LABEL (INSN),
1310 or indirectly through more levels of jumps. */
1311 delete_related_insns (lab);
b19beda9 1312 else if (tablejump_p (insn, NULL, &lab_next))
1793cd6b 1313 {
1314 /* If we're deleting the tablejump, delete the dispatch table.
4a82352a 1315 We may not be able to kill the label immediately preceding
1793cd6b 1316 just yet, as it might be referenced in code leading up to
1317 the tablejump. */
e4bf866d 1318 delete_related_insns (lab_next);
1793cd6b 1319 }
1320 }
5924de0b 1321
9c9e0c01 1322 /* Likewise if we're deleting a dispatch table. */
1323
ae9c1c11 1324 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
9c9e0c01 1325 {
ae9c1c11 1326 rtvec labels = table->get_labels ();
1327 int i;
1328 int len = GET_NUM_ELEM (labels);
9c9e0c01 1329
1330 for (i = 0; i < len; i++)
ae9c1c11 1331 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1332 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
dd1286fb 1333 while (next && next->deleted ())
9c9e0c01 1334 next = NEXT_INSN (next);
1335 return next;
1336 }
1337
19d2fe05 1338 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1339 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1340 if (INSN_P (insn))
d3df77e9 1341 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
19d2fe05 1342 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1343 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
0c97f529 1344 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
6d7dc5b9 1345 && LABEL_P (XEXP (note, 0)))
e4bf866d 1346 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1347 delete_related_insns (XEXP (note, 0));
d3df77e9 1348
dd1286fb 1349 while (prev && (prev->deleted () || NOTE_P (prev)))
5924de0b 1350 prev = PREV_INSN (prev);
1351
1352 /* If INSN was a label and a dispatch table follows it,
1353 delete the dispatch table. The tablejump must have gone already.
1354 It isn't useful to fall through into a table. */
1355
9cdc08c6 1356 if (was_code_label
5924de0b 1357 && NEXT_INSN (insn) != 0
971ba038 1358 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
e4bf866d 1359 next = delete_related_insns (NEXT_INSN (insn));
5924de0b 1360
1361 /* If INSN was a label, delete insns following it if now unreachable. */
1362
6d7dc5b9 1363 if (was_code_label && prev && BARRIER_P (prev))
5924de0b 1364 {
6720e96c 1365 enum rtx_code code;
1366 while (next)
5924de0b 1367 {
6720e96c 1368 code = GET_CODE (next);
737251e7 1369 if (code == NOTE)
5924de0b 1370 next = NEXT_INSN (next);
59bee35e 1371 /* Keep going past other deleted labels to delete what follows. */
dd1286fb 1372 else if (code == CODE_LABEL && next->deleted ())
59bee35e 1373 next = NEXT_INSN (next);
8ef42ff5 1374 /* Keep the (use (insn))s created by dbr_schedule, which needs
1375 them in order to track liveness relative to a previous
1376 barrier. */
1377 else if (INSN_P (next)
1378 && GET_CODE (PATTERN (next)) == USE
1379 && INSN_P (XEXP (PATTERN (next), 0)))
1380 next = NEXT_INSN (next);
6720e96c 1381 else if (code == BARRIER || INSN_P (next))
5924de0b 1382 /* Note: if this deletes a jump, it can cause more
1383 deletion of unreachable code, after a different label.
1384 As long as the value from this recursive call is correct,
1385 this invocation functions correctly. */
e4bf866d 1386 next = delete_related_insns (next);
6720e96c 1387 else
1388 break;
5924de0b 1389 }
1390 }
1391
19d2fe05 1392 /* I feel a little doubtful about this loop,
1393 but I see no clean and sure alternative way
1394 to find the first insn after INSN that is not now deleted.
1395 I hope this works. */
dd1286fb 1396 while (next && next->deleted ())
19d2fe05 1397 next = NEXT_INSN (next);
5924de0b 1398 return next;
1399}
5924de0b 1400\f
1401/* Delete a range of insns from FROM to TO, inclusive.
1402 This is for the sake of peephole optimization, so assume
1403 that whatever these insns do will still be done by a new
1404 peephole insn that will replace them. */
1405
1406void
2db825a4 1407delete_for_peephole (rtx_insn *from, rtx_insn *to)
5924de0b 1408{
2db825a4 1409 rtx_insn *insn = from;
5924de0b 1410
1411 while (1)
1412 {
2db825a4 1413 rtx_insn *next = NEXT_INSN (insn);
1414 rtx_insn *prev = PREV_INSN (insn);
5924de0b 1415
6d7dc5b9 1416 if (!NOTE_P (insn))
5924de0b 1417 {
dd1286fb 1418 insn->set_deleted();
5924de0b 1419
1420 /* Patch this insn out of the chain. */
1421 /* We don't do this all at once, because we
1422 must preserve all NOTEs. */
1423 if (prev)
4a57a2e8 1424 SET_NEXT_INSN (prev) = next;
5924de0b 1425
1426 if (next)
4a57a2e8 1427 SET_PREV_INSN (next) = prev;
5924de0b 1428 }
1429
1430 if (insn == to)
1431 break;
1432 insn = next;
1433 }
1434
1435 /* Note that if TO is an unconditional jump
1436 we *do not* delete the BARRIER that follows,
1437 since the peephole that replaces this sequence
1438 is also an unconditional jump in that case. */
1439}
1440\f
4115ac36 1441/* A helper function for redirect_exp_1; examines its input X and returns
1442 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1443static rtx
1444redirect_target (rtx x)
1445{
1446 if (x == NULL_RTX)
1447 return ret_rtx;
1448 if (!ANY_RETURN_P (x))
1449 return gen_rtx_LABEL_REF (Pmode, x);
1450 return x;
1451}
1452
a8b5d014 1453/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1454 NLABEL as a return. Accrue modifications into the change group. */
5924de0b 1455
a8b5d014 1456static void
3ad4992f 1457redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
5924de0b 1458{
19cb6b50 1459 rtx x = *loc;
1460 RTX_CODE code = GET_CODE (x);
1461 int i;
1462 const char *fmt;
5924de0b 1463
b49f2e4b 1464 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
4115ac36 1465 || x == olabel)
5924de0b 1466 {
4115ac36 1467 x = redirect_target (nlabel);
1468 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
d1f9b275 1469 x = gen_rtx_SET (pc_rtx, x);
a8b5d014 1470 validate_change (insn, loc, x, 1);
1471 return;
1472 }
5924de0b 1473
4115ac36 1474 if (code == SET && SET_DEST (x) == pc_rtx
1475 && ANY_RETURN_P (nlabel)
a8b5d014 1476 && GET_CODE (SET_SRC (x)) == LABEL_REF
b49f2e4b 1477 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
a8b5d014 1478 {
4115ac36 1479 validate_change (insn, loc, nlabel, 1);
a8b5d014 1480 return;
5924de0b 1481 }
1482
3b10edae 1483 if (code == IF_THEN_ELSE)
1484 {
1485 /* Skip the condition of an IF_THEN_ELSE. We only want to
1486 change jump destinations, not eventual label comparisons. */
1487 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1488 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1489 return;
1490 }
1491
5924de0b 1492 fmt = GET_RTX_FORMAT (code);
1493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1494 {
1495 if (fmt[i] == 'e')
a8b5d014 1496 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1bd8ca86 1497 else if (fmt[i] == 'E')
5924de0b 1498 {
19cb6b50 1499 int j;
5924de0b 1500 for (j = 0; j < XVECLEN (x, i); j++)
a8b5d014 1501 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
5924de0b 1502 }
1503 }
a8b5d014 1504}
5924de0b 1505
a8b5d014 1506/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1507 the modifications into the change group. Return false if we did
1508 not see how to do that. */
1509
1510int
548a37a8 1511redirect_jump_1 (rtx_insn *jump, rtx nlabel)
a8b5d014 1512{
1513 int ochanges = num_validated_changes ();
78f55ca8 1514 rtx *loc, asmop;
ba08b7e7 1515
4115ac36 1516 gcc_assert (nlabel != NULL_RTX);
78f55ca8 1517 asmop = extract_asm_operands (PATTERN (jump));
1518 if (asmop)
1519 {
1520 if (nlabel == NULL)
1521 return 0;
1522 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1523 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1524 }
1525 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
ba08b7e7 1526 loc = &XVECEXP (PATTERN (jump), 0, 0);
1527 else
1528 loc = &PATTERN (jump);
1529
1530 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
a8b5d014 1531 return num_validated_changes () > ochanges;
1532}
1533
1534/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1535 jump target label is unused as a result, it and the code following
1536 it may be deleted.
5924de0b 1537
4115ac36 1538 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1539 in that case we are to turn the jump into a (possibly conditional)
1540 return insn.
5924de0b 1541
a8b5d014 1542 The return value will be 1 if the change was made, 0 if it wasn't
4115ac36 1543 (this can only occur when trying to produce return insns). */
5924de0b 1544
1545int
f9a00e9e 1546redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
5924de0b 1547{
f9a00e9e 1548 rtx olabel = jump->jump_label ();
5924de0b 1549
e1e50552 1550 if (!nlabel)
1551 {
1552 /* If there is no label, we are asked to redirect to the EXIT block.
1553 When before the epilogue is emitted, return/simple_return cannot be
1554 created so we return 0 immediately. After the epilogue is emitted,
1555 we always expect a label, either a non-null label, or a
1556 return/simple_return RTX. */
1557
1558 if (!epilogue_completed)
1559 return 0;
1560 gcc_unreachable ();
1561 }
4115ac36 1562
5924de0b 1563 if (nlabel == olabel)
1564 return 1;
1565
82880dfd 1566 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
5924de0b 1567 return 0;
1568
82880dfd 1569 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1570 return 1;
1571}
1572
1573/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
48e1416a 1574 NLABEL in JUMP.
82880dfd 1575 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1576 count has dropped to zero. */
1577void
f9a00e9e 1578redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
82880dfd 1579 int invert)
1580{
1581 rtx note;
1582
19d2fe05 1583 gcc_assert (JUMP_LABEL (jump) == olabel);
1584
f2b32076 1585 /* Negative DELETE_UNUSED used to be used to signalize behavior on
737251e7 1586 moving FUNCTION_END note. Just sanity check that no user still worry
1587 about this. */
1588 gcc_assert (delete_unused >= 0);
5924de0b 1589 JUMP_LABEL (jump) = nlabel;
4115ac36 1590 if (!ANY_RETURN_P (nlabel))
5924de0b 1591 ++LABEL_NUSES (nlabel);
1592
1e0703ac 1593 /* Update labels in any REG_EQUAL note. */
1594 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1595 {
4115ac36 1596 if (ANY_RETURN_P (nlabel)
1597 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
82880dfd 1598 remove_note (jump, note);
1599 else
1e0703ac 1600 {
82880dfd 1601 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1602 confirm_change_group ();
1e0703ac 1603 }
1e0703ac 1604 }
1605
4db67ecc 1606 /* Handle the case where we had a conditional crossing jump to a return
1607 label and are now changing it into a direct conditional return.
1608 The jump is no longer crossing in that case. */
1609 if (ANY_RETURN_P (nlabel))
8f869004 1610 CROSSING_JUMP_P (jump) = 0;
4db67ecc 1611
4115ac36 1612 if (!ANY_RETURN_P (olabel)
1613 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
7f8c3466 1614 /* Undefined labels will remain outside the insn stream. */
1615 && INSN_UID (olabel))
e4bf866d 1616 delete_related_insns (olabel);
82880dfd 1617 if (invert)
1618 invert_br_probabilities (jump);
5924de0b 1619}
1620
82880dfd 1621/* Invert the jump condition X contained in jump insn INSN. Accrue the
1622 modifications into the change group. Return nonzero for success. */
1623static int
1624invert_exp_1 (rtx x, rtx insn)
a8b5d014 1625{
82880dfd 1626 RTX_CODE code = GET_CODE (x);
a8b5d014 1627
1628 if (code == IF_THEN_ELSE)
1629 {
19cb6b50 1630 rtx comp = XEXP (x, 0);
1631 rtx tem;
7da6ea0c 1632 enum rtx_code reversed_code;
a8b5d014 1633
1634 /* We can do this in two ways: The preferable way, which can only
1635 be done if this is not an integer comparison, is to reverse
1636 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1637 of the IF_THEN_ELSE. If we can't do either, fail. */
1638
7da6ea0c 1639 reversed_code = reversed_comparison_code (comp, insn);
1640
1641 if (reversed_code != UNKNOWN)
a8b5d014 1642 {
1643 validate_change (insn, &XEXP (x, 0),
7da6ea0c 1644 gen_rtx_fmt_ee (reversed_code,
a8b5d014 1645 GET_MODE (comp), XEXP (comp, 0),
1646 XEXP (comp, 1)),
1647 1);
82880dfd 1648 return 1;
a8b5d014 1649 }
7113a566 1650
a8b5d014 1651 tem = XEXP (x, 1);
1652 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1653 validate_change (insn, &XEXP (x, 2), tem, 1);
82880dfd 1654 return 1;
a8b5d014 1655 }
ba08b7e7 1656 else
a8b5d014 1657 return 0;
a8b5d014 1658}
1659
1660/* Invert the condition of the jump JUMP, and make it jump to label
1661 NLABEL instead of where it jumps now. Accrue changes into the
1662 change group. Return false if we didn't see how to perform the
1663 inversion and redirection. */
1664
1665int
f9a00e9e 1666invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
a8b5d014 1667{
82880dfd 1668 rtx x = pc_set (jump);
a8b5d014 1669 int ochanges;
a53ff4c1 1670 int ok;
a8b5d014 1671
1672 ochanges = num_validated_changes ();
78f55ca8 1673 if (x == NULL)
1674 return 0;
a53ff4c1 1675 ok = invert_exp_1 (SET_SRC (x), jump);
1676 gcc_assert (ok);
48e1416a 1677
a8b5d014 1678 if (num_validated_changes () == ochanges)
1679 return 0;
1680
50f46d50 1681 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1682 in Pmode, so checking this is not merely an optimization. */
1683 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
a8b5d014 1684}
1685
1686/* Invert the condition of the jump JUMP, and make it jump to label
1687 NLABEL instead of where it jumps now. Return true if successful. */
1688
1689int
f9a00e9e 1690invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
a8b5d014 1691{
82880dfd 1692 rtx olabel = JUMP_LABEL (jump);
a8b5d014 1693
82880dfd 1694 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
a8b5d014 1695 {
82880dfd 1696 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
a8b5d014 1697 return 1;
1698 }
82880dfd 1699 cancel_changes (0);
a8b5d014 1700 return 0;
1701}
1702
5924de0b 1703\f
1704/* Like rtx_equal_p except that it considers two REGs as equal
6c60c295 1705 if they renumber to the same value and considers two commutative
1706 operations to be the same if the order of the operands has been
280566a7 1707 reversed. */
5924de0b 1708
1709int
a9f1838b 1710rtx_renumbered_equal_p (const_rtx x, const_rtx y)
5924de0b 1711{
19cb6b50 1712 int i;
52d07779 1713 const enum rtx_code code = GET_CODE (x);
19cb6b50 1714 const char *fmt;
7113a566 1715
5924de0b 1716 if (x == y)
1717 return 1;
6c60c295 1718
8ad4c111 1719 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1720 && (REG_P (y) || (GET_CODE (y) == SUBREG
1721 && REG_P (SUBREG_REG (y)))))
5924de0b 1722 {
6c60c295 1723 int reg_x = -1, reg_y = -1;
701e46d0 1724 int byte_x = 0, byte_y = 0;
9680c846 1725 struct subreg_info info;
5924de0b 1726
1727 if (GET_MODE (x) != GET_MODE (y))
1728 return 0;
1729
1730 /* If we haven't done any renumbering, don't
1731 make any assumptions. */
1732 if (reg_renumber == 0)
1733 return rtx_equal_p (x, y);
1734
1735 if (code == SUBREG)
1736 {
6c60c295 1737 reg_x = REGNO (SUBREG_REG (x));
701e46d0 1738 byte_x = SUBREG_BYTE (x);
6c60c295 1739
1740 if (reg_renumber[reg_x] >= 0)
1741 {
9680c846 1742 subreg_get_info (reg_renumber[reg_x],
1743 GET_MODE (SUBREG_REG (x)), byte_x,
1744 GET_MODE (x), &info);
1745 if (!info.representable_p)
62e42324 1746 return 0;
9680c846 1747 reg_x = info.offset;
701e46d0 1748 byte_x = 0;
6c60c295 1749 }
5924de0b 1750 }
1751 else
1752 {
6c60c295 1753 reg_x = REGNO (x);
1754 if (reg_renumber[reg_x] >= 0)
1755 reg_x = reg_renumber[reg_x];
5924de0b 1756 }
6c60c295 1757
5924de0b 1758 if (GET_CODE (y) == SUBREG)
1759 {
6c60c295 1760 reg_y = REGNO (SUBREG_REG (y));
701e46d0 1761 byte_y = SUBREG_BYTE (y);
6c60c295 1762
1763 if (reg_renumber[reg_y] >= 0)
1764 {
9680c846 1765 subreg_get_info (reg_renumber[reg_y],
1766 GET_MODE (SUBREG_REG (y)), byte_y,
1767 GET_MODE (y), &info);
1768 if (!info.representable_p)
62e42324 1769 return 0;
9680c846 1770 reg_y = info.offset;
701e46d0 1771 byte_y = 0;
6c60c295 1772 }
5924de0b 1773 }
1774 else
1775 {
6c60c295 1776 reg_y = REGNO (y);
1777 if (reg_renumber[reg_y] >= 0)
1778 reg_y = reg_renumber[reg_y];
5924de0b 1779 }
6c60c295 1780
701e46d0 1781 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
5924de0b 1782 }
6c60c295 1783
7113a566 1784 /* Now we have disposed of all the cases
5924de0b 1785 in which different rtx codes can match. */
1786 if (code != GET_CODE (y))
1787 return 0;
6c60c295 1788
5924de0b 1789 switch (code)
1790 {
1791 case PC:
1792 case CC0:
1793 case ADDR_VEC:
1794 case ADDR_DIFF_VEC:
0349edce 1795 CASE_CONST_UNIQUE:
70b1bccd 1796 return 0;
5924de0b 1797
1798 case LABEL_REF:
f08cae9d 1799 /* We can't assume nonlocal labels have their following insns yet. */
1800 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
b49f2e4b 1801 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
6c60c295 1802
5924de0b 1803 /* Two label-refs are equivalent if they point at labels
1804 in the same position in the instruction stream. */
4c9c6539 1805 else
1806 {
1807 rtx_insn *xi = next_nonnote_nondebug_insn (LABEL_REF_LABEL (x));
1808 rtx_insn *yi = next_nonnote_nondebug_insn (LABEL_REF_LABEL (y));
1809 while (xi && LABEL_P (xi))
1810 xi = next_nonnote_nondebug_insn (xi);
1811 while (yi && LABEL_P (yi))
1812 yi = next_nonnote_nondebug_insn (yi);
1813 return xi == yi;
1814 }
5924de0b 1815
1816 case SYMBOL_REF:
1817 return XSTR (x, 0) == XSTR (y, 0);
0dbd1c74 1818
fc41ccae 1819 case CODE_LABEL:
1820 /* If we didn't match EQ equality above, they aren't the same. */
1821 return 0;
1822
0dbd1c74 1823 default:
1824 break;
5924de0b 1825 }
1826
1827 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1828
1829 if (GET_MODE (x) != GET_MODE (y))
1830 return 0;
1831
04ec15fa 1832 /* MEMs referring to different address space are not equivalent. */
bd1a81f7 1833 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1834 return 0;
1835
6c60c295 1836 /* For commutative operations, the RTX match if the operand match in any
280566a7 1837 order. Also handle the simple binary and unary cases without a loop. */
1838 if (targetm.commutative_p (x, UNKNOWN))
6c60c295 1839 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1840 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1841 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1842 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
6720e96c 1843 else if (NON_COMMUTATIVE_P (x))
6c60c295 1844 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
6720e96c 1846 else if (UNARY_P (x))
6c60c295 1847 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1848
5924de0b 1849 /* Compare the elements. If any pair of corresponding elements
1850 fail to match, return 0 for the whole things. */
1851
1852 fmt = GET_RTX_FORMAT (code);
1853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1854 {
19cb6b50 1855 int j;
5924de0b 1856 switch (fmt[i])
1857 {
1bb04728 1858 case 'w':
1859 if (XWINT (x, i) != XWINT (y, i))
1860 return 0;
1861 break;
1862
5924de0b 1863 case 'i':
1864 if (XINT (x, i) != XINT (y, i))
6675c1b7 1865 {
1866 if (((code == ASM_OPERANDS && i == 6)
5169661d 1867 || (code == ASM_INPUT && i == 1)))
6675c1b7 1868 break;
1869 return 0;
1870 }
5924de0b 1871 break;
1872
a0d79d69 1873 case 't':
1874 if (XTREE (x, i) != XTREE (y, i))
1875 return 0;
1876 break;
1877
5924de0b 1878 case 's':
1879 if (strcmp (XSTR (x, i), XSTR (y, i)))
1880 return 0;
1881 break;
1882
1883 case 'e':
1884 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1885 return 0;
1886 break;
1887
1888 case 'u':
1889 if (XEXP (x, i) != XEXP (y, i))
1890 return 0;
b4b174c3 1891 /* Fall through. */
5924de0b 1892 case '0':
1893 break;
1894
1895 case 'E':
1896 if (XVECLEN (x, i) != XVECLEN (y, i))
1897 return 0;
1898 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1899 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1900 return 0;
1901 break;
1902
1903 default:
a53ff4c1 1904 gcc_unreachable ();
5924de0b 1905 }
1906 }
1907 return 1;
1908}
1909\f
1910/* If X is a hard register or equivalent to one or a subregister of one,
1911 return the hard register number. If X is a pseudo register that was not
1912 assigned a hard register, return the pseudo register number. Otherwise,
1913 return -1. Any rtx is valid for X. */
1914
1915int
52d07779 1916true_regnum (const_rtx x)
5924de0b 1917{
8ad4c111 1918 if (REG_P (x))
5924de0b 1919 {
c6a6cdaa 1920 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1921 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
5924de0b 1922 return reg_renumber[REGNO (x)];
1923 return REGNO (x);
1924 }
1925 if (GET_CODE (x) == SUBREG)
1926 {
1927 int base = true_regnum (SUBREG_REG (x));
90489f58 1928 if (base >= 0
9680c846 1929 && base < FIRST_PSEUDO_REGISTER)
1930 {
1931 struct subreg_info info;
1932
c6a6cdaa 1933 subreg_get_info (lra_in_progress
1934 ? (unsigned) base : REGNO (SUBREG_REG (x)),
9680c846 1935 GET_MODE (SUBREG_REG (x)),
1936 SUBREG_BYTE (x), GET_MODE (x), &info);
1937
1938 if (info.representable_p)
1939 return base + info.offset;
1940 }
5924de0b 1941 }
1942 return -1;
1943}
b627bae7 1944
1945/* Return regno of the register REG and handle subregs too. */
1946unsigned int
52d07779 1947reg_or_subregno (const_rtx reg)
b627bae7 1948{
b627bae7 1949 if (GET_CODE (reg) == SUBREG)
a53ff4c1 1950 reg = SUBREG_REG (reg);
1951 gcc_assert (REG_P (reg));
1952 return REGNO (reg);
b627bae7 1953}